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INTRODUCTION

A year ago Professor Hendrik Lenstra asked me the following question.

Question. Let T be a one dimensional torus over a number field K. Furthermore
assume that λ is a point in T (K) and λZ is Zariski-dense in T , i.e. λZ is infinite. Is it
true that the set

S = {n ∈ Z> 0 : ∄ prime ideal p of OK such that n = order(λ mod p)}

is finite?

In this Master’s thesis we give a positive answer and provide a proof at the end of
chapter three.

In chapter one we study group schemes, which are group objects in the category
of schemes. In chapter two we study tori over fields since the tori we are interessted in
are defined over a number field. A group scheme G of multiplicative type over a field
K is called a torus if there exists an r ∈ N such that G ⊗K Ks

∼= (Gm,Ks
)r, where Ks

is separable closure of K. The integer r is called the rank of the torus. Furthermore we
make an integral model for tori. We do that because we want to know the primes for
which these tori have good reduction. In chapter three we provide a proof using heights
to a special version of the theorem of Zsigmondy. Then we prove the main theorem.

Open problem. Suppose now that we replace T by a two dimensional torus over K.
Furthermore assume that λ = (λ1, λ2) is a point in T (K) and λZ is Zariski-dense, is it
true that the set

S = {n ∈ Z>0 : ∄ prime ideal p of OK such that n = order((λ1, λ2) mod p)}

is infinite?

If we take K equal to Q, then the answer is yes for T = Gm × Gm and λ = (a, b)
provided that we assume the Ailon-Rudnick conjecture [1] is true.

Conjecture. [Ailon-Rudnick] If two non-zero integers a and b are multiplicatively
independent with gcd(a − 1, b − 1) = 1, then there are infinitely many integers n ≥ 1
such that

gcd(an − 1, bn − 1) = 1.
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1 GROUP SCHEMES

◮ Preliminaries

We begin this section by looking at the notion of a product in a category. We also
treat functoriality and functor categories. The main reference of this section are the
lecture notes of Professor Hendrik Lenstra, see [20].

Suppose that we are given objects X and Y in a category C. By a product of X and
Y , denoted by X×Y , one means an object Z in C together with morphisms p1 : Z → X
and p2 : Z → Y such that Z, p1, and p2 satisfy the universal property: if W is any object
of C and f1 : W → X and f2 : W → Y are an arbitrary pair of morphisms, then there
exists a unique morphism f : W → Z such that f1 = p1 ◦ f and f2 = p2 ◦ f .
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X X × Y
p1oo p2 // Y

A product of two objects may not exist in a category. However, if it does, then this
universal property guarantees that such an object with its projections to X and Y , is
essentially unique.

Proposition 1.1. The product is uniquely determined by the universal property up
to a unique isomorphism.

Proof. Suppose W and Z are both products of X and Y , with corresponding projection
morphisms pi and fi for i = 1, 2. Consider the corresponding diagrams

W
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X Z
p1oo p2 // Y,

and
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}}

}}
}}

X W
f1oo f2 // Y.

By assumption Z is a product of X and Y . So there exists a map W → Z such that
f1 = p1 ◦ f and f2 = p2 ◦ f . By similar argument, there is also a map Z → W such that
p1 = f1 ◦ g and p2 = f2 ◦ g. Consider the composition f ◦ g : Z → Z . Then we have
p1 ◦ f ◦ g = f1 ◦ g = p1, and p2 ◦ f ◦ g = f2 ◦ g = p2. Consider the diagram

