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Preface

The correspondence between cubic algebras and twiste loimaic forms was discovered
by Gan, Gross and Savin in [GGS]. It states that:

Proposition 0.0.1. There is a bijection between the set(®i.,(Z)-orbits on the space of
twisted binary cubic forms with integer coefficients andgbeof isomorphism classes of

cubic algebras over..

Deligne explained in the letters [Dell] and [Del2] how to gealize this correspon-
dence to any base schemes. In fact, he established equesalbrtween the following
three kinds of categories, with morphisms being isomorphis

1. Twisted cubic forms, i.e. paird/, p), with V' a vector bundle of rank over.S and
p € T(S,Sym*(V) ® (A*V) 7).

2. Geometric cubic forms, i.e. tripld$>, O(1),a), in which7 : P — S is a family
of genusD curves,O(1) is an invertible sheaf o of relative degred over S, and
a € T(P,03) @ m*(A*m,0(1))7h).

3. Cubic algebras, i.e. vector bundles oeof rank 3 endowed with a commutative
algebra structure.

In this thesis, we give a detailed proof of the above equinads following Deligne’s
ideas sketched in [Dell] and [Del2].
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Chapter 1
Main result

In our treatise, we use the language of algebraic stacklyfrébe standard reference to
algebraic stacks is [L-M], but one can also consult [Vis].

1.1 Basic definitions

LetS be the category of all schemes, we will endow it with Zariskidlogy.

Definition 1.1.1. Suppose tha$ is an object ofS. A twisted cubic formover S is a pair
(V,p), whereV is a locally free sheaf abs-modules of rank andp € T'(S, Sym?*(V) ®
(A2V)71).

Definition 1.1.2. We define theategory.# of twisted cubic formas follows. The objects
of .7 are twisted cubic formgV, p) over objectsS in S. A morphism from a twisted cubic
form (V1, p1) overS; to another twisted cubic foriti;, p,) overS, consists of a morphism
f:S1 — Sy and an isomorphism : Vi — f*V, such thaty*(f*(p2)) = p1. The functor
q : % — S taking a twisted cubic forniV, p) overS to S makes% into a category over
S.

Definition 1.1.3. Suppose that is an object ofS. By a family of genu$) curvesover S
we mean a proper, smooth morphism P — S whose fibers over the geometric points
are isomorphic to projective lines.
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Definition 1.1.4. Suppose that is an object ofS. A geometric cubic forroverS is a triple
(P, Op(1), a), wherer : P — S'is afamily of genu$ curvesOp(1) is an invertible sheaf
on P of relative degreé overS, anda € T'(P, Op(3) @ 7 (A*m.(Op(1)))71).

Remark 1.1.5. The existence of the invertible she@j>(1) assures that over every closed
pointz € S, 7~'(x) is isomorphic taP}, ,, wherek(z) = Og ,/m,.

Definition 1.1.6. We define thecategory¥ of geometric cubic formas follows. The ob-
jects of¢ are geometric cubic forms, Op(1), a) over objectsS in S. A morphism from
a geometric cubic formiP,, Op, (1), a;) oversS; to a geometric cubic forrP,, Op, (1), az)
over S, consists of two morphismg : S; — S, g : P, — P, and an isomorphism
h:Op,(1) — g*Op,(1) such that the diagram

Plez

Lo

51L52

is Cartesian, and, = h*(g*(az)). The functorg : 4 — S taking a geometric cubic form
(P,Op(1),a) oversS to S makes? into a category oves.

Definition 1.1.7. A cubic algebraA over S is a sheaf ovef of commutative unitalDs-
algebras, locally free of rankas anOs-module.

Definition 1.1.8. We define thecategory.e? of cubic algebrass follows. The objects of
</ are cubic algebrad over objectsS in S. A morphism from a cubic algebrd; overS;
to a cubic algebral, over S, consists of a morphisnf : S; — Sy and an isomorphism
g: Ay — f*Ay as cubic algebras ovéf,. The functorg : & — S taking a cubic algebra
A overS to S makese/ into a category oves.

Proposition 1.1.9. The categories?, ¢ and </ are all categories fibered in groupoids
overs.

Proof. The main reason for this result is the existence of a well ddfjpull back. As an
illustration, we verify for the category” the two axioms defining a category fibered in
groupoids ovesS. (For the two axioms, the reader is referred to chapter 24NI[D
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(1) Suppose thaf : S; — S, is a morphism inS and (1%, p») is a twisted cubic form
overS,y. DefineVy = f*V,, py = f*ps, then(Vy, py) is a twisted cubic form oves; .
The pair of morphisms consisting ¢fand the identity majpd : V; — f*V5; defines
a morphismy from the twisted cubic fornfV;, p;) over.S; to (V5, p2) over.S; such

thatq(p) = f.

(2) Suppose thatV;, p;) are twisted cubic forms oves;, i = 1,2,3. Suppose that for
i = 1,2, we are given morphismg : S; — S3, isomorphismsy; : V; — fV3
defining a morphism from the twisted cubic for(#;, p;) over S; to (Vs,p;) over
S3. Suppose thaf : S; — S, is a morphism satisfying; = f, o f, thenfV =
(fao /)*(V) = f*(f5(V)). Pulling back the isomorphisi, : Vo — f5V by f to
S1, we get an isomorphisiy, : f*Vo, — f*(f5(V)) = fV. Define the isomorphism
h = hiytohy : Vi — f*V,, thenh and f defines the desired morphism from the
twisted cubic form(V;, p;) overS; to (Vs po) overSs.

[
Proposition 1.1.10.The categories fibered in groupoids, ¢4 and.< are stacks oves.

Proof. Since we work with Zariski topology, the two axioms of stabkdds automatically
by the definition of sheaf. O

Remark 1.1.11.1In fact, it will be proved in 82.2 and 83.2 that and.# are both smooth
Artin stacks.

1.2 Statement of main results

Theorem 1.2.1.The stacks? and¥ are equivalent.

Proof. Suppose thatV, p) is a twisted cubic form ovef, i.e. V' is a locally free sheaf of
Og-modules of rank andp is a section oBym?*(V) ®¢, (A2V)~!. DefineP = P(V) =
Proj(€p,-,Sym" V), thenw : P = P(V) — S is a family of genu$) curves. LetO(1)
be Serre’s twisting sheaf @f, obviouslydeg(O(1)) = 1.
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By [Hart], chap. I, theorem 5.1(a) and the definition of s twisting sheaf, there is
a natural identificatiomr,O(1) = V. As a consequence,

['(P,0(3) ® 7" (A*1,(0(1))) ™) = T'(S, Sym* (V) ® (A?V) 7).

Denote bya the element i’ (P, O(3) @ n*(A?*m.(O(1))~!) that corresponds to. The
triple (P, O(1), a) defines a geometric cubic form ov€r which is canonically associated
to the twisted cubic fornV/, p).

Conversely, given a geometric cubic foff, O(1),a) overS, wherer : P — Sis a
family of genud) curves,O(1) is an invertible sheaf of relative degrégn € I'(P, O(3) ®
™ (A’ (O(1))71). LetV = m.(O(1)), thenV is a locally free sheaf of rank over
S. As above, we hav& (P, O(3) @ 7*(A?m, (O(1))™") = T(S,Sym*(V) @ (A2V)1).
Let p be the element i’ (S, Sym®(V) ® (A?V)~1) corresponding ta € I'(P,0(3) ®
7 (A*m,(O(1))~1). Then(V, p) defines a twisted cubic form ofi

It is obvious that the above two constructions are inverseatth other, so we get an
equivalence of stack¥ and¥. O

The main result in this thesis is
Main Theorem 1. The stacks# and¥ are equivalent.
As a corollary of theorefi 1.4.1 and the main theokém 1, we have

Corollary 1.2.2. The stacksy and.# are equivalent.

