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Summary

Economical data collected by Statistics Netherlands usually contains missing
items. Various imputation methods are available to fill in these gaps, so that
completed datasets can be analyzed using standard statistical tools. One of the
methods often used, the ratio imputation method, appears not to perform very
well if we want the completed data to satisfy certain restrictions.

This is our motivation to investigate other imputation methods. We look at
several methods that we subdivide over two groups. The first group consists
of methods based on models that assume a joint distribution for all variables
for an individual, and that these variables are all independent. Here we will
discuss methods that assumes the data are truncated normally distributed, or
exponentially distributed. We propose the proportional variance method, and
investigate various possible underlying models.

The second group is made up of methods that only specify certain conditional
distributions. Here we will investigate the commonly used ratio imputation
method and both the classical and the Bayesian variants of sequential regres-
sion imputation methods.

After we have discussed these methods, we repeatedly apply them to a dataset
provided by Statistics Netherlands in which we make a missing pattern our-
selves. We use the results of these simulations to assess the performance of the
methods on several criteria.
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Chapter 1

Introduction

Like all other national statistical agencies, Statistics Netherlands collects data
about society. These data come from different sources like databases, but also
from surveys and questionnaires. One of the most complete datasets of a pop-
ulation is a census, in which all individuals or units are contacted, and all their
characteristics are fully observed. Recently, agencies have started to use exter-
nal databases, for instance from local councils or the exchequer.

In practice, almost all datasets will contain missing items. A common way to
handle missing data is using imputation. Imputation essentially means filling
in missing data with estimated values. A very simple form of imputation is
to fill in the the average, which preserves the observed sample mean. Yet, this
diminishes the variance, misshapes the sample distribution and annihilates all
covariances, so examining other methods is worthwhile.

This thesis focuses on imputation methods applied to business surveys. Al-
though in The Netherlands businesses are under legal obligation to fill in these
surveys, there usually are enterprises that do not respond to all questions that
are being asked. There can be various reasons for this. The answer to a partic-
ular question may not be known to the the employee filling in the survey, or
it can be a lot of work to find the answer if the information requested by the
agency is not exactly the same as the information in the business’s accounting
system.

Business surveys contain micro-economical data. For us, this means that we
will be considering data that satisfy certain linear restrictions. For consis-
tency, imputed values should therefore also satisfy these conditions. A typical
scheme is to first apply an imputation method that does not account for the
restrictions. After that, the imputed values are adjusted so that the restrictions
are are satisfied, but still near their formerly values. More details on this op-
timization problem can be found in [De Waal 2003]. It seems to make sense
however to examine methods that use such conditions in the imputation pro-
cess itself. In this thesis, we will investigate methods that create imputations
which satisfy these conditions directly.
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1.1 Notation of survey data

Suppose a survey is carried out, and the results are put in a table, with each col-
umn representing a question or variable and each row a record with responses
from an individual. In the economical data we will be investigating, the in-
dividuals are businesses. In some literature, individuals are called elements
or units. Let X be the n × k matrix with as entries Xij the numerical values
individual i answered to question j. We call X a data matrix.

In chapter 3, where we discuss regression methods, we will adopt the notation
from regression theory. Then yi will denote the item we wish to impute and
xi = (x1, . . . , xk) will denote the explanatory information for unit i. For n
observed units, we get a vector y of length n and a n × k design matrix which
we also denote by X . It will be always be clear from the context if we use X
for the data matrix or for a design matrix.

Finally, we define the n × k indicator matrix M where the entry mij = 1 if
individual i replies to question j and mij = 0 if he does not. We denote the set
of indices for which Xij is missing by mis, and the index set of the observed
items by obs. It should be clear from the context whether we mean the column
or row indices.

1.2 Errors in survey data

In general, survey data are collected to say something about a population. That
is, we wish to estimate a population parameter. There are many different kinds
of possible errors in such estimations. Sampling errors are errors that occur be-
cause not all units or individuals of a population are observed in a survey, but
only a sample of them. Therefore the information extracted from the observed
units may differ from what we could have known if we would have observed
the whole population. There is not much we can do about sampling errors,
apart from choosing a suitable sampling design that does not lead to systemat-
ical errors, or take a census of a population instead of a sample from it.

In contrast, non-sampling errors are errors in sample estimates that cannot be
attributed to sampling fluctuations. This type of error can still occur even if
all units are in the survey. Frame errors occur if the register or database from
which the sample is drawn , i.e. the frame, does not correspond exactly to the
population that was the target of the investigation. If individuals are in the
frame but not in the population, we speak of over-coverage. The other way
round, if there are individuals in the population that are not in the frame we
have under-coverage. The question of what should be considered as a unit is
more difficult in a business survey than for instance in a survey in which the
population consists of natural persons.

Another kind of a non-sampling error is non-response, i.e. data that are not
observed for individuals that were selected in a sample. Generally, we distin-
guish two different types of non-response. The information missing as a result
of an individual’s complete failure to respond, is called unit non-response. If an

5



individual has answered at least one question, the missing items are called item
non-response. In this thesis we will only consider item non-response, in order
to be able to use the information of available items to say something about the
missing information.

A third type are measurement errors. These errors occur if a value is observed,
but it is incorrect. Some mistakes can be obvious, for instance if a respondent
fills in too many zeros, but others are difficult to find. Finally, processing errors
are due to the process at the statistical agency itself, e.g. typos or adjusted
values that were actually correct.

Detecting errors in surveys is a discipline in itself, and is called editing, see e.g.
[Chambers 2001]. Once errors have been localized, it is common practice to set
them to missing so that an imputation procedure can be used to correct these
values. We will not discuss error detection, but only consider non-response.

1.3 Assumptions on the missing data mechanism

In the ideal situation, we would know the mechanism that generates non-
response in our surveys and would use that information in our models. In
practice however, the mechanism is hardly ever known, so we want to have
assumptions under which we do not need that information.

Suppose the distribution of the completely observed data depends on a param-
eter θ. Write the probability density of an element Mij of the indicator matrix
of X as π(mij |xi,mis, xi,obs, φ) with φ as a parameter that does not affect the
data directly, but only via the missing data mechanism. We assume that the
parameters θ of the distribution of the data and φ of the response mechanism
are distinct. This means the joint parameter space for (θ, φ) is the Cartesian
product of the individual parameter spaces for θ and φ. From a Bayesian point
of view, it means the joint prior distribution of (θ, φ) can be written as a product
of independent marginal prior distributions for θ and φ.

Using this notation, Rubin developed three possible assumptions for missing
data:

• The data are called missing at random (MAR) if the conditional distribu-
tion of Mij depends on the observed, but not on the unobserved part of
the data. Thus π(mij |xi,mis, xi,obs, φ) is constant in xi,mis and we may
write π(mij |xi,obs, φ).

• The data are said to be missing completely at random (MCAR) if Mij and Xij

are mutually independent for all values of i and we may write π(mij |φ)
for π(mij |xi,mis, xi,obs, φ).

• If Mij depends on both the observed and the missing part of the data,
then Robin calls the data not missing at random (NMAR). In that case the
probability of response depends on the actual value of the response.

It is clear that for NMAR data we cannot ignore the missing mechanism, but
need to model it in order to be able to say anything about the distribution of the
data. If the combination of MAR with distinct parameters for the data and the
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non-response model holds, the missing data mechanism is called ignorable. In
that case the likelihood of the data factors in a part that depends solely on θ and
a part that depends solely on φ. So both in maximum likelihood estimation and
Bayesian analysis, we do not need to know anything about the non-response
mechanism as long as it is ignorable. In this thesis, we will always assume
ignorability.

Because of the advantages of ignorability, it is tempting to assume MAR. The
risk is that it is adopted without proper reasons. It is well known that in social
surveys respondents which are relatively far from the average are more likely
not to answer questions about social sensitive variables than others. In busi-
ness surveys we may expect that these effects play a lesser role. Especially in
larger companies, the person who fills in the questionnaire will in general not
perceive the information sensitive.

Apart from these considerations that make it seem reasonable to believe we
can assume MAR, we would be more confident if we could somehow test the
data for MAR. Unfortunately, Gill, Van der Laan and Robins [Gill 1996] show
that such a test does not exist. To be more precise, they prove that for a discrete
random variable taking values in a finite sample space under a non-parametric
model, for any observed outcome there exists a MAR missing data mechanism
and a complete data distribution such that the distribution of the observed data
is the marginal of the joint distribution of these two.

In this thesis we will consider continuous data with missing items, but in re-
ality, businesses can only fill in integer values for most variables in question-
naires sent out by Statistics Netherlands. The reason we consider them to be
continuous, is that we may apply more models.

1.4 Dealing with non-response

The easiest way to handle non-response is to do nothing and simply discard
all records that are not completely observed. However, using this complete case
analysis a lot of information is lost. Another option is to consider only records
for which a particular variable of interest is observed, a strategy known as
available case analysis. This would do slightly better than the complete case
analysis, since more information can be used.

Better alternatives are the EM algorithm, which can find maximum likelihood
estimates in cases where data are missing, and weighting, a popular method
to correct for unit non-response. This method assigns a weight to each unit,
compensating for supposedly similar units that did not respond. The similarity
is expressed in an auxiliary variable. For valid estimates the data should satisfy
the MAR assumption with respect to that auxiliary variable.

Imputation methods, on which this thesis focuses, fill in missing parts of data
with estimated values. This is a very common procedure in survey data. There
are three major reasons for that. Firstly, the procedure has to be carried out only
once, and the data collector can use his knowledge of the data. Secondly, once
the dataset is imputed, analysts can use their standard complete data method
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to study the data. Thirdly, imputation methods can, in contrast to weight-
ing, use all information available from the partly observed record. Although it
might not be necessary for all statistical purposes, we want to impute missing
values consistent with the data available, because end-users appreciate it.

1.5 Classification of imputation methods

Over time, a lot of different imputation methods have been developed. An
imputation method is called deterministic if, for a fixed dataset with missing
entries, it will always fill in the same values. Stochastic methods, sometimes
called also called random methods, use a random draw from a distribution.

The most commonly used imputation methods are

• Deductive or logical imputation
If the value of a missing item can be derived immediately from the ob-
served values in the dataset, the best thing to do is to fill in that value. In
this case the imputation is called deductive or logical.

• Cold deck imputation
Sometimes missing items can be replaced by a value found in another
source, or in the same data for a previous period. This is called cold deck
imputation.

• Hot deck imputation
Hot deck imputation also takes another value, but takes it from within
the dataset itself. Sequential hot deck just takes a value of the last unit that
did respond, so this depends on the way the dataset is sorted. Nearest
neighbour imputation uses a distance function to find a record from which
to copy its values. If the distance function uses a regression analysis,
the method is called predictive mean matching. There are also stochastic
variants of the nearest neighbour imputation method, that do not not
take the nearest record but choose randomly from a few nearby records.

• Mean imputation
The mean imputation method fills missing entries with the sample mean
of the respondents’ values Often the mean of a subset of the respondents
is used, to impute the sample mean of a certain class. Mean imputation
is a special case of regression imputation, but with no auxiliary informa-
tion.

• Regression imputation
Regression models use covariates to explain the behaviour of a variable
with missing items. The maximum likelihood estimator is then used to
infer the missing value, see section 3.1 and further for examples of regres-
sion models. This method is sometimes called predictive regression imputa-
tion, deterministic regression imputation or conditional mean imputation, but
these names all refer to the same method. The special case of regression
imputation where the variance of the missing variable is modeled to be
proportional to a single explanatory variable is called ratio imputation,

8



see section 3.4. The regression imputation method can be made stochas-
tic by adding an error term to the predictor value found by the regression
model. An other way to make it stochastic is to draw the parameters from
a posterior distribution instead of calculating their maximum likelihood
estimates.

• imputation with the EM algorithm The Expectation Maximization (EM) al-
gorithm is a method for finding maximum likelihood estimates for statis-
tics in datasets with missing items, see section 2.2. If you use the method
to estimate the parameters of a distribution the data are supposed to fol-
low, you can use it to impute the missing values.

• sequential regression The sequential regression method repeatedly applies
a regression model for each variable conditioned on all other variables.
The process is repeated until it converges. There is however in general
no theory guaranteeing convergence. See section 3.3.
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Chapter 2

Imputation models assuming
independence

In this chapter we will investigate models assuming all items Xij are indepen-
dently distributed. First we will discuss some well known theory about nor-
mally distributed data with missing parts and truncation. Then we describe a
model that assumes the data are exponentially distributed. In section 2.5 we
suggest a new method, the proportional variances method. We will investi-
gate two models that give rise to this method: one that assumes normality, and
another that assumes a Poisson distribution.

2.1 Multivariate normal data with a missing and an
observed part

Suppose X is a multivariate normally distributed column vector of length k.
We partition X into two parts X = (XT

1 , XT
2 )T . Keeping in mind our missing

data problem, X1 could represent the unobserved part and X2 the observed
part of the variable X . The following theorem, from [Anderson 1971], gives us
the conditional distribution of X1 given X2.
Theorem 2.1.1. Let X be a multivariate normally distributed random variable with
mean vector µ and covariance matrix Σ, shorthand X ∼ Nk(µ,Σ). Suppose we parti-
tion X into X1 of length m and X2 of length k−m and partition µ and Σ accordingly,
i.e.

(
X1

X2

)
∼ Nk

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
then

X1|X2 ∼ Nm(µ1.2,Σ11.2)

10



where

µ1.2 = µ1 + Σ12Σ−1
22 (X2 − µ2) (2.1)

Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21. (2.2)

Proof. We would like to find a transformation Y1 = X1 + BX2 with B a matrix
such that Y1 and X2 are uncorrelated. Note that

Cov(Y1, X2) = E[(Y1 − EY1)(X2 − EX2)T ]

= E[(X1 + BX2 − EX1 −BEX2)(X2 − EX2)T ]

= E[((X1 − EX1) + B(X2 − EX2))(X2 − EX2)T ]

= E[(X1 − EX1)(X2 − EX2)T ] + BE[(X2 − EX2)(X2 − EX2)T

= Σ12 + BΣ22

so for this to be zero, B = −Σ12Σ−1
22 will do. Applying this transformation

leads to

Y =
(

Y1

X2

)
=

(
I −Σ12Σ−1

22

0 I

)
X

which is multivariate normally distributed with mean

E(Y ) = E

(
Y1

X2

)
=

(
µ1 − Σ12Σ−1

22 µ2

µ2

)
and covariance matrix

Cov(Y ) =
(

Σ11 − Σ12Σ−1
22 Σ21 0

0 Σ22

)
.

We see that it helps to define

Ỹ = X1 − µ1 − Σ12Σ−1
22 (X2 − µ2) (2.3)

because then, according to our previous calculations(
Ỹ
X2

)
∼ Nk

((
0
µ2

)
,

(
Σ11 − Σ12Σ−1

22 Σ21 0
0 Σ22

))
which means Ỹ and X2 are independent. We calculate the characteristic func-
tion of X1 given X2:

φ(u)X1|X2 = E[eiuT X1 |X2] = E
[
eiuT Ỹ +iuT (µ1+Σ12Σ

−1
22 (X2−µ2))|X2

]
= eiuT (µ1+Σ12Σ

−1
22 (X2−µ2))E

[
eiuT Ỹ |X2

]
= eiuT (µ1+Σ12Σ

−1
22 (X2−µ2))E

[
eiuT Ỹ

]
= eiuT (µ1+Σ12Σ

−1
22 (X2−µ2))e−

1
2 uT (Σ11−Σ12Σ

−1
22 Σ21)u

= eiuT (µ1+Σ12Σ
−1
22 (X2−µ2))− 1

2 uT (Σ11−Σ12Σ
−1
22 Σ21)u

= eiuT µ1.2− 1
2 uT Σ11.2u

and see that this is the characteristic function of a Nm(µ1.2,Σ11.2) distribution.
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If we can estimate the parameters µ1.2 and Σ12, theorem 2.1.1 gives us an es-
timation of the distribution of the unobserved part of a normally distributed
vector, given the observations. We can use a sample from this distribution to
impute the missing data. We can also fill in the expectation to get a determin-
istic imputation method.

