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1 Introduction

The theory of crossed products of C∗-algebras provides a connection between two
fields of mathematics, on the one hand the study of dynamical systems and on the
other the theory of C∗-algebras. We shall consider C∗-dynamical systems, which
are triples (A,G, α) consisting of a C∗-algebra A, a locally compact topological
group G and a strongly continuous action α of G on A. We can study these
systems by looking at its covariant ∗-representations on Hilbert spaces. In the
theory of C∗-dynamical systems there is powerful tool to study these covariant rep-
resentations. A fundamental theorem asserts that given a C∗-dynamical system
(A,G, α), there exists a C∗-algebra Aoα G such that the (nondegenerate) covariant
∗-representations of the dynamical system correspond bijectively to the (nondegen-
erate) ∗-representations of A oα G. The C∗-algebra A oα G is called the crossed
product of A by G.
The study of crossed products arises naturally from the study of topological dy-
namical systems. Suppose we are given a locally compact Hausdorff space X and
a homeomorphism T of X. The iterates of the map T on X (which we can view
as an action of Z on X) yield a discrete (or classical) dynamical system (X, T ). In
fact, iteration of the map T also produces a dynamical system with the C∗-algebra
C0(X) as its state space, where C0(X) is the space of continuous, C-valued funtions
vanishing at infinity, equipped with the supremum norm and with its involution
defined by complex conjugation. Hence we obtain a special case of a C∗-dynamical
system (C0(X), Z, α) by defining the action α : Z → Aut(C0(X)) by

αn(f) = f ◦ T−n

The crossed product C0(X) oα Z is well-studied and some interesting results have
been obtained. A theorem that deserves mentioning is one by S.C. Powers, stat-
ing that, if the space X is infinite, (the action of) a classical dynamical system is
minimal if and only if C0(X) oα Z is simple (see for example Tomiyama (1987) or
Davidson (1996)).
This construction can be generalized in two directions. First, we can consider actions
of more general (locally compact) topological groups G on C0(X). For example,
we can study the action of R on C0(X) through the homeomorphism T (with the
action α defined as above), which is called flow in the literature. Second, we can
take a more general space A for the dynamical system. By a theorem of Gelfand
(see Murphy (1990), theorem 2.1.10), every abelian C∗-algebra A is isometrically
∗-isomorphic to C0(X) for a certain locally compact Hausdorff space X. It is there-
fore natural to consider C∗-algebras as the space A for the dynamical system. Due
to Gelfand’s result, the dynamical systems (A,G, α) are sometimes nicknamed non-
commutative dynamical systems.
We can also see C∗-crossed products as a generalization of group C∗-algebras, which
are used to study unitary representations of a locally compact group on Hilbert
spaces. Viewed from the theory of crossed products, the group C∗-algebra of a lo-
cally compact group is a special case of a crossed product obtained by taking A = C
and α equal to the trivial action.
The theory of C∗-crossed products is extensive and well-developed, see for example
the beautiful monograph Williams (2007) for a survey of the theory. C∗-crossed
products have been succesfully applied to study group C∗-algebras and to con-
struct C∗-algebras with certain desired properties, see Davidson (1996) and Fill-
more (1996) for examples.
In this thesis we will attempt to generalize the crossed product yet a little bit fur-
ther, by removing the involutive structure on the space A of the dynamical system.
We will consider algebraic dynamical systems (A,G, α) as above, but with A an
arbitrary Banach algebra. The question we try to answer is the following: Given a
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dynamical system (A,G, α), is there a Banach algebra A oα G such that (a subset
of) the covariant representations of the dynamical system correspond bijectively
with (a subset of) the representations of A oα G? The hope is, of course, that we
can construct the same powerful tool that is available in the study of C∗-dynamical
systems and C∗-algebras. As one might expect, the original construction of the
crossed product makes use of many basic properties of C∗-algebras, so there are
some difficulties to overcome.
Basically the construction of the crossed product boils down to completing the al-
gebra Cc(G, A) equipped with the twisted convolution product with respect to a
suitable norm. In the first part of this thesis we will consider several candidate
norms to use in our definition of a crossed product. In the second part we try to
prove the above mentioned bijection for our new crossed product. The final part
discusses the many remaining open questions and gives suggestions for further re-
search.
Our main result states the following partial positive answer to the above question:
Given a dynamical system (A,G, α) with A an approximate unital Banach algebra,
there exists, for every faithful collection of contractive covariant representations S
of (A,G, α), an approximate unital Banach algebra (A oα G)S such that there is
an injection of the nondegenerate contractive covariant representations of S into
the set of (nondegenerate) contractive representations of (Aoα G)S . Also, we show
that given a nondegenerate contractively extendable representation of (A oα G)S

there exists a nondegenerate contractive covariant representation which is mapped
by the injection to the given representation. We obtain the mentioned result for
C∗-dynamical systems as a special case, by taking S equal to the collection of co-
variant ∗-representations on Hilbert spaces.
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2 Crossed products of Banach algebras

In this section we will define, for every faithful collection of contractive covariant
representations, a crossed product for dynamical systems (A,G, α) with A a Banach
algebra. Our exposition will largely parallel that of Williams (2007), which has
been our primary source for the theory on C∗-crossed products. In contrast to
the historical development of the theory, we postpone the discussion of the crossed
product for C∗-algebras to the end of this section. As will become apparent during
the course of this section, we can view the C∗-crossed product as one of the newly
defined S-crossed products for Banach algebraic dynamical systems.

2.1 Definition of the crossed product

We do not expect that the crossed product will give a useful tool for studying the
dynamical system of any Banach algebra. Several of the following results are aimed
at determining which restrictions on the Banach algebra A and action α are natural
to impose. Furthermore, it will be investigated what the ‘right’ notion of a crossed
product is in the new setting.

We will now first introduce several basic definitions. Throughout this thesis we
will also implicitly use many results from the theory of topological groups, Haar
integration and integration of Banach space valued functions. We refer the reader
to the appendices for the most important theorems and for further references. We
will always use G to denote a locally compact topological group and µ for a fixed
left Haar measure on this group.

Definition 2.1 A normed algebra A is an algebra over C equipped with a norm
such that for all a, b ∈ A

||ab|| ≤ ||a|| ||b||.
A normed algebra is called a Banach algebra if it is complete with respect to its
norm.

Definition 2.2 A representation π of a normed algebra A on a Banach space X
is a homomorphism π : A → B(X) where B(X) is the Banach algebra of bounded
linear operators on X. It is called

• continuous if it is bounded, contractive if it is norm decreasing, isometric if
it is norm-preserving;

• faithful if it is injective;

• non-degenerate if the linear span of {π(a)x; a ∈ A, x ∈ X} is dense in X;

• algebraically cyclic if there is a vector y ∈ X, called an algebraic cyclic vector,
such that X = π(A)y = {π(a)y : a ∈ A}.

• topologically cyclic if there is a vector y ∈ X, called a topological cyclic vector,
such that π(A)y is dense in X.

• algebraically irreducible if π is non-trivial (i.e. π(A) 6= 0) and its only invariant
subspaces are 0 and X.

• topologically irreducible if π is non-trivial and its only closed invariant sub-
spaces are 0 and X.

The following proposition gives a characterization of irreducible representations in
terms of its cyclic vectors. The proof of the two statements can be found in Palmer
(1994), theorem 4.1.3 and in Dixmier (1977), proposition 2.3.1, respectively.
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Proposition 2.3 Let A be a normed algebra and let π be a representation of A on
a Banach space X. Then π is algebraically irreducible if and only if every non-zero
vector in X is an algebraic cyclic vector for π and X 6= 0. The reprsentation π is
topologically irreducible if and only if every non-zero vector x in X is a topological
cyclic vector for π or X = Cx.

We will be mostly interested in representations of a Banach algebra on a Banach
space. As the following proposition shows, for such representations it is not neces-
sary to define the seemingly weaker concept of a strongly continuous representation.
The proof is an application of the Banach-Steinhaus theorem and can be found in
Palmer (1994), proposition 4.2.2.

Proposition 2.4 Every strongly continuous representation of a Banach algebra on
a Banach space is continuous.

Every Banach algebra A has a natural representation and anti-representation on
itself called the left and right regular representation, respectively, given by a 7→ La

and a 7→ Ra, where
La(b) = ab, Ra(b) = ba (b ∈ A).

Definition 2.5 Let A be a Banach algebra. A bijective, continuous, multiplicative
linear map on A is called an automorphism of A. The group of automorphisms of
A is denoted by Aut(A).

Definition 2.6 A Banach algebraic dynamical system, or dynamical system for
short, is a triple (A,G, α), where A is a Banach algebra, G is a locally compact
topological group and α : G → Aut(A) is a strongly continuous action of G on A
(i.e. s 7→ αs(a) is continuous for every a ∈ A). The action α is called uniformly
bounded by M if, for some constant M ≥ 1,

1
M
||a|| ≤ ||αr(a)|| ≤ M ||a|| (r ∈ G, a ∈ A).

A dynamical system will be called isometric if α : G → Aut(A) has its image in the
subgroup of isometric automorphisms of A.

The following lemma shows that a strongly continuous action is uniformly bounded
when restricted to a compact subset of G. This is a direct consequence of the
Banach-Steinhaus theorem and will prove very useful in what follows.

Lemma 2.7 Let (A,G, α) be a dynamical system. Then for every compact set
K ⊂ G there exists a constant MK ≥ 1 such that

1
MK

||a|| ≤ ||αs(a)|| ≤ MK ||a|| (s ∈ K, a ∈ A).

Proof. For a fixed a ∈ A, the map s 7→ αs(a) is continuous, so the set {αs(a) : s ∈
K} is compact in A and hence bounded. We conclude that {αs : s ∈ K} forms a
pointwise bounded collection in B(A) and, since A is Banach, the second inequality
readily follows from the Banach-Steinhaus theorem. The first inequality follows by
taking a = αs−1(b) (b ∈ A) in the second inequality. X

The basic building block for our definition of the crossed product is the function
algebra Cc(G, A), which we define as follows:

Definition 2.8 Let (A,G, α) be a dynamical system. The function algebra Cc(G, A)
is defined to be the set of continuous, compactly supported functions on G with val-
ues in A, equipped with the twisted convolution product

f ∗ g(s) =
∫

G

f(r)αr(g(r−1s)) dµ(r) (f, g ∈ Cc(G, A)).
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The support of f ∈ Cc(G, A) is denoted by supp(f).

Using lemma 2.7 and lemma 2.10 below, we see that f ∗ g is indeed in Cc(G, A) for
f, g ∈ Cc(G, A). Also, using Fubini’s theorem it is not difficult to check that the
twisted convolution product is an associative operation.
We shall consider several norms on Cc(G, A), namely the supremum norm || · ||∞,
the L1-norm || · ||1 and the S-crossed product norms || · ||S , which will be defined
later on (in fact, the S-crossed product will be defined as the completion of Cc(G, A)
with respect to the || · ||S-norm).
Occasionally we use the Banach space L1(G, A). The theory of integration for
Banach space valued functions is somewhat involved and most authors on crossed
products prefer to simply define L1(G, A) as the completion of Cc(G, A) with respect
to the || · ||1-norm. Although L1(G, A) is indeed the completion of Cc(G, A), we
need slightly more than that (e.g. Fubini’s theorem and the Dominated Convergence
theorem), see appendix B for a discussion and the main results.
The next lemma will provide a very useful tool in the following. It is taken from
Williams (2007), lemma 1.87.

Lemma 2.9 Let A0 be a dense subset of A and define

Cc(G)�A0 = span{z ⊗ a : z ∈ Cc(G), a ∈ A0},

where z ⊗ a(s) := z(s)a. Then for every f ∈ Cc(G, A) there exists a sequence
{fn}∞n=1 in Cc(G)�A0 such that fn → f uniformly on G and for some N > 0 and
compact set K we have supp(fn) ⊂ K for all n ∈ N. In particular, Cc(G) � A0

is dense in Cc(G, A) with the inductive limit topology and in Cc(G, A) with the
topology induced by the L1-norm.

We shall not need the inductive limit topology in what follows. For a definition and
discussion we refer to Conway (1985).
The proof of the lemma depends on the following result, which we will use over and
over again. It is lemma 1.88 from Williams (2007).

Lemma 2.10 Let f ∈ Cc(G, A) and ε > 0. Then there is a neighborhood V of e in
G such that either sr−1 ∈ V or s−1r ∈ V implies

||f(s)− f(r)|| < ε.

The following definition establishes a notion of representation for dynamical sys-
tems.

Definition 2.11 Let (A,G, α) be a dynamical system and X a Banach space. Then
a pair (π,U) is called a covariant representation of (A,G, α) on X if π : A →
B(X) is a representation of A on X and U : G → B(X) is a strongly continuous
homomorphism into the group of surjective linear isometries on X (an isometric
representation of G on X) which satisfy

π(αs(a)) = Usπ(a)U−1
s .

A covariant representation (π,U) is called continuous, contractive, faithful, isomet-
ric, nondegenerate, (algebraically/topologically) cyclic or (algebraically/topologically)
irreducible if π is continuous, contractive, faithful, isometric, nondegenerate, (alge-
braically/topologically) cyclic or (algebraically/topologically) irreducible, respec-
tively.

Remark. The restriction of covariant representations in which U is isometric is a
natural generalization of the covariant representations considered in the theory of
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C∗−dynamical systems, where U is restricted to be a unitary representation of G
on a Hilbert space H.

From the definition it is not immediately clear that non-zero covariant representa-
tions exist. Fortunately in the case that (A,G, α) has a uniformly bounded action,
given a continuous representation π of A on a Banach space X (for example the left
regular representation) we can always construct a covariant representation (π̃, U) of
(A,G, α) on L1(G, X) called the regular covariant representation associated to π.

Proposition 2.12 Let (A,G, α) be dynamical system, suppose that α is uniformly
bounded by M ≥ 1 and let π : A → B(X) be a continuous representation. Let
1 ≤ p < ∞ be given. Define the pair of representations (π̃, U) of (A,G, α) on
Lp(G, X) by

π̃(a)h(r) = π(α−1
r (a))(h(r)) , Ush(r) = h(s−1r).

Then (π̃, U) is a continuous covariant representation and ||π̃|| ≤ M ||π||. If p = 1,
then (π̃, U) is called the regular covariant representation associated to π.

Proof. It is easy to check that π̃ and U are homomorphisms into B(Lp(G, X)) and
Us is an invertible isometry for every s ∈ G. It is not immediately obvious that
the map r 7→ π(α−1

r (a))(h(r)) is measurable. Fix a ∈ A and h ∈ Lp(G, X), then h
vanishes off a σ-finite subset of G and hence there is a sequence of simple funtions
{hn} and a µ-null set N such that

||hn(r)|| ≤ ||h(r)|| and hn(r) → h(r) (for all r ∈ G−N).

Now each hn is of the form

hn(r) =
kn∑
i=1

xn
i 1Gn

i
(r) (r ∈ G),

where kn ∈ N, xn
i ∈ X and Gn

i ⊂ G is measurable and of finite measure. As
r 7→ π(α−1

r (a))x is measurable for every x ∈ X by continuity of π and strong
continuity of α, we see that

r 7→ π(α−1
r (a))hn(r) =

kn∑
i=1

π(α−1
r (a))xn

i 1Gn
i
(r)

is measurable on G. Moreover, for any r ∈ G−N ,

||π(α−1
r (a))hn(r)− π(α−1

r (a))h(r)|| ≤ ||π(α−1
r (a))|| ||hn(r)− h(r)||

≤ M ||π|| ||a|| ||hn(r)− h(r)|| → 0.

Thus π̃(a)h is µ-almost everywhere the pointwise limit of a sequence of measurable
functions and therefore measurable. Also,

||π̃(a)h||p ≤ (
∫

G

||π(α−1
r (a))||p ||h(r)||p dµ(r))1/p ≤ M ||π|| ||a|| ||h||p.

We conclude that π̃ is a continuous linear operator on Lp(G, X) and ||π̃|| ≤ M ||π||.
To show that U is strongly continuous, let h ∈ Lp(G, X) and s∗ be given. Fix
ε > 0. Since Cc(G, X) is dense in Lp(G, X), we can find h̃ ∈ Cc(G, X) such that
||h− h̃||p < ε

3 and hence ||Urh−Urh̃||p < ε
3 for every r ∈ G. By lemma 2.10 we can

find a neighborhood V of e in G such that if either sr−1 ∈ V or s−1r ∈ V implies

||h̃(r)− h̃(s)|| < ε

3(µ(supp(h̃)))1/p
.
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So if we take s ∈ s∗V then for any r ∈ G we have (s∗)−1r(s−1r)−1 ∈ V and hence,

||Ush̃− Us∗ h̃||p = (
∫

G

||h̃(s−1r)− h̃((s∗)−1r)||p dµ(r))1/p <
ε

3
.

