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Introduction

The Weil representation at a glance
For a local field F (char(F ) 6= 2) and a fixed non-trivial additive unitary character ψ of F , let
(W, 〈, 〉) be a symplectic space of finite dimension over F and Sp(W ) be the associated symplectic
group, the Weil representation is a projective representation ω̄ψ of Sp(W ). In simple terms, ω̄ψ is
constructed as follows.

Consider the Heisenberg groupH(W ), it is the spaceW×F equipped with the binary operation

(w1, t1) · (w2, t2) =
(
w1 + w2, t1 + t2 +

〈w1, w2〉
2

)
.

By the Stone-von Neumann Theorem 3.2.1, H(W ) has a unique irreducible smooth (or unitary)
representation (ρψ, S) over C of central character ψ. As Sp(W ) operates on H(W ) in the obvious
way, ρgψ := ρψ ◦g and ρψ are intertwined by an operatorM [g] : S → S, unique up to multiplication
by C×. That is:

M [g] ◦ ρψ = ρgψ ◦M [g].

This gives rise to a projective representation

ω̄ψ : Sp(W ) −→ PGL(S)
g 7−→M [g]

In fact, one can define the metaplectic group S̃pψ(W ) := Sp(W ) ×PGL(S) GL(S), then there
exists a subgroup Ŝp(W ) of S̃pψ(W ) which is a two-fold covering of Sp(W ). The natural projection
Ŝp(W ) → GL(S) gives rise to a representation ωψ. One can show that ωψ decomposes into two
irreducible representations: ωψ = ωψ,odd ⊕ ωψ,even. Moreover, ωψ is admissible.

Two problems remain.

1. An explicit description of the group Ŝp(W ).

2. An explicit model of ωψ.

To answer these problems, we must study the models of irreducible smooth representations of
Heisenberg group together with their intertwiners. We will mainly rely on Schrödinger models
associated to lagrangians of W . The Maslov index associated to n lagrangians intervenes when
we compose n intertwiners cyclically.

It turns out that Ŝp(W ) is a non-trivial covering of Sp(W ) when F 6= C. Since the group
scheme Sp(2n) is simply-connected, Ŝp(W ) is non-algebraic (or equivalently: nonlinear). Since
π1(Sp(2n,R), ∗) ' Z, such a two-fold covering for Sp(W ) is unique when F = R. For p-adic local
fields, the uniqueness follows from the work of C. Moore in [14].
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A brief history, motivations
The Weil representation was originally motivated by theoretical physics, namely by quantization.
It was firstly defined on the level of Lie algebra by L. van Hove in 1951, then on the level of Lie group
by I. E. Segal and D. Shale in the 1960’s. On the arithmetical side, A. Weil generalized this machin-
ery to include all local fields in [19]; this is the main ingredient of Weil’s representation-theoretic
approach to theta functions. In fact, the theta functions can be interpreted as automorphic forms
of Ŝp(W ) once the group of adélic points Ŝp(W,A) is properly defined.

One of the relevance’s of Weil representation to number theory is the Howe correspondence.
Roughly speaking, it predicts a bijection between irreducible representations of a dual reductive
pair in Sp(W ) which are quotients of the restriction of (ωψ, S). When dimW = 6, this includes
the Shimura correspondence between modular forms of half-integral weight and that of integral
weight.

As the title suggests, the other aspect of this thesis is the character Θωψ of ωψ. The role of
characters in the representation theory of compact groups is well-known. The character theory
for reductive algebraic groups (or almost algebraic groups in the sense of [12] p.257) was initiated
by Harish-Chandra. He showed that one can define the character of an admissible representation
as a distribution. A deep regularity theorem of Harish-Chandra ([7]) asserts that the character of
a reductive p-adic group is a locally integrable function which is smooth on the dense subset of
semi-simple regular elements.

The character Θωψ in the non-archimedean case is computed first by K. Maktouf in [12], then
T. Thomas gave a somewhat shorter proof [18]. We will follow the latter in our calculations of the
character.

One of the reasons to study Θωψ is the endoscopy theory of metaplectic groups. The rela-
tion between Langlands’ functoriality and the Howe correspondence is an interesting question.
However, L-groups can only be defined for reductive algebraic groups. Thus the framework of
Langlands-Shelstad cannot be copied verbatim.

In [1], J. Adams defined the notion of stability on Ŝp(2n,R), an explicit correspondence of
stable conjugacy classes g ↔ g′ between SO(n+1, n) and Ŝp(2n,R) by matching eigenvalues, then
he defined a lifting of stably invariant eigendistributions1 from SO(n+ 1, n) to Ŝp(2n,R) (dual to
the usual picture of matching orbital integrals) by

Γ :Θ 7→ Θ′

Θ′(g′) = Φ(g′)Θ(g)

where Φ(g′) := Θωψ,even(g
′) − Θωψ,odd(g

′). Thus the character Θωψ plays a role similar to transfer
factors. Adams’ map Γ satisfies some desirable properties; for example Γ restricts to a bijection
of stable virtual characters.

It would be interesting as well as important to consider an analogous picture for matching
orbital integrals when F is non-archimedean. Our study of Θωψ may be regarded as a first step
towards this topic.

Excursus
My policy is prove only what is needed; as a result, many important aspects of Heisenberg groups
and the Weil representations are omitted. There is a far more complete treatment in [13].

1. To keep the thesis at a moderate size, the basics of harmonic analysis on locally profinite
groups are assumed.

2. Some properties of the Maslov index are omitted, for example: local constancy, uniqueness,
the self-dual measure on T , etc. A possible reference is [17].

1That is, a distribution which is invariant under stable conjugation and is an eigenfunction of the commutative algebra
of bi-invariant differential operators.
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3. We will not touch on the adélic aspect of Weil representations.

4. Although the representation theory of real groups is technically more complicated, the study
of Heisenberg groups and metaplectic groups actually predate their p-adic counterparts, and
is well-known. The character formula in the real case is computed by many authors, using
various methods. See [12, 18] for a short bibliography.

Our exposition works with few modification for the case F = R. In particular, Thomas’
calculation of characters works identically for F = R, and even for F a finite field. In order
to keep things simple, we will restrict ourselves to non-archimedean F of characteristic not
equal to 2 in this thesis.

Finally, the main ideas of this thesis already exist in [15, 13, 17, 18]. The only (possible)
improvements are some technical or expository details.

Organization of thesis
This thesis is organized as follows.

Chapter 1: This chapter covers our conventions on densities and measures, Fourier transforms,
quadratic spaces, and generalities of the symplectic group and lagrangians.

Chapter 2: We will follow [17] to define the Maslov index associated to n lagrangians (n ≥ 3)
as a canonically defined quadratic space (T, q). We will also use A. Beilinson’s nice approach
to interpret (T,−q) as the H1 of some constructible sheaf on a solid n-gon, the quadratic
form being induced by cup-products. This enables one to "see through" the basic properties
of Maslov index. Its dimension and discriminant will be calculated. We will also record a
dual form which is used in the next chapter.

Chapter 3: The rudiments of Heisenberg group and Stone-von Neumann theorem are stated and
proven. We will define Schrödinger models and their canonical intertwiners. The canonical
intertwiner will be expressed as an integral operator against a kernel, then we will relate
Maslov indices to cyclic compositions of canonical intertwiners, in which the above-mentioned
dual form will appear naturally.

Chapter 4: The metaplectic group is defined in this chapter. Using Schrödinger models, the
two-fold covering of Sp(W ) can be constructed using the Maslov cocycles.

Chapter 5: We will follow [18] closely to calculate the character of ωψ. A formula of Θωψ as
the pull-back of a function on Ŝp(W ⊕W ) is also obtained.

In the appendix, we will collect some basic facts about trace class operators. A variant of Mercer’s
theorem will also be stated. This is the main tool for computation of traces.
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Conventions and notations

Unless otherwise specified, the following conventions are followed throughout this thesis:

• The arrow � stands for injections; � stands for surjections.

• F denotes a non-archimedean local field of characteristic not equal to 2. Its ring of integers
is denoted by OF . A chosen uniformiser is denoted by $.

• A non-trivial continuous additive unitary character ψ : F → S1 := {z ∈ C : |z| = 1} is fixed
once and for all.

• By a topological group, we mean a Hausdorff topological space equipped with a group
structure compatible with its topology.

• Since we are working with a non-archimedean local field, the adjective smooth for functions
means locally constant.

• For algebraic groups, we will use boldface letters (e.g. Sp) to denote the scheme, and use
roman letters (e.g. Sp) to denote the topological group of its F -points.

• The dual group of a commutative locally compact group G is denoted by Ĝ.

• A representation of a group always acts on a complex vector space. By a unitary represen-
tation, we mean a continuous representation π : G × V → V where V is a Hilbert space,
such that π(g) : V → V is a unitary operator for all g ∈ G.

• The Schwarz-Bruhat functions on a group G is denoted by S (G). Since F is assumed to be
non-archimedean, this is just the locally constant functions with compact support on G.

• The constant sheaf determined by an abelian group A on a space is denoted by A.
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Chapter 1

Preliminaries

1.1 Densities

1.1.1 Densities and measures
Densities serve as a bookkeeping tool for measures. One can formulate canonical versions of
various integral constructions in harmonic analysis by means of densities. Here is a simplified
version for F -vector spaces.

Definition 1.1.1. Let V be a finite-dimensional F -vector space. For α ∈ R, the R-vector space
of α-densities on V is defined to be

ΩR
α(V ) :=

{
ν :

max∧
V → R : ∀x ∈

max∧
V, t ∈ F×, ν(tx) = |t|αν(x)

}

In particular, when α = 1, we may identify ΩR
1 (V ) with the R-vector space of real invariant

measures (possibly zero) on V by sending ν ∈ ΩR
1 (V ) to the invariant measure that assigns

ν(v1 ∧ · · · ∧ vn) to the set {a1v1 + · · · anvn : |ai| ≤ 1}.

Remark 1.1.2. Although ΩR
α is always 1-dimensional, there is usually no canonical non-zero

element. However, when a non-trivial additive continous character ψ of F is prescribed and V
comes with with a non-degenerate bilinear form B, the map ψ ◦ B : V × V → S1 then yields a
self-duality for V , hence we can take the self-dual Haar measure as the distinguished element in
ΩR

1 (V ).

Some basic operations on densities are listed below.

• Functoriality. Let f : V →W be an isomorphism, then f induces f∗ :
∧max

V →
∧max

W ,
hence f∗ : ΩR

α(W )→ ΩR
α(V ).

• Product. Let α, β ∈ R, we can define a product operation ⊗ : ΩR
α(V )⊗ΩR

β(V )→ ΩR
α+β(V )

by (ν ⊗ ω)(x) := ν(x)ω(x).

• Duality. One can identify Ωα(V )∗ ' Ω−α(V ) ' Ωα(V ∗). The first ' comes from above
product pairing and the canonical isomorphism ΩR

0 (V ) = R. As for the second ', given
ν∗ ∈ Ωα(V ∗), define ν ∈ Ω−α(V ) by ν(e1 ∧ · · · ∧ en) = ν∗(e∗1 ∧ · · · ∧ e∗n), it is clearly
well-defined.

• Additivity. Given a short exact sequence 0 → V ′ → V → V ′′ → 0, there is a canonical
isomorphism · : ΩR

α(V ′)⊗R ΩR
α(V ′′) ∼→ ΩR

α(V ), given by (ν′ · ν′′)(x ∧ ȳ) := ν′(x)ν′′(y), where
ȳ denote any lifting of y to

∧dimV ′′
V .
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• Square root. For any ν ∈ ΩR
1 (V ), define ν1/2 : x 7→ |ν(x)|1/2. If ν corresponds to a positive

measure, then ν1/2 ⊗ ν1/2 = ν. Half-densities are especially useful in formulating dualities.

We can also define complex densities by Ωα(V ) := ΩR
α(V )⊗R C . As ΩR

1 (V ) corresponds to real
invariant measures on V , Ωα(V ) corresponds to complex invariant measures on V as well. The
basic operations above are also valid for Ωα(−).

Let f be an element of L1(V ) ⊗R Ω1(V ), we can integrate such a density-valued function by
choosing any ν ∈ Ω1(V ), ν 6= 0, write f = f̄ ⊗ ν and integrate f̄ with respect to the complex
measure dν corresponding to ν: ∫

v∈V

f(v) =
∫
V

f̄(v) dν(v).

This is cleary independent of the choice of ν.
For an isomorphism φ : V ∼→W , the formula of change of variables reads∫

V

φ∗f =
∫
W

f

1.1.2 Distributions
One can now reformulate the theory of distributions on F -vector spaces.

Definition 1.1.3. Let V be a finite-dimensional vector space over a local field F . The space
of distributions on V is the dual space of S (V ) ⊗ Ω1(V ), where S (V ) denotes the collection
of Schwartz-Bruhat functions on V . Since the local field F is assumed to be non-archimedean,
S (V ) = C∞c (V ) is just the compactly supported, locally constant functions on V . There is no
need to distinguish distributions and tempered distributions, and the space D(V ) is simply the
algebraic dual with discrete topology.

We rephrase now the standard operations on distributions using densities:

1. Locally integrable functions as distributions. Let f be a locally integrable function
on V , then f defines a distribution via

φ ∈ S (V )⊗ Ω1(V ) 7→
∫
V

fφ.

2. Push-forward and pull-back. Consider a short exact sequence of finite-dimensional F -
vector spaces

0 −→W
i−→ V

p−→ U −→ 0

ΩR
1 (V ) = ΩR

1 (W )⊗ ΩR
1 (U)

p∗ on test functions p∗ : S (V )⊗ ΩR
1 (V )→ S (U)⊗ ΩR

1 (U)

l (p∗φ)(u) =
∫

p(v)=u

φ(v)

p∗ on distributions p∗ : D(U)→ D(V )
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i∗ on test functions i∗ : S (V )⊗ ΩR
1 (V )→ S (W )⊗ ΩR

1 (V )
l (i∗φ)(w) = φ(i(w))

i∗ on distributions i∗ : D(W )→ D(V )⊗ ΩR
1 (U)

3. Dirac measures The same notations as above. As a special case of push-forward of distri-
butions, the Dirac measure concentrated on W ⊂ V can be defined by the map

S (V )⊗ ΩR
1 (V ) −→ ΩR

1 (U)

φ 7−→
∫
W

i∗φ

By taking dual, we get a map ΩR
1 (U)∗ −→ D(V ).

4. Fourier transform. Fix a nontrivial additive character ψ of F . Define the Fourier transform
of functions in the familiar way:

Fourier on test functions S (V ∗)⊗ ΩR
1 (V ∗)→ S (V )

l φ∧(v) :=
∫

v∗∈V ∗

φ(v∗)ψ(〈v∗, v〉)

Fourier on distributions D(V )⊗ ΩR
1 (V )→ D(V ∗)

〈(fν)∧, φ〉 = 〈f, φ∧ν〉

When f comes from a Schwartz-Bruhat function, a simple application of Fubini’s theorem
shows that the Fourier transform of f as a distribution coincides that of f as a Schwartz-
Bruhat function.

Observing that Ω1(V ) = Ω1/2(V ) ⊗ Ω1/2(V ) and that Ω1/2(V ∗) = Ω1/2(V )∗, the Fourier
transform can be put in a more symmetric form:

D(V )⊗ Ω1/2(V ) 7−→ D(V ∗)⊗ Ω1/2(V ∗).

For any positive measure ν ∈ ΩR
1 (V ), there exists a unique positive measure ν̂ ∈ ΩR

1 (V ), called
the dual measure, such that the Fourier inversion formula holds for Schwartz-Bruhat functions:

∀v ∈ V,
∫

v∗∈V ∗

(φν)∧(v∗)ψ(〈v∗, v〉) · ν̂ = φ(−v).

Set cψ := 〈ν, ν̂〉−1 under the pairing 〈, 〉 : ΩR
1 (V )⊗ΩR

1 (V ∗)→ R. It is a positive constant depending
only on the conductor of ψ, and equals 1 when the conductor of ψ isOF . Then the Fourier inversion
formula reads:

(fν)∧∧ = cψ · τ∗(fν), τ being the function x 7→ −x on V.

One can rephrase the Plancherel formula in a similar manner:∫
V

st̄ = cψ

∫
V ∗

ŝ¯̂t, s, t ∈ S (V )⊗ Ω1/2(V ).

Fourier transforms and pull-back/push-forwards are compatible in the sense below:

Proposition 1.1.4. Consider the short exact sequence of finite-dimensional F -vector spaces

0→W
ι−→ V

π−→ U → 0

10



and its dual
0→ U∗

i−→ V ∗
p−→W ∗ → 0

Then the following diagram commutes:

D(U) π∗ //

Fourier
��

D(V )

Fourier
��

D(U∗)⊗ Ω1(U∗)
cψ·i∗

// D(V ∗)⊗ Ω1(V ∗)

D(W )
ι∗ //

Fourier
��

D(V )⊗ Ω1(U)

Fourier
��

D(W ∗)⊗ Ω1(W ∗)
p∗
// D(V ∗)⊗ Ω1(W ∗)

Proof. For the first diagram, it suffices to consider its dual (i.e. for test functions):

S (V ∗)
cψ·i∗ //

Fourier
��

S (U∗)

Fourier
��

S (V )⊗ Ω1(V )
π∗
// S (U)⊗ Ω1(U)

Let φ ∈ S (V ∗), then the top-right composition transforms φ to

u 7→ cψ ·
∫

u∗∈U∗

φ(u∗)ψ(〈u∗, u〉)

in which one should insert some element of Ω1(U∗) ⊗ Ω1(U∗)∗ to make the integral meaningful.
The bottom-left composition transforms φ to

u→
∫
v∈V
π(v)=u

∫
v∗∈V ∗

φ(v∗)ψ(〈v∗, v〉)

Fix v0 ∈ V such that π(v0) = u. Choose a complement of U∗ ⊂ V ∗ and identify it with W ∗. We
can now unfold the last integral as∫

u∗∈U∗

∫
w∈W
w∗∈W∗

φ(w∗ + u∗)ψ(〈w∗ + u∗, v0 + w〉)

Set Φu∗(w∗) = φ(u∗ + w∗)ψ(〈u∗, v0〉)ψ(〈w∗, v0〉) to write the integral as∫
u∗∈U∗

∫
w∈W
w∗∈W∗

Φu∗(w∗)ψ(〈w∗, w〉)ψ(〈u∗, w〉)︸ ︷︷ ︸
=1

A Haar measure α on W and its dual measure α̂ must be inserted to integrate over W ×W ∗.
Recall that cψ := 〈α, α̂〉−1. Then Fourier inversion formula implies that the inner integral is

cψΦu∗(0) = cψφ(u∗)ψ(〈u∗, v0〉) = cψφ(u∗)ψ(〈u∗, u〉)

Hence the top-right and the bottom-left compositions are equal.
The commutativity of the second diagram is even easier.
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1.2 Quadratic spaces

1.2.1 Basic definitions
Definition 1.2.1. A quadratic space over F is a pair (V, q), where V is a finite-dimensional
F -vector space and q is a non-degenerate quadratic form on V .

Let (V, q), (V ′, q′) be two quadratic spaces. A F -linear map φ : V → V ′ is called an isometry
if it preserves quadratic forms: q′(φ(x)) = q(x).

Since the characteristic of F is not equal to 2, a quadratic form q on V can also be described
by a non-degenerate symmetric bilinear form B such that q(x) = B(x, x). We will use the same
symbol q to denote both a quadratic form q(−) or its associated bilinear form q(−,−).