1.3 Sketch of the proof

To prove the main theorem, we need to construct taaorphismsF; : ¢ — < and
I - o/ — ¢ inverse to each other.

Suppose thatP, O(1),a) is a geometric cubic form ove§. Letw : P — S be the
structural morphism. Denotg := O(—3) ® n*(A%*m,.(O(1))). Sincea € T'(P,O(3) ®
™ (A%, (O(1)))71), we can define a complex = O. Let

A:=R'1,(7 % 0),



1.3. SKETCH OF THE PROOF 5

where R, denotes the)-th hypercohomology group. (For the definition of hyperco-
homology group, the reader is referred to [EGA 0] 812.4.1.9ah be proved that is a
locally free sheaf o)s-modules of rank. What's more A can be endowed with a product
structure. It comes from a product on the complex® O, deduced from th€-module
structure of7. Calculating withCech cocycle, we can prove thdtbecomes a cubic al-
gebra ovelS with this product structure. The details of this constrectcan be found in
84.1.

This construction commutes with arbitrary base change, esget al-morphismF; :
G — .

The construction of thé-morphismF; is more complicated. First of all, we restrict
ourselves to the sub-category fibered in groupdoidsf Gorenstein cubic algebras. Ldt
be a Gorenstein cubic algebra over Then we can associate t a family of genud)
curvesrt : P — S together with a closed immersiah: Spec(4) — P. Let D be the
image of¢. Itis an effective relative divisor o over S of degree3 and is isomorphic to
Spec(A). DefineO(1) := O(D) ® Q}D/S. The sectionl of O(D) defines a section of
O(1) ® (Qp/s)" = O(3) @ 7 (A*(m.0(1)))~". In this way we obtain a geometric cubic
form (P,O(1),a) over S from a Gorenstein cubic algebr& over S. This construction
commutes with arbitrary base change, so we géetnaorphism of algebraic stacks, :

Y — 4. In the general case, we use the fact thaits an open sub algebraic stack.af
and its complement has codimensibm <7 to extendF’, to al-morphismF; : o — 9.
The details of this construction can be found in 84.2.

In 84.3, we prove that the twd-morphisms are inverse to each other. The idea is
to restrict to the "nice" open sub algebraic stacks of primigeometric cubic forms and
Gorenstein cubic algebras. In these two cases, we haveaterard simple descriptions of
the functorsF; and F; respectively.
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Chapter 2

The algebraic stack of cubic algebras

2.1 Classification over algebraically closed fields

In this section we suppose thats an algebraically closed field.

Lemma 2.1.1. Suppose thatl is a cubic algebra over a commutative ririg) free as an
R-module. Suppose further that/ R - 1 is free. There exist, 5 € A such that(1, «, 3)
is a basis ofA over R andaf € R.

Proof. Takez, y € Asuchthatl, x, y) forms a basis ofi. Suppose thaty = ax+by+-c,
a,b,c € R,then(z —b)(y —a) = ab+ ¢ € R. Obviously(1, x — b, y — a) is again a basis
of AoverR,sowecantake=x—0b, =y — a. O

We call a basi$l, a, ) agood basiof A overR if af € R.
Theorem 2.1.2.A cubic algebra ovet is isomorphic to one of the following:
(1) Ay =k xk x k.

(2) Az =k x (k[e] /().

(4) As = kla, 8]/ (a?, 0B, 52).
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Proof. Suppose thatl is a cubic algebra over. For anyz € A, let P(T) be the minimal
polynomial ofz.

(i) Suppose that there exists € A such thatdeg(P(7)) = 3, thenA = k[z] =
k[T|/(P(T)) by dimension reason. Sinceis algebraically closedP(7T) = (T —
a1)(T — az)(T — a3), for someay, as, as € k.

If all the three roots of?(7") are distinct, we getl = k[T']/((T — a1 )(T — a2)(T —
az)) =k x k x k.

If there is one root o (T") appearing with multiplicity2, for exampler; = a, # as,
we getA = K[T7/((T — ay)*(T — a3)) = k x (k(e)/(€?))

If ay = ap = as, A = K[T)/(T — a)* = k[e]/(%).

(i) Suppose that for any € A, deg(P(1')) < 2. By lemm&aZ.11Il, we can find a basis
(1, a, ) of A overk suchthatr := o € k. By assumption, therearte b, ¢, d € k
suchthat? — aa — c = 0andp? — b3 — d = 0.

Consider the homomorphism of algebyas A — End,(A) defined byp(m)(n) =
mn, Vm,n € A. Under the basi¢l, «, (3), we find that

01 0 1
pla)=|c a , pB) ==z ,
T 0 b

andp(1) = id. By calculation,

plaB) =pla)p(B) = lax 0 c|, p(Ba)=p(B)p(a)= x
x bx d O

By assumptionp(a3) = p(Ba) = p(x) = diag(x, z, x). Compare these identities
we getr = c=d = 0. Soaf =0, a® = aa, 3 = bp.

We claim that: = b = 0. In fact, for anyr, s € k, by assumption the element + s
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satisfies an equation
(ra+sB)? +m(ra+sB) +n =0,

for somem,n € k which depend om ands. Expanding the left hand side, we get
equalities

0=r%a+mr = s*+ms=n,
foranyr, s € k, so we must have = b = m = 0.

Now we haven? = 32 = a3 = 0, S0A = k[a, 8]/(a?, 5%, af). For anyr, s, t € k,
(r+sa+t3)* = —r? +2r(r + sa+ t3), so the minimal polynomial of any element
of A will have degree at mo&t

O

Remark 2.1.3. Observe that we don't use the hypothesis thé& algebraically closed in
step (ii) of the above proof. So 4 is a cubic algebra over an arbitrary figldguch that ev-
ery element imd has minimal polynomial of degree at m@sthenA = k[«, 8]/(a?, a3, 5%).

Theorem 2.1.4.We have the automorphism groups of the cubic algebras:
(1) Aute(k x k x k) = &,.
(2) Aute(k x (k(2)/(2))) = k*.
(3) Auty(k(e) /(%) = {(b <) bekx, ce k:}
(4) Autg(kle, 8]/ (a? a3, 5%)) =2 GLa().

Proof. (1) ForA =k x k x k, takee; = (1,0,0), e; = (0,1,0), e3 = (0,0,1). Then
e? =e;, ee; =0, Vi,j=1273;1# 7,

i.e. e; are idemptents. S¢ € Auty(A) if and only if f(e;), i = 1,2,3 are also
idemptent. It is obvious that for ary € G5, the homomorphism defined bye;) =
esi), ¢ = 1,2,3, is an automorphism ofl overk. Conversely, suppose that=
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(2)

3)

(4)

CHAPTER 2. THE ALGEBRAIC STACK OF CUBIC ALGEBRAS

x1e1 + Taeo + w363, T1, Te, T3 € k satisfiesy? = x, a simple calculation tells us that
x? = x;,80x; = 0o0rl,i = 1,2, 3. Taking into account that(e;) # 0, f(e;)f(e;) =
0,Vi,j =1,2,3;4 # j, we getthatf(e;) = ey, = 1,2, 3, for somes € &3. So
Autp(k x k x k) = &3.

ForA = k x (kl[e]/(e%)), 1 = (1,1). Takea = (1,0), 3 = (0,¢), then(1, a, 3)
forms a basis ofl overk anda? = «, 3> =0, a8 = 0. Sof € Auty(A) if and only
if

f(1) =1, f(a)* = f(a), f(8)* =0, f(a)f(B) =0.
Suppose thaf(a) = aa + b5 + ¢, f(5) = ma+nB +p, a,b,e,m,n,p € k, then
f(B)? = 0is equivalent ton = p = 0. Andn # 0 sincef is an automorphism. By
f(a)f(B) = 0, we getc = 0. Finally by f(a)? = f(a) we geta®> = a, b = 0, SO
a=0orl. Butifa =0,thenf(A) C k-1 kf, contradiction to the assumption
that f is an automorphism. Se= 1. In conclusion,f(1) = 1, f(a) = «, f(B) =
nB, n € k*. Itis easy to check that any sughdefines an automorphism df over
k, soAut,(k x (k[g]/(e%))) = k*.

ForA = k[e|/(£3). Let f € Auty(A), thenf(1) = 1. Suppose thaf(e) = a + be +
cg?, a,b,c € k. By f(e)® = f(3) = 0, we geta = 0. By f(?) = f(e)? = b2, we
getb # 0 sincef is an automorphism. In conclusion, under the base, £2), f will
be of the form

b c¢l|, bek™ cek.
b2

It is easy to check that any su¢hdefines an automorphism dfoverk. So

Auty(k(2) /(%)) = {(b <) bek*, ce k}

For A = k[, 8]/(a?, aB, 3%). Let f € Auti(A), thenf(1) = 1. Supposef(a) =
a+ba+cB, f(B) =m+na+pB, a,b,c,m,n,p € k. By f(a)? =0, we geta = 0.
By f(6)* = 0, we getm = 0. Becausef is an automorphism, the matr{;, ¢ ) is
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invertible. So under the bas(s, «, ), f will be of the form

b ¢ EGLg.
n.p

It is easy to see that ang of this form defines an automorphism @foverk. So
Autg(A) = GLy(k).
0]

2.2 Smoothness and dimension

Definition 2.2.1. Let S be an arbitrary scheme, lmased cubic algebraver S is a pair
(A, ¢), whereA is a cubic algebra ovet, ¢ : OF* — Ais an isomorphism ofs-modules
such that(1,0,0) = 1.

Definition 2.2.2. Let S be an arbitrary schemegaod based cubic algebxaversS is a pair
(A, ¢), whereA is a cubic algebra ovet, ¢ : OF® — Ais an isomorphism ofs-modules
such thai(1,0,0) = 1, ¢(0,1,0)¢(0,0,1) € Og(S).

Definition 2.2.3. Let %' be thecategory of based cubic algebrdss objects are the based
cubic algebras ove¥. A morphism from a based cubic algeljrd , ¢;) overS; to (As, ¢o)
over S, consists of a morphisnfi : S; — S, an isomorphisnk : A; — f*A, such that

¢1=h""o (f*(¢2)).

Definition 2.2.4. Let 9 be thecategory of good based cubic algebriéts objects are the
good based cubic algebras overA morphism from a good based cubic algebra, ¢,)
over S; to (As, ¢2) over S, consists of a morphisnf : S; — Sy, and an isomorphism
h:A; — fr*Aysuchthaty; = h=to (f*(¢2)).

Proposition 2.2.5. The categories’! and %'9 are both categories fibered in groupoids
overs.

Proof. This is a simple consequence of the existence of a well defintack. O
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Proposition 2.2.6. The category fibered in groupoidg’ is representable b} and %'
is representable b5,

Proof. We reproduce the proof in [Poonen], proposition 5.1. In [(&Svas shown that
if (1,a,() is a good basis of a cubic algebraover a ringR, then the conditions of
associativity and commutativity show that

o? = —ac + ba — a3

(% = —bd + do — cf3 (2.1)
aff = —ad,

for somea, b, ¢, d € R, and conversely by the multiplication table any, ¢, d € R defines
a good based cubic algebra. This correspondence is obyibijsttive, from which we
deducez'? = Aj.

There is a left action of:? on %' by which(m,n) € G2(S) maps an algebrd overS
with basis(1, a, 3) to A with basis(1, o +m, 8 + n). This action gives an isomorphism:

G2 x B — B, (2.2)

soA! :A_%. O

Denote byH the closed subgroup scheme(k.; stabilizing the elemen(l, 0,0). H
acts naturally on the category fibered in groupaids For (A, ¢) a based cubic algebra
over S, lethg : OF* — A be defined asp(z) = ¢(hx), Vo € OF*, h € H. Then

h(A,¢) := (A, ho).
Theorem 2.2.7.The category fibered in groupoidg is a smooth Artin stack.

Proof. Since every cubic algebra is locally free, it admits a bastally. So we have
o/ = [#'/H] as stack ove§. By [L-M], example 4.6.1]%'/H| = [Aj/H] is an Artin

stack. SinceA$, is smooth and? is a smooth group scheme ov&y %'/ H]| is a smooth
Artin stack. Sa¢Z is a smooth Artin stack. O

Proposition 2.2.8. The dimension o/ is 0.
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Proof. Sincedim(AS) = dim(H) = 6 and« = [AS/H], we getdim(«/) = dim(AS) —

dim(H) = 0. O

2.3 Gorenstein cubic algebras

Let A be a cubic algebra ove#, i.e. A is a sheaf of commutative unitéls-algebras,
locally free of rank3 as anOg-module. LetX = Spec(A), let f : X — S be the structure
morphism. Thery is a finite flat morphism of degreand A = f,.Ox.

Since f is a finite flat morphism, the she&fomo,(f.Ox, Og) is a coherenff,Ox-
module and there is a coherent sheafn X such thatf.w = Home, (f.Ox, Os).

Definition 2.3.1. The cubic algebral is calledGorensteiroverS if w is an invertible sheaf
onX.

Example 2.3.1.Suppose that is a field, letA be a cubic algebra ovér.

(1) If there exists an elementc A whose minimal polynomial is of degrée A = k|x]
by dimension reason. Definee AV by f(1) =0, f(z) = 0, f(z*) = 1. A simple
calculation shows thdtf, z f, 2% f) is a basis ofd" overk. SoA" is a freeA-module
with generatorf and A is Gorenstein.

(2) If every element inA has minimal polynomial of degree at mastremarkZ. 113
shows thatd = k[a, 8]/ (a?, a3, 3%). Defineh € AV to beh(a-1+ba+cf) = a. It
is easy to check that for anye A, f € AY, zf lies in thek-linear span of. in A".
So AY can not be a freel-module of rankl and hence is not Gorenstein.

In particular, in the classification result of theorem 2, th2 cubic algebrad,, A,, A; are
Gorenstein, whiled, is not Gorenstein.

Since the pull-back of a Gorenstein cubic algebra is alwayestein, we can define
the sub stack/ of Gorenstein cubic algebras of. Let O the origin of A7, let V be the
image of G2 x (AZ\O) in A, under the isomorphisri(2.2).

Theorem 2.3.2.We havey = [V /H| as stack. In particulary” is an open sub algebraic
stack ofez whose complement is of codimension
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First of all, we prove the following lemma, which is a generation of [GGS], propo-
sition 5.2.

Lemma 2.3.3. Suppose that is a locally noetherian scheme antlis a cubic algebra
overS. ThenA is Gorenstein ovef if and only if for every closed point of S, the cubic
algebraA ®e, k(z) is Gorenstein ovefpec(k(z)).

Proof. The necessity is obvious. For the sufficiency, we need togotloat for any closed
pointz, AY is a projectived,.-module. So we can assume that Spec(R), R a noetherian
local ring with residue field:. Let M = Hompg(A, R), we need to prove that/ is a
projective A-module. Sinced is a freeR-module,M is a freeR-module. By assumption,
A ®pg k is Gorenstein. By the result in example 213,25 k is a freeA @ k-module
of rank 1. Takem € M such that its image i/ ®p k is a generator o/ ®x k as an
A ®g k-module. Definep : A — M by p(a) = am, Va € A. By Nakayama’s lemmay
is surjective. Denote its kernel by. We have the exact sequence

0—-=N—-A—M-—O0.

Applying the functore @ k£ we get the exact sequence

Torf(M,k:):O—>N®Rk—>A®kaM®Rk_>O’

the first equality is becausk/ is a free R-module. Sincey ® id, is an isomorphism,
N ®r k = 0. By Nakayama’s lemmay = 0. SoM is a freeA-module. O

Proof of theoreli 2.312Since & = [AY/H], we can suppose that the base scheiig
noetherian without any loss of generality. Suppose th& a cubic algebra oves with
good basisl, «, ), a, 5 € Og. ThenA together with this good basis corresponds uniquely
to anS-point@ = (a, b, ¢, d) of A7 as described in formula (2.1) in the proof of proposition
2.2.6. By lemmaZ.3l3 and example 21 34lis Gorenstein ovef if and only if the image

of @ doesn't intersect with the closed subschethef A7. So(Q factors through the open
subschemeé\ 7\ O and the category fibered in groupoids of Gorenstein cubiebatgs with
good basis is represented by the open subschien® of AZ. Similar to the proof of the
second conclusion in propositibn 2.6, we have= [G> x (AZ\O)/H] = [V/H].
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The complement o¥” in & is [G? x O/H], which is of dimensiorz — 6 = —4, so it
is of codimensiont in <. O
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Chapter 3

The algebraic stack of twisted cubic
forms

3.1 Classification over algebraically closed fields

Suppose thak is an algebraically closed field. A twisted cubic form overs a pair
(V, p), whereV is a vector space of dimensi@overk andp € Sym?*(V) ®;, (A2V)~L.
Two twisted cubic formgV;, p;) and(V5, pe) are said to be isomorphic if there exists an
isomorphism of vector spacégs: V; — V; such thap; = f*p,.

Because all th@-dimensional vector spaces overare isomorphic, we only need to
classify the cubic formgV, p) for a fixed vector spac¥. Fix a basigv;, vy) of V.

Theorem 3.1.1.A twisted cubic forniV, p) overk is isomorphic to one of the following:

(1) b1 = Ulvz(vl - UQ) R (Ul A Ug)_l.

(2) P2 = U%U2 R (Ul A Ug)_l.
(3) P3s = U% Rk (’Ul N 1)2>_1.
(4) ps=0.

Proof. Obviously(V, 0) is a twisted cubic form. Suppose that Sym*(V) @, (A2V)7,
p# 0. Letp = (av} + bvivy + cvv3 + dv3) @y, (v1 Ava)™Y, a, b, ¢, d € k. By assumption,

17
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k is algebraically closed, sopcan be written as

p = (2101 — Y102) (T201 — Yovs) (301 — Y302) @k (V1 Av2) ",

for somez;,y; € k, i = 1,2,3. Leta; = [x; : yi], i = 1,2, 3 be three points of?}.

(1)

(2)

3)

Suppose that;, © = 1,2,3 are distinct to each other. It is well known that there
exists an element = (¢ %) € PGLy(k) such that

v(a1) = [1:0], y(az) = [0:1], v(as) = [1: 1],

wherevy(z) = gjj:fl, Vz € P;. For anyy’ € GLy(k) whose image i°?GLy(k) is 7,

we have
Y (v1va(v1 — v2) @ (v1 Avz) ") = m(y)p,

for somem(y’) € k*. Sincek is a field, we can choose appropriately an element
7 € GLq(k) whose image i?GLy (k) is v, such that

A (v1v9(v1 — v2) R (v A U2)_1) =Dp.

Suppose that; = ay # az. As in the above, there exists one elememt PGLs (k)
such that

(a1) = ~(az) = [1: 0], 7(az) = [0 :1].

Similar to the case (1), we can choose an elemem GL.(k) whose image in
PGLy(k) is~, such that

T (vivs @k (01 Aw) 1) = p.
The cases; = a3 # a, anday, = a3 # a; can be treated in the same way.

Suppose that; = a, = az. There exists one elementc PGLy (k) such that

v(a1) = v(az) = v(as) = [1:0].
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Similar to case (1), we can choose an elemeatGL, (k) whose image ilPGLy (k)
is v, such that

i*(vf Rk (v1 Avg)™h) = p.

Theorem 3.1.2.The automorphism groups of the above twisted cubic forms are
(1) Autp((V,p1)) = Gs.
(2) Auti((Vipa)) = k.
(3) Autp((Vips)) = {(* %) € GLa(k)|a € k*, b € k}.
(4) Auty((V,ps)) = GLa(k).
Proof. Lety = (%) € GLy(k), theny(vi) = avy + cva, ¥(v2) = bvy + dus.

(1) Suppose that € Aut,((V, p1)). Denote byX the zero section of the cubic form
v1ve(v; — vg) overP(V) = Pi. Letay = [0: 1], 22 = [1: 0], z3 = [1 : 1], then
X = x; + xy + z3 as a divisor orP}. By assumptiony*p; = p;, s0~ induces
an automorphism ofX. SinceAut(X) = &3, we obtain a homomorphism :
Autg((V, p1)) — ;.

We claim thatj is injective. In fact, fory € Autg((V, p1)) such thatj(vy) = 1,
because

(ad — be) " avy + cvp) (bvy + dvy)[(a — b)vy + (¢ — d)va] @y (v1 Avg) ™!

= v1va(vy — Vg) @y (V1 A vg) 7L,

andy(z;) = x;, 1 = 1,2, 3, we get equalities

avy — dvy = v1 — Vg,

i.e.y=(',). Sojisinjective.
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(2)

3)

(4)

3.2
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Conversely, for any permutation € S3, there exists a unique, € PGLy(k) =
Auty(Py}), such thatu,(z;) = z,;. Then for anyA € GLy(k) whose image in
PGLy(k) is a,, we haveA*(p;) = m(A)p,, for somem(A) € k*. Sincek is a field,
we can find am, € GLy(k) whose image i?GL; is a,, such thatd}(p;) = p;. So
Jj is surjective, hence an isomorphism between, ((V, p)) andSs.

Suppose that € Auti((V, p2)). Denote byX the zero section of the cubic form
vivy overP (V) = Pj. Letx; = [0: 1], zo = [1 : 0], thenX = 2x; + z, as a divisor
onP;. Sincevy*(py) = p2, We gety(z;) = z; and~y(z) = x,. Combining with the
equality

(ad — be) " avy 4 cvs)?(bvy + dvy) @y (v A vg) ™

= U%Ug Rk (Ul AN Ug)_l.

Wegeta =1,b=c=0,ie v=(!,)withd e k*. Itiseasy to check that any
suchy defines an automorphism O, p,). SoAut,((V, p2)) = k*.

v € Autg((V, ps) if and only if
(ad — be) " Havy + cvp)® @ (V1 Avg)™h = v @ (v1 Avg) 7L
Comparing the two sides of the equality, we get 0, a®> = d. So

Aut((V, ps)) = {(a;z)m e kX, be k:}

This case is obvious.

Smoothness and dimension

Definition 3.2.1. Let S be an arbitrary scheme pased twisted cubic formver.S is a pair
(V. p, ), where(V, p) is a twisted cubic form oves, ¢ : 0F? — V is an isomorphism of
Os-modules.
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Definition 3.2.2. Let .%#’ be the category of based twisted cubic forms. Its objects are
the based twisted cubic forms. A morphism from a based tdistdic form(V;, p1, 1)
over S; to (Vs pa, o) Over S, consists of a morphisnt : S; — Sy, an isomorphism

h: Vi — f*Vasuchthap, = h*(f*(p2)) andp, = A=t o (f*(¢2)).

Proposition 3.2.3. The category#’ is a category fibered in groupoids ovér, it can be
represented b 7.

Proof. The first conclusion is a simple consequence of the existeireavell defined pull-
back. For the second conclusion, since any based twisted tain over S has trivial
isomorphism group, we only need to give thenorphism over the affine base scheme.
Suppose thatV, p, ¢) is a based twisted cubic form over= Spec(R), R a commutative
ring, such thal’ is a free rank sheaf ofOs-module. Lete; = ¢((1,0)), ex = ©((0, 1)),
thenp can be written uniquely aie? + be?es; + cejel + del) ® (eq A ep)™ !, for some
a,b, c,d € R, from which the proposition is easily deduced. O

The linear algebraic groufxL, z acts naturally on#’. Suppose thatV, p, ¢) is a
based twisted cubic form afi. Letg € GL,(Os), definegy : OF* — V to begyp(r) =
o(gz), Vr € OF2. Defineg(V, ¢,p) = (V, gp, g*(p)), it is easily verified that this defines
an action ofGL, on.%#".

Theorem 3.2.4.The stack¥ is a smooth Artin stack.

Proof. Obviously we haveZ = [Z'/GL,] = [A?/ GL,]. Since bothA* andGL, are
smooth[A?/ GL,] is a smooth Artin stack. S& is also a smooth Artin stack. O

Proposition 3.2.5. The dimension of# is 0.

Proof. Since.# = [#'/GL,y] = [A?/GL,] anddim(A?) = dim(GL,) = 4, we have
dim(.#) = 0. O
Corollary 3.2.6. The stacks of geometric cubic forms is a smooth Artin stack of dimension

0.

Proof. By theorenTI.Z]1¥ = .# as stack, so the corollary results from the above two
propositions. O
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3.3 Primitive geometric cubic forms

Let O the origin of A%, V = A2\O. Obviously[V/ GL,] is an open sub algebraic stack
of # = [Az/ GLy], with complement of codimensioh The objects ofV/ GL,] will be
calledprimitive twisted cubic formsBy theoren{1.ZI11L# =~ ¢. Denote by#  the open
sub algebraic stack ¢f that corresponds t@// GL,| in .%. Obviously the complement
of # is of codimension 4 i¥. The objects o##” will be calledprimitive geometric cubic

forms

Proposition 3.3.1. Suppose thatP, O(1), a) is a primitive geometric cubic form ovét,
let 7 := O(3) @ 7*(A%r,O(1))~L. Then the morphism of sheay&s™ O is injective.

Proof. By assumptiong is non zero at every point, so the morphism of sheaveb O is
injective. O



Chapter 4

Proof of the main result

4.1 From geometric cubic forms to cubic algebras

In this section, we will construct &#morphism of algebraic stacks : ¥ — «/.

Suppose thatP, O(1),a) is a geometric cubic form, i.er : P — S is a family of
genus) curves,a € T'(P, O(3) @ 7*(A*m.0(1))7Y). LetJ := O(-3) @ m*(A*1,.0(1)),
then we have7 ! = O(3) ® 7*(A*m,O(1))7L. Soa € T'(P, T ') = T'(P,Hom(J, O))
defines a morphism of sheaves of modules

a:J — O,

which will be regarded as a complex of coheréhrtnodules withdeg(.7) = —1. Define
A= R, (J % 0), the0-th hypercohomology of the complex — ©. From the exact
sequence of complexes

0—-0—(J=0)—J[1]—0,
we obtain the following long exact sequence by applying

o = R'1,0 = R'1,0 - R (J = O) = R (J[1]) = R 1 (J) — -+ . (4.1)

23
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Lemma 4.1.1.We have

W*O = OS»
Rr,O =0, ifi#0.

Proof. Firstly, we suppose that is affine andP = P}. Let.S = Spec(R), R a commu-
tative ring. By [Hart], chapter Ill, proposition 8.%'w.O = H'(PL, O)~. So by [Hart],
chapter Ill, theorem 5.1,

7,0 =T'(Py, 0)~ = O,

and fori # 0,
R'm,O = H'(PL, O)~ = 0.

In general case we can covérby small enough affine open subsétssuch that
7~ }(U) = P{,.. Since the above equalities are canonical, we get the saoaitézs in
general case. O

Lemma 4.1.2. We have

R (J)=0, ifi#1,
R'm.(7) = (m.O(1))".

Proof. First of all, observe that
J = 0(=3) @ 7" (A*m.0(1)) = O(—1) ® Qp/s.

Suppose tha$ is affine andP = Pg. Let.S = Spec(R), R a commutative ring. By
[Hart], chapter IlI, proposition 8.5Rr'w.J = H'(PkL,J)~. So by [Hart], chapter I,
theorem 5.1,

m.J = 1.0(=3) ® (N’m,0(1)) = H* (P, O(-3))~ @ (A*m.0(1)) = 0.
By Serre’s duality,

Ri'm,J = H' (PR, O(=1) ® Qp/s)~ = Homp(H°(Pk, O(1)), R)~ = (m.0O(1))".
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Fori # 0,1, R'r,J = 0 since the relative dimension éf overS is 1.

In the general case we can covelby small enough affine open subsétssuch that
7~ H(U) = Pg. Since the above equalities and isomorphisms are canpmieafjiet the
same equalities as claimed in the lemma. O

Proposition 4.1.3. We have the exact sequence
0— Og — R (J — O) — (m.0(1))" — 0,

and
Rim,(J — O) =0, ifi#0.

Proof. This is the result of the long exact sequencé 4.1 and lemm3,ALT2. O
Corollary 4.1.4. A =R°r.(J — O) is alocally freeOs-module of rani3.

Proof. This is because of propositi@n4.11.3 and the fact th&(1) is a locally freeOg-
module of rank2, O

Now we want to define a commutative unital-algebra structure oA.

First of all, by definition
(T 5 0)®o (T = 0)
e id ®a®(—a)®id

=JeJ

(T20)® (0 J) L9412 6o o (4.2)
JoJ % 0.

id ®a®(—a)®id
_—

Definer : 7 & J — J byr((¢, 7)) =i+ 7, Vi, j € J. Itis easy to check that the
following diagram is commutative

id ®a®(—a)®id
e

TJT JoJ =4 0

Js o

0 e J —— 0,
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in particular it defines a morphisth of the two horizontal complexes. By identify (4.2),
0, defines a homomorphism of complexes
0: (T = 0)®0 (T = 0) = (J = 0),
which induces a morphism
01 ROT[(T = 0) @0 (T - 0)] = R'm(J = 0).
Consider the fiber produat xs 7 : P xg P — S, and the complex of sheaves
(J = O)R(T = 0) :=pr1(J = O) Qop, p Pr3(J — O)

onP xg P.
Proposition 4.1.5. There is a natural isomorphism

Uy : RO (T — O) @0, R7.(T — 0) 2 R(1 x5 7).[(T — O)R (T — O)].

Proof. Since both7 and O are invertible sheaves oR and the morphismr : P — §
is flat, 7 and O are both flat overS. By propositiolZIBR 7. (J — O) are locally
free Og-modules for all € Z, in particular they are flabs-modules. So the hypothesis of
[EGA ], theorem 6.7.8 holds, and we have the isomorphitates! in the proposition. [J

LetA: P — P xg P be the diagonal morphism, it is a closed immersion. Because
A(T—-0)R(T—0)=(T —0)®0 (J — 0),
A induces a homomorphism
A" R (7 x5 m)[(T — O)R(T — O)] = R'1,[(J — 0) @0 (T — O)].

Define® = 9, 0 A* 0¥y : R (T — O) ®ps R1.(J — O) — R7.(J — O), it
is obvious that this is a bilinear homomorphism. Becatiseé\*, v, are symmetric in the
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two variables is also symmetric.

Now we will describe® more concretely. Becausé = R, (J — O) is a coherent
sheaf onS, we only need to consider the case witeis affine, i.e.S = Spec(R) for some
commutative ringR. By [EGA 0] §12.4.3,

R7.(J — O)=H"(P,J — O)~,

whereH'’ denotes theé-th hypercohomology group.

Suppose that/ = {Up, U, } is the standard covering df = P},. TheCech complex
C(%,J — O)is

\7(U01) # O<U01>
Js Js
T (Uo) ® T (U)) == O(Uy) ® O(Uh),

where the degree @ (Uy, ) is (0, 1).

By [EGA 0] §12.4.7,H°(P,J — O) = H'(C*(%,J — 0)), i.e. itis the0-th
cohomology group of the following complex, in whi€k(Uy, ) is of degreel,

) (—d)®(ada)

T (W) & I (Uy T (Us) ® O(Up) ® O(Uh) 224 O(Upy).

Letcy, e, € HY(P, J — O), suppose that;, ¢, have representativés fy, f1), (4,90, 91) €
J(Uo1) @ O(Uy) @ O(U,) respectively. The®(cy, co) has representativiglyj + goi +
aij, fogo, fig1) € T (Un)) ® O(Up) ® O(Uy).

Calculating byCech cocycle, it is easy to see that the injective morphisishefives
Os — R, (P,J — 0O) in the exact sequence of proposition4.1.3 defines the unital
structure ofA.

Proposition 4.1.6.Letcy, ¢y, c3 € H(P, J — O), then
@((01, 02), 03) = @(01, (027 03))-

Proof. Suppose that; € H°(P, 7 — ©) have representatives Bech cocyle$j;, f;, g:) €
T (Uo)@0(Uy)@0(Uy) fori = 1,2, 3. Adirect computation shows that ba#{(c,, ¢,), c3)
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and©O(cy, (2, c3)) can be represented by the cocycle

(fifags + fofsgi + fifsje + afijogs + afojijs + afsgije
+a?j1j273, fifofs, 919293)-

SO@((Cl, 62), Cg) = @(Cl, (Cg, Cg)). [l

In conclusior® defines a commutative unitéls-algebra structure oA = R, (J —
©) and A is thus a cubic algebra ovér.

Example 4.1.1.Suppose that € T'(P, O(3) @ 7*(A*m.O(1)) ') is not a zero divisor, then
we have the exact sequence

0-J%0—-0/J —0,

where 7' is the image of7 in O under the morphism. So4 = R, (J % 0O) =
m.(0/J"), and the ring structure oA defined byo comes down to the one induced by the
ring structure of0 /7.

Example 4.1.2. Suppose that = 0, then the complex7 — O equalsO & J[1]. So
A=R'7n.(P,0O® J[1]) =m0 ® R'n,J = Os @ (1.,0(1))". Denotem = (7, O(1))".
Calculating byCech cocycle, it is easy to find that = ©(m, m) = 0.

In this way, we have constructed a cubic algeldraver.S from a geometric cubic form
(P,O(1),a) over S, the construction commutes with arbitrary base change bylleoy
A1 and the expressions witlech cocycles. So in fact we have constructéehzorphism
of algebraic stack$’ : ¥ — .

4.2 From cubic algebras to geometric cubic forms

In this section, we will construct &-morphismF, : o/ — ¢ of algebraic stacks. In
the following, we will always assume the base schefe be noetherian. In fact, since
o/ = [AS,/H], we will lose no generality with this assumption.
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Suppose that! is a cubic algebra ove¥, i.e. A is a sheaf ofDs-algebras, locally free
of rank 3 asOg-module. LetX = Spec(A), let f : X — S be the structure morphism.
Thenf is a finite flat morphism of degreéeand A = f,Ox.

Proposition 4.2.1. The sheaf.Ox /Oy is locally free of rank2 as a sheaf o®s-modules.

Proof. Applying Home, (e, Og) to the morphismOgs — f.Ox, we get a morphism
Homeg (f:Ox,Os) — Os. We claim that it is surjective.

This is a local question, we can assume thiat Spec(R) for a noetherian local ring
R. Suppose that is the only closed point of. Because the morphisi — A comes
from the unity ofA as anR-algebra, we have the exact sequence

0 — R®gk(x) =k(x) - A®g k(z).
So the homomorphism
Homy (o (A @ k(2), k(z)) — k(z)
is surjective. Becausé is a freeR-module,
Homy,p) (A ®p k(x), k(z)) = Homg(A, R) @g k().

By Nakayama'’s lemma, the homomorphistomz(A, R) — R is surjective.
Now thatHome, (f.Ox, Os) — Og is surjective, the exact sequence

OéOSﬁf*OX_)f*OX/OS_)O

is locally split. Sof.Ox /Og is a locally freeOs-module. Obviously it is of rank. O

DenoteV = (f.Ox/Os)", defineP = P(V). Letm : P — S be the structure
morphism. TherP is a family of genu$ curves onS.

Now we begin the construction of themorphismF;, : o7 — ¢. First of all, we restrict
ourselves to the case thatis Gorenstein ovef. Recall that in §2.2, we have defined a
coherent sheab on X such thatf.w = Home,(f.Ox,Os), X is said to be Gorenstein if
w is an invertible sheaf oX .
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By the exact sequence
OHOSH]C*OX —>f*Ox/05—>0, (43)
we get a morphism of sheaves: V = (f.Ox/0s)Y — (f.Ox)" = f.w. Becausef* is
the left adjoint off,, we get a morphism of sheaves f*V — w.
Proposition 4.2.2. The morphism of sheaves: f*V — w is surjective.

Proof. Because the problem is local, we can assume $hat Spec(R), R a noetherian
local ring. ThenA is a R-algebra, free of rank as R-module. We need to prove that the
following morphism is surjective:

0 : Homgr(A/R, R) ®g A — Hompg(A, R),

with 0(f ® a)(b) = f(ab), Va,b € A, f € Homg(A/R, R), whereab denotes the image
of ab in A/ R under the projection.

Lety € S be the unique closed point ¢f. By Nakayama’s lemma, we only need to
prove that the morphism

0 ®idy() : (Homgr(A/R, R) ®r A) ®g k(y) — Homg(A, R) ®g k(y)
is surjective. Sincel is a freeR-module, we have
(Homp(A/R, R) ®r A) ®r k(y) = Homy ) (A @r k(y))/k(y), k(y))

and
Hompg(A, R) ®g k(y) = Homy) (A @ k(y), k(y)).

So we are reduced to the case tlfats a field. In fact we can even assume tliais
algebraically closed since this is a homomorphism of vespaces. By the classification
result of theorerti2.11.2 and example2.3.1, we need to checkutjectivity ofd for A =
Aq, Ay and As.

(1) ForA; = Rx R x R, e; = (1,1,1) is the unity ofA;. Letey; = (0,1,0), e5 =
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(0,0,1), V = Rey @ Res. We identifyVV with A/Re;. Let (fi, fs, f3) be the basis
of A dual to(ey, ey, e3). It is obvious that)(fs|v) = fo, O(f3]v) = f3, wheref;|y
denotes the restriction gf to V, for i = 2, 3. By calculation,

0(f2 @ (ea —e1))(e1) = falea —e1) =1,
0(f2 @ (ea —e1))(e2) = falez — €2) =0,
0(f2 @ (e2 — e1))(e3) = f2(0) = 0.

Sof(f, ® (ea — 1)) = f1 andd is hence surjective.

(2) ForA; = Rx (Rle]/(€%)), e1 = (1,1) is the unity ofA;. Lete; = (1,0), e3 = (0, ¢),
V = Res @& Res. We identifyV with A/Re;. Let(f1, f», f3) be the basis ofi¥ dual
to (e, eq, €3). Itis obvious thabt(f2|v) = fe, 0(f3|v) = fs. A simple calculation as
above tells us that(f, ® (ex — e1)) = f1, SO0 is surjective.

(3) ForA; = R[e]/(€®), e = 1is the unity ofA;. Letey, = ¢, e3 = €2, V = Rey & Res.
We identify V' with A/Re;. Let(fi, fo, f3) be the basis 0fiY dual to(eq, ey, e3). It
is obvious that)(fs|v) = f2, 6(f3]v) = f3. A simple calculation as above tells us
thatf(fo ® ex) = f1, SO0 is surjective.

O

By [Hart], Chap Il, proposition 7.12, the surjective morgini of sheaveg : f*V — w
determines a morphisgh: X — P = P(V) of S-schemes.

Lemma 4.2.3.Leth : Y — Z be a finite morphism of schemes, thers a closed im-
mersion if and only if the induced morphism of structure skesa’ : O, — h,Oy is
surjective.

Proof. The necessity is obvious. For the sufficiency, since thislagal question, we can
assume that is affine. Since. is finite, Y is also affine, and replacing by the scheme-
theoretic image of,, we can assume thatis surjective. Let” = Spec(R), Z = Spec(T).
Sinceh is surjective, the induced morphism of structure sheabed’ — h.Ris injective.
By assumption, it is also surjective, $6is an isomorphism. In particulaki(Z) : T =
T(Z) — h.R(Z) = S is an isomorphism, sb is an isomorphism. O
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Proposition 4.2.4. The S-morphismp : X — P = P(V) is a closed immersion.

Proof. The morphismr o ¢ = f : X — S is finite, in particular it is proper. Since

is separatedyp must be proper by [Hart], chap Il, corollary 4.8(e). In fagtjs a finite
morphism since it is obviously quasi-finite. So to prove thas a closed immersion, we
only need to prove that the induced morphism of sheate®), — ¢.0Oy is surjective by
lemmal4. 2. For this purpose, it is enough to check it foryegeometric point ort by
Nakayama’s lemma. So we can assume that Spec(k), k£ an algebraically closed field.
By the classification result of theordm 2]1.2 and examplgl2v@e need to check the cases
A=A, Ay, As.

(1) ForA; =k x k x k, takee; = (1,1,1), e; = (0,1,0), e3 = (0,0, 1). Let (f1, fo, f3)
be the basis oft} dual to(ey, ez, e3). Defineh € AY by h(aey +bey+ce3) = a+b+
¢, Va, b, c € k. A simple calculation shows thét-e; + e, +e3)h = f1, (e1 —e3)h =
fa, (e1 —ex)h = f3. Letx; = fi/h, i = 2,3, we need to prove that,, = k[z3/xs]
and A,, = k[zo/z3]. By calculation,xzs = e; —e3, x3 = e; — ey and A,, =
k-2, 222 = k(2 2=2]. Butinthe ringA,,, ~=- = 0 sincees(e1 —e3) = 0.

S0 A,, = k[z3/x5]. The same proof gived,, = k[xs/x3].

(2) ForA = Ay = k x (kle]/(¢?)), takee; = (1,1),e5 = (0,1), e3 = (0,¢€). Let
(f1, f2, f5) be the basis ofiy dual to(ey, eq, e3). Defineh € Ay by h(ae; + bey +
ces) = 2a + b+ ¢, Va,b,c € k. A simple calculation shows that, — es)h =
fi, (—e1+ea+esz)h = fo, (ea—e3)h = f3. Letx; = f;/h, i = 2,3, we need to prove
thatA,, = k[z3/z2] andA,, = k[zy/x3]. By calculation,zy = —e; + e5 + e3, 23 =

_ — e1 ez—e3 — e3 ez—es i i
€263 andAxQ B k[—61+62+63’ —61+62+63] o k[—61+e2+63’ —61+62+63]' Butin the ring
Ax2, ﬁ;_’_% = 0 S|nce€3(_61 + €9 ‘l‘ 63) = 0 SOA:CQ = ]{3[1‘3/272]

imi — el —eiteates] _ €3 —eiteates i i
Similarly, A,, = k[ 2, =22ta] = k[ 2 =<-2ta] But in the ring A,

Ls =0 Since63(62 — 63) = 0. S(:)flx3 = k‘[l’g/l’g]

es—e

(3) ForA = Az = kle]/(€%), (1,¢,€?) is a basis ofds. Let (fi, f2, f3) be the basis of
Ay dual to(1,¢,€%). Defineh € AY by h(a + be + c€®) = a+ b+ ¢, Va,b,c € k.
A simple calculation shows thath = fi, (¢ — €)h = fo, (1 — €)h = f3. Let
x; = fi/h, i = 2,3, we need to prove thal,, = k[z3/xo] and A,, = k[xs/x3].
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By calculation,z; = ¢ — €, 23 = 1 — e and A4,, = k[, 2=5] = 0 = klxs/zy).

e—€2) e—e?

Similarly, A,, = A = k[zo/x3] sincex; is invertible in A;.
O

Let D the image ofp : X — P. Sinceg is a closed immersiorn) is isomorphic taX.
Since X is flat overS, D is an effective relative divisor oP over S of degree3. Define
O(1)=0(D)® Q}D/S. ThenO(D) = O(1) ® (Q}D/S)V = 0(3) @ m*(A*1.0(1))"L. So
the element € O(D) defines a global sectione T'(P, O(3) @ 7*(A*m.O(1))~1). In this
way we have defined a geometric cubic foff O(1), a) over S from a Gorenstein cubic
algebraA overS. Itis obvious that this construction commutes with arbitdfaase change,
so it defines d-morphism of algebraic stacks, : ¥ — 4.

Generally, consider the category fibered in groupcitisof based cubic algebras. By
propositio 2216, it is representable Ay,. So there exists a universal based cubic algebra
A overAj. By theorenfiZ:3]2, the category of based Gorenstein culpabed is represented
by the open subschemié = G2 x (A4\O) of AS. The restrictiond; of A onV is a
Gorenstein cubic algebra. Lé¥(A;) = (P, Op, (1), a1), which is a geometric cubic form
overV.

Proposition 4.2.5. The geometric cubic for¥;, Op, (1), a;) overV extends uniquely to
a geometric cubic forniP, O(1), a) over AS.

Proof. DefineP = P((/NL/OA% -1)V). Letr : P — A be the structural morphism, then
P is a family of genug) curves overA$. Recall thatP?, = P((A;/Oy - 1)V), soP is an
extension of?, to AS. Letr, : P, — V be the structural morphism.

Since the complement &f in Aj, is of codimensior and AY, is smooth, the following
lemma shows thaDp, (1) can be extended uniquely to an invertible sh@af) of P over
A§ of relative degred, and the section; € I'(P;, Op,(3) @ 7} (A*m1.(Op,(1)))7!) can
be extended uniquely to the sectiore T'(P, Op(3) @ 7*(A*m.(Op(1)))"). In this way
we obtain a geometric cubic for(@®, O(1), a). O

Lemma 4.2.6. Suppose thal” is a noetherian, integral, regular, separated scheme. Let
U be an open subschemefwith a complement of codimension at ledst_et £ be an
invertible sheaf o/ ands € I'(U, £), then bothZ and s can be extended uniquely Ya
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Proof. SinceY is noetherian, integral, regular and separated, by [Hemgpter II, propo-
sition 6.11 and proposition 6.1Fic(Y) = CI(Y) and Pic(U) = CI(U). Since the
complement ofU/ has codimension at leagf by [Hart], chapter Il, proposition 6.5(b),
CI(U) = CI(Y). SoPic(U) = Pic(Y), i.e. every invertible sheaf oli can be extended
uniquely to an invertible sheaf dn.

Let £’ be the extension of to Y. Now that every invertible sheaf dii andY can
be embedded into the constant shé&gil/) = K(Y'), every sectiors € I'(U, £) can be
extended uniquely to a sectiehe T'(Y, L'). O

Proposition 4.2.7. The geometric cubic forr®, O(1), a) over Aj, is H-equivariant.

Proof. For any pointz on AS, denote by(P,, Op, (1), a,) the fiber of(P,O(1), a) at z.
We need to prove that the geometric cubic foff,,, Op,, (1), an,) on Spec(k(hz)) is
isomorphic to the geometric cubic for(®,, Op, (1), a,) onSpec(k(z)) foranyh € H.

Leth € H, A := h*Ais a cubic algebra ovek . We constructed as above a geometric
cubic form (P, Op/(1),d’) on AS corresponding tol’. Then the fiber of P/, Op/ (1), a)
atz is just(Py, Op, (1), aps).

Recall that the construction éf, doesn’t depend on the choices of basis, so the restric-
tion of (P, Op/(1),a’) onV and (P, Op,(1),a,) are the same. Sindg?, O(1),a) is the
unique extension of P, Op, (1), a;) to A, we have(P,O(1),a) = (P',Op:/(1),d’), in
particular their fibers at will be the same. 0J

The geometric cubic formiP, O(1), a) over A corresponds to &morphism of alge-
braic stackst” : #' = Aj — ¢. By propositiorT4.ZI7 F' factors through the quotient
o/ = [%'/H] and defines a-morphismF, : & — 4.

4.3 The correspondence is bijective

In this section we prove that tHemorphismsF; : ¢ — & andF, : &/ — ¢ are inverse
to each other. As a corollary, we get the main thedrem 1.

Proposition 4.3.1. Thel-morphismF; : 4 — o/ is left inverse taf, : &/ — 9.
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Proof. By theorenTZ.2]7 anld 2.3.2; is an open sub algebraic stack of the smooth Artin
stack .« with a complement of codimensioch Since F; is constructed as the unique
extension ofF}, we only need to prove thaft; o F}, is isomorphic to the identity orf.
Suppose thatl is a Gorenstein cubic algebra ovgrand F} (A) = (P,O(1),a). We use
the notation of section 4.2. Sinegeis a closed immersiod = 7,0Op. By definition of
O(1), we haveO(D) = O(3) @ 7*(A*m,O(1))71). Let J := O(-3) @ 7*(A*m,O(1)) =
O(-D). By definition, the sectiom € T'(P,O(3) ® 7*(A?r,.O(1))~!) correspond to

1 eI'(P,O(D)). So we have the commutative diagram of exact sequences

0 —— J s 0 o/ J —— 0

H H

0 — O(=D) —— O Op —— 0,

where 7’ is the image of7 in O undera. Sincel is obviously not a zero divisor of
['(P,O(D)), ais not a zero divisor. So by examfle Z11FL((P, O(1),a)) = m.(0O/T') =
m.Op = A andF, o F; is identity on”. O

Proposition 4.3.2. Thel-morphismF; : ¢ — o/ isrightinverse tof, : &/ — 9.

Proof. Since” is an open sub algebraic stack of the smooth Artin stdekith comple-
ment of codimensiord, we only need to prove that, o F; is identity on’”#’. Suppose
that (P, Op(1),a) is a primitive geometric cubic form ove§. Let J := Op(—-3) ®
™(AN’mOp(1)) = Op(-1) ® Qp,s. By proposition[3.3]1, the morphism of sheaves
J 5 Op is injective. LetJ’ be the image off in Op under the morphism. J' is

an ideal sheaf iDp, it defines an effective relative divis@ of P overS of degrees. In
other words, We have the commutative diagram of exact seggen

0 —— J — s Op —— Op/J —— 0

| H H

0 —— Op(—D) LN Op —— Op —— 0,

in which the first downward arrow is an isomorphism.
Let A := Fi((P,0Op(1),a)). Sincea is not a zero divisor, by example41l.1, we have
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A=7.(0/T") =7m.0p. Let Fy(A) = (P',Opi(1),d). By propositiof4.113, we have the
exact sequence
0— O0s 5 A— (m.0p(1))Y = 0.

By construction in 84.2P" = P((A/Os - 1)¥) = P(m.Op(1)) = P by the above exact
sequence. Lep : Spec(A) — P’ = P be the closed immersion constructed in 84.2.
Since Autg(P) acts strictly three times transitive di, we haveD’ := ¢(Spec(A)) =

D after applying an automorphism @. SoOp/(1) = Op/(D") ® Qp, g = Op(D) ®
Qps = (0p(3) @ T (A*m.0p(1)) ") ® Qp,g = Op(1). Denote the composition of these
isomorphisms by). Let 7, = Op/(—3) @ 7*(A*(7.Op:(1))). By the construction of/,

we have the following commutative diagram of exact sequence

a/

0 —— J1 Op/J —— 0
|

Op:
Op:
whereJ/ is the image of7; in Op under the morphisra’. Combining the above two com-
mutative diagram of exact sequences, we find that the isdmsm, : Op/(1) = Op(1)

induces an isomorphism betwe@a/ (3)@7* (A2, Op: (1))~ andO(3) @ m* (A*m. O(1)) !
sending:’ to a. S0Fy(A) = (P,Op(1),a) in ¥4 andF;, o F] is identity on#. O

0 — Op/(—D/) !

OD’ _— 07
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