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Summary

If a match is found between two Y chromosome STR profiles in a forensic case, a
number of methods are available to evaluate this match, based on a large database
of known profiles: the simple counting method, the more elaborate haplotype sur-
veying and mismatch distribution methods, and a suggestion for dealing with rare
haplotypes made by Charles Brenner.
The details of each method are discussed, as well as its advantages and disadvan-
tages. A new approach called the high-profile distribution is introduced, which,
like Brenner’s suggestion, tries to make use of the fact that the database contains
many unique profiles. Finally, the solutions provided by all of the methods are
analyzed and compared.
The differences are small, except when the matching profile is very rare in (or
even absent from) the database. Since for such profiles, none of the methods
provides a very reliable figure, one could use any of the methods, provided that
one explains to the court that there is a high level of uncertainty in one’s answer.
I advise to use the counting method, for two reasons. First, it is by far the
easiest one to explain in court, allowing all parties to understand the strength
of the evidence. Second, the other conventional methods (haplotype surveying,
the mismatch distribution, and Brenner’s correction for rare profiles) all contain
(minor) errors, the implications of which are not so clear, while the high-profile
distribution is still in an experimental phase.
Thus, I suggest to report to the court a frequency table, in which the numbers
of copies of the crime scene profile in a few relevant databases (for instance, the
total database available at www.yhrd.org, and the European, Western European
or Dutch sub-databases, each database expanded with one copy of the crime
scene profile) are listed, accompanied by the corresponding frequency estimates.
In addition, one should stress the fact that paternal relatives of the suspect in
general have the exact same Y-STR-profile.
In the final chapter, some special cases are treated, and suggestions for further
research are provided.



Chapter 1

Introduction

DNA analysis plays a major part in modern forensic research. Due to mutation
and recombination, no two persons have the same DNA (except for identical
twins), and this enables us to determine if a cell sample, for example from
a blood or semen stain, was left by a suspect or victim, provided that a cell
sample from that person is also available. Unfortunately, a complete human
DNA sequence consists of 6 billion symbols (A, C, G, or T, which stand for the
nucleotides adenine, cytosine, guanine, and thymine) and decoding it is very
expensive and time-consuming. Instead, the standard procedure is to type and
compare only a few small parts of the DNA sequence, preferably those parts
that have the highest discriminative power, i.e. that are most likely to differ
between two persons. The positions at the genome where these parts are located
are called loci, and the different variants of the DNA sequence at a locus are
called alleles. For a general introduction to DNA, see Butler [2005] or Jobling &
Tyler-Smith [2003].
The most widely used parts of the genome are the so-called short tandem repeats
(STRs), strands of DNA that consist of a sequence of 2− 6 nucleotides, repeated
a number of times. In contrast with single nucleotide polymorphisms (SNPs,
where a single nucleotide has at one time mutated into another one), these STRs
have high mutation rates, typically about once in every 1000 generations, so that
the number of repeats varies across a population. Another advantage of STRs
is that typing them is relatively easy using a polymerase chain reaction (PCR),
which requires only a few DNA molecules to start with and produces billions
of copies of a fragment of choice within a few hours. The number of repeats
can then be determined by using electrophoresis to measure the length of the
amplified fragment.
Because all autosomes (chromosomes other than the sex chromosomes) come in
pairs, PCR analysis produces two numbers for each locus, denoting the numbers
of repeats within the two copies of the same fragment on the two chromosomes;
these numbers can of course be the same. A person’s DNA profile is the collection
of his repeat numbers on all typed loci. Since the frequency of each number of
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repeats within the population can be inferred from a database, one can calculate
the probability that a person drawn at random from the population has the
same pair of repeat numbers (see Buckleton [2005], Evett & Weir [1998]).
Due to the recombining nature of DNA and because target STRs are usually
chosen on different chromosome pairs, repeat numbers corresponding to different
loci can be considered more or less statistically independent (although one
needs to adjust for the effects of structured populations, in which mating occurs
primarily between members the same subpopulation; see Balding [2005), and
as a result the probabilities can, with the proper corrections for population
structure, be multiplied to obtain the probability that a random person has
the exact same DNA profile. The standard set of loci used in the Netherlands
guarantees that this probability will always be smaller than 10−9, which in most
cases is small enough to remove all reasonable doubt that identical profiles
originated from the same source.
In some cases, however, it is impossible to obtain a complete profile from a
sample. If the sample is a mixture of DNA from two persons, for example,
and the amounts of material left by one of them is more than 10 times greater
than the amount left by the other one, then the main contributor’s profile can
completely obscure the other one. But if the main contributor is female and the
minor one is male, as is common in samples from rape cases, there is one piece
of DNA that can be attributed to the male donor: the Y chromosome.
A good way to obtain an STR-profile for this person is thus to choose all target
loci on the Y chromosome. The resulting profile is referred to as a Y-STR profile.
However, the evidential strength of this profile is not to be confused with that
of an autosomal profile.
First of all, every man has only one Y chromosome, so each locus provides
just one number of repeats; for this reason, a Y-STR profile is also called a Y
haplotype. But more importantly, all STR loci must lie on the non-recombining
part of the Y chromosome (otherwise, the female contributor would have a copy
as well), so they do not experience independent inheritance like autosomal STRs.
A son always inherits his father’s exact Y-STR profile, a few possible mutations
excepted.
This has some serious implications: if a suspect matches a Y-STR profile
obtained from a stain, this means that all his brothers, paternal cousins, and
so on, probably match this profile too, along with an unknown number of men
who share a more distant paternal ancestry with the suspect. Even for totally
unrelated persons (if such a concept makes sense, since everybody is related if
traced back in time far enough), the match probability for a Y-STR profile is
much higher than for an autosomal profile, because the match probabilities for
the various loci cannot be multiplied.

The evidential strength of a Y haplotype match is the subject of this thesis.
The reasons for this investigation at this moment are the fact that the Nether-
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lands Forensic Institute (NFI) recently started performing Y-STR typing in case-
work, and the lack of a scientifically accepted method to evaluate the evidential
strength.
Besides giving an overview of the current opinions on this subject and introduc-
ing a new method, I will therefore present a recommendation on how to report a
match between two Y haplotypes.

1.1 Data

The main source of information on frequencies of Y haplotypes is the huge
Y Chromosome Haplotype Reference Database available at www.yhrd.org
[Willuweit & Roewer 2007], maintained and regularly updated by Sascha
Willuweit and Lutz Roewer of the Institute of Legal Medicine and Forensic
Sciences, Humboldt University, Berlin, Germany. This database consists of Y
haplotypes submitted by laboratories from all over the world, each of which
participated in a quality control exercise before being allowed to file detected
haplotypes.
At the moment of publication of this thesis, release 22 of this database has been
published, containing 52, 655 from 464 populations, all typed for the seven STR
loci DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, and DYS393.
50, 867 of those have also been typed for the twin locus DYS385a/b 1, and 23, 981
of those have additionally been typed for the loci DYS438 and DYS439. 26, 395
of the haplotypes in the database are from Europe, and all but 90 of these have
been typed for the 9-locus minimal haplotype, consisting of the aforementioned
loci excluding DYS438 and DYS439.
Six samples from the Netherlands are included in the YHRD database: one from
each of the provinces of Zeeland, Limburg, Groningen, and Friesland, one from
the city of Leiden, and one from different parts of the country, containing 371
haplotypes in total; all of these samples were assembled by Peter de Knijff from
the Forensic Laboratory for DNA Research (FLDO) in Leiden.
The database allows us to search for a particular haplotype in all constituent
population samples, and also provides frequency estimates for the Western
European, Eastern European, and South-Eastern European populations, using
the haplotype surveying method (see section 2.3).
A version of the European part of the database from 2004 is available for
download, listing 12727 individual haplotypes and the population samples they
were found in. I will use this version for my comparison of the various frequency
estimation methods, since the current database (version 22, August 10, 2007)

1The twin locus DYS385a/b produces two repeat numbers, corresponding to two sequences
at different locations on the Y chromosome, which cannot be told apart by conventional PCR
analysis. The two alleles should therefore be separated by a hyphen, e.g. DYS385*11-14,
following the guidelines of the ISFG [Gusmão et al. 2006].
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cannot be downloaded.
In this 2004 database, the most common profile, consisting of the repeat numbers
14− 13− 29− 24− 11− 13− 13 at the seven standard loci, occurs 661 times and
therefore has a database frequency of 661

12727
= 5.19 ·10−2. This profile is the center

of a cluster of frequent profiles that are genetically close to it. Another group of
frequent profiles is clustered around profile 14 − 12 − 28 − 22 − 10 − 11 − 13,
which has frequency 271

12727
= 2.13 · 10−2.

Locally, frequencies can be much higher. An extreme example is the Finnish
population, which forms part of our database; in this population of size 399, the
most frequent profile (14− 14− 30− 11− 14− 14) occurs 100 times, while there
are only 25 copies of this profile in the rest of the European database.

Data on mutation rates for all of these loci are available from a number
of studies [Willuweit & Roewer 2007]. The total numbers of observed mutations
per locus, along with 95%-confidence intervals for the mutation rates, are shown
in Table 1.1.

Locus Father-son pairs Mutations Mutation rate (x 10−3) 95% C.I. (x 10−3)
DYS19 8944 22 2.46 1.54− 3.72

DYS389I 7148 13 1.82 0.97− 3.11
DYS389II 7135 19 2.66 1.60− 4.16

DYS390 8426 20 2.37 1.45− 3.66
DYS391 8375 25 2.98 1.93− 4.40
DYS392 8339 4 0.48 0.13− 1.23
DYS393 7128 6 0.84 0.31− 1.83

DYS385a/b 13468 30 2.23 1.50− 3.18
DYS438 3887 2 0.51 0.062− 1.86
DYS439 3864 22 5.69 3.57− 8.61

Table 1.1: Mutation rates, obtained from www.yhrd.org, visited on August 13,
2007

The estimated mutation rates range from 0.48 · 10−3 to 5.69 · 10−3, with mean
2.20 · 10−3 and median 2.30 · 10−3.