We will often abuse notations to denote a quadratic space (V, q) by V or q.
Quadratic spaces over F and their isometries form a category. We can define orthogonal sums

and tensor products 1 as follows: Let (V, q), (V ′, q′) be two quadratic spaces, set

(q ⊕ q′)(x+ x′) :=q(x) + q(x′) on V ⊕ V ′

(q ⊗ q′)(x⊗ x′) :=q(x)q′(x′) on V ⊗ V ′

Example 1.2.2. Let a ∈ F×, set 〈a〉 to be the quadratic space defined by F with the quadratic
form x 7→ ax2.

Example 1.2.3 (Hyperbolic planes). Define H to be the quadratic space F 2 with the quadratic
form (x, y) 7→ xy. Since char(F ) 6= 2, it is also isometric to the same space with quadratic form
(x, y) 7→ x2 − y2. A quadratic space isometric to H will be called a hyperbolic plane.

Example 1.2.4 (The dual form). A non-degenerate bilinear form q on V can be described by an
isomorphism ρ : V → V ∗ such that

〈ρ(x), y〉 = q(x, y)

Define a bilinear form on V ∗ by q∗(x∗, y∗) := 〈x∗, ρ−1(y∗)〉. If q is symmetric, so is q∗. In this
case, q∗ is called the dual form of q. Note that ρ : V → V ∗ defines an isometry of quadratic
spaces.

The following elementary fact says that quadratic spaces can be diagonalized.

Proposition 1.2.5. Every quadratic space V can be decomposed into an orthogonal sum:

V ' 〈d1〉 ⊕ · · · ⊕ 〈dn〉

Proof. See [9] Chapter I, 2.4.

We will make use of the following invariants:

Definition 1.2.6 (Discriminant). The discriminant D(V ) of a quadratic space V is an element
of F×/F×2, defined in the following way: Let ρ : V → V ∗ be the homomorphism such that
〈x, φ(y)〉 = q(x, y). Fix a basis e1, . . . , en for V and its dual basis e∗1, . . . e∗n for V ∗. Then D(q) is
defined to be det ρ with respect to these basis. It is well-defined up to F×2.

If V = 〈d1〉 ⊕ · · · ⊕ 〈dn〉, then D(q) =
∏
i di mod F×2.

Definition-Proposition 1.2.7 (Hasse invariant). If V = 〈d1〉 ⊕ · · · ⊕ 〈dn〉, define its Hasse
invariant by ε(V ) :=

∏
i<j(di, dj), where (−,−) is the quadratic Hilbert symbol for F . This

number is independent of the chosen diagonalization of V .

Proof. This is a corollary of Witt’s chain-equivalence theorem. See [9] Chapter 5, 3.18.
1Also known as the Kronecker product.
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1.2.2 Witt group
The Grothendieck construction leads to the following structure, called the Witt group.

Definition 1.2.8. Let Ŵ (F ) be the Grothendieck group of isometry classes of quadratic forms
over F . This is called the Witt-Grothendieck group. Define the Witt group W (F ) as

W (F ) := Ŵ (F )/ZH.

Recall that H stands for the hyperbolic plane. Addition in W (F ) comes from orthogonal sums
of quadratic spaces. In fact, tensor product equips W (F ) with a ring structure, called the Witt
ring. We will not use the multiplication operation on W (F ) in this thesis.

Remark 1.2.9. We will also consider the classes of possibly degenerate quadratic forms inW (F ),
by dividing out its kernel to get a non-degenerate one. The compatibility with addition in W (F )
is ultimately settled by Witt’s decomposition theorem ([9] Chapter 1, 4.1).

Two quadratic spaces over F are called Witt equivalent if they have the same class in W (F ).

Proposition 1.2.10. Two quadratic spaces V1, V2 are Witt equivalent if and only if there exist
n ∈ N such that V1 ⊕ nH ' V2 or V1 ' V2 ⊕ nH.

Proof. This is a consequence of Witt’s cancellation theorem ([9] Chapter 1, 4.1).

We will also use the technique of sublagrangian reductions.

Proposition 1.2.11. Let (V, q) be a possibly degenerate quadratic space, I ⊂ V an isotropic
subspace (also known as sublagrangian). Then I⊥/I has the same class in W (F ) as V .

Proof. We will start with the non-degenerate case. The quadratic form q restricts to another
non-degenerate quadratic form q̄ on I⊥/I. Set I⊥/I to be the quadratic space equipped with the
form −q̄. Then the diagonal embedding δ : I⊥ � V ⊕ I⊥/I has its image δ(I⊥) as an isotropic
subspace. Moreover, the quadratic form (q,−q̄) induces an isomorphism

V ⊕ I⊥/I
δ(I⊥)

∼−→ (I⊥)∗.

Hence V ⊕ I⊥/I is a sum of hyperbolic planes, which amounts to that V and I⊥/I are Witt
equivalent.

If V is degenerate, let π : V → V ′ be the isometry onto its non-degenerate quotient. It is clear
that π(I⊥) = π(I)⊥, thus I⊥/I has π(I)⊥/π(I) as its non-degenerate quotient. The latter was
known to be Witt equivalent to V ′.

1.2.3 Weil character
For a fixed non-trivial continuous additive character ψ of F , Weil defined in [19] §14 a character
γ : W (F ) → S1. The description of γ is as follows: Let (V, q) be a quadratic space. Set fq(x) =
ψ( q(x,x)

2 ). Weil proved the following result.

Theorem 1.2.12 (Weil, [19] §14 Théorème 2). Let dq be the self-dual measure with respect to the
duality ψ ◦ q : V × V → S1. Then there exists a constant γ(q) ∈ S1 such that

(fq dq)∧ = γ(q)f−q∗

as distributions on V ∗.
Moreover, γ(−) induces a character W (F )→ S1.

13



In down to earth terms, take an arbitrary Schwartz-Bruhat function φ on V , then

(φ ∗ fq dq)∧(0) = ((φdq)∧ · (fq dq)∧)(0) = γ(q)(φdq)∧(0) · f−q∗(0)

Comparing the left and right hand sides yields∫ ∫
φ(x− y)fq(y) dy dx = γ(q)

∫
φ(x) dx

where the integrals are taken with respect to the self-dual measure dq. Since φ can be chosen so
that

∫
φ(x) dx 6= 0, this formula characterizes γ(q).

We will make use of another recipe to compute the Weil character, as follows:

Proposition 1.2.13. Let (V, q) be a quadratic space. Let dq be the self-dual measure. Choose h
to be a Schwartz-Bruhat function on V such that its Fourier transform h∧ is a positive measure
and that h(0) = 1. Set hs(x) := h(sx), then

γ(q) = lim
s→0

∫
x∈V

hs(x)ψ
(
q(x, x)

2

)
dq.

Moreover, |
∫
x∈V hs(x)ψ

(
q(x,x)

2

)
dq| ≤ 1 for all s.

Proof. Identify V and V ∗ by q. By the Plancherel formula and the positivity of h∧,∫
x∈V

hs(x)ψ
(
q(x, x)

2

)
dq =

∫
y∈V

(hs dq)∧(y)(fq dq)∧(y) dq

= γ(q)
∫
y∈V

f−q∗(y)h∧s (y)

The hypothesis h(0) = 1 is equivalent to that
∫
V

(hdq)∧ dq = 1, and the same holds for hs. Since
|γ(q)| = 1, the second assertion follows. As s → 0, (hs dq)∧(y) converges weakly to the Dirac
measure at y = 0, this establishes the first assertion.

If (V, q) = 〈a〉, a ∈ F×, we will set γ(a) := γ(q). Note that γ(a) only depends on a mod F×2.
Weil also proved the following properties of γ:

Proposition 1.2.14. For all a, b ∈ F×, we have

γ(ab)γ(1)
γ(a)γ(b)

= (a, b)

Corollary 1.2.15. The function x 7→ γ(x)2

γ(1)2 is a character of F×.

Corollary 1.2.16. For any quadratic space (V, q), we have

1. γ(q)8 = 1

2. γ(q) = γ(1)dimV−1γ(D(q))ε(q).

Proof.

1. Observe that γ(H) = γ(1) · γ(−1) = 1, thus γ(1) = γ(−1)−1. Put a = b = −1 in the
preceding proposition to get γ(1)4 = (−1,−1) = ±1, hence γ(1)8 = 1. Put a = b to get
γ(a)2 = γ(1)2(a, a), hence γ(a)8 = 1. As for general quadratic forms: diagonalize.
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2. Take a diagonalisation V '
⊕

i〈di〉, then γ(q) =
∏
i γ(di). It follows by induction that∏

i

γ(di) = γ(1)dimV−1γ(
∏
i

di)
∏
i<j

(di, dj),

in which the last product is just the Hasse invariant.

Example 1.2.17. The Weil character has great significance in number theory. Some basic exam-
ples are listed below.

1. Weil’s theory also works when F is a finite field and char(F ) 6= 2. Fix a non-trivial additive
character ψ as before. The self-dual measure dq is just the counting measure divided by√
|V | = |F |− 1

2 dimV . Then

(fq dq)∧(0) =|F | 12 dimV
∑
x∈V

ψ(q(x)/2)

f−q∗(0) =1

Hence γ(q) = |F |− 1
2 dimV

∑
x∈V ψ( 1

2q(x)), the link with Gauß sums is then obvious.

2. For F = R, take ψ to be the character x 7→ e−2πix. Weil showed in [19] that γ(a) =
e
−iπ
4 ·sgn(a).

3. For F = C, take ψ to be the character z 7→ e−2πi·Re(z), then γ ≡ 1. Hence Weil’s theory over
C is more or less trivial.

4. When F is a non-archimedean local field, the formulas of Weil characters are more compli-
cated. Consult [15] A.4-A.5 for a complete calculation.

1.3 Symplectic spaces

1.3.1 Basic definitions
Definition 1.3.1. A symplectic space over F is a pair (V, 〈, 〉) where V is a finite-dimensional
F -vector space and 〈, 〉 is a non-degenerate alternating form on V .

As in the case of quadratic spaces, there is an obvious notion of symplectic equivalence between
symplectic spaces. We will follow the same abuse to denote a symplectic space (V, 〈, 〉) by V .

Definition 1.3.2. Let V be a symplectic space. A subspace ` ⊂ V is called a lagrangian in V if
` is a maximal isotropic subspace (that it, the spaces on which 〈, 〉 is identically zero).

The structure of symplectic spaces and their lagrangians is englobed in the following result.

Proposition 1.3.3. Let `1, `2 be two lagrangians of V . Then there exists a basis p1, . . . , pn, q1, . . . , qn
of V such that

1. 〈pi, pj〉 = 〈qi, qj〉 = 0 for all i, j. 〈pi, qj〉 = δij. Such a basis is called a symplectic basis for
V .

2. `1 ∩ `2 = Fp1 ⊕ · · · ⊕ Fps, where s = dim `1 ∩ `2.

3. `1 = Fp1 ⊕ · · · ⊕ Fpn.

4. `2 = Fp1 ⊕ · · · ⊕ Fps ⊕ Fqs+1 ⊕ · · · ⊕ Fqn.

Proof. Elementary linear algebra, see [11] (1.4.6).
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Corollary 1.3.4. In particular:

1. Every symplectic space has even dimension.

2. Every lagrangian of a symplectic space has the same dimension.

3. Every two symplectic spaces of the same dimension are symplectically equivalent.

Definition 1.3.5. Let V be a symplectic space. Define Sp(V ) to be the linear algebraic group
over F of automorphisms of V preserving the symplectic form on V .

As shown by the preceding proposition, every symplectic space of dimension 2n is equivalent
to
⊕n

i=1 Fpi ⊕
⊕n

i=1 Fqi with the prescribed 〈, 〉. The corresponding symplectic group is denoted
by Sp(2n, F ). In terms of the ordered basis p1, . . . , pn, qn, . . . , q1, Sp(2n,−) can be expressed as

Sp(2n,−) =
{
X ∈ GL(2n,−) : Xt

(
0 In
−In 0

)
X =

(
0 In
−In 0

)}
.

Remark 1.3.6. Assume that n > 0. The group scheme Sp(2n) is a geometrically connected,
simply connected semi-simple group scheme of dimension n(2n + 1). It is split. The center of
Sp(2n, F ) is ±1. The group Sp(2n, F ) is equal to its derived group unless n = 1, F = F2,F3 or
n = 2, F = F2 (see [3] 1.3), this includes all the cases in this thesis.

Remark 1.3.7. When n = 1, Sp(2) is just SL(2).

1.3.2 Lagrangians
Let Λ(V ) be the set of lagrangians of V . Let 2n = dimV , then Λ(V ) embeds into the Grassmannian
variety of n-dimensional linear subspaces in a 2n-dimensional space, denoted by G(2n, n)(F ), as
the closed subvariety

{` ∈ G(2n, n)(F ) : 〈−,−〉 = 0 on `× `}.

Corollary 1.3.8. Sp(V, F ) acts transitively on Λ(V ).

Proof. This follows immediately from our proposition.

For a fixed lagrangian ` ⊂ V , we have a surjective morphism Sp(V ) → Λ(V ) defined by
g 7→ g`. The stabilizer of ` is a maximal parabolic subgroup; when V takes the standard form and
` =

⊕
i Fpi, the elements X stabilizing ` are of the form

X =
(
A B
0 (At)−1

)
∈ Sp(2n, F )

Λ(V ) admits a cellular decomposition into locally closed subvarieties:

Λ(V ) =
n⋃
i=0

L`,i (1.1)

L`,i := {`′ ∈ Λ(V ) : dim `′ ∩ ` = i} (1.2)

Taking preimages yields a cellular decomposition of Sp(V ) :

Sp(V ) =
n⋃
i=0

N`,i (1.3)

N`,i := {g ∈ Sp(V ) : dim g` ∩ ` = i} (1.4)

Among all L`,i [resp. N`,i], the cell L`,0 [resp. N`,0] is the unique Zariski open and dense one;
it is called the big cell in the literature.
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1.3.3 Oriented lagrangians
We will also need the notion of oriented lagrangians. Firstly, we will define the orientation of a
vector space.

Definition 1.3.9. Let V be a finite dimensional F -vector space. An orientation of V is an element
in

(
max∧

V \ {0})/F×2,

or equivalently, in

{Basis of V }/(automorphisms whose determinant lies in F×2).

Here we adopt the usual convention that
∧0{0} = F , hence o({0}) = F×/F×2.

We will write o(V ) as the set of orientations of V . The group F×/F×2 acts freely and transi-
tively on o(V ).

From the second description, it clearly coincides with the usual notion of orientation when
F = R. When F = C, there is only one orientation for every space.

Definition-Proposition 1.3.10. For finite dimensional F -vector spaces, we define the following
pairings.

1. If 0 → V ′ → V → V ′′ → 0 is a short exact sequence of finite dimensional F -vector spaces,
then the exterior product induces a map compatible with F×/F×2-action:

∧ : o(V ′)× o(V ′′)→ o(V )

(ξ mod F×2, η mod F×2) 7→ ξ ∧ η̃ mod F×2,

where η̃ ∈
∧dimV ′′

V is an arbitrary preimage of η.

2. Let β : V1 × V2 → F be a perfect pairing between finite dimensional F -vector spaces, it
induces a map compatible with F×/F×2-actions:

β : o(V1)× o(V2)→ F×/F×2

as follows: Let ξ = e1 ∧ · · · ∧ en ∈
∧max

V1 \ {0} and η = f1 ∧ · · · ∧ fn ∈
∧max

V2 \ {0}, let
f∗1 , . . . , f

∗
n be the dual basis of f1, . . . , fn. Define

β(ξ mod F×2, η mod F×2) := det(V1
β−→ V ∗2 ) mod F×2

where the determinant is taken with respect to basis e1, . . . , en for V1 and f∗1 , . . . , f∗n for V2.
In particular, β(ei, fj) = δij implies β(e, f) = 1.

By convention, β becomes the multiplication map (F×/F×2)2 → F×/F×2 when V1 = V2 =
{0}.

Proof. The mapping (ξ, η) 7→ ξ ∧ η̃ in the first assertion is a well-defined map from
∧max

V ′ ×∧max
V ′′ to

∧max
V : it is independent of the choice of η̃. Observe that the map is compatible with

multiplication by F×, hence it induces a map o(V ′) × o(V ′′) → o(V ) compatible with F×/F×2-
actions.

Similarly, the second mapping only depends on e ∈
∧max

V1, f ∈
∧max

V2 and respects the
action of F×. This suffices to conclude.

Remark 1.3.11. In particular, take V2 = V ∗1 in the second pairing yields a bijection o(V )→ o(V ∗)
by sending a basis to its dual basis.
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Definition 1.3.12 (Oriented lagrangians). An oriented lagrangian of a symplectic space V is a
pair (`, e), usally written as `e, where ` ∈ Λ(V ) and e ∈ o(`). We will write Λ(V )or as the set of
oriented lagrangians of V .

When there is no worry of confusion, the superscript e will be omitted.
The construction below will be used to define metaplectic groups.

Definition-Proposition 1.3.13. Let `e11 , `
e2
2 ∈ Λ(V )or. Then the symplectic form gives rise to a

perfect pairing 〈, 〉 on (`1/`1 ∩ `2)× (`2/`1 ∩ `2).
Choose any e ∈ o(`1 ∩ `2), then there exists unique orientations ēi ∈ o(`i/`1 ∩ `2) such that

e ∧ ēi = ei (i = 1, 2). Set
A`e11 ,`

e2
2

:= 〈ē1, ē2〉

this is independent of the choice of e. Indeed, the assertions on uniqueness and independence
follows immediately from the fact that F×/F×2 acts freely and transitively on orientations, and
that the operations in the preceding proposition respect those actions.

The following observation will be useful later.

Proposition 1.3.14.
A`e11 ,`

e2
2

= (−1)
dimV

2 −dim `1∩`2 ·A`e22 ,`
e1
1

Proof. We may suppose that `1 6= `2. If e1, . . . , en, f1, . . . , fn are dual basis for the pairing
(`1/`1 ∩ `2) × (`2/`1 ∩ `2) → F , then f1, . . . , fn,−e1, . . . ,−en are dual basis for the transposed
pairing (`2/`1 ∩ `2)× (`1/`1 ∩ `2)→ F . Here n = dimV

2 − dim `1 ∩ `2.
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Chapter 2

The Maslov index

TheMaslov index originates from Maslov’s work on partial differential equations and is extensively
used in symplectic geometry. There exists several definitions sharing the same name: some are
geometric, some are analytic, and some are algebraic. The Maslov indices to be introduced in this
chapter is a generalization of Kashiwara’s algebraic definition. See [2] for the relations between
different definitions.

The theory actually applies to any field F of characteristic not 2, not just non-archimedean
local fields.

2.1 Basic properties
Let (W, 〈, 〉) be a symplectic space over F . Given n lagrangians `1, . . . , `n where n ≥ 3, we are
going to associate a class τ(`1, . . . , `n) ∈W (F ). The classes τ(`1, . . . , `n) will satisfy the following
properties.

1. Symplectic invariance. For any g ∈ Sp(W ),

τ(`1, . . . , `n) = τ(g`1, . . . , g`n).

2. Symplectic additivity. Let W1,W2 be symplectic spaces, W := W1 ⊕W2. If `1, . . . , `n
are lagrangians of W1 and `′1, . . . , `′n are lagrangians of W2, then

τ(`1 ⊕ `′1, . . . , `n ⊕ `′n) = τ(`1, . . . , `n) + τ(`′1, . . . , `
′
n).