We obtain for s ∈ s∗V ,

||Ush− Us∗h||p ≤ ||Ush− Ush̃||p + ||Ush̃− Us∗ h̃||p + ||Us∗ h̃− Us∗h||p < ε,

U is strongly continuous.
It only remains to verify the covariance condition:

Usπ̃(a)U−1
s h(r) = π̃(a)U−1

s h(s−1r)
= π(α−1

s−1r(a))(U−1
s h(s−1r))

= π(α−1
r (αs(a)))(h(r))

= π̃(αs(a))h(r).

X

Remark. If (A,G, α) is isometric, another easy contractive covariant represen-
tation (π,U) is obtained by taking π equal to the left regular representation and
defining U by Us := αs for s ∈ G.

We will now define an equivalence relation on the set of covariant representations
of a dynamical system.

Definition 2.13 Let (A,G, α) be a dynamical system and let (π,U) and (ρ, V )
be covariant representations of (A,G, α) on Banach spaces X and Y , respectively.
An intertwining operator for (π,U) with respect to (ρ, V ) is a bounded, invertible
linear operator Φ : X → Y which satisfies

ρ(a)Φ = Φπ(a) , VsΦ = ΦUs (a ∈ A, s ∈ G).

If an intertwining operator exists, we call (π,U) intertwined with (ρ, V ).

Proposition 2.14 Intertwinedness defines an equivalence relation on the set of
covariant representations of a dynamical system.

Proof. Obviously, any covariant representation (π,U) is intertwined with itself,
through the identity operator (on X). Also, if (π,U) is intertwined with (ρ, V )
through Φ, then Φ has a bounded inverse and (ρ, V ) is intertwined with (π,U)
through Φ−1. Finally, if (π,U) is intertwined with (ρ, V ) through Φ and (ρ, V ) is
intertwined with (σ,W ) through Ψ, then ΨΦ is an intertwining operator for (π,U)
with (σ,W ). X

Proposition 2.15 A dynamical system (A,G, α) is isometric if and only if there
exists an isometric covariant representation of (A,G, α).

Proof. Suppose that (π,U) is an isometric covariant representation of (A,G, α).
Then by covariance

π(αs(a)) = Usπ(a)U−1
s (s ∈ G, a ∈ A).
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Moreover, as Us is isometric for any s ∈ G and π : A → X is isometric by assump-
tion, we have, for all s ∈ G and a ∈ A,

||a|| = ||π(a)||
= sup

||x||≤1

||π(a)x||

= sup
||x||≤1

||U−1
s π(αs(a))Usx||

= sup
||x||≤1

||π(αs(a))Usx||

= sup
||y||≤1

||π(αs(a))y||

= ||π(αs(a))||
= ||αs(a)||,

where we used that Us is a permutation of the closed unit ball in X. We conclude
that (A,G, α) is isometric.
Conversely, suppose that αs is an isometric automorphism of A for every s in G.
Let A1 be the Banach algebra obtained by the adjunction of an identity and define
π : A → B(A1) to be the extended left regular representation of A:

π(a)(λ + b) = λa + ab (a ∈ A, λ + b ∈ A1).

Then π is an isometric representation of A on A1. Let (π̃, U) be the regular covariant
representation associated to π. We will show that π̃ is isometric. Notice that it is
sufficient to show that ||π̃(a)|| = 1 for any a ∈ A with ||a|| = 1. So let a be any
element in A of unit norm, then we have for any f ∈ L1(G, A1),

||π̃(a)f ||1 =
∫

G

||π(α−1
r (a))(f(r))|| dµ(r)

≤
∫

G

||π(α−1
r (a))|| ||f(r)|| dµ(r)

=
∫

G

||α−1
r (a)|| ||f(r)|| dµ(r)

=
∫

G

||a|| ||f(r)|| dµ(r)

= ||f ||1,

so ||π̃(a)|| ≤ 1.
Fix ε > 0. Since ||π(a)|| = ||a|| = 1, we can pick x ∈ A1 of norm 1 such that
||π(a)x|| > 1 − ε

2 . By strong continuity of the action α we can also find an open
neighborhood V of e in G such that for r ∈ V

||α−1
r (a)− a|| < ε

2
.
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Define gV ∈ Cc(G, A1) by gV = g̃V ⊗ x, where g̃V ∈ Cc(G) is such that ||g̃V ||1 = 1
and supp(g̃V ) ⊂ V . Then

||π̃(a)gV ||1 =
∫

G

||π(α−1
r (a))(gV (r))|| dµ(r)

=
∫

G

||π(α−1
r (a))(g̃V (r)x)|| dµ(r)

≥
∫

G

|g̃V (r)| (||π(a)x|| − ||π(α−1
r (a))x− π(a)x||) dµ(r)

>

∫
G

|g̃V (r)| (1− ε) dµ(r)

= 1− ε,

where we have used that for r ∈ V ,

||π(α−1
r (a))x− π(a)x|| ≤ ||α−1

r (a)− a|| < ε

2
.

Since ε > 0 was arbitrary, we conclude that ||π̃(a)|| = 1. X

Our later efforts will concentrate on dynamical systems (A,G, α) with A approxi-
mate unital, i.e. where A contains a two-sided, bounded approximate unit.

Definition 2.16 Let A be a normed algebra. Then an M -bounded left approximate
unit for A is a net {ui}i∈J in A such that for some M > 0 we have ||ui|| ≤ M for
all i ∈ J and for any a ∈ A

lim ||uia− a|| = 0.

An M -bounded right approximate unit for A is a net {vi}i∈J in A such that for
some M > 0 we have ||vi|| ≤ M for all i ∈ J and for any a ∈ A

lim ||avi − a|| = 0.

An M -bounded approximate unit for A is a net {wi}i∈J in A which is both an
M -bounded left and an M -bounded right approximate unit for A.

As is already apparent from proposition 2.15, isometric dynamical systems enjoy
some special properties. For dynamical systems (A,G, α) where A has a left approx-
imate unit contained in its closed unit ball, the isometry property is characterized
by submultiplicativity of the L1-norm on Cc(G)�A. We extract this statement as
a corollary from the following proposition.

Proposition 2.17 Let (A,G, α) be a dynamical system. Then

||f ∗ g||1 ≤ ||f ||1 ||g||1 (f, g ∈ Cc(G)�A)

if and only if ||bαr(a)|| ≤ ||b|| ||a|| for any r ∈ G and a, b ∈ A.

Proof. The ‘if’ part is easy.

||f ∗ g||1 =
∫

G

||
∫

G

f(r)αr(g(r−1s)) dµ(r)|| dµ(s)

≤
∫

G

∫
G

||f(r)αr(g(r−1s))|| dµ(r) dµ(s)

≤
∫

G

∫
G

||f(r)|| ||g(r−1s)|| dµ(r) dµ(s)

=
∫

G

∫
G

||f(r)|| ||g(r−1s)|| dµ(s) dµ(r)

=
∫

G

||f(r)||
∫

G

||g(s)|| dµ(s) dµ(r)

= ||f ||1 ||g||1.
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For the other direction, fix a ∈ A and r∗ ∈ G. Define g ∈ Cc(G)�A by

g(s) = g̃ ⊗ a(s) = g̃(s)a,

where g̃ ∈ Cc(G) is nonnegative and has integral equal to 1. Notice that

||g||1 =
∫

G

||g̃ ⊗ a(s)|| dµ(s) = ||a||
∫

G

g̃(s) dµ(s) = ||a||.

Fix ε > 0. Then, since g̃ ∈ Cc(G), there is some symmetric neighborhood V1 of e
in G such that sr−1 ∈ V1 or s−1r ∈ V1 implies

|g̃(s)− g̃(r)| < ε

(See lemma 2.10). Also, by continuity of r 7→ αr(a) at r∗ we can find a symmetric
neighborhood V2 of e in G such that r(r∗)−1 ∈ V2 or r−1r∗ ∈ V2 implies

||αr(a)− αr∗(a)|| < ε.

Define V to be the neighborhood r∗(V1 ∩ V2) of r∗. Then for r ∈ V we have
r(r∗)−1 ∈ V1 ∩ V2. Pick f̃V ∈ Cc(G) such that supp(f̃V ) ⊂ V , ||f̃V ||1 = 1 and f̃V is
nonnegative. Fix an arbitrary b ∈ A and let fV ∈ Cc(G)�A be defined by

fV (s) = f̃V ⊗ b(s) = f̃V (s)b.

Notice that ||fV ||1 ≤ ||b||.
Now, for any s ∈ G,

||
∫

G

fV (r)αr(g(r−1s)) dµ(r) − bαr∗(a)g̃((r∗)−1s)||

= ||
∫

G

fV (r)αr(g(r−1s)) dµ(r)− fV (r)αr∗(a)g̃((r∗)−1s) dµ(r)||

≤ ||b||
∫

G

f̃V (r)||αr(g(r−1s)) dµ(r)− αr∗(a)g̃((r∗)−1s)|| dµ(r)

≤ ||b||
∫

G

f̃V (r)(||αr(a)− αr∗(a)||g̃(r−1s)

+ ||αr∗(a)|| |g̃(r−1s)− g̃((r∗)−1s)|) dµ(r)

< ||b||
∫

G

f̃V (r)ε(||g̃||∞ + ||αr∗(a)||) dµ(r)

= ε||b||(||g̃||∞ + ||αr∗(a)||).

In the last inequality we used that r ∈ V implies that r = r∗v1 for some v1 ∈ V1

and hence
r−1s((r∗)−1s)−1 = r−1r∗ = (r∗v1)−1r∗ = v−1

1 ∈ V1

as V1 is symmetric. Since s ∈ G was arbitrary and moreover ε > 0 was arbitrary
we have obtained a net {fV } in Cc(G)�A such that∫

G

fV (r)αr(a)g̃(r−1s) dµ(r) → bαr∗(a)g̃((r∗)−1s)

12



uniformly and, since the supports of
∫

G
fV (r)αr(a)g̃(r−1s) dµ(r) are eventually

contained in a fixed compact set, this convergence holds in L1(G, A) as well. Hence,

||fV ∗ g||1 =
∫

G

||
∫

G

fV (r)αr(g(r−1s)) dµ(r)|| dµ(s)

=
∫

G

||
∫

G

fV (r)g̃(r−1s)αr(a) dµ(r)|| dµ(s)

→
∫

G

||bαr∗(a)g̃((r∗)−1s)|| dµ(s)

= ||bαr∗(a)||
∫

G

g̃((r∗)−1s) dµ(s)

= ||bαr∗(a)||.

So ||fV ∗ g||1 ≤ ||fV ||1 ||g||1 ≤ ||b|| ||a|| implies ||bαr∗(a)|| ≤ ||b|| ||a||. Since r∗ ∈ G
and a, b ∈ A were arbitrary, our proof is complete. X

Remark. If ||bαr(a)|| ≤ ||b|| ||a|| for all r ∈ G and a, b ∈ A, then the inequal-
ity

||f ∗ g||1 ≤ ||f ||1 ||g||1
holds for f, g ∈ L1(G, A), as can be easily seen from the first part of the proof.

Corollary 2.18 Let (A,G, α) be a dynamical system and suppose that A contains
a left approximate unit in its closed unit ball. Then

||f ∗ g||1 ≤ ||f ||1 ||g||1 (f, g ∈ Cc(G)�A)

if and only if αr is an isometry for all r in G, i.e. if and only if (A,G, α) is
isometric.

Proof. Suppose that (A,G, α) is isometric. Then, for any r ∈ G and a, b ∈ A,

||bαr(a)|| ≤ ||b|| ||αr(a)|| ≤ ||b|| ||a||,

so by proposition 2.17 ||f ∗ g||1 ≤ ||f ||1 ||g||1 for all f, g ∈ Cc(G)�A.
Conversely, suppose || · ||1 is submultiplicative on Cc(G) � A and let {ui}i∈J be a
left approximate unit for A which is bounded by 1. Then by proposition 2.17 we
have ||uiαr(a)|| ≤ ||a|| for any i ∈ J , r ∈ G and a ∈ A. By taking limits, for fixed
r ∈ G and a ∈ A, we obtain ||αr(a)|| ≤ ||a|| for all r ∈ G and a ∈ A. Taking
a = αr−1(b), we also see that ||b|| ≤ ||αr−1(b)|| (r ∈ G, b ∈ A). We conclude that
αr is an isometry for all r ∈ G. X

Corollary 2.19 Let (A,G, α) be a dynamical system and suppose that A contains
a left approximate unit which is bounded by M ≥ 1. Then α is uniformly bounded
by M if || · ||1 is submultiplicative on Cc(G)�A.

As a consequence of proposition 2.17 above, the Banach space L1(G, A) forms a
Banach algebra under the twisted convolution product if and only if the action of
the dynamical system (A,G, α) satisfies

||bαr(a)|| ≤ ||b|| ||a|| (for all r ∈ G and a, b ∈ A).

If this is the case, we will always implicitly assume that L1(G, A) is equipped with
this product.
In the next lemma we make the first step in obtaining a bounded approximate unit
for the S-crossed products from a bounded approximate unit in the Banach algebra
A of a dynamical system (A,G, α). The subsequent theorem gives an application
of this technical lemma.
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Lemma 2.20 Let (A,G, α) be a dynamical system and suppose that A has an M -
bounded left approximate unit {ui}. Let V be the collection of all neighborhoods of e
in G, ordered by reverse inclusion. For every V ∈ V define an element fV ∈ Cc(G)
which is nonnegative, has integral equal to 1 and has its support contained in V .
Define f(V,i) = fV ⊗ ui, then {f(V,i)} defines a net in Cc(G)�A with the following
properties:

1. ||f(V,i)||1 ≤ M ;

2. There exists a compact set K ⊂ G and (Ṽ , ĩ) such that supp(f(V,i)) ⊂ K if
(Ṽ , ĩ) � (V, i);

3. For any f ∈ Cc(G, A) we have

lim ||f(V,i) ∗ f − f ||∞ = 0.

If A has an M -bounded right approximate unit {ui}, then the above holds with
the final property of {f(V,i)} replaced by f ∗ f(V,i) → f uniformly on G, for any
f ∈ Cc(G)�A.

Proof. Notice first that V is a directed set and if we define the partial order

(V, i) � (U, j) if (V � U and i � j)

then the set {(V, i) : V ∈ V, i ∈ J} becomes a directed set. We will show that the
net {f(V,i)} satisfies the required properties.
The first property is easily shown,

||f(V,i)||1 =
∫

G

||fV (s)ui|| dµ(s) ≤ M

∫
G

|fV (s)| dµ(s) = M.

Also, as G is locally compact, we can subsequently find a compact neighborhood K
of e and V̂ ∈ V such that supp(fV ) ⊂ K if V̂ ⊂ V . Since supp(f(V,i)) = supp(fV )
the second property readily follows.
Let f ∈ Cc(G, A) and let ε > 0. We may assume that f 6= 0. Now, for any s ∈ G,

||f(V,i) ∗ f(s)− uif(s)|| = ||ui

∫
G

fV (r)(αr(f(r−1s))− f(s)) dµ(r)||

≤ M

∫
G

fV (r)||iG(r)f(s)− f(s)|| dµ(r),

where for r ∈ G the operator iG(r) on Cc(G, A) is defined by iG(r)f(s) := αr(f(r−1s)).
Peeking ahead to the proof of proposition 3.16, we see that there is some neighbor-
hood Ṽ of e in G such that Ṽ � V implies

||iG(r)f(s)− f(s)|| < ε

2M
for all s ∈ G and r ∈ V.

Let j ∈ J be such that j � i implies ||uia− a|| < ε
2||f ||∞ . Then if (Ṽ , j) � (V, i),

||f(V,i) ∗ f(s)− f(s)|| ≤ ||f(V,i) ∗ f(s)− uif(s)||+ ||uif(s)− f(s)||

<
ε

2
+ ||f ||∞||uia− a||

< ε.

This estimate is uniform in s ∈ G. Since ε > 0 was arbitrary the third property
follows.
Suppose now that A has an M -bounded right approximate unit, which we again

14



denote by {ui}. Let f ∈ Cc(G) � A be given by f = f̃ ⊗ a, with f̃ ∈ Cc(G) and
a ∈ A. We may assume that f̃ 6= 0. Fix ε > 0. We need to show that f ∗ f(V,i) → f
uniformly on G.
Since the supports of the f(V,i) are eventually contained in a fixed compact set,
we can pick a compact set K̃ in G and (Ṽ , ĩ) such that the support of s 7→ f ∗
f(V,i)(s)− f(s)αs(ui) is contained in K̃ if (Ṽ , ĩ) � (V, i). Define the compact set K

by K = K̃ ∪ supp(f) and pick a constant MK ≥ 1 as in lemma 2.7.
We have, for any s ∈ supp(f),

||f(s)αs(ui)− f(s)|| ≤ ||f̃ ||∞||aαs(ui)− a||
= MK ||f̃ ||∞||αs−1(a)ui − αs−1(a)||.