Chapter 2

Existing methods for evaluating
Y haplotype matches

In this chapter I will give an overview of all methods that are currently being
used or developed for estimating match probabilities of Y chromosome profiles.
First, I will recapitulate the situation of interest and introduce some notations.
In the analysis of a DNA sample recovered from a crime scene, a Y chromosome
trace can be detected (this is done with a so-called amelogenin test, incorporated
in standard autosomal DNA profiling). However, either no full autosomal profile
of this man – whom I will call C, since in most cases he is the culprit – can reliably
be obtained, or the information provided by the autosomal profile is not yet
conclusive. A Y-STR profile π = (π1, π2, π3, π4, π5, π6, π7) is derived as well, where
the πi are the respective numbers of repeats at the core loci DYS19, DYS389I,
DYS389II, DYS390, DYS391, DYS392, and DYS393; the twin locus DYS385a/b
is omitted for the rest of this analysis, because the haplotype surveying method
uses genetic distances between haplotypes, which are ambiguous for this locus.
Suspect s is also typed for these loci, and is discovered to have profile π as
well. This match could indicate that the crime scene sample originated from s,
but it could also have been left by someone else sharing the same profile, either
coincidentally or by common ancestry. The important question is: what is the
strength of the DNA evidence?
Before discussing the answers that the various methods provide to this question,
I will present the weight-of-evidence theory common to all methods, which can,
for instance, be found in more detail in the book by Balding [2005].

2.1 Weight-of-evidence theory: likelihood ra-

tios

Write A ≡ α if individual A has DNA profile α, A ≡ B if individuals A and
B have the same DNA profile, and denote by S the population of all possible
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suspects. Then a finder of fact needs to evaluate the probability that s is the
culprit given the evidence, i.e. P (C = s|C ≡ s ≡ π). Equivalently, because
P (C = s|C ≡ s ≡ π) +P (C 6= s|C ≡ s ≡ π) = 1, he could also evaluate the odds
against s:

P (C 6= s|C ≡ s ≡ π)

P (C = s|C ≡ s ≡ π)
=
∑
i∈S
i 6=s

P (C = i|C ≡ s ≡ π)

P (C = s|C ≡ s ≡ π)
.

Now, applying Bayes theorem, we see that for an individual i,

P (C = i|C ≡ s ≡ π)

P (C = s|C ≡ s ≡ π)
=
P (C ≡ s ≡ π|C = i)

P (C ≡ s ≡ π|C = s)

P (C = i)

P (C = s)

=
P (i ≡ s ≡ π|C = i)

P (s ≡ π|C = s)

P (C = i)

P (C = s)

We assume that a priori, the identity of the culprit doesn’t affect anyone’s prob-
ability of having profile π, so we can leave out the conditioning on C = i and
C = s:

P (i ≡ s ≡ π|C = i)

P (s ≡ π|C = s)

P (C = i)

P (C = s)
=
P (i ≡ s ≡ π)

P (s ≡ π)

P (C = i)

P (C = s)

= P (i ≡ π|s ≡ π)
P (C = i)

P (C = s)
.

We conclude that for every possible suspect i, two quantities need to be assessed:
first, the prior probability P (C = i) that i is the culprit, relative to P (C = s),
and second, the conditional probability that i has profile π, given that s has it;
both probabilities should be conditioned on all other evidence. Since the first
assessment is up to the judge, a forensic DNA expert need only consider the
second one, called the match probability. Of course, this probability depends on
the genetic relationship of i and s, since related individuals are more likely to
have matching profiles than unrelated ones. This effect is even stronger for Y-
STR profiles than for autosomal profiles.
The match probability for paternal relatives is easy to derive from the mutation
rates µi in Table 1.1: if the relatives are k steps apart in a male family tree
(e.g. k = 2 for a paternal grandfather and grandchild, or two brothers), the
probability that no mutation has taken place is

∏7
i=1(1−µi)k ≈ 0.9865k (assuming

that mutations are independent events), and since the probability of multiple
mutations canceling each other out is negligible, 0.9865k is also the probability
that the two profiles are equal.
For most members of the suspect population, there will be no known paternal
relationship to the suspect, so we cannot use mutation probabilities. Hence, a
reasonable thing to do is to estimate the frequency of haplotype π in the suspect
population, or in a bigger population from which the suspect population was
sampled. We will assume that our European database from 2004 (containing
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12727 haplotypes) can serve as this bigger population, postponing the discussion
regarding this assumption to chapter 6.
Under this assumption, we are regarding individuals i and s as independent
samples from the European population, so the information we obtain about i
from the observation of the suspect’s profile π is exactly the same as from the
observation of any of the profiles in the database, because all are independent
samples from the same population. This means that we can add the suspect’s
copy of π to the database, and use this extended database of size n = 12728 as
the basis for our estimates.
We will denote by p̂j the estimated population frequency of a profile j, and by
fj the absolute frequency of j in this extended database.

2.2 Counting method

The first method consists of simply estimating the population frequency as equal
to the observed frequency in the extended database. This amounts to the formula

p̂π =
fπ
n
.

An obvious advantage of this calculation is its simplicity, which is an advan-
tage for explaining the method in court. Also, since it is just the classical
maximum likelihood estimator (MLE) for multinomial samples, it doesn’t make
any assumptions about population genetics, and thus represents only factual
information contained in the database.
However, there is a wealth of extra information provided by this very database,
and the failure of the counting method to make use of this information can be
seen as a disadvantage. Moreover, this estimator only produces reliable results if
both the sample size and the number of observed copies of π in this database are
big enough. In the worst case, the suspect’s copy of π can be the only one in the
database. Since it is considered better to give conservative estimates (frequency
estimates that are higher than the actual values, favouring the suspect and mini-
mizing the probability that innocent people are convicted) than non-conservative
ones, we could resolve this by reporting the upper 95% confidence limit. If fπ is
indeed equal to 1, this 95% confidence limit is 3.73 · 10−4 (calculated numerically
using the binomial distribution, solving (1− p)12728 + 12728p(1− p)12727 = 0.05),
much higher than the MLE of 1

12728
≈ 7.86 · 10−5.

2.3 Haplotype surveying

L. Roewer et al. [2000] feel that this conservative 95% confidence limit dramat-
ically reduces the power of Y-STR haplotyping, and therefore propose another
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method, called haplotype surveying. They use a Bayesian approach, deriving a
prior distribution of the frequency of a haplotype from its genetic distance to
the other haplotypes in the database, and then transforming it into a posterior
distribution via the likelihoods of observing the actual number of copies in the
database under the assumed prior probabilities.
According to Roewer et al., classical population genetics theory tells us that
the prior distribution of Pi, the population frequency of profile i, should be a
β(ui, vi)-distribution with density function

φi(p) =
Γ(ui + vi)

Γ(ui) · Γ(vi)
pui−1(1− p)vi−1,

where ui and vi are profile-specific parameters.
Instead of ui and vi, the mean µi and standard deviation σi of the prior distribu-
tion are estimated. Since

µi =
ui

ui + vi
and σ2

i =
uivi

(ui + vi)2(ui + vi + 1)
,

ui and vi can be derived from µi and σi:

ui =
µ2
i (1− µi)
σ2
i

− µi and vi = ui
1− µi
µi

.

In order to estimate µi and σi, the authors suggest that both parameters depend
on the genetic distance of profile i to all the other profiles, more precisely on the
weighted inverse molecular distance

Wi =
1

n

∑
j 6=i

fj
dij
,

where dij is the minimum number of mutation steps separating profiles i and j,
in this case adopting the single-step model. So µi = µ(Wi) and σi = σ(Wi). Each
value of Wi thus determines µi and σi of the prior distribution.
To estimate these, all European haplotypes in the database are divided into 15
equally sized groups, according to W -value. Each set of observed frequencies
corresponding to one of these groups is then treated as a sample from a single
β-distribution, the parameters µ and σ of which are estimated by the sample
mean and standard deviation. These values are taken as estimates for µ(W̄ ) and
σ(W̄ ), where W̄ is the average value of W for this group.
To the set of fifteen triples (W̄ , µ, σ) that arises from this process, ’exponential’
regression is applied to obtain the two functions µ(W ) and σ(W ):2

µ(W ) = 1.11 · 10−4 + e41.20W−11.30

2These formulas are based on a version of the YHRD database from September 1999,
comprising 2439 haplotypes; the latest formulas for the Western European population are
µ(W ) = e36.3543W−13.7255 and σ(W ) = e35.1207W−14.0974.
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σ(W ) = 2.37 · 10−4 + e30.86W−9.22

The likelihood of observing fi copies of a haplotype i in a database of n indi-
viduals, as a function of the prior frequency Pi, is a binomial probability given
by

P (fi|Pi) =

(
n

fi

)
P fi
i (1− Pi)n−fi ,

so the posterior distribution of fi has density function

φ′i(p) =
P (fi|p)φi(p)∫ 1

0
P (fi|q)φi(q)dq

,

which is a β(ui + fi, vi + n− fi)-distribution.

In the original article [Roewer et al. 2000], the formulas were slightly dif-
ferent than presented here, due to the fact that at first, the authors only
considered haplotypes already present in the database, and thus removed one
copy of each haplotype because the first observation only ’indicated its existence’.
M. Krawczak corrects this mistake in a comment [Krawczak 2001] and also
explains the need for the addition of one copy of the suspect’s profile π to form
the extended database in forensic casework, as discussed before.
The haplotype surveying method produces a posterior frequency distribution,
instead of a point estimate. If one would like to have such an estimate, the
mean of this distribution, equal to ui+fi

ui+vi+n
, is the most logical choice. There are,

however, other possible choices, like the mode (Krawczak suggests this, but his
argument seems to miss its point3) or a 95% credibility interval; one could even
provide a graph of the posterior distribution.