2.2 EM algorithm

In order to use the formula found in the previous section, we still need to esti-
mate µ and Σ. The usual estimators are not applicable, because of the missing
data. Since it is too complicated to calculate the likelihood of the observed data,
we need to do something else. The Expectation-maximization (EM) algorithm
is suitable for this situation.

The main idea of the EM algorithm is very intuitive. It is to fill in missing
values with some estimates, from which we reestimate the parameters, from
which we can reestimate the missing values again, and repeat this iteration un-
til the parameter estimates converge. If the underlying distribution is part of
an exponential family, we estimate the expectation of the observations them-
selves, and otherwise we estimate the log-likelihood.

Suppose more generally that we want to estimate a parameter θ of the dis-
tribution of a data matrix X of which some part is observed, Xobs and some
part Xmis is not. If in an iteration of the algorithm θ(t) is the current estimator
for parameter θ, the E step calculates the expected log-likelihood as if the θ(t)

would equal the true parameter θ and as described in [Schafer 1997] finds

Q(θ|θ(t)) = Eθ(t) [`(X, θ)|Xobs].

The M step of the EM algorithm maximizes the expected log-likelihood over θ
and gives

θ(t+1) = argmaxθQ(θ|θ(t)).

In a more general version of the EM algorithm, the M step does not have to
find the maximum, but only a better value , i.e. θ(t+1) such that

Q(θ(t+1)|θ(t)) ≥ Q(θ(t+1)|θ(t+1)).

This type of algorithms are called Generalized Expectation-maximization algo-
rithms. We now have to show that with every update of θ(t), we get a better
value of the log-likelihood. The next theorem is from [Schafer 1997].
Theorem 2.2.1. If we choose a θ(t+1) such that for all θ

Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t)) (2.4)

then
`(Xobs, θ

(t+1)) ≥ `(Xobs, θ
(t)). (2.5)

Proof. The distribution of the complete data can always be written as

P (X|θ) = P (Xobs|θ)P (Xmis|Xobs, θ)
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and by taking the log we see that

`(X, θ) = `(Xobs, θ) + log P (Xmis|Xobs, θ)

so by rearranging the terms we get

`(Xobs, θ) = `(X, θ)− log P (Xmis|Xobs, θ).

Define
H(θ|θ(t)) = Eθ(t) [log P (Xmis|Xobs, θ)|Xobs]

and note that `(Xobs, θ) does not depend on Xmis. Hence,

Eθ(t) [`(Xobs, θ)|Xobs] = `(Xobs, θ)

and if we take expectations under θ(t) conditioned on Xobs we get

`(Xobs, θ) = Eθ(t) [`(X, θ)− log P (Xmis|Xobs, θ)|Xobs]
= Eθ(t) [`(X, θ)|Xobs]− Eθ(t) [log P (Xmis|Xobs, θ)|Xobs]

= Q(θ|θ(t))−H(θ|θ(t)).

Now write

`(Xobs, θ
(t+1))− `(Xobs, θ

(t)) = Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t))

+ H(θ(t)|θ(t))−H(θ(t+1)|θ(t)).

We see that, since we chose θ(t+1) such that 2.4 holds, it suffices to show that

H(θ(t)|θ(t))−H(θ(t+1)|θ(t)) ≥ 0

Looking at the opposite we see

H(θ(t+1)|θ(t))−H(θ(t)|θ(t)) = Eθ(t) [log P (Xmis|Xobs, θ)|Xobs]

− Eθ(t) [log P (Xmis|Xobs, θ
(t))|Xobs]

= Eθ(t) [log
P (Xmis|Xobs, θ

(t+1))
P (Xmis|Xobs, θ(t))

|Xobs]

≤ log Eθ(t) [
P (Xmis|Xobs, θ)

P (Xmis|Xobs, θ(t))
|Xobs]

= log
∫ [P (Xmis|Xobs, θ

(t+1))
P (Xmis|Xobs, θ(t))

]
P (Xmis|Xobs, θ

(t))dymis

= log
∫

P (Xmis|Xobs, θ
(t+1))dymis

= log 1 = 0

which is the the desired result. The inequality (*) uses the fact that the loga-
rithm is a concave function, so Jensen’s inequality can be applied.

Since {Q(t)}t ∈ N is a positive increasing sequence, the algorithm converges.
If the distribution of X with parameter θ is an exponential family, that is, if it
can be written in the form

f(x) = a(θ)b(x) exp
(
c(θ)t(x)

)
,

then we only need to find the expected values of the sufficient statistic t(x)
of the complete data, instead of the conditional expectation of the likelihood
itself. See [Tempelman 2007], p. 42 for more details.
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2.3 Truncated normal data

In the previous section we derived the conditional distribution of a missing
part given an observed part of a normally distributed random vector. But we
want to do more. We would like to get inferences that satisfy restrictions on the
data. The way to do that, is to restrict the distribution to a permitted region. In
econometrics these conditional distributions are called truncated distributions.

Let X be a multivariate normally distributed k-vector with expectation µ and
covariance matrix Σ, shorthand X ∼ Nk(µ,Σ). Then X̃ is called the truncation
of X to permitted region G ⊂ Rk if it is multivariate normally distributed with
parameters µ and Σ conditionally on the event X ∈ G. We say X̃ is truncated
multivariate normally distributed and we write X̃ ∼ Nk(µ,Σ)|G.

The mean of the truncated normal distribution If the mean of the original
non-truncated variable µ is not in the middle of the permitted region, the trun-
cation shifts the mean. We can express the mean of the truncated version in
terms of the original µ and σ. To simplify notation, we look at the univariate
case, where a variable X ∼ N (µ, σ2) is truncated to the interval (a, b) ⊂ R.

E(X̃) = E(X|X ∈ G) =

∫ b

a
σ−1φ

(
x−µ

σ

)
xdx

Φ(zb)− Φ(za)

=

∫ zb

za
φ(z)(µ + σz)dz

Φ(zb)− Φ(za)
= µ

∫ zb

za
φ(z)dz

Φ(zb)− Φ(za)
+ σ

∫ zb

za
zφ(z)dz

Φ(zb)− Φ(za)

= µ + σ

1√
2π

∫ zb

za
z exp(− 1

2z2)dz

Φ(zb)− Φ(za)
= µ + σ

1√
2π

[
− exp(− 1

2z2)
]za

zb

Φ(zb)− Φ(za)

= µ + σ
−

(
φ(zb)− φ(za)

)
Φ(zb)− Φ(za)

= µ− σ
φ(zb)− φ(za)
Φ(zb)− Φ(za)

where za = (a− µ)/σ and zb = (b− µ)/σ.

The next theorem, from [Tempelman 2007] links truncation with linear trans-
formations. As you would expect, it does not matter whether you first truncate
and then apply such a transformation, or the other way round, first transform
and then truncate with respect to the transformed permitted region.
Theorem 2.3.1. Let G ⊂ Rk, X̃ ∼ Nk(µ,Σ)|G and D a nonsingular k × k matrix.
Then

DX̃ ∼ Nk(Dµ, DΣDT )|T,

with T = DG = {DX̃, X̃ ∈ G}.

Proof. Take L from the definition of the multivariate normal distribution such
that Σ = LLT . We know that for the non-truncated version X of X̃ we can
write X = µ + LZ with Z a vector with independent N (0, 1) distributed ran-
dom variables. So for any b ∈ Rk

P (µ + LZ ≤ b) =
∫

z:µ+Lz≤b

k∏
i=1

1√
2π

e−
1
2 z2

i dz.
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Note that Z = L−1(X−µ), so since X̃ takes values in G, Z should be truncated
to the set G̃ = L−1(G− µ). Therefore,

P (DX̃ ≤ b) =
1{Z∈G̃}

C
P (Dµ + DLZ ≤ b)

=
1{Z∈G̃}

C

∫
z:Dµ+DLz≤b

k∏
i=1

1√
2π

e−
1
2 z2

i dz

where C is the normalization constant from the definition of truncation.

Now, apply the change of variables ξ = Dµ+DLz. This is a linear transforma-
tion with Jacobian ∂z/∂x = L−1D−1 which has determinant det(DΣDT )−

1
2 .

det(L−1D−1) = det(L−1)det(D−1) = (detΣ)−
1
2 det(D−1)

= (detΣ)−
1
2 det(D− 1

2 D− 1
2 ) = (detΣ)−

1
2 det(D− 1

2 )det(D− 1
2 )

= (detΣ)−
1
2 (detD)−

1
2 (detDT )−

1
2

= det(DΣDT )−
1
2 .

Also note that∑
z2
i = zT z = ((DL)−1(ξ − µ))T ((ξ − µ)(DL)−1)

= (ξ −Dµ)T (L−1D−1)T (ξ −Dµ)(L−1D−1)

= (ξ −Dµ)T (DT )
−1

(L−1)
T
L−1D−1(ξ −Dµ)

= (ξ −Dµ)T (DT )
−1

(LLT )−1D−1(ξ −Dµ)

= (ξ −Dµ)T (DT )
−1

(Σ)−1D−1(ξ −Dµ)

= (ξ −Dµ)T (DΣDT )−1(ξ −Dµ).

Finally, note that if Z ∈ G̃, this means ξ ∈ Dµ+DLG̃ = Dµ+DLL−1(G−µ) =
DG = T . Therefore also P (X ∈ G) = P (DX ∈ T ) and the normalization
constant C remains the same. Hence,

P (DX̃ ≤ b) =
1{ξ∈T}

C

∫
ξ:ξ≤b

1
(2π)k/2

√
det(DΣDT )

e−
1
2 (ξ−Dµ)T (DΣDT )−1(ξ−Dµ)dξ.

Example: MLE for the left truncated normal distribution

In this example, we suppose X1, X2, . . . , Xn ∼ N (µ, σ2) i.i.d. random vari-
ables. Now let be given that Xi ≥ 0 for all i = 1, . . . , n. What is the maximum
likelihood estimator (MLE) for µ and σ?

Each xi has density function

f(x) =
σ−1φ

(
(x− µ)/σ

)
1− Φ(−µ/σ)

(2.6)
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and the variables X1, X2, . . . , Xn are all independent, so their joint density is

f(x1, . . . , xn) =
σ−n

∏n
i=1 φ

(
(x1 − µ)/σ

)(
1− Φ(−µ/σ)

)n

which gives log-likelihood

`(µ, σ) = −n log σ +
n∑

i=1

log φ
(
(xn − µ)/σ

)
− n log

(
1− Φ(−µ/σ)

)
= −n log σ +

n∑
i=1

(
−1

2
log(2π)− 1

2
(xi − µ

σ

)2
)
− n log

(
1− Φ(−µ/σ)

)
= −n log σ − n

2
log(2π)−

n∑
i=1

1
2

(
xi − µ

σ

)2

− n log
(
1− Φ(−µ/σ)

)
.

The derivatives with respect to µ and σ are

∂`(µ, σ)
∂µ

=
n∑

i=1

(xi − µ

σ2

)
− n

σ

φ(−µ/σ)
(1− Φ(−µ/σ))

(2.7)

∂`(µ, σ)
∂σ

= −n

σ
+

n∑
i=1

(xi − µ)2

σ3
+

n

σ2

µφ(−µ/σ)
1− Φ(−µ/σ)

. (2.8)

We can use numerical methods to set the equations (2.7) and (2.8) to zero and
find the maximum likelihood estimators for µ and σ.

2.3.1 Truncated normal with a missing and an observed part

Partition X in an observed part X1 and a missing part X2, like we did in section
2.1. Assume X ∼ Nk(µ,Σ)|G and, and apply theorem 2.3.1 on X with

D =
(

I −Σ12Σ−1
22

0 I

)
chosen as in the proof of theorem 2.1.1 so that

D(X − µ) =
(

X1 − µ1 − Σ12Σ−1
22 (X2 − µ2)

X2.

)
Theorem 2.3.1 now tells us D(X − µ) is also truncated multivariate normal,
with a vector of zeros as mean and covariance matrix

DΣDT =
(

Σ11 − Σ12Σ−1
22 Σ21 0

0 Σ22

)
(2.9)

so just like in the proof of theorem 2.1.1, we see the two parts X1 and X2 are
independent. This means X1−µ1|X2 is truncated multivariate normal too, but
with mean vector Σ12Σ−1

22 (X2 − µ2) and covariance matrix Σ11 − Σ12Σ−1
22 Σ21

and we conclude
X1|X2 ∼ N (µ1.2,Σ11.2)|T. (2.10)
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Figure 2.1: A histogram of variable bt34600t. The dashed line shows an exponential
distribution fitted to the data.

where T is the region dependent on X2 in which X1 must take values to make
sure X takes values in G.

The fact that the conditional distribution of a partition of a truncated normal
is again truncated normal is a nice property. But you have to take into account
that the permitted region may also need to be transformed. Horrace shows that
if you do not do that, the only transformation that leads to a truncated normal
distribution again is the identity [Horrace 2005].

In our missing data problem, we can use truncated normal distributions to
model the missing items. Due to the structure of the datasets we will be looking
at, we will always be able determine a region in which the missing values must
lie in.

2.4 Exponential distributions

In the previous sections, we considered normally distributed data. Let us now
have a look at the distribution of a single variable. Figure 2.1 shows a typical
histogram of a column of the dataset we will investigate. It seems appropriate
to model the distribution of a single column with an exponential distribution.
Since in our dataset we know the some of a record, our aim is to find the condi-
tional expectation of a single exponentially distributed random variable, given
a sum of exponentials in which it is part.
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In the following lemma, from [Balazs 2005], we calculate the distribution of the
sum of independently distributed exponential random variables.
Lemma 2.4.1. Let Xi for i = 1, . . . n with n ≥ 2 be independent exponentially
distributed random variables with pairwise distinct parameters λi > 0. Then the
density of the sum X1 + . . . + Xn is

fX1+...+Xn(z) =
( n∏

i=1

λi

) n∑
j=1

e−λjz∏n
k=1,k 6=j(λk − λj)

(2.11)

for z ≥ 0.

Proof. We prove the lemma using induction with respect to n. For n = 2 we see

fX1+X2(z) =
(
fX1 ∗ fX2

)
(z) =

∫ z

0

fX1(x)fX2(z − x)dx

=
∫ z

0

λ1e
−λ1xλ2e

−λ2(z−x)dx

= λ1λ2e
−λ2z

∫ z

0

e(λ2−λ1)xdx = λ1λ2e
−λ2z

[
1

(λ2 − λ1)
e(λ2−λ1)x

]x=z

x=0

= λ1λ2e
−λ2z

(
e−λ2ze−λ1z

(λ2 − λ1)
− 1

(λ2 − λ1)

)
= λ1λ2

(
e−λ1z

(λ2 − λ1)
− e−λ2z

(λ2 − λ1)

)
= λ1λ2

(
e−λ1z

(λ2 − λ1)
+

e−λ2z

(λ1 − λ2)

)
and therefore (2.11) holds. Now let n ≥ 3 and suppose that statement (2.11) is

18



true for n− 1. Then

fX1+X2+...Xn(z) =
(
fX1+X2+...Xn−1 ∗ fXn

)
(z)

=
([n−1∏

i=1

λi

] n−1∑
j=1

e−λjx∏n−1
k 6=j,k=1(λk − λj)

∗ λne−λnx

)
(z)

=
∫ z

0

(n−1∏
i=1

λi

) n−1∑
j=1

e−λjxλne−λnx∏n−1
k 6=j,k=1(λk − λj)

dx

=
( n∏

i=1

λi

) n−1∑
j=1

1∏n−1
k 6=j,k=1(λk − λj)

∫ z

0

e−λjxe−λn(z−x)dx

=
( n∏

i=1

λi

) n−1∑
j=1

1∏n−1
k 6=j,k=1(λk − λj)

e−λnz

∫ z

0

e(λn−λj)xdx

=
( n∏

i=1

λi

) n−1∑
j=1

1∏n−1
k 6=j,k=1(λk − λj)

e−λnz

[
1

(λn − λj)
e(λn−λj)x

]x=z

x=0

=
( n∏

i=1

λi

) n−1∑
j=1

1∏n−1
k 6=j,k=1(λk − λj)

e−λnz

(
e(λn−λj)z

(λn − λj)
− 1

(λn − λj)

)

=
(n−1∏

i=1

λi

) n−1∑
j=1

1∏n−1
k 6=j,k=1(λk − λj)

e−λnz

(
eλjz

(λn − λj)
− e−λnz

(λn − λj)

)

=
(n−1∏

i=1

λi

) n−1∑
j=1

e−λjz − e−λnz

(λn − λj)
∏n−1

k 6=j,k=1(λk − λj)
.