Notice that ||f(s)αs(ui)− f(s)|| is zero for s ∈ G− suppf . Since the map s 7→ s−1

is by definition continuous, s 7→ αs−1(a) is continuous. For every s ∈ K there exists
an open neighborhood Ws of s such that for any r ∈ Ws

||αr−1(a)− αs−1(a)|| < min{ ε

6MKM ||f̃ ||∞
,

ε

6MK ||f̃ ||∞
}.

These open neighborhoods form an open cover of K, so we can extract a finite
subcover Ws1 , . . . ,Wsn

.
Pick ij ∈ J such that ij � i implies

||αs−1
j

(a)ui − αs−1
j

(a)|| < min{ ε

6MK ||f̃ ||∞
,

ε

30MKM2
V̂
||f̃ ||∞||a||

},

where the constant MV̂ ≥ 1 will be defined below.
Now, for any s ∈ Wsj and ij � i,

||αs−1(a)ui − αs−1(a)|| ≤ ||αs−1(a)ui − αs−1
j

(a)ui||+ ||αs−1
j

(a)ui − αs−1
j

(a)||

+ ||αs−1
j

(a)− αs−1(a)||

<
ε

2MK ||f̃ ||∞
.

Pick i∗ ∈ J such that ij � i∗ (1 ≤ j ≤ n) and ĩ � i∗, then for i∗ � i we have

||f(s)αs(ui)− f(s)|| < ε

2
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uniformly in s ∈ G.
We also have, if (Ṽ , ĩ) � (V, i), for any s ∈ G,

||f ∗ f(V,i)(s)− f(s)αs(ui)|| = ||
∫

G

f(r)αr(f(V,i)(r−1s)) dµ(r)− f(s)αs(ui)||

= ||
∫

G

f(r)fV (r−1s)αr(ui) dµ(r)− f(s)αs(ui)||

= ||
∫

G

f(sr)fV (r−1)αsr(ui) dµ(r)− f(s)αs(ui)||

= ||
∫

G

f(sr−1)fV (r)∆(r−1)αsr−1(ui) dµ(r)− f(s)αs(ui)||

= ||
∫

G

fV (r)(f(sr−1)∆(r−1)αsr−1(ui)− f(s)αs(ui)) dµ(r)||

≤
∫

G

fV (r)||f(sr−1)∆(r−1)αsr−1(ui)− f(s)αs(ui)|| dµ(r)

≤
∫

G

fV (r)(|∆(r−1)− 1| ||f(sr−1)αsr−1(ui)||

+ ||f(sr−1)αsr−1(ui)− f(sr−1)αs(ui)||
+ MKM ||f(sr−1)− f(s)||) dµ(r),

where we used in the last step that ||αs(ui)|| ≤ MKM .
Now, if V̂ is a symmetric neighborhood contained in a compact neighborhood of e
in G, then for r ∈ V̂ ,

||f(sr−1)αsr−1(ui)|| ≤ ||f(sr−1)|| ||αsr−1(ui)|| ≤ MKMV̂ M ||f ||∞

and since r 7→ ∆(r) is a continuous homomorphism (so ∆(e) = 1), there is some
symmetric neighborhood V1 of e in G such that for r ∈ V1,

|∆(r−1)− 1| < ε

6MKMV̂ M ||f ||∞
.

For the second term,

||f(sr−1)αsr−1(ui)− f(sr−1)αs(ui)|| ≤ ||f̃ ||∞||aαsr−1(ui)− aαs(ui)||
≤ ||f̃ ||∞(||aαsr−1(ui)− aαsr−1(ui∗)||

+ ||aαsr−1(ui∗)− aαs(ui∗)||
+ ||aαs(ui∗)− aαs(ui)||).

But, for r ∈ V̂ ,

||aαsr−1(ui)− aαsr−1(ui∗)|| ≤ MKMV̂ ||αrs−1(a)ui − αrs−1(a)ui∗ ||
= MKMV̂ ||αr(a)αs−1(a)ui − αr(a)αs−1(a)ui∗ ||
≤ MKM2

V̂
||a|| ||αs−1(a)ui − αs−1(a)ui∗ ||

≤ MKM2
V̂
||a||(||αs−1(a)ui − αs−1(a)||

+ ||αs−1(a)− αs−1(a)ui∗ ||),

and

||aαs(ui∗)− aαs(ui)|| ≤ MK(||αs−1(a)ui∗ − αs−1(a)||+ ||αs−1(a)− αs−1(a)ui||).

So if we pick a neighborhood V2 of e in G such that r ∈ V2 implies

||αsr−1(ui∗)− αs(ui∗)|| <
ε

30||f̃ ||∞||a||
(for all s ∈ G)
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then it follows from our work above that for s ∈ K (and hence in all of G)

||f(sr−1)αsr−1(ui)− f(sr−1)αs(ui)|| <
ε

6

if (Ṽ , ĩ) � (V, i), (V̂ , i∗) � (V, i) and (V2, i
∗) � (V, i). Finally, there exists a

neighborhood V3 of e in G such that r ∈ V3 implies (c.f. lemma 2.10)

||f(sr−1)− f(s)|| < ε

6MKM
(for all s ∈ G).

So if we pick V ∗ ∈ V such that V ∗ ⊂ V̂ ∩ Ṽ ∩V1 ∩V2 ∩V3, then for (V ∗, i∗) � (V, i)

||f ∗ f(V,i)(s)− f(s)αs(ui)|| <
ε

2

∫
G

fV (r) dµ(r)

=
ε

2
,

uniformly in s ∈ G. We obtain, for all s ∈ G,

||f ∗ f(V,i)(s)− f(s)|| ≤ ||f ∗ f(V,i)(s)− f(s)αs(ui)||+ ||f(s)αs(ui)− f(s)||
< ε.

Since ε > 0 was arbitrary, our proof is complete. X

Theorem 2.21 Let (A,G, α) be a dynamical system and suppose that A has an M -
bounded left approximate unit. Then L1(G, A) has an M -bounded left approximate
unit contained in Cc(G) � A. If A has an M -bounded approximate unit and α
satisfies

||bαr(a)|| ≤ ||b|| ||a|| (for all r ∈ G and a, b ∈ A),

then L1(G, A) has an M -bounded approximate unit contained in Cc(G) � A. In
other words, L1(G, A) is an approximate unital Banach algebra under the twisted
convolution product in this case.

Proof. Pick any f ∈ L1(G, A). By lemma 2.9 Cc(G) � A is dense in L1(G, A), so
there is some sequence {fn} ⊂ Cc(G)�A such that lim ||fn − f ||1 = 0.
Suppose first that A has an M -bounded left approximate unit and let the net
{f(V,i)} ⊂ Cc(G)�A be given by lemma 2.20. Then, for any n ∈ N,

||f(V,i) ∗ f − f ||1 ≤ ||f(V,i) ∗ f − f(V,i) ∗ fn||1 + ||f(V,i) ∗ fn − fn||1 + ||fn − f ||1.

Let a compact set K ⊂ G and neighborhood Ṽ of e in G be such that supp(f(V,i)) ⊂
K for (Ṽ , j) � (V, i) and let MK ≥ 1 be as in lemma 2.7. If (Ṽ , j) � (V, i), then

||f(V,i) ∗ f − f(V,i) ∗ fn||1 = ||f(V,i) ∗ (f − fn)||1

≤
∫

G

∫
G

||f(V,i)(r)|| ||αr((f − fn)(r−1s))|| dµ(r) dµ(s)

≤
∫

G

∫
G

||f(V,i)(r)|| MK ||(f − fn)(r−1s)|| dµ(r) dµ(s)

=
∫

G

||f(V,i)(r)||
∫

G

MK ||(f − fn)(r−1s)|| dµ(s) dµ(r)

= MK ||f(V,i)||1 ||f − fn||1 = MKM ||f − fn||1.

Hence, if (Ṽ , j) � (V, i),

||f(V,i) ∗ f − f ||1 ≤ (MKM + 1)||f − fn||1 + ||f(V,i) ∗ fn − fn||1.
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Let ε > 0 be given. If we pick N ∈ N such that ||f − fN ||1 < ε
2(MKM+1) and

subsequently pick (Ṽ , j) � (V ∗, i∗) such that (V ∗, i∗) � (V, i) implies ||f(V,i) ∗ fN −
fN ||1 < ε

2 then
||f(V,i) ∗ f − f ||1 < ε if (V ∗, i∗) � (V, i).

Hence lim ||f(V,i) ∗ f − f ||1 = 0.
Suppose now that (A,G, α) satisfies

||bαr(a)|| ≤ ||b|| ||a|| (for all r ∈ G and a, b ∈ A)

and that A has an M -bounded approximate unit. Pick any f ∈ L1(G, A), let
{fn} ⊂ Cc(G) � A be as above and take the net f(V,i) as in lemma 2.20. Thanks
to our work in the above, we already know that lim ||f(V,i) ∗ f − f ||1 = 0. By
proposition 2.17 the L1-norm is submultiplicative in this case, so for any n ∈ N,

||f ∗ f(V,i) − f ||1 ≤ ||f ∗ f(V,i) − fn ∗ f(V,i)||1 + ||fn ∗ f(V,i) − fn||1 + ||fn − f ||1
≤ ||f − fn||1||f(V,i)||1 + ||fn ∗ f(V,i) − fn||1 + ||fn − f ||1
= (M + 1)||f − fn||1 + ||fn ∗ f(V,i) − fn||1.

We can now proceed as in the first part of the proof and obtain lim ||f ∗f(V,i)−f ||1 =
0. We conclude that L1(G, A) is a Banach algebra with an M -bounded approximate
unit. X

Lemma 2.22 Let f ∈ Cc(G, A) and suppose that π : A → B(X) is a representation
of A on a Banach space X such that s 7→ π(f(s)) is measurable and integrable. Let
s 7→ Us be an isometric representation of G on X. Then the operator∫

G

π(f(s))Us dµ(s)(x) :=
∫

G

π(f(s))Usx dµ(s) (x ∈ X)

is well-defined, linear and bounded. Moreover,

||
∫

G

π(f(s))Us dµ(s)|| ≤
∫

G

||π(f(s))|| dµ(s)

and if L : X → Y is a bounded linear operator to a Banach space Y , then

L(
∫

G

π(f(s))Us dµ(s)) =
∫

G

Lπ(f(s))Us dµ(s).

Proof. Since for every x ∈ X, s 7→ Usx is continuous and hence measurable, the
operator is well-defined and obviously linear by linearity of the integral and the
maps in the integrand. We have for x ∈ X with ||x|| ≤ 1,

||
∫

G

π(f(s))Us dµ(s)(x)|| = ||
∫

G

π(f(s))Usx dµ(s)||

≤
∫

G

||π(f(s))|| ||Usx|| dµ(s)

≤
∫

G

||π(f(s))|| dµ(s).

This proves the first assertion. For the second assertion,

L

∫
G

π(f(s))Us dµ(s)(x) = L

∫
G

π(f(s))Usx dµ(s)

=
∫

G

Lπ(f(s))Usx dµ(s)

=
∫

G

Lπ(f(s))Us dµ(s)(x).

X
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Definition 2.23 Let (A,G, α) be a dynamical system and let (π,U) be a covariant
representation of (A,G, α) on a Banach space X. If s 7→ π(f(s))Us is integrable for
every f ∈ Cc(G, A), then we define the representation π o U : Cc(G, A) → X by

π o U(f) =
∫

G

π(f(s))Us dµ(s).

This is called the integrated form of (π,U).

We only need to check that the integrated form is multiplicative on Cc(G, A). Let
f, g ∈ Cc(G, A), then

π o U(f ∗ g) =
∫

G

∫
G

π(f(r)αr(g(r−1s)))Us dµ(r) dµ(s)

=
∫

G

∫
G

π(f(r))π(αr(g(r−1s)))UrUr−1Us dµ(r) dµ(s)

=
∫

G

∫
G

π(f(r))Urπ(g(r−1s))Ur−1s dµ(r) dµ(s)

=
∫

G

∫
G

π(f(r))Urπ(g(r−1s))Ur−1s dµ(s) dµ(r)

=
∫

G

∫
G

π(f(r))Urπ(g(s))Us dµ(s) dµ(r)

= π o U(f)π o U(g).

Lemma 2.24 Let (A,G, α) be a dynamical system and let (π,U) be a nondegenerate
continuous covariant representation of (A,G, α) on X. Then the integrated form
π o U is nondegenerate as well.

Proof. Let x ∈ X and fix ε > 0. By assumption, there is some n ∈ N, ai ∈ A and
xi ∈ X (1 ≤ i ≤ n) such that

||
n∑

i=1

π(ai)xi − x|| < ε

2
.

Notice that we may assume that π(ai) 6= 0 for all i. By strong continuity of U there
is some neighborhood V of e in G such that for s ∈ V ,

||Usxi − xi|| <
ε

2n||π(ai)||
(1 ≤ i ≤ n).

Let fV ∈ Cc(G) be nonnegative and such that its support is contained in V and its
integral is equal to 1. Define fi = fV ⊗ ai for 1 ≤ i ≤ n. Then

||
n∑

i=1

π o U(fi)xi − x|| = ||
∫

G

n∑
i=1

π(fi(s))Usxi dµ(s)−
∫

G

fV (s)x dµ(s)||

≤
∫

G

fV (s)||
n∑

i=1

π(ai)Usxi − x|| dµ(s)

≤
∫

G

fV (s)(||
n∑

i=1

π(ai)Usxi −
n∑

i=1

π(ai)xi||

+ ||
n∑

i=1

π(ai)xi − x||) dµ(s)

<

∫
G

fV (s)(
ε

2
+

ε

2
) dµ(s) = ε.

Since ε > 0 and x ∈ X were arbitrary, π o U is nondegenerate. X
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Lemma 2.25 Let (A,G, α) be a dynamical system. Then any covariant represen-
tation (π,U) induces a covariant representation (π̂, Û) of (A,G, α) which is nonde-
generate.

Proof. Let (π,U) be a covariant representation of (A,G, α) on a Banach space X.
Define

X̃ = span{π(a)x : a ∈ A, x ∈ X},

where span is the closed linear span. Then X̃ is a closed invariant subspace for π.
Indeed, let y ∈ X̃, then

y = lim
n→∞

n∑
i=1

π(an
i )xn

i ,

for certain an
i ∈ A and xn

i ∈ X. So by continuity,

π(a)y = lim
n→∞

n∑
i=1

π(aan
i )xn

i

is in X̃ for every a ∈ A. Moreover,

Usy = lim
n→∞

n∑
i=1

Usπ(an
i )xn

i

= lim
n→∞

n∑
i=1

π(αs(an
i ))Usx

n
i

is in X̃ for every s ∈ G, so X̃ is invariant for U as well. Now let π̂ and Û be the
restrictions of π and U to X̃, then (π̂, Û) is a nondegenerate covariant representation
of (A,G, α) on X̃. X

Lemma 2.26 Let (A,G, α) be a dynamical system and let (π,U) be a covariant
representation of (A,G, α) such that the integrated form πoU is well-defined. Then
π is continuous if and only if π o U is continuous as an operator on Cc(G, A) with
the L1-norm and in this case ||π o U || = ||π||.

Proof. Fix C ≥ 0. We will show that ||π o U || ≤ C if and only if ||π|| ≤ C,
from which the assertion clearly follows. Suppose first that ||π|| ≤ C. Then, for
f ∈ Cc(G, A),

||π o U(f)|| = sup
||x||≤1

||
∫

G

π(f(s))Us dµ(s)x||

≤ sup
||x||≤1

∫
G

||π(f(s))Usx|| dµ(s)

≤
∫

G

||π(f(s))|| dµ(s)

≤ C||f ||1.