2.4 The mismatch distribution

Luisa Pereira et al. [2000] have suggested that calculating a haplotype’s frequency
is not enough to estimate a match probability, because according to them, this
procedure is based on the ’dichotomy equal/not-equal’, whereas both categories
are heterogeneous: ’equal’ could mean that two haplotypes are either identical
by descent (both having descended from the same ancestor without experiencing

3Krawczak draws an analogy with a coin that is taken at random from a set of three coins,
two of which always show heads and one of which always shows tails. The coin in our hands
can be any of these three, so the probability of one toss showing heads is 2

3 . However, when
asked for the outcome of ten tosses, Krawczak reasons that the most sensible guess is ’10 times
heads’. If one wants to maximize the probability of giving the right answer, this is indeed the
most sensible guess, but in terms of minimum squared error, ’6 2

3 times heads’ is better. The
number of tosses is irrelevant for this argument; it simply comes down to a choice between
the mean and the mode, and the coin example does not help us to make that choice for the
posterior frequency distribution described above.
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any mutation) or just identical by state, which means that they have experienced
mutations, but ended up equal after all. A frequency estimate only produces the
sum of these two probabilities and is thus misleading.
However, it is this suggestion that is misleading, since the distinction between
identity by descent or by state is not at all relevant to our problem. According to
the formula derived in the weight-of-evidence section 2.1, we should try to esti-
mate the probability of one individual having haplotype π, conditional on another
individual having it. For this equality, it does not matter if their haplotypes are
identical by descent or by state, since from the evidence we can never tell which
is the case.
The authors conclude their article by warning us not to calculate frequency es-
timates without taking their ’mismatch distribution’ into account, but they fail
to specify how this distribution should affect our estimate. We therefore will not
investigate this paper any further.

2.5 Charles Brenner’s suggestion for dealing

with rare haplotypes

Charles Brenner has suggested another method of calculating match probabilities
for singletons, haplotypes that occur only once in a database. The suspect’s
haplotype π can be such a singleton, if it was absent from the original database.
Brenner considers the fraction κ of singletons in the extended database, including
π. Referring to an article by H. Robbins [1968], he reasons that the probability
that the next individual sampled will have a new profile (that is, a profile that did
not yet occur in the database), can be estimated by κ. He uses this information
to calculate the match probability for an individual i unrelated to the suspect s
in the following way.
Denote by A the event that the profile of i is already in the extended database,
and by B the event that it is equal to π. Then according to Robbins, P (A) = 1−κ;
and as there are n profiles in the database, P (B|A) = 1

n
. Therefore

P (B) = P (B|A) · P (A) =
1

n
· (1− κ) =

1− κ
n

Brenner uses the American database presented by Budowle et al. [2005] and
finds that for this database, κ = 0.9, so the match probability for an unobserved
profile would be 1

10n
. In our much bigger European database of size n = 12728,

there are 1396 – 1398 singletons (depending on the number of copies of π in the
original database), so κ ≈ 0.11 and if π is a singleton, then the match probability
is 1−0.11

12728
≈ 6.99 · 10−5.

However, as Brenner himself points out, if we extend this argument to all haplo-
types present in the database, there seems to be something wrong; I will discuss
this in more detail in the next chapter.



Chapter 3

Comments

In this chapter I will discuss the validity of the two most promising methods, the
haplotype surveying method and Brenner’s modification of the counting method,
as well as their advantages and disadvantages. The idea behind the latter method
will serve as a basis for the high-profile method, a new approach presented in
chapter 4.

3.1 Haplotype surveying

The haplotype surveying method is a Bayesian one, i.e, it starts with a prior
distribution of a profile’s frequency, and then updates it with information ob-
tained from a sample. Both stages need to be executed correctly in order for the
posterior distribution to be correct. First, let’s discuss the prior distribution.

The effect of the prior distribution

A question one could ask first is whether the exact form of the prior is really
that important: often the data is so overwhelming that the prior distribution
is ”swamped” by it. When the likelihood of the data under the assumption of
one frequency is a thousand times bigger than under the other, the former will
have a much larger probability in the posterior distribution, unless the prior
substantially favours the latter. Such informative priors effectively rule out
certain values of the population frequency, so we should have great confidence in
our prior beliefs if we wish to use them.
The prior distribution Roewer et al. [2000] use is β(u, v), where u and v
depend on W , the mean inverted distance to the other profiles. For the
two extreme W -values discernible in Figure 3 of their article, W = 0.02 and
W = 0.14, (u, v) equals (0.109, 785.7) and (0.275, 67.3), corresponding to
(µ, σ) = (1.39 · 10−4, 4.21 · 10−4) and (4.07 · 10−3, 7.69 · 10−3) respectively; in com-
parison, a uniform distribution corresponds to (u, v) = (1, 1). Transformation
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Figure 3.1: Illustration of the possible influence of the prior distribution on the poste-
rior distribution. The three posterior functions on the left correspond to a haplotype
with one copy in the database, the three distributions on the right to one with 300
copies.

from the prior to the posterior distribution simply consists of adding to u and v
the observed counts of the profile of interest and of all other profiles combined.
To illustrate the effect the choice of the prior may have, let’s draw graphs of
the posterior distributions corresponding to these three priors, both for a profile
occurring only once in a database of 12728, and for a profile occurring 300 times.

The blue vertical line indicates the position of the mean of the posterior
distribution, the red line the position of the 95%-quantile. As is illustrated by
these plots, the choice of the prior has little effect on the common profile (the
posterior mean ranging from 0.0222 for W = 0.02 to 0.0236 for a uniform prior),
but this is not the case for the rare profile: here, the posterior mean almost
doubles, from 8.21 · 10−5 (or 1 in 12, 200) for W = 0.02 to 1.57 · 10−4 (1 in
6, 400) for the uniform prior. We conclude that, certainly for rare profiles, it is
worthwhile to have a close look at the prior distribution.



3.1 Haplotype surveying 15

The choice of the prior distribution

First of all, the choice of the beta distribution is not so obvious. The real station-
ary distribution of any finite population model, after all, should be discrete, since
allele frequencies must be multiples of 1

N
, where N is the male population size.

However, this discrete distribution is already hard to compute for relatively small
populations, let alone for large populations like the European or Dutch ones. S.G.
Wright has developed a formula for a continuous approximation [Wright 1937],
which comes very close when certain conditions are satisfied. This formula, based
on the diffusion method, is

Φ(x) =
C

Vδx
e

2
∫ Mδx
Vδx

dx

where Φ(x) is the stationary distribution of the allele frequency, and Mδx and Vδx
are the mean and variance, respectively, of the change in allele frequency when
going to the next generation, depending on the current allele frequency x. Mδx

depends on the mutation model, whereas the variance is due to drift only, and
is given by (x + Mδx)(1 − x − Mδx)/Ne [Wright 1937]. The latter expression,
since Mδx is in general very small with respect to x, is approximately equal to
x(1 − x)/Ne, where Ne denotes the effective population size, i.e. the size of
a theoretic random-mating population with the same sampling variance as the
population of interest.
The hard part of Wright’s formula is the calculation of Mδx. If S denotes the set
of all alleles, A the allele we want to know the stationary frequency distribution
of, Fi the frequency of allele i, and pij the probability of an i allele becoming,
through mutation, a j allele in one generation (define pii = 1−

∑
j∈S pij), we can

write
Mδx =

∑
i∈S

E[Fi|FA = x] · piA − x

To calculate E[Fi|FA = x], one would typically need the (unknown) stationary
distribution of the state of the entire population, but for certain simple models
we can do without it. I will consider two models.
1. One of the simplest mutation models one could think of consists of two alleles
A and B, and mutation probabilities pAB = u and pBA = v. If the frequency of
allele A is x, then the frequency of the other allele must be 1−x; in other words,
E[FB|FA = x] = 1− x, so Mδx = x · (1− u) + (1− x) · v− x = −u · x+ v · (1− x).



3.1 Haplotype surveying 16

Wright’s equation then yields

Φ(x) =
C

Vδx
e

2
∫ Mδx
Vδx

dx

=
NeC

x(1− x)
e2

∫ Ne(−u·x+v·(1−x))
x(1−x)

dx

=
NeC

x(1− x)
e2

∫
(−Neu

1−x +Nev
x

)dx

=
NeC

x(1− x)
e2(Neu log(1−x)+Nev log x)

=
NeC

x(1− x)
(1− x)2Neux2Nev

= NeC(1− x)2Neu−1x2Nev−1.

Since Φ(x) is a probability density function, we should have
∫ x=1

x=0
Φ(x)dx = 1, so

C = Γ(2Ne(u+v))
Ne(Γ(2Neu)(Γ(2Nev)

.

Φ(x) then becomes a β(2Nev, 2Neu)-function:

Φ(x) =
Γ(2Ne(u+ v))

Γ(2Neu)Γ(2Nev)
(1− x)2Neu−1x2Nev−1.

Hence, for two alleles, a beta distribution seems plausible, provided that the
population has reached equilibrium.

2. For a one-dimensional infinite alleles stepwise mutation model, Kimura
and Ohta [1978] have found an approximation to Mδx:

Mδx ≈ −vx+
v

2
(1− x)(b0 + b1x),

where v
2

is the mutation rate from each allele to one of its neighbouring alleles,
and b0, b1 are constants that depend on Nev. Inserting this approximation into
Wright’s formula yields

Φ(x) = CeNevb1x(1− x)2Nev−1xNevb0−1,

which for small b1 is close to a β(Nevb0, 2Nev)-distribution. Kimura and Ohta
show that for Nev = 0.05, (b0, b1) = (0.9314, 0.0472), while for Nev = 0.5,
(b0, b1) = (0.6040, 0.3177). In general, the smaller Nev is, the fewer different
alleles one would expect in a population (because either there are less people, or
drift dominates mutation), and the more the stationary distribution will look like
the beta distribution from the two alleles model. As we saw in the introduction,
STR mutation rates are typically high, so even for relatively small populations,
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one should not use the beta distribution without checking whether it is a good
approximation.