3. Dihedral symmetry.
τ(`1, . . . , `n) = τ(`2, . . . , `n, `1),

τ(`1, `2, . . . , `n) = −τ(`n, `n−1, . . . , `1).

4. Chain condition. For any 3 ≤ k < n,

τ(`1, . . . , `n) = τ(`1, . . . , `k) + τ(`1, `k, . . . , `n).
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The situation can be visualized by identifying {1, . . . , n} with Z/nZ, so that the lagrangians
are viewed as vertices of a n-gon. Here is an illustration for n = 4:

©

©©

©

��oo

OO //
`1

`2`3

`4

The etymology of dihedral symmetry is then clear. The chain condition corresponds to decompo-
sition of polygons. The case n = 4, k = 3 is illustrated below:

©

©©

©

��oo

OO //
??�������������������������

���������������������

`1

`2`3

`4

τ(`1, `2, `3, `4) = τ(`1, `2, `3) + τ(`1, `3, `4)

2.2 Maslov index as a quadratic space
We are going to associate a canonically defined quadratic space (T, q) to n given lagrangians
`1, . . . , `n.

Identify {1, . . . , n} and Z/nZ as before. Given n lagrangians `1, . . . , `n of W . The first step is
to construct the sum map Σ̃ and the backward difference map ∂̃

Σ̃ :
⊕

i∈Z/nZ

W →W

w = (wi) 7→
∑

i∈Z/nZ

wi

∂̃ :
⊕

i∈Z/nZ

W →
⊕

i∈Z/nZ

W

w = (wi) 7→ (∂̃w)i = wi − wi−1

where the addition of subscripts is that in Z/nZ.
Lemma 2.2.1. The image of ∂̃ is equal to the kernel of Σ̃.

Proof. It is clear that Im ∂̃ ⊂ Ker Σ̃. Conversely, if Σ̃(w) = 0, we can take

ŵi :=
i∑

j=1

wj (2.1)

It is straightforward to check that ŵi − ŵi−1 = wi for i = 1, . . . , n.
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Consider the complex ⊕
i∈Z/nZ

`i ∩ `i+1
∂−→

⊕
i∈Z/nZ

`i
Σ−→W (2.2)

where ∂,Σ are the restrictions of ∂̃, Σ̃ on the relevant subspaces. Observe that

Ker ∂ =
⋂

i∈Z/nZ

`i

Im Σ =
∑

i∈Z/nZ

`i

(
⋂

i∈Z/nZ

`i)⊥ =
∑

i∈Z/nZ

`⊥i =
∑

i∈Z/nZ

`i

Definition-Proposition 2.2.2. Define a bilinear form q on Ker Σ by the formula

q(v, w) :=
∑

i∈Z/nZ

〈vi, ŵi〉 (2.3)

where ŵ = (ŵi) is any element in
⊕

i∈Z/nZ W satisfying ∂̃(ŵ) = w. The formula is independent
of choice of ŵ. Moreover, q is symmetric.

Proof. The existence of ŵ such that ∂̃(ŵ) = w is already established. If ∂(ŵ − ŵ′) = 0, then
ŵi − ŵ′i = c ∈W is independent of i, and∑

i∈Z/nZ

〈vi, ŵi〉 −
∑

i∈Z/nZ

〈vi, ŵ′i〉 = 〈
∑

i∈Z/nZ

vi, c〉 = 0

since v ∈ Ker Σ, hence this bilinear form is well-defined.
To show that q is symmetric, we do a summation by parts

q(v, w) =
∑

i∈Z/nZ

〈vi, ŵi〉

=
∑

i∈Z/nZ

〈v̂i − v̂i−1, ŵi〉

=
∑

i∈Z/nZ

(〈v̂i, ŵi〉 − 〈v̂i−1, ŵi〉)

=
∑

i∈Z/nZ

〈v̂i, ŵi − ŵi+1〉

=
∑

i∈Z/nZ

〈wi, v̂i−1〉

It remains to show that the last sum is equal to
∑
i∈Z/nZ〈wi, v̂i〉 = q(w, v). Indeed, their difference

is ∑
i∈Z/nZ

〈wi, v̂i − v̂i−1〉 =
∑

i∈Z/nZ

〈wi, vi〉 = 0

since vi, wi ∈ `i.

Lemma 2.2.3. We have q(v, w) = 0 if v ∈ Im (∂) or w ∈ Im (∂).

Proof. Since q is symmetric, it suffices to consider the case w = ∂(w′) for some w′ = (w′i)i ∈⊕
n `i ∩ `i+1. Then we may take ŵi = w′i in (2.3), and then 〈vi, w′i〉 = 0 for all i since `i = `⊥i .
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Remark 2.2.4. Using (2.1), the formula (2.3) has the explicit (but less symmetric) form

q(v, w) =
∑

n≥i>j≥1

〈vi, wj〉 =
∑

n≥i>j>1

〈vi, wj〉. (2.4)

Definition 2.2.5 (The Maslov index). Set T := Ker Σ/Im ∂. The class of the quadratic space
(T, q) in W (F ) will be denoted by τ(`1, . . . , `n), it is called the Maslov index associated to the
lagrangians `1, . . . , `n.

If our construction is applied to the case n = 2, then Ker Σ = Im ∂, and the quadratic space
(T, q) is trivial.

The following assertion is taken for granted for the moment; the proof is postponed to §2.6.

Theorem 2.2.6. (T, q) is non-degenerate. Moreover, τ satisfies all the properties listed in section
2.1.

2.3 Relation with Kashiwara index
M. Kashiwara defines the Maslov index associated to 3 lagrangians `1, `2, `3 by the following
explicit formula.

Definition 2.3.1. Let `1, `2, `3 be 3 lagrangians of W . Set K := `1 ⊕ `2 ⊕ `3 and define the
quadratic form qKash on K as follows

qKash(v, w) :=
1
2

(〈v1, w2 − w3〉+ 〈v2, w3 − w1〉+ 〈v3, w1 − w2〉)

Its class in W (F ) is denoted by τKash(`1, `2, `3).

Remark 2.3.2. For (v1, v2, v3) ∈ K, we have

qKash((v1, v2, v3)) = 〈v1, v2〉+ 〈v2, v3〉+ 〈v3, v1〉

This is the usual formula for qKash in the literature.

The goal of this section is to prove the following

Proposition 2.3.3.
τKash(`1, `2, `3) = τ(`1, `2, `3)

Proof. The proof is based on the easy observations below.

• I := `1 ⊂ `1 ⊕ `2 ⊕ `3 is an isotropic subspace for K.

• I⊥ = {(v1, v2, v3) : v2 − v3 ∈ `1}.

• The map (v1, v2, v3) 7→ (v2−v3,−v2, v3) defines an isometric surjection from I⊥ onto Ker Σ.
Indeed, the surjectivity is evident, while

qKash((v1, v2, v3)) = 〈v2, v3〉 = q((v2 − v3,−v2, v3))

for all (v1, v2, v3) ∈ I⊥ by using formula (2.4). Note that I is mapped to 0.

From those observations, we have an isometry from the non-degenerate quotient of I⊥/I onto T .
However I⊥/I is Witt equivalent to K by Proposition 1.2.11.
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2.4 Dimension and discriminant
The dimension and discriminant of the quadratic space (T, q) associated to `1, . . . , `n can be
explicitly determined.

Proposition 2.4.1.

dimT =
(n− 2) dimW

2
−

∑
i∈Z/nZ

dim(`i ∩ `i+1) + 2 dim
⋂

i∈Z/nZ

`i. (2.5)

Proof. Consider the complex (2.2); its Euler-Poincaré characteristic is

dim(
⊕

i∈Z/nZ

`i ∩ `i+1)− dim(
⊕

i∈Z/nZ

`i) + dimW

which is equal to that of its cohomology

dim(
⋂

i∈Z/nZ

`i)− dimT + dim(W/
∑

i∈Z/nZ

`i)

where we have used Theorem 2.2.6. Recall that (
⋂
i `i)

⊥ =
∑
i `i, it follows that

dimT =
(n− 2) dimW

2
−

∑
i∈Z/nZ

dim(`i ∩ `i+1) + 2 dim
⋂

i∈Z/nZ

`i.

Let `1, . . . , `n be lagrangians of W equipped with arbitrary orientations (n ≥ 3). Let A`i,`i+1

be the element in F×/F×2 defined in Definition-Proposition 1.3.13. Note that we have omitted
the superscripts of orientations of `1, . . . , `n.

Proposition 2.4.2. Notations as above. We have

D(q) = (−1)
dimW

2 +dim
T
i∈Z/nZ `i

∏
i∈Z/nZ

A`i,`i+1 . (2.6)

We will proceed by several reduction steps. For any subsequence i1, . . . , is of 1, . . . , n, let
(Ti1,...,is , qi1,...,is) be the quadratic space constructed in §2.2.

1. Reduction to n = 3 lagrangians. Given n lagrangians `1, . . . , `n (n > 3), the chain
condition asserts that

τ(`1, . . . , `n) = τ(`1, . . . , `k) + τ(`1, `k, . . . , `n) for any 3 ≤ k < n.

Hence the spaces T1,...,n and T1,...,k⊕T1,k,...,n+1 becomes isometric after taking direct product
with some copies of the hyperbolic plane H. Each copy of H has dimension 2 and contributes
−1 to the discriminant. Hence

D(q1,...,n) = (−1)
dim q1,...,n−dim q1,...,k−dim q1,k,...,n

2 ·D(q1,...,k) ·D(q1,k,...,n)

Using the dimension formula (2.5), it follows that formula (2.6) holds for any two among
q1,...,n, q1,...,k, q1,k,...,n if and only if it holds for all the three. Therefore our problem can be
reduced to the case n = 3.
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2. Reduction to 3 transversal lagrangians. Suppose that n = 3. If
⋂
`i 6= {0}, choose

another lagrangian `4 transversal to `1, `2, `3. The chain condition and dihedral symmetry
implies that

©

©©

©

��oo

OO //
??�������������������������

���������������������

`1

`2`3

`4

=

©

©©

©

��oo

OO //

��??????????????????????__??????????????????????

`1

`2`3

`4

τ(`1, `2, `3) + τ(`1, `3, `4) = τ(`1, `2, `3, `4) = τ(`2, `3, `4) + τ(`2, `4, `1)

By virtue of the first reduction step, it suffices to consider the case of 3 lagrangians where
`3 is transversal to `1 and `2.

3. Reduction to a simpler quadratic space. Given three lagrangians `1, `2, `3 with `3
transversal to `1, `2, then τ(`1, `2, `3) is Witt equivalent to the quadratic form on `2

p1,2,3(x2) = 〈π1(x2), x2〉, (2.7)

in which π1 : `2 → `1 is the projection with respect to the splitting W = `1 ⊕ `3. P. Perrin
gave a proof by explicit formulas (see [15] 1.4.2). Beware that p1,2,3 could degenerate; its
kernel is evidently `1 ∩ `2 by inspecting formula (2.7). Hence the non-degenerate quotient
has dimension dimW

2 − dim `1 ∩ `2, which is just dimT1,2,3. The same argument in the first
reduction step reduces the problem to showing that

D(p1,2,3) = (−1)
dimW

2 A`1,`2A`2,`3A`3,`1 .

Proof. By 1.3.14, it amounts to

D(p1,2,3) = A`1,`2A`2,`3A`1,`3

Let aj,i : `i/`i ∩ `j
∼→ (`j/`i ∩ `j)∗ be the isomorphism induced by the symplectic pairing 〈−,−〉,

where i, j = 1, 2, 3. Recall that A`j ,`i = det aj,i mod F×2.
It follows immediately from formula (2.7) that p1,2,3 corresponds to the symmetric isomorphism

a2,1 ◦ Φ1,2 : `2/`1 ∩ `2
∼→ (`2/`1 ∩ `2)∗

where Φ1,2 : `2/`1 ∩ `2 → `1/`1 ∩ `2 is induced by (π1)|`2 . Since (π1)|`2 is identity on `1 ∩ `2, we
have det Φ1,2 = det(π1)|`2 .

On the other hand, (π1)|`2 = a−1
3,1 ◦ a3,2 by its definition. Since det a−1

3,1 = det a3,1 mod F×2,
the proof is now complete.

For any `, `′ ∈ Λ(W )or, define

m(`, `′) := γ(1)
dimW

2 −dim `∩`′−1γ(A`,`′). (2.8)

Using (2.6) and the properties of Weil character γ(−) in §1.2.3, the square of γ(τ(`1, . . . , `n))
can be expressed via orientated lagrangians
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Theorem 2.4.3 (M. Vergne for F = R, P. Perrin for general case). Fix arbitrary orientations on
n lagrangians `1, . . . , `n of W (n ≥ 3), then

γ(τ(`1, . . . , `n))2 =
∏

i∈Z/nZ

m(`i, `i+1)2,

or equivalently
γ(τ(`1, . . . , `n)) = ±

∏
i∈Z/nZ

m(`i, `i+1).

Proof. Recall from §1.2.3 that x 7→ γ(x)2

γ(1)2 is a character. Using the previous proposition, the
right-hand side of the first equation can be written as∏

i∈Z/nZ

(
γ(1)

dimW
2 −dim `i∩`i+1 ·

γ(A`,`i+1)
γ(1)

)2

=γ(1)n dimW−2
P
i∈Z/nZ dim `i∩`i+1 ·

∏
i∈Z/nZ

γ(A`i,`i+1)2

γ(1)2

=γ(1)n dimW−2
P
i∈Z/nZ dim `i∩`i+1 · γ((−1)

dimW
2 −dim

T
i `iD(q))2

γ(1)2

=γ(1)n dimW−2
P
i∈Z/nZ dim `i∩`i+1 ·

(
γ(−1)
γ(1)

)dimW−2 dim
T
i `i

· γ(D(q))2

γ(1)2

Recall that γ(1) = γ(−1)−1, the last term is also

γ(1)(n−2) dimW−2
P
i∈Z/nZ dim `i∩`i+1+4 dim

T
i `i · γ(D(q))2

γ(1)2
.

The dimension formula (2.5) and Corollary 1.2.16 (2) identify this with γ(τ(`1, . . . , `n))2.

Finally, here are some general properties of the scalars m(`, `′),

Proposition 2.4.4. Let `, `′ ∈ Λ(W )or, then

1. m(g`, g`′) = m(`, `′) for every g ∈ Sp(W ), if g`, g`′ carry the transported orientations.

2. m(`, `) = 1.

3. m(`, `′) = ±m(`′, `)−1.

4. If W = W1 ⊕W2, `i, `′i ∈ Λ(Wi)or (i = 1, 2), then

m(`1 ⊕ `2, `′1,⊕`′2) = m(`1, `′1)m(`2, `′2) · (A`1,`′1 , A`2,`′2).

where the (, ) in the last assertion stands for the quadratic Hilbert symbol.

Proof. The first assertion is evident. The second follows directly from definition,

m(`, `) = γ(1)
dimW

2 −dim `−1γ(1) = γ(1)−1γ(1) = 1.

As for the third one 1, note that γ(τ(`, `, `′)) = 1 since τ(`, `, `′) is represented by a vector space
of dimension 0 (use equation (2.5)). Then Theorem 2.4.3 implies that

1 = γ(τ(`, `, `′))2 = m(`, `)2m(`, `′)2m(`′, `)2,

hence m(`, `′) = ±m(`′, `)−1.
The last assertion follows from a direct computation using definition and properties of Weil

character listed in §1.2.3.
1See [15] 1.5.2 for a direct proof.
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2.5 The dual form
Granting the truth of Theorem 2.2.6, this section is devoted to the description of the dual form
of (T, q).

Consider the dual of the complex (2.2). Using the symplectic form 〈−,−〉, it can be identified
with

W
Σ∗−→

⊕
i∈Z/nZ

W/`i
∂∗−→

⊕
i∈Z/nZ

W/(`i + `i+1) (2.9)

Σ∗(w) = (w + `i)i∈Z/nZ

∂∗((wi)i∈Z/nZ) = (wi − wi+1)i∈Z/nZ

Set S := Ker ∂∗ = {(x̄i) ∈
⊕

i∈Z/nZ W/`i : x̄i+1 − x̄i ∈ `i + `i+1}.
The quadratic form q yields an isomorphism Φ : T ∼→ T ∗ such that Φ(v̄)(w̄) = q(v̄, w̄) for all

v̄, w̄ ∈ T . By inspecting (2.3), the following diagram describes Φ.

⊕
i∈Z/nZ `i // //

⊕
i∈Z/nZ W

w 7→ŵ //___ ⊕
i∈Z/nZ W // //

∂
oo

⊕
i∈Z/nZ W/`i

Namely, given v̄ ∈ T , choose a representative v ∈ Ker Σ ⊂
⊕

i `i, we can choose w ∈
⊕

iW such
that ∂w = v. Then the projection w̄ of w in (

⊕
iW/`i)/Im Σ∗ gives Φ(v̄).

Formulas of the dual form. The dual form q∗ on T ∗ is characterized by

q∗(Φ(v̄),Φ(v̄′)) = q(v̄, v̄′) for all v̄, v̄′ ∈ T.

Given v̄, v̄′ ∈ T , let w̄ := Φ(v̄), w̄′ := Φ(v̄′) and take representatives v, v′ ∈ Ker Σ. We can assume
w = v̂, w′ = v̂′ ∈ S as in the construction above, then

q∗(w̄, w̄′) = q(v̄, v̄′) = q(v̄′, v̄)

= −
∑

i∈Z/nZ

〈v̂i, v′i〉

= −
∑

i∈Z/nZ

〈wi, v′i〉

= −
∑

i∈Z/nZ

〈wi, w′i − w′i−1〉

(2.10)

We proceed to lift this form to S.

Definition 2.5.1. Given xi, xi+1 ∈W 2 such that xi+1 − xi ∈ `i + `i+1, define a linear functional
εi,i+1(xi, xi+1) on `i+`i+1 as follows. For v ∈ `i+`i+1, suppose that v = a+b with a ∈ `i, b ∈ `i+1,
then define

εi,i+1(xi, xi+1)(v) := 〈a, xi〉+ 〈b, xi+1〉.

This functional is well-defined. Indeed, if v = a + b = a′ + b′ with a, a′ ∈ `i, b, b′ ∈ `i+1, then
a− a′ = b′ − b ∈ `i ∩ `i+1, hence

〈a, xi〉+ 〈b, xi+1〉 − 〈a′, xi〉 − 〈b′, xi+1〉 = 2〈a− a′, xi − xi+1〉 = 0.

Proposition 2.5.2. The bilinear form q∗ on S defined by

q∗(w̄, w̄′) =
∑

i∈Z/nZ

εi,i+1(wi, wi+1)(w′i+1 − w′i)

where w,w′ ∈
⊕

iW are representatives of w̄, w̄′, satisfies
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1. q∗ is symmetric.

2. q∗ lifts q∗ to S.

Proof. First of all, note that the
∑
i∈Z/nZ εi,i+1(wi, wi+1)(w′i+1 − w′i) is independent of choice of

representatives w,w′.