Conversely, suppose that ||π o U || ≤ C as an operator on Cc(G, A) with the L1-
norm. Fix x∗ ∈ X with ||x∗|| ≤ 1 and ε > 0. By strong continuity of s 7→ Us, there
is a symmetric neighborhood Ṽ of e such that if s ∈ Ṽ ,

||Usx
∗ − x∗|| < ε,

where we use that Ue is the identity map on X. Let V be the collection of neigh-
borhoods of e in G, ordered by reverse inclusion. Define the net {fV }V ∈V by
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fV = f̃V ⊗a, where a ∈ A and f̃V ∈ Cc(G) is nonnegative and has integral equal to
1. Notice that by assumption ||π o U(fV )|| ≤ C||fV ||1 = C||a|| for all V ∈ V. Now
if V ⊂ Ṽ we have,

||π(a)
∫

G

f̃V (s)Usx
∗ dµ(s)− π(a)x∗|| = ||π(a)

∫
G

f̃V (s)(Usx
∗ − x∗) dµ(s)||

≤ ||π(a)||
∫

G

f̃V (s)||Usx
∗ − x∗|| dµ(s)

≤ ||π(a)||ε.

Thus,

lim ||π(a)
∫

G

f̃V (s)Usx
∗dµ(s)|| = ||π(a)x∗||.

Now,

||π o U(fV )|| = ||
∫

G

π(fV (s))Us dµ(s)||

= ||
∫

G

π(a)f̃V (s)Us dµ(s)||

= ||π(a)
∫

G

f̃V (s)Us dµ(s)||

= sup
||x||≤1

||π(a)
∫

G

f̃V (s)Usx dµ(s)||

≥ ||π(a)
∫

G

f̃V (s)Usx
∗ dµ(s)||.

Hence,

||π(a)
∫

G

f̃V (s)Usx
∗ dµ(s)|| ≤ C||a||.

We obtain by taking limits that ||π(a)x∗|| ≤ C||a|| and since x∗ ∈ X with ||x∗|| ≤ 1
was arbitrary we can take the supremum over such x∗ to obtain ||π(a)|| ≤ C||a||.
This completes the proof, as a ∈ A was arbitrary. X

Lemma 2.27 Let (A,G, α) be a dynamical system and suppose that (π,U) is a
covariant representation on X such that π o U is faithful on Cc(G) � A. Then
π : A → X is faithful.

Proof. Suppose that π(a1) = π(a2) for some a1, a2 ∈ A. Take f ∈ Cc(G) such that
f(s∗) = 1 for some s∗ ∈ G. Define f1 = f ⊗ a1 and f2 = f ⊗ a2, then

π o U(f1) =
∫

G

π(f1(s))Us dµ(s)

= π(a1)
∫

G

f(s)Us dµ(s)

= π(a2)
∫

G

f(s)Us dµ(s)

= π o U(f2).

By assumption f1 = f2 and by evaluation at s∗ we obtain a1 = a2, π is faithful. X

As a partial converse of the above lemma we have the following:

Lemma 2.28 Let (A,G, α) be dynamical system, suppose that π is a faithful, con-
tinuous representation of A on a Banach space X and let 1 ≤ p < ∞. If the
covariant representation (π̃, U) of (A,G, α) on Lp(G, X) of proposition 2.12 is well-
defined, then π̃ o U is faithful as well.
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Let f ∈ Cc(G, A) be nonzero and pick r ∈ G such that f(r) 6= 0. We will show that
π̃ o U(f) 6= 0. Since

||π̃ o U(f)|| = ||π̃ o U(iG(r−1)f)||

we may assume that r = e by replacing f by iG(r−1)f if necessary (see the proof
of proposition 3.16). Let K be a compact set such that supp(f) ⊂ K and pick
MK ≥ 1 as in lemma 2.7. Since π is faithful, there is some x ∈ X with ||x|| = 1
such that π(f(e))x 6= 0. Fix ε > 0 such that ||π(f(e))x|| > ε. Now,

||π(α−1
r (f(s)))x− π(f(e))x|| ≤ ||π|| ||α−1

r (f(s))− f(e)|| ||x||
≤ ||π||(||α−1

r (f(s)− f(e))||+ ||α−1
r (f(e))− f(e)||)

≤ MK ||π||(||f(s)− f(e)||+ ||α−1
r (f(e))− f(e)||)

< ε

for all s, r in a (sufficiently small) neighborhood V of e in G, by continuity of f at
e and α−1

r at f(e).
We now wish to find ξ ∈ Lp(G, X) such that the X-valued function

r 7→ π̃ o U(f)ξ(r) =
∫

G

π(α−1
r (f(s)))ξ(s−1r) dµ(s)

is nonzero on a set of positive measure.
Let W be an open symmetric neighborhood of e such that W 2 ⊂ V . Since every
non-empty open set of G has strictly positive Haar measure, µ(W ) > 0. Define
ξ ∈ Lp(G, X) by ξ(r) = 1V (r)x. Then,∫

G

∫
G

||π(α−1
r (f(s)))1V (s−1r)x|| dµ(s) dµ(r) ≥

∫
W

∫
W

||π(α−1
r (f(s)))x||1V (s−1r) dµ(s) dµ(r)

≥
∫

W

∫
W

| ||π(f(e))x|| − ||π(α−1
r (f(s)))− π(f(e))x|| |

1V (s−1r) dµ(s) dµ(r)

>

∫
W

∫
W

(||π(f(e))x|| − ε)1V (s−1r) dµ(s) dµ(r)

= (||π(f(e))x|| − ε)
∫

W

∫
W

1V (s−1r) dµ(s) dµ(r)

= (||π(f(e))x|| − ε)(µ(W ))2 > 0.

Hence,

r 7→
∫

G

||π(α−1
r (f(s)))1V (s−1r)x|| dµ(s)

is strictly positive on a set of positive µ-measure and thus

r 7→
∫

G

π(α−1
r (f(s)))1V (s−1r)x dµ(s)

is nonzero on a set of positive µ-measure, as required. X

Remark. An additional condition on (A,G, α) is needed to ensure that (π̃, U) is
a well-defined covariant representation of (A,G, α) on Lp(G, X). It is for example
sufficient to assume that the action α is uniformly bounded.

Theorem 2.29 Let (A,G, α) be a dynamical system. Define the set of contractive
covariant representations Sc by

Sc = {(π,U) : (π,U) is a contractive covariant representation of (A,G, α)}.
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Let S ⊂ Sc be non-empty and define for f ∈ Cc(G, A)

||f ||S := sup{||π o U(f)|| : (π,U) ∈ S}.

Then ||·||S defines a submultiplicative semi-norm on Cc(G, A) and ||f ||S ≤ ||f ||1 (f ∈
Cc(G, A)). If moreover ⋂

(π,U)∈S

ker(π o U) = {0},

then || · ||S defines a norm on Cc(G, A).

Proof. Let S denote any non-empty set of contractive covariant representations of
(A,G, α) and let f, g ∈ Cc(G, A). Then for any (π,U) ∈ S,

||π o U(αf)|| = |α| ||π o U(f)||;
||π o U(f + g)|| ≤ ||π o U(f)||+ ||π o U(g)||;
||π o U(f ∗ g)|| ≤ ||π o U(f)|| ||π o U(g)||;

||π o U(f)|| ≤ ||f ||1.

Taking the supremum over S in these (in)equalities shows that || · ||S defines a sub-
multiplicative seminorm on Cc(G, A) and ||f ||S ≤ ||f ||1. If S satisfies the above
condition, then || · ||S is obviously a norm. X

The S-norms are attractive for two reasons. First, every (π,U) ∈ S naturally yields
a contractive representation πoU of Cc(G, A) with the ||·||S-norm and conversely if
π oU is contractive on Cc(G, A) with the || · ||S-norm then (π,U) is contractive, c.f.
proposition 2.26. Second, unlike the || · ||1-norm, the S-norms are submultiplicative
on Cc(G, A) for any dynamical system (A,G, α). Since || · ||S ≤ || · ||1 on Cc(G, A),
we can still obtain a bounded approximate unit for the completion of Cc(G, A) with
respect to the S-norm from a bounded approximate unit for A, see theorem 3.1.
We are led to the following definition.

Definition 2.30 Let (A,G, α) be a dynamical system. Suppose that S is a faithful
class of contractive covariant representations (or faithful class for short), i.e. S is
non-empty and ⋂

(π,U)∈S

ker(π o U) = {0}.

Then we define the S-crossed product of A by G, denoted by (A oα G)S , as the
Banach algebra obtained by the completion of Cc(G, A) with respect to the || · ||S-
norm. If S = Sc is a faithful class we shall simply call this Banach algebra the
crossed product of A by G, denoted by A oα G, and define the crossed product
norm by || · ||c := || · ||Sc

.

Under suitable assumptions on (A,G, α) we can show the existence of a faithful
class of contractive covariant representations. If (A,G, α) has a uniformly bounded
action, then the integrated form of the regular covariant representation associ-
ated to the extended left regular representation is faithful by proposition 2.12 and
lemma 2.28. In the following we will simply assume that a faithful class exists.

2.2 Comparison with C∗-crossed products

The theory presented in the previous section largely follows the lines of the con-
struction of the crossed product for C∗-algebras in Williams (2007). In this section
we define the C∗-crossed product as a particular instance of the S-crossed product
and refer the reader to Williams for a full exposition. The theorems from the theory
of C∗-algebras that are used in the following are collected in appendix C.
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Definition 2.31 A C∗-dynamical system is a triple (A,G, α), where A is a C∗-
algebra, G is a locally compact topological group and α : G → Aut(A) is a strongly
continuous action of G on A.

A C∗-dynamical system is automatically isometric in the sense of definition 2.6, see
proposition C.3.
Although the covariant representation of (A,G, α) in definition 2.11 is still well-
defined for C∗-dynamical systems, we are naturally most interested in covariant
representations that preserve the involutive structure of the state space.

Definition 2.32 Let (A,G, α) be a dynamical system and H a Hilbert space. Then
a covariant representation representation (π,U) is called a covariant ∗-representation
of (A,G, α) on H if π : A → B(X) is a ∗-representation of A on H.

In the literature the group of surjective linear isometries on a Hilbert space H is
better known as the unitary group and the strongly continuous homomorphism
U : G → B(H) is therefore often called a unitary representation of G on H.
Since every unitary T satisfies T ∗ = T−1, the covariance condition for covariant
∗-representations is usually denoted as

π(αs(a)) = Usπ(a)U∗s (a ∈ A, s ∈ G).

We now wish to define a C∗-algebra AoαG in the same way as above, by completing
Cc(G, A) with respect to a suitable norm. We can define an involution on Cc(G, A)
by

f∗(s) := ∆(s−1)αs(f(s−1)∗) (s ∈ G)

This turns Cc(G, A) into a ∗-algebra. Since a C∗-dynamical system is isometric,
we obtain from proposition 2.17 that the completion of Cc(G, A) with respect to
the L1-norm, L1(G, A), is a Banach ∗-algebra in this case. In fact, since every
C∗-algebra has an approximate unit contained in its unit ball and it follows by
theorem 2.21 that L1(G, A) has an approximate unit as well.
Another important consequence of proposition C.3 is that every ∗-representation π
of A on a Hilbert space is necessarily contractive. Therefore, by lemma 2.26, every
covariant ∗-representation of (A,G, α) on a Hilbert space has an integrated form
which is L1-norm decreasing. It is also easy to show that the integrated form is
∗-preserving. We can thus define the C∗-crossed product as in theorem 2.30, by
taking S equal to the set of covariant ∗-representations.

Definition 2.33 Let (A,G, α) be a C∗-dynamical system. Let S∗ be the set of
covariant ∗-representations of (A,G, α). Then the C∗-crossed product of A by G is
defined as the completion of Cc(G, A) in the C∗-crossed product norm ||·||∗ := ||·||S∗
and is denoted by (A oα G)S∗ .

To make sure that (A oα G)S∗ is indeed a C∗-algebra, there are two things that
need to be checked. First, we need to show that S∗ is a faithful class and second,
we need to show that the involution is isometric with respect to the || · ||∗-norm
and that the C∗-rule holds. For the first issue we can use proposition 2.12. Given
a ∗-representation π : A → B(H) we obtain a covariant ∗-representation (π̃, U)
of A on L2(G, H), which is a Hilbert space. Furthermore, we can prove that the
integrated form π̃ o U is faithful on Cc(G, A) if π is a faithful ∗-representation (see
lemma 2.28). Hence, we can resolve the issue by showing the existence of a faithful
∗-representation of A on some Hilbert space H. This statement is precisely one of
the assertions of the famous Gelfand-Naimark-Segal theorem.
Once we have established that || · ||∗ defines a norm on Cc(G, A), it is easy to check
that (A oα G)S∗ satisfies all the properties of a C∗-algebra.
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3 Representation theory of the crossed product

In this section we will focus on dynamical systems (A,G, α) with A a Banach algebra
with a bounded approximate unit. Our goal is to establish for every faithful class
S an injection of the nondegenerate contractive covariant representations of S into
the set of nondegenerate contractive representations of (A oα G)S and to provide
sufficient condition for surjectivity of this injective map in case S = Sc. The main
result of this section is theorem 3.18. At the end of the section we will again compare
the results with the theory for C∗-crossed products.

3.1 Main theorem

An attractive feature of using an || · ||S-norm, where S is a faithful class, is that a
bounded approximate unit for A gives a bounded approximate unit for the S-crossed
product. The proof is an easy version of the proof of theorem 2.21. In contrast to
the situation for the L1-norm, we do not need additional assumptions on (A,G, α)
to ensure that the norm is submultiplicative. We record our important observation
in the following theorem.

Theorem 3.1 Let (A,G, α) be a dynamical system and suppose that A has an
M -bounded (left/right) approximate unit. Suppose that S is a faithful class of con-
tractive covariant representations. Then (A oα G)S has an M -bounded (left/right)
approximate unit as well.

Proof. Suppose A has an M -bounded right approximate unit {ui} and let {f(V,i)} ⊂
Cc(G) � A be given by lemma 2.20. Fix ε > 0. Let f ∈ (A oα G)S and pick f̃ ∈
Cc(G)�A such that ||f − f̃ ||S < min{ ε

3M , ε
3}. Pick (Ṽ , ĩ) such that (Ṽ , ĩ) � (V, i)

implies ||f̃ ∗ f(V,i) − f̃ ||1 < ε
3 . Then, if (Ṽ , ĩ) � (V, i),

||f ∗ f(V,i) − f ||S ≤ ||f ∗ f(V,i) − f̃ ∗ f(V,i)||S + ||f̃ ∗ f(V,i) − f̃ ||S + ||f̃ − f ||S
≤ ||f − f̃ ||S ||f(V,i)||S + ||f̃ ∗ f(V,i) − f̃ ||1 + ||f̃ − f ||S

< ||f − f̃ ||S ||f(V,i)||1 +
2
3
ε < ε.

Since ε > 0 was arbitrary, lim ||f ∗ f(V,i) − f ||S = 0. If A has an M -bounded
left approximate unit, then we analogously obtain lim ||f(V,i) ∗ f − f ||S = 0 for
f ∈ (A oα G)S . X

Lemma 3.3 below is instrumental in proving the final assertion of theorem 3.18,
that the injection preserves equivalence and irreducibility. First we need the follow-
ing technical result, which is an adapted version of Dixmier (1977), 2.2.10.

Lemma 3.2 Let A be a Banach algebra with a bounded left approximate unit {ui}
and let π : A → B(X) be a continuous nondegenerate representation. Then π(ui) →
IX in the strong operator topology, where IX is the identity map on X.

Proof. Fix ε > 0, let x ∈ X be arbitrary and let M ≥ 1 be such that ||ui|| ≤ M
for all i ∈ J . Since π is nondegenerate, there are a1, . . . , an ∈ A and x1, . . . , xn ∈ X
such that ||x−

∑n
j=1 π(aj)xj || < min{ ε

3M ||π|| ,
ε
3}. Also, for any a ∈ A and y ∈ X,

||π(uia)y − π(a)y|| ≤ ||π|| ||uia− a|| ||y|| → 0.

So we can find some i∗ such that i∗ � i implies

||
n∑

j=1

(π(uiaj)xj − π(aj)xj)|| <
ε

3
.
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Hence, for i∗ � i,

||π(ui)x− x|| ≤ ||π(ui)x− π(ui)
n∑

j=1

π(aj)xj ||+ ||
n∑

j=1

(π(uiaj)xj − π(aj)xj)||

+ ||
n∑

j=1

π(aj)xj − x||

<
ε

3
+

ε

3
+

ε

3
= ε,

where we used that ||π(ui)|| ≤ M ||π||. X

Lemma 3.3 Let (A,G, α) be a dynamical system, let (π,U) and (ρ, V ) be non-
degenerate covariant representations on Banach spaces X and Y respectively and
suppose that their integrated forms are well-defined. Then (π,U) and (ρ, V ) are
intertwined if and only if π o U and ρ o V are, and the intertwining operators are
the same. Suppose that A has a bounded left approximate unit. Let S be a faithful
class and let (π,U) ∈ S be nondegenerate, then X̃ is a closed invariant subspace for
π and U if and only if X̃ is a closed invariant subspace for π o U . In particular,
(π,U) is topologically irreducible if and only if π o U is.