Now we should try to derive Mδx for the more complex multi-dimensional
stepwise mutation model; it would be nice if the resulting stationary distri-
bution would still look like a beta function, because that would validate the
haplotype surveyors’ assumptions. I have tried to derive this generalization, but
unfortunately, it turned out to become too complex for an analytical treatment.
Hence, the assertion of Roewer et al. [2000] that the choice of a beta prior is
”standard population genetic theory” is overoptimistic. In fact, it is an unproven
assumption.
For calculation purposes, it is a convenient assumption, since the class of beta
distributions is conjugate to the class of binomial likelihood functions, i.e., if
the prior function is beta, and the likelihood function is binomial, the posterior
function will be beta too.

The formula for the weighted inverse distance

Apart from the choice of a beta prior distribution, there are some other strange
aspects of the haplotype surveying method. For instance, according to the original
article, the formula for the weighted inverse distance is

Wi =
1

N

∑
j 6=i

Nj

dij
.

In a weighted average formula, the total weight should always be 1, but this
is not the case here, since

∑
j 6=i

Nj
N

= N−Ni
N

. Of course, we saw that the prior
distribution only has a strong influence on the estimates of rare profiles, for
which the difference between N − Ni and N is small. Still, the correct formula,
Wi = 1

N−Ni

∑
j 6=i

Nj
dij

should be used. According to private correspondence with

M. Krawczak, this mistake has been corrected now in the calculations on the
YHRD website [Willuweit & Roewer 2007].
A more fundamental issue is that the inverse genetic distance of two profiles
is used as a measure of the correlation between the frequencies of the profiles;
according to this measure, our prior belief in the existence of a profile A is as much
influenced by finding one copy of one of A’s direct neighbours as it is by finding
four copies of a profile at distance 4 from A, or by finding 16 copies of a profile at
distance 16. In any stepwise mutation model where mutations are equally likely in
all directions, correlation between profile frequencies in the stationary distribution
of a population decreases rapidly as a function of the distance between the profiles.
The 16 profiles at distance 16 from A tell us almost nothing about the frequency
of profile A, and should therefore have negligible effect on the calculation of W .
It may be enough to consider only the direct neighbours of A, having a genetic
distance of 1.
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Estimating the parameters of the beta prior distribution

The final step in the development of the prior frequency distribution is the calcu-
lation of the parameters u and v, through the related parameters µ and σ of the
beta distribution. They are both found by regression on W , grouping data points
together to obtain average values of µ and σ for the respective W -intervals. If,
however, one chooses to use group averages of data instead of single data points,
one should be cautious about the outcome. If standard regression is performed,
the resulting estimates for µ and σ will be biased.
To illustrate this, consider one of the groups, consisting of m profiles, numbered
1 through m. Each profile i gives us a value wi for W and a value fi for the
observed frequency in the database. Now according to the regression model, fi
is a realization of a random variable Fwi with expected value EFwi = µwi and
variance V ar(Fwi) = σ2

wi
. Roewer et al. use the pairs (wi, fi) to generate two

pairs (w̄, µ̂w̄) and (w̄, σ̂2
w̄), where w̄ = 1

m

∑m
i=1 wi, and µ̂w̄ = f̄ = 1

m

∑m
i=1 fi and

σ̂2
w̄ = 1

m−1

∑m
i=1(fi − f̄)2 are considered to be close to the real values µw̄ and σ2

w̄.
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Let’s compute the expected values of µ̂w̄ and σ̂2
w̄:

Eµ̂w̄ = E[
1

m

m∑
i=1

Fwi ]

=
1

m

m∑
i=1

EFwi

=
1

m

m∑
i=1

µwi ;

Eσ̂2
w̄ = E[

1

m− 1

m∑
i=1

(Fwi − F̄ )2]

= E[
1

m− 1

m∑
i=1

(F 2
wi
− F̄ 2)]

=
1

m− 1

m∑
i=1

(E[F 2
wi

]− E[F̄ 2])

=
1

m− 1

m∑
i=1

(E[F 2
wi

]− (EFwi)
2 − (E[F̄ 2]− (EF̄ )2))

+
1

m− 1

m∑
i=1

((EFwi)
2 − (EF̄ )2)

=
1

m− 1

m∑
i=1

(V arFwi − V arF̄ ) +
1

m− 1

m∑
i=1

(µ2
wi
− (

1

m

m∑
i=1

µwi)
2)

=
1

m

m∑
i=1

σ2
wi

+
1

m− 1

m∑
i=1

(µ2
wi
− (

1

m

m∑
i=1

µwi)
2).

The second term in the last equation is the dispersion of the values of µ(W ) for
the haplotypes in the group.
We see that if µ(W ) and σ2(W ) are convex functions of W , which is suggested by
the data, µ̂w̄ and σ̂2

w̄ are positively biased because of Jensen’s inequality; the effect
is even stronger in σ̂2

w̄ due to the extra term involving the dispersion of µ(W ).
The biases can be avoided by simply using the single data points in the regression,
first performing the regression of µ on W , then calculating the squared deviations
of all data points from the resulting function µ(W ) and regressing those values
on W to find σ2(W ).
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The validation of the haplotype surveying assumptions

In their original article, the haplotype surveyors provide us with a validation
for their method: they find that the expected number of profiles with a
certain frequency, calculated from all prior distributions, is always close to the
actual number of profiles with that frequency in the database. However, this
resemblance is not as striking as it looks at first sight, since the histogram in
which these numbers are represented uses a logarithmic scale. Thus we see that
the number of profiles which occur twice (once, after subtraction of one copy of
each profile) deviates some 40% from its expected value. Still, the figures seem
remarkable. There is, however, good reason to be skeptic about this method of
validation.
The expected numbers are calculated from the prior frequency distributions
of all profiles. The means of these prior distributions, in turn, have been
obtained from a regression function µ(W ) which uses the database frequencies
as y-coordinates for its data points. Regardless of the W -values associated with
these data points, the set of µ-values of the prior distributions will therefore
resemble the set of database frequencies of all profiles. Automatically, the
expected number of singletons, for instance, according to these prior functions
will also be close to the number of singletons in the database. Large deviations
from the expected frequency could occur for individual profiles, but since
the histogram only represents gross figures, this possible evidence against the
haplotype surveying method is left out. While the number of singletons is what
it was predicted to be, there is no way of telling whether these rare profiles also
had small prior functions. The claim that W is a predictor for the frequency
of a profile can therefore not be tested convincingly with a histogram of this kind.

The objections to the haplotype surveying method from the last few pages should
make us cautious to use it in the present form. However, even after applying the
advised corrections, we still have to consider one important issue. When using
a beta distribution, or any other prior distribution resulting from a population
model, we implicitly assume that our population has been around long enough
to have reached equilibrium as a Markov chain. A population that is not yet in
equilibrium will exhibit founder effects: clusters of similar profiles will show up,
originating from a small number of individuals. In such a population, there will
be strong correlations between frequencies of neighbouring profiles, since the
founder’s profiles have only had the time for one or two mutations, resulting in
a dense cloud of profiles, clustered around the original profile.
This explanation for the dependence of µ on W is much more plausible than the
equilibrium one in our situation, since the history of Europe shows continuous
migration at a large scale, which introduces new profiles to the population all
the time and may outweigh the effects of mutation and drift. Also, because there
is evidence that the size of the population varied to a large extent in the past,
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the people who lived when it was small for the last time (the last population
bottleneck) are likely to have caused a founder effect.

3.2 Brenner’s method

Unlike the haplotype surveying method, the counting method does not make use
of genetic information, like distances between profiles, or of any mutation model.
Instead, it only looks at the frequencies of the profiles in the database to estimate
the corresponding population frequencies. Thus, the problem reduces to that of
estimating probabilities from a sample of n coloured marbles drawn from an urn,
with replacement (actually, without replacement, but the population size is so
big that this doesn’t matter).
The maximum likelihood estimator for the probability of a specific colour is the
one used in the counting method, equaling the sample frequency. However, this
estimator performs poorly when the sample size is small compared to the number
of colours, which is true in our case. All estimated frequencies are multiples of
1
n
, so it is impossible to obtain an accurate estimate for a profile with a true

population frequency significantly less than this number.
Also, the maximum likelihood estimator distributes all probability mass over the
observed profiles. Since there are bound to be some profiles that do exist in
the population, but do not occur in the database, the MLE effectively denies
their existence and consequently overestimates, on average, the frequencies of
the observed profiles.
To adjust for this effect, we need an estimate for the total probability of the
unseen profiles. Brenner’s κ, based on Robbins’s article [Robbins 1968], is in fact
an unbiased estimator for this probability. The main problem, however, is how
to distribute the remaining probability mass of 1− κ over the observed profiles.
One option is to do this proportionately to the database counts, like Brenner does.
This leads to estimates (1−κ)fi

n
for profiles with database frequencies fi. Assuming

that these adjusted estimates are close to the real population frequencies, we draw
a remarkable conclusion: all profiles that have been observed, including the most
common ones, have been observed 1

1−κ times as often as one would expect in a
representative sample! This feature is inherent in the method, and it leads to
nonconservative estimates for common profiles.
One could wonder if the same objection applies to rare profiles, since it is also
very unlikely that a large number of profiles with true frequency 1−κ

n
are all

observed once, still 1
1−κ times as often as expected. However, there is an essential

difference here, since the observed singletons are probably part of a larger group
of low-frequency profiles, the others just having been missed in the sample. If the
population consisted of six billion unique profiles, most multinomial samples of
length 12728 would contain only singletons, and it would be correct to estimate
the population frequencies a lot smaller than the sample frequency of 1

12728
.