1. Symmetry: For any x̄, ȳ ∈ S1,...,n, choose representatives x, y ∈
⊕

iW . Suppose that

xi+1 − xi = ri + si, ri ∈ `i, si ∈ `i+1

yi+1 − yi = ai + bi, ai ∈ `i, bi ∈ `i+1

Hence

q∗(x, y) =
∑

i∈Z/nZ

εi,i+1(xi, xi+1)(yi+1 − yi)

=
∑

i∈Z/nZ

(〈ai, xi〉+ 〈bi, xi+1〉)

=
∑

i∈Z/nZ

(〈ai, xi〉+ 〈bi, xi + ri + si〉)

=
∑

i∈Z/nZ

(〈ai, xi〉+ 〈bi, xi + ri〉)

=
∑

i∈Z/nZ

(〈ai + bi, xi〉+ 〈bi, ri〉)

=
∑

i∈Z/nZ

(〈yi+1 − yi, xi〉+ 〈bi, ri〉)

Interchanging x, y gives

q∗(y, x) =
∑

i∈Z/nZ

(〈xi+1 − xi, yi〉+ 〈si, ai〉)

Observe that 〈yi+1 − yi, xi+1 − xi〉 = 〈ai + bi, ri + si〉 = 〈ai, si〉+ 〈bi, ri〉, thus

q∗(x, y)− q∗(y, x) =
∑

i∈Z/nZ

(〈yi+1 − yi, xi〉 − 〈xi+1 − xi, yi〉+ 〈bi, ri〉 − 〈si, ai〉)

=
∑

i∈Z/nZ

(〈yi+1 − yi, xi〉 − 〈xi+1 − xi, yi〉+ 〈yi+1 − yi, xi+1 − xi〉)

=
∑

i∈Z/nZ

(〈yi+1 − yi, xi〉+ 〈yi+1, xi+1 − xi〉)

= 0

2. Lifting: Retain the notations used in deriving equations (2.10). For w̄ = Φ(v̄), w̄′ = Φ(v̄′) ∈
T ∗, and their representatives w,w′ ∈ S., since w′i+1 − w′i = v′i+1 ∈ `i+1, we have

εi,i+1(wi, wi+1)(w′i+1 − w′i) = 〈w′i+1 − w′i, wi+1〉 = −〈wi+1, w
′
i+1 − w′i〉

The last terms sum to −
∑
i〈wi, w′i − w′i−1〉 = q∗(w̄, w̄′) as derived in equation (2.10).
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2.6 An interpretation via sheaf cohomology
A sheaf-theoretic construction of minus (T, q), due to A. Beilinson, will be given in this section.
Theorem 2.2.6 can then be easily deduced. Although it can also be proved by more elementary
means (see [17]), the sheaf-theoretic approach is less tricky, and makes it possible to see through
the dihedral symmetry and chain condition.

Setting. Let W be a symplectic space and `1, . . . , `n be n lagrangians (n ≥ 3). Consider the
solid n-gon with vertices labelled by Z/nZ and with the counter-clockwise orientation. Denote it
by D. Let U be the interior of D and j : U → X the inclusion. Define a constructible subsheaf P
of the constant sheaf W on D by requiring

Px :=


`i−1 ∩ `i , if x = the i-th vertex.
`i , if x ∈ the edge (i, i+ 1)
W , if x ∈ U

The case n = 5 is depicted below.

`1

ccHHHHHHHHHHHHHHH

`2

{{vvvvvvvvvvvvvvv

`3

��)
))))))))))))))

`4

//

`5

JJ���������������

W

`5 ∩ `1

`1 ∩ `2

`2 ∩ `3

`3 ∩ `4 `4 ∩ `5

Roughly speaking, (T,−q) is somehow the simplicial cohomology with coefficients in P , and
there is a version of Poincaré duality. We will cast everything in terms of sheaf cohomology and
employ Verdier duality theorem, to be recalled below.

Theorem 2.6.1 (Verdier duality, adapted for our present setting. cf. [8]). Let X be a connected
compact manifold of dimension d with boundary, and let Db(X) be the derived category of bounded
complexes of sheaves of F -modules. Then there exists ωX ∈ Db(X) such that

1. If we define
DF := RH om(F , ωX) (Verdier’s duality operator)

then there exists a functorial isomorphism

RΓ(X,D(−)) ' RΓ(X,−)∗.

2. In particular, R0Γ(X,ωX) = H0(RΓ(X,ωX)) = F .

3. F -orientations for X correspond to isomorphisms ωX ' j!F [d], where j : X \ ∂X → X is
the inclusion map.

4. For any sheaf F , regard it as a complex concentrated at degree 0. In view of the last identi-
fication, the isomorphism is compatible with cup products

Hp(X,F)×Hd−p(X,H om(F , j!F )) ^−→ Hd(X, j!F ) ∼→ F.

Lemma 2.6.2. The symplectic form induces an isomorphism

P
∼→ H0(DP [−2]) = H om(P, j!F ).
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Proof. Let V be any nonempty open subset of D such that V ∩ U is connected, then V ∩ U 6= ∅
and Γ(V, P )→ Γ(V ∩U,P ) = W is injective. Hence H om(P, j!F ) can be identified as a subsheaf
of W as

(H om(P, j!F ))x '


`⊥i−1 ∩ `⊥i = `i−1 ∩ `i , if x = the i-th vertex.
`⊥i = `i , if x ∈ the edge (i, i+ 1)
W , if x ∈ U

This completes the proof.

Relation with (T,−q). Triangulate D by adding the center ∞ and connect it to the other
vertices to obtain edges (i,∞), i ∈ Z/nZ. The vertices in each simplex are ordered by i < i+1 <∞.
The case n = 5 is depicted below:

tt
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∞

1

2

3

4 5

The cohomologies of P become trivial if we remove at least one edge from ∂D, hence the sheaf
cohomology H•(D,P ) = H•Čech(D,P ) = H•simp(D,P ); by H•simp(D,P ) we mean the cohomology
defined by the cochain complex with coefficients in P described below.

• A 2-cochain with coefficients in P is a datum α = {αi,i+1,∞ ∈W : i ∈ Z/nZ}.

• A 1-cochain with coefficients in P is a datum α = {αi,i+1 ∈ `i, αi,∞ ∈ W, i ∈ Z/nZ}.
Coboundary map is (dα)i,i+1,∞ = αi+1,∞ − αi,∞ + αi,i+1.
In particular, dα = 0 if and only if αi,i+1 = αi,∞ − αi+1,∞ for all i ∈ Z/nZ. This condition
implies

∑
i αi,i+1 = 0.

• A 0-cochain with coefficients in P is a datum α = {αi ∈ `i−1 ∩ `i, i ∈ Z/nZ; α∞ ∈ W}.
Coboundary map is (dα)i,i+1 = αi+1 − αi, (dα)i,∞ = α∞ − αi.

Lemma 2.6.3. Recall the notation in (2.2), we have H1(D,P ) ' T via [α] 7→ (αi,i+1)i∈Z/nZ
mod Im ∂.

Proof. Define a map g : Z1(D,P )→ Ker Σ by setting g(α) = (αi,i+1)i∈Z/nZ. Using the description
of cochains above, it is routine to show that g induces H1(D,P ) ' T = Ker Σ/Im ∂.

We proceed to study the quadratic form on H1(D,P ).

• A 2-cochain with coefficients in j!F is a datum {γi,i+1,∞ ∈ F, i ∈ Z/nZ}.

• A 1-cochain with coefficients in j!F is a datum {γi,∞ ∈ F, i ∈ Z/nZ}. Coboundary map is
(dγ)i,i+1,∞ = γi+1,∞ − γi,∞.

• The isomorphism H2(D, j!F ) ∼→ F is given by [(γi,i+1,∞)i] 7→
∑
i γi,i+1,∞.

• Given α, α′ two 1-cocycles with coefficients in P . Their cup-product is given by the usual
formula

(α ^ α′)i,i+1,∞ = 〈αi,i+1, α
′
i+1,∞〉. (2.11)

After composing with the previous isomorphism, it takes the value
∑
i〈αi,i+1, α

′
i+1,∞〉.
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Lemma 2.6.4. The bilinear form induced by ^: H1(D,P )×H1(D,P )→ F coincides with −q.

Proof. Observe that α′i+1,∞ − α′i,∞ = −α′i,i+1 since dα′ = 0, then compare (2.11) and (2.3).

Now we can prove Theorem 2.2.6.

Proof of Theorem 2.2.6. In view of the previous lemma, it suffices to deal with (H1(D,P ),^).
First of all, (H1(D,P ),^) is non-degenerate by Theorem 2.6.1.

1. Symplectic invariance/additivity Obvious.

2. Non-degeneracy. This is a part of Theorem 2.6.1.

3. Dihedral symmetry. The invariance under cyclic permutation of `1, . . . , `n is clear, while
`1, . . . , `n 7→ `n, . . . , `1 flips the orientation, thus gives the cup-product a minus sign.

4. Chain condition. This can be interpreted by a bordism. Given 3 ≤ k < n. Let

• (D1, P1) be the datum constructed from `1, . . . , `k.

• (D2, P2) be the datum constructed from `1, `k, . . . , `n.

• (D3, P3) be the datum constructed from `1, . . . , `n.

and let (T1,...,k, q1,...,k), (T1,k,...,n, q1,k,...,n) and (T1,...,n, q1,...,n) be the corresponding quadratic
spaces.

Denote pictographically by Y the space obtained from gluing D1 × [0, 1], D2 × [0, 1] and
D3 × [0, 1] via collapsing the line joining the midpoints of edges (1, 2) and (k, k + 1) in
D3 × {1}. The sheaves Pi � F (i = 1, 2, 3) glue in the natural way to give a constructible
sheaf P̂ on Y . A picture of n = 4, k = 3 is depicted below

1 2
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`1

//

`2

OO`3oo

`4

��

�
�
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�
�
�
�
�
�

//

1

3 1

4

2

3

`1

;;wwwwwwwwwwwwwww

`3

ccGGGGGGGGGGGGGGG
`4

��
`1

##GGGGGGGGGGGGGGG `2

OO

`3

{{wwwwwwwwwwwwwww

So the result is a bordism-like object after some juggling.

D1 D2

D3

zzuuuuuuu

//

ddIIIIIII zzuuuuuuu

//

ddIIIIIII

oo

77 //

''
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Let Û be the interior of Y , D̄3 be D3 with reversed (i.e. clockwise) orientation, and set
D̂ := D1 tD2 t D̄3, which is visually the "caps" of Y . Define the following immersions

i : D̂ −→ Y

jÛ : Û −→ Y

j : Y \ D̂ −→ Y

Then the dualizing sheaf is (jÛ )!F . By the same reasoning as in Lemma 2.6.2, the symplectic
form on W induces an isomorphism

j!j
∗P̂

∼→ H0(DP̂ [−3]).

The following lemma will conclude the proof.

Lemma 2.6.5. The image of π : H1(Y, P̂ )→ H1(Y, i∗i∗P̂ ) = H1(D̂, i∗P̂ ) is isotropic of half the
dimension of H1(D̂, i∗P̂ ).

Proof. There is a short exact sequence of sheaves

0 −→ j!j
∗P̂ −→ P̂ −→ i∗i

∗P̂ −→ 0.

By various compatibilities of Verdier duality, there is a commutative diagram with commutative
rows.

H1(Y, P̂ )
π //

∼
��

H1(D̂, i∗P̂ ) //

∼
��

H2(Y, j!j∗P̂ )

∼
��

H2(Y,DP̂ )∗ // H1(D̂, i∗P̂ )∗
π∗ // H1(Y, P̂ )∗

The middle vertical isomorphism induces the quadratic structure on H1(D̂, i∗P̂ ), which is the
orthogonal sum of

(T1,...,k,−q1,...,k)⊕ (T1,k,...,n,−q1,k,...,n)⊕ (T1,...,n, q1,...,n)

By exactness, Imπ is isotropic. On the other hand, the diagram implies that

Imπ ' Kerπ∗ = (Cokerπ)∗.

Hence dim Imπ = dimH1(D̂,i∗P̂ )
2 .

Remark 2.6.6. The proof above is very similar to that of the invariance of signature of manifolds
under cobordisms.
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Chapter 3

The Heisenberg group

3.1 Basic definitions
Recall our situation that F is a non-archimedean local field of characteristic not equal to 2.

Let (W, 〈, 〉) be a symplectic space. Then ψ ◦ 〈, 〉 : W ×W → S1 gives rises to a self-duality for
W .

Definition 3.1.1. The Heisenberg group associated toW is H(W ) := W×F with group structure

(w1, t1) · (w2, t2) =
(
w1 + w2, t1 + t2 +

〈w1, w2〉
2

)
1. The center Z of H(W ) is simply {0} × F . H(W )/Z = W , hence H(W ) is a nilpotent

algebraic group.

2. The product measure of any Haar measures onW and F yields a product measure on H(W ).
From this, one can see explicitly that H(W ) is unimodular.

3. If W = W1 ⊕W2, where W1,W2 are symplectic spaces. There is a natural homomorphism

H(W1)×H(W2)→ H(W )
((w1, t1), (w2, t2)) 7→ (w1 + w2, t1 + t2)

3.2 Stone-von Neumann Theorem
Fix a symplectic spaceW and put H := H(W ). For any irreducible representation ρ of H, ρ|{0}×F
is character of F , called the central character of ρ. The irreducible representations of H can be
classified by their central characters.

This section will be devoted to the following result.

Theorem 3.2.1 (Stone-von Neumann, version on the level of groups). There exists a unique
smooth irreducible representation ρ of H (up to isomorphism) with central character ψ.

3.2.1 Existence
The main concern is to construct models for such a representation, that is, a particular concrete
space with an action of H with the properties prescribed above. Our models come from some
special subgroups A ⊂W .

For any subgroup A ⊂W , put

A⊥ := {w ∈W : ∀a ∈ A, ψ(〈w, a〉) = 1}

It is a closed subgroup of W . If A is closed, then Pontryagin’s duality implies that
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1. A⊥⊥ = A

2. A⊥ ∼→ Ŵ/A via w 7→ ψ(〈w,−〉), where Ŵ/A denotes the dual group of W/A.

3. (A1 +A2)⊥ = A⊥1 ∩A⊥2

4. Suppose that A⊥1 + A⊥2 is closed, then A⊥1 + A⊥2 = (A1 ∩ A2)⊥. This condition is always
verified when A1 and A2 are vector subspaces or when char(F ) = 0. Indeed, the first case
is trivial and in the latter case F is a finite extension of some Qp. A subgroup of a finite-
dimensional Qp-vector space is closed if and only if it is also a Zp-submodule; this condition
is preserved under addition.

Fix a subgroup A ⊂ W such that A = A⊥. Such subgroup exists, for example one can take
A to be a lagrangian of W . Set AH := A × F . Let ψA : AH → S1 be a character such that
ψA|{0}×F = ψ (for example, one can take ψA = 1 × ψ when A is a lagrangian of W or when
char(OF /($)) 6= 2). Define (ρ, SA) to be the smooth induction of ψA.

(ρ, SA) := IndHAHψA

SA =
{
f : H → C :

∀a ∈ AH , h ∈ H, f(ah) = ψA(a)f(h)
f is fixed by some compact open L ⊂W

}
ρ : acts by right translation.

We can also consider the compact induction. In our case, they are equal.

Lemma 3.2.2. (ρ, SA) coincides with the compact induction c-IndHAHψA.

Proof. Let f ∈ SA be right-invariant under a compact open subgroup L ⊂W . It suffices to show
the compactness of Suppf in AH\H = A\W .

Suppose that w ∈W, f((w, 0)) 6= 0. For any l ∈ L ∩A, we have

f((w, 0)) = f((w, 0)(l, 0)) = f((l, 〈w, l〉)(w, 0)) = ψ(〈w, l〉)ψA((l, 0))f((w, 0))

Thus ψ(〈w, l〉) = ψA((−l, 0)). This pinned down the image of w modulo (L ∩ A)⊥. However
(L ∩ A)⊥ = L⊥ + A⊥ = L⊥ + A, and L⊥ is compact since W/L is discrete, hence f is supported
on the compact subset A\(L⊥ +A).

Lemma 3.2.3. Let w ∈ W , L a compact open subgroup of W . Suppose that ψA = 1 on AH ∩
(w, 0)(L×{0})(w, 0)−1 (this is always possible by taking L small enough). We can define a function

fw,L(h) =

{
ψA(a) , if h = a(w, 0)(l, 0), h ∈ AH(w, 0)(L× {0})
0 , otherwise

As w runs over W and L runs over small enough compact open subgroups, these functions generate
SA. In particular, SA 6= {0}.

Proof. The hypothesis that ψA = 1 on AH ∩ (w, 0)(L× {0})(w, 0)−1 guarantees that fw,L is well-
defined and lies in SA. Note that SA =

⋃
L S

L
A, the functions in S

L
A are determined by their values

on representatives of the double cosets AH\H/(L× {0}), which are zero for all but finitely many
representatives by the preceding lemma. Our assertion follows at once.

Proposition 3.2.4. (ρ, SA) is irreducible.

Proof. Fix f ∈ SA, f 6= 0, we want to show that f generates all fw,L under the action of ρ. Fix
w ∈ W . By translating f on the right, we may assume that f((w, 0)) 6= 0. Let L be a compact
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open subgroup fixing f . Fix a Haar measure on A and consider the action of S (A). For any
φ ∈ S (A), w′ ∈W , we have

(ρ|A(φ)(f))(w′, 0) =
∫
A

f((w′, 0)(a, 0))φ(a) da

=
∫
A

ψ(〈w′, a〉)ψA((a, 0))φ(a) da · f((w′, 0))

This resembles a Fourier transform; write φ(a) = ψA(−a, 0)φ′(a), the last term becomes∫
A

ψ(〈w′, a〉)φ′(a) da · f((w′, 0)) = (φ′µ)∧(w′ +A) · f((w′, 0))

where µ is some Haar measure on A. Choose φ′ so that (φ′µ)∧ is the characteristic function of
w+L+A ⊂W/A = Â, then ρ|H(φ)f is f multiplied by the characteristic function of (A+w+L)×F .
By taking L small enough, it will be a multiple of fw,L.

This established the existence part of 3.2.1.
Let’s consider some choices of A which will be used later.

Example 3.2.5. Take A = ` to be a lagrangian of W . Then the restriction from H to W × {0}
identifies S` with the space{

f : W → C : ∀x ∈W,a ∈ `, f(x+ a) = ψ
(

1
2 〈x, a〉

)
f(x)

fixed by some open compact subgroup L ⊂W

}
The action of H is given by

(ρ`(x, t)f)(x′) = ψ

(
1
2
〈x′, x〉+ t

)
f(x′ + x).

Such models are called Schrödinger representations.

Example 3.2.6. Let `, `′ be transversal lagrangians, so that there is a splitting W = `⊕ `′. Take
A = ` and choose ψA = 1× ψ. By Lemma 3.2.2, we have

S`
∼→ S (`′)

f 7→ f |`′⊕{0}

H acts on S (`′) by

∀x ∈ `, y ∈ `′, (ρ((x+ y, t))f)(y′) = ψ

(
〈y′, x〉+

〈y, x〉
2

+ t

)
f(y′ + y)

The representations on S (`′) and S (`) are intertwined by a Fourier transform

S (`′)→ S (`)

f 7→ f∧(x) =
∫
`′

f(y)ψ(〈y, x〉) dy

A generalization as well as a reformulation in half densities will be given in the next section.