We have to show that

n−1∑
j=1

e−λjz∏n
k 6=j,k=1(λk − λj)

−
n−1∑
j=1

−e−λnz∏n
k 6=j,k=1(λk − λj)

=
n∑

j=1

e−λjz∏n
k=1
k 6=j

(λk − λj)
. (2.12)

Subtracting the first sum on both sides gives

−
n−1∑
j=1

−e−λnz∏n
k 6=j,k=1(λk − λj)

=
e−λnz∏n−1

k=1
(λk − λn)

.

We see that the expression on the right hand side would be th n-th term of the
sum on the left. So (2.12) holds if and only if

−
n∑

j=1

1∏n
k 6=j,k=1(λk − λj)

= 0

Multiply numerator and denominator by
∏

1≤k,l≤n
k 6=l 6=j

(λk − λl)

n∑
j=1

1∏n
k 6=j,k=1(λk − λj)

=
n∑

j=1

∏n
k 6=l 6=j
k,l=1

(λk = λl)∏
1≤k,l≤n

l 6=l
(λk − λl)

.
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This is zero if and only if

n∑
j=1

n∏
k 6=l 6=j
k,l=1

(λk = λl) = 0. (2.13)

Rewriting this expression gives

n∑
j=1

n∏
k 6=l 6=j
k,l=1

(λk − λl)

=
n∑

j=1

∏
1≤k,l≤n
j 6=k 6=l 6=j

(λk − λl)
∏

1≤l≤n
k=j,l 6=j

(λk − λl)

=
n∑

j=1

∏
1≤k,l≤n
j 6=k 6=l 6=j

(λk − λl)
∏

1≤l<j
k=j

(λk − λl)
∏

j<l≤n
k=j

(λk − λl)

= ±
n∑

j=1

∏
1≤l<k
1≤k≤n
k 6=j,l 6=j

(λk − λl)2
∏

1≤l<j
k=j

(λk − λl)
∏

j<l≤n
k=j

(λk − λl)

= ±
n∑

j=1

∏
1≤l<k
1≤k≤n
k 6=j,l 6=j

(λk − λl)2
∏

1≤l<j
k=j

(λk − λl)
∏

j<k≤n
l=j

(λk − λl)(−1)n−j

= ±
n∑

j=1

∏
1≤l<k
1≤k≤n
k 6=j,l 6=j

(λk − λl)
( ∏

1≤l<k
1≤k≤n

j 6=k 6=l 6=j

(λk − λl)
∏

1≤l<j
k=j

(λk − λl)
∏

j<k≤n
l=j

(λk − λl)
)

(−1)n−j

= ±
n∑

j=1

∏
1≤l<k
1≤k≤n
k 6=j,l 6=j

(λk − λl)
( ∏

1≤l<k
1≤k≤n

(λk − λl)
)

(−1)n−j

= ±
∏

1≤l<k
1≤k≤n

(λk − λl)
n∑

j=1

∏
1≤l<k
1≤k≤n
k 6=j,l 6=j

(λk − λl)(−1)n−j

which is zero if and only if

n∑
j=1

∏
1≤l<k
1≤k≤n
k 6=j,l 6=j

(λk − λl)(−1)j (2.14)

is zero. The product in (2.14) is the determinant of a Vandermonde matrix of
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order n from which the j-th row and the (n−1)-th column have been removed:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ1 λ2
1 . . . λn−2

1

1 λ2 λ2
2 . . . λn−2

2
...

...
...

. . .
...

1 λj−1 λ2
j−1 . . . λn−2

j−1

1 λj+1 λ2
j+1 . . . λn−2

j+1
...

...
...

. . .
...

1 λn λ2
n . . . λn−2

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Consequently, (2.14) is the expansion with respect to its second column of a
Vandermonde determinant of order n with the last column removed and an
extra column of ones added in front.∣∣∣∣∣∣∣∣∣

1 1 λ1 λ2
1 . . . λn−2

1

1 1 λ2 λ2
2 . . . λn−2

2
...

...
...

...
. . .

...
1 1 λn λ2

n . . . λn−2
n

∣∣∣∣∣∣∣∣∣
This determinant is zero because its columns are linearly dependent. There-
fore, (2.14) is zero too and (2.13) holds. Now we have completed the induction
step.

Let Xi for i = 1, . . . n with n ≥ 2 be independent exponentially distributed
random variables with pairwise distinct parameters λi and let z > 0. We use
lemma 2.4.1 to calculate the conditional expectation that we were looking for.

E(X1|X1 + . . . + Xn = z)

=
1

fX1+...+Xn(z)

∫ z

0

xλ1e
−λ1xfX2+...+Xn(z − x)dx

= C(z)
∫ z

0

xλ1e
−λ1x

( n∏
i=2

λi

) n∑
j=2

e−λj(z−x)∏n
k=2
k 6=j

(λk − λj)
dx

= C(z)
∫ z

x=0

xe−λ1x
n∑

j=2

e−λj(z−x)∏n
k=2
k 6=j

(λk − λj)
dx

= C(z)
n∑

j=2

1∏n
k=2
k 6=j

(λk − λj)
e−λjz

∫ z

x=0

xe(λj−λ1)xdx

= C(z)
n∑

j=2

1∏n
k=2
k 6=j

(λk − λj)
e−λjz

(−e−(λ1+λj)z
(
z(λ1 + λj) + 1

)
+ 1

(λ1 + λj)2

)
(2.15)

with

C(z) =
[( n∏

i=1

λi

) n∑
j=1

e−λjz∏n
k=1
k 6=j

(λk − λj)

]−1

=
[ n∑

j=1

e−λjz∏n
k=1
k 6=j

(λk − λj)

]−1
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To get equation (2.15) we evaluated the integral∫ z

0

xe−(λ+µ)xdx =
[

−x

(λ + µ)
e−(λ+µ)x

]x=z

x=0

−
∫ z

0

−1
(λ + µ)

e−(λ+µ)xdx

=
(

−z

(λ + µ)
e−(λ+µ)z − 0

)
+

1
(λ + µ)

∫ z

0

e−(λ+µ)xdx

=
−ze−(λ+µ)z

(λ + µ)
+

1
(λ + µ)

[
−1

(λ + µ)
e−(λ+µ)x

]x=z

x=0

=
−ze−(λ+µ)z

(λ + µ)
+

1
(λ + µ)

(
−e−(λ+µ)z

(λ + µ)
− −1

(λ + µ)

)
=
−z(λ + µ)e−(λ+µ)z − e−(λ+µ)z + 1

(λ + µ)2

=
−e−(λ+µ)z

(
z(λ + µ) + 1

)
+ 1

(λ + µ)2
.

2.5 The proportional variances method

Suppose again we partition a record Xi· into a missing and an observed part
(XT

i,mis, X
T
i,obs)

T with the restriction Xik =
∑k−1

j=1 Xij , and let l ∈ mis. We
wish to infer Xil, which is a missing item. Suppose that the total

∑k−1
j=1 Xij is

observed. If more than one item is missing, we do not know Xi,l, but since
we know the total, we do know some sum where Xij is part in. Namely,∑

j∈mis Xij =
∑k−1

j=1 Xij −
∑

j∈obs Xij , and those last two terms on the right
hand side are observed.

During our investigations, we thought about an estimator for missing value
Xil:

µl∑
j∈mis µj

∑
j∈mis

Xij

where we used the means over the observed values in a column j for µj . This
turned out to lead to good imputations. In this section, we will be looking for
models that give rise to this estimator. That is, we want models such that

E
(
Xil|

∑
j∈mis

Xij

)
=

µl∑
j∈mis µj

∑
j∈mis

Xij . (2.16)

The first model we will consider assumes normality. This is a bit of a strange
assumption, but it leads to the insight that estimator (2.16) is related to mod-
els in which the variance is proportional to the mean. Hence the name pro-
portional variances method. This insight then brings us to the idea of using
Hachemeister and Stanard’s Poisson model, which is widely used in actuarial
science [Mack 1999].
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2.5.1 The normal model with proportional variances

Let the variable X·j for j = 1, . . . , k and i fixed be independently normally
distributed, each with its own mean µj and variance σ2

j . Then the sum of the
missing items is again normally distributed and we can write(

Xil∑
j∈mis Xij

)
∼ N2

((
µl∑

j∈mis µj

)
,

(
σ2

l σ2
l

σ2
l

∑
j∈mis σ2

j

))
(2.17)

where the cross elements of the covariance matrix are just σ2
l because we as-

sumed X·j for j = 1, . . . , k to be independent.

Now theorem 2.1.1 gives us the conditional expectation of the missing item
given the observed sum it is a part of

E
(
Xil|

∑
j∈mis

Xij

)
= µl +

σ2
l∑

j∈mis σ2
j

( ∑
j∈mis

Xij −
∑

j∈mis

µj

)
(2.18)

and we could choose this as the value to impute for Xij .

For all items in a fixed record i except the total we assume that their variances
are linear in their means with a common factor α

Xj ∼ N (µj , αµj) independently for j = 1, . . . , k − 1 (2.19)

and we consider the record as a whole to be a multivariate normally distributed
vector

Xi,· ∼ N (µ,Σ)

with

µ =

 µ1

...
µk−1

 and Σ =


αµ1 0

αµ2

. . .
0 αµk−1

 .

We call this model normal with proportional variances. As we see later in section
3.4, this model shows some similarities with the model on which the ratio im-
putation method is based, but here without dependency between the variables
Xi,1, . . . , Xi,k−1.

The model may very well not stand as far from reality as might appear at first
sight. Suppose as an illustration, the data X are from a shop which sells fixed
quantities ( of different kinds of products j = 1, . . . , k − 1. The shop can for
example be supplied weekly, and each week sell its whole stock. If Xij is the
revenue of all products of kind j sold week i, it may be modeled as the sum
of independent and identically distributed normal variables with variance σ2.
The randomness can for instance be due to bargaining. Every kind of product
can have its own µj , which stands for the average revenue, but if all σ2

j are the
same and we call it α, we get model (2.19).
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The extra assumptions of (2.19) simplify (2.18) to

E
(
Xil|

∑
j∈mis

Xij

)
= µl +

µl∑
j∈mis µj

( ∑
j∈mis

Xij −
∑

j∈mis

µj

)
=

µl∑
j∈mis µj

∑
j∈mis

Xij . (2.20)

We now want to find the maximum likelihood estimators for µ and α. In order
to be able to implement an EM algorithm, we need to calculate the likelihood
for the data without any information missing.

If we fully observe the first k − 1 items of a record, observing the k-th item,
which is the sum of the other ones, does not add any additional information.
So the likelihood function for n records with all items observed is

Lµ,α(X) =
n∏

i=1

k−1∏
j=1

1√
2παµj

exp
(
− (xij − µj)2

2αµj

)
and the log-likelihood

`µ,α(X) = −n

2

k−1∑
j=1

log(2παµj)−
k−1∑
j=1

∑n
i=1(xij − µj)2

2αµj
. (2.21)

Differentiation of (2.21) with respect to µj for j = 1 . . . k − 1 gives

∂

∂µj
`µ,α(X) =− n

2µj
− ∂

∂µj

∑n
i=1(xij − µj)2

2αµj

=− n

2µj
−

n∑
i=1

−2αµj2(xij − µj)− 2α(xij − µj)2

(2αµj)2

=− n

2µj
+

n∑
i=1

2µj(xij − µj) + (xij − µj)2

2αµ2
j

=− n

2µj
+

n∑
i=1

2µj(xij − µj) + x2
ij − 2µjxij + µj

2

2αµ2
j

=− n

2µj
+

n∑
i=1

x2
ij − µj

2

2αµ2
j

=− nαµj

2αµ2
j

+

∑n
i=1(x

2
ij − µ2

j )
2αµ2

j

which is zero if

−nαµj +
n∑

i=1

(x2
ij − µ2

j ) = 0.
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Differentiation of (2.21) to α leads to

∂

∂α
`µ,α(X) = −n

2

k−1∑
j=1

1
α

+
k−1∑
j=1

n∑
i=1

(xij − µj)
2

2µjα2

= −n(k − 1)
2α

+
k−1∑
j=1

n∑
i=1

(xij − µj)
2

2µjα2

and this expression is zero if we set

α =
1

n(k − 1)

k−1∑
j=1

n∑
i=1

(xij − µj)
2

µj
. (2.22)

We use an implementation of the Newton-Raphson method to find the roots of
these equations. Write

∇` =



∂`
∂µ1
∂`

∂µ2
...

∂`
∂µk−1

∂`
∂α

 =



−nαµ1+
Pn

i=1(x
2
i1−µ2

1)

2αµ2
1

−nαµ2+
Pn

i=1(x
2
i2−µ2

2)

2αµ2
2

...
−nαµk−1+

Pn
i=1(x

2
i,k−1−µ2

k−1)

2αµ2
k−1

−n(k−1)
2α +

∑k−1
j=1

∑n
i=1

(xij−µj)
2

2µjα2


(2.23)

for the gradient of the log-likelihood. In order to be able top use the Newton-
Raphson method to find the roots of this function, we need to calculate its
Jacobian matrix. That is, we calculate the Hessian of the log-likelihood

H` =


∂2`
∂µ2

1
. . . ∂2`

∂µ1∂µk−1

∂2`
∂µ1∂α

...
. . .

...
...

∂2`
∂µk−1∂µ1

. . . ∂`
∂µ2

k−1

∂`
∂µk−1∂α

∂2`
∂α∂µ1

. . . ∂2`
∂α∂µk−1

∂2`
∂α2


which has at the first k − 1 diagonal elements

∂2`

∂µ2
j

=
∂

∂µj

(
−

nαµj +
∑n

i=1(x
2
ij − µ2

j )
2αµ2

j

)
= −

2αµ2
j × (nα +

∑n
i=1−2µj)−

(
nαµj +

∑n
i=1(x

2
ij − µ2

j )
)
4αµj

(2αµ2
j )2

= −
2nα2µ2

j − 4nαµ3
j − 4nα2µ2

j − 4αµj

∑n
i=1(xij − µ2

j )
4α2µ4

j

=
2nα2µ2

j + 4nαµ3
j + 4αµj

∑n
i=1(x

2
ij − µ2

j )
4α2µ4

j

=
nαµj + 2nµ2

j + 2
∑n

i=1(x
2
ij − µ2

j )
2αµ3

j
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and in the first (k − 1) × (k − 1) block outside of the diagonal are only zeros.
The first k − 1 elements of the last row are

∂2`

∂α∂µj
=

∂

∂α

(
−

nαµj +
∑n

i=1(x
2
ij − µ2

j )
2αµ2

j

)
= −

2αµ2
j × nµj −

(
nαµj +

∑n
i=1(x

2
ij − µ2

j )
)
× 2µ2

j

4α2µ2
j

= −
nαµ3

j − nαµ3
j + µ2

j

∑n
i=1(x

2
ij − µ2

j )
2α2µ4

j

= −
∑n

i=1(x
2
ij − µ2

j )
2α2µ2

j

=

∑n
i=1(µ

2
j − x2

ij)
2α2µ2

j

and the first k−1 elements of the last column are the same, because the Hessian
is symmetrical around the diagonal.