3.2 Brenner’s method 22

A second way of distributing the 1 − κ probability over the database profiles is
the one proposed by Good [1953]. In the same way that the number of singletons
is used to estimate the total probability of the unseen profiles, he uses the total
frequency of the doubletons in the database to estimate the population frequencies
of the singletons. If we denote by nt the number of profiles observed t times,
Good’s method would estimate the frequency of each singleton at 2n2

n1n
, which

for the European database, depending on the database frequency of the suspect’s
profile π, approximately comes down down to 2·379

1397·12728
≈ 0.543· 1

12727
≈ 4.26·10−5.

In the same way, the frequency of a profile occurring t times is estimated at
(t+1)ni+1

ntn
, so that each profile’s estimate is derived from the profiles occurring

exactly once more.
This procedure ensures that all estimates nicely add up to one, but realistic results
are only obtained for low-frequency profiles, where there are a lot of profiles
sharing the same frequency in the database. For common profiles, we could
encounter division by zero, and moreover, it seems absurd to use one profile’s
count to estimate another profile’s frequency. Good himself signals this flaw and
suggests solving it by smoothing the database frequencies in some way, so that
irregularities in the data are flattened. He does not specify how this smoothing
should be conducted, and no one has found a satisfactory solution for this problem
yet.
These problems are big enough for us to discard Good’s method for the moment,
and to try to improve on Brenner’s method. As said before, we would like to
distribute the 1− κ probability in such a way that the common profiles roughly
receive their maximum likelihood probability (i.e. the database frequency), while
the rare profiles get less, all estimates still adding up to 1.
There may be a canonical way to do this, suggested by Alan Orlitsky et al. [2004].
Consider a sample consisting of three balls, of which two have colour A and one
has colour B. Instead of the probability of drawing two As and one B, we could
calculate, for every probability distribution over the colours, the probability of
drawing two identical colours and one different from these, regardless which colour
was drawn twice. If we only allow two colours with positive probability, it turns
out that observing exactly two identical balls in a sample of three is more likely
under a (1

2
, 1

2
)-probability distribution than under a (2

3
, 1

3
)-distribution, although

the latter is the maximum likelihood distribution for the specific observation of
two As and one B.
This approach, in a more rigorous form, is the subject of the next chapter.



Chapter 4

The high-profile distribution

At the end of the previous chapter, we hinted at a new method of estimating hap-
lotype frequencies based on a small sample relative to the total number of distinct
haplotypes, taking into consideration that there probably are many haplotypes
that have been missed in the sample. In this chapter, we will follow Orlitsky et al.
[2004a] in developing this method in more detail and in providing an algorithm
to calculate these improved estimates. First, we need some definitions.
Consider a sequence x̄ of haplotypes, coded by letters from an alphabet A, e.g.
x̄ = ā = cadcegcacfgbe (this should not be confused with a DNA sequence, where
every letter stands for a nucleotide; in this sequence ā, each letter represents an
entire Y-STR profile, for instance c = 14 − 13 − 29 − 24 − 11 − 13 − 13. Think
of a sequence x̄ as a database of Y-STR profiles). The pattern Ψ(x̄) of x̄ is the
sequence obtained by replacing every symbol of x̄ by the order of its first appear-
ance (for example, the sequence ā contains 7 distinct symbols. b is the last one of
these to appear, so we replace b by 7.). In this way, Ψ(ā) = ψ̄ = 1231451216574.
The length of the pattern ψ̄ is denoted by l(ψ̄) (= 13).
Obviously, there are several sequences inducing this pattern ψ̄, and it makes sense
to define the overlying set Xψ̄ = Ψ−1(ψ̄) = {x̄ ∈ Al(ψ) : Ψ(x̄) = ψ̄}. If m = mψ̄

denotes the highest number appearing in ψ̄, the cardinality of Xψ̄ is (#A)!
(#A−m)!

, since

for each number in ψ̄ we can choose any letter from A, but we cannot choose the
same letter twice (for the first number, there are #A choices, for the second one
#A− 1, and so on).
In the DNA context, the sequence x̄ of haplotypes is a realization of a random vari-
able X̄, which is a concatenation of random variables X1, X2, . . . , Xm, which are
independently and identically distributed according to a certain distribution P .
Each sequence thus has an associated probability P (X̄ = x̄) =

∏m
i=1 P (Xi = xi).

The probability P (ψ̄) of a particular pattern is the sum of the probabilities of all
sequences with this pattern. If before drawing the marbles we do not know the
possible colours or their number, Orlitsky et al. [2004a] suggest that we should
find the distribution P̂ which maximizes this pattern probability, called the high-
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profile distribution.
Since changing the order of the symbols constituting a sequence or permuting the
symbols does not alter the pattern probability, we will assume, from now on, that
each pattern arises in canonical form, i.e. that it looks like 1f12f2 . . .mfm , satis-
fying f1 ≥ f2 ≥ · · · ≥ fm. We can abbreviate such a pattern to (f1, f2, . . . , fm),
where fi is understood as indicating the number of occurrences of symbol i. Our
sequence ā, for instance, is coded by (4, 2, 2, 2, 1, 1, 1).
Following the same line of thought, we will also denote all discrete probability
distributions with finite support as vectors; (p1, p2, p3), for example, will denote a
probability distribution over three colours with probabilities p1, p2, and p3. The
specific colours associated with these three probabilities are irrelevant, since we
are only looking at patterns.
Let’s consider the pattern (2, 1). The classical maximum likelihood estimator
for the underlying distribution is (p1, p2) = (2

3
, 1

3
), because this maximizes the

probability p2
1p2 of the sequence aab. The pattern probability of (2, 1), however,

equals P (aab) + P (bba) = 2
3
· 2

3
· 1

3
+ 1

3
· 1

3
· 2

3
= 2

9
. If we assume that there are

only two colours, with probabilities p and 1− p, to maximize this pattern proba-
bility we have to maximize p2(1− p) + (1− p)2p. The solution is p = 1

2
(yielding

P̂ (2, 1) = 1
4
), leading to the conclusion that the observed pattern is most likely

under the assumption that the two colours have equal probability of being drawn.
This corresponds to our intuition that all probabilities should be presumed equal
if there is no evidence to the contrary. Samples of size three can never produce
equal numbers of observations for two colours, so in some sense this is unfair
towards the hypothesis of equal probabilities. Our method of calculation deals
with this unfairness elegantly.
In order to prove that the (1

2
, 1

2
)-distribution is optimal amongst all probability

distributions, including those over more than two colours, suppose that there is
a distribution P = (p1, p2, . . . , pn−1, pn) such that P (2, 1) > 1

4
; without loss of

generality, assume that p1 ≥ p2 ≥ · · · ≥ pn. Let Q be the distribution over n− 1
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symbols satisfying qi = pi for i < n− 1 and qn−1 = pn−1 + pn. Then

Q(2, 1) =
∑
i

∑
j,j 6=i

q2
i qj

=
∑
i<n−1

∑
j<n−1,j 6=i

p2
i pj + (

∑
i<n−1

p2
i )(pn−1 + pn) + (pn−1 + pn)2

∑
j<n−1

pj

=
∑
i<n−1

∑
j<n−1,j 6=i

p2
i pj + (

∑
i<n−1

p2
i )(pn−1 + pn) + (p2

n−1 + p2
n)
∑
j<n−1

pj

+ 2pn−1pn
∑
j<n−1

pj + p2
n−1pn + p2

npn−1 − p2
n−1pn − p2

npn−1

= P (2, 1) + pn−1pn(2
∑
j<n−1

pj − pn−1 − pn)

= P (2, 1) + pn−1pn(2− 3(pn−1 + pn)).

Since pn−1 and pn were the two lowest probabilities of distribution P , we must
have pn−1 + pn ≤ 2

3
, so Q(2, 1) ≥ P (2, 1). We can continue grouping the two

lowest-probability colours together in this way until there are only two colours left,
in each step increasing the pattern probability of (2, 1), so the optimal distribution
must contain two colours. Since we saw that (1

2
, 1

2
) is the optimal two-coloured

distribution, we conclude that it is optimal overall.
In this example, the number of colours in the high-profile distribution was the
same as in the sample. However, this does not hold for every pattern; in general,
for fixed pattern size, the greater the number of colours in a pattern is, the
more unobserved colours will be assumed by the high-profile distribution. For
instance, patterns consisting of all ones, for which every colour is unique in the
sample, are most likely for distributions over a large number of colours. The
optimal probability distribution would be a uniform distribution over an infinite
number of colours, or, if the number of colours is bounded (in our context by the
population size), over the maximum number of colours. There is also a category of
patterns for which the number of colours in the high-profile distribution is finite,
yet strictly greater than the number of colours in the pattern. The smallest
example of the latter category is the pattern (2, 1, 1) of three colours, with high-
profile distribution (1

5
, 1

5
, 1

5
, 1

5
, 1

5
) [Orlitsky et al. 2004a].

Orlitsky et al. also allow distributions P with a continuous part: if a number from
this region is drawn (the probability of this event is called the continuous size
and is denoted by qP , while the number of colours kP with a discrete probability
is called the discrete size), it is always unique in the sequence. For patterns
containing a lot of ones, the high-profile distribution can be one with a continuous
part. However, since we are estimating population frequencies of haplotypes, we
will limit ourselves to discrete distributions (the algorithm designed by Orlitsky
et al. [2004b] does the same). Properties 2 and 3 from the next section support
this choice.
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4.1 Properties

Before discussing how to compute the high-profile distribution for the European
Y-STR data, I would like to list a few properties of this distribution, borrowed
from Orlitsky’s article [Orlitsky et al. 2004a]. Outlines of proofs of these
properties can be found in the same article.
Trivial patterns are () (the empty pattern) and (1), the pattern consisting of
just one symbol.

Property 1. For all patterns ψ̄, there exists a distribution P (possibly
with a continuous part) achieving P̂ (ψ̄).