Z
p2

  @
@@

@@
@@

f◦g

��

p1

~~~~
~~

~~
~

X Z
p1oo p2 // Y.

By the universal property we have f◦g = IdZ . By similar argument we have g◦f = IdW .
This shows that Z and W are canonically isomorphic.
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Suppose that (Xi)i∈I is an arbitrary collection of objects in a category C. By a
product of the Xi one means an object V of C together with projection morphisms
pi : V → X, for i ∈ I, such that for any object U of C, and any collection of morphisms
(fi : V → Xi)i∈I in C there exists a unique morphism f : U → V such that for all i ∈ I
one has fi = pif . Again a product of arbitrary collections of objects may not exist in
a category. However, if it does, then using a similar argument as for products of two
objects, one can show that a product is unique up to a unique isomorphism.

Example. Suppose we are given a collection of sets (Xi)i∈I of Set, the category of sets.
We recall that the class of objects of Set is the class of all sets, and the morphisms are
the usual maps of sets. A product of this collection in Set is defined as the cartesian
product

∏

i∈I

Xi := {(xi)i∈I |xi ∈ Xi for all i ∈ I},

together with projection maps

pj :
∏

i∈I

Xi → Xj , pj((xi)i∈I) := xj .

Let W be any set together with maps fi : W → Xi. One defines the unique map as

f : W →
∏

i∈I

Xi, f(w) = (fi(w))i∈I .

A terminal object of a category C is an object S such that for any object X of C
there exists exactly one morphism X → S in C. If a terminal object exists, then it is
unique up to a unique isomorphism. It is sometimes denoted by 1. In Set the terminal
objects are the one-element sets. In the category of schemes Spec Z is a terminal object,
while in the category of schemes over S the object S is a terminal object.

Consider arbitrary objects X,Y, S in a category C. Let h1 : X → S and h2 : Y → S
be morphisms in C. By a fibred product of X and Y, denoted by X ×S Y, one means an
object in C together with projection morphisms p1 : X×S Y → X and p2 : X×S Y → Y
which make a commutative diagram with the given morphisms h1 : X → S and h2 :
Y → S such that given any object Z with morphisms f : Z → X and g : Z → Y that
make a commutative diagram with the given morphisms h1 : X → S and h2 : Y → S,
there exists a unique morphism π : Z → X ×S Y such that f = p1π and g = p2π.

Z

f

��

g

##

π

��
X ×S Y

p1

��

p2

// Y

h2

��
X

h1 // S

If a fibred product exists, then it is unique up to a unique isomorphism. If a category
contains a terminal object Z then the fibred product X ×Z Y is the ordinary product
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X ×Y . In Set the fibred product X ×S Y is the set {(x, y) ∈ X ×S Y | h1(x) = h2(y)}.
Not all fibred products exist in the category of sets with one or two elements. Consider
a set of two elements {a, b}. Suppose that V is a fibred product of the one-element sets
{a}, {b} over {a, b}. Now V is not empty, so it should contain at least one element. Let
c be an element of V . Then the map from V to {a} sends c to a and the map from V
to {b} sends c to b. This is a contradiction. So V is not a fibred product.

Suppose we are given objects A,B,C and D in a category C. One calls the com-
mutative diagram

A

�

//

��

B

��
C // D

cartesian if it satisfies the universal property of the fibred product of B and C over D.
We emphasize that by putting a square in the centre.

Let C,D be categories, and let F ,G : C → D be covariant functors. Then a mor-
phism of functors

γ : F → G

consists of a morphism in D
γT : F(T ) → G(T ),

for all T of C such that, for any morphism f : T → S in C the diagram

F(T )
γT //

F(f)

��

G(T )

G(f)

��
F(S)

γS // G(S)

(1)

commutes in D. By Ob C we mean the class of objects of C. One says alternatively that
the system (γT )T∈Ob C is functorial in T if for every morphism f : T → S in C the
above diagram commutes in D. The functors C → D form the objects in a category

of functors, denoted by Fun(C,D). One has to be careful here since the collection of
morphisms between two given functors can be too large to be a ‘set’. We choose to
ignore this set-theoretical problem.

Let C be a category, and let X ∈ Ob C. We define a contravariant functor hX from
C to Set. The functor hX sends any object T of C to the set

hX(T ) = Mor(T,X)

of T -valued points of X and sends a morphism f : Y → Z in C to

f⋆: g 7→ g ◦ f : hX(Z) → hX(Y ),

where g : Z → X. One calls hX the functor of points of X. Any morphism φ : X → Y
defines a morphism of functors φ⋆ : hX → hY defined by

φ⋆T : g 7→ φ ◦ g : hX(T ) → hY (T ).
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T
g //

φ◦g

''OOOOOOOOOOOOOO X

φ

��
Y.

We often just write φ⋆ for φ⋆T . So we have a covariant functor from C to Fun(C,Set),
the category of contravariant functors from C to Set. The morphisms of Fun(C,Set)
are morphisms of functors.

Lemma 1.2. (Yoneda.) The functor C → Fun(C,Set), which sends an object X to hX

and a morphism φ to φ⋆, is fully faithful, i.e for all objects X,Y of C, the map

α : Mor(X,Y ) → Mor(hX , hY )

φ 7→ φ⋆ = φ ◦ −,

is a bijection.

Proof. Let γ ∈ Mor(hX , hY ). Then for each u and each f ∈ hX(u) the diagram (1) is
commutative. Note that the covariant functors in the diagram (1) have to be replaced by
contravariant ones. So γ(u)(f) = γX(IdX) ◦ f . Hence γ = γX(IdX) ◦ − = γ(X)(IdX)⋆.

On the other hand, if γ = φ⋆, then γX(IdX) = φ ◦ IdX = φ. �

Suppose that F ∈ Fun(C,Set). Then F is called representable if there exists an object
X of C and an isomorphism of functors

F ∼−→ hX

Yoneda’s lemma shows that if hX
∼= hY then X ∼= Y .

◮ Fibred product of schemes

The general reference in this section is Hartshorne [14].
Let S be a fixed scheme. An S-scheme is a scheme X together with a morphism

X → S. A morphism of S-schemes between the S-schemes X and Y is a morphism
X → Y such that the diagram

X //

��@
@@

@@
@@

Y

����
��

��
�

S

commutes.

Theorem 1.3. The fibred product X×S Y for any two schemes X and Y over a scheme
S exists, and is unique up to a unique isomorphism.

Proof. Hartshorne [14], chapter II, §3, theorem 3.3. �

Example. Suppose X,Y, S are affine schemes:

X = Spec A, Y = Spec B, S = Spec C.
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Then X ×S Y = Spec (A ⊗C B).

Example. Let f : X → S be a morphism of schemes, and let j : U →֒ S be an open
immersion, i.e. j induces an isomorphism of U with an open subscheme of S. Then the
diagram

f−1U

�

//

��

X

f

��
U // S

is cartesian, i.e. X ×S U = f−1U .

Definition. Let S be a scheme, and let Pn
Z be the n-dimensional projective space over

Z. Then there exist unique morphisms

S → Spec Z and Pn
Z → Spec Z.

We define Pn
S = Pn

Z ×Spec Z S. Then the following diagram

Pn
S

�

//

��

Pn
Z

��
S // Spec Z

is cartesian.

Definition. Let f : X → S be a morphism of schemes, let s ∈ S, and let κ(s) be the
residue class field of S at s. Then the fibre of f at s is defined by the cartesian diagram

Xs

�

//

��

X

��
Spec κ(s) // S.

As a topological space, Xs actually equals f−1s with the induced topology.

Example. Consider A = Z[X1, . . . , Xn]/(f1, . . . , fm), where fi ∈ Z[X1, . . . , Xn], and
X = Spec A. Then X is a scheme over S = Spec Z. We can see it as the “variety” in
the affine n-space over Z given by the equations f1 = 0, . . . , fm = 0.

Let p be a prime number. We want to calculate Xp = Spec (A ⊗Z Fp), i.e. Xs for
s = (p) ∈ S. We have an exact sequence

Z[X1, . . . , Xn]m → Z[X1, . . . , Xn] → A → 0

(g1, . . . , gm) 7→
∑

i

gifi.

Tensoring with Fp we get