∂2`

∂µj∂α
=

∂

∂µj

(
−n(k − 1)

2α
+

k−1∑
j=1

n∑
i=1

(xij − µj)2

2µjα2

)

=
∂

∂µj

n∑
i=1

(xij − µj)2

2µjα2

=
n∑

i=1

2µjα
2 × 2(xij − µj)×−1− (xij − µj)2 × 2α2

4µ2
jα

4

=
n∑

i=1

−4µjα
2(xij − µj)− 2α2(xij − µj)2

4µ2
jα

4

=
n∑

i=1

−2µj(xij − µj)− (xij − µj)2

2µ2
jα

2

=
n∑

i=1

−2µjxij + 2µ2
j − (x2

ij − 2xijµj + µ2
j )

2µ2
jα

2

=

∑n
i=1(µ

2
j − x2

ij)
2µ2

jα
2

Finally, we calculate the lower right entry

∂2`

∂α2
=

∂

∂α

(
−n(k − 1)

2α
+

k−1∑
j=1

n∑
i=1

(xij − µj)2

2µjα2

)

=
n(k − 1)

2α2
+

k−1∑
j=1

n∑
i=1

− (xij − µj)2

µjα3
.

The proportional variances method where more sums are known It might
be interesting to note that the proportional variance method method can be
extended to situations where the missing value is part of more than one ob-
served sum. Without loss of generality, suppose the missing value Xil is part
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two sums
∑

j∈A Xij and
∑

j∈B Xij with different index sets A and B respec-
tively. We need to write down the distribution of (Xil,

∑
j∈A Xij ,

∑
j∈B Xij) as

we did in (2.17).

It is obvious what the mean vector should be, so consider the covariance ma-
trix. Since we assume the X·j to be independently normally distributed for
j = 1, . . . , k, we have cov(Xil,

∑
j∈A Xij) = σ2

l and cov(Xil,
∑

j∈B Xij) = σ2
l

too. On the diagonal, we get the the variance of the sums, which equal are the
sums of the variances. The tricky ones are the cross terms of the two sums.
Here we have to consider which terms the sums have in common and take the
sum of the variances accordingly. So we get

 Xi,l∑
j∈A Xi,j∑
j∈B Xi,j

 ∼ N3

 µl∑
j∈A µj∑
j∈B µj

 ,

 σ2
l σ2

l σ2
l

σ2
l

∑
j∈A σ2

j

∑
j∈A∩B σ2

j

σ2
l

∑
j∈A∩B σ2

j

∑
j∈B σ2

j


and theorem 2.1.1 tells us that

E(Xi,l|
∑
j∈A

Xi,j ,
∑
j∈B

Xi,j) =

µl + (σ2
l , σ2

l )
( ∑

j∈A σ2
j

∑
j∈A∩B σ2

j∑
j∈A∩B σ2

j

∑
j∈B σ2

j

)−1(( ∑
j∈A σ2

j∑
j∈B σ2

j

)
−

( ∑
j∈A µj∑
j∈B µj

))
.

2.5.2 Poisson models

Another model with the property that the variance is proportional to the mean
is the following. It takes some of the assumptions of the model Hachemeis-
ter and Stanard used in actuarial science, see [Mack 1999]. They used their
model in a missing data problem in insurance mathematics. Insurance com-
panies often have to deal with insured losses that have occurred but that not
have been reported yet. This type of losses is called IBNR: incurred but not
reported. Usually, tables are created displaying all the claims assigned to the
year the corresponding insured event occurred. In such tables, Xij stands for
the amount claimed after j years related to events in year i . Actuaries call i the
accident year and i + j the development year.

In table 2.1, we see the structure of the missing data pattern. In for example
the year 2006, the insurance company did not know yet how much damage
occurred in 2000 would be claimed after 7 years. The lower triangle with miss-
ing values refers to future claims regarding past events. This kind of tables are
called IBNR triangles, and Hachemeister and Stanard’s model can be used to fill
in the unknown part of the triangle, given the observed part. In our datasets,
the missing pattern will not look this nice, but we will be able to observe the
sum of every row.

Assume every item Xij is an independently Poisson distributed random vari-
able with parameter λij = αiµj , where both αi > 0 and µj > 0 for all i =
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accident development year
year 1 2 3 4 5 6 7 8 9
1997 142 1570 2400 3150 3500 3775 4300 4400 4200
1998 225 1250 1850 2675 3000 3100 3300 3200 ?
1999 350 1550 2500 2775 3400 3550 3750 ? ?
2000 170 700 1170 2610 3015 3195 ? ? ?
2001 240 970 2025 3250 3750 ? ? ? ?
2002 300 3000 4750 6250 ? ? ? ? ?
2003 140 2310 3200 ? ? ? ? ? ?
2004 400 950 ? ? ? ? ? ? ?
2005 180 ? ? ? ? ? ? ? ?

Table 2.1: Example of an IBNR triangle. The data are taken from the Reinsurance maga-
zine, issue September 2006.

1, . . . , n and j = 1, . . . , k. To make the model identifiable we add the restriction∑n
i=1 αi = 1. In this model, we have

E(Xij) = var(Xij) = λij = αiµj

so the expected value of an entry is the product of a parameter µj which is the
same throughout the column j, multiplied by a parameter αi corresponding to
row i. It is interesting to see the connection between the INBR background of
the model, and our missing data problem. In the IBNR context, the parameter
αi models the amount of damage occurred in year i. Since every row in our
dataset corresponds to an individual business, that the parameter αi can be
seen as a way to model the size of a company.

To find the maximum likelihood estimators for the parameters αi and µj , we
calculate the log-likelihood for the case where all values Xij are observed:

`α,µ(X) = log
( n∏

i=1

k∏
j=1

e−λij λ
xij

ij

xij !

)
=

n∑
i=1

k∑
j=1

log
(

e−αiµj (αiµj)xij

xij !

)

=
n∑

i=1

k∑
j=1

[
−αiµj + xij log(αiµj)− log(xij !)

]
. (2.24)

For fixed j, taking derivative with respect to µj gives

∂

∂µj
`α,µ(X) =

∂

∂µj

n∑
i=1

k∑
j=1

[
−αiµj + xij log(αiµj)− log(xij !)

]

=
n∑

i=1

[
−αi + xij

1
αiµj

αi

]

=
n∑

i=1

[
xij

µj
− αi

]
=

n∑
i=1

xij

µj
− 1

where we use our assumption
∑n

i=1 αi = 1 in the last equality. Setting this
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expression equal to zero gives us the maximum likelihood estimator for µj

µ̂j =
n∑

i=1

xij . (2.25)

Since (2.24) is symmetrical in µj and λi, we have

∂

∂αi
`α,µ(X) =

k∑
j=1

[
xij

αi
− µj

]
and if we also fix i and fill in µj = µ̂j we can set this expression to zero

k∑
j=1

[
xij

αi
− µ̂j

]
=

k∑
j=1

[
xij

αi
−

n∑
i=1

xij

]
= 0

1
αi

k∑
j=1

xij −
n∑

i=1

k∑
j=1

xij = 0

to get the maximum likelihood estimator for αi

α̂i =

∑k
j=1 xij∑n

i=1

∑k
j=1 xij

. (2.26)

After we have estimated the parameters, we want to know the expectation of
a single item if we observe the sum of the whole record which the item is part
of.
Theorem 2.5.1. Suppose Xj are independently Poisson distributed random variables
with parameters λj > 0 for j = 1, . . . , k and let z > 0 an integer. Then for all
i = 1, . . . , k fixed

Xi|
k∑

j=1

Xj = z ∼ binom(z, pi) (2.27)

with
pi =

λi∑k
j=1 λj

.

Proof. Without loss of generality, we assume i = 1. We use the fact that the
sum of independently Poisson distributed random variables is again Poisson
distributed, i.e. X2 + . . . + Xm ∼ Poisson(λ2 + . . . + λk).

P (X1 = x,

k∑
j=1

Xj) = P (X1 = x)P (X2 + . . . + Xk = z − x)

=
λx

1 exp−λ1

x!
(λ2 + . . . + λk)(z−x) exp−(λ2 + . . . λk)

(z − x)!
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and

P (X1 = x|
k∑

j=1

Xj = z) =
P (X1 = x,X1 + . . . + Xk = z)

P (X1 + . . . + Xk = z)

=
λx

1(λ2 + . . . λk)(z−x) exp−(λ1 + . . . λk)/k!(z − x)!
(λ1 + . . . + λk)z exp−(λ1 + . . . + λk)/z!

=
z!

x!(z − x)!
λx

1

(λ2 + . . . + λk)x

(λ2 + . . . λk)z

(λ1 + . . . + λk)z

=
(

z

x

)
λx

1

(λ2 + . . . + λk)x

(λ1 + . . . + λk)x

(λ1 + . . . + λk)x

(λ2 + . . . + λk)z

(λ1 + . . . + λk)z

=
(

z

x

)
λx

1

(λ1 + . . . + λk)x

(λ2 + . . . + λk)(z−x)

(λ1 + . . . + λk)(z−x)

=
(

z

x

)
px
1(1− p1)z−x.

Note that theorem 2.5.1 implies that

E(Xi|X1 + X2 + . . . + Xk = z) =
λiz

λ1 + λ2 + . . . + λk
. (2.28)

Let us now return to our missing data problem, where the i-th record Xi,· sat-
isfies the restriction Xik =

∑k−1
j=1 Xij , and we know some sum where a missing

item Xil is part in. For the expectation of an item given the sum we get from
(2.28)

E
(
Xil|

∑
j∈mis

Xij

)
=

λil∑
j∈mis λij

∑
j∈mis

Xij

=
αiµl∑

j∈mis αiµj

∑
j∈mis

Xij

=
µl∑

j∈mis µj

∑
j∈mis

Xij (2.29)

which is the same as (2.20).

We will need to estimate µl in the presence of missing data. A naı̈ve estimator
would be µ̂l from (2.25), where we let i run over all values for which item Xij is
observed. To get more accurate estimates for these parameters we implement
the EM algorithm. In the initial step we estimate the parameters µj with the
naı̈ve estimator, and calculate the conditional expectation of the missing values
given the sum. In every next iteration, we calculate the maximum likelihood
estimator (2.25) and use it to update the values for the missing entries.

Remark: a Poisson model without row parameter Since we saw in (2.29)
that the parameters αi fall out of the conditional expectation, the model Xij ∼
Poisson(λj) leads to the same conditional expectation. If we look at a histogram
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Figure 2.2: A histogram of variable bt34600t. The solid line shows a Poisson distri-
bution fitted to the data. The dashed line shows an exponential distribution
fitted to the data.

of the data in a column however, we see that a Poisson distribution does not fit
to the data. In figure 2.2 it is clear that variable bt34600t is more likely to be
exponentially distributed. For the other variables, the picture looks almost the
same.

31



Chapter 3

Imputation methods using
linear regression

One of the most common statistical methods used in econometrics is linear
regression. The main goal is always to find a relation between a variable yi

and an explanatory variable xi = (x1, . . . xk). In order to do that, we observe
the variables n times, so that we get a vector y and a matrix X . We assume
that the n observations (x, y)i are exchangeable and use i to index the units
or subjects. For the items, the k components of x, we use the index j, which
is consistent with the notation we introduced for survey variables. The only
difference lays in the n×k design matrix X = (xij)i,j we get now. The variable
we want to explain has been left out, and has been renamed y instead. In some
literature, y is called Xj and X−j is used instead of our X to stress that the
design matrix is the original data matrix with one column left out. We wish to
obtain the conditional distribution of y given X , which in the regression model
is parameterized as p(y|X, θ). Since we will consider X fixed and not random,
we will suppress all notation stating we are conditioning on X from now on.

In this chapter we will first recall some basic regression theory. Then we will
extend it with a Bayesian approach and use truncated normal distributions to
be able to handle restrictions on the data. In the last sections of this chapter
we will investigate the ratio imputation method and the sequential regression
method. Both methods use models that do not make any assumptions on a
joint distribution, but only specify some conditional distributions.

3.1 Linear regression models

In the normal linear regression model the distribution of y given X is normal with
mean linear in the parameter β:

E(y|β, X) = Xβ.
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A constant term that does not depend on an actual explanatory variable xi

might be added by augmenting a column with only ones to the matrix X .

For all regression models, we assume that x has rank k. We have to do that to
make sure the columns of X are linearly independent, so that the k coefficients
of β are uniquely determined by the observed data. For the estimators and dis-
tributions, this assumption has the advantage that it implies XT X is invertible.
This assumption is not completely necessary. Much of the regression theory
still applies if one replaces the matrix inverse by a more general notion of in-
verse, so called pseudo inverses. For instance, Tempelman [Tempelman 2007]
shows that the maximum likelihood estimates for a multivariate singular nor-
mal distribution using the Moore-Penrose pseudo-inverse agree with the esti-
mates for the nonsingular case. However, we are in this thesis not only inter-
ested in the estimation of the parameters of regression models. We also want
to analyse these models in a Bayesian fashion. To be able to actually draw from
the posterior distributions we find, we need them to be non singular.

The other assumption we make is that n > k. This means the number of ob-
served units should be at least as much as the number of parameters to esti-
mate.

In ordinary linear regression models the conditional variances var(yi|β, X) are
equal to a constant σ2 > 0, and the observations yi are for all i independent
given θ = (β1, . . . , βk, σ2) and X .

It is important to note that in terms of our survey notation, we have implic-
itly assumed that each column xj of the data matrix has its own error term
ej ∼ N (0, σ2

j ) and that all the variances σ2
j may be different for each column.

Here, the index j does not denote the element in the vector, but stresses the fact
that all columns have their own individual regression model. In some practi-
cal cases it might be more realistic to model a common variance mechanism
applying for more columns simultaneously, but this would lead to cumber-
some calculations. Moreover, the approach we use now is in line with the idea
of sequential regression, where a regression model is fitted to the data column
by column.

There are in general two ways to implement a regression model in an impu-
tation method. The first consists of obtaining a value for β, say β̂ using the
observed values in the data matrix. Then, for a missing value yi, we fill in
ŷi = (Xβ̂)i. This regression method is sometimes called deterministic, because
there is no account for the value of the variance of the error term σ2. We simply
leave the error term out, because by our modeling assumptions its expectation
is zero. Note that the word deterministic is a bit suggestive here, since the way
β̂ is obtained can involve same random process. So strictly speaking, we can-
not call this method a deterministic imputation method in the sense of section
1.5. Therefore, we will not use the word deterministic for these methods, but
instead say that these fill in the expectation of a distribution. The key disad-
vantage of this approach is that the variance in the items filled in is smaller
than what we would expect from the regression model, since we fill in the ex-
pectation.

The second method overcomes this problem by adding a variance term to the
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imputed items. In this approach, we not only estimate β but also σ, say with
σ̂ and for a missing value yi we fill in ŷi = (Xβ̂)i + ei, where we draw ei from
a N (0, σ̂) distribution. Now the values we filed in get the right distribution,
that is the distribution of the model. In practice however, we may expect that
the mean of the imputed items will be not as close to the real mean as with the
first approach. Regression methods that use a variance term are often called
stochastic in literature. But again, in order not to be confused with the notions
of section 1.5, we will say these methods use a draw from a distribution.