This property ensures that the high-profile distribution exists for every
pattern. It is not known if this distribution is unique, although for all patterns
considered in the article, it is.

Property 2. For all non-trivial patterns, the continuous size q̂ satisfies
q̂ ≤ n1

n
, where n1, as in chapter 2, is the number of singletons in the pattern, and

n is the length of the pattern.

Property 3. The discrete size k̂ of any high-profile distribution is finite.

The upper bound on the continuous size is convenient, since this tells us
that if we restrict the parameter space to discrete distributions with bounded
size, the result will probably be close to the actual maximum. Any deviation
will result in conservative estimates for observed profiles, since the optimal
distribution within the space of finite, discrete distributions will always have
smaller support than the optimal distribution overall.

For the last property, let P ᾱ = (α1, α2, . . . , αm) be a distribution over
{1, 2, . . . ,m} such that

∑m
i=1 αi = 1. Consider, for each integer n, the sequence

in which symbol i appears αin times (assume that all αin are integers for
simplicity), and let φnᾱ denote the corresponding profile. Then the following
property holds.

Property 4. As n tends to infinity, P̂φnᾱ → P ᾱ, in terms of both the K-L

divergence D(P ᾱ||P̂φnᾱ) and the L1 distance ||P ᾱ − P̂φnᾱ||1.

Since the classical maximum likelihood estimate is equal to P ᾱ, this shows that
these two estimators converge as n tends to infinity. And since it is clear from
the outline of the proof of this property that, for fixed m, the convergence is
uniform for all choices of the αi [Orlitsky et al. 2004a], it can be shown that
the high-profile estimator converges in probability to the underlying probability
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distribution.

4.2 Computation

Finding the high-profile distribution can be very difficult, especially for large
patterns. The space of all probability distributions over k colours is (k − 1)-
dimensional, and on top of that, for each of those distributions, the pattern
probability is the sum of k!

(k−m)!
sequence probabilities; since calculation time of

a sequence probability is roughly linear in the sequence length, it is clear that for
larger patterns, it soon becomes impossible to search the entire space of possible
probability distributions. Instead, Orlitsky et al. [2004b] propose an expectation
maximization algorithm to approximate the high-profile distribution.
Expectation maximization, in general, is a useful technique in missing data prob-
lems where a certain parameter θ ∈ Θ needs to be estimated. It is an iterative
algorithm and thus takes a starting value θ0 and produces a sequence of approx-
imations (θ0, θ1, θ2, . . . ), in each step increasing the likelihood of the observed
data. If we denote by y and z the observed and missing data, respectively, then
an iteration of the algorithm, calculating θt+1 from θt, consists of computing,
for each θ ∈ Θ, the likelihood of the complete data (observed and missing data
combined) as a function fθ(z) of the missing data z. After that, it calculates the
expected value of this function fθ(z) under the old distribution for z, with param-
eter θt. The value of θ for which this expected value is maximized is then taken
as the next approximation θt+1. This procedure is summarized by the following
formula:

θt+1 = arg max
θ∈Θ

Eθt [Pθ(y, z)]

It can be shown that this step does indeed not decrease the likelihood of the
observed data y.
To use this algorithm to approximate the high-profile distribution, we view the
pattern ψ̄ as the observed data and the exact sequence X̄ as the missing data. The
parameter θ, or rather P in this case, is the underlying probability distribution of
the data. Instead of the likelihood of the complete data, we use the expected value
of the loglikelihood, since this leads to easier formulas and takes its maximum in
the same point. The above formula can now be rewritten as

Pt+1 = arg max
Q∈P

EPt [logQ(X̄)],

since Q(X̄, ψ̄) = Q(X̄).
If P is the space of probability distributions over k colours, and fi(x̄) is the
number of times symbol i appears in sequence x̄, the expectation can be expanded
to

EPt [logQ(X̄)] =
k∑
i=1

ci logQ(i),
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where ci =
∑

x̄∈Xψ̄
fi(x̄)Pt(X̄ = x̄). This equation takes the same form as the

loglikelihood of a multinomial sample, so the expectation is maximized if the Q(i)
are equal to the coefficients ci, scaled so that they sum to 1. Each iteration has
now been reduced to calculating the values of the ci, but since this involves a
summation over all sequences with the prescribed pattern, it can still be expo-
nential in the length of the pattern. We therefore follow the advice of Orlitsky
et al. and use the Metropolis algorithm to calculate these values.
This algorithm, originally designed for calculating properties of large systems of
interacting molecules, can also be used to compute expected values for discrete
random variables with large supports. For such a random variable X, it views
the elements of its support as states in a Markov chain, and defines the transition
probabilities in such a way that the stationary distribution of the chain equals
the original distribution of X. The expected value of any function f of X can
then be approximated by simulating a random walk in the system and averaging
the value of f(a) over all states a visited in the walk. The transition probabilities
from state A are defined in the following way:
First, a candidate B for the next state is selected according to a certain dis-
tribution PA. Next, a number u is drawn from a U(0, 1)-distribution, and the

transition from A to B is accepted if u < g(A,B) := P (X=B)·PB(A)
P (X=A)·PA(B)

; if not, the
transition is denied and the next state is again A. If the distributions PA are
chosen in such a way that the Markov chain is irreducible and aperiodic, it con-
verges to a unique stationary distribution. This distribution must be equal to
P , the distribution of X, since P satisfies the conditions for stationarity for each
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state A:∑
i

P (X = i) · piA

=
∑
i

P (X = i) · Pi(A) ·min{P (X = A) · PA(i)

P (X = i) · Pi(A)
, 1}

+ P (X = A)
∑
i

PA(i) · (1−min{ P (X = i) · Pi(A)

P (X = A) · PA(i)
, 1})

=
∑
i

(
P (X = i) · Pi(A) ·min{P (X = A) · PA(i)

P (X = i) · Pi(A)
, 1}

+ P (X = A) · PA(i) · (1−min{ P (X = i) · Pi(A)

P (X = A) · PA(i)
, 1})

)
=

∑
i,g(i,A)<1

P (X = A) · PA(i)

+
∑

i,g(i,A)≥1

(
P (X = i) · Pi(A) + P (X = A) · PA(i) · (1− P (X = i) · Pi(A)

P (X = A) · PA(i)

)
=
∑
i

P (X = A) · PA(i)

= P (X = A)
∑
i

PA(i)

= P (X = A)

As we saw on the previous page, calculation of the coefficients ci, which
correspond to the solution of an iteration in our expectation-maximization
algorithm, amounts to averaging the frequency of symbol i over all sequences
in Xψ̄, weighted by the probabilities of drawing those sequences in a random
sample of length n from a distribution Pn.
As the states of the Metropolis algorithm, we choose the elements of Xψ̄,
represented by vectors (a1, a2, . . . , am), where ai is the symbol assigned to the
ith component of the canonical representation of ψ̄, thus occurring ni times in
that particular sequence.
f : Xψ̄ → {1, . . . , n}#A is the function that maps each sequence to its vector
of symbol counts, and for each x̄ ∈ Xψ̄, a candidate for transition is selected
by drawing two numbers j, k from {1, 2, . . . , n} without replacement. If both j
and k occur in (a1, a2, . . . , am), the candidate sequence is obtained by swapping
these two symbols; if only one of them does, it is replaced by the other one; and
finally, if neither of them occurs in the current sequence, the transition candidate
is equal to the current sequence and automatically accepted.
Now that the states and transition probabilities of the Markov chain have been
defined, we have to decide how long the random walk should be allowed to
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continue. On the one hand, we want to be sure that there are enough steps for
the walk to reach the stationary distribution and for the variance in the average
value of f to be small, but on the other hand, we would like to keep computation
time low. Another issue, related to this one, concerns the number of steps the
expectation-maximization algorithm needs to converge to a stable distribution.
We ran some tests to determine satisfactory values for these parameters and
incorporated them into the R-program highprofile.r (see Appendix), which takes
a sequence in canonical form as its input and calculates the corresponding
high-profile distribution, using the expectation-maximization algorithm along
with the Metropolis approximation of each iteration. This program is freely
available from the author.

One peculiar aspect of the high-profile estimator should be mentioned: by
allowing all possible pairings of haplotypes to components of the probability
distribution, it does not estimate population frequencies belonging to specific
haplotypes; the only thing it estimates is the entire vector of population
frequencies. If we do want such an estimate, as in forensic cases, it is not clear
how we should do this.
One option is to assign the highest estimated frequency to the most common
haplotype, the second highest estimated frequency to the second most common
haplotype, and so on. Alternatively, we could use the conditional posterior
distribution over all pairings induced by the high-profile distribution, and
compute the expected value of each haplotype’s frequency under this conditional
distribution.
Further research is needed to resolve this issue.



Chapter 5

Comparison

To compare our new approach to the other methods, let’s see what the estimated
frequencies are for the rarest Y-STR profiles (with database frequencies f of at
most 5), for a more common profile with frequency 30, and for a profile occurring
300 times. These numbers are the frequencies of the profiles in the extended
database of n = 12728 (see chapter 2).
Since the haplotype surveying method requires both a frequency and a weighted
inverse distance for its calculation, we used prior distributions corresponding to
two W -values, W = 0.02 and W = 0.14, that appear to be extreme from the hap-
lotype surveyors’ graph [Roewer et al. 2000]. We incorporated the corrections
Michael Krawczak suggested in his comment on this method [Krawczak 2001]
and chose to represent the posterior distributions by their mean values.
The estimate pertaining to the high-profile method is calculated as follows: first,
the high-profile probability vector belonging to the extended database is calcu-
lated using the expectation maximization algorithm (three runs of this algorithm
with different starting values showed nearly equal results). Then this vector is
ordered decreasingly, and linked to the decreasing vector of database frequencies.
If the frequency of the profile of interest is unique in the database, the corre-
sponding component of the ordered high-profile vector is used as a frequency
estimate. If not, we use the mean of those components of the high-profile vector
that correspond to the profiles having the same frequency as the profile of inter-
est.
Table 5.1 shows the resulting estimates.