Example 3.2.7. Take A to be a compact open subgroup of W such that A⊥ = A. This is always
possible. Indeed, by taking a symplectic basis of W , it suffices to consider the case W = Fp⊕Fq
with 〈p, q〉 = 1. Set c = inf{t ∈ Z : $tOF ⊂ Kerψ} to be the conductor of ψ. Then A =
OF$a ⊕OF$b satisfies A⊥ = A if and only if a+ b = c.

Choose a character ψA of AH such that ψA|{0}×F = ψ. The corresponding representation acts
on the space SA of functions f : W → C such that
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• f is locally constant.

• Suppf is compact.

• f(a+ w) = ψA

(
a+ 〈a,w〉

2

)
f(w) for all w ∈W,a ∈ A.

H acts via
(ρA(x, t)f)(x′) = ψ

(
1
2
〈x′, x〉+ t

)
f(x′ + x).

Such a choice of A is particular to the case F non-archimedean.

3.2.2 Uniqueness
Let Sψ(H) be the space consisting of smooth functions f such that f(zh) = ψ(z)f(h) for all
z ∈ Z = {0}×F and h ∈ H, and that |f | is compactly supported modulo Z. The restriction map
gives rise to an isomorphism

Sψ(H) ∼→ S (W )
f 7→ f |W×{0}

Sψ(H) [resp. S (W )] admits two representations:

ρd = right translation , ρd(g) : f(−) 7→ f(−g)
ρs = left translation , ρs(g) : f(−) 7→ f(g−1−)

so that the H ×H-representation ρs × ρd on Sψ(H) [resp. S (W )] can be defined.

Lemma 3.2.8. Let (ρ, S) be a representation of H satisfying the hypothesis of 3.2.1. Let S∨
denote the smooth dual of S, then taking matrix coefficients

S∨ ⊗ S → Sψ(H)
s∨ ⊗ s 7→ fs∨,s(h) := 〈s∨, ρ(h)s〉

gives rise to an intertwining operator c : ρ∨ ⊗ ρ→ ρs × ρd as representations of H ×H.

Proof. The crux is to show that for all s∨, s, the matrix coefficient fs∨,s is compactly supported
modulo Z. Take a compact open subgroup L ⊂W fixing s∨, s, then for all l ∈ L we have

fs∨,s((w, 0)) = 〈s∨, ρ((w, 0))s〉 = 〈s∨, ρ((w, 0)(l, 0))s〉
= ψ(〈w, l〉)〈ρ((−l, 0))s∨, ρ((w, 0))s〉
= ψ(〈w, l〉)〈s∨, ρ((w, 0))s〉 = ψ(〈w, l〉)fs∨,s((w, 0))

Hence fs∨,s((w, 0)) 6= 0 implies that w ∈ L⊥, which is compact.

Lemma 3.2.9. ρd is isotypic.

Proof. Take two transversal lagrangians `, `′ ofW . According to 3.2.6, we have two representations
(ρ,S (`′)), (ρ′,S (`)) with central character ψ. Apply the same construction to get (ρ̄,S (`′)),
(ρ̄′,S (`)), but this time with central character ψ̄.

Fix Haar measures on `, `′. Recall the general fact that ρ ' IndH`H (1×ψ) and ρ̄ ' IndH`H (1×ψ̄) =
c-IndH`H (1× ψ̄) are in duality via the pairing

(s′, s) 7→
∫
`′

s′(y′)s(y′) dy′
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Now, use Fourier transform to identify ρ̄ and ρ̄′, the above duality pairing becomes

(s′, s) 7→
∫
`×`′

s′(x′)s(y′)ψ(〈y′, x′〉) dx′ dy′

The matrix coefficients now take the following form: let x ∈ `, y ∈ `′,

fs′,s((x+ y, 0)) =
∫
`×`′

s′(x′)ψ
(
〈y′, x〉+

〈y, x〉
2

)
s(y + y′)ψ(〈y′, x′〉) dx′ dy′

=
∫
`×`′

s′(x′)s(y′)ψ
(
〈y′ − y, x〉+

〈y, x〉
2

)
ψ(〈y′ − y, x′〉) dx′ dy′

= ψ

(
〈x, y〉

2

) ∫
`×`′

s′(x′)s(y′)ψ(〈y′, x〉 − 〈y, x′〉)ψ(〈y′, x′〉) dx′ dy′

This is the tensor product of two Fourier transforms multiplied by a bicharacter. Hence ρ̄′ ⊗ ρ '
ρs×ρd. Since ρ is irreducible, restriction to 1×H shows that ρd is a direct sum of copies of ρ.

Now we can complete the proof of the uniqueness part. Let (σ, S) be any representation of H
which is smooth and irreducible. Using the intertwining operator c : σ∨⊗ σ → ρs× ρd, we can fix
s∨ ∈ S∨, s∨ 6= 0 to embed σ into ρs × ρd. The lemma implies that σ ' ρ.

Remark 3.2.10. From now on, we will use ρψ to denote a representation satisfying Theorem
3.2.1.

Proposition 3.2.11. ρψ̄ ⊗ ρψ ' ρs × ρd.

Proof. Take transversal lagrangians `, `′. By 3.2.1, we may assume that ρψ = ρ, ρψ̄ = ρ̄′, where
ρ, ρ̄′ are those constructed in the proof of 3.2.9. This proposition is then a byproduct of 3.2.9

3.2.3 Passing to unitary representations
By now the smooth irreducible representations of H are fully classified. However, in order to apply
the character theory, we will also consider unitary representations and the unitary equivalences
between them in Hilbert spaces. Theorem 3.2.1 remains valid for unitary representations. It
suffices to note that

• The representations (ρ, SA) are unitarizable: the space SA can be viewed as smooth vectors1
in L2(AH\H,ψA). The members of the latter space are measurable functions2 f on H such
that

∀a ∈ AH , h ∈ H, f(ah) = ψA(a)f(h) (3.1)∫
AH\H

|f |2 dḣ < +∞ (3.2)

where we use dḣ to denote an arbitrary invariant measure on AH\H. It admits a structure
of Hilbert space defined by the inner product

(f |g) :=
∫

AH\H

fḡ dḣ

H acts on L2(AH\H,ψA) by right translation, which is obviously unitary.
1Recall that s ∈ SA is called smooth if it is stabilized by a compact open subgroup of H.
2Strictly speaking, two such functions are identified if they coincide almost everywhere modulo AH .
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• In the proof of the uniqueness part of 3.2.1, all the intertwining operators are unitary equiv-
alences, at least up to some constant factor. Indeed, it suffices to show that

s 7→ fs∨,s, s∨ 6= 0 fixed.

has image in

L2
ψ(H/Z) :=

{
f : H → C :

∀z ∈ Z, h ∈ H, f(zh) = ψ(z)f(h),∫
H/Z
|f |2 dḧ < +∞

}
and is an isometry up to a constant factor. Here dḧ is a chosen Haar measure on H/Z.

Let (ρ, S) be the concerned unitary representation of central character ψ and let (, ) be the
inner product on S. Let S̄ be the space S with the "twisted" complex structure: z ∗ s :=
z̄s, then (ρ, S̄) can be identified with the contragredient representation (ρ∨, S∨) by setting
〈s∨, s〉 := (s, s∨) for every s∨ ∈ S̄, s ∈ S.
If s∨, s are smooth and nonzero, then we have seen that fs∨,s is compactly supported and
continuous. This shows the square-integrability mod Z of (ρ, S).

Recall Schur orthogonality relations for square-integrable representations mod Z ([6], Part
I §1): there exists a constant dρ > 0 depending on ρ and dḧ, called the formal degree of ρ,
such that for every s∨, t∨ ∈ S̄, s∨, t ∈ S we have

(fs∨,s|ft∨,t) =
∫

H/Z

〈s∨, ρ(h)(s)〉〈t∨, ρ(h)t〉 dḧ

=
∫

H/Z

(ρ(h)(s), s∨)(ρ(h)t, t∨) dḧ

= d−1
ρ · (s, t)(s∨, t∨).

This completes the proof.

The main case to be considered is the case where A = ` is a lagrangian of W . We will reformulate
the constructions above in a canonical way via the language of densities.

Definition 3.2.12. Let ` be a lagrangian of a symplectic space W . Define 3 H` = H`(ψ) to be
the vector space of measurable functions f : W → Ω1/2(W/`) such that

f(v + a) = ψ

(
〈v, a〉

2

)
f(v) (3.3)∫

W/`

ff̄ < +∞ (3.4)

Remark 3.2.13. H`(ψ)∨ ' H`(ψ̄) via the pairing

H`(ψ)×H`(ψ̄)→ C

(f, g) 7→
∫
W/`

fg

3T. Thomas use the same symbol in [18] to denote a sheaf over W/`. Our space corresponds to its L2-sections.
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3.3 Calculation of characters
Fix a lagrangian ` of W and form the corresponding Schrödinger representation ρ`. Recall that
the representation ρ` on H` induces a map

ρ` : S (H)⊗ Ω1(W × F )→ End(H`)

defined by the formula

ρ`(h)s =
∫

(w,t)∈H

h((w, t)) · ρ`((w, t))s, h ∈ S (H)⊗ Ω1(W × F ), s ∈ H` (3.5)

(Recall that the Haar measures on H are the same as those of the product vector space W × F .)
As H` is admissible, ρ`(h) is a bounded operator of finite rank, hence is a trace class operator

for any h ∈ S (H) ⊗ Ω1(W × F ). Therefore, we obtain a linear functional (the character of ρ`)
on S (H)⊗ Ω1(W × F )

Θρ` : h 7→ Tr(ρ`(h)).

It is in fact a distribution on H. This section is devoted to a direct calculation for it.

Proposition 3.3.1. Θρ` = δ ⊗ ψ ∈ Ω1(W × F ) = Ω1(W )⊗Ω1(F ), where δ is the Dirac measure
associated to {0} ⊂W together with the self-dual measure µW ∈ Ω1(W ).

Proof. Recall that for x ∈W , we have

(ρ`(h)s)(x) =
∫

(w,t)∈H

s(x+ w)ψ
(
〈x,w〉

2
+ t

)
h(w, t)

=
∫

(w,t)∈H

s(w)ψ
(
〈x,w〉

2
+ t

)
h(w − x, t)

Choose a complement of ` ⊂ W to identify W/` with a subspace of W . Recall that s(w + a) =
ψ(〈w, a〉/2)s(w) if a ∈ ` (by 3.2.5), the last integral can be unfolded to get∫

w′∈W/`

s(w′) ·
∫

(a,t)∈`×F

ψ

(
〈x+ w′, w′ + a〉

2
+ t

)
h(w′ + a− x, t)

Since a complement of ` ⊂W is chosen, H` can be identified with L2(W/`). Extract the integral
kernel in the formula above

K(x,w′) :=
∫

(a,t)∈`×F

ψ

(
〈x+ w′, w′ + a〉

2
+ t

)
h(w′ + a− x, t).

K(x,w′) is a smooth function on W/` ×W/` taking value in Ω1(W/`). In view of Theorem
A.0.6, we set out to do an integration along the diagonal in order to calculate the character.

Tr(ρ`(h)) =
∫

x∈W/`

K(x, x)

=
∫

x∈W/`

∫
(a,t)∈`×F

ψ

(
〈2x, x+ a〉

2
+ t

)
h(a, t)

=
∫
t∈F

ψ(t) ·
∫

x∈W/`

∫
a∈`

ψ(〈x, a〉)h(a, t)
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Write h = h̄ · µW , where µW ∈ Ω1(W ) is the self-dual measure. Observe that µW = µ` · µW/`,
where µ` and µW/` are dual measures. By the Fourier inversion formula, the last inner integral is
thus h̄(0, t), and

Θρ`(h) =
∫
t∈F

h̄(0, t)ψ(t) =
∫
t∈F

h(0, t)
µW

ψ(t)

In other words, Θρ` = δ ⊗ ψ.

3.4 The canonical intertwiners
According to 3.2.1, the Schrödinger representations associated to different lagrangians are unitarily
equivalent. We will construct canonical intertwiners between Schrödinger representations and
represent them by integral kernels.

Lemma 3.4.1. Let `1, `2 be two lagrangians of a symplectic space W , then there is a canonical
isomorphism

ΩR
1 ((`1 + `2)/`1 ∩ `2) = ΩR

1 (`1)⊗ ΩR
1 (`2)⊗ (ΩR

1 (`1 ∩ `2)∗)⊗2

Proof. This follows from the following observations:

(`1 + `2)/`1 ∩ `2 = (`1/`1 ∩ `2)⊕ (`2/`1 ∩ `2)

ΩR
1 (`i/`1 ∩ `2) = ΩR

1 (`i)⊗ ΩR
1 (`1 ∩ `2)∗ (i = 1, 2)

Of course, the same assertion continues to hold after tensoring with C.
Let `i, `j be two lagrangians. Define

µi,j = µ`i,`j ∈ ΩR
1 (`i)⊗ ΩR

1 (`j)⊗ (ΩR
1 (`i ∩ `j)∗)⊗2 = ΩR

1 ((`i + `j)/`i ∩ `j)

to be the element in ΩR
1 ((`i + `j)/`i ∩ `j) corresponding to the self-dual measure induced by the

symplectic form.

Theorem 3.4.2. Let `i, `j be two lagrangians of a symplectic space W . There is a unitary inter-
twiner Fj,i : H`i → H`j determined by

(Fj,iφ)(y) =
∫

x∈`j/(`i∩`j)

φ((x, 0)(y, 0))µ1/2
i,j

=
∫

x∈`j/(`i∩`j)

φ(x+ y)ψ
(
〈x, y〉

2

)
µ

1/2
i,j

when φ ∈ H`i is a smooth vector.

Note that we have abused the notation ψ(−) to denote ψ((−, 0)). The first integral can be
written as

(Fj,iφ)(h) =
∫

(`j)H/((`i)H∩(`j)H)

φ(ah) da (h ∈ H)

From this, it is clear that Fj,i commutes with the action of H. The main problem is to fix a good
invariant measure da on (`j)H/((`i)H ∩ (`j)H).

Proof. The main burden of the proof is the unitarity. By 1.3.3, we may fix a symplectic basis
p1, q1 . . . , pn, qn of W and assume that

`i = Fp1 ⊕ · · · ⊕ Fps ⊕ Fps+1 ⊕ · · · ⊕ Fpn
`j = Fp1 ⊕ · · · ⊕ Fps ⊕ Fqs+1 ⊕ · · · ⊕ Fqn
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so that

`i ∩ `j = Fp1 ⊕ · · · ⊕ Fps
`j

`i ∩ `j
= Fqs+1 ⊕ · · · ⊕ Fqn

`i + `j
`i ∩ `j

= Fps+1 ⊕ · · · ⊕ Fpn ⊕ Fqs+1 ⊕ · · · ⊕ Fqn

W/`i = Fq1 ⊕ · · · ⊕ Fqs ⊕ Fqs+1 ⊕ · · · ⊕ Fqn
W/`j = Fq1 ⊕ · · · ⊕ Fqs ⊕ Fps+1 ⊕ · · · ⊕ Fpn

Fix the densities below

ωi ∈ Ω1/2(Fps+1 ⊕ · · · ⊕ Fpn), ωj ∈ Ω1/2(Fqs+1 ⊕ · · · ⊕ Fqn)
λ ∈ Ω1/2(Fq1 ⊕ · · · ⊕ Fqs)

where we require that ω2
i , ω

2
j are dual Haar measures with respect to the pairing ψ(〈−,−〉). There-

fore,
µ

1/2
i,j = ωiωj ∈ Ω1/2((`i + `j)/`i ∩ `j).

Let φ = φ̃λωj ∈ H`i , where φ̃ is a Schwartz-Bruhat function on W/`i = Fq1 ⊕ · · · ⊕ Fqn. We
will use the following decompositions

y ∈ Fq1 ⊕ · · · ⊕ Fqs ⊕ Fps+1 ⊕ · · · ⊕ Fpn

⇒ y = y′ + y′′ where

{
y′ ∈ Fq1 ⊕ · · ·Fqs
y′′ ∈ Fps+1 ⊕ · · · ⊕ Fpn

z ∈ Fq1 ⊕ · · · ⊕ Fqn

⇒ z = y′ + x where

{
y′ ∈ Fq1 ⊕ · · ·Fqs
x ∈ Fqs+1 ⊕ · · · ⊕ Fqn

Also note that 〈y′, y′′〉 = 〈y′, x〉 = 0 in such decompositions.
For a fixed y′ ∈ Fq1 ⊕ · · ·Fqs, set φ̃y′(x) = φ̃(y′ + x) for x ∈ Fqs+1 ⊕ · · · ⊕ Fqn, it is a

Schwartz-Bruhat function on Fqs+1 ⊕ · · · ⊕ Fqn. Now

(Fj,i(φ))(y) =
∫

x∈Fqs+1⊕···⊕Fqn

φ̃((x, 0)(y, 0))λωj · ωjωi

=

 ∫
x∈Fqs+1⊕···⊕Fqn

φ̃((x, 0)(y′, 0)(y′′, 0))ω2
j

λωi

=

 ∫
x∈Fqs+1⊕···⊕Fqn

φ̃((y′′, 0)(x, 0)(y′, 0))ψ(〈x, y′′〉)ω2
j

λωi

=

 ∫
x∈Fqs+1⊕···⊕Fqn

φ̃((x, 0)(y′, 0))ψ(〈x, y′′〉)ω2
j

λωi

=

 ∫
x∈Fqs+1⊕···⊕Fqn

φ̃y′(x)ψ(〈x, y′′〉)ω2
j

λωi

= ̂̃φy′ω2
j (y′′) · λωi
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Here the Fourier transform is applied to the coordinates ps+1, . . . , pn ↔ qs+1, . . . , qn. Recall that
ω2
i , ω

2
j are dual, hence Fj,i is an unitary operator by Plancherel’s theorem.

Corollary 3.4.3.
Fi,j ◦Fj,i = id

Proof. This is essentially the Fourier inversion formula.

Corollary 3.4.4. If `i ∩ `j = {0}, then 〈−,−〉 induces a duality between `i, `j, and Fj,i becomes
the Fourier transform after the identifications below:

H`i
Fj,i //

'
��

H`j

'
��

L2(`i) Fourier transform
// L2(`j)

3.5 Cyclic composition of canonical intertwiners
Given lagrangians `1, . . . , `n (n ≥ 2) of W , we are concerned about their cyclic composition

F1,...,n := F1,n ◦ · · · ◦F2,1 : H`1 → H`1 .

It is just multiplication by some constant of absolute value 1, according to Schur’s lemma. This
constant is 1 when n = 2 by Corollary 3.4.3. However, those relevant partial Fourier transforms
are entangled in a quite subtle way when n ≥ 3; this constant is related to the Maslov index τ
and Weil’s character γ as follows.

Theorem 3.5.1 (G. Lion for F = R, P. Perrin for general case). Let `1, . . . , `n (n ≥ 3) be
lagrangians of W , then

F1,...,n = γ(−τ(`1, . . . , `n)) · id.

There is a more elementary way to prove this by reducing to the case n = 3 and use the
quadratic form (2.7), see [15]. However, we will employ an argument that fits well into our
framework in Chapter 2 and works directly for general n. The first step is to represent the
intertwiners by integral kernels as follows. This formula will also be used in Chapter 5.

Lemma 3.5.2. For any smooth φ in H`i and for any y ∈W , we have

(Fi+1,iφ)(y) =
∫

x∈W/`i
x−y∈`i+`i+1

φ(x)ψ
(
Q`i,`i+1((x, y))

2

)
· µ1/2

i,i+1.