3.1.1 The classical ordinary normal linear regression model

In this model we suppose y = Xβ + e with e ∼ Nn(0, σ2I). This means y ∼
Nn(Xβ, σ2I) so that indeed E(y) = Xβ and Cov(y) = σ2I . The maximum
likelihood estimator for β is β̂ = (XT X)−1XT y, and the maximum likelihood
estimator of σ2 is the average of the squared residuals

σ̂2 =
1
n

(y − ŷ)T (y − ŷ) (3.1)

were ŷ = Xβ̂. Since β̂ = (XT X)−1XT y, it is convenient to define a projection
matrix PX = X(XT X)−1XT , so that PXy = Xβ̂ = ŷ. The matrix PX is some-
times called the the hat matrix, and the tth diagonal element of it is denoted
by ht. Similarly, define the complementary projection MX = I − PX , so that
MXy = y − PXy = y − Xβ̂. We call ê := y − Xβ̂ the vector of least squared
residuals. Note that MXXβ = 0, so

ê = MXy = MXXβ + MXe = MXe.

Furthermore,

XT ê = XT y −XT Xβ̂ = XT y −XT X(XT X)−1 = 0 (3.2)

and we see that ê is orthogonal to X . In order to calculate var(ê), look at the
whole covariance matrix of ê and use the fact that E(MXe) = 0 and that MX is
a symmetric matrix, so MT

X = MX ,

Cov(ê) = Cov(MXe) = E(MXeeT MX) = MXE(eeT )MX =

= MXCov(e)MX = MX(σ2I)MX =

= σ2MXMX = σ2MX .

Since Eê = 0 and the tth diagonal element of MX is 1− ht,

var(êt) = E(ê2) = (1− ht)σ2.

Looking at the diagonal elements of the hat matrix and using the cyclic prop-
erty of trace we get

n∑
t=1

ht = Tr(PX) = Tr(X(XT X)−1XT )

= Tr((XT X)−1XT X) = Tr(Ik) = k.
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Now we calculate the expectation

E(σ̂2) =
1
n

E
[
(y − ŷ)T (y − ŷ)

]
=

1
n

n∑
t=1

E(ê2
t )

=
1
n

n∑
t=1

var(êt) =
1
n

n∑
t=1

(1− ht)σ2 =
n− k

n
σ2.

Therefore, an alternative to the maximum likelihood estimator (3.1) is the un-
biased estimator

s2 =
1

n− k
(y − ŷ)T (y − ŷ). (3.3)

3.1.2 Bayesian analysis of the ordinary normal linear regres-
sion model

We remain with the ordinary linear model but now write the model in terms
of the distribution of y given the parameters and the design

y|β, σ2 ∼ N (Xβ, σ2I).

Prior distributions

Since we do not have any real prior information for the parameters β and σ,
we want to give them a non informative prior density. For β, this obviously
means that we choose p(β) proportional to a constant.

A widely used approach for the prior for σ2 comes from Jeffreys as explained
in [Zellner 1971]. The key idea is that if the parameter φ is a function of another
parameter φ = h(θ), the prior for φ should reflect the same information as the
prior for θ, using the change of variables formula

p(φ) = p(θ)| ∂θ

∂φ
| = p(θ)|h′(θ)|−1. (3.4)

For parameters that may assume values in (−∞,∞), for instance the mean µ
or the parameter β from our ordinary regression model, he suggests to choose
p(µ) so that

p(µ)dµ ∝ dµ,−∞ < µ < ∞ (3.5)

and he takes (3.5) as a formal notion of ignorance. Note that (3.5) implies p(µ)
is proportional to a constant. Obviously , this is an improper density because∫∞
−∞ p(µ)dµ = ∞. This is no problem however, as long as the integral with

respect to the parameter µ of the likelihood p(y|µ) is finite. For in that case we
can normalize the posterior

p(µ, y)
p(y)

=
p(y|µ)p(µ)∫

µ′
p(y|µ′)p(µ′)dµ′

=
p(y|µ)∫

µ′
p(y|µ′)dµ′

(3.6)

so that it integrates to one and therefore is a proper distribution. We used
Jeffreys’ (3.5) in the last equality in equation (3.6).
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For parameters in the interval (0,∞), for instance a standard deviation σ, Jef-
freys advises to take the logarithm uniform, so that if we write θ = log σ

p(θ)dθ ∝ dθ

which is consistent with the concept of ignorance (3.5), since −∞ < θ < ∞. In
terms of the actual parameter σ this leads to

p(σ)dσ ∝ 1
σ

dσ. (3.7)

Suppose we use Jeffrey’s choice (3.7), and another researcher uses a model with
parameterization σ2 or precision parameter 1/σ2. More generally, consider a
transformation of the form φ(σ) = σn. Then dφ = nσn−1dσ and 1

φdφ = nσ−1dσ

which leads to
1
φ

dφ ∝ 1
σ

dσ (3.8)

and we see these other parameters bring about priors of the same form, which
is a nice property.

Keeping in mind these considerations we choose the prior distribution for
(β, log σ)to be uniform on R2. Furthermore we assume that β and log σ are
independent, and consequently we may state that

p(β, σ2) = p(β)p(σ2) ∝ p(σ2) ∝ σ−2. (3.9)

Posterior distributions

To find the posterior distribution, we look at the factorization

p(β, σ2|y) = p(β|σ2, y)p(σ2|y) (3.10)

which tells us that we can first derive the posterior for β conditional on σ2 and
then the marginal posterior distribution for σ2. For the first derivation, look at

p(β|σ2, y) =
p(y|β, σ2)p(β|σ2)p(σ2)

p(σ2, y)
.

We chose the prior for β to be the improper uniform distribution on R, inde-
pendent of σ2, so p(β|σ2) = p(β) and is a constant. Furthermore, the densities
p(σ2) and p(σ2, y) do not involve β, so

p(β|σ2, y) ∝ p(y|β, σ2). (3.11)

By our model assumption

p(y|β, σ2) =
1

(2π)n/2
√

det σ2I
e−

1
2 (y−Xβ)T (σ2I)

−1
(y−Xβ)

and filling this in in equation (3.11) we get

p(β|σ2, y) ∝ e−
1

2σ2 (y−Xβ)T (y−Xβ) (3.12)
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in which we recognize a normal distribution.

We now want to know the mean and the variance of this distribution.
Proposition 3.1.1. Define (suggestive notation) β̂ = (XT X)−1XT y. Then

(y −Xβ)T (y −Xβ) = (β − β̂)T XT X(β − β̂) + (y −Xβ̂)T (y −Xβ̂). (3.13)

Proof. Consider

y −Xβ = y −Xβ̂ + Xβ̂ −Xβ = ê−X(β − β̂)

to see

(y−Xβ)T (y−Xβ) = êT ê− êT X(β− β̂)− (β− β̂)T XT ê+(β− β̂)T XT X(β− β̂).

and from the orthogonality relation (3.2) the terms êT X(β−β̂) and (β−β̂)T XT ê
are zero

(y −Xβ)T (y −Xβ) = (β − β̂)T XT X(β − β̂) + êT ê.

The second part of the right hand side of (3.13) does not involve the actual β,
which means that (3.12) reduces to

p(β|σ2, y) ∝ e
1

2σ2 (β−β̂)T XT X(β−β̂) (3.14)

and we conclude that the mean of the distribution of β|σ2, y is indeed β̂ =
(XT X)−1XT y and the variance (XT X)−1σ2.

For the second part we use (3.10) and write the marginal posterior distribution
of σ2 as

p(σ2|y) =
p(β, σ2|y)
p(β|σ2, y)

. (3.15)

We know

p(β|σ2, y) =
1

(2π)n/2
√

det(XT X)−1σ2
e

1
2 (β−β̂)T ((XT X)

−1
σ2)

−1
(β−β̂)

and we assumed the prior was p(β, σ2) ∝ σ−2 so

p(β, σ2|y) ∝ p(β, σ2)p(y|β, σ2) ∝ σ−2p(y|β, σ2)

and using proposition (3.13) we can fill in (3.15)

p(σ2|y) =
σ−2

(
(2π)n/2

√
det σ2I

)−1
exp

(
− 1

2 (y −Xβ)T (σ2
I)
−1

(y −Xβ)
)(

(2π)k/2
√

det(XT X)−1σ2
)−1

exp
(
− 1

2 (β − β̂)T ((XT X)−1
σ2)

−1
(β − β̂)

)
=

σ−2
(
(2π)n/2

√
det σ2I

)−1(
(2π)k/2

√
det(XT X)−1σ2

)−1 exp
(
− 1

2σ2
(y −Xβ̂)T (y −Xβ̂)

)
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where I is the n × n identity matrix. Note that XT X has dimension k, so
det((XT X)−1σ2) = σ2k det((XT X)−1), and det(σ2I) = σ2n, so

σ−2
(
(2π)n/2

√
det σ2I

)−1(
(2π)k/2

√
det(XT X)−1σ2

)−1 = σk−n−2(2π)(k−n)/2
√

det(XT X)−1

and we see that

p(σ2|y) ∝ σ−(n−k+2)e−(y−Xβ̂)T (y−Xβ̂)/2σ2

in which we recognize the density of a scaled inverse χ2 distribution:

σ2|y ∼ Inv-χ2(n− k, s2)

with
s2 =

1
n− k

(y −Xβ̂)T (y −Xβ̂). (3.16)

3.2 Regression models with restrictions

In this chapter, we revisit the regression models described in section 3.1. We
still assume y = Xβ + e, but now we want y to take values only in a cer-
tain region. The boundaries of the permitted area are given by a set of linear
equations that may depend on X . In the notation we introduced for survey
variables, the restrictions take the form l ≤ BX ≤ u, where X is the data ma-
trix containing all variables, including y. For simplicity, choose l∗ and u∗ so
that we can describe the permitted region for y as an interval l∗ ≤ y ≤ u∗.

To restrict the range of y, we will have to impose some extra properties on the
errors e. We want to truncate e such that y becomes truncated to the permitted
region, which means l∗ −Xβ ≤ e ≤ u∗ −Xβ.

ei ∼ N (0, σ2)|G with G = [l∗ −Xβ, u∗ −Xβ]. (3.17)

3.2.1 The classical truncated normal regression model

The classical way of looking at model (3.17) is to fill in estimators for the pa-
rameters β and σ. In this model, the expectation of the error terms is in general
no longer zero. This means the least squares estimator is not consistent any
more. Instead, we should calculate the maximum likelihood estimators.

In the permitted region, the density function for an individual value yi is still
normal, but divided by the probability the non truncated version would take
values in that region

f(yi) =
1/σφ

( (y−Xβ)i

σ

)
Φ

( (u∗−Xβ)i

σ

)
− Φ

( (l∗−Xβ)i

σ

) (3.18)
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where Φ and φ denote the standard normal distribution and its density func-
tion respectively. Outside that region the density is zero. So the log-likelihood
function of item yi is

`i(β, σ) = − log σ+log φ
( (y −Xβ)i

σ

)
− log

(
Φ

( (u∗ −Xβ)i

σ

)
−Φ

( (l∗ −Xβ)i

σ

))
.

Because we also want to use information from the other items in the vector y,
we take a look at the multivariate likelihood function

`(β, σ) = − n log σ +
n∑

i=1

log φ
(yi − (Xβ)i

σ

)
−

+ n log
(

Φ
( (u∗ −Xβ)i

σ

)
− Φ

( (l∗ −Xβ)i

σ

))
.

To find the values for β and σ for which this expression is maximal, we differ-
entiate to both variables

∂`(β, σ)
∂β

= − n

σ

n∑
i=1

(
(yi −Xβ)i

σ2
+

1
σ

φ
(
(u∗ −Xβ)i/σ

)
− φ

(
(l∗ −Xβ)i/σ

)
Φ

(
(u∗ − (Xβ)i/σ

)
− Φ

(
(l∗ −Xβ)i/σ

))
∂`(β, σ)

∂σ
= − n

σ
+

n∑
i=1

(
(y −Xβ)2

σ3

+
1
σ2

(u∗ −Xβ)φ
(

u∗−Xβ
σ

)
− (l∗ −Xβ)φ

(
l∗−Xβ

σ

)
Φ

(
u∗−Xβ

σ

)
− Φ

(
l∗−Xβ

σ

) )
and may use a numerical method to find the roots of these expressions.

To get an idea what the likelihood for β looks like, we run a small simulation,
roughly based on Raghunatan’s smoking case study [Raghunatan 2001]. We
will omit the context here, but the idea is that we simulate the end of a time
period (the number of years someone has been smoking) as an exponential
random variable. This time period is then the permitted region for a truncated
normally distributed random variable. In our simulation, we

1. generate a random vector u of 10 exponentially distributed random vari-
ables with mean 20;

2. generate a random vector x of 10 standard normally distributed random
variables truncated to the permitted region bounded by the zero vector
and u;

3. calculate the log-likelihood for a lot of values of β, using the actual value
σ = 1;

4. take for β̂ the value of β for which the log-likelihood is the highest;

5. also calculate the sample mean x̄ of x. This would be the maximum likeli-
hood estimator if we would not have known the data had been truncated.

A picture for the log-likelihood as a function of β is plotted in figure 3.1. We
see that the top of the plot is close to the true value β = 0.

We see the likelihood is more steep on the right of zero than on the left. This is
due to the truncation on the left which we fixed at zero. On the right, we have
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Figure 3.1: The log-likelihood of standard normally distributed variables truncated be-
low zero as a function of β.

used different bounds for each observation. As a result, more information is
available around the right side of the permitted region. For the likelihood this
means that is easier to discriminate between values on the right of zero than
on the left.

We repeat our simulation program 500 times, and compare the sample means
for the data drawn in each simulation with the maximum likelihood estimator.
Figure 3.2 shows the results. On the x-axis it shows the sample means of the
data generated in each iteration and on the y axis the corresponding maximum
likelihood estimate. These values along the y-axis are clustered because of the
(lack of) numerical precision in our estimation of β.

It seems that for larger sample means, β̂ is getting closer to the sample mean.
In the picture we see this because the data points are getting closer to the line
y = x, which we have drawn for convenience. A possible explanation is the
following. If the sample mean is a bit low, it could be caused by a short per-
mitted interval. A large part of the right tail of the N (0, 1) distribution is then
truncated, so only points near zero are being observed. This results in the like-
lihood giving too much weight to values of β that are lower than zero. For
lager sample means, this effect diminishes, and the estimate β̂ comes closer to
the value of the sample mean. This also explains why almost all data points
are below the line y = x.
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Figure 3.2: The value sample means of standard normally distributed variables trun-
cated below zero plotted against the value β̂ for which the log-likelihood is
maximal.