The table shows that for common profiles, the estimates of the haplotype
surveying and high-profile methods are close to the database frequency (this
does not hold for the Brenner estimate, since the ratio between this estimate and
the database frequency is a constant factor 1 − 1397

12728
≈ 0.890). This similarity

between the three estimates is a good thing, since the database frequency is
the maximum likelihood estimator for the population frequency, and for this
sample size it is a very reliable one (a database frequency of 300 gives rise to
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Database Counting Brenner Haplotype surveying high-profile
frequency method W = 0.02 W = 0.14 method

1 7.86 · 10−5 6.99 · 10−5 8.21 · 10−5 9.96 · 10−5 5.46 · 10−5

2 1.57 · 10−4 1.40 · 10−4 1.56 · 10−4 1.78 · 10−4 9.85 · 10−5

3 2.36 · 10−4 2.10 · 10−4 2.30 · 10−4 2.56 · 10−4 2.15 · 10−4

4 3.14 · 10−4 2.80 · 10−4 3.04 · 10−4 3.34 · 10−4 3.02 · 10−4

5 3.93 · 10−4 3.50 · 10−4 3.78 · 10−4 4.12 · 10−4 3.64 · 10−4

30 2.36 · 10−3 2.10 · 10−3 2.23 · 10−3 2.37 · 10−3 2.28 · 10−3

300 2.36 · 10−2 2.10 · 10−2 2.22 · 10−2 2.35 · 10−2 2.34 · 10−2

Table 5.1: Comparison of frequency estimates

a 95%-confidence interval of [0.0211, 0.0265]). It was to be expected, too: in
chapter 3, we already saw that the prior distributions of the haplotype surveying
method only have a big impact on the posterior distribution for rare haplotypes.
As for the high-profile method, the pattern likelihood, which is a sum of a large
number of sequence likelihoods, is dominated by those sequences in which the
most frequent haplotypes appear in the right order, the most frequent symbols
thus representing the haplotypes with the highest probabilities. These dominant
sequence probabilities are maximized by the classical maximum likelihood
estimator for the entire parameter space, so the high-profile estimate should be
close to the database frequency.
For the rarest profiles, absent from the original database and thus occurring once
in the extended database, the situation is very different: the highest frequency
estimate, produced by the haplotype surveying method for W = 0.14, is almost
twice as large as the high-profile estimate, while the counting method estimate
lies in the middle.
Such a high W -value for an absent haplotype is not unthinkable; for instance,
haplotype 14− 14− 29− 25− 11− 13− 13, which only differs two repeats from
the most common haplotype and has a weighted inverse distance of W = 0.21,
does not occur in the database. Of course, this could mean that it is absent from
the entire population and thus will never appear in forensic casework - this will
be clear when data from cases become available.
For haplotypes with frequency 2, there is only a big difference between the
estimate for the high-profile method on the one hand and the counting and
haplotype surveying methods on the other hand. For haplotypes with three or
more copies in the database, the deviations from the counting method estimate
provided by any of the other methods are never more than 11%. Such small
differences are thought to be irrelevant in most lawsuits.
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5.1 Other countries

Before we decide which method to use, it may be insightful to have a look at
the policies of the forensic laboratories in other European countries. To this
end, we sent a questionnaire to the members of ENFSI, the European Network
of Forensic Science Institutes, to find out how they report matches of Y-STR
haplotypes, and which method they use to estimate the relevant population
frequency. Only 10 out of 43 laboratories responded, but these responses already
revealed that opinions on this relatively new technique vary widely. Four
laboratories prefer to use the counting method (or report the number of findings
in the database without converting this to a probability), three use the estimates
from the YHRD website, and one lab (from Finland) only uses Y-STR typing for
exclusion, because it only recently started using the technique. Two laboratories
do not use Y-STR typing yet.
Most of the laboratories use the YHRD database, or a relevant subset of it, for
their calculations. The British FSS and the Finns are the only ones who have a
separate national reference database. Even in France, the YHRD numbers are
reported, although this database contains almost no French data; the reason for
this is that the European population is thought to be sufficiently homogeneous,
and due to the large numbers of foreign inhabitants of and visitors to France,
suspects can be of any population.
Together with an account of the frequency of a suspect’s profile, some forensic
experts remind the judge or jury that paternal relatives of the suspect usually
have the same Y-STR profile. The German Bundeskriminalamt reports a local
frequency, in addition to a list of other populations where the haplotype has
been detected.
None of the respondents use their databases of Y haplotypes to search for
possible suspects.



Chapter 6

Conclusion and discussion

In the previous chapters, I have presented and analyzed four methods for
calculating a match probability for Y-STR haplotypes, through an estimation of
the frequency of this haplotype in the European population. I will summarize
the important aspects of these methods before advising NFI on which method
to use in their reports.
The counting method has the advantage of providing the classical maximum
likelihood estimate for the frequency of each individual haplotype. Although its
estimates become unreliable for rare haplotypes, it is easy to explain in court
and it is unbiased, if no information other than the frequency of the haplotype
of interest in the database is taken into consideration. This leads to the key
question: since so much more information is available, such as the genetic
structure of the haplotype pool, the significant number of unique haplotypes in
the database, and the theoretical background provided by population genetics,
can we use this information to obtain a better estimate? All of the other
methods try to use part of this extra information.
The haplotype surveying method, to begin with, tries to incorporate the genetic
information into its estimate. Its main hypothesis is that Y-STR profiles that are
genetically close to frequent profiles can be expected to have higher frequencies
themselves. Indeed, the data show a relation between a profile’s weighted inverse
distance and its database frequency, but this relation is very weak: for each of
the fifteen groups of haplotypes having roughly the same W -value, the standard
deviation of the frequencies is much higher than the mean. Consequently, the
prior distribution for a profile’s frequency that we obtain from this regression
analysis is very dispersed, and the likelihood of the data largely determines
the resulting posterior distribution, so that the mean of that distribution is
always close to the counting method estimate. Therefore, also considering the
small errors that have been made in the assumptions (the beta distribution, the
definition of W ) and the calculations (the bias in σ(W )), I would not recommend
using this method in its present form, despite its popularity in the international
forensic community.
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Charles Brenner suggests the use of another piece of information, namely the
existence of a large number of haplotypes that have yet to be detected, indicated
by the numerous unique haplotypes (singletons) in the database. According to
this estimate, the observed profiles constitute 89% of the actual population,
and we are bound to overestimate frequencies on average if we ignore this fact.
The problem, however, is that we don’t know which profiles are going to be
overestimated. The singletons are the most likely candidates.
To see why, consider all profiles in the population with a frequency below 1

n
,

where n is the database size. None of these is expected to be drawn (i.e. the
expected frequencies are smaller than 1), but if there are many of them, some
will be drawn by chance. The frequencies of all of these lucky ones will be
overestimated, and the majority of them will turn up as singletons. But since in
each forensic case we are only interested in estimating one profile’s population
frequency, and since we cannot determine whether this profile was one of the rare
ones and was accidentally drawn, or rather was one that was frequent enough to
be expected to be drawn, it is not clear how these considerations should affect
our estimate. We would need to know how many of the rare profiles there are,
and how rare they are exactly.
This is where the high-profile estimator comes in. This estimator attempts to
reconstruct the entire set of population frequencies by picking that set that would
be most likely to give rise to all observed database frequencies simultaneously,
instead of each of the frequencies separately, like the counting method does. In
the process, the high-profile estimator creates some extra, unobserved haplotypes
and assigns probabilities to them, thus coming closer to the structure of the real
population.
But the merit of the high-profile method is also its handicap. By considering
all pairings of haplotypes to database frequencies, it may give a better estimate
of the entire vector of population frequencies, but loses the connection between
individual haplotypes and their frequencies. I have tried to resolve this by taking
the most probable pairing, the one in which the highest probabilities are paired
with the most frequent haplotypes; the estimate for a singleton then comes
down to the mean of all frequencies that are linked to a singleton in this pairing.
But there are other options: one could, for instance, take the highest frequency
assigned to a singleton instead of the mean frequency, to be conservative; or one
could consider all possible pairings, and then take as an estimate the average
frequency a singleton has in all of these pairings, weighting each pairing by its
corresponding sequence probability. This calls for more theoretical backing-up.
In my opinion, it is safe to await this research for the moment and not use the
high-profile estimator. Although I do believe that this is the way to go, one
should, when in doubt, choose a conservative estimate, and this means using the
counting method. After all, for profiles occurring more than three times in the
database, there is little difference between the estimates provided by the three
most important estimators, and for the singletons and doubletons, there is such
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a high unreliability in all methods that one would probably rather refrain from
stating a hard number as an estimated frequency altogether. Therefore, the best
way to report a frequency to the court in my view is to give the number of copies
observed in the relevant database, and the size of this database, and to divide
them as an illustration. Furthermore, it is instructive to provide these numbers
for several databases, to illustrate the spatial variation.

Now there is one very important issue that we have not yet paid atten-
tion to. Since we have used the European database for our calculations, we
have calculated a match probability for an individual chosen at random from
the European population (assuming that the database is representative for this
population). However, in forensic cases, the population we are interested in,
the suspect population, depends on the circumstances and is usually smaller
than the European one, sometimes as small as a village. The village population
cannot simply be regarded as a sample from the European population, since
the inhabitants of the village are probably somewhat more related and their
Y-haplotypes are therefore not independent. This is why some experts stress
the fact that paternal relatives have the same haplotype: those paternal
relatives often live in the suspect’s neighbourhood and thus may belong to the
suspect population, increasing the expected frequency of his haplotype in that
population. The more generations the suspect’s family has been living in the
same area, the more paternal relatives there will be and the more serious this
increase will be.
This bears consequences on the evidential weight of the matching profiles,
depending on the situation. If the matching suspect is not related to the other
members of the suspect population, for instance if he only recently migrated into
the neighbourhood, or if the suspect population consists of the visitors of a bar
in a big city, the suspect and the culprit (under the assumption that they are
not the same person) can be viewed as two independent samples from the Dutch
population. Analysis of molecular variance by Roewer et al. [2000] has shown
that population stratification across western and central Europe is small enough
for the European database to be also representative for the Dutch population.
Indeed, the Dutch samples that we have do not exhibit large deviations from
the estimated European frequencies, at least not for those haplotypes for which
both the Dutch and European databases warrant reliable estimates.