Here Q`i,`i+1 is the quadratic form on {(x, y) ∈W 2 : x− y ∈ `i + `i+1} defined by

(x, y) 7→ εi,i+1(x, y)(x− y),

the functional εi,i+1(x, y) being that defined in 2.5.1.

Proof. Choose A ⊂ `i+1 so that A⊕ (`i ∩ `i+1) = `i+1. Using the second integral formula in 3.4.2
and make a change of variable z = x+ y, we get

(Fi+1,iφ)(y) =
∫

z∈A+y

φ(z)ψ
(
〈z, y〉

2

)
µ

1/2
i+1,i,

where the integral of a density over A+ y is interpreted in the obvious way.
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Since z − y ∈ A ⊂ `i+1, 〈z, y〉 = 〈εi,i+1(z, y), z − y〉 by the very definition of εi,i+1. Observe
that (`i + `i+1)/`i ' `i+1/(`i ∩ `i+1), and the quotient map restricts to an isomorphism

A+ y
∼−→ {x ∈W/`i : x− y ∈ `i + `i+1}.

Thus a further change of variable completes the proof.

Lemma 3.5.3. Theorem 3.5.1 holds if and if it holds for lagrangians satisfying
⋂
i `i = {0}.

Proof. Given n lagrangians `1, . . . , `n (n ≥ 3), it is always possible to pick another `n+1 transversal
to `1, . . . , `n. By the chain condition and dihedral symmetry

τ(`1, . . . , `n) + τ(`1, `n, `n+1) = τ(`1, . . . , `n, `n+1)
τ(`n+1, `1, . . . , `n−1) + τ(`n+1, `n−1, `n) = τ(`n+1, `1, . . . , `n) = τ(`1, . . . , `n, `n+1).

The same relation holds for F... by 3.4.3

F1,...,n ·F1,n,n+1 = F1,...,n,n+1

Fn+1,1,...,n−1 ·Fn+1,n−1,n = Fn+1,1,...,n = F1,...,n,n+1 (Regarded as scalars).

This proves the lemma.

Setting of the proof of Theorem 3.5.1: given the previous lemma, we can assume that⋂
i `i = {0}.
Convention: To simplify matters, we will fix arbitrary positive Haar measures on all relevant

vector spaces; this arbitrariness will be cancelled out after taking cyclic composition. Define an
equivalence relation ∼ on C by stipulating

x ∼ y ⇐⇒ ∃α ∈ R>0, x = αy.

The same notation also applies to distributions: f ∼ g if they differ by a positive constant.
Recall the constructions in §2.2.

• The space T is the cohomology of the center term of the following complex⊕
i∈Z/nZ

`i ∩ `i+1
∂−→

⊕
i∈Z/nZ

`i
Σ−→W,

There is then a cartesian square

Ker Σ // ι //

π
����

�

⊕
i `i

π̃
����

T // ι̃ // Coker ∂

(3.6)

• T ∗ is the cohomology of the center term of the dual complex

W
Σ∗−→

⊕
i∈Z/nZ

W/`i
∂∗−→

⊕
i∈Z/nZ

W/(`i + `i+1)

Similarly, there is a diagram

Ker ∂∗ //
i //

p

����

⊕
iW/`i

T ∗
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Set

fq(x) := ψ

(
q(x)

2

)
∈ D(T )

f−q∗(x) := ψ

(
−q∗(x)

2

)
∈ D(T ∗).

Since the Haar measures are fixed, we can pull-back then push-forward, without worry about
densities, to define

Q := ι∗π
∗(fq) ∈ D(

⊕
i

`i)

Q′∨ := i∗p
∗(f−q∗) ∈ D(

⊕
i

W/`i)

Consider the Fourier transform Q′ := (Q′∨)∧. Using the compatibilities stated in §1.1, we have

Q′ = (Q′∨)∧ = (i∗p∗(f−q∗))∧

∼ π̃∗ι̃∗f̂−q∗

∼ ι∗π∗f̂−q∗ ∼ γ(q)−1ι∗π
∗fq

∼ γ(−q)Q

where we have used the facts that the diagram 3.6 is cartesian and that fq is an even function.
Define X := (

∏
i `i)× F and let m : X → H be the multiplication morphism (g1, . . . , gn, t) 7→

gn · · · gn · (0, t), induced via inclusions `i ⊂ W ⊂ H. The variety X carries the measure induced
from the chosen measures on `1, . . . , `n and F .

For every (g1, . . . , gn, t) ∈ X, define the operator

σ(g1, . . . , gn, t) := ψ(t) · ρ1(g1) ◦F1,n ◦ · · · ◦ ρ2(g2) ◦F2,1

= F1,...,n ◦ ρ1(m(g1, . . . , gn, t))

Lemma 3.5.4. Under the assumption that
⋂
i `i = {0}, the map m is a submersion. In fact, there

is an isomorphism φ : X → X preserving measures such that the diagram

X
φ //

m
  AAAAAAA X

(g1,...,gn,t)7→(g1+···+gn,t)~~}}}}}}}

H

commutes.

Proof. Note that
⋂
i `i = {0} ⇐⇒

∑
i `i = W , hence m is surjective. The morphism φ : X → X

can be defined as

φ(g1, . . . , gn, t) =
(
g1, . . . , gn, t+

∑
i>j〈gi, gj〉

2

)
.

Its inverse is simply (g1, . . . , gn, t) 7→ (g1, . . . , gn, t −
P
i>j〈gi,gj〉

2 ). It is clear that φ preserves the
chosen measure on X.

Remark 3.5.5. By virtue of this lemma, it makes sense to talk about the following distributions
on X

Tr(σ) : h 7→ Tr

∫
X

h(x)σ(x) dx


Tr(ρ1 ◦m) : h 7→ Tr

∫
X

h(x)ρ1(m(x)) dx


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Abusing notations somehow, we may write

F1,...,n =
Tr(σ)

Tr(ρ1 ◦m)
· id.

The proof of Theorem 3.5.1 will be concluded by the

Lemma 3.5.6. Under the assumption that
⋂
i `i = {0},

1. Tr(ρ1 ◦m) ∼ Q⊗ ψ.

2. Tr(σ) ∼ Q′ ⊗ ψ.

Proof of 3.5.1. Granting the lemma, we have F1,...,n = γ′ · id for some scalar γ′. Given the
preceding remark and lemma, we have γ′ ∼ γ(−q) = γ(−τ(`1, . . . , `n)); however |γ′| = |γ(−q)| = 1,
hence F1,...,n = γ(−τ(`1, . . . , `n)) · id.

Proof of the lemma. Recall that Θρ1 ∼ δ ⊗ ψ after fixing relevant measures, where δ is the Dirac
measure at {0} ∈W . Since m : X → H is submersive, Tr(ρ1 ◦m) ∼ m∗Θρ1 ; the latter distribution
is

∼ (Dirac measure at Ker Σ) ·
(

(g1, . . . , gn) 7→ ψ

(∑
i>j〈gi, gj〉

2

))
⊗ ψ

in which the second first tensor slot is just Q, by formula (2.4). Hence Tr(ρ1 ◦m) ∼ Q⊗ ψ.
As for Tr(σ), it suffices to consider test functions of the form φ = (

⊗n
i=1 hi) ⊗ k, where

hi ∈ S (`i) and k ∈ S (F ).
Using the formula (3.5) (but restricted to `i), we see that

∀θ ∈ H`i , (ρi(hi)θ)(x) ∼ θ(x)ĥi(x̄),

where x̄ is the projection of x ∈W to W/`i. On the other hand the function k acts by

θ(x) 7→
∫
t∈F

k(t)ψ(t)θ(x).

The overall conclusion is that

(Trσ)(φ) ∼
∫

x∈
L
i∈Z/nZ W/`i

xi−xi+1∈`i+`i+1

∏
i∈Z/nZ

ψ

(
1
2
εi,i+1(xi, xi+1)(xi − xi+1)

) ∏
i∈Z/nZ

ĥi(xi)

×
∫
t∈F

ψ(t)k(t)

The right-hand side is 〈Q′∨, (
∏
i hi)

∧〉 · 〈ψ, k〉 by Proposition 2.5.2, where 〈−,−〉 now denotes the
pairing between distributions and test functions. But this is also

∼ 〈(Q′∨)∧,
∏
i

hi〉 · 〈ψ, k〉 = 〈Q′ ⊗ ψ, φ〉.

This proved our lemma since hi and k are arbitrary.
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Chapter 4

The Weil Representation

4.1 Definition of the Weil representation
Fix a symplectic space W . Let (ρψ, S) be a unitary irreducible representation of H = H(W )
with central character ψ. Such representations are unique up to unitary equivalence by Stone-von
Neumann theorem 3.2.1. The symplectic group Sp(W ) operates on H by

(w, t) 7→ (g(w), t), (w, t) ∈ H, g ∈ Sp(W ).

For any g ∈ Sp(W ). Define a new representation ρgψ acting on the same space S by

ρgψ(h) = ρψ(g(h)) for all h ∈ H

the representation still satisfies the requirements of the Stone-von Neumann theorem, hence there
exists a bounded operator M : S → S such that

M ◦ ρψ = ρgψ ◦M.

From Schur’s lemma,M is uniquely determined by g up to a constant. Set GL(S) := Endconti.(S)×

and PGL(S) := GL(S)/(C× · id). We obtain a projective representation

ω̄ψ : Sp(W )→ PGL(S).

A. Weil showed in [19] that ω̄ψ cannot be lifted to an ordinary representation Sp(W )→ GL(S)
for a local field F 6= C. To study ω̄ψ, we proceed to construct an universal group that lifts ω̄ψ to
an ordinary representation.

Definition 4.1.1. Define

S̃pψ(W ) := Sp(W )×PGL(S) GL(S)

= {(g,M) ∈ Sp(W )×GL(S) : M ◦ ρψ = ρgψ ◦M}

Equip S̃pψ(W ) with the subspace topology induced from the product Sp(W )×GL(S), where GL(S)
is equipped with the strong operator topology, that is, the weakest topology making M 7→ M(s)
continuous for each s ∈ S.

Let ωψ : S̃pψ(W )→ GL(S) be the projection, we have a commutative diagram of groups with
exact rows.

1 // C× // S̃pψ(W )
p̃ //

ωψ

��
�

Sp(W )

ω̄ψ

��

// 1

1 // C× // GL(S) // PGL(S) // 1
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Therefore, ωψ : S̃pψ(W ) → GL(S) lifts ω̄ψ to an ordinary representation on S̃pψ(W ) in a tauto-
logical way. This is called the Weil representation or metaplectic representation 1.

It will be shown in §4.2 that S̃pψ(W ) is a locally compact group, as a by-product of the
construction of Schrödinger models.

Remark 4.1.2. It follows by abstract nonsense that

Data (G,G→ Sp(W ), G→ GL(S)) that lifts ω̄ψ

��
Data (G,G→ S̃pψ(W ))

bijection

OO

Remark 4.1.3. The Weil representation ωψ can also be regarded as a representation of the
semi-direct product

H o S̃pψ(W ), S̃pψ(W )→ Aut(H) via (g,M) · h = g(h).

acting by ωψ(h, (g,M)) : s 7−→ ρ(h)(Ms).

Remark 4.1.4. Suppose that W1,W2 are two symplectic spaces and W = W1 ⊕W2. Fix repre-
sentations (ρψ,1, S1), (ρψ,2, S2) for H(W1) and H(W2), then the representation ρψ := ρψ,1 ⊗ ρψ,1
on S := S1 ⊗ S2 satisfies the Stone-von Neumann theorem, and we have an embedding

Sp(W1)× Sp(W2)→ Sp(W )

and a homomorphism
GL(S1)×GL(S2)→ GL(S)

They induce a homomorphism

j : S̃pψ(W1)× S̃pψ(W2)→ S̃pψ(W ),

which commutes with projections to symplectic groups in the obvious sense.
The representation ωψ ◦ j is equivalent to ωψ,1 � ωψ,2. Such constructions are used in the

setting of Howe correspondence, see [13].

Theorem 4.1.5 (Weil, [19] §43). There exists a unique subgroup Ŝpψ(W ) of S̃pψ(W ) such that
p := p̃|cSpψ(W )

: Ŝpψ(W ) → Sp(W ) is a two-fold covering. Let ε ∈ Ker (p) be the non-trivial
element, there is a short exact sequence

1 −→ {1, ε} −→ Ŝpψ(W )
p−→ Sp(W ) −→ 1 (4.1)

Therefore, the restriction of ωψ to Ŝpψ lifts the projective representation ω̃ψ of Sp(W ) to an
ordinary representation of Ŝpψ.

The uniqueness of Ŝpψ(W ) will be proved shortly after.

Remark 4.1.6. The proof in [19] is actually an existential proof. An explicit construction of Ŝp
in terms of Maslov index will be given in §4.3.

C. Moore proved in [14] that Sp(W ) has a unique non-trivial two-fold covering Ŝp(W ). We
will henceforth drop the subscript ψ and denote by Ŝp(W ) the subgroup in S̃pψ(W ).

Proposition 4.1.7. Ŝp(W ) is equal to its own derived group.
1Or Segal-Shale-Weil representations, oscillator representations...
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Proof. Let N be the its derived group. Since Sp(W ) equals its own derived group, p(N) = Sp(W ).
Consider the non-trivial element ε ∈ Ker (p). If ε ∈ N , then N = Ŝp(W ); otherwise Ŝp(W ) =
{1, ε} ×N , contradicting the fact that p : Ŝp(W )→ Sp(W ) does not split.

Corollary 4.1.8. Ŝp(W ) is the derived group of S̃pψ(W ). As a consequence, the subgroup Ŝp(W )
satisfying Theorem 4.1.5 is unique.

Proof. The derived group of S̃pψ(W ) contains Ŝp(W ) by the previous proposition. On the other
hand, S̃pψ(W ) = Ŝp(W ) · C×, hence Ŝp(W ) equals the derived group of S̃pψ(W ).

Corollary 4.1.9. The lifting of ω̄ψ on Ŝp(W ) is unique.

Proof. Suppose that ωψ, ω′ψ : Ŝp(W ) → GL(S) are two liftings of ω̄ψ, then they differ by a
homomorphism χ : Ŝp(W ) → C×. However Ker (χ) contains the derived group of Ŝp(W ), hence
χ is trivial and ωψ = ω′ψ.

4.2 Models
In order to understand the group S̃pψ(W ), the main problem is to find models for the Weil
representation, that is, a concrete representation (ρ, S) of H that satisfies Theorem 3.2.1, with a
mapping M [−] : Sp(W )→ GL(S) such that

(g,M [g]) ∈ S̃pψ(W ),

that is, g 7→ (g,M [g]) gives rise to a section Sp(W )→ S̃pψ(W ).
Corresponding to the examples 3.2.5 and 3.2.7, we have Schrödinger models and lattice models

for the Weil representation.

4.2.1 Schrödinger models
Fix a lagrangian ` of W and consider the Schrödinger representation (ρ`,H`). We proceed to find
a model using the canonical intertwiners introduced in §3.4.

For any g ∈ Sp(W ). Since g acts as an automorphism on W as well as H(W ), by transport of
structure, we have an isomorphism

g∗ : H`
∼→ Hg`

which transports the functions via
s(−) 7→ s(g−1(−))

It transports densities as well (recall that the elements of H` are L2 functions tensored with
Ω1/2(W/`)). So that the following diagrams commutes for every lagrangians `, `′.

H`
F`,`′ //

g∗

��

H`′

g∗

��
Hg`

Fg`,g`′
// Hg`′

H`
g∗ //

ρ`

��

Hg`

ρgg`
��

H` g∗
// Hg`

Proposition 4.2.1. Define

MSch
` [g] := F`,g` ◦ g∗ = g∗ ◦Fg−1`,`,

where Fg`,` : H` → Hg` is the canonical intertwiner introduced in §3.4. Then g 7→ MSch
` [g] is a

model of the Weil representation, called the Schrödinger model.
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Proof. This is straightforward. Use the diagrams above to conclude that

ρg` ◦F`,g` ◦ g∗ = F`,g` ◦ ρgg` ◦ g∗ = Fg`,` ◦ g∗ ◦ ρ`.

Remark 4.2.2. The operator MSch
` [g] is unitary since g∗ is.

Explicit formulas. Let f ∈ H`. Fix another lagrangian `′ such that W = `⊕ `′, then H` can
be identified with L2(`′)⊗ Ω1/2(`′). With respect to this splitting, write g−1 ∈ Sp(W ) as

g−1 =
(
α β
γ δ

)
α : `→ `, β : `′ → `, γ : `→ `′, δ : `′ → `′

g−1|` = (α, γ), g−1|`′ = (β, δ)

It suffices to specify the effect on smooth vectors in H`; for such a f ∈ H`, write fµ`,g` = f ′ν,
where µ`,g` is the density defined in §3.4, f ′ ∈ S (`′)⊗Ω1(g`/`∩ g`) and ν ∈ Ω1/2(g`′). Then, the
formula in Theorem 3.4.2 implies that

g∗ ◦Fg−1`,`(f)(y) =
∫

x′∈g`/`∩g`

f ′((x′, 0)(gy, 0))g∗ν (y ∈ `′)

=
∫

x∈`/Ker γ

f ′((gx, 0)(gy, 0))g∗ν (x := g−1x′)

=
∫

x∈`/Ker γ

f ′(gx+ gy)ψ
(
〈gx, gy〉

2

)
g∗ν

=
∫

x∈`/Ker γ

f ′(αx+ γx+ βy + δy)ψ
(
〈αx+ γx, βy + δy〉

2

)
g∗ν

=
∫

x∈`/Ker γ

f ′(γx+ δy)ψ
(
〈γx, βy〉+

〈γx, αx〉+ 〈δy, βy〉
2

)
g∗ν,

the last term is obtained by separating terms in ` and `′ and using the invariance property of f ′.
Recall that

N`,i := {g ∈ Sp(W ) : dim g` ∩ ` = i}
Things become especially simple when g ∈ N`,i: in that case, it is clear that g 7→ (g,MSch

` [g]) is a
continuous section from N`,i to S̃pψ(W ), hence p̃−1(N`,i) ' N`,i×C×. In particular, N`,0 is dense
and open in Sp(W ), this implies

Corollary 4.2.3. S̃pψ(W ) is a locally compact group.

Using the explicit formula, one can obtain some simpler formulas for the Schrödinger model.

Proposition 4.2.4.

g =
(
α 0
0 (α∗)−1

)
: (MSch

` [g])f(y) = f ′(α∗y) · g∗ν

g =
(

1 β
0 1

)
: (MSch

` [g])f(y) = f ′(y)ψ
(
〈βy,y〉

2

)
· g∗ν

g =
(

0 γ
(γ∗)−1 0

)
: (MSch

` [g])f(y) =
∫
x∈` f

′(γ−1x)ψ(〈γ−1x, γ∗y〉) · g∗ν

=
∫
x∈` f

′(γ−1x)ψ(〈x, y〉) · g∗ν

for all y ∈ `′.
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Remark 4.2.5. The Schrödinger model is determined by these formulas. Indeed, the first family
of g is a Levi component of the standard maximal parabolic subgroup of Sp(2n, F ), and the
second is its unipotent radical. The three families of matrices generate Sp(2n, F ) by the Bruhat
decomposition.

4.2.2 Lattice models
Another convenient model for the Weil representation, which only exists for non-archimedean F ,
is the lattice model. It follows the same philosophy of Schrödinger models, namely: transport
of structure followed by an intertwiner. However we will state and prove everything by explicit
formulas in this section.