Fp[X1, . . . , Xn]m → Fp[X1, . . . , Xn] → A ⊗Z Fp → 0

(g1, . . . , gm) 7→
∑

i

gifi,
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where fi = (fi mod p).

So Xp is the “variety” in the affine n-space over Fp given by the polynomials
(fimod p).

◮ Group objects

In this section we want to define the notion of group objects in a category. The
main reference of this section is Bosch et al. [5].

Let C be a category. A group functor is an object X and a factorization of the
functor of points hX from the category of groups Grp to Set through the forgetful

functor from Grp to Set. The functor from C to Grp is said to be a group functor
because it sends any object X of C to a group F(X), and a morphism f ∈ C to a group
homomorphism F(f), while the functor from Grp to Set is called forgetful because it
sends groups to their underlying sets and each homomorphism to itself (viewed as a
map), and ‘forgets’ part of the structure.

We define a law of composition on an object X of C by a morphism of functors
γ : hX × hX → hX . Therefore it consists of a morphism γT : hX(T )× hX(T ) → hX(T )
for all T of C such that, for any f : T → S the diagram

hX(S) × hX(S)

hX(f)×hX(f)

��

γS // hX(S)

hX(f)

��
hX(T ) × hX(T )

γT // hX(T )

commutes. If hX(T ) is a group under γT for all T , then γ defines on hX a structure of
a group functor. Therefore γ is said to be a group law.

Definition. A group object in C is an object X together with a multiplication γ :
hX × hX → hX which is a group law.

Suppose now that C has finite products and a terminal object S. Let X be a group
object in C with γ as group law. By Yoneda’s lemma and because hX×X

∼= hX ×hX the
law of composition hX × hX → hX corresponds to a morphism m : X × X → X. The
unit element of each group hX(T ) gives rise to a morphism of functors from hS to hX .
By Yoneda this corresponds to a morphism ǫ : S → X, which we call the unit section

of X. A terminal object is needed as the source of the morphism ǫ. The inverse map
in each group hX(T ) yields a functorial morphism from hX into hX . By Yoneda this
corresponds to a morphism i : X → X which we call the inverse map on X. The group
axioms which are satisfied by hX(T ) correspond to the commutativity of the following
diagrams:

(i) associativity

X × X × X

idX×m

��

m×idX // X × X

m

��
X × X

m // X
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(ii) existence of a left-identity

X
(p,idX) //

idX

++VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV S × X
ǫ×idX // X × X

m

��
X,

where p : X → S is the morphism from X to the terminal object S.
(iii) existence of a left-inverse

X

p

��

(i,idX) // X × X

m

��
S

ǫ // X

(iv) commutativity in case hX(T ) are commutative groups

X × X
τ //

m

))RRRRRRRRRRRRRRRR X × X

m

��
X,

where τ interchanges the factors.

Proposition 1.4. The collection of group objects in a category C that admits fibred
products and terminal objects, is in one-to-one correspondence with the collection of
data (X,m, ǫ, i) where X is an object of C and where

m:X × X → X, ǫ : S → X, i : X → X

are morphisms in C such that the diagrams (i), (ii), (iii) are commutative. Furthermore
a group object in C is commutative if and only if, in addition, the corresponding diagram
(iv) is commutative.

Proof. Bosch et al. [5], chapter IV, §1, proposition 3. �

◮ Group schemes

An S-group scheme is a group object in the category of S-schemes Sch/S. A homo-
morphism of group schemes G and H over S is an S-morphism φ : G → H of schemes
such that

φ ◦ mG = mH ◦ (φ × φ),

i.e. for all T and x, y ∈ G(T ) : φ(x, y) = φ(x)φ(y). We can express this in the commu-
tative diagram

G ×S G

(φ,φ)

��

mG // G

φ

��
H ×S H

mH // H.
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We denote the set of all homomorphisms of group schemes G → H by HomS(G,H).
Let G be a group scheme over S, and T be an S-scheme. Then GT = G ×S T is a

T -scheme because for any T -scheme Y we have

GT (Y ) = HomT (Y,G ×S T ) = HomS(Y,G) = G(Y ).

Hence GT has a group structure in the category of T -schemes and represents the same
functor as the group scheme G over S but restricted to the category of T -schemes. We
obtain GT from G by base change.

Let S be an affine scheme, i.e. S = Spec A for some ring A. A group scheme G
over S is called an affine group scheme over S if G = Spec B where B is an A-algebra.
The structure of G is to be given by the S-morphisms:

m : G ×S G → G,

ǫ : S → G,

i : G → G.

But since the category of affine schemes over S is anti-equivalent to the category of
algebras over A (see Waterhouse [33]), the group structure of G is determined by the
corresponding A-algebra homomorphisms

m⋆ : B → B ⊗A B,

ǫ⋆ : B → A,

i⋆ : B → B.

The data (A,B, f : A → B,m⋆, ǫ⋆, i⋆) form a so-called Hopf algebra.

Example. Let Ga be the covariant functor from the category of commutative rings
Crg to the category of abelian groups Ab defined by Ga(R) = R+, where R+ denotes
the additive group of the commutative ring R. The functor Ga is representable by the
affine scheme Spec Z[t], since HomCrg(Z[t], R) = R, for any R. So Ga = Spec Z[t].
We write down the group operations m, i, ǫ. Let m be the map that corresponds to the
Z-algebra homomorphism

m⋆ : Z[t] → Z[t] ⊗Z Z[t], m⋆(t) = t ⊗ 1 + 1 ⊗ t.

Similarly we let ǫ and i be the maps that correspond to the Z-algebra maps

ǫ⋆ : Z[t] → Z, ǫ⋆(t) = 0,

i⋆ : Z[t] → Z[t], i⋆(t) = −t.

The affine group scheme Ga is called the additive group.

Example. Let Gm be the covariant functor from the category of commutative rings
Crg to the category of abelian groups Ab defined by Gm(B) = B⋆, where B⋆ denotes
the multiplicative group of invertible elements of the commutative ring B. The functor

Gm is representable by the affine scheme Spec Z[t, t−1], since HomCrg(Z[t, t−1], B)
(1)
=B⋆,

where (1) follows from exercise 2.1 in §2, chapter II in Hartshorne [14]. Hence Gm =
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Spec Z[t, t−1]. Let A = Z[t, t−1]. We write down the group operations m, i, ǫ. Let m be
the map that corresponds to the Z-algebra homomorphism

m⋆ : A → A ⊗Z A, m⋆(t) = t ⊗ t.

Similarly we let ǫ and i be the maps that correspond to the Z-algebra maps

ǫ⋆ : A → Z, ǫ⋆(t) = 1,

i⋆ : A → A, i⋆(t) = t−1.

The affine group scheme Gm is called the multiplicative group.

Example. Let G = Spec A, where A = Z[x]/(xn − 1). Let Spec Z = S. We want to
show that G is a group scheme over Spec Z. As in the previous example we have to give
the maps m, i, ǫ. Now G×S G = Spec (A⊗Z A). The map m corresponds to a Z-algebra
homomorphism

m⋆ : A → A ⊗Z A, m⋆(x) = x ⊗ x.

Similarly the maps ǫ and i correspond to Z-algebra maps

ǫ⋆ : A → Z, ǫ⋆(x) = 1,

i⋆ : A → A, i⋆(x) = xn−1.

Now for any scheme X over Spec Z one has

hG(X) = MorCrg(A,Γ(X,OX))

= {α ∈ Γ(X,OX)⋆|αn = 1}.
So there is a natural group law on hG. We denote G by µn and call it the group of nth
roots of unity.

◮ Group rings

Let R be a ring and let G be a group. The group ring R[G] of G over R consists
of elements of the set

R[G] = {
∑

σ∈G

aσσ: aσ ∈ R, aσ = 0 for all but finitely many σ ∈ G}.

Two elements
∑

σ∈G aσσ and
∑

σ∈G bσσ are equal in R[G] if and only if for all
σ ∈ G we have aσ = bσ. The group ring R[G] is a ring. The operations of addition and
multiplication in R[G] are given by

∑

σ∈G

aσσ +
∑

σ∈G

bσσ =
∑

σ∈G

(aσ + bσ)σ,

(
∑

σ∈G

aσσ)(
∑

σ∈G

bσσ) =
∑

ρ∈G

∑

σ,τ∈G,στ=ρ

(aσbτ )ρ =
∑

ρ∈G

∑

σ∈G

(aσbσ−1ρ)ρ.

Note that R can be viewed as a subring of R[G]

x 7→ x · 1 ∈ R[G],

and if R 6= 0 then G can be viewed as a subgroup in R[G]⋆

g 7→ 1 · g ∈ R[G].