6.1 Special cases

In most forensic cases where Y-STR typing is used, the DNA evidence will be a
comparison between a suspect’s complete Y haplotype and a complete Y haplo-
type left at the crime scene. If the two profiles don’t match, the probability that
the suspect is the source of the crime scene DNA, typing errors aside, is zero, and
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in this paper I have discussed what to do if they do match. However, there are
cases in which the evidence is more complicated. I would like to discuss three of
these special cases.
The first one is a case where only an incomplete haplotype can be obtained from
the crime scene sample. There may be a number of explanations for this: either
there is not enough DNA material to obtain a full profile, or the material has
been damaged due to extreme circumstances, or it is very old. The sample can
also be polluted, so that some alleles are no longer clearly visible. In such a case,
the original full haplotype can be any haplotype that has the correct number
of repeats at the loci that could be typed unambiguously. The various methods
allow different ways of dealing with this kind of evidence.
First, the counting method would count all possible haplotypes in the database
that reduce to the observed incomplete haplotype, and divide this number by the
database size to obtain a frequency estimate. A similar approach would be best
for the haplotype surveying method: the simplest solution is to sum the posterior
means of all possible extensions of the incomplete haplotype. One could also re-
build the entire method using only the loci that could be typed in this particular
case, but this would involve a lot of extra work.
The haplotype surveying website [Willuweit & Roewer 2007] does provide fre-
quency estimates for incomplete haplotypes, but I would not recommend us-
ing them, since sometimes incomplete haplotype frequencies are estimated lower
than some of their extensions to complete haplotypes (for instance, the esti-
mate for 13 − 11 − 29 − 24−? − 13 − 13 is 2.50 · 10−4, while the estimate for
13− 11− 29− 24− 11− 13− 13 is 3.30 · 10−4). Some incomplete haplotypes even
yield negative estimates. Thus, the website calculations should only be used for
complete (nine-locus!) haplotypes.
The other two methods require a different course of action, since they both in-
corporate unobserved haplotypes in their calculations. Because the crime scene
haplotype could be one of these extra haplotypes, ignoring them would result in
an underestimation of the match probability. This can be resolved by reducing
all haplotypes to those loci that could be typed for the crime scene haplotype,
effectively grouping together some of them, and then applying the Brenner and
high-profile methods to these modified data. The resulting estimates will be
higher than the sum of the original estimates for all possible complete haplo-
types, since the pattern of haplotype frequencies will contain higher numbers
and thus fewer extra profiles will be needed, leaving higher probabilities for the
observed profiles.
The second case that I would like to consider is one with mixed profiles. If a sam-
ple contains DNA from two different donors, each locus will exhibit two alleles,
unless the two contributors match at that locus. Suppose that a suspect’s hap-
lotype matches one of the crime scene alleles at each of the loci, then he cannot
be excluded, but how should this evidence be evaluated? Fortunately, a mixture
of Y-STR profiles is easier to evaluate than a mixture of autosomal profiles (see
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Buckleton [2005]).
Denote by π1 ⊕ π2 the mixture of profiles π1 and π2, e.g. (14 − 14 −
30 − 24 − 11 − 14 − 14) ⊕ (14 − 13 − 29 − 25 − 10 − 13 − 13) =
(14, {13, 14}, {29, 30}, {24, 25}, {10, 11}, {13, 14}, {13, 14}). Let A be the mixture
found at the crime scene, s the suspect and π his profile, τ the unique profile such
that π⊕ τ = A, D the set of all possible profiles, and C1 and C2 the two contrib-
utors to the sample (assume, for simplicity, that they are unrelated). Then the
relevant likelihood ratio can be expressed in the following way, along the lines of
the Bayesian theory of chapter 2:

P (C1 ⊕ C2 = A|s /∈ {C1, C2})
P (C1 ⊕ C2 = A|s ∈ {C1, C2})

(6.1)

=
P (C1 ⊕ C2 = A|s /∈ {C1, C2}
P (C1 ⊕ C2 = A|C1 = s)

(6.2)

=

∑
H1,H2∈D
H1⊕H2=A

P (C1 ≡ H1, C2 ≡ H2|s /∈ {C1, C2})

P (C2 ≡ τ |C1 = s)
(6.3)

For the probability in the numerator, one needs to estimate the joint probabil-
ities of all combinations of two haplotypes that constitute the observed mixed
profile, which is a sum over 2p combinations, where p is the number of loci that
exhibit two different alleles in the mixture. For the probability in the denomi-
nator, one needs to estimate one frequency, namely the frequency of the unique
profile τ that together with the suspect’s profile forms the mixed profile. This
reveals an interesting aspect of this type of evidence: if the mixed profile can be
decomposed in several ways into two frequent haplotypes, while the haplotype
that complements the suspect’s is a very rare one, the above likelihood ratio can
become bigger than one, in which case the evidence provided by the mixed pro-
file is actually in favour of the suspect, despite his profile fitting into it. This
phenomenon is caused by the fact that allele probabilities at multiple Y-STR loci
are dependent. In autosomal evidence, it can only occur if allele frequencies are
higher than 1

2
.

The third and final special case is the one in which the DNA evidence consists of
both a Y-STR profile and an autosomal STR profile. Usually, the autosomal pro-
file will be incomplete, since otherwise there would be little need for extra DNA
evidence, the random match probability already being small enough. According
to the results of the ENFSI questionnaire, the Slovenian laboratory multiplies the
match probabilities associated with the two pieces of evidence, while the other
laboratories that have encountered such cases are not as bold and report the two
figures separately. The important issue here is whether the two profiles can be
regarded as independent pieces of information or not. Adversaries of this as-
sumption point out that people who share the same Y-STR profile usually have
similar genetic backgrounds, and are thus more likely to have similar autosomal
profiles, because their profiles have been sampled from the same genetic pool, in
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which frequencies of autosomal alleles can be different from those in the larger
population. One could correct for this effect by incorporating a subpopulation
coefficient θ, as is common practice in autosomal frequency estimation [Balding
2005].
A recent study by Walsh et al. [2007] shows that autosomal and Y-STR alle-
les are sufficiently independent to warrant multiplication of the corresponding
match probabilities. This study was conducted in the United States, so it would
be good to do a similar study in Europe. Considering the history of migration to
the United States from all continents, however, we would expect the American
population to be more stratified than the European one and thus to be more
prone to linkage disequilibrium between autosomal and Y-chromosomal loci.

6.2 Suggestions for future research

The most important subject of future research, in my opinion, should be the effect
of small, geographically defined suspect populations on the frequencies of Y-STR
haplotypes. There are two obvious directions in which this research could de-
velop: first, one could use a theoretical population-genetic approach and analyze
mutation-migration models for populations of various sizes, with various rates
of migration from the larger population, possibly adapted to fit real case situa-
tions. This could provide information on how likely it is that a rare haplotype
reaches a high frequency in a relatively isolated population. Another approach
is an empirical one: by gathering data about small populations, one could also
gain insight into these mechanisms. Peter de Knijff is currently working on this
in the Netherlands, along with the construction of a larger Dutch database.
The estimation of European haplotype frequencies has been discussed extensively,
but a number of issues have yet to be resolved before either of the more sophis-
ticated methods can be used confidently. For the haplotype surveying method,
the main hypothesis of W -dependent beta distributions for haplotype frequencies
should be validated more properly. To this end, one could use a goodness-of-fit
test (like the Kolmogorov-Smirnov test) to determine whether frequencies of hap-
lotypes with the same W -value are indeed beta distributed, and then compare a
W -dependent fit of such a distribution to the data to a non-W -dependent fit, to
see if W is indeed a predictor of the frequency.
Lastly, I would recommend further research into the properties of the high-profile
estimator, since it has some nice advantages over the classical maximum likeli-
hood estimator, but important aspects like convergence behaviour or uniqueness
have not been investigated satisfactorily. Nor is it clear how this estimator can
be used to estimate the frequency of a particular profile.
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Appendix

highprofile.r

# input: a vector pattern, containing the database counts of all

# observed haplotypes, ordered from most frequent to rarest.

# output: a vector P, representing the high-profile distribution

n = sum(pattern) # length of the sequence

l=length(pattern) # number of different colours in the sequence

n1=sum(pattern==1) # number of singletons

colours=2*l # total number of different colours that we allow

pattern=c(pattern, rep(0,l)) # extend the pattern, for easy programming

P = seq(colours,1,by=-1)*2/(colours^2-colours) # initial prob. vector

runs = 2000000 # number of iterations in the Metropolis algorithm

runs2 = 20 # number of iterations in the EM algorithm

samp = 100 # to reduce runtime

run2 = 0

while(run2<runs2){

y = 1:length(P)

run = 0

Pnext = rep(0, length(P))

while (run < runs){

a = sample(1:l,1)

b = sample((1:length(P))[-a],1)

u = rexp(1,1)

if((pattern[a]-pattern[b])*(log(P[y[a]])-log(P[y[b]])) < u){

temp = y[a]

y[a] = y[b]

y[b] = temp

}

run = run + 1

if(run %% samp == 0){

for(i in 1:l)
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Pnext[y[i]] = Pnext[y[i]] + pattern[i]

}

}

P = (Pnext[Pnext>0])*samp/(runs*n)

P = P[order(P, decreasing=TRUE)]

run2 = run2 + 1

cat(P[1:20],’\n’)

}