3.2.2 Bayesian analysis of the truncated normal regression model

For the Bayesian analysis of the model, we take the same prior (3.9) on β and
σ2 and use (3.10) again. Although we need to be somewhat more careful as
now e depends on β, we can still say that p(y) does not depend on β so

p(β|σ2, y) =
p(y|β, σ2)p(β|σ2)

p(y)
∝ p(y|β, σ2)

still holds. But our model assumption on y given β and σ2

p(y|β, σ2) =


((2π)n/2

√
det σ2I)

−1
exp

(
− 1

2 (y−Xβ)T (σ2I)
−1

(y−Xβ)
)

R
G

((2π)n/2
√

det σ2I)
−1

exp
(
− 1

2 (y−Xβ)T (σ2I)
−1

(y−Xβ)
)
dy

if y ∈ G

0 if y /∈ G

is now a truncated distribution. Looking only at the case y ∈ G we get

((2π)n/2
√

det σ2I)
−1

exp
(
− 1

2 (y −Xβ)T (σ2
I)
−1

(y −Xβ)
)∫

G
((2π)n/2

√
det σ2I)

−1
exp

(
− 1

2 (y −Xβ)T (σ2
I)
−1

(y −Xβ)
)
dy

=
exp

(
− 1

2 (y −Xβ)T (σ2
I)
−1

(y −Xβ)
)∫

G
exp

(
− 1

2 (y −Xβ)T (σ2
I)
−1

(y −Xβ)
)
dy

=
exp (y −Xβ)T (y −Xβ)∫

G
exp (y −Xβ)T (y −Xβ)dy

.
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If we calculate p(σ2|y) we get

p(σ2|y) =
p(β, σ2|y)
p(β|σ2, y)

∝ σ−2p(y|β, σ2)
p(β|σ2, y)

. (3.19)

Unfortunately however, in this expression we dot recognize a nice distribution
from which we could easily draw inferences. Therefore, as an alternative, we
suggest to use the Bayesian version of the linear model described in section
3.1.2, to get a posterior for β and σ2. We can then draw inferences for y from a
multivariate normal distribution with parameters Xβ and σ2I . To make sure
the inferences for each yi satisfy the restrictions, we could reject such a draw if
it does not lay in the appropriate interval, and repeat drawing until it does.

Again, we implemented two versions of the imputation process using this re-
gression method. The first one uses the posterior p(y|β, σ2) to draw values
yi for items that are missing. The second one still draws β from its posterior,
but calculates the expectation of th error term ei instead of drawing it from a
truncated distribution.

3.3 Sequential regression

Sequential regression methods were developed by Van Buuren and Ranghu-
natan. The idea is to use a separate regression model for the univariate distri-
bution of each variable conditioned on all other variables. By doing that, we
can consider the restrictions for each variable separately. In the initial step of
the method, all missing values must be imputed by a guess that need not nec-
essarily be adequate, but it should satisfy the conditions. Next, all variables
are imputed one by one by the different regression models, using the most re-
cent updates of the imputed explanatory variables. The imputations are drawn
from the posterior distribution that the model brings forward, which is trun-
cated to the correct region so that the draw satisfies the restrictions. This se-
quence of iterations is then repeated, hence the name of the method.

In this method, all variables can have separate regression models. Most of-
ten used are ([Raghunatan 2001], p. 87) normal linear models for continuous
variables, logistic models for binary variables, generalized logit models for cat-
egorial variables, Poisson models for non-negative integer variables and for
semi-continuous variables a two stage model, which first uses a logistic regres-
sion to model the zero or non zero status and conditional on non-zero status a
normal linear regression to impute non-zero values. The problem with the lin-
earity of the restriction is also solved, because for each variable the restrictions
can be rewritten separately.

In our simulations we will be considering continuous data from a business sur-
vey. That means that for us a normal model would be convenient, because we
can use truncation to take the restrictions into account. But there is a prob-
lem. In economical data where the normality assumption is inappropriate,
we can often use some transformation to make the data more suitable for the
model. In our case however, we want linear restrictions to hold, of the form
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X1 + X2 + . . . + Xm = Xtot. If the transformation, say φ, is not linear, then
φ(X1) + φ(X2) + . . . + φ(Xm) 6= φ(Xtot), so it is not clear what the restriction
transforms to. Therefore we cannot apply such transformations to our data.

The main disadvantage of sequential regression is the possibility of lack of con-
vergence of the methods. The freedom to use different regression models for
each variable comes with the drawback that is is not clear under what con-
ditions the distributions of the imputations converge to a multivariate distri-
bution. In that case, the conditional distributions estimated by the univariate
regression models are said to be incompatible.

Although the possibility of incompatibility is a very serious problem on which
more research should be focused, both Raghunatan [Raghunatan 2001] and
Van Buuren [Van Buuren 2007] claim to have achieved good results by apply-
ing sequential regression. Therefore it seems worthwhile to apply the method
in simulation studies on real data.

For our simulation studies, we implemented a sequential regression algorithm
in R. In this implementation, we use that the specific dataset we will be inves-
tigating must satisfy a linear balance equation of the form

∑
i Xi = Xtot.

3.3.1 Initial step

In the first step of the method we need to fill in initial values for the missing
entries. We choose the proportional variances method from section 2.5 for this,
because it is a fast method that gives quite good imputations, as we will see
later. We do not make any further assumptions on the underlaying model, but
just take ad hoc estimators for the values of µj for each variable j in equation
2.20. Start by taking the column sums sj of those records in the simulation
dataset for which all variables are observed. Calculate the proportions of each
value sj to the value stot corresponding to the variable Xtot, and use it as an ad
hoc estimator for µj

µj = sj/stot. (3.20)

Let mis denote the set of indices for which the value is missing in a record, and
obs the indices for which the value is observed. We will always assume that
the total Xtot is observed. Then we know that the sum of the missing values
must be

∑
j∈mis Xij = Xtot −

∑
j∈obs Xij . So if the k-th position in record i is

missing we can fill in
µk∑

j∈mis µj

( ∑
j∈mis

Xij

)
. (3.21)

If we do that for all missing entries we have filled the record in such a manner
that it satisfies the restrictions. This turns out to lead to pretty good estimates,
which are later spoiled in the sequential regression process.

3.3.2 Regression iteration

In every next iteration, take the column containing the data for the first vari-
able. Take this variable as y for the regression model. The problem is now that
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y is completely determined by the balance restriction, since all the other vari-
ables in the dataset are considered as fixed covariates. It makes therefore no
sense at all to try to find a better value for y to update it.

The solution we suggest is to leave one variable out of the model. This variable,
say Xout, should not be the variable of the totals Xtot. In our simulations we
choose to leave out the variable with the most missing items. Now the equality
restriction reduces to an inequality. If we draw y so that it satisfies this new
inequality, we can plug it in without violating the original restriction. After we
updated y, we can calculate the values of Xout from the original equality.

This method is sound because if we suppose Y and the total Z = Y + Xout

are normally distributed, the imputed value of Xout is also normal. Moreover,
according to theorem 2.3.1 this holds for truncated normal distributions too.
Since the two regions in R2

{(x, y)|x ≥ 0, y ≥ 0, x + y = z} and {(x, y)|0 ≤ x ≤ y, x + y = z}

are identical, we conclude that the distributions

P (Y |Xout ≥ 0, Y ≥ 0, Xout + Y = z) and P (Y |0 ≤ Y ≤ z,Xout + Y = z)

are the same. Here we see that we cannot leave out more than one variable.
With two or more variables left out, the distributions

P (Y |Xout1 , . . . , Xoutm ≥ 0, Y +
∑

j

Xoutj = z)

6= P (Y |0 ≤ Y ≤ z, Y +
∑

j

Xoutj
= z)

are no longer the same. In the second one, some of the variables left out can be
negative, while that is impossible in the first one.

To find inferences for the missing values of y, we apply the Bayesian regression
model described in section 3.1.2. Draw the parameters β and σ2 once. These
parameters completely fix the distribution of y, so for each entry that was miss-
ing in the simulation dataset we can draw a value from that distribution. We
repeat drawing until we get a value that satisfies the inequality. If that takes
too long, we uniformly draw a value in the allowed interval between zero and
the sum of all missing items in the record, and count it as a misfit. Note that
this is not a very accurate approximation of a draw from a truncated normal
distribution, but since a misfit is an indication that the normal model is not
appropriate anyway, we do not want to increase the computer time with im-
portance sampling.

After we insert the column Xout again we had left out earlier and calculate the
values from the equality restriction, we follow the same procedure for all the
other variables with missing items in the dataset. We repeat the whole iteration
a fixed amount of times.

For the sequential regression method too, there are two ways to make sure an
inputed value comes in the appropriate interval. The first is a variant which
draws the error ei from a truncated distribution, and the second is a variant,
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Figure 3.3: In economical data, data points corresponding to larger values values often
get more dispersed.

which calculates the expectation E(ei) of he error term. Also, we can choose to
draw from distributions estimated by a maximum likelihood method instead
of a Bayesian posterior distribution. In total, we now have four variants of the
sequential regression method.

3.4 Ratio imputation

In some economical data, the model assumption that the error terms e have
constant variance is not appropriate. Larger data values are often more dis-
persed than smaller values, as illustrated in the picture below. Suppose for
instance, a variable x indicates the number of items sold, and another variable,
say y denotes the revenue. If we assume the prices of the item are i.i.d. random
variables with a variance σ2, then the variance of the revenue, which is the sum
of the prices, is σ2x.

In cases like this, it is appropriate to use the following model

y = xβ + e (3.22)

where x and y are n-vectors, β a k-vector, and e a vector of n dependently
distributed error terms, but now with variance proportional to x:

E(ei) = 0 and var(ei) = σ2xi (3.23)
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with σ2 > 0.

In the ordinary regression models described in chapter (3.1) and (3.2) we used
a method to find an estimate β̂ or a posterior distribution for β treating all ob-
servations equally. However, such an approach is unsuitable for model (3.22).
Since for large values of x the variance of e and thereby the variance of y be-
comes larger and larger, we may expect that larger values of y will have far
more influence on the regression estimator β̂ than smaller values. But because
these smaller values have a smaller variance, these are more reliable observa-
tions. That is why we want to use a weighted average of the squared residuals
to estimate β in this model

β̂ = argminβ

n∑
i=1

(yi − xiβ)2

xi
(3.24)

taking the derivative with respect to β gives

∂

∂β

n∑
i

(yi − βxi)2

xi
=

n∑
i

−2xi(yi − xiβ)
xi

= −2
n∑
i

(yi − xiβ)

which is zero if
∑n

i yi = β
∑n

i xi, so that is at β̂ =
∑n

i yi/
∑n

i xi and the esti-
mator becomes the ratio of the sample means

β̂ = ȳ/x̄. (3.25)

We call β̂ the ratio estimator of β.

Now let us assume the error term e is normally distributed. For the ordinary
linear regression model, i.e. with Cov(e) = σ2I , we know the maximum likeli-
hood estimator is β̂ = (XT X)−1Xty. But in model 3.22, not all error terms have
the same variance, so the Gauss-Markov conditions are not satisfied. Setting
Σ = xI We can transform model (3.22) into an ordinary form using multiplica-
tion by Σ−1/2

Σ−1/2y = Σ−1/2xβ + Σ−1/2e

to get a new model
y∗ = x∗β + e∗. (3.26)

Looking at Cov(e∗) = Cov(Σ−1/2e) = Σ−1/2Cov(e)Σ−1/2 = Σ−1/2σ2ΣΣ−1/2 =
σ2I we see that (3.26) is indeed an ordinary linear model.

In the next calculation, we use the fact that Σ−1 = (xI)−1 is the n× n diagonal
matrix with fractions 1/xi on the ith diagonal entry and zeros elsewhere, so
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Figure 3.4: The same data, but now transformed.

xtΣ−1 is a row vector of length n with all entries 1, which we denote by 1.

β̂ = (x∗T x∗)−1x∗T y∗ =
(
(Σ−1/2x)T Σ−1/2x

)−1(Σ−1/2x)T Σ−1/2y

= (xT (Σ−1/2)
T
Σ−1/2x)−1xT (Σ−1/2)

T
Σ−1/2y

= (xT Σ−1x)−1xT Σ−1y = (1x)−11y

=
(∑

i

xi

)−1 ∑
i

yi.

Hence, the maximum likelihood estimator

β̂ = ȳ/x̄ (3.27)

is indeed the ratio estimator we found in (3.25).

Figure 3.4 shows the same data as figure 3.3, but after application of the linear
transformation Σ− 1

2 . Note that Σ− 1
2 is the n×n diagonal matrix with 1/

√
xi as

the i-th diagonal element. We clearly see that after transformation the data are
more equally spread around the regression line.

As with all regression methods, the ratio imputation methods comes in two
variants: one that fills in the expected value for an imputation, and one that
uses a draw. The fist one just calculates the ratio estimator (3.25) and fills in
β̂xi. This we call the deterministic ratio method. The second option is to fill in
β̂xi + ei, where ei is drawn form a N (0, σ̂2xi) distribution. The parameter σ2
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should be estimated with

σ̂2 =
1
n

n∑
i=1

(yi − ŷi)2

xi
(3.28)

and this gives the stochastic variant of the ratio imputation method.

Both variants of the ratio method can be adjusted so that they can handle re-
strictions, like we did in section 3.2. That means that we fill in the expectation
of a truncated normal distribution, or a draw from it. We choose the permitted
region so that the restrictions hold. The flaw of this approach is that in that
case the ratio estimator (3.25) is no longer the maximum likelihood estimator.
As we will see in the simulation results, the ratio method is not performing
very well on the dataset with restrictions. Still, it is one of the most widespread
imputation methods, and also much applied to data sets with restrictions at
Statistics Netherlands, although in a different variant than we discuss here.

In our implementations of the ratio imputation method, we always use the total
Xtot variable as regressor x. If for items missing a subtotal was available, we
used that instead. This would seem a logical way to use information available,
and it also gives a realistic method, since in practice it does happen often that
a total is filled in in a survey but not completely specified.

We still have to handle the problem that at some point a value yi that is missing
may be completely determined by the balance restriction. So as we go through
the row of the dataset, we constantly check if that is the case. If not, we impute
the value using one of the ratio methods. If so, we fill in what it should be and
are done.

As we saw, there is no straight forward way to make the ratio method respect
linear equality restrictions. For each variable we calculate a permitted region
that does not prevent the restriction from holding. Bu at some point, if there
is only one missing item left in a record, we have no choice and the value we
have to impute is completely determined by the restriction. What makes the
problem worse, is that it is somewhat arbitrary which variable that leftover
will be. Sequential regression at least deals with that last point. It can change
every variable by leaving out another variable Xout. Which variable to choose
as xout may be arbitrary too, but at least this variable can be changed in the
next iteration round.
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Chapter 4

Simulation studies

In our simulations, we take a completely observed part of a dataset and remove
some of the data entries and consider them missing. We then apply each of
our imputation methods. Since we know what the actual values were for the
missing part, we can then analyze the behaviour of these methods.

The idea behind this simulation strategy shows some similarities to the boot-
strap method for estimating the variance of an estimator. However, the dif-
ference is that we repeatedly create missing items in the observed part of the
dataset, whereas the bootstrap method would take a dataset with missing data,
and repeatedly draw records without replacement from it. See appendix B for
a more detailed description of the bootstrap method in the presence of missing
data.

4.1 Dataset

The data on which we perform our studies are provided by Statistics Nether-
lands and consists of 15 continuous variables X1, . . . , X15, one variable con-
taining reference numbers for the records and four categorial variables. The
data are part of a retail trade survey, which has 108 variables and 800 records
in total. See appendix C for a description of the data variables. Of these 800
records, 684 have no missing items in the 15 variables we will deal with. The
restrictions that must hold for this dataset are X1 + X2 = X3 and X3 + X4 +
. . . + X14 = X15 and Xi ≥ 0 for i = 1, . . . 15. To make the restrictions easier to
handle, we leave X3 out of our simulation and use the alternative restriction
X1 + X2 + X4 + X5 + . . . X14 = X15. This will be our simulation dataset. After
the imputation process is done, we can easily calculate X3 from X1 and X2.
For notational convenience, X15 will be written as Xtot.

Apart from these 15, we will consider three more variables: an identification
number, a size class, which is a categorial variable indicating the size of the
business and a categorial variable indicating the branch of trade, the so called
SBI code. These three variables are observed for all businesses in the original
dataset.
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4.2 Missing data mechanism

The easiest missing data mechanism to implement is just to set each value miss-
ing with a certain probability, or alternatively with different probabilities for
each variable. This mechanism is MAR, because it does not depend on the un-
observed part of the data, and it is even MCAR since it is also independent of
the observations.