Suppose that the residual character of F is not 2. Pick a compact open subgroup A ⊂W such
that A⊥ = A and take the character ψA := 1×ψ of AH . Now consider the representation (ρA, SA)
in example 3.2.7. Here we are only concerned with the smooth part instead of its completion to
an unitary representation. For any g ∈ Sp(W ) and f ∈ SA, put

(MA[g]f)(w) =
∑

a∈A/gA∩A

ψ

(
〈a,w〉

2

)
· f(g−1(a+ w)). (4.2)

If g lies in the stabilizer of A in Sp(W ), which is a maximal compact subgroup, the formula is
particularly simple:

(MA[g]f)(w) = f(g−1w), when gA = A.

Proposition 4.2.6. The map g 7→MA[g] defines a model of the Weil representation.

Proof. Fix g ∈ Sp(W ). Let f ∈ SA, it is clear thatMA[g]f ∈ SA. It remains to do straightforward
calculations.

ρA(gv)(MA[g]f) :w 7→ ψ

(
〈w, gv〉

2

)
(MA[g]f)(w + gv)

=
∑

a∈A/A∩gA

ψ

(
〈a,w + gv〉

2

)
ψ

(
〈w, gv〉

2

)
f(g−1(a+ w + gv))

=
∑

a∈A/A∩gA

ψ

(
〈a,w + gv〉

2

)
ψ

(
〈w, gv〉

2

)
f(g−1(a+ w) + v))

MA[g](ρA(v)f) :w 7→
∑

a∈A/A∩gA

ψ

(
〈a,w〉

2

)
(ρA(v)f)(g−1(a+ w))

=
∑

a∈A/A∩gA

ψ

(
〈a,w〉

2

)
ψ

(
〈g−1(a+ w), v〉

2

)
f(g−1(a+ w) + v)

=
∑

a∈A/A∩gA

ψ

(
〈a,w〉

2

)
ψ

(
〈a+ w, gv〉

2

)
f(g−1(a+ w) + v)

The terms inside summation are equal.

Of course, one can juggle the Haar measures in the formulas to makeMA[g] a unitary operator
for all g.
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4.3 Construction of Ŝp(W )

4.3.1 The Maslov cocycle
The Maslov index occurs naturally in the context of Schrödinger models, namely

MSch
` [g] ◦MSch

` [h] = F`,g` ◦ g∗ ◦F`,h` ◦ h∗
= F`,g` ◦Fg`,gh` ◦ g∗h∗
= γ(τ(`, h`, gh`)) ·MSch

` [gh] by 3.5.1.

Recall that the central extensions 1→ Z → G′ → G→ 1 can be described by group cohomology
H2(G;Z) by choosing sections G → G′. Using Schrödinger models as sections for S̃pψ(W ) →
Sp(W ), this motivates the following definition.

Definition-Proposition 4.3.1 (Maslov cocycles). For a fixed lagrangian ` of W , the function
on Sp(W )× Sp(W ) defined by

cg,h(`) = γ(τ(`, g`, gh`))

is a 2-cocycle on Sp(W ).

Proof. This follows from the formula MSch
` [g] ◦MSch

` [h] = cg,h(`)MSch
` [gh].

This cocycle is not a coboundary, otherwise the extension S̃pψ(W ) splits; however, it follows
from 2.4.3 that the cocycle can be adjusted by some coboundaries to take value in ±1. Such a
construction first appears in [10]. The detailed construction goes as follows.

Definition 4.3.2 (Metaplectic group via Maslov cocycles). For every g ∈ Sp(W ), ` ∈ Λ(W ), fix
an arbitrary orientation of ` and give g` the transported orientation. Define

mg(`) := m(g`, `) = γ(1)
dimW

2 −dim g`∩`−1γ(Ag`,`),

this number is independent of the choice of orientation of ` (recall Theorem 2.4.3 for the relevant
definitions). And define Ŝp(W ) to be the set of pairs of the form

(g, t) (g ∈ Sp(W ), t : Λ(W )→ C×),

such that

• t(`)2 = mg(`)2.

• For any `, `′ ∈ Λ(W ), we have t(`′) = γ(τ(`, g`, g`′, `′))t(`).

• Multiplication in Ŝp(W ) is defined by

(g, t) · (g′, t′) = (gg′, st · cg,g′).

The right-hand side lies in Ŝp(W ). Indeed, (stcg,g′)(`)2 = mgg′(`)2 by Theorem 2.4.3 and
Proposition 2.4.4; to verify the second defining condition of Ŝp(W ), it suffices to check that

τ(`, g`, g`′, `′) + τ(`, g′`, g′`′, `′) + τ(`′, g`′, gg′`′)− τ(`, g`, gg′`) = τ(`, gg′`, gg′`′, `′).

The second term is equal to τ(g`, gg′`, gg′`′, g`′) by symplectic invariance. Then the required
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condition is explained by the diagram:

©

©

©

©

©

©

������������ CC����������

��

OO

��8888888888 [[8888888888

hhQQQQQQQQQQQQQQQQQQQ

OO

88pppppppppppppppppppoo
//

oo
//

��

gg′`

g`

g`′

gg′`′

`

`′

Finally, the associativity is equivalent to the cocycle condition.

• The unit element is (1,1), where 1 means the constant function 1 on Λ(W ). Indeed, m1(`) =
m(`, `) = γ(1)−1γ(1) = 1, while c1,g(`) = γ(τ(`, `, g`)) = 1 for all g ∈ Sp(W ) since τ(`, `, g`)
is represented by a quadratic space of dimension zero (equation (2.5)).

• The inverse of an element (g, t) is (g−1, t−1) since cg,g−1(`) = 1 by the same argument.

Proposition 4.3.3. The projection map p : Ŝp(W ) → Sp(W ) defined by p((g, t)) = g makes
Ŝp(W ) a two-fold covering of Sp(W ).

Proof. By the definition of Ŝp(W ), for any g ∈ Sp(W ), p−1(g) has either 2 or no elements. Fix
` ∈ Λ(W ). For any `′ ∈ Λ(W ), set

t(`′) := γ(τ(`, g`, g`′, `′)) ·mg(`)

It remains to show that, for any `′, `′′ ∈ Λ(W )

t(`′)2 = γ(τ(`, g`, g`′, `′))2mg(`)2 = mg(`′)2

t(`′′) = γ(τ(`, g`, g`′′, `′′))mg(`) = γ(τ(`′, g`′, g`′′, `′′))t(`′)
= γ(τ(`′, g`′, g`′′, `′′) + τ(`, g`, g`′, `′))mg(`)

The first equality follows from Theorem 2.4.3 and Proposition 2.4.4.

γ(τ(`, g`, g`′, `′)) = ±m(`, g`)m(g`, g`′)m(g`′, `′)m(`′, `)

= ±mg(`)m(`, `′)mg(`′)−1m(`, `′)−1

= ±mg(`)mg(`′)−1

The second equality can be shown by the dihedral symmetry of Maslov indices

© © ©

©©©

// //

��oooo

OO OO

��

`′′ `′ `

g`g`′g`′′

τ(`′, g`′, g`′′, `′′) + τ(`, g`, g`′, `′) = τ(`, g`, g`′′, `′′).
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Proposition 4.3.4. Fix ` ∈ Λ(W ), then the map

Ŝp(W )
φ`−→ S̃pψ(W )

(g, t) 7−→ (g, t(`)MSch
` [g])

gives an embedding of Ŝp(W ) as a subgroup of S̃pψ(W ).

Proof. It is evidently injective. To show that φ` is a homomorphism, note that

φ`((g, t)) · φ`((g′, t′)) = (gg′, t(`)t′(`) ·MSch
` [g]MSch

` [g′])

= (gg′, t(`)t′(`)γ(τ(`, g`, gg′`)) ·MSch
` [gg′])

= φ`((g, t) · (g′, t′))

In particular, ω̄ψ lifts to an ordinary representation of Ŝp(W ) via

(g, t) 7→ t(`) ·MSch
` [g] = t(`) ·F`,g` ◦ g∗. (4.3)

Remark 4.3.5. The embedding φ` is independent of ` in the following sense: given `, `′ ∈ Λ(W ),
let T`′,` : GL(H`)

∼→ GL(H`′) be given by

M 7→ F`′,` ◦M ◦F`,`′ ,

then the diagram below commutes.

Ŝp(W )
φ` // S̃pψ(W )

T`′,`

��

(constructed using `)

Ŝp(W )
φ`′ // S̃pψ(W ) (constructed using `′)

4.3.2 Topological properties
Pick an arbitrary ` ∈ Λ(W ). For any g ∈ Sp(W ), define a function Ξ`g : Λ(W )→ C× by

∀`′ ∈ Λ(W ), Ξ`g(`
′) := γ(τ(`, g`, g`′, `′)) ·mg(`).

Also observe that Ξ`g(`) = mg(`).
Give Ŝp(W ) the subspace topology induced by φ` : Ŝp(W ) � S̃pψ(W ), then we have

Lemma 4.3.6. The map g 7→ (g,Ξ`g) defines a continuous section N`,i → Ŝp(W ) (see (1.3) for
the definition) for every i.

Proof. It had been shown in the proof of Proposition 4.3.3 that (g,Ξ`g) ∈ Ŝp(W ). The map
g 7→ mg(`) is locally constant on each N`,i by the definition of mg. On the other hand, g 7→
(g,MSch

` [g]) ∈ S̃pψ(W ) is continuous on each N`,i by explicit formula. Hence g 7→ (g,Ξ`g) defines
a continuous section on each N`,i.

Define the evaluation map ev : Λ(W )× Ŝp(W )→ C× by

ev`(g, t) = t(`).

Proposition 4.3.7. The map ev` is locally constant on each p−1(N`,i).
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Proof. By the previous lemma, every p−1(N`,i) is homeomorphic to two copies of N`,i via g 7→
(g,±Ξg).

Proposition 4.3.8. p : Ŝp(W ) → Sp(W ) is a local homeomorphism. This makes Ŝp(W ) into a
F -analytic group. In particular, Ŝp(W ) is a locally compact and totally disconnected group 2.

Proof. The subset p−1(N`,0) is non-empty, open and admits a continuous sectionN`,0 → p−1(N`,0).
Hence it is homeomorphic to N`,0 × {±1} by the lemma.

By transport of structure, this implies that p : Ŝp(W ) → Sp(W ) admits local sections, hence
p is a local homeomorphism.

Remark 4.3.9. In fact, the triplet (Ŝp(W ),Ker (p),Sp(W )) is a semi-simple almost algebraic
group in the sense of [12] p.257.

Therefore, the machinery of representation theory on locally compact, totally disconnected
groups applies to Ŝp(W ).

4.4 Admissibility
Theorem 4.4.1. Take the Schrödinger model associated to ` ∈ Λ(W ) for ωψ. Let L2(W/`) =
L2
even(W/`)⊕ L2

odd(W/`) be the decomposition into even and odd functions. Then

1. ωψ decomposes accordingly as ωψ = ωψ,even ⊕ ωψ,odd.

2. ωψ,even and ωψ,odd are irreducible.

Proof. See [5] for a sketch proof when dimW = 2; the general case is similar, namely we use
Proposition 4.2.4 to check that the only operators L2(W/`) → L2(W/`) commuting with ωψ are
linear combinations of id and s(x) 7→ s(−x). This can also be regarded as the simplest case of
Howe’s correspondence.

Corollary 4.4.2. The representation ωψ is admissible. Hence on can define its character Θωψ to
be the distribution

Θωψ (φ dx) = Tr(
∫

cSp(W )

φ(x)ωψ(x) dx).

for every Schwartz-Bruhat function φ on Ŝp(W ) and every Haar measure dx.

Proof. According to [16] Théorème 1.2.3, every irreducible unitary representation of Ŝp(W ) is
admissible. Thus the admissibility of ωψ follows from Theorem 4.4.1; alternatively, one can argue
by the lattice model and the proof of Lemma 3.2.2 when the residual characteristic is not 2.

It remains to find a good explicit expression of Θωψ . This is the subject-matter of our next
chapter.

2This is equivalent to locally profinite.
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Chapter 5

The character of the Weil
representation

5.1 Statement of main results
In this chapter, we will follow [18] rather closely to obtain an explicit formula for the character
Θωψ . The main results are listed below.

Define Sp(W )′′ := {g ∈ Sp(W ) : det(g − 1) 6= 0}. It is a dense open subset in Sp(W ).

Theorem 5.1.1. The distribution Θωψ is smooth on the dense open subset

Ŝp(W )′′ := p−1(Sp(W )′′) = {(g, t) ∈ Ŝp(W ) : det(g − 1) 6= 0} (5.1)

and has the explicit form

Θωψ (g, t) = ±γ(1)dimW−1γ(det(g − 1))
|det(g − 1)| 12

(5.2)

the sign ambiguity comes from the choice of t such that p(g, t) = g.

Recall that an element x ∈ Ŝp(W ) is called semi-simple [resp. semi-simple regular ] if p(x) ∈
Sp(W ) is semi-simple [resp. semi-simple regular]. These semi-simple regular elements are denoted
by Ŝp(W )′, which is an open dense subset. In concordance with Harish-Chandra’s regularity
theorem, we have the

Proposition 5.1.2.
Ŝp(W )′′ ⊃ Ŝp(W )′

Proof. Take any regular semi-simple x ∈ Sp(W ). It is contained in a maximal F -torus T . By
passing to a Galois extension L/F , we may suppose that T splits. Up to a conjugation, we may
further suppose that T consists of diagonal matrices y = (y1, . . . , yn, y

−1
1 , . . . , y−1

n ). We have the
following roots of (T, Sp(W )).

αi : αi(y) = y2
i .

As x is regular semi-simple, x2
i 6= 1 for every i, hence det(1± x) 6= 0.

Theorem 5.1.1 is actually derived from another character formula. To state it, we need some
constructions.

LetW be the spaceW equipped with the symplectic form −〈, 〉. For any g ∈ Sp(W ), the graph
Γg of g : W → W forms a lagrangian of W ⊕W . On the other hand, given ` ∈ Λ(W ), the space
`⊕ ` is also a lagrangian. For every lagrangian `, define a function Θ` on Ŝp(W ) by
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Θ`(g, t) := t(`) · γ(τ(Γg,Γ1, `⊕ `)). (5.3)

It will be shown later that Θ` is independent of ` and locally constant on Ŝp(W )′′.

Theorem 5.1.3 (K. Maktouf [12], T. Thomas [18]). Fix a ` ∈ Λ(W ). For every (g, t) ∈ Ŝp(W )′′,
we have

Θωψ (g, t) =
Θ`(g, t)

|det(g − 1)| 12
. (5.4)

The sign ambiguity thus disappeared at the cost of fixing a lagrangian in the computation.
Furthermore, we will use the machinery developed in §5.2 to express the character as the

pull-back of a function on Ŝp(W ⊕W ). See Corollary 5.5.1

5.2 An embedding Ŝp(W )→ Ŝp(W ⊕W )

Let f : Sp(W )→ Sp(W ⊕W ) be the embedding

g 7→ (1, g).

We are going to define a lifting f̃ : Ŝp(W )→ Ŝp(W⊕W ) of f such that the diagram commutes.

Ŝp(W )
f̃ //

����

Ŝp(W ⊕W )

����
Sp(W )

f
// Sp(W ⊕W )

Fix ` ∈ Λ(W ) and set
f̃(g, t) = ((1, g), fg(t)) ∈ Ŝp(W ⊕W )

where fg(t) : Λ(W ⊕W )→ C× is determined by

fg(t)(`⊕ `) := t(`).

Proposition 5.2.1. f̃ is a continuous, injective homomorphism independent of the choice of `.

Proof. Prove the independence first. For any other `′ ∈ Λ(W ), we have

fg(t)(`′ ⊕ `′) = γ(τ(`⊕ `, `⊕ g`, `′ ⊕ g`′, `′ ⊕ `′)) · t(`).

It remains to show that it equals to

t(`′) = γ(τ(`, g`, g`′, `′)) · t(`).

Indeed,
τ(`⊕ `, `⊕ g`, `′ ⊕ g`′, `′ ⊕ `′) = τ(`, g`, g`′, `′) + τ(`, `, `′, `′),

and the last term is 0 by (2.5).
A similar argument shows that f is homomorphic, the required condition being that

τ(`⊕ `, `⊕ g`, `⊕ gh`) = τ(`, g`, gh`).

This follows from the symplectic additivity of τ and the fact that τ(`, `, `) = 0, which also follows
from (2.5).

Finally, f is obviously injective. If g ∈ N`,i, then (1, g) ∈ N`⊕`,i+ dimW
2

and

f̃(g,±Ξ`g) = ((1, g), (`⊕ ` 7→ ±mg(`))).

We have Ξ`⊕`(1,g)(` ⊕ `) = m(1,g)(` ⊕ `), which is equal to m(` ⊕ `, ` ⊕ g`) = mg(`) by Proposition
2.4.4. The function fg(Ξ`g) coincides with Ξ`⊕`(1,g). Hence f̃ is continuous.
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Now we can enounce some properties of the function Θ` defined in (5.3).

Proposition 5.2.2.
Θ` = evΓ1 ◦ f̃

In particular, Θ` is independent of choice of `.

Proof.
evΓ1 ◦ f̃ = fg(t)(`⊕ `) · γ(τ(`⊕ `, `⊕ g`,Γg,Γ1)).

It remains to prove that τ(` ⊕ `, ` ⊕ g`,Γg,Γ1) = τ(Γg,Γ1, ` ⊕ `). By the chain condition, their
difference is τ(`⊕ g`,Γg, `⊕ `), which is 0 by (2.5).

Corollary 5.2.3. Θ` is locally constant on Ŝp(W )′′.

Proof. Given the previous proposition and Proposition 4.3.7, it suffices to observe that f̃ maps
Ŝp(W )′′ into the preimage of NΓ1,0 in Ŝp(W ⊕W ). Indeed, Γ1 ∩ Γg ' Ker (g − 1) = {0} in this
case.

5.3 Two quadratic spaces
For given g ∈ Sp(W ), ` ∈ Λ(W ), we are going to associate a quadratic space (Sg,`, qg,`) and its
dual (S′g,`, q

′
g,`). They will appear in the integral kernel of the operator ωψ(g, t).

Consider the commutative diagram whose rows are complexes, labelled as A,B,C,D.

g` ∩ `
1−g−1

//

g−1

��

` //
��

��

W/(g − 1)W A

��
`

g−1 //
��

��

g`+ `
��

��

// W/(g − 1)W B
��

��
Ker (g − 1) // W

g−1 //

����

W //

����

W/(g − 1)W C

����
Ker (g − 1) // W/`

g−1// W/(g`+ `) D

It is easy to verify that

• A→ B is a quasi-isomorphism.

• C is exact.

• B � C � D is a short exact sequence of complexes of F -vector spaces.

• A,D are dual via 〈, 〉.

Definition 5.3.1. Define

• S′g,` := the cohomology of A at its center term.

• Sg,` := the cohomology of D at its center term.