Proof. Let Φ : X → Y be an intertwining operator for (π,U) with respect to
(ρ, V ). Then for any x ∈ X and f ∈ A oα G we have

Φπ o U(f)x = Φ
∫

G

π(f(s))Usx dµ(s)

=
∫

G

Φπ(f(s))Usx dµ(s)

=
∫

G

ρ(f(s))ΦUsx dµ(s)

=
∫

G

ρ(f(s))VsΦx dµ(s)

= ρ o U(f)Φx.

Conversely, if Ψ : X → Y is an intertwining operator for π o U with respect to
ρ o V , then for x ∈ X and s ∈ G (c.f. the proof of proposition 3.16)

ΨUsπ o U(f)x = Ψπ o U(iG(s)f)x
= ρ o V (iG(s)f)Ψx

= Vsρ o V (f)Ψx

= VsΨπ o U(f)x.

Since the linear span of {π o U(f)x : f ∈ A oα G, x ∈ X} (c.f. lemma 2.24) is
dense in X, it follows that

ΨUs = VsΨ (s ∈ G).

Similarly, using π(a)π o U(f) = π o U(iA(a)f) (see proposition 3.16), we obtain

Ψπ(a) = ρ(a)Ψ (a ∈ A).

This proves the first statement.
Suppose now that A has a bounded left approximate unit and let S be a faithful
class. Suppose that X̃ is a closed invariant subspace for π and U . Then π(f(s))Usx
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is in X̃ for every f ∈ Cc(G, A), x ∈ X̃ and s ∈ G. Fix x ∈ X̃ and let f ∈ Cc(G, A).
Then there exists a sequence {fn} ⊂ L1(G, X) of the form

fn(s) :=
kn∑
i=1

π(f(si))Usi
1Gi

(s)x,

where kn ∈ N, s1, . . . , skn
∈ G and Gi ⊂ G with µ(Gi) < ∞ are such that fn(s) →

π(f(s))Usx, for all s ∈ G. By the dominated convergence theorem we have∫
G

fn(s) dµ(s) → π o U(f)x,

and, ∫
G

fn(s) dµ(s) =
kn∑
i=1

π(f(si))Usi
µ(Gi)x

is in X̃ for all n ∈ N. Since X̃ is closed, we obtain π o U(f)x ∈ X̃. Now let
g ∈ (A oα G)S and let {gn} ⊂ Cc(G, A) be such that ||gn − g||S → 0. Then

||π o U(g)x− π o U(gn)x|| ≤ ||π o U(g)− π o U(gn)|| ||x|| ≤ ||g − gn||S ||x|| → 0

as n → ∞. Since π o U(gn)x ∈ X̃ for all n, we obtain π o U(g)x ∈ X̃. As x ∈ X̃
was arbitrary, we conclude that X̃ is invariant for π o U .
Conversely, suppose that X̃ is invariant for π o U . Let {fi} be a bounded left
approximate unit for (A oα G)S (c.f. theorem 3.1), then by lemma 3.2 we have
π o U(fi) → IX in the strong operator topology, as π o U is nondegenerate. For
any x ∈ X̃,

π(a)x = lim π(a)π o U(fi)x
= lim π o U(iA(a)fi)x.

Thus, for all a ∈ A, π(a)x is in X̃ as X̃ is closed. Also,

Urx = lim Urπ o U(fi)x
= lim π o U(iG(r)fi)x,

so Urx is in X̃ for all r ∈ G. We conclude that X̃ is invariant for (π,U). X

Proposition 3.4 Let (A,G, α) be a dynamical system and let (π,U) be a contrac-
tive covariant representation of (A,G, α) such that π o U is isometric on A oα G.
If π is not isometric, then (A,G, α) is not isometric.

Proof. Suppose that ||π oU(f)|| = ||f ||c for all f ∈ Aoα G, but π is not isometric.
Then there is some δ > 0 and ã ∈ A such that ||π(ã)|| < ||ã|| − δ. Let V be the
collection of neighborhoods of e in G. Define, for each V ∈ V, fV ∈ Cc(G, A) by
fV = f̃V ⊗ ã, where f̃V ∈ Cc(G) is nonnegative, has its support contained in V and
integral equal to 1. Then,

||π o U(fV )|| ≤ sup
||x||≤1

∫
G

||π(fV (s))Usx|| dµ(s)

≤
∫

G

||π(fV (s))|| dµ(s)

=
∫

G

f̃V (s)||π(ã)|| dµ(s)

<

∫
G

f̃V (s)(||ã|| − δ) dµ(s)

= (||ã|| − δ).
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Suppose now that an isometric covariant representation of (ρ, Ũ) of (A,G, α) exists.
Then we can pick x̃ such that ||ρ(ã)x̃|| > ||ρ(ã)|| − δ

2 . Now, by strong continuity of
U we can find Ṽ ∈ V such that Ṽ � V implies

||ρ o Ũ(fV )|| = ||ρ(ã)
∫

G

f̃V (s)Ũsx̃ dµ(s)||

≥ ||ρ(ã)x̃|| − δ

2
> ||ρ(ã)|| − δ

= ||ã|| − δ

> ||π o U(fV )||.

This contradiction shows that no isometric covariant representations exist and hence
(A,G, α) is not isometric by proposition 2.15. X

Corollary 3.5 If (A,G, α) is isometric, then π is isometric on A if π o U is iso-
metric on A oα G.

In the following we will establish an injection of the nondegenerate contractive
covariant representations of S into the set of nondegenerate contractive represen-
tations of (A oα G)S , when A has a bounded approximate unit and S is a faithful
class of contractive covariant representations. This injection will be given by

(π,U) 7→ π o U.

For S = Sc we will also investigate if this map is surjective. To obtain a covariant
representation whose integrated form equals a given representation of (A oα G)S

we will need to recover copies of A and G from (A oα G)S . Although these are
in general not contained in (A oα G)S itself, we can (under suitable conditions)
extract copies from the algebra of double centralizers of (A oα G)S . The following
first definition (3.6) and theorem (3.9) are taken from Palmer (1994), definition
1.2.2 and theorem 1.2.4(b).

Definition 3.6 Let A be a Banach algebra. A left centralizer of A is an element
L ∈ L(A) such that

L(ab) = L(a)b (for all a, b ∈ A).

A right centralizer of A is an element R ∈ L(A) such that

R(ab) = aR(b) (for all a, b ∈ A).

A double centralizer of A is a pair (L, R), where L and R are a left and right
centralizer, respectively, satisfying the double centralizer condition

aL(b) = R(a)b (for all a, b ∈ A).

The algebra D(A) of double centralizers of A is the set of double centralizers
equipped with pointwise linear operations and multiplication defined by

(L1, R1)(L2, R2) = (L1L2, R2R1),

for any (L1, R1), (L2, R2) ∈ D(A).
The algebra DB(A) of bounded double centralizers of A is defined by DB(A) =
{(L,R) ∈ D(A) : L,R ∈ B(A)} and given the norm

||(L,R)|| = max{||L||, ||R||} ((L,R) ∈ DB(A)).
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Notice that (I, I), where I is the identity map on A, is the identity element of the
(bounded) double centralizer algebra and ||(I, I)|| = 1.

Definition 3.7 Let A be a Banach algebra. The left and right annihilator of A
are defined by:

AL
A = {a ∈ A : ab = 0 for all b ∈ A}

AR
A = {a ∈ A : ba = 0 for all b ∈ A}

If AL
A = AR

A = {0} then A is called faithful.

The reason for calling A faithful if the annihilators are zero is that in this case there
exists an injective homomorphism of A into DB(A), as is shown in the following
proposition.

Proposition 3.8 Let A be a Banach algebra. Then the map from A into DB(A)
defined by

a 7→ (La, Ra) (a ∈ A)

with La and Ra the left and right regular representation, respectively, defines a
homomorphism called the regular homomorphism. The regular homomorphism is
contractive and maps A onto an ideal in D(A). It is injective if A is faithful.
Suppose that A has an M -bounded left or right approximate unit. Then

||a||
M

≤ ||(La, Ra)|| ≤ ||a|| (a ∈ A),

the regular homomorphism is a homeomorphism between A and {(La, Ra) : a ∈ A}.
If A contains a (not necessarily bounded) approximate unit {ui}, then (Lui

, Rui
)

converges to the identity of D(A) in the strong operator topology.

Proof. Since La is a representation and Ra an anti-representation of A on itself, the
map a 7→ (La, Ra) is obviously an algebra homomorphism. Clearly, ||L(a)|| ≤ ||a||
and ||R(a)|| ≤ ||a|| (a ∈ A), so the regular homomorphism is contractive and takes
values in DB(A). For any (L,R) ∈ D(A) and a, b ∈ A we have,

LaL(b) = aL(b) = R(a)b = LR(a)b

LLa(b) = L(ab) = L(a)b = LL(a)b

RaR(b) = R(b)a = bL(a) = RL(a)b

RRa(b) = R(ba) = bR(a) = RR(a)b.

Hence the regular homomorphism maps A onto an ideal in D(A). By noticing that
the left and right annihilators are exactly the kernels of the left and right regular
representation we see that the regular homomorphism is injective if A is faithful.
Suppose now that A has an M -bounded right approximate unit {ui}. Then

||La|| ≥
||aui||
||ui||

≥ ||aui||
M

(a ∈ A).

By taking limits we obtain

||(La, Ra)|| ≥ ||La|| ≥
||a||
M

(a ∈ A).

Similarly, if A has an M -bounded left approximate unit we obtain

||(La, Ra)|| ≥ ||Ra|| ≥
||a||
M

(a ∈ A).

Finally, for any a ∈ A,

||(Lui − I)(a)|| = ||uia− a|| → 0 , ||(Rui − I)(a)|| = ||aui − a|| → 0

so (Lui
, Rui

) converges to the identity in the strong operator topology. X
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Theorem 3.9 Let A be a faithful Banach algebra. Then every double centralizer is
bounded and D(A) = DB(A) is a Banach algebra under its norm.

Proof. See Palmer (1994), theorem 1.2.4(b). X

Remark. The class of faithful Banach algebras is fairly broad and includes for
example Banach algebras which are semisimple, semiprime or which have an ap-
proximate unit (which is not necessarily bounded). If A is a faithful Banach algebra,
we will simply denote the algebra of bounded double centralizers on A by D(A).

Corollary 3.10 Let (A,G, α) be a dynamical system, let S be a faithful class of
contractive covariant representations and suppose A has a bounded approximate
unit. Then D((A oα G)S) is a unital Banach algebra.

Proof. By theorem 3.1 (A oα G)S has a bounded approximate unit and hence
(A oα G)S is a faithful Banach algebra. The statement now follows directly from
theorem 3.9. X

Definition 3.11 Let A be a faithful Banach algebra, let X be a Banach space
and let L(X) denote the algebra of linear operators on X. A representation π
of A on a Banach space X is called extendable if there exists a homomorphism
π : D(A) → L(X), called an extension of π, which satisfies

π(La, Ra) = π(a) (a ∈ A),

where La and Ra are the left and right regular representation of a ∈ A. An extend-
able representation π is said to be normed extendable its extension π is a represen-
tation of the double centralizer algebra D(A) on X, i.e. it takes values in B(X).
A normed extendable representation π is called continuously, contractively or iso-
metrically extendable if it has a continuous, contractive or isometric extension to a
representation of the double centralizer algebra D(A) on X, respectively.

Lemma 3.12 Let A be a faithful Banach algebra and let π be an extendable repre-
sentation of A on a Banach space X. Then

π(L,R)x = π(L(c))y ((L,R) ∈ D(A))

for any x ∈ X of the form x = π(c)y (c ∈ A, y ∈ X).

Proof. Suppose x ∈ X is of the form x = π(c)y for some c ∈ A and y ∈ X. Then
for any (L,R) ∈ D(A),

π(L,R)x = π(L,R)π(c)y
= π((L,R)(Lc, Rc))y
= π(LL(c), RL(c))y
= π(L(c))y.

X

The following theorem taken from Bonsall & Duncan (1973), theorem 11.10, allows
us to deduce some additional results for continuous (normed) extendable represen-
tations of approximate unital Banach algebras.

Theorem 3.13 Let A be a Banach algebra and let π : A → B(X) be a continuous
representation of A on a Banach space X. Suppose that there is a net {ui} in A
such that {π(ui)} is a bounded net that converges to the identity on X in the strong
operator topology. Let x ∈ X and δ > 0. Then there is an a ∈ A and y ∈ X such
that x = π(a)y and ||x− y|| < δ.
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Notice that if A is a Banach algebra with a bounded (left) approximate unit and
π : A → B(X) is a nondegenerate continuous representation, then the conditions of
the theorem are satisfied by lemma 3.2.

Theorem 3.14 Let A be a Banach algebra and suppose that A contains a bounded
approximate unit. Let π : A → B(X) be a nondegenerate continuous, extendable
representation of A on a Banach space X. Then its extension is unique, nondegen-
erate and strongly continuous. If π is normed extendable, then its unique extension
is continuous.

Proof. Let π : D(A) → L(X) be an extension of π. By theorem 3.13 every x ∈ X
is of the form x = π(c)y for some c ∈ A and y ∈ X, so by lemma 3.12 the extension
π is unique and it is obviously nondegenerate. Fix x ∈ X and let c ∈ A and y ∈ X
be such that x = π(c)y. Fix (L,R) ∈ D(A) and suppose that the sequence (Ln, Rn)
converges to (L,R) in D(A). By lemma 3.12 we have

||π(L,R)x− π(Ln, Rn)x|| = ||π(L(c))y − π(Ln(c))y||
≤ ||π(L(c)− Ln(c))|| ||y||
≤ ||π|| ||(L− Ln)(c)|| ||y||
≤ ||π|| ||L− Ln|| ||c|| ||y||
≤ ||π|| ||(L,R)− (Ln, Rn)|| ||c|| ||y|| → 0.

Since this holds for every x ∈ X we conclude that π is strongly continuous.
Finally, if π is normed extendable then its unique extension π : D(A) → B(X) is a
strongly continuous representation. By proposition 2.4 it follows that π is continu-
ous, π is continuously extendable. X

Remark. Notice that the final statement of this theorem does not tell whether
or not the operator norm of the representation is preserved, e.g. if the extension of
a normed extendable contractive representation is again contractive.

In Palmer (1994), proposition 4.1.16, it is shown that any algebraically irreducible
representation of an algebra A has a unique extension to an algebraically irreducible
homomorphism of the double centralizer algebra over A into X. The following the-
orem adapts the argument to the situation where A has a bounded approximate to
obtain a stronger version of this result for continuous representations.

Theorem 3.15 Let A be a Banach algebra with a bounded approximate unit. Then
any continuous algebraically cyclic representation π of A on X extends uniquely
to a strongly continuous algebraically cyclic homomorphism π : D(A) → L(X).
In particular, any continuous algebraically irreducible representation π of A on X
extends uniquely to a strongly continuous algebraically irreducible homomorphism
π : D(A) → L(X).

Proof. Let π : A → B(X) be a continuous algebraically cyclic representation and
let {ui} be a bounded approximate unit of A. For x, y ∈ X and b, c ∈ A, suppose
that π(b)x = π(c)y. Then any a ∈ A and (L,R) ∈ D(A) satisfy

π(a)(π(L(b))x− π(L(c))y) = π(aL(b))x− π(aL(c))y
= π(R(a)b)x− π(R(a)c)y
= π(R(a))(π(b)x− π(c)y) = 0.

By lemma 3.2 we have (as the above holds for all a ∈ A)

0 = π(ui)(π(L(b))x− π(L(c))y) → (π(L(b))x− π(L(c))y).
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So π(L(b))x = π(L(c))y for all (L,R) ∈ D(A). We can therefore define π : D(A) →
L(X) by

π(L, R)x = π(L(c))y,

where c ∈ A and y ∈ X are such that x = π(c)y. By assumption, there is a fixed
vector y such that every x ∈ X is of this form (for some c ∈ A). Hence, π(L,R)
is well-defined on all of X and it easy to check that π is a homomorphism of D(A)
into L(X). Since for a ∈ A and x ∈ X we have

π(La, Ra)x = π(La(c))y = π(a)π(c)y = π(a)x,

π is an extension of π. Clearly y is an algebraically cyclic vector for π. The unique-
ness and strong continuity of π follow from theorem 3.14.
The final statement follows from the above, as every non-zero vector of X is an
algebraic cyclic vector for an algebraically irreducible representation. X

Remark. It is tempting to think that the argument in theorem 3.15 together
with theorem 3.13 gives an extension of every nondegenerate continuous represen-
tation of an algebra A with a bounded approximate unit on a Banach space X.
Note, however, that although every x ∈ X has the form x = π(c)y, the definition
π(L,R)x = π(L(c))y does not necessarily give a map that is additive or multiplica-
tive. In the theorem above this a consequence of the fact that x = π(c)y for a fixed
vector y ∈ X.
Also notice that in the theorem above we cannot conclude that the extension is
continuous, since π(L, R) is not necessarily bounded.