A more sophisticated missing data mechanism developed at Statistics Nether-
lands is so called hot deck amputation [sic]. At the start, the dataset is divided
into two parts. In the first part all records are stored that have no items miss-
ing in the variables we are interested in. The second part consists of the records
that do have missing items. The missing mechanism now does the following:
for each record in the first part, called receiver, it takes a record in the second
part that is the nearest with respect to a distance function. This record is called
the donor. Once the donor is chosen, the mechanism looks which items of the
donor are missing. In the receiver record, the items for which the correspond-
ing item in the donor are missing, are also set to missing. That way, the receiver
takes over the missing pattern from the donor. The receiver records then form
the dataset to simulate with.

The best thing about this mechanism is that it respects patterns in the non-
response. It seems likely that in real situations, the probability that an item
misses is not independent of the rest of the missing pattern in the record. In
that sense the method is more realistic. Note that this mechanism is MAR if the
real missing items in the second part of the dataset were MAR, and the distance
function does not involve variables in which missingness is created.

We suggest a slight modification of the amputation method. In our simulation,
we do not use a distance function. Instead, we stratify the whole dataset ac-
cording to an auxiliary variable. Next, for each record in the dataset for which
all the variables are observed, the receiver records on which we will perform
our simulation studies, we randomly draw with replacement a donor from the
same stratum as the receiver was in. Then, like in the amputation method, we
give the receiver the missing pattern of the donor. The difference is that we can
also choose donors that do not have any missing items.

By doing this, we take two things into account:

• we take over patterns in the missing data in the original dataset as far as
these are related to the variable business size;

• for each variable, the expectation of the fraction of items that is missing
is the same as it was in the original dataset.

In our simulation datasets, we always let the total X15 be observed. This is
realistic, because in practice it often happens that someone does not know the
answers to some specific questions in a survey, but nevertheless fills in the
total. Also, we do not leave out the subtotal X3.

To make the missing mechanism more realistic, we stratify the dataset with
respect to the variable size class and apply the hot deck amputation to the
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strata separately. That means that we take over different missing data patterns
for different company sizes.

The dataset we use contains no missing items that can be deductively imputed,
because this has already been done. The advantage of this is that the simula-
tion datasets also do not contain missing values that can be deduced from the
observations. Therefore, this gives a fair dataset to test imputation methods
on.

4.3 Evaluation criteria

In this section we mention a few criteria which may be used to asses different
imputation methods, if the true values are known. The criteria are mainly in-
spired on [Chambers 2001]. Let x̃ij denote the imputed value corresponding to
the true value xij , and misj = {i|xij is missing} the index set of missing items
in column j.

The first option is to measure the ability of an imputation method to reproduce
individual values. We use the average of the absolute difference between the
true and the imputed values

L1(j) =
1

#misj

∑
i∈misj

|xij − x̃ij | (4.1)

and the average squared differences

L2(j) =
1

#misj

∑
i∈misj

(xij − x̃ij)2. (4.2)

Secondly, we might be interested in the average of the differences for each in-
dividual value in relation to the true values

R1(j) =
1

#misj

∑
i∈misj

|xij − x̃ij |
xij

, (4.3)

but this quantity is not defined if there is some i for which xij = 0. Therefore,
in our implementation, in cases where xij = 0 we check if also x̃ij = 0. If that
is the case, we set its contribution to the sum to nil, because that means the
correct value was imputed. If x̃ij is not zero, we still cannot define R1. In our
simulation dataset, a lot of values xij are zero. Moreover, the methods we eval-
uate most of the times do not impute x̃ij = 0, so the R2 criterion is undefined
very often. Therefore we do not include this criterion in the numerical results
section.

We would like to use a third criterion to asses the ability of an imputation met-
hod to reconstruct means and totals of variables. We could use the difference
between the mean of the true values and the values after imputation. A draw-
back of that idea is that it depends very much on the number of items missing.
It would be a good criterion for the quality of the dataset after imputation, but
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less suitable for the evaluation of the imputation process itself. An alternative
is

R2(j) =
∣∣∣∣ ∑
i∈misj

(xij − x̃ij)/
∑

i∈misj

xij

∣∣∣∣ (4.4)

which takes the relative difference in mean over the imputed values only. This
criterion can handle situations where some xij are zero. If all are zero, the
denominator of (4.4) is zero and R2 is undefined.

Fourthly, we take the total residual sum of squares (RSS). It looks similar to
(4.1), but does not take an average.

RSS(j) =
∑

i∈misj

(xij − x̃ij)2 (4.5)

Finally, we would also like to look at the standard deviation of the distribu-
tion of the imputed data and compare that with the one of the original data.
Therefore, for each variable j, we compute the standard deviation of both the
original and the imputed data and look at the difference between the two. Be-
cause these values as such do not say a lot, we could also give the differences
as a percentage of the original standard deviation.
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Chapter 5

Results

In this chapter we will present the results of our simulation studies. We apply
the scheme described in chapter 4 and calculate the criteria from section 4.3 for
each method separately. The methods we investigate are:

1 the Bayesian sequential regression method that draws from the posterior;

2 the Bayesian sequential regression method that uses the expectation of
the posterior;

3 the classical sequential regression method that uses the expectation of the
estimated distribution;

4 the classical sequential regression method that draws from the estimated
distribution;

5 the deterministic ratio method;

6 the stochastic ratio method;

7 the normal proportional variance method with ad hoc parameter estima-
tion;

8 the normal proportional variance method with the EM algorithm to esti-
mate the parameters;

9 the imputation method fitting a normal distribution using the likelihood
of a left truncated distribution to estimate the parameters;

10 the imputation method fitting an exponential distribution;

11 the Poisson proportional variance method using the EM algorithm to es-
timate the parameters.

The numbers in the figures refer to the numbers of the methods as listed above.

Since we use the same simulation datasets for all methods, we can for each
variable in each dataset compare the results for the different criteria and de-
cide which method performed best. By doing so, we can make a bar plot
for each variable which shows on how many simulation datasets each method
was best performing. In figure 5.1 for example, we see that method number 8,
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Figure 5.1: Bar plots comparing methods 1 up to 9 on the L1 criterion for each variable
separately. The height of the bars indicate on how many simulation datasets
the methods we best performing.
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Figure 5.2: Bar plots comparing methods 1 up to 7 on the different criteria. The height
of the bars indicates how many times the corresponding methods we best
performing over all datasets and variables for the corresponding criterion.

the normal proportional variance method with the EM algorithm to estimate
the parameters, is most often the best for variable ie11000t, but for variable
lm100000t, method number 7, the same model but with the ad hoc estima-
tors, is most often performing best. To get a more clearly arranged view, we
can add the counts over the different variables together for each method. that
gives us figures like 5.2.

A glance at figure 5.2 suggests that the sequential regression methods and the
ratio method are performing less than the proportional variance method. How-
ever, it may still be the case that the methods 1 up to 6 are each better than
number 7. They could be competing amongst each other in the cases where
number 7 is not performing well. Therefore, apart from a first indication of
the performance of these methods, these pictures have very little significance.
Instead, we should compare the methods pairwise.

In the next section, we will compare the sequential regression methods and the
ratio methods individually to the proportional variance method. After that, we
will compare the methods that based on models assuming independence.

5.1 Methods using linear regression

Sequential regression imputation

To apply a sequential regression method to our data, we first have to fill in the
missing entries in the first step. We take the column sums of the records in the
simulation dataset for which all 14 variables are observed. We calculate the
values s1, . . . , s15 from equation 3.20 but not s3 since we left out X3. Then we
fill in the missing values using equation 3.21 with Xtot = X15.

In every next iteration, we apply the regression iteration of section 3.3. If draw-
ing from the posterior or estimated distribution of y does not give a in the per-
mitted interval after we tried a 100 times, give a warning, count it as a misfit
and pick a value uniformly random from the interval. The misfits reported
in table 5.1 for the sequential regression methods are the counts from the last
iteration round of the methods.
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Bayesian sequential classical sequential
regression method regression method ratio method

ie11000t 0.011 0.029 0
ie13000t 0.016 0.001 0
lm10000t 0.514 0.072 0.004
bt34500t 0.031 0.003 0.010
bt34200t 0.010 0.000 0.003
bt34100t 0.022 0.005 0.013
bt34300t 0.191 0.035 0.045
bt34400t 0.025 0.007 0.020
bt34600t 0.034 0.011 0.054
bt34700t 0.026 0.004 0.034
bt34800t 0.165 0.029 0.070
bt34900t 0.012 0.000 0.014

Table 5.1: The number of misfits of the Bayesian sequential regression method, the clas-
sical one and the ratio method, divided by the number of missing values for
each variable separately. The numbers shown are averages over all simulation
datasets.

We repeat this iteration 20 times. That does not seem much, but increasing
the number of iterations can increase the computer time a lot. Furthermore,
Raghunatan [Raghunatan 2002] claims 10 iterations should be sufficient for
most applications.

Bayesian sequential regression method using draws from the posterior

For this sequential regression method, we use the posterior distributions from
section 3.1.2 and truncate them to the appropriate interval. The imputed values
are draws from these truncated normal distributions.

During our simulations we counted the misfits and came to surprisingly high
numbers, see table 5.1 The high fractions for some variables indicate that the
truncated normal distribution is not very suitable for the data. For variable
lm10000t for instance, we count a misfit in on average more than 50 percent
of the cases .

In figure 5.3, we compare the Bayesian sequential regression method using
draws from the posterior with the proportional variance method. We see that
on all criteria, it is performing less than the deterministic proportional variance
method using the ad hoc estimators.

Bayesian sequential regression method using the expectation of the poste-
rior

For this sequential regression method, we use the posterior distributions from
section 3.1.2 and truncate them to the appropriate interval. However, now
the imputed values are not draws but the expected values of these truncated
normal distributions.
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Figure 5.3: Bar plots comparing the sequential regression method that imputes draws
from a posterior with the deterministic proportional variance method.
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Figure 5.4: Bar plots comparing the sequential regression method that imputes the ex-
pectation of a posterior with the deterministic proportional variance met-
hod.

In figure 5.4, we compare the this method with the proportional variance met-
hod. We see that on all criteria, it is performing less than the deterministic
proportional variance method using the ad hoc estimators.

Classical sequential regression method using the expectation of the esti-
mated distribution

For the classical sequential regression method, we use estimators from section
3.1.1. We do not use the maximum likelihood estimators for β and σ for from
section 3.2.1 because it takes too much computer time to calculate these esti-
mates in every iteration round for every variable. So our implementations of
both the classical and the Bayesian methods do not use the bounds on the vari-
ables to generate the parameters. The imputed values are again the expected
values of the truncated versions of the estimated normal distributions.

In figure 5.5, we compare the this method with the proportional variance met-
hod using the ad hoc estimators. We see that on all criteria, it is performing
less than the deterministic proportional variance method.
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Figure 5.5: Bar plots comparing the classical regression method that imputes the ex-
pectation of the estimated distribution with the deterministic proportional
variance method.
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Figure 5.6: Bar plots comparing the classical regression method that imputes draws
from the estimated distribution with the deterministic proportional variance
method.

Classical sequential regression method using draws from the estimated dis-
tribution

For this method, we use the same procedure as for the previous method, but
now the imputed values are draws from the truncated versions of the estimated
normal distributions.

Here too we counted the misfits. In table 5.1, we see the average over the
simulation datasets of the number of misfits counted per variable. We count
much less misfits for the classical regression than for the the Bayesian version.

In figure 5.6, we compare the this method with the proportional variance met-
hod using the ad hoc estimators. We see that on every criterion, it is performing
less than the deterministic proportional variance method.

Ratio methods

The next method we test is the ratio method, as described in section 3.4. We
implemented the deterministic and the stochastic variant, and compare these
with the proportional variance method that uses the ad hoc estimators too.

For the stochastic variant, we counted the number of misfits just like with the
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Figure 5.7: Bar plots comparing the deterministic ratio method that with the determin-
istic proportional variance method.
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Figure 5.8: Bar plots comparing the stochastic ratio method that with the deterministic
proportional variance method.

sequential regression methods, see table 5.1 for the results. Note that for the
first two variables, ie110000t and ie130000t, no misfits were counted at
all.

We see that both versions of the ratio method are doing worse than the propor-
tional variance method.

5.2 Methods based on models assuming indepen-
dence

In the previous section we saw that the sequential regression and ratio meth-
ods are not working very well. Therefore we now focus on the methods that
are based on models which assume independence between variables. First we
look at the proportional variance method, to see that the normal model with
proportional variances does not fit the data. After that, we compare the four
remaining methods: the proportional variance method with ad hoc parame-
ter estimation, the imputation method fitting a normal distribution, the impu-
tation method fitting an exponential distribution and the imputation method
that uses the EM algorithm to fit a Poisson distribution.
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Figure 5.9: Bar plots comparing the proportional variance method with the version that
uses the EM algorithm to find the parameters of the normal proportional
variance model for every imputed variable in each simulation dataset. The
height of the bar indicates the number of variables for which the method
was performing better than the other.

The normal proportional variance model

In figure 5.9, we see that the method uses the EM algorithm to find the pa-
rameters of the normal proportional variance model is performing worse than
the proportional variance method that uses the ad hoc parameters. A possible
explanation is that the normal proportional variance model is inappropriate.
The method is doing all right because it uses the given sum of each record, and
is therefore not too much handicapped by the model. Since the EM variant is
trying to get parameter estimates that fit better to the inappropriate model, it
is works less well than the ad hoc variant.

We can also test if the normal proportional variance model fits the data pro-
vided by Statistics Netherlands. We test the null hypothesis

H0 : the data Xij follow a N (µj , αµj) distribution

with the same α for all j, against the alternative

HA : the data Xij follow a N (µj , σj) distribution.

We use a likelihood ratio test statistic

Lθ(X) =
maxθ∈H0 log `θ(X)
maxθ∈HA

log `θ(X)

so that we know that asymptotically,

2Lθ(X) ∼ χ2
k−1. (5.1)

Here the degrees of freedom of the chi square distribution equals the difference
in the number of parameters between the models in H0 and HA. Instead of
a parameter σj for each column, the model of the null hypothesis only has
the parameter α. So the number of degrees of freedom equals the number of
columns of the data set minus one.

We use a computer simulation to find a c such that PH0(L > c) = 0.05. The test
tells us that we reject the null hypotheses. Using the asymptotic distribution
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(5.1), we find a p-value of 9.682852e− 05, so we have indeed reason to believe
that the model is inappropriate for this dataset.

To get an idea of the difference between the estimators for α that both methods
use, we can apply the estimation process to a simulation dataset with missing
items. Since α is a measure for the fraction of the variance divided by the mean,
we compare the results in a graph where we plot the variance of each variable
in the completely observed dataset against its mean, see figure 5.10(a). The
solid and dashed lines are lines through the origin that have the estimated α as
slope coefficient. The dotted line is a regression line on the points. Note that
there is a large cluster of points in the bottom left corner, and only two points
outside the cluster. In figure 5.10(b) we zoom into the cluster, and redraw the
regression line, now using only points in the cluster.

We see in figure 5.10(a) that the EM estimator for α is closer to the slope of
the regression line than the ad hoc estimator. That is strange, because we saw
the ad hoc estimator did better. However, it is the other way around in the
cluster shown in figure 5.10(b). Here, we see that the line corresponding to
the ad hoc estimator, is closer to the regression line than the line of the EM
estimator. The regression line in figure 5.10(b) was fitted only to the variables
in the cluster. Since most variables lie in the cluster, that could explain why the
ad hoc estimator did do better nevertheless.