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◮ Diagonalizable group schemes

Let M be an abelian group, and let Z[M ] be the group ring of M over Z. We define

D(M) = Spec Z[M ].

Let S be a scheme. We define

DS(M) = D(M)S = D(M) ×Spec Z S.

We observe that the group ring Z[M ] is a commutative ring since M is an abelian
group. So Spec Z[M ] is well-defined. The set of S-valued points of D(M) is

D(M)(S) = MorSch(S,D(M))
∼= MorRing(Z[M ],Γ(S,OS))
∼= MorGrp(M,Γ(S,OS)⋆).

The first isomorphism follows from exercise 2.1 in §2, chapter II in Hartshorne [14], the
second isomorphism is a standard fact about Z[M ]. In other words

D(M)(S) ∼= MorGrp(M,Gm(S)).

We observe that the set D(M)(S) has the structure of a commutative group, and the
group structure is functorial in S. Hence D(M) is a commutative group scheme.

Let D be a functor from the category of commutative rings Crg to the category
of abelian groups Ab. Then we have a commutative diagram

SAlg
Forgetful //

DS

((QQQQQQQQQQQQQQ Crg

D

��
Ab.

Hence DS , the functor from the category of S-algebras SAlg to the category of abelian
groups Ab, is the composition of D by the forgetful functor, and DS is a commutative
group scheme because D is a commutative group scheme.

Definition. Let S be a scheme. A group scheme G over S is called diagonalizable if it
is of the form DS(M) for some M .

We study the structure of the diagonalizable groups by looking at the structure of
the groups M .

Theorem 1.5. (Structure theorem for finitely generated abelian groups) Let M be
a finitely generated abelian group, i.e. there exist a finite subset E of M such that
M = 〈E〉. Then there is an isomorphism

M ∼= (Z/n1Z) ⊕ (Z/n2Z) ⊕ . . . ⊕ (Z/nsZ) ⊕ Zr,

where ni > 0 for all i and n1|n2| . . . |ns, with r ≥ 0, s ≥ 0. Furthermore, M uniquely
determines the ni and r.

Proof. Lang [18], chapter I, §8. �

Definition. Let S be a scheme. A group scheme G over S is of finite type over S if the
structure morphism G → S is of finite type.

11



Lemma 1.6. Let M,M ′ be abelian groups. Then

D(M ⊕ M ′) = D(M) ×Spec Z D(M ′),

DS(M ⊕ M ′) = DS(M) ×S DS(M ′).

Proof. There is a natural isomorphism

MorGrp(M ⊕ M ′,Γ(S,O⋆
S)) ∼= MorGrp(M,Γ(S,O⋆

S)) × MorGrp(M ′,Γ(S,O⋆
S)).

So as functors hD(M⊕M ′)
∼= hD(M) × hD(M ′). The isomorphism follows directly from

Yoneda’s lemma. �

By the Structure theorem for abelian groups we can write any finitely generated
abelian group M as

M ∼= (Z/n1Z) ⊕ (Z/n2Z) ⊕ . . . ⊕ (Z/nsZ) ⊕ Zr

Then from the lemma above it follows that

D(M) = D(Z/n1Z) × D(Z/n2Z) × . . . × D(Z/nsZ) × D(Z)r.

To understand D(M), we only need to understand D(Z) and D(Z/nZ), where n is a
positive integer. Now D(Z) ∼= Gm, since the group ring Z[Z] is isomorphic to Z[t, t−1],
and D(Z/nZ) is equal to µn, the group of nth roots of unity, since

D(Z/nZ)(S) ∼= {α ∈ Γ(S,O⋆
S) |αn = 1},

where S is a scheme.
A diagonalizable group scheme D(M) is of finite type if and only if M is finitely

generated; in that case, D(M) is a finite product of copies of Gm and µn.
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2 INTEGRAL MODELS OF TORI

◮ Galois extension of rings

Let B be a noetherian domain, and let H be a finite subgroup of Aut(B). Let
A = BH , the subring of B consisting of all elements which remain invariant under the
action of H. The inclusion of A in B gives a morphism p : Spec B → Spec A. Then for
each p ∈ Spec A, the group H acts transitively on p−1p, see Atiyah-MacDonald [2].

Definition. Let q ∈ Spec B. Then the decomposition group of q is

Hd(q) = {h ∈ H | hq = q}

and the inertia group of q is

Hi(q) = {h ∈ Hd(q) | h acts trivially onκ(q), the residue field at q}.

Definition. Let A and B be Dedekind domains. Then B is a Galois ring extension of
A if A ⊂ B, A = BG, where G = Aut(B/A), and the inertia group of q is trivial for all
q in Spec B.

Example. Let K be a field. Then Spec K = {(0)}, and the inertia group Hi((0))
is always trivial, since κ((0)) = K. So in this case the definition coincides with the
classical one from finite Galois theory.

Proposition 2.1. Suppose B is a Dedekind domain and A = BH . Then A is a
Dedekind domain.

Proof. This proof is largely based on an original proof by Professor Hendrik Lenstra Jr.
By assumption B is a domain. So A is also a domain since it is contained in B.

Now B is integral over A since every b ∈ B is a zero of the polynomial
∏

σ∈H(X −σ(b))
which has invariant coefficients in B. This means that these coefficients are also in A.
Note that K, the field of fractions of A, is contained in LH , where L is the field of
fractions of B. Suppose that x ∈ K is integral over A. Then it is certainly integral over
B. So it is in B since B is integrally closed, but it is also invariant under H, so it is in
A. Hence A is integrally closed.

Choose q a prime ideal of B such that p = q ∩ A, where p is a prime ideal of A.
Consider Ap, the localisation of A at p. We claim that

Ap = Bq ∩ K.

Let x ∈ Bq ∩ K. Then x = σx ∈ σBq = Bσq, for all σ ∈ H. Hence

x ∈
⋂

σ∈H

Bσq =
⋂

q′|p

Bq′

(∗)
= Ap = Ap,

since A and hence the Ap is integrally closed; by Aq we mean the integral closure of Aq.
So Bq ∩K ⊆ Ap. ((∗) follows from corollary 5.22 in Atiyah-McDonald [2]). It is easy to
see Ap ⊆ Bq ∩ K. This proves the claim. Now we have

K⋆/A⋆
p →֒ L⋆/B⋆

q = Z.

13



Hence K⋆/A⋆
p
∼= Z, since A⋆

p ⊂ K⋆. We see that Ap is a discrete valuation ring. Hence
Ap is noetherian of dimension 1. Recall that B is a Dedekind domain, i.e. an integrally
closed noetherian domain of dimension 1.

Consider a strictly increasing chain of ideals in A.

0 6= a0 ⊂ a1 ⊂ a2 ⊂ . . .

Let 0 6= α ∈ a0. Then α ∈ B, since A ⊂ B. We have

a = b ⇔ ∀p : ap = bp.

Note that the set
Z(α) = {p ∈ Spec A : α ∈ p}

is finite. Choose p ∈ Z(α). Then there are finitely many q ∈ B with A ∩ q = p, say
q1, . . . , qn, since H acts transitively on the set

{q ∈ Spec B : A ∩ q = p}.

So α ∈ p is equivalent to α ∈ qi, for i = 1, . . . , n. Now for all p we can choose ip such
that for all j ≥ ip

(aj)p = (ai)p,

since Ap is noetherian. Then for all p /∈ Z(α) and for all j we have

(αi)p = Ap,

since αi, for i = 1, . . . , n, is a unit. Choose i = max ip. Then for all j ≥ i, we have

(ai)p = (aj)p,

for all p. This equivalent to
ai = aj .

This proves that A is noetherian. So A is an integrally closed noetherian domain of
dimension 1. Hence A is a Dedekind domain. �

Example. Let B be a Dedekind domain, and let L be its field of fractions. Then H
acts on L. By the previous proposition A is also a Dedekind domain. Let q ∈ Spec B
and p = q ∩ A ∈ Spec A. Then Ap ⊆ Bq. In Ap we know that App = (π) for some
π ∈ Ap.

We set e(q/p) = vq(π), the ramification index of q over p. We say that p is unram-
ified if e(p) = 1 and B/q is separable over A/p. Now

#Hi(q) = e(q/p)[B/q : A/p]ins,

where [B/q : A/p]ins is the inseparability degree, see Lang [18] chapter V, §6. So B is
Galois over A if and only if B is unramified over all prime ideals of A.

Definition. Let A,B be as above. A group scheme G over Spec A is split over Spec B
if G ×Spec A Spec B is diagonalizable over Spec B.

14



Proposition 2.2. Let A ⊂ B be a finite Galois extension of rings with group H =
Gal(B/A). Then there is an anti-equivalence of categories between the category of
commutative group schemes over Spec A split over Spec B and the category of H-
modules, i.e. abelian groups with H-action, given by

G 7→ HomSpec B(GSpec B ,Gm,Spec B).

Proof. Grothendieck, et al., Proposition 1.1 in exposé X. �

◮ Tori over fields

Let K be a field and let K be an algebraic closure of K. Let G be a group scheme