Proposition 3.16 Let (A,G, α) be a dynamical system, let S be a faithful class of
contractive covariant representations and suppose that A has a bounded approximate
unit. Then there is a contractive injective homomorphism

(iA, jA) : A → D((A oα G)S)

such that for f ∈ Cc(G, A), a ∈ A and s ∈ G,

iA(a)f(s) = af(s), jA(a)f(s) = f(s)αs(a).

Furthermore, there is a strongly continuous homomorphism

(iG, jG) : G → D((A oα G)S)

which is injective if A 6= 0, takes values in the group of invertible isometric double
centralizers and is such that for f ∈ Cc(G, A) and r, s ∈ G,

iG(r)f(s) = αr(f(r−1s)), jG(r)f(s) = ∆(r−1)f(sr−1).

The pair ((iA, jA), (iG, jG)) is covariant:

(iA(αr(a)), jA(αr(a))) = (iG(r), jG(r))(iA(a), jA(a))(iG(r), jG(r))−1 (r ∈ G, a ∈ A).

If (π,U) ∈ S is such that π oU is nondegenerate and extendable, then for all a ∈ A
and s ∈ G,

π o U(iA(a), jA(a)) = π(a) , π o U(iG(s), jG(s)) = Us.

Proof. We will first show that (iA(a), jA(a)) is a double centralizer of Cc(G, A) for
any a ∈ A. We have for any f, g ∈ Cc(G, A),

iA(a)(f ∗ g)(s) = iA(a)
∫

G

f(r)αr(g(r−1s)) dµ(r)

=
∫

G

af(r)αr(g(r−1s)) dµ(r)

= (iA(a)f) ∗ g(s),
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jA(a)(f ∗ g)(s) = jA(a)
∫

G

f(r)αr(g(r−1s)) dµ(r)

=
∫

G

f(r)αr(g(r−1s))αs(a) dµ(r)

=
∫

G

f(r)αr(g(r−1s)αr−1s(a)) dµ(r)

=
∫

G

f(r)αr(jA(a)g(r−1s)) dµ(r)

= f ∗ (jA(a)g)(s),

f ∗ (iA(a)g)(s) =
∫

G

f(r)αr(iA(a)g)(r−1s) dµ(r)

=
∫

G

f(r)αr(a)αr(g(r−1s)) dµ(r)

= (jA(a)f) ∗ g(s).

So (iA(a), jA(a)) is a double centralizer of Cc(G, A). Moreover, (iA, jA) is a homo-
morphism since for a, b ∈ A and f ∈ Cc(G, A),

iA(ab)f(s) = abf(s) = aiA(b)f(s) = iA(a)iA(b)f(s)

and

jA(ab)f(s) = f(s)αs(ab) = f(s)αs(a)αs(b) = jA(a)f(s)αs(b) = jA(b)jA(a)f(s).

Moreover, iA and jA are contractive on Cc(G, A) with respect to the || · ||S-norm.
Indeed, if (π,U) ∈ S then

π o U(iA(a)f) =
∫

G

π(af(s))Us dµ(s)

= π(a)π o U(f),

and

π o U(jA(a)f) =
∫

G

π(f(s)αs(a))Us dµ(s)

=
∫

G

π(f(s))π(αs(a))Us dµ(s)

=
∫

G

π(f(s))Usπ(a) dµ(s)

= π o U(f)π(a).

Hence,
||π o U(iA(a)f)|| ≤ ||π(a)|| ||π o U(f)|| ≤ ||a|| ||π o U(f)||.

Taking the supremum over all (π,U) ∈ S yields

||iA(a)f ||S ≤ ||a|| ||f ||S (f ∈ Cc(G, A)),

and similarly
||jA(a)f ||S ≤ ||a|| ||f ||S (f ∈ Cc(G, A)).

We can therefore extend (iA(a), jA(a)) by continuity to a bounded double centralizer
of (Aoα G)S and the homomorphism a 7→ (iA(a), jA(a)) from A into D((Aoα G)S)
is obviously contractive.
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Let (π,U) ∈ S be such that π o U is nondegenerate and extendable. Notice that
π o U is contractive. For any x ∈ X of the form x = π o U(f)y,

π o U(iA(a), jA(a))x = π o U(iA(a)f)y
= π(a)π o U(f)y
= π(a)x.

But by theorem 3.13, every x ∈ X is of this form and we obtain

π o U(iA(a), jA(a)) = π(a) (a ∈ A).

To show injectivity of the homomorphism a 7→ (iA(a), jA(a)), suppose that (iA(a), jA(a)) =
(iA(b), jA(b)) for some a, b ∈ A. Then iA(a) = iA(b) and hence iA(a)f = iA(b)f for
all f ∈ (A oα G)S . Take f = f̃ ⊗ c, where c ∈ A and f̃ ∈ Cc(G) satisfies f̃(e) = 1,
then evaluation at e gives (a− b)c = 0. By replacing c with an approximate unit of
A and taking limits, we obtain a = b, as required.
We will now prove the assertions about (iG, jG). It is easy to see that (iG(t), jG(t))
is a double centralizer of Cc(G, A) for any t ∈ G, since for any f, g ∈ Cc(G, A),

iG(t)(f ∗ g)(s) = iG(t)
∫

G

f(r)αr(g(r−1s)) dµ(r)

= αt(
∫

G

f(r)αr(g(r−1t−1s)) dµ(r))

=
∫

G

αt(f(r))αtr(g((tr)−1s)) dµ(r)

=
∫

G

αt(f(t−1r))αr(g(r−1s)) dµ(r)

= (iG(t)f) ∗ g(s),

jG(t)(f ∗ g)(s) = jG(t)
∫

G

f(r)αr(g(r−1s)) dµ(r)

=
∫

G

∆(t−1)f(r)αr(g(r−1st−1)) dµ(r)

=
∫

G

f(r)αr(∆(t−1)g(r−1st−1)) dµ(r)

=
∫

G

f(r)αr(jG(t)g(r−1s)) dµ(r)

= f ∗ (jG(t)g)(s),

f ∗ (iG(t)g)(s) =
∫

G

f(r)αr((iG(t)g)(r−1s)) dµ(r)

=
∫

G

f(r)αr(αt(g(t−1r−1s))) dµ(r)

=
∫

G

f(r)αrt(g((rt)−1s)) dµ(r)

=
∫

G

∆(t−1)f(rt−1)αr(g(r−1s)) dµ(r)

=
∫

G

(jG(t)f)(r)αr(g(r−1s)) dµ(r)

= (jG(t)f) ∗ g(s).

34



Also, r 7→ (iG(r), jG(r)) is a homomorphism, as

iG(rs)f(t) = αrs(f((rs)−1t)) = αr(αs(f(s−1r−1t)))
= αr((iG(s)f)(r−1t))
= iG(r)(iG(s)f)(t),

and

jG(rs)f(t) = ∆((rs)−1)f(t(rs)−1) = ∆(s−1)∆(r−1)f(ts−1r−1)
= ∆(s−1)jG(r)f(ts−1)
= jG(s)(jG(r)f)(t).

Note that by the above we have iG(r−1) = iG(r)−1 and jG(r−1) = jG(r)−1.
We will now show that every (iG(r), jG(r)) extends to an isometric double centralizer
of (A oα G)S . Let (π,U) ∈ S, then for any f ∈ Cc(G, A)

π o U(iG(r)f) =
∫

G

π(iG(r)f(s))Us dµ(s)

=
∫

G

π(αr(f(r−1s)))Us dµ(s)

=
∫

G

π(αr(f(s)))Urs dµ(s)

=
∫

G

Urπ(f(s))Us dµ(s)

= Urπ o U(f),

and

π o U(jG(r)f) =
∫

G

π(jG(r)f(s))Us dµ(s)

=
∫

G

π(∆(r−1)f(sr−1))Us dµ(s)

=
∫

G

π(f(s))Usr dµ(s)

= π o U(f)Ur.

Since Ur is a surjective isometry we obtain

||π o U(iG(r)f)|| = ||π o U(f)||, ||π o U(jG(r)f)|| = ||π o U(f)||.

Taking the supremum over all (π,U) ∈ S yields

||iG(r)f ||S = ||f ||S , ||jG(r)f ||S = ||f ||S (f ∈ Cc(G, A)).

We can therefore extend (iG(r), jG(r)) to an isometric double centralizer of (A oα

G)S .
Let (π,U) ∈ S be such that π oU is nondegenerate and extendable. For any x ∈ X
of the form x = π o U(f)y,

π o U(iG(r), jG(r))x = π o U(iG(r)f)y
= Urπ o U(f)y
= Urx.

By theorem 3.13, every x ∈ X is of this form and we obtain

π o U(iG(r), jG(r)) = Ur (r ∈ G).
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Suppose now that (iG(r), jG(r)) = (iG(s), jG(s)) for some r, s ∈ G. Then iG(rs−1) =
iG(e) and hence, for all f ∈ Cc(G, A),

αrs−1(f(sr−1t)) = f(t) (t ∈ G).

Suppose now that A 6= 0 and that s 6= r. Then rs−1 6= e and we can find an open
neighborhood V of e in G such that rs−1 /∈ V . By Urysohn’s lemma there exists a
f̃ ∈ Cc(G) such that 0 ≤ f̃(t) ≤ 1 for all t ∈ G, f(e) = 1 and f(t) = 0 if t /∈ V . Let
a ∈ A be given and define f ∈ Cc(G)�A by f = f̃ ⊗ αsr−1(a). If we now evaluate
the above equation at t = rs−1 we obtain a = 0. But this holds for any a ∈ A,
contrary to our assumption. This contradiction shows that we must have r = s if
A 6= 0, the homomorphism r 7→ (iG(r), jG(r)) is injective in this case.
It will now be shown that it is also strongly continuous, first when the image maps
are restricted to Cc(G, A) with the || · ||S-norm and a fortiori when they are not
restricted (i.e. on all of (A oα G)S). Moreover, it suffices to show strong continuity
at e. Indeed,

||iG(r)f − iG(s)f ||S = ||iG(s−1)(iG(r)f − iG(s)f)||S = ||iG(s−1r)f − f ||S ;

||jG(r)f − jG(s)f ||S = ||jG(s−1)(jG(r)f − jG(s)f)||S = ||jG(rs−1)f − f ||S .

So fix f ∈ Cc(G, A) and ε > 0. We may assume that f 6= 0. Let W be a compact
symmetric neighborhood of e in G, then K := W supp(f)W is compact (and hence
of finite measure) and if r ∈ W ,

supp(iG(r)f) ⊂ K, supp(jG(r)f) ⊂ K.

Pick MW ≥ 1 as in lemma 2.7. By uniform continuity of f we can find a neighbor-
hood V ⊂ W of e in G such that if r ∈ V then for all s ∈ G

||f(r−1s)− f(s)|| < ε

2MW µ(K)
, ||f(sr−1)− f(s)|| < ε

2µ(K)
.

Shrinking V if necessary, r ∈ V also implies by continuity of ∆ that

|∆(r−1)− 1| < ε

2||f ||∞µ(K)

and also for all s ∈ G,
||αr(f(s))− f(s)|| < ε

2µ(K)
.

The last assertion can be seen as follows. We have for any s ∈ G,

||αr(f(s))− f(s)|| ≤ ||αr(f(s)− f(s∗))||+ ||αr(f(s∗))− f(s∗)||+ ||f(s∗)− f(s)||
≤ (MW + 1)||f(s)− f(s∗)||+ ||αr(f(s∗))− f(s∗)||.

Since f has compact support, for every δ > 0 there are finitely many sj ∈ G such
that for every s ∈ G there is some sj such that ||f(s)− f(sj)|| < δ. For details see
the proof of theorem 2.21.
Now,

||iG(r)f(s)− f(s)|| ≤ ||αr(f(r−1s)− f(s))||+ ||αr(f(s))− f(s)||

and we obtain ||iG(r)f − f ||S ≤ ||iG(r)f − f ||1 < ε for r ∈ V .
Similarly, for any r ∈ V

||jG(r)f(s)− f(s)||S ≤ ||jG(r)f(s)− f(s)||1

=
∫

G

||∆(r−1)f(sr−1)− f(s)|| dµ(s)

≤
∫

K

||f ||∞|∆(r−1)− 1|+ ||f(sr−1)− f(s)|| dµ(s) < ε.
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To complete the proof it remains to show that ((iA, jA), (iG, jG)) is a covariant pair.
We have for any r ∈ G, a ∈ A and f ∈ Cc(G, A)

iG(r)iA(a)iG(r)−1f(s) = iG(r)iA(a)αr−1(f(rs))
= iG(r)aαr−1(f(rs))
= αr(a)f(s) = iA(αr(a))f(s),

and moreover

jG(r−1)jA(a)jG(r)f(s) = ∆(r−1)jG(r−1)jA(a)f(sr−1)
= ∆(r−1)jG(r−1)f(sr−1)αs(a)
= ∆(r)∆(r−1)f(srr−1)αsr(a)
= f(s)αs(αr(a)) = jA(αr(a))f(s).

Hence,

(iG(r), jG(r))(iA(a), jA(a))(iG(r), jG(r))−1 = (iG(r)iA(a), jA(a)jG(r))(iG(r)−1, jG(r)−1)
= (iG(r)iA(a)iG(r)−1, jG(r)−1jA(a)jG(r))
= (iA(αr(a)), jA(αr(a))).

Since Cc(G, A) is dense in (A oα G)S , our proof is complete. X

The following lemma provides an explicit expression for a ‘copy’ of Cc(G, A) in
D((A oα G)S).

Lemma 3.17 Let (A,G, α) be a dynamical system, let S be a faithful class of con-
tractive covariant representations and suppose that A has a bounded approximate
unit. Let g ∈ Cc(G, A). Then∫

G

(iA(g(s)), jA(g(s)))(iG(s), jG(s)) dµ(s) = (Lg, Rg).

Proof. We have∫
G

(iA(g(s)), jA(g(s)))(iG(s), jG(s)) dµ(s) =
∫

G

(iA(g(s))iG(s), jG(s)jA(g(s))) dµ(s).

We will first show that∫
G

(iA(g(s))iG(s), jG(s)jA(g(s))) dµ(s) = (
∫

G

iA(g(s))iG(s) dµ(s),
∫

G

jG(s)jA(g(s)) dµ(s)).

So let (f1, f2) ∈ (A oα G)S ⊕ (A oα G)S be arbitrary, where

(AoαG)S⊕(AoαG)S := {(f, g) ∈ (AoαG)S×(AoαG)S ; ||(f, g)|| := max{||f ||S , ||g||S}}

is the direct sum with the supremum norm. This is a Banach space as (A oα G)S

is, see Conway (1985), proposition 4.4.
Notice that the maps

s 7→ iA(g(s))iG(s)f1 and s 7→ jG(s)jA(g(s))f2

are continuous and have compact support contained in supp(g). Hence for every
k ∈ N there exists a finite number of points s1, . . . , sn(k) in supp(g) and open
neighborhoods G1, . . . , Gn(k) of these points in G which form an open cover of
supp(g) and are such that

||iA(g(s))iG(s)f1 − iA(g(si))iG(si)f1||S <
1
k

for all s ∈ Gi
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and
||jG(s)jA(g(s))f2 − jG(si)jA(g(si))f2||S <

1
k

for all s ∈ Gi.

Define the step functions ξk, ηk ∈ L1(G, (A oα G)S) by

ξk(s) =
n(k)∑
i=1

iA(g(si))iG(si)f11Gi
(s),

ηk(s) =
n(k)∑
i=1

jG(si)jA(g(si))f21Gi
(s).

Since we can do this for every k ∈ N, we obtain two sequences {ξk}, {ηk} which
satisfy

ξk(s) → iA(g(s))iG(s)f1 , ηk(s) → jG(s)jA(g(s))f2,

but also,
(ξk(s), ηk(s)) → (iA(g(s))iG(s)f1, jG(s)jA(g(s))f2)

in (AoαG)S⊕(AoαG)S . By the Dominated Convergence theorem we easily obtain∫
G

(ξk(s), ηk(s)) dµ(s) →
∫

G

(iA(g(s))iG(s), jG(s)jA(g(s))) dµ(s),

and,

(
∫

G

ξk(s) dµ(s),
∫

G

ηk(s) dµ(s)) → (
∫

G

iA(g(s))iG(s) dµ(s),
∫

G

jG(s)jA(g(s)) dµ(s)).