Let I be the cohomology of B at its center term. Since C is exact, B � C � D is a short exact
sequence, the connecting homomorphism gives rise to an isomorphism Φg,` : Sg,` → S′g,`,

Sg,`
∼ //

Φg,`

>>
I S′g,`

∼oo .
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Hence we can define the following non-degenerate bilinear forms:

qg,`(x, y) := 〈Φg,`(x), y〉, x, y ∈ Sg,` (5.5)

q′g,`(a, b) := 〈a,Φ−1
g,`(b)〉, a, b ∈ S′g,` (5.6)

Description of qg,`, q′g,`. Proceed to describe the forms qg,`, q′g,` pull-backed to

Ŝg,` := {x ∈W/` : (g − 1)x ∈ g`+ `} ⊂W/`
Ŝ′g,` := ` ∩ (g − 1)W ⊂ `.

Look at our big commutative diagram: given x ∈ Ŝg,`, write (g − 1)x = ga + b with a, b ∈ `.
However a + b ≡ ga + b mod (g − 1)`, hence Φg,`(x) = a + b ∈ ` (we have actually followed the
usual proof of the snake lemma), and

qg,`(x, y) = 〈a+ b, y〉, y ∈ Ŝg,` (5.7)

On the other hand, given a, b ∈ Ŝ′g,`, then there exists y ∈ W such that b = (g − 1)y, thus
Φg,`(y + `) = b and

q′g,`(a, b) = 〈a, y〉, b ∈ Ŝ′g,` (5.8)

Proposition 5.3.2. The forms qg,`, q′g,` are symmetric.

Proof. It suffices to prove this for q′g,`. Given a, b ∈ Ŝ′g,`, suppose that a = (g − 1)x, b = (g − 1)y
as before.

q′g,`(a, b) = 〈(g − 1)x, y〉 = 〈x, (g−1 − 1)y〉 = 〈x,−g−1b〉 = 〈gx,−b〉.
Since gx− x = a ∈ `, the last term is just 〈x,−b〉 = 〈b, x〉, which is q′g,`(b, a).

Remark 5.3.3. If g ∈ Sp(W )′′, then (g − 1) is invertible and Sg,` = Ŝg,`, Ŝ′g,` = `.
If furthermore g` ∩ ` = {0}, then Sg,` = Ŝg,` = W/` and S′g,` = Ŝ′g,` = `. This is really the

case which will be encountered later.

To establish the link between those quadratic spaces and the Maslov index, we begin with a
lemma.

Lemma 5.3.4.

dimSg,` = dimS′g,`

=
dimW

2
− dim Ker (g − 1)− dim g` ∩ `+ 2 dim ` ∩Ker (g − 1).

Proof. It suffices to compute dimS′g,`. The Euler-Poincaré characteristic of A in our big diagram
is

dim g` ∩ `− dim `+ dimW/(g − 1)W,

which equals that of its cohomology

= dim Ker (1− g−1) ∩ g` ∩ `− dimS′g,` + dimW/(`+ (g − 1)W ).

The following simple observations conclude the proof:

Ker (1− g−1) ∩ g` ∩ ` = ` ∩Ker (g − 1)
dimW/(g − 1)W = dim Ker (g − 1)

(W/(`+ (g − 1)W ))∗ ' (`+ (g − 1)W )⊥ = ` ∩ ((g − 1)W )⊥

= ` ∩Ker (g − 1)
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Proposition 5.3.5. The classes of Sg,`, S′g,` in W (F ) are equal to the Maslov index

τ(Γg,Γ1, `⊕ `).

Proof. Recall that τ(Γg,Γ1, `⊕ `) is represented by the possibly degenerate quadratic space

T̂ := {(x, y, z) ∈ Γg × Γ1 × (`⊕ `) : x+ y + z = 0 ∈W ⊕W}.

with the quadratic form (using (2.4))

q((x, y, z)) = 〈x, z〉.

Consider the linear map f : T̂ → Ŝ′g,`

f : s = ((x, gx), (y, y), (a, b)) 7−→ a− b

It indeed maps to Ŝ′g,` by the definition of T̂ . It is also an isometry, since

q(s) = 〈gx, b〉 − 〈x, a〉 = 〈x, b〉 − 〈x, a〉 = 〈a− b, x〉 = q′g,`(f(s), f(s)).

Therefore f gives rise to an injective isometric map f̄ between their non-degenerate quotients,
namely T and S′g,`. However, according to the dimension formula (2.5),

dimT =
3− 2

2
· 2 dimW − dim Γ1 ∩ Γg − dim Γg ∩ (`⊕ `)− dim(`⊕ `) ∩ Γ1+

+ 2 dim Γ1 ∩ Γg ∩ (`⊕ `)
= dimW − dim Ker (g − 1)− dim g−1` ∩ `− dim `+
+ 2 dim ` ∩Ker (g − 1)
= dimS′g,` , by the previous lemma.

This shows that f̄ is an isometric isomorphism. The assertion for dimSg,` follows since Sg,` is
dual to S′g,`.

5.4 Expression by an integral kernel
A lagrangian ` ∈ Λ(W ) is fixed throughout this section. The trace will be computed on the
preimage of the smaller dense open subset

Sp(W )` := Sp(W )′′ ∩N`,0
= {g ∈ Sp(W ) : g` ∩ ` = {0}, det(g − 1) 6= 0}.

Recall the Schrödinger model of Weil representation constructed in §4.2

ωψ : (g, t) 7−→ t(`) ·F`,g` ◦ g∗,

in which the canonical intertwiner F`,g` can be represented by an integral kernel (see Lemma 3.5.2
for the relevant definitions)

(F`,g`φ)(y) =
∫

x∈W/g`
x−y∈`+g`

φ(x)ψ
(
Qg`,`((x, y))

2

)
µ

1/2
g`,`.

Let Kg`,` := ψ
(
Qg`,`((x,y))

2

)
µ

1/2
g`,`. It is a smooth function on W ×W satisfying the transfor-

mation rule of H∨g` for the first variable, and satisfying that of H` for the second variable.
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Define two homomorphisms

∆ : W/` −→W/`×W/`, x 7→ (x, x)

αg : (W/`)2 −→W/g`×W/`, (x, y) 7→ (gx, y)

We abuse notation to use αg to denote the automorphism (x, y) 7→ (gx, y) of W 2.
Then ωψ(g, t) can be represented by the integral kernel t(`)·α∗gKg`,` on (W/`)2. The integration

of t(`) ·∆∗α∗gKg`,` will give Θωψ by the smoothness of Kg`,`.
Assume henceforth that g ∈ Sp(W )` so that Sg,` = W/` and S′g,` = `. Our strategy is to

• Identify ∆∗α∗gQg`,`. The result will be the quadratic form qg,` defined in §5.3.

• Identify ∆∗α∗gµ
1/2
g`,`. It will yield the factor |det(g − 1)|1/2 in Theorem 5.1.3.

First of all, note that Sg,` = W/` and S′g,` = ` since g ∈ Sp(W )` by assumption.

Lemma 5.4.1. If g ∈ Sp(W )` then

∆∗α∗gQg`,`(x) = qg,`(x) , for all x ∈W/`.

Proof. Recall the definition of Qg`,` in Lemma 3.5.2 and Definition 2.5.1. Given x, y ∈ W with
x− y = a+ b, where a ∈ g`, b ∈ `, then

Qg`,`((x, y)) = 〈a, x〉+ 〈b, y〉.

The assertion follows immediately by comparing with (5.7).

Lemma 5.4.2. If g ∈ Sp(W )` then

∆∗α∗gµ
1/2
g`,` = |det(g − 1)|− 1

2 dqg,`,

where dqg,` denotes the self-dual measure on W/` with respect to qg,`.

Proof. Since g ∈ Sp(W )`, we have W = `⊕ g` and µg`,` is simply the self-dual measure µW on W
with respect to the symplectic form. Set ν` := ∆∗α∗gµ

1/2
g`,`; it is a Haar measure on W/`. Consider

the following pairing

θ : ΩR
1 (W/`)× ΩR

1 (`) −→ ΩR
1 (W ) = R

(α, β) 7−→ α · β
µW

Observe that (Φg,`)∗ dqg,` is the self-dual measure on S′g,` = `. Fix a nonzero ω ∈
∧max

`, we can
regard gω as an element of

∧max(W/`) '
∧max(g`) so that gω ∧ ω ∈

∧max
W . Our assertion is

then equivalent to

θ(ν`, (Φg,`)∗ν`) =
ν`(gω) · (Φg,`)∗ν`(ω)

µW (gω ∧ ω)
= |det(g − 1)|−1. (5.9)

We set out to prove the equality. The first observation is that

ν`(gω) = µW (g2ω ∧ gω)1/2 = µW (gω ∧ ω)1/2 (5.10)

by the definition of ν`. On the other hand, according to the discussion in §5.3,

Φ−1
g,` :` ∼−→W/`

x 7→ (g − 1)−1x mod `
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Composing with the isomorphism W/`
∼→ g`, we may identify Φ−1

g,`(x) as the g`-component of
(g − 1)−1x in W = `⊕ g`. Thus

((Φg,`)∗ν`)(ω) = ν`(Φ−1
g,`ω)

= ν`(gω) · µW ((g − 1)−1ω ∧ ω)
µW (gω ∧ ω)

in which the last fraction is nothing but the constant c such that Φ−1
g,`ω = c · gω ∈

∧max(W/`).
However (g − 1)−1ω ∧ ω = (g − 1)−1(ω ∧ (g − 1)ω) = (g − 1)−1(ω ∧ gω), we get

(Φg,`)∗ν`(ω) = |det(g − 1)|−1µW (gω ∧ ω)
1
2 . (5.11)

Finally, the combination of (5.9), (5.10) and (5.11) proves our assertion.

The overall conclusion of this section is

(∆∗α∗gKg`,`)(x) = |det(g − 1)|− 1
2ψ

(
qg,`(x)

2

)
dqg,` (5.12)

5.5 The character formula
The goal of this section is to prove Theorem 5.1.1 and 5.1.3. Fix a Haar measure on Ŝp(W ), the
choice doesn’t affect the character and we will simply omit the measure in the integrals.

Proof of Theorem 5.1.3. Consider any Schwartz-Bruhat function φ on Ŝp(W ) supported on Ŝp(W )′′.
Let Ŝp(W )` := p−1(Sp(W )`). Use the result of §5.4 to write the operator ωψ(φ) as

(ωψ(φ)s)(y) =
∫

(g,t)∈cSp(W )

φ(g, t) · t(`)
∫

x∈W/`

s(x)(α∗gKg`,`)(x, y)

=
∫

(g,t)∈cSp(W )`

φ(g, t) · t(`)
∫

x∈W/`

s(x)(α∗gKg`,`)(x, y)

This operator has finite rank, hence is a trace class operator. Since the kernel is smooth, Theorem
A.0.6 implies

Tr(ωψ(φ)) =
∫

x∈W/`

∫
(g,t)∈cSp(W )`

φ(g, t)t(`) · (∆∗α∗gKg`,`)(x) (5.13)

This only makes sense as iterated integral. Take a smooth function h of compact support on W/`
such that h(0) = 1 and that h∧ is a positive measure. Set hs(x) := h(sx) for every s ∈ F .

Claim: Tr(ωψ(φ)) = lims→0 Tr(hs · ωψ(φ)).
Indeed, we have

Tr(hs · ωψ(φ)) :=
∫

x∈W/`

hs(x)
∫

(g,t)∈cSp(W )`

φ(g, t)t(`) · (∆∗α∗gKg`,`)(x). (5.14)

We have |hs| ≤ 1 and hs → 1 pointwise. The dominated convergence theorem can be applied to
the outer integral. This proves the claim.

Fubini’s theorem can now be applied to the truncated integral (5.14),

Tr(hs · ωψ(φ)) =
∫

(g,t)∈cSp(W )`

φ(g, t)t(`)
∫

x∈W/`

hs(x) · (∆∗α∗gKg`,`)(x).

60



The function h(x) satisfies the requirements of Proposition 1.2.13. Therefore (5.12) and Proposi-
tion 1.2.13 shows that the inner integral is bounded by |det(g − 1)|−1/2 and approaches γ(qg,`) ·
|det(g − 1)|−1/2 as s→ 0. The dominated convergence theorem implies

lim
s→0

Tr(hs · ωψ(φ)) =
∫

(g,t)∈cSp(W )`

φ(g, t) · t(`) · | det(g − 1)|− 1
2 · γ(qg,`).

Recalling Proposition 5.3.5, we have actually established Theorem 5.1.3.

As an easy corollary, we can now express Θωψ as the pull-back of a function on Ŝp(W ⊕W ):

Corollary 5.5.1.

Θωψ (g, t) =
evΓ1(f̃(g, t))
|det(g − 1)| 12

.

Proof. This follows from Theorem 5.1.1 and Proposition 5.2.2.

Proof of Theorem 5.1.1. In view of 5.1.3, the main issue is to show

Θ`(g, t) = ±γ(1)dimW−1γ(det(g − 1)) for all g ∈ Sp(W )′′.

By Proposition 5.2.2, we have

Θ`(g, t) = fg(t)(Γ1) = ±m(1,g)(Γ1) = ±m(Γg,Γ1).

According to the definition of m(1,g), the orientations of Γ1 and Γg are related by (1, g) ∈ Ŝp(W ⊕
W ). Recalling the definition (2.8) for m(−,−), it suffices to show that AΓg,Γ1 = det(g − 1)
mod F×2.

Consider the commutative diagram

W
(1,g)

∼
~~}}}}}}}}

∆
∼

  AAAAAAAA

Γg Γ1
(1,g)

∼oo

Note that the horizontal arrow respects orientations. Since Γ1 ∩ Γg = {0}, the aim is simply
to compute the discriminant of the symplectic pairing between Γg and Γ1 with respect to the
prescribed orientations. In virtue of the diagram above, we may identify both spaces with W , and
the symplectic pairing becomes

(x, y) 7→ 〈(x, gx), (y, y)〉W⊕W = 〈(g − 1)x, y〉.

Therefore AΓg,Γ1 = det(g − 1) mod F×2, as asserted.
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Appendix A

Trace class operators

This appendix collects some standard results on trace class operators.

Definition A.0.2. Let H be a Hilbert space. Let A be a bounded operator from H to itself, and
let A∗ be its hermitian adjoint. Define |A| := (A∗A)1/2. Take any orthonormal basis {ei : i ∈ I}
indexed by a set I, then A is called a trace class operator if its trace norm

‖A‖1 :=
∑
i∈I

(ei, |A|ei)

is finite. This condition is independent of the chosen orthonormal basis.
For a trace class operator A, we define its trace by

Tr(A) :=
∑
i∈I

(ei, Aei).

This is again independent of the chosen orthonormal basis.

Remark A.0.3. If A is normal, then Tr(A) is just the sum of its eigenvalues.

Proposition A.0.4. The trace class operators form a two-sided ideal in the algebra of bounded
operators on H. If A is trace class, so is its adjoint A∗.

Proposition A.0.5. We have the following hierarchy of operators from H to H:

Bounded of finite rank⇒ trace class⇒ Hilbert-Schmidt⇒ compact.

One can certainly introduce much more families of operators, but we will content ourselves
with this. Only the first implication is used in this thesis.

Let X be a locally compact, σ-compact Hausdorff topological space. Fix a Radon measure on
X. The keystone of this appendix is to compute the trace of an operator on L2(X) by integration
along diagonal. There is a variant of the classical Mercer’s theorem.

Theorem A.0.6. With the above hypotheses on X, let K(x, y) be a square-integrable function
on X × X. Consider the bounded operator AK : L2(X) → L2(X) defined by (AKf)(y) =∫
X
K(x, y)f(x) dx. Suppose that

1. AK is a trace class operator.

2. K(x, y) is continuous on X ×X.

Then K(x, x) is integrable over X and we have

Tr(AK) =
∫
X

K(x, x) dx.

Proof. See [4], Théorème V.3.3.1 .

The topological conditions on X are met for all cases encountered in this thesis.

62



Bibliography

[1] J. Adams. Lifting of characters on orthogonal and metaplectic groups. Duke Mathematical
Journal, 92(1):129–178, 1998.

[2] S. E. Cappell, R. Lee, and E. Y. Miller. On the Maslov index. Communications on Pure and
Applied Mathematics, 47(2):121–186, 1994.

[3] R. W. Carter. Simple Groups of Lie Type, volume XXVIII of Pure and Applied Mathematics.
John Wiley and Sons, 1972.

[4] M. Duflo. Généralités sur les représentations induites. In Représentations des Groupes de Lie
Résolubles, volume 4 of Monographies de la Société Mathématique de France, pages 93–119.
Dunod, 1972.

[5] S. S. Gelbart. Weil’s Representation and the Spectrum of the Metaplectic Group, volume 530
of Lecture Notes in Mathematics. Springer-Verlag, 1976.

[6] Harish-Chandra. Harmonic Analysis on Reductive p-adic Groups, volume 162 of Lecture Notes
in Mathematics. Springer-Verlag, 1970. Notes by Gerrit van Dijk.

[7] Harish-Chandra. Admissible invariant distributions on reductive p-adic groups, volume 16 of
University Lecture Series. American Mathematical Society, 1999. Notes by Stephen DeBacker
and Paul J. Sally Jr.

[8] B. Iversen. Cohomology of Sheaves. Springer-Verlag, 1986.

[9] T. Y. Lam. The Algebraic Theory of Quadratic Forms. W. A. Benjamin, 1973.

[10] G. Lion and P. Perrin. Extensions des représentations de groupes unipotents p-adiques,
Calculs d’obstructions. In Non Commutative Harmonic Analysis and Lie Groupes (Marseille-
Luminy, 1980), volume 880 of Lecture Notes in Mathematics, pages 337–355. Springer-Verlag,
1981.

[11] G. Lion and M. Vergne. The Weil representation, Maslov index and Theta series, volume 6
of Progress in Mathematics. Birkhäuser, 1980.

[12] K. Maktouf. Le caractère de la représentation métaplectique et la formule du caractère pour
certains représentations d’un groupe de Lie presque algébrique sur un corps p-adique. Journal
of Functional Analysis, 164:249–339, 1999.

[13] C. Moeglin, M.-F. Vigneras, and J.-L. Waldspurger. Correspondance de Howe sur un corps
p-adique, volume 1291 of Lecture Notes in Mathematics. Springer-Verlag, 1987.

[14] C. C. Moore. Group extensions of p-adic and adelic linear groups. Publications mathématiques
de l’I.H.É.S., 35:5–70, 1968.

[15] P. Perrin. Représentations de Schrödinger, indice de Maslov et groupe metaplectique. In Non
Commutative Harmonic Analysis and Lie Groupes (Marseille-Luminy, 1980), volume 880 of
Lecture Notes in Mathematics, pages 370–407. Springer-Verlag, 1981.

63



[16] M. H. Sliman. Théorie de Mackey pour les groupes adéliques, volume 115 of Astérisque.
Société Mathématique de France, 1984.

[17] T. Thomas. The Maslov index as a quadratic space. Mathematical Research Letters,
13(6):985–999, 2006. Expanded electronic version at arXiv:math/0505561v3.

[18] T. Thomas. The character of the Weil representation. Journal of the London Mathematical
Society, 77:221–239, 2008.

[19] A. Weil. Sur certains groupes d’opérateurs unitaires. Acta Math, 111:143–211, 1964.

64

http://arxiv.org/abs/math/0505561v3


Index

(K, qKash), 22
(T, q)

definition of, 22
dimension of, 23
discriminant of, 23
the dual form (T ∗, q∗), 26

(ρ`,H`), 37
A`e11 ,`

e2
2
, 18

H(W ), 32
MSch
` [−], 47

N`,i, 16
Sg,`, S

′
g,`, 56

W (F ), 13
Λ(−), 16
Λ(−)or, 18
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