over K. Then G is said to be of multiplicative type over K if GK is diagonalizable, i.e.
GK

∼= Spec (Z[M ]⊗K), for some abelian group M . One calls G split over an algebraic
extension of fields L/K if GL is diagonalizable.

Lemma 2.3. Let G be a group of multiplicative type over K, and let Ks be a separable
closure of K. Then G ⊗K Ks is diagonalizable.

Proof. Demazure and Gabriel [9], Corollaire 3.5 in IV.§1. �

Lemma 2.4. For every field K, the group of endomorphisms of the K-group scheme
Gm,K is canonically isomorphic to Z.

Proof. We denote the collection of endomorphisms of Gm by End Gm. By Yoneda’s
lemma

End Gm
∼= End

KGrp−Sch(Spec K[X,X−1], i, ǫ,m),

where KGrp − Sch denotes the category of group schemes over K. We also have

End
KGrp−Sch (Spec K[X,X−1], i, ǫ,m) ∼= EndHopf−Alg (K[X,X−1], i⋆, ǫ⋆,m⋆),

since the functor Spec from the category of Hopf algebras to the category of group
schemes is fully faithful (see Waterhouse [33]). First we consider all endomorphisms of
K[X,X−1]. Then we determine which ones are Hopf algebra endomorphisms. We know
that

Hom
KAlg(K[X,X−1],K[X,X−1]) ∼= K[X,X−1]⋆ = {λXr|r ∈ Z, λ ∈ K⋆},

f 7→ f(X).

Hence the elements of K[X,X−1]⋆ are of the form λXr, (λ ∈ K⋆, r ∈ Z). Consider the
ring homomorphism

f : K[X,X−1] → K[X,X−1],

X 7→ λXr, λ ∈ K⋆, r ∈ Z.

Then f is a homomorphism of Hopf algebras if the following diagrams are commutative,
i.e. we have to check that (f ⊗ f) ◦ m⋆ = m⋆ ◦ f , f ◦ i⋆ = i⋆ ◦ f and f ◦ ǫ⋆ = ǫ⋆ ◦ f .

K[X,X−1]

f

��

m⋆

// K[X,X−1] ⊗K K[X,X−1]

f⊗f

��
K[X,X−1]

m⋆

// K[X,X−1] ⊗K K[X,X−1].
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K[X,X−1]

f

��

i⋆

// K[X,X−1]

f

��
K[X,X−1]

i⋆

// K[X,X−1].

K[X,X−1]

f

��

ǫ⋆

// K

f

��
K[X,X−1]

ǫ⋆

// K.

We write down the K-algebra homomorphisms m⋆, i⋆ and ǫ⋆.

m⋆ : K[X,X−1] → K[X,X−1] ⊗K K[X,X−1],

X → X ⊗ X.

i⋆ : K[X,X−1] → K[X,X−1],

X → X−1.

ǫ⋆ : K[X,X−1] → K,

X → 1.

Now

(f ⊗ f)(m⋆(X)) = (f ⊗ f)(X ⊗ X) = (f(X) ⊗ f(X)) = λXr ⊗ λXr = λ2(Xr ⊗ Xr),

and
m⋆(f(X)) = m⋆(λXr) = λm⋆(X)r = λ(X ⊗ X)r = λXr ⊗ Xr.

So (f ⊗ f) ◦ m⋆ = m⋆(f(X)) if and only if λ = 1. Similarly

f(i⋆(X)) = f(X−1) = f(X)−1 = (λXr)−1 = X−rλ−1,

and
i⋆(f(X)) = i⋆(λXr) = λi⋆(X)r = λX−k.

So f ◦ i⋆ = i⋆ ◦ f if and only if λ = ±1. Finally

f(ǫ⋆(X)) = f(1) = 1,

and
ǫ⋆(f(X)) = ǫ⋆(λXr) = λǫ⋆(X)r = λ.

So f ◦ ǫ⋆ = ǫ⋆ ◦ f if and only if λ = 1. �

Remark. The above lemma also holds if we replace a field K by a domain D.
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Definition. Let G be a group of multiplicative type over K, and let Ks be a separable
closure of K. Then G is called a torus if there exists an r ∈ N such that G ⊗K Ks

∼=
(Gm,Ks

)r. The integer r is called the rank of the torus.

Let T be a torus over K. We have the following isomorphism

HomKs
(TKs

,Gm,Ks
) ∼= Zr.

This follows from:

HomKs
(TKs

,Gm,Ks
) ∼= HomKs

(Gr
m,Ks

,Gm,Ks
)

∼=
r

∏

i=1

HomKs
(Gm,Ks

,Gm,Ks
)

and lemma 2.4. We define the character group of T

X•(T ) = HomKs
(TKs

,Gm),

and the cocharacter group of T

X•(T ) = HomKs
(Gm, TKs

).

The character and cocharacter groups of T are free abelian groups of rank r. They
come together with a continuous action of Gal(Ks/K). We write N = X•(T ) and
Γ = Gal(Ks/K).

Definition. An action of Γ on N is called continuous if the map Γ×N → N, (σ, x) 7→ σx
is continuous. We endow Γ with the Krull topology, N with the discrete topology, and
Γ × N with the product topology.

The functor X• from the category of tori over K to the category of free abelian
groups of finite rank with continuous action of Γ-modules is an equivalence of categories,
while the functor X• is an anti-equivalence of categories. The action of the Galois group
is given by a continuous homomorphism

φ : Γ → AutAb(N).

We endow AutAb(N) with the discrete topology for N finitely generated. For each
σ ∈ Γ and χ ∈ X•(T ) we want to explicitly describe the action σχ.

By definition we have a commutative diagram

TKs

χ //

$$I
IIIIIIII

Gm,Ks

yyssssssssss

Spec Ks.

To determine the action of Γ on X•(T ) we base change the above diagram by Spec σ;
we take the fibred product of TKs

and Gm,Ks
via Spec σ.

TKs

σ⋆

//

xx

����
��

��
��

��
��

��
��

�
TKs

χ
zzuuuuuuuuu

����
��

��
��

��
��

��
��

Gm,Ks

σ⋆

//

��

Gm,Ks

��
Spec Ks

Spec σ // Spec Ks,
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We define the action σχ = σ⋆−1

χσ⋆. It is given by the dotted arrow in the above
diagram.

Proposition 2.5. Let Ks be a separable closure of K. Then the functor G 7→ D(G)(Ks)
induces an equivalence of categories between the category of groups G of multiplica-
tive type over K and the category of continuous Gal(Ks/K)-modules. Restricting this
functor to the category of groups of multiplicative type which are of finite type over
K yields an equivalence of categories between the category of groups of multiplicative
type which are of finite type over K and the category of Gal(Ks/K)-modules which are
finitely generated as Z-modules.

Proof. Demazure and Gabriel [9], Corollaire 3.6 in IV.§1. �

To understand T over K, we study T over Ks and describe how the Galois group
acts. This is done explicitly using descent theory. A study of this topic is beyond the
scope of this master’s thesis. A good reference on this topic is Bosch et al. [5].

◮ Integral models of tori

Let K be a number field. Let T be a torus over K. We want to reduce modulo
primes of K, i.e. modulo maximal ideals of OK . To do this we construct a model of T
over a non-empty open subset U of OK .

Definition. Let X = Spec A, for some Dedekind domain A, and let Y be an X-scheme.
Let G be a finite group acting on the right on Y via X-automorphisms. Then Y is called
a Galois cover with group G if Y is an integral scheme which is finite over X (so Y is
affine and hence is the spectrum of a domain B), if X is a quotient of Y by the action
of G in the category of schemes, and if the inertia group is trivial for all q in Spec B.
If f : Y → X is a Galois cover, then we write Gal(Y/X) = AutX(Y ).

Lemma 2.6. Let U be a non-empty open subscheme of Spec OK , let V over U be a
Galois cover, and let L be the field of rational functions on V . Then L/K is a finite
Galois extension and V is a non-empty open subset of Spec OL.

Proof. Let L be the field of rational functions on V . Let ξ be the generic point of V , so
that L = OV,ξ. By assumption V over U is a Galois cover. So there is a finite surjective
map λ : V → U . We have a diagram

Ũ

��

⊆ // X̃ = Spec OL

��
U

⊆ // X = Spec OK ,

where Ũ is the normalisation of U in L, and X̃ the normalisation of X in L. For V being
normal is equivalent to OV,x being a discrete valuation ring for x ∈ V . We now apply

theorem 2.24, §2.14, chapter II, Iitaka [16], to conclude that Ũ = V , and V ⊆ Spec OL.
Any isomorphism of V over U maps ξ to itself, so it induces an automorphism of

L = OV,ξ. Therefore, there is a map

Gal(V/U) → Gal(L/K).
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This is an isomorphism. Indeed, let Ui = Spec Ai, i ∈ {1, . . . n} be an affine open cover
of U , and let Vi be the normalisation of Ui in L. Then Vi = Spec Bi, where Bi denotes
the integral closure of Ai in L. We extend each σ ∈ Gal(L/K) to σ⋆ ∈ Gal(V/U) in the
following way. First we extend σ to an element σ⋆

i ∈ Gal(Vi/Ui) for all i as follows: if
x ∈ Bi is integral over Ai, then σx is integral over Ai. So σ restricts to an isomorphism
σi : Bi

∼−→ Bi. Now we apply the Spec-functor to get σ⋆. Then we glue all elements σ⋆
i

to get σ⋆.

Definition. A group scheme T̃ over an non-empty open subset U of Spec OK is called