But,

(
∫

G

ξk(s) dµ(s),
∫

G

ηk(s) dµ(s)) = (
n(k)∑
i=1

iA(g(si))iG(si)f1µ(Gi),
n(k)∑
i=1

jG(si)jA(g(si))f2µ(Gi))

=
n(k)∑
i=1

µ(Gi)(iA(g(si))iG(si)f1, jG(si)jA(g(si))f2)

=
n(k)∑
i=1

∫
G

(iA(g(si))iG(si)f1, jG(si)jA(g(si))f2)1Gi
(s) dµ(s)

=
∫

G

(ξk(s), ηk(s)) dµ(s).

This proves our claim.
Let any f ∈ Cc(G, A) be given. Then for any r ∈ G,∫

G

iA(g(s))iG(s)f(r) dµ(s) =
∫

G

g(s)αs(f(s−1r)) dµ(s) = g ∗ f(r),

and, ∫
G

jG(s)jA(g(s))f(r) dµ(s) =
∫

G

jG(s)f(r)αr(g(s)) dµ(s)

=
∫

G

∆(s−1)f(rs−1)αrs−1(g(s)) dµ(s)

=
∫

G

f(rs)αrs(g(s−1)) dµ(s)

=
∫

G

f(s)αs(g(s−1r)) dµ(s)

= f ∗ g(r).
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Therefore,∫
G

iA(g(s))iG(s) dµ(s)(f) = Lg(f) ,

∫
G

jG(s)jA(g(s)) dµ(s)(f) = Rg(f).

This completes the proof. X

Theorem 3.18 Let (A,G, α) be a dynamical system, let S be a faithful class of
contractive covariant representations and suppose that A has a bounded approximate
unit. Then the map

(π,U) 7→ π o U

gives an injection of the nondegenerate covariant representations of S into the set
of nondegenerate contractive representations of (A oα G)S. The injection preserves
equivalence and topological irreducibility.
Every nondegenerate contractively extendable representation of (A oα G)S is of the
form π o U for some nondegenerate contractive covariant representation (π,U) of
(A,G, α). In particular, if Sc, the set of all contractive covariant representations of
(A,G, α), is a faithful class, then the injection has all nondegenerate contractively
extendable representations of A oα G in its image.

Proof. We will first show injectivity. Suppose that πoU = π̃oŨ for (π,U), (π̃, Ũ) ∈
S nondegenerate contractive covariant representations of (A,G, α) on the same
space X. Then for any a ∈ A and f ∈ (A oα G)S ,

π(a)π o U(f) = π o U(iA(a)f)
= π̃ o Ũ(iA(a)f)
= π̃(a)π̃ o Ũ(f)
= π̃(a)π o U(f).

Hence (π(a)− π̃(a))π oU(f) = 0 for all f ∈ (Aoα G)S . By nondegeneracy of π oU
we obtain π(a) = π̃(a) for all a ∈ A. Analogously we have

Urπ o U(f) = Ũrπ o U(f) (r ∈ G, f ∈ (A oα G)S),

so Ur = Ũr for all r ∈ G.
The second assertion follows directly from lemma 3.3.
To prove the final statement, let T : (A oα G)S → B(X) be any nondegenerate,
contractively extendable representation. Supposing for the moment that T = πoU ,
we know by proposition 3.16 that

π o U(iA(a), jA(a)) = π(a) , π o U(iG(r), jG(r)) = Ur (r ∈ G, a ∈ A).

So let us define

π(a) := T (iA(a), jA(a)) , Ur := T (iG(r), jG(r)) (a ∈ A, r ∈ G),

where T is the unique extension of T to a nondegenerate contractive representation
of D((A oα G)S).
We will first show that (π,U) is a nondegenerate contractive covariant representa-
tion of (A,G, α) on X. We have by proposition 3.16,

Urπ(a)U−1
r = T ((iG(r), jG(r))(iA(a), jA(a))(iG(r), jG(r))−1)

= T (iA(αr(a)), jA(αr(a)))
= π(αr(a)),
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so (π,U) is a covariant pair. Moreover, since iG : G → D((A oα G)S) is strongly
continuous and T is nondegenerate and contractive, U is strongly continuous. In-
deed, let x ∈ X be of the form x = T (f)y for some f ∈ (A oα G)S and y ∈ X,
then

||Urx− Usx|| = ||T (iG(r), jG(r))x− T (iG(s), jG(s))x||
= ||T (iG(r)f)y − T (iG(s)(f))y||
= ||T ((iG(r)− iG(s))(f))y||
≤ ||T || ||(iG(r)− iG(s))(f)||S ||y||.

The final expression can be made arbitrarily small by choosing r ∈ G in a small
enough neighborhood of s, by strong continuity of iG. By nondegeneracy of T the
linear combinations of the elements x = T (f)y are dense in X and the result readily
follows. Obviously, π is contractive as (iA, jA) and T are contractive. It is also clear
that U is an isometric representation of G as T is contractive.
To prove nondegeneracy of π, let {ui}i∈J be a bounded approximate unit in A and
fix ε > 0. Let M ≥ 1 be such that ||ui|| ≤ M for all i ∈ J and let x ∈ X be of the
form x = T (f)y. Pick f̃ ∈ Cc(G)� A such that ||f − f̃ ||S < ε

3M ||y|| . Subsequently

we can find i∗ ∈ J such that i∗ � i implies ||uif̃ − f̃ ||1 < ε
3||y|| . Hence if i∗ � i,

||T (iA(ui), jA(ui))x− x|| = ||T (iA(ui)(f))y − T (f)y||
≤ ||T || ||iA(ui)f − f ||S ||y||
≤ ||y||(||iA(ui)f − iA(ui)f̃ ||S + ||iA(ui)f̃ − f̃ ||S + ||f̃ − f ||S)
≤ ||y||((M + 1)||f − f̃ ||S + ||uif̃ − f̃ ||1) < ε.

Since T is nondegenerate, it follows that T (iA(ui), jA(ui)) converges strongly to IX

and we conclude that π is nondegenerate.
Finally, we need to show that T coincides with π o U . Let g ∈ Cc(G, A), then by
lemma 3.17 we have

π o U(g) =
∫

G

π(g(s))Us dµ(s)

=
∫

G

T (iA(g(s)), jA(g(s)))T (iG(s), jG(s)) dµ(s)

=
∫

G

T ((iA(g(s)), jA(g(s)))(iG(s), jG(s))) dµ(s)

= T

∫
G

(iA(g(s)), jA(g(s)))(iG(s), jG(s)) dµ(s)

= T (Lg, Rg)
= T (g).

Since Cc(G, A) is dense in (A oα G)S and T and π o U are contractive, it easily
follows that T coincides with π o U . X

Remark. To obtain a surjectivity result for a faithful class S we need to show
that the contractive covariant representation (π,U) that is constructed using T is
again in S. We could accomplish this by assuming that S is saturated, in the sense
that if a contractive covariant representation of (A,G, α) on a certain Banach space
X is in S, then all contractive covariant representations of (A,G, α) on X are in S.
Alternatively, we can give a direct proof that (π,U) is in S by using the structure of
S. For example, in the case of a C∗-dynamical system we show that a nondegener-
ate ∗-representation T of the crossed product induces a covariant ∗-representation
of the dynamical system.
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3.2 Comparison with C∗-crossed products

We have seen in section 2.2 that we can view the C∗-crossed product as a special
case of the crossed product defined in theorem 2.30, by taking a C∗-algebra A as
the dynamical system (A,G, α) and by defining the C∗-crossed product norm using
the faithful class of representations

S∗ := {(π,U) : (π,U) is a covariant ∗ −representation of (A,G, α)}.

We can now combine the results in the previous section with results from the theory
of C∗-algebras to obtain a classic version of theorem 3.18 for C∗-dynamical systems.
Notice first that all requirements of theorem 3.18 are satisfied, (A,G, α) is automat-
ically isometric, A always has an approximate unit contained in its closed unit ball
and S∗ is a faithful class. By proposition C.3 we also find that every ∗-representation
of (A oα G)S∗ is contractive. It is easy to see that the operation

(L,R) 7→ (R∗, L∗) ((L,R) ∈ D((A oα G)S∗))

with L∗(a) := (L(a∗))∗, R∗(a) := (R(a∗))∗, defines an involution on D((Aoα G)S∗)
which turns it into a C∗-algebra (see Murphy (1990), theorem 2.1.5). Furthermore,
since (A oα G)S∗ is a closed (two-sided) ideal in its double centralizer algebra
D((AoαG)S∗), it follows by theorem C.5 that every nondegenerate ∗-representation
of (A oα G)S∗ is contractively extendable to a ∗-representation of D((A oα G)S∗).
It is easy to check that π = T (iA, jA) (in the notation of the proof of theorem 3.18)
is ∗-preserving. We have obtained the following theorem.

Theorem 3.19 Let (A,G, α) be a C∗-dynamical system. Then

(π,U) ↔ π o U

is a bijective correspondence between the nondegenerate covariant ∗-representations
of (A,G, α) and the nondegenerate ∗-representations of (A oα G)S∗ . This bijection
preserves equivalence and topological irreducibility.
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4 Open Questions

As we conclude this thesis, many questions remain unanswered. This section sum-
marizes the main unresolved issues and provides some topics for further research.
The most pressing question at hand is on theorem 3.18. As it stands we have
obtained an injection (π,U) 7→ π o U of the nondegenerate contractive covariant
representations in S into the collection of nondegenerate contractive representations
of (A oα G)S . We would like to obtain the sort of bijection as in theorem 3.19. If
we continue investigating the surjectivity of the map along the lines set out in the
previous section, the main obstruction is the extendability of representations. There
are two approaches we can take to solve this issue. First, we can investigate the
theory of extendability in general:

• Given a faithful Banach algebra A, which representations are extendable to
D(A)? Which are normed extendable? Are there counterexamples of repre-
sentations that are not extendable?

• If a continuous representation is normed extendable, is its extension then also
continuous? When is a representation contractively extendable?

• Are the classes of Banach algebras for which every representation (in a certain
class) is normed extendable?

• Can we put restrictions on A, G and the action α to ensure that (A oα G)S

belongs to such a class? A rather trivial example is the case where G is discrete
and A is unital, in which case (A oα G)S is unital (for every faithful class S)
and coincides with its double centralizer algebra.

We can also take a more hands-on approach by sharpening the proof of theorem 3.18:

• Can we loosen the restrictions on the representation T of (A oα G)S and still
obtain the covariant representation (π,U)? For example, is it sufficient if T
has a strongly continuous (not necessarily normed) extension?

• Is it sufficient if T is continuously extendable? We suspect that if A has an
approximate unit contained in its closed unit ball, then it is possible to show
that (π,U) is a contractive covariant representation. We could still show that
T = π o U and use arguments along the lines of the proof of lemma 2.26 to
show that π is contractive and U is isometric.

We could also abandon the approach using the double centralizer algebra:

• Can we obtain a covariant representation (π,U) from a representation T of
(A oα G)S , such that T = π o U , without using an extension of T to the
double centralizer algebra? In Pedersen (1979) theorem 3.19 of this thesis is
proved without using extensions of representations of the crossed product to
its double centralizer algebra. There is a strong indication that this approach
may work for representations on reflexive Banach spaces. We refer to theorem
7.6.4 and proposition 3.12.3 of this book.

Another open issue is the definition of the crossed product. Currently we have
obtained an S-crossed product for any faithful class S of contractive covariant rep-
resentations of (A,G, α). For further development of the theory it is important to
settle on one definition of the crossed product of A by G.

• Given a dynamical system (A,G, α), is there a natural choice for the faithful
class of contractive covariant representations S? In case A is a C∗-algebra,
it is natural to consider convariant representations (π,U) in which π is ∗-
preserving, hence the choice S = S∗ in the definition.
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• What restriction should we put on S to ensure that we obtain a bijection in
theorem 3.18 (see the remark following the theorem)?

• In special cases, there may be other Banach algebras to consider as a candidate
for the definition for the crossed product. For example: if (A,G, α) satisfies
the condition in theorem 2.17, is there a bijection between the nondegener-
ate contractive covariant representations of (A,G, α) and the nondegenerate
contractive representations of L1(G, A)?

• Are there other norms that we can consider for the completion of Cc(G, A)?
Any candidate must be submultiplicative on Cc(G, A) to ensure that the com-
pletion is a Banach algebra. In this thesis we have only considered the || · ||1
and the || · ||S norms on Cc(G, A).

• Once we have settled on a definition of the crossed product for a certain class
of dynamical systems (A,G, α), can we prove results which are analogous to
or generalizations of ones for C∗-crossed products? See Williams (2007) for
many desired results.

A related issue is of course the existence of a faithful class S of contractive covariant
representations for a given dynamical system (A,G, α).

• Given a dynamical system (A,G, α), is there a faithful class of contractive
covariant representations of (A,G, α)?

• Is there a contractive covariant representation (π,U) such that π oU is faith-
ful?

• In the case that α is not isometric, can we, given a representation π of A,
construct a contractive covariant representation (π̃, U) such that π̃ o U is
faithful? If α is uniformly bounded by M it is sufficient to find a faithful
representation π with ||π|| ≤ 1

M (c.f. proposition 2.12 and lemma 2.28).

• If α is not uniformly bounded, it is still uniformly bounded on compact sets. Is
this sufficient to prove the existence of a contractive covariant representation?
One idea is to ‘localize’ the approach in proposition 2.12, e.g. to construct a
covariant representation on Lp(H,X), where H is a compact normal subgroup
of G.

Once we have settled on a definition of the crossed product, we can look for a
characterization of the crossed product in terms of a universal property.

• Can the crossed product be characterized in terms of a universal property,
such as Iain Raeburn’s characterization for C∗-crossed products (see Williams
(2007), theorem 2.61)?

The questions may prove very difficult to answer for a general dynamical system
(A,G, α). Here we provide some avenues of research for special choices of A, G
and/or α.

• In Dixmier (1977), proposition 2.7.1, it is shown that the norm on a C∗-algebra
A can be expressed as

||a|| = sup
π∈Π

||π(a)|| = sup
π∈Π̃

||π(a)||,

where Π is the collection of ∗-representations of A on a Hilbert space and
Π̃ is the subcollection of topologically irreducible ∗-representations of A on a
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Hilbert space. In corollary 2.8.4 it is shown that a ∗-representation is topo-
logically irreducible if and only if it is algebraically irreducible. If G is the
trivial group, then the C∗-crossed product A oα G reduces to the C∗-algebra
A. If A is a Banach ∗-algebra, and we assume that Π is a faithful class, then
we can complete A in the norm above and obtain a C∗-algebra Ã, known as
the enveloping C∗-algebra. It seems there are now two ways to define a C∗-
crossed products using A. We can first form the enveloping C∗-algebra Ã and
then form the C∗-algebra (Ãoα G)S∗ . Alternatively, we can form (Aoα G)S∗ ,
which is a C∗-algebra. Are ÃoαG and (AoαG)S∗ isometrically ∗-isomorphic,
as one would expect?

• More generally, we can ask the question above for any Banach algebra A. If
we complete A in a norm

||a|| = sup
π∈Π

||π(a)||

to obtain a Banach algebra Ã and subsequently form (Ã oα G)S for a faithful
class S ‘similar to Π’, is it isometrically isomorphic to (A oα G)S?

• In this thesis, we have only used dynamical systems with a locally compact
group G. We can simplify the situation by putting restrictions on G, e.g. the
action α is always uniformly bounded if G is compact. It will be interesting
to concentrate on abelian locally compact groups. Abelian harmonic analy-
sis is a well-developed field and its tools may be beneficiary to solving the
problems above. More generally, in the theory of C∗-crossed products many
simplifications occur if G is assumed to be amenable. We refer to Davidson
(1996) for a definition and proof that every abelian locally compact group is
amenable (Corollary VII.2.2).

• In this thesis we only assume that the space A of a dynamical system has a
bounded approximate unit. We may impose many other assumptions that are
still generalizations of the C∗-crossed product theory. For example, we can
concentrate on representations on reflexive Banach spaces. Or we can look at
pairs of representations (a representation on a Banach space and an ‘adjoint
representation’ on the dual space) instead of looking at single representations.

We now state some technical questions of minor importance.

• We suspect that in order to establish the injection in theorem 3.18 it may be
sufficient to know that the double centralizer algebra of the crossed product
A oα G is a well-defined Banach algebra. Under what conditions on (A,G, α)
is A oα G a faithful Banach algebra?