The other methods based on models assuming independence

The four other methods that use models assuming independence are

• the proportional variance method with ad hoc parameter estimator (ad
hoc);

• the imputation method fitting a normal distribution. We use the likeli-
hood of a left-truncated normal distribution, see section 2.3 to estimate
the parameters. (normal);

• the imputation method fitting an exponential distribution (exp)

• the Poisson proportional variance method the EM algorithm to find pa-
rameter estimates (poisson)

In the next figures these methods are referred to by the keywords in brackets.
We compare these four methods pairwise for each criterion separately.

In figure 5.11, we see that we can order the methods according to their per-
formance on the L1 criterion; First comes the proportional model with ad hoc
estimators, then the Poisson model, after that the exponential model and finally
the normal model.

For the L2 criterion, we see almost the same pattern in figure 5.12. Here the
Poisson model is performing best, the the proportional model with ad hoc es-
timators comes second and the exponential model is slightly better than the
normal model, which is last again.

In figure 5.13 we get the same order of succession for the R2 criterion, but the
differences between most methods are larger. The exponential model is just
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Figure 5.11: Bar plots comparing the methods pairwise on the L1 criterion for every
imputed variable in each simulation dataset. The height of the bar indicates
the number of variable for which the method was performing better than
the other.

adhoc poisson EM

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

(a)

adhoc exponential

0
10

0
30

0
50

0
70

0

(b)

adhoc normal

0
10

0
30

0
50

0
70

0

(c)

exponential poisson EM

0
10

0
30

0
50

0
70

0

(d)

normal poisson EM

0
10

0
30

0
50

0
70

0

(e)

normal exponential

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

(f)

Figure 5.12: Bar plots comparing the methods pairwise on the L2 criterion for every
imputed variable in each simulation dataset. The height of the bar indicates
the number of variable for which the method was performing better than
the other.
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Figure 5.13: Bar plots comparing the methods pairwise on the R2 criterion for every im-
puted variable in each simulation dataset. The height of the bar indicates
the number of variable for which the method was performing better than
the other. There were three datasets out of the 100 where all four meth-
ods gave the same R2 value for the variable ie130000t, but that does not
significantly change the picture.
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Figure 5.14: Bar plots comparing the methods pairwise on the difference in variance for
every variable in each simulation dataset. The height of the bar indicates
the number of variables for which the method was performing better than
the other.

lagging behind the Poisson model is best and the the proportional model with
ad hoc estimators. For the R2 criterion there were three datasets out of the
100 where all four methods gave the same value for the variable ie130000t.
Since the differences in this picture are clearly all larger than three, that does
not significantly change the picture.

For the difference in variance, the Poisson model and the the proportional
model with ad hoc estimators are coming very close to each other. Behind
those two, the exponential model clearly is better than the normal model.

The last criterion we investigated was the total residual sum of squares (RSS).
Here we see an already familiar pattern: the Poisson method comes first, than
the proportional model with ad hoc estimators, next the exponential model
and just after that the normal model.
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Figure 5.15: Bar plots comparing the methods pairwise on the residual sum of squares
(RSS) for every variable in each simulation dataset. The height of the bar
indicates the number of variables for which the method was performing
better than the other.
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Chapter 6

Conclusions

6.1 Discussion and suggestions for future research

In the previous chapter, we gathered the results from our simulations. We saw
that the sequential regression methods did not do a good job. There are several
possible explanations for that. The most obvious one is that the truncated nor-
mal model used in these methods does not fit to the data. This is backed by the
numbers in table 5.1 where we counted the amount of imputations for which
the mean of the estimated normal distribution was far outside the permitted
truncation region.

We also did not check if the regression sequence converged after 20 iteration
rounds. If we would like to check this ,we could for instance take one missing
item and follow it during the iteration rounds of the sequential method. This
would give a sequence of imputed values for the single missing item. How-
ever, we should not look for convergence of the imputations themselves, but
at the distributions they come from. A possible strategy would be to cut the
sequence of imputations into pieces of a certain length, and calculate the mean
and variance of these pieces. If these numbers are coming closer to each other
along the sequence, that could be an indication that the distributions are con-
verging.

Another interesting experiment could be to vary the regression order of the
variables in each iteration. We did not use any specific order, but just took the
ordering of the variables in the data matrix. It could make sense to update fist
the variable with the least number of missing items, than the variable with the
second least number and so on. On the other hand, if the order really matters,
one can wonder if convergence of the sequential method makes any sense.

There might be opportunities to improve the sequential regression methods.
We could use other regression models. We could use other truncated distri-
butions, or for instance semi-continuous random variables that are zero with
a positive probability and or truncated normally distributed otherwise. Alter-
natively, if we wish to stick to truncated normal distributions, we could try to
improve the Bayesian analysis of the truncated normal regression model. We
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used the Bayesian linear model to find the posterior and then truncated to the
correct interval given by the restrictions, but that is only an approximation.

Apart from using other models, we could think about which variable Xout we
leave out in each iteration. We always left out the variable which had the most
missing items, because that leaves as much observed information in as possi-
ble. A disadvantage is that we often leave out the same variable, and only if we
are busy imputing this variable with most missing items itself we use the infor-
mation in it. There might be other strategies which could perhaps give better
results, for instance leave out a variable randomly, or with some probability
according to the number of missing items in a variable. Also, as mentioned
before, we could improve the way we draw from the truncated normal distri-
butions using importance sampling. Finally, we could improve the imputation
process by using multiple imputation, see appendix A.

Currently, the ratio imputation method is the most commonly used method at
Statistics Netherlands, although in a different version than we implemented.
In our implementation we changed the method by drawing or filling in the ex-
pectation of a truncation of the estimated distribution. We saw that on our sim-
ulation data, our implementation leads to very poor imputations. We counted
several misfits, see page 55. For some variables up to 7 percent of the imputa-
tions was a misfit. This could indicate that the ratio model is not appropriate
for this kind of data with restrictions. Of course, our simulation dataset did
not give any specific reason to use the ratio model, and our choice of taking the
total variable bt310000t as regressor is somewhat arbitrary.

The best methods we investigated all use models that assume the items are
independently distributed with a variance proportional to their mean. There
are different models that have this property, and we looked at two of them.
There could certainly be many more, and it would be worth to find and them
and test them too. In our test, there was not much difference between the
results if we estimated the parameters based on a normal model, a Poisson
model or even used an ad hoc estimator.

At first sight it is a little bit surprising that an exponential model does not lead
to better imputations. In the histograms of single variables the exponential
distribution seems to fit the data much better, see figure 2.2 on page 31. Appar-
ently it is not necessary to find a good model for the data themselves. Since we
observe the sum of each row in the dataset, it is better to use models that lead
to a good conditional distribution of the data given these sums.

We see that for all criteria, the results of the Poisson model and the propor-
tional model with ad hoc estimators lie very close to each other, which is not
surprising since we saw in section 2.5.2 that the two are related. But both are
each better than the exponential and the normal model. This gives reason to
believe that the Poisson model is actually the model that gives the best condi-
tional distribution of the data given the observed row sums.
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6.2 Conclusion

We advise Statistics Netherlands not to use sequential regression methods for
imputation of economical micro-data without doing further research first. The
ratio imputation method, now the most commonly used method, is also not
working very well. Although Statistics Netherlands uses a version that does
not take the restrictions into account and changes the data afterwards, it might
be a good idea to examine this method more closely. The proportional variance
method based on Hachemeister and Stanard’s Poisson model worked best in
our simulation studies. It would be interesting to test the hypothesis that the
data are following a Poisson distribution using datasets from several time pe-
riods.
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Appendix A

Multiple imputation

A major disadvantage of imputation methods is that they fill in only a single
value for each missing item. That single value can never reflect the variabil-
ity due to the fact that the value was actually missing. Besides, it also does
not take the variance into account that is due to uncertainty the non-response
mechanism.

For these reasons Rubin proposed to use multiple imputation [Rubin 1987].
The idea is to calculate for each missing value not one, but several, say m pos-
sible values to impute. This gives m complete data sets instead of one. Each of
these data sets can be analyzed as if it were an original complete dataset with
no non-response at all.

Let Q be a statistic. Suppose that Q̂ = Q̂(Xobs, Xmis) is an estimator for Q such
that if we would have a complete dataset without non-response, the difference
between Q and its estimator is normally distributed

(Q− Q̂) ∼ Nk(0, U) (A.1)

where U is a statistic that gives the variance or if Q is a vector the covariance
matrix of (Q−Q̂). Suppose that repeated imputations have led to m completed
data sets, with corresponding statistics Q̂∗1, . . . Q̂∗m and U∗1, . . . , U∗m for q and
U respectively. Now, Let

Q̄m =
1
m

m∑
l=1

Q̂∗l and Ūm =
1
m

m∑
l=1

U∗l

denote the the averages of the statistics Q and U over the complete data esti-
mates and and variances and

Bm =
1

m− 1

m∑
l=1

(Q̂∗l − Q̄m)T (Q̂∗l − Q̄m)

the variance between the m complete-data estimates. Then the total variance
of (Q− Q̄m) is

Tm = Ūm + (1 +
1
m

)Bm.
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Appendix B

Estimating variances using
the bootstrap

The bootstrap re-sampling method, developed by Efron, is a method to esti-
mate variance of a population estimator. The term bootstrap comes from the
phrase to pull oneself up by one’s own bootstrap. Suppose we draw a completely
observed random sample x = (x1, . . . xn) from an unknown distribution func-
tion F population. We define the empirical distribution function F̂ to be the dis-
tribution that puts probability 1/n on each value Xi for i = 1, . . . , n. So to a set
A in the sample space of x it assigns the empirical probability

PF̂ (A) = #{xi ∈ A}/n,

which is the proportion of the observed sample x that lays in A. Suppose we
wish to use these observations to estimate a parameter of interest θ = t(F ) with
an estimator θ̂. An example could be the plug-in estimator which is defined as
θ̂ = t(F̂ ). For now however we suppose we would like to estimate θ using a
more general statistic θ̂ = Q(x), which may be but is not necessary the plug-in
estimator. The idea is to use the empirical distribution F̂ of x to estimate the
variance of θ̂ = t(F̂ ).

For this end we define a bootstrap sample x∗ = (x∗1, . . . , x
∗
n∗) to be a simple

random sample with replacement from the originally observed sample x. This
way, we can draw a random sample from the empirical distribution F̂ . In most
applications n∗ is taken equal to n, as we will do too. For each bootstrap sample
x∗ there is a corresponding bootstrap replication of θ̂

θ̂∗ = Q(x∗).

The ideal bootstrap estimates of the standard error seF (θ̂) and variance varF (θ̂)
are the plug-in estimators that use F̂ in place of the unknown F : seF̂ (θ̂∗) and
varF̂ (θ̂∗) respectively. Since there are almost no θ̂ for which nice formulas exist
for these ideal bootstrap estimators, except for the mean, we must be satisfied
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with an approximation. The obvious approximation uses the empirical stan-
dard deviation.

Summarizing the bootstrap algorithm to estimate the variance of θ̂:

1 draw say B bootstrap samples x∗1, . . . , x∗B from x independently;

2 calculate for b = 1, . . . , B the bootstrap replication corresponding to each
bootstrap samples x∗b

θ̂∗(b) = Q(x∗b).

3 estimate varF (θ̂) by calculating

v̂arB =
1

B − 1

B∑
b=1

(
θ̂∗(b)− θ̂∗(·)

)2

(B.1)

where

θ̄∗(·) =
1
B

B∑
b=1

θ̂∗(b)

or take the square root of (B.1) to get an estimate of the standard error
seF (θ̂)

The question remains how large we should choose the number of bootstrap
replications B. As B gets bigger, the bootstrap estimator becomes a better ap-
proximation of the variance of θ̂

lim
B→∞

ŝeB = seF̂ = seF̂ (θ̂∗).

For a measure for the increased variability due to stopping after only B boot-
strap replications, Efron [Effron 1993] suggests the increase of the coefficient of
variation of ŝeB , which is the ratio of its standard deviation to its expectation.
But he also states as a rule of thumb that ”very seldom” more than B = 200
replications are needed to estimate a standard error.

The ideal bootstrap estimate seF̂ (θ̂∗) and its approximation ŝeF̂ (θ̂∗) are called
non-parametric bootstrap estimates because F̂ is a non-parametric estimate of
the actual distribution function F . There are also parametric bootstrap estima-
tors, which use parametric models to find an estimate F̂par for the distribution
F . The parametric bootstrap is useful if we wish to make assumptions about
the distribution F that make available formulas for variances. However, in
bootstrap simulations we do not need such formulas, so we will only use the
non-parametric bootstrap.

So far we have assumed the sample x was completely observed, so let us now
look at what to do if part of the data is missing. In that case, we want to use the
bootstrap method to estimate the variance of parameters in datasets subject
to imputation. We can use the outcomes to asses the imputation procedure
used. The simplest way would be to impute the data x using some imputation
method to get xI , and then apply the algorithm stated above to xI .

A major disadvantage of this method is that it treats the imputed data as if it
were the completely observed data. So it does not take the variance due to
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the imputation process and the missing of the data into account, and leads to
underestimates of the variance. This why Shao and Sitter [Shao 1996] call it the
naive method. They propose a better alternative. Instead of using the imputed
data to create bootstrap samples, they suggest to draw bootstrap samples from
the data with missing entries. These bootstrap samples should then be imputed
the same way and after that the bootstrap estimators can be calculated. So to
reckon with the imputation process, the bootstrap scheme changes to

1 draw B bootstrap samples x∗1, . . . , x∗B from the dataset with missing
items x independently;

2 apply the imputation procedure to each bootstrap sample x∗1 to get B
imputed versions x∗1I , . . . , x∗BI

3 calculate for b = 1, . . . , B the bootstrap replication corresponding to each
imputed bootstrap sample x∗bI

θ̂∗I (b) = Q(x∗bI ).

4 estimate varF (θ̂I) by calculating

v̂arIB =
1

B − 1

B∑
b=1

(
θ̂∗I (b)− θ̂∗I (·)

)2

(B.2)

where

θ̄∗I (·) =
1
B

B∑
b=1

θ̂∗I (b)

or take the square root of (B.2) to get an estimate of the standard error
seF (θ̂I)

Note that in practice most users will have an already imputed dataset available.
If they want to estimate the variance of some parameter using a bootstrap met-
hod, they should have the original dataset with missing items at their disposal
and use the same imputation method for their bootstrap samples as the one
that was used for the original dataset.
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Appendix C

Simulation data

The data we analyse are a selection from the dataset Productiestatistiek
Detailhandel with SBI from 52321 up to 5233 and GK from 4 up to 9. These
data come from Statistics Netherlands’ questionnaire Vragenlijst DHgroot
VL 11 deel E: Bedrijfslasten.

variable name abbreviation variable description (in Dutch)
INKWRDE110000 ie11000t Inkoopwaarde handelsgoederen
INKWRDE130000 ie13000t Totaal overige inkoopwaarde
INKWRDE100000 ie10000t Totaal inkoopwaarde
LOONSOM100000 lm10000t Totaal arbeidskosten
BEDRLST345000 bt34500t Totaal andere personeelskosten
BEDRLST342000 bt34200t Totaal kosten vervoermiddelen
BEDRLST341000 bt34100t Totaal energiekosten
BEDRLST343000 bt34300t Totaal huisvestingskosten
BEDRLST344000 bt34400t Totaal kosten machines, apparatuur,

installaties, kantoorinventaris
BEDRLST346000 bt34600t Totaal verkoopkosten
BEDRLST347000 bt34700t Kosten communicatie
BEDRLST348000 bt34800 Totaal kosten dienstverlening t

door derden
BEDRLST349000 bt34900t bedrijfslasten niet elders genoemd

AFSCHRG110000 ag11000t Afschrijvingen op materiële
en immateriële vaste activa

BEDRLST310000 bt31000t Totaal bedrijfslasten

Table C.1: The variables in the simulation dataset. The variables that are a sum of other
variables are bold faced.
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