a torus if there exists a Galois cover V → U such that T̃ ×U V is isomorphic to Gr

m,V

for some r ∈ Z≥0.

Definition. A model of a torus T over K consists of
i) a non-empty open subset U of Spec OK ;
ii) a torus T̃ over U such that

T̃K = T̃ ×U Spec K

is isomorphic to T .
We denote a model of T by (U, T̃ ).

Definition. For each torus T , a maximal model is (U, T̃ ) such that if (U ′, T̃ ′) is any
other model then U ′ ⊆ U and T̃ ′ ∼= T̃|U ′ = T̃ ×U U ′.

Theorem 2.7. Every torus T has a maximal model, and it is unique up to isomor-
phism.

We prove the theorem later on. We now introduce some definitions and prove a
proposition which we need in the proof of the theorem above.

Definition. A splitting field of a torus T over K is a field extension L/K such that
TL

∼= Gm,L for some r. A minimal splitting field exists.

Proposition 2.8. Let T be a torus over a field K, and let Ks be a separable closure
of K. Then there exists a unique Galois extension M/K with M ⊆ Ks such that M is
a splitting field of T , and such that if L ⊆ Ks is any other Galois extension that is a
splitting of T , then M ⊂ L.

Proof. We recall that T is uniquely determined by

X• = HomKs
(TKs

,Gm,Ks
) (∼= Zr)

with the action

Gal(Ks/K) → AutAb(X•). (∗)

If L is any subfield of Ks, containing K, then TL is a torus over L split over Ks. So TL

is determined by X• and the action

Gal(Ks/L) → AutAb(X•). (∗∗)
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Note that the diagram

Gal(Ks/L)
⊆ //

''OOOOOOOOOOO
Gal(Ks/K)

wwooooooooooo

AutAb(X•).

commutes. Note also that TL
∼= Gr

m,L if and only if (∗∗) is the trivial action. By the
diagram we see that this is true if and only if Gal(Ks/L) is contained in the kernel of
(∗). We call this kernel H and let M = KH

s . By Galois theory

Gal(Ks/L) ⊆ H ⇔ M ⊆ L,

we see that
T is split over L ⇔ M ⊆ L.

We call M the minimal splitting field of T ; by definition it is unique.

We now prove theorem 2.7.

Proof. We first construct the maximal model. Let M be the minimal splitting field of
T . Let VT be the maximal open subset of Spec OM where the morphism Spec OM →
Spec OK is unramified, i.e. VT consists of the generic point and all primes of OM not
ramified over OK .

Let UT be the image of VT in Spec OK . Then the morphism VT → UT is Galois
and

Gal(M/K) ∼= Gal(VT /UT ).

Therefore, the action of Gal(M/K) on

X•(T ) = HomM (TM ,Gm,M ) (∼= Zr)

induces an action of Gal(VT /UT ) on X•. By proposition 2.2 the Gal(VT /UT )-module
X• corresponds to a unique torus T̃ over UT , split over VT . We first check that (UT , T̃ )
is indeed a model, i.e. T̃ ×UT

Spec K ∼= T . Consider the diagram

T̃
� // X•(T̃ )

T̃_

��

{Tori over U split over V } ∼ //

��

{Gal(V/U) − mod}

≀

��

N_

��
T̃K {Tori over K split over L} ∼ // {Gal(L/K) − mod}. ι(N)

T
� // X•(T )

The right vertical arrow is induced by the isomorphism ι : Gal(L/K)
∼−→ Gal(V/U).

By the construction of T̃ we have X•(T ) = ι(X•(T̃ )) To prove that T̃K = T , it
suffices to show that the above diagram commutes. By this we mean that there exists
a natural isomorphism

ϕ : ι(X•(T̃ )) → X•(T̃K).
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We construct this map as an isomorphism of groups. Let D be a domain and let
r ≥ 0. Then we have an isomorphism of groups Zr ∼−→ Hom(Gr

m,D,Gm,D), given by

(n1, . . . , nr) 7→ ((x1, . . . , xr) 7→
∏r

i=1 xni
i ). By lemma 2.4 we have X•(T̃ ) = HomV (T̃ ⊗

V,Gm,V ) ∼= Zr and X•(T̃K) = HomL(T̃K ⊗ L,Gm,L) ∼= Zr. Hence the following dia-

gram commutes and X•(T̃ ) ∼= X•(T̃K) as groups.

X•(T̃ )
∼ // X•(T̃K)

Zr.

∼

ccGGGGGGGG

∼

;;vvvvvvvvv

The Galois action is compatible. Hence the following diagram is commutative and we
have an isomorphism of the Galois modules ι(X•(T̃ )) and X•(T̃K).

X•(T̃ )

σ

��

∼ // X•(T̃K)

σK

��

X•(T̃ )
∼ // X•(T̃K).

We claim that (UT , T̃ ) is the maximal model.
Suppose that (U ′, T̃ ′) is any other model. Let V ′ → U ′ be a Galois cover such that

T̃ ′ ×U ′ V ′ ∼= Gr
m,V ′ .

Then V ′ is an open subset of Spec OL for some L ⊇ K, and L is a splitting field of T .
So M ⊆ L.

The morphism Spec OL → Spec OK factors through Spec OM . Because V ′ → U ′

is unramified, it factors through VT :

V ′ //

��

VT

��
U ′

⊆ // UT

So U ′ ⊆ UT .
From the argument below lemma 2.6, it follows that

Gal(L/K) ∼= Gal(V ′/U ′),

Gal(M/K) ∼= Gal(VT /UT ).

There is a commutative diagram

Gal(L/K) //

∼=

��

AutAb(HomL(TL,Gm,L)

∼=

��
Gal(V ′/U ′) // AutAb(HomV ′(T̃ ′

V ′ ,Gm,V ′))
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The upper map factors as

Gal(L/K) //

restriction

��

AutAb(HomL(TL,Gm,L))

∼=

��
Gal(M/K) // AutAb(HomM (TM ,Gm,L))

Therefore, the bottom map factors as

Gal(V ′/U ′) //

��

AutAb(HomV ′(T̃V ′ ,Gm,V ′))

∼=

��
Gal(VT /UT ) // AutAb(HomVT

(TVT
,Gm,VT

))

This means that
T̃ ′ ∼= T̃|U ′ .

Definition. Let T be a torus over K. Denote by UT the maximal open subset of
Spec OK which consists of the generic point and all unramified primes in a minimal
splitting field M . For each closed point p ∈ UT , the reduction of T modulo p is

T̃p = T̃ ×UT
Spec κ(p).

We say that T has good reduction at a nonzero prime ideal p ∈ UT if T̃p is a torus over
UT . We say that T has good reduction if it has good reduction at every p. We say that
T has bad reduction at p if p /∈ UT .

Lemma 2.9. Let K be a field of characteristic not equal to 2. For each m ∈ K⋆\(K⋆)2

we define a K-algebra Am = K[u, v]/(u2−mv2−1) and an affine scheme Tm = Spec Am

with the following morphisms:
(i) µ = Spec µ⋆, where µ⋆ denotes the K-algebra homomorphism

µ⋆ : Am → Am ⊗K Am,

u 7→ u ⊗ u + mv ⊗ v,

v 7→ u ⊗ v + v ⊗ u.

(ii) ι = Spec ι⋆, where ι⋆ denotes the K-algebra homomorphism

ι⋆ : Am → Am,

u 7→ u,

v 7→ −v.

(iii) ǫ = Spec ǫ⋆, where ǫ⋆ denotes the K-algebra homomorphism

ǫ⋆ : Am → K,

u 7→ 1,

v 7→ 0.

22



Then Tm is a torus of rank 1 over K for each m. Moreover, if T is an arbitrary torus
of rank 1 over K, then T is isomorphic to Gm,K or to a torus of the form Tm.

Proof. Let m ∈ K⋆\(K⋆)2, and let L be the quadratic field extension L = K(
√

m). Then
tensoring Am with L over K one gets an L-algebra Am ⊗K L = L[u, v]/(u2 −mv2 − 1),
which is isomorphic to the L-algebra L[x, y]/(xy − 1) of the split torus Gm,L. This
isomorphism is given by u 7→ (x + y)/2 and v 7→ (y − x)/(2

√
m). The data (µ, ι, ǫ) are

under this isomorphism in one-to-one correspondence with the (µ, ι, ǫ) of Gm,L. Hence
Tm is group scheme over L since Gm,L is group scheme over L. Moreover Tm is a group
scheme over K since L/K is faithfully flat. We have shown that Tm is isomorphic over
L/K to the split torus Gm,L. Hence Tm is a torus of rank 1 over K.

We compute the Galois module of Tm. Recall that a torus is uniquely determined
by its character group with the action

Gal(L/K) → AutAb(X•(Tm)).

From a previous lemma it follows that X•(Tm) = Z. Hence AutAb(Z) = {±1}. Consider
the generator χ of the character group of Tm given by

χ = Spec (L[x, y]/(xy − 1)
∼−→
χ⋆

Am),

where the L-algebra isomorphism χ⋆ is given by

x 7→ u −
√

mv,

y 7→ u +
√

mv.

The Galois group Gal(L/K) is cyclic of order 2, and the nontrivial element σ sends√
m to −√

m.
We calculate the action of σχ of Gal(L/K) on the character group of Tm. Consider

the diagram

L[x, y]/(xy − 1)
χ⋆

∼
//

σ∼

��

Am,L

σ∼

��
L[x, y]/(xy − 1)

σχ⋆

∼
// Am,L.

Now
σχ⋆(x) = σ(χ⋆(σ−1(x)))

= σ(χ⋆(x))

= σ(u −
√

mv)

= u +
√

mv.

Similarly we see that σχ⋆(y) = u−√
mv. So the nontrivial element of the Galois group

acts on the character group of Tm via multiplication by −1.
Let T be an arbitrary torus of rank 1 over K. Then the character group X•(T ) of

T is isomorphic to Z. The automorphism group of X•(T ) is {±1}. The image of the
map

φ : Gal(Ks/K) → Aut(X•(T ))

giving the action is isomorphic to a quotient of the Galois group. The image must
contain one or two elements since Aut(Z) is a group of order 2. If T splits, i.e. T ∼= Gm,
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then #im(φ) = 1. If T does not split, then #im(φ) = 2. In that case L/K must be a
quadratic field extension, where L = Kker(φ)

s . Let α ∈ L \ K, then α2 + pα + q = 0,
for certain p, q ∈ K. Put β = α + p/2. Then β2 = α2 + pα + p2/4 = −q + p2/4. Note
that L = K(α) = K(β). So β2 = m, with m = (p2 − 4q)/4. Hence L/K is of the form
L = K(

√
m) with m ∈ K⋆ \ (K⋆)2. The Galois group of the splitting field L/K of T is

cyclic of order 2. So the nontrivial element σ of the Galois group acts on the character
group X•(T ) of T by multiplication by −1. Hence T must be isomorphic to a torus of
the form Tm. �

Lemma 2.10. Let K be a field of characteristic 2. For each a ∈ K, a not of the form
b2 + b with b ∈ K, we define a K-algebra Ba = K[x, y]/(x2 + xy + ay2) and an affine
scheme Ta = Spec Ba with the following morphisms:
(i) µ = Spec µ⋆, where µ⋆ denotes the K-algebra homomorphism

µ⋆ : Ba → Ba ⊗K Ba,

x 7→ x ⊗ x + ay ⊗ y,

y 7→ x ⊗ y + y ⊗ x + y ⊗ y.

(ii) ι = Spec ι⋆, where ι⋆ denotes the K-algebra homomorphism

ι⋆ : Ba → Ba,

x 7→ x + y,

y 7→ y.

(iii) ǫ = Spec ǫ⋆, where ǫ⋆ denotes the K-algebra homomorphism

ǫ⋆ : Ba → K,

x 7→ 1,

y 7→ 0.

Then Ta is a torus of rank 1 over K for each a. Moreover, if T is an arbitrary torus of
rank 1 over K, then T is isomorphic to Gm,K or to a torus of the form Ta.

Proof. The proof goes along the same lines as above. �
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3 MAIN THEOREM

◮ Result

We state here the main theorem of this Master’s thesis.

Theorem 3.1. Let T be a one-dimensional torus defined over a number field K, and
let λ be a point in T (K). Assume furthermore that λZ is Zariski-dense in T , i.e. λZ is
infinite. Then the set

S = {n ∈ Z> 0 : ∄ prime ideal p of OK such that n = order(λ mod p)}

is finite.

We will provide a proof of the main theorem at the end of this chapter. In the next
section we consider the theorems of Zsigmondy and Schinzel since they are related to
the main theorem.

◮ Theorem of Zsigmondy

Let a, b be relatively prime integers with |a| > |b| > 0. A prime is called a primitive
prime divisor of an−bn if it divides this number but does not divide ak−bk for 0 < k < n.
A. Bang [3] proved in 1886 that there exists a constant M > 0 such that for each non-
zero rational number x, x 6= ±1, and every integer n > M , there exists a prime number
p such that the order of x modulo p equals n. In 1892, K. Zsigmondy stated and proved
a stronger version [35].

Theorem 3.2. [Zsigmondy] Let a, b be coprime integers with a > b > 0. Then for
n > 1 an − bn has always a primitive prime divisor unless
(i) a = 2, b = 1 and n = 6; or
(ii) a + b = 2k for some integer k and n = 2.

Proof. Zsigmondy [35].

We state the analogue of Zsigmondy’s theorem in algebraic number fields.

Theorem 3.3. [Schinzel] Let K be an algebraic number field, A, B integers of K such
that (A,B) = 1, AB 6= 0, and A/B of degree d is not a root of unity. Then for every
d ∈ Z>0, there exists a constant n0(d) such that for n > n0(d), An − Bn has a prime
ideal factor that does not divide Am − Bm for m < n.

Proof. Schinzel [26]. Note that the theorem is best possible up to the order of the
function n0(d); an absolute constant cannot be expected since for A = d

√
2, B = 1, Ad−

Bd = 1 has no primitive divisor.

◮ Height functions and absolute values

In this section we present a brief introduction to height functions and valuations.
We only state results that we need in the next section in which we prove —using
heights— a special version of the theorem of Zsigmondy. A good reference to the theory
of height functions is Hindry and Silverman [15]. For more details about valuations and
algebraic number theory in general we refer to Neukirch [22] or Cassels and Fröhlich
[7].

25



An absolute value on a number field K is a function

| · | : K → R≥0

x 7→ |x|

satisfying the following properties
(i) |x| = 0 ⇔ x = 0,
(ii) |xy| = |x| · |y| for all x, y ∈ K,
(iii) ∃α > 0 such that for all x, y ∈ K, |x + y|α ≤ |x|α + |y|α,
(iv) ∃x0 ∈ K with |x0| 6= 0, |x0| 6= 1.

An absolute value | · | on K is called non-archimedean if (iii) can be replaced by
the stronger inequality

|x + y| ≤ max(|x|, |y|) for x, y ∈ K;

otherwise it is called archimedean.
Two absolute values | · |1 and | · |2 on K are called equivalent if there is α > 0

such that for x ∈ K, |x|2 = |x|α1 . An equivalence class of absolute values on K is called
a place of K. A place is called infinite if it consists of archimedean absolute values,
and finite otherwise. We denote by MK the collection of places of K. Note that an
absolute value | · | on K induces a Hausdorff topology on K in which a basis for the
neighbourhoods of x is given by the sets {y ∈ K : |y − x| < r}, for x ∈ K and r > 0.
Two absolute values on K are equivalent if and only if they induce the same topology.
Similarly to the construction of R from Q, we can construct the completion of K with
respect to an absolute value | · |, and | · | can be extended to a continuous absolute value
on the completion. Equivalent absolute values give rise to the same completion, and
therefore it makes sense to speak about the completion of K at a place. The completion
of K at a place v is denoted by Kv. We mention that if v is infinite then Kv

∼= R or C.
Let K = Q. We have on Q an archimedean absolute value given by

|x|∞ = max{x,−x}.

Further, for every prime number p we have the p-adic absolute value given by

|x|p = p−ordp(x), x ∈ Q⋆, |0|p = 0,

where ordp(x) is the unique integer such that

x = pordp(x) · a

b
, a, b ∈ Z, p 6 | ab.

Note that ordp (with the convention ordp(0) = ∞) defines a discrete valuation on Q.
By a theorem of Ostrowski (Neukirch [22]) every absolute value on Q is equivalent to
either | · |∞ or | · |p for some prime p. Thus we may identify MQ with {∞}∪ {primes}.

Now let K be any algebraic number field. Let K ′/K be an extension of number
fields, and let v ∈ MK , and w ∈ MK′ , we write w|v if the restriction of w to K is v.
For v ∈ MK , let | · |v be the absolute value in v extending one of the absolute values
| · |∞, | · |p (p primes) on Q defined above, and define the normalized absolute value
|| · ||v by

||x||v = |x|nv
v forx ∈ K,

where nv is the local degree of v and is equal to [Kv : Qv].
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Proposition 3.4. Let K ′/K be an extension of number fields.
(i) (Degree formula) For each place v of K we have

∑

w∈MK′ ,w|v

[K ′
w : Kv] = [K ′ : K].

(ii) (Product formula) For any x ∈ K⋆ we have
∏

v∈MK

||x||v = 1,

where || · ||v is the normalized absolute value and ||x||v = |x|nv
v .

Proof. Neukirch [22] for (i) chapter III, §1 and Hindry [15] for (ii), proposition B1.2,
§B.1. �

Let K be any number field, and let MK be its set of places. Let P = (x0 : . . . :
xn) ∈ Pn(K) be a rational point in the n-dimensional projective space over K. We
want to measure the size of P . Therefore we define the height of P ∈ Pn(K) relative
to K by

HK(P ) =
∏

v∈MK

max{||x0||v, ||x1||v, . . . , ||xn||v}.

If we take the logarithm of HK(P ), then we have the logarithmic height hK(P ). We
define v(·) = log | · |v. We write

hK(P ) = log HK(P ) =
∑

v∈Mv

−nvmin{v(x0), v(x1), . . . , v(xn)}.

The height function of P is well-defined on K. It is independent of the choice of homo-
geneous coordinates. To see that we only have to apply the product formula mentioned
above. The next lemma will enable us to define a height function that is independent
of the field.

Lemma 3.5. Let K ′/K be a finite extension of number fields. then

HK′(P ) = HK(P )[K
′:K].

Proof. This follows easily if we apply the degree formula to calculate the height. �

We define the absolute multiplicative height H on Pn(Q) as follows: given P ∈
Pn(Q), take any number field K such that P ∈ Pn(K) and put

H(P ) = HK(P )
1

[K:Q] .

Then define the absolute logarithmic height or Weil height h : Pn(Q) → R≥0 by

h(P ) = log H(P ).

The height function h is invariant under the action of the Galois group Gal(Q/Q), i.e.
if P ∈ Pn(Q) and σ ∈ Gal(Q/Q), then H(σ(P )) = H(P ).

Example. Let P be a rational point ∈ Pn(Q). Then P = (x0 : x1 : . . . : xn),
where x0, x1, . . . , xn ∈ Z and gcd(x0, x1, . . . , xn) = 1. The height of P is H(P ) =
max{|x0|, . . . , |xn|}.
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◮ Special version of Zsigmondy’s theorem

Theorem 3.6. Let α ∈ Q⋆, α 6= ±1. Then for all but finitely many n ∈ Z> 0, there is
a prime p such that the order of α modulo p is exactly n.

Remark. In the proof below, we used suggestions by dr. Jan-Hendrik Evertse.
Proof. The absolute height function H defined above on P1(Q) becomes

H(x0 : x1) =
∏

p∈MQ

max(|x0|p, |x1|p), for (x0;x1) ∈ P1(Q).

For every automorphism A of P1 defined over Q there are constants C1, C2 > 0 de-
pending only on A such that

C1H(P ) ≤ H(AP ) ≤ C2H(P ),

for all P ∈ P1(Q), see Corollary 5.8, chapter VIII in [27]. In particular there are C1, C2

such that

C1H(x0:x1) ≤ H(x0 + x1:x1) (1)

≤ C2H(x0:x1).

Now on Gm(Q) = Q⋆ we define the height functions

h(α) = log(H(α−1: 1))

= log(H(1 : α))

and
g(α) = h(α − 1).

By (1) we know that |g − h| ≤ C for some constant C. Note that

h(α) = log(max{1, |α−1|}) +
∑

p

log(max{1, |α−1|p})

and

h∞(α) = log(max{1, |α−1|}) = max{0,− log |α|}
hp(α) = log(max{1, |α−1|p})

= max{0, log(p) ordp(α)},

for every prime p. Hence

h(α) = h∞(α) +
∑

p

hp(α).

We also set
vp(α) = log(p) ordp(α) ∈ log(p)Z.

Similarly, with

g∞(α) = h∞(α − 1) and gp(α) = hp(α − 1), (pprime)
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we have

g(α) = g∞(α) +
∑

p

gp(α)

= max{0,− log |α−1|p} + max{0, log(p) ordp(α − 1)}

Note that for every prime p we have:

gp(α) > 0 ⇔ ordp(α − 1) > 0.

A simple calculation shows that h(αn) = nh(α). We now want to know g(αn). Therefore
we state and prove the following lemma.

Lemma 3.7. Let p be a prime number, and let α ∈ Zp = {α ∈ Q|ordp(α) ≥ 0}.
Furthermore let n be a positive integer. If p > 2 and ordp(α − 1) ≥ 1 or if p = 2 and
ordp(α − 1) ≥ 2, then

gp(α
n) = gp(α) + vp(n).

Proof. It suffices to prove the lemma for n a prime number, since we can write each
integer uniquely as a product of primes. Write α = β + 1. Then ordp(β) ≥ 1 if p > 2
and ordp(β) ≥ 2 if p = 2. Now

αn = (1 + β)n = 1 + nβ +

(

n

2

)

β2 + . . . +

(

n

n − 1

)

βn−1 + βn = 1 + γn.

If n 6= p, then ordp(α
n − 1) = ordp(β). If n = p, then ordp(γn) > ordp(nβ). So

ordp(α
n − 1) = ordp(nβ) = ordp(β) + 1. Hence in all cases

ordp(α
n − 1) = ordp(α − 1) + ordp(n),

which translates into gp(α
n) = gp(α) + vp(n). �

The theorem holds for α if and only if it holds for α−1. So, replacing α by α−1 if
necessary, we may assume that |α| > 1. Then log(|αn|) > 0, so h∞(αn) = 0. Also for
n ≫ 0, we have |αn − 1| > 1, so g∞(αn) = 0.

Therefore, for n ≫ 0,

g(α) =
∑

p∈{primes}

gp(α) and h(α) =
∑

p∈{primes}

hp(α).

Let {q1, . . . , qr} be the set of primes dividing n. Suppose that n does not occur as
the order of α for a prime p. Then for every prime p, there is qi ∈ {q1, . . . , qr} such
that αn/qi ≡ 1 mod p which is equivalent to gp(α

n/qi) > 0. Without loss of generality
we may assume that {q1, . . . , qs} are the primes among {q1, . . . , qr} such that for each
qi ∈ {q1, . . . , qs} there is a prime p with αn/qi ≡ 1 mod p. First we assume that n is
odd or n is even and ord2(α − 1) ≥ 2.
Claim:

gp(α
n) =

r
∑

i=1

gp(α
n
qi ) −

∑

1≤ i< j≤ r

gp(α
n

qiqj )

+ . . . + (−1)r−1gp(α
n

q1...qr ).
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We have for any distinct primes qi1 , . . . , qir
dividing n,

gp(α
n) = gp(α

n
qi1

...qir ) + vp(qi1 . . . qir
).

So

gp(α
n) =

(

s

1

)

gp(α
n) −

(

s

2

)

gp(α
n) + . . . + (−1)s

(

s

s

)

gp(α
n)

=
s

∑

i=1

( gp(α
n
qi ) + vp(qi) ) −

∑

1≤i1<i2≤s

( gp(α
n

qi1
qi2 ) + vp(qi1qi2) )

+ . . . + (−1)s( gp(α
n

q1...qs ) + vp(q1 . . . qs) )

=
s

∑

i=1

gp(α
n/qi) −

∑

1≤ i1< i2 ≤s

gp(α
n

qi1
qi2 ) + . . . + (−1)s−1gp(α

n
q1...qs ).

The claim follows since the other terms are 0. Using the claim, summing over all
p,

g(αn) =
∑

q|n

g(α
n
q ) −

∑

q1,q2|n

g(α
n

q1q2 )

+ . . . + (−1)rg(α
n

q1...qr ).

This implies that for some constant C > 0,

h(αn) − C ≤
∑

q|n

h(α
n
q ) −

∑

q1,q2|n

h(α
n

q1q2 )

+ . . . + (−1)rh(α
n

q1...qr )

+ 2ω(n)C.

Hence

nh(α) − C ≤
∑

q|n

n

q
h(α) −

∑

q1,q2|n

n

q1q2
h(α)

+ . . . + (−1)r n

q1 . . . qr
h(α)

+ 2ω(n)C.

So


n − n
∑

q|n

1

q
+ n

∑

q1,q2|n

1

q1q2
+ . . . + (−1)rn

1

q1 . . . qr



h(α) ≤ C(2ω(n) + 1).

Hence


n
∏

q|n

(1 − 1

q
)



 h(α) ≤ C(2ω(n) + 1).
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Now
∏

q|n

(1 − 1

q
) = φ(n)/n ≥ C ′

log log n
, 2ω(n) ≤ eC

′′ log n
log log n ,

for some constants C
′

, C
′′

> 0, see Hardy and Wright, Introduction to the Theory of
Numbers. So

C ′ n

log log n
h(α) ≤ e

C
′′

log n
log log n .

Since α 6= ±1, we have h(α) > 0. Hence n is bounded.
There remains the case that n is even and ord2(α − 1) = 1. Put n = 2n′ and

α′ = α2. Then ord2(α
′ − 1) ≥ 3 and by applying the above argument to α′, n′ instead

of α, n we obtain that n′ is bounded.

◮ Proof of the main theorem

We first consider the case K = Q.

Lemma 3.8. Let T be a torus over Q isomorphic to the multiplicative group Gm, and
let λ ∈ T (Q) be such that λZ is Zariski-dense in T. Then the set

{n ∈ Z≥0 | there is no prime p such that the order of λ in F⋆
p is n}

is finite.

Proof. Let λ ∈ Gm(Q) = Q⋆ with λ /∈ {±1}. Write λ = a/b with a, b ∈ Z and
gcd(a,b)=1. Note that λm ≡ 1(mod p) if and only if am − bm ≡ 0(mod p). Let n be a
sufficiently large positive integer. Then by theorem 3.6 there is a prime qn which divides
an − bn but does not divides am − bm for 1 ≤ m < n. Hence,

λn ≡ 1 (mod qn)

and

λm 6≡ 1 (mod qn) for 1 ≤ m < n.

But this just means that the order of λ in F⋆
qn

is n. Therefore the set

{n ∈ Z≥1 | there is no prime p such that the order of λ in F⋆
p is n}

is finite.

We now prove the main theorem.
Proof of the main theorem. Let T be a one-dimensional torus defined over K and L
the splitting field of T . Let U be the biggest open subset of Spec OK above which L is
unramified. Note that U exists since there are finitely many primes above which a finite
extension of number fields ramifies. Let T̃ be the unique torus defined over U such that
T̃K = T̃ ×U Spec K ∼= T . Let V := U ×Spec OK

Spec OL, i.e. V consists of all primes of
OL lying over U . By definition of U and V , the diagram

V

�

��

⊆ // Spec OL

��
U

⊆ // Spec OK
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is cartesian. We know that T̃ ×U V ∼= Gm,V , by theorem 2.7, since T̃ is a model of
TL

∼= Gm,L. Let q be a prime ideal of OK . Then for any prime ideal p of OL with
q = p ∩ OK , we have a commutative diagram

OK

incl