• Are there interesting examples of covariant pairs (π,U) in which U is not an
isometric representation? In the proofs in this thesis it is usually sufficient to
assume that U is strongly continuous and uniformly bounded.

• If (π,U) is a nondegenerate covariant representation on X and X̃ ⊂ X is a
closed invariant subspace, is the subrepresentation (π̃, Ũ) of (π,U) on X̃ again
nondegenerate?

• Is (iA, jA) a homeomorphism between A and its image (see proposition 3.16)?

We end this section with three possible applications of the crossed products for
Banach algebraic dynamical systems.
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• If G is discrete and A is unital, the map in theorem 3.18 is bijective for S = Sc.
It would be interesting to take A equal to the disc algebra, i.e. the Banach
algebra of functions on the closed unit disc in C which are holomorphic on the
interior and continuous up to the boundary, and the action of G = Z on A
induced by the fractional linear transformations of the disc. We can compare
the results to Buske & Peters (1998), where an analogous semicrossed product
is introduced, using the semigroup Z+ instead of Z.

• By taking A = C and α equal to the trivial action, we obtain a generalization
of the group C∗-algebra. We can use this to study isometric representations
of locally compact groups on Banach spaces.

• Let G be a locally compact group acting a locally compact Hausdorff space
X on which an invariant Borel measure exists. The action of G on X induces
an isometric action α of G on C0(X). Although C0(X) is a C∗-algebra, there
are interesting covariant representations of (C0(X), G, α) which are not ∗-
preserving. For example, we can represent C0(X) on Lp(G, X) (1 ≤ p < ∞)
by pointwise multiplication and we also have an isometric representation of G
on Lp(G, X), since the borel measure on X is invariant under the action of G
on X. This is a covariant pair.
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A Topological groups and Haar measure

This appendix collects some elementary definitions and results on topological groups
and Haar measure. There are several good books available on these subjects, see
for example Hewitt & Ross (1979) and Nachbin (1965). We omit all the proofs.

Definition A.1 A topological group G is a group on which a topology is defined
such that the following hold:

1. one-point sets are closed in G;

2. the map (s, r) 7→ sr is continuous from G×G to G;

3. the map s 7→ s−1 is continuous on G.

A basic consequence of the definition is that the maps s 7→ s−1, s 7→ rs and s 7→ sr
(for a fixed r ∈ G) are homeomorphisms of G.
Any group with the discrete topology is a topological group (e.g. Z). Other elemen-
tary examples are Zn with the discrete topology, Rn with the Euclidean topology
and the n-sphere Tn with the subspace topology induced by the Euclidean topology.
We record the following elementary properties of a topological group:

Lemma A.2 Any topological group G is Hausdorff and regular. G is locally com-
pact if and only if every point in G has a compact neighborhood.

It is sometimes useful to work with a symmetric neighborhood of the identity e in
G, i.e. a neighborhood V of e such that s ∈ V if and only if s−1 ∈ V . These are
easy to obtain. If W is any neighborhood of e in G, then W−1 := {w−1 : w ∈ W}
is a neighborhood of e as well and V = W ∩W−1 is a symmetric neighborhood of
e.
In the main text we work exclusively with locally compact topological groups. Our
fascination stems from the fact that on such groups a measure (called Haar measure)
can be defined which respects the group structure. First, we need some terminology.
The Borel sigma algebra over G is defined as the sigma algebra generated by the
open sets of G. Any measure on this sigma algebra is called a Borel measure. The
following theorem, the Riesz representation theorem, shows that we can associate
to any positive linear functional I : Cc(G) → C a sigma algebra Σ containing all
the open sets of G and a unique measure µ on Σ which represents the functional I.
This measure is called a Radon measure. For the proof of this theorem, see Rudin
(1987), theorem 2.14.

Theorem A.3 Let G be a locally compact group and let I be a positive linear
functional on Cc(G). Then there exists a sigma algebra Σ over G which contains
all the open sets in G, and there exists a unique measure µ on G which represents
I in the sense that

1. I(f) =
∫

G
f(s) dµ(s) (f ∈ Cc(G)),

and which has the following additional properties:

2. µ(K) < ∞ for every compact set K ⊂ G;

3. µ(C) = inf{µ(V ) : C ⊂ V, V open} for all C ∈ Σ.

4. µ(V ) = sup{µ(K) : K ⊂ V, K compact} for every open set V and every
V ∈ Σ with µ(V ) < ∞;

5. If C ∈ Σ, B ⊂ C, and µ(C) = 0, then B ∈ Σ.
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A measure with properties 3 and 4 is called regular, a measure with property 5 is
called complete.

Definition A.4 Let G be a locally compact topological group. A measure µ on G
is called left invariant if

µ(sC) = µ(C) for all s ∈ G and measurable C ⊂ G.

A left invariant Radon measure on G is called left Haar measure, or simply Haar
measure. Similarly, right Haar measure is a right invariant Radon measure on G.

The fundamental theorem on Haar measure alluded to before is the following exis-
tence and uniqueness theorem.

Theorem A.5 Every locally compact group has a Haar measure which is unique
up to a strictly positive scalar multiple.

For topological groups of finite measure it is customary to normalize Haar measure
to make it completely unique. We simply fix a version µ of Haar measure once and
for all.
We record the following frequently used properties of Haar measure in a separate
lemma.

Lemma A.6 Let G be a locally compact group. Then every open set has strictly
positive Haar measure and every compact set has finite Haar measure.

We end this section with some frequently used properties of Haar integrals of L1

functions on G (where L1(G) is the completion of Cc(G) in the || · ||1-norm). Al-
though we state them for scalar valued functions, they are easily seen to hold for
Banach space-valued functions as well (see appendix B).

Proposition A.7 Let µ be Haar measure on a locally compact group. Then for
any f ∈ L1(G) ∫

G

f(r−1s) dµ(s) =
∫

G

f(s) dµ(s).

Moreover, there exists a continuous homomorphism ∆ : G → (0,∞) such that for
all f ∈ L1(G) ∫

G

∆(r)f(sr) dµ(s) =
∫

G

f(s) dµ(s).

The homomorphism ∆ is independent of the choice of Haar measure and is called
the modular function.
Finally, for any f ∈ L1(G),∫

G

f(s−1)∆(s−1) dµ(s) =
∫

G

f(s) dµ(s).

Remark. You may wonder why we only work with left Haar measure. In fact, the
choice for left or right Haar measure is quite arbitrary. If µ defines a version of left
Haar measure on G, then ν(C) := µ(C−1) defines a version of right Haar measure.
By the last equation in the proposition above, left and right Haar measure are
equivalent (i.e. mutually absolutely continuous), with Radon-Nikodym derivative
equal to

dν

dµ
(s) = ∆(s−1) (s ∈ G).

It seems to have become standard in the literature to use left Haar measure and it
is therefore easier to work with in practice.
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B Banach space valued integration

This appendix presents a bird’s view of the theory of Banach space valued integra-
tion, also known as vector valued integration. Our intention is to shed some light
on the Banach space L1(G, A) and to build a toolkit of results which are implicitly
used throughout the main text. Our focus will be on the integration of functions
f : G → X, where G is a locally compact group and X a Banach space, with respect
to Haar measure µ on G. We note that the results below hold for more general do-
mains and Radon measures (as defined in appendix A). Our sources for the theory
of vector valued integration are Dunford & Schwartz (1958) and Williams (2007).
The first order of business is to define a suitable notion of measurability for functions
with values in a Banach space. In analogy with Lebesgue’s theory for scalar valued
functions, we would like every measurable function to be a limit of a sequence of
simple functions (see definition B.7). Since the closure of the images of a sequence
of simple functions forms a separable subspace of X, it is sensible to restrict our
attention to functions which are locally separably-valued.

Definition B.1 Let X be a Banach space. A function f : G → X is called essen-
tially separably-valued on a subset S of G if there is a separable subspace D of X
and a µ-null set N ⊂ S such that f(x) ∈ D for all x ∈ S −N .

In contrast to the scalar-valued case, there are several ways to define measurability
for vector-valued functions and each definition has its own charms.

Definition B.2 Let X be a Banach space. Then a function f : G → X is strongly
measurable if

1. f−1(V ) is measurable for all open sets V ∈ G;

2. f is essentially separably-valued on every compact subset of G.

Definition B.3 Let X be a Banach space. Then a function f : G → X is weakly
measurable if

1. φ ◦ f : G → C is measurable for every continuous linear functional φ on X;

2. f is essentially separably-valued on every compact subset of G.

Definition B.4 Let X be a Banach space. Then a function f : G → X is C-
measurable if for every compact set K ⊂ G and ε > 0 there is a compact set K̃
such that µ(K − K̃) < ε and such that the restriction of f to K̃ is continuous.

Fortunately, the three notions above coincide.

Lemma B.5 Let X be a Banach space and f : G → X a function. Then the
following are equivalent:

1. f is strongly measurable;

2. f is weakly measurable;

3. f is C-measurable.

A Banach space valued function satisfying these three equivalent properties is called
measurable. We have the following familiar result on pointwise limits of measurable
functions.

Lemma B.6 Let {fn}∞n=1 be a sequence of measurable Banach space valued func-
tions such that fn(s) → f(s) for µ-almost every s ∈ G. Then f : G → X is
measurable.
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Definition B.7 A measurable function g : G → X is called simple if it takes
finitely many values b1, . . . , bn and µ({s ∈ G : g(s) = bi}) < ∞ if bi 6= 0.

As a consequence of our well-chosen definition of measurability, we obtain the fol-
lowing desired result:

Lemma B.8 Let X be a Banach space and f : G → X be a function. Then f is
measurable if and only if for each compact set K ⊂ G there is a sequence of simple
functions {gn}∞n=1 such that for almost all s ∈ K

||gn(s)|| ≤ ||f(s)||, gn(s) → f(s).

If we know that a measurable function has its support contained in a σ-finite subset
of G, then we have an even stronger statement.

Lemma B.9 Let X be a Banach space and let f : G → X be a measurable function
which vanishes off a σ-finite subset. Then there is a sequence of simple functions
{gn}∞n=1 and a µ-null set N such that for all s ∈ G−N

||gn(s)|| ≤ ||f(s)||, gn(s) → f(s).

Definition B.10 A measurable function f : G → X is integrable if

||f ||1 :=
∫

G

||f(s)|| dµ(s) < ∞.

We define an equivalence relation on the set of integrable functions by identifying all
integrable functions which are equal µ-almost everywhere. The set of equivalence
classes of integrable functions equipped with the ||·||1 norm is denoted by L1(G, X).

The following two propositions state some important properties of the space L1(G, X)
and the integral on L1(G, X).

Proposition B.11 Let G be a locally compact group, µ Haar measure on G and X
a Banach space. Then L1(G, X) is a Banach space. Moreover, both the collection
of simple functions and Cc(G, A) are dense in L1(G, X).

Proposition B.12 Let G be a locally compact group, µ Haar measure on G and
X a Banach space. Then

f 7→
∫

G

f(s) dµ(s)

is a contractive linear map from L1(G, X) to X. The integral is characterized by
the property

φ(
∫

G

f(s) dµ(s)) =
∫

G

φ(f(s)) dµ(s) for all φ ∈ X∗,

where X∗ is the dual space of X. Finally, if L : X → Y is a bounded linear map
into a Banach space Y then

L(
∫

G

f(s) dµ(s)) =
∫

G

L(f(s)) dµ(s).

We end this section with a generalization of two cornerstones of the theory of inte-
gration for scalar-valued funtions, the Dominated Covergence theorem and Fubini’s
theorem.
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Theorem B.13 Let G be a locally compact group, µ Haar measure on G and X a
Banach space. Suppose {fn}∞n=1 is a sequence of measurable functions on G taking
values in X such that for some nonnegative, integrable function g ∈ L1(G) we have
||fn(s)|| ≤ g(s) for µ-almost every s ∈ G and fn(s) → f(s) µ-almost everywhere.
Then fn → f in L1(G, X).

Theorem B.14 Let G1, G2 be locally compact groups, µ and ν Haar measure on
G1 and G2, respectively, and X a Banach space. If f ∈ L1(G1 × G2, X), then the
following hold:

1. For µ-almost every s ∈ G1, r 7→ f(s, r) belongs to L1(G1, X);

2. For ν-almost every r ∈ G2, s 7→ f(s, r) belongs to L1(G2, X);

3. The map

s 7→
∫

G2

f(s, r) dν(r)

is defined µ-almost everywhere and moreover defines an element of L1(G1, X);

4. The map

r 7→
∫

G1

f(s, r) dµ(s)

is defined ν-almost everywhere and moreover defines an element of L1(G2, X);

5. The double integrals∫
G1

∫
G2

f(s, r) dν(r) dµ(s) and
∫

G2

∫
G1

f(s, r) dµ(s) dν(r)

are equal, with common value∫
G1×G2

f(s, r) d(µ× ν)(s, r).

In the main text we occasionally use the spaces Lp(G, X) for 1 < p < ∞, which
consist of the (equivalence classes of) measurable functions satisfying

||f ||p := (
∫

G

||f(s)||p dµ(s))1/p < ∞.

As in the scalar-valued case, Lp(G, X) is a Banach space and both Cc(G, X) and
the step functions are dense in Lp(G, X).
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C C∗-algebras

This appendix presents some results from the theory of C∗-algebras that we use in
the development of the C∗-crossed product. For a more thorough introduction to
the beautiful theory of C∗-algebras we warmly recommend Murphy (1990), or the
authoritative (but older) volume Dixmier (1977).

Definition C.1 An involution on an algebra A is map a 7→ a∗ such that (λa)∗ =
λa∗, a∗∗ = a and (ab)∗ = b∗a∗ for all λ ∈ C and a, b ∈ A. An algebra endowed with
an involution is called an involutive algebra or ∗-algebra. A Banach ∗-algebra is a
∗-algebra with a complete submultiplicative norm such that ||a∗|| = ||a|| for a ∈ A.
A C∗-algebra is a Banach ∗-algebra such that ||a∗a|| = ||a||2 for a ∈ A.

Examples. Here are three examples of C∗-algebras:

• The complex numbers C becomes a C∗-algebra when endowed with the invo-
lution a∗ := a (a ∈ C), i.e. taking the complex conjugate.

• Let Ω be a locally compact Hausdorff space. Then C0(Ω), the space of complex
valued functions vanishing at infinity, is a Banach algebra under the supremum
norm and a C∗ algebra when equipped with the involution f∗ := f , i.e. under
complex conjugation.

• Let H be a Hilbert space, then the space of bounded linear operators on H
with the operator norm, B(H), is a C∗-algebra when the involution on B(H)
is given by taking the adjoint of an operator.

When we study the homomorphisms of algebras with an involutive structure we
are especially interested in homomorphisms that not only preserve the linearity and
multiplication on the space, but also its involution. Such homomorphisms are called
∗-preserving or simply ∗-homomorphisms. In the special case of representations of
a C∗-algebras, our focus will be on representations on Hilbert spaces which preserve
the involution.

Definition C.2 A ∗-representation of a C∗-algebra A on a Hilbert space H is a
representation π : A → B(H) which preserves the involution of A, i.e. π(a∗) = π(a)∗

for all a ∈ A.

If A is a C∗-algebra we will let Aut(A) denote the group of involution preserving-
automorphisms.
The assumption of the C∗-rule (||a∗a|| = ||a||2) on an involutive Banach algebra
looks innocent enough, but it in fact has some far-reaching consequences. Much
more is known about C∗-algebras than about involutive Banach algebras, and about
Banach algebras without an involution even less is known. An elementary result in
which the C∗-rule plays a vital rule is the following.

Proposition C.3 A ∗-homomorphism φ : A → B from a Banach ∗-algebra A to a
C∗-algebra B is necessarily norm-decreasing. In particular, every ∗-automorphism
of a C∗-algebra is necessarily isometric.

The following two properties of C∗-algebras prove to be extremely useful in the
analysis of the representation theory of the C∗-crossed product.

Theorem C.4 Every C∗-algebra has an approximate unit contained in its unit ball.

Theorem C.5 Let A be a C∗-algebra, I a closed two-sided ideal and π a nondegen-
erate representation of I on a Hilbert space H. Then there is a unique representation
π̃ of A on H which extends π.
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We end this section with a celebrated result known as the Gelfand-Naimark-Segal
theorem. It shows that we can think of any C∗-algebra as a closed, self-adjoint
subalgebra of B(H), for some Hilbert space H.

Theorem C.6 Every C∗-algebra A is isometrically ∗-isomorphic to a closed self-
adjoint subalgebra of B(H), for some Hilbert space H. In particular, every C∗-
algebra has a faithful ∗-representation on a Hilbert space H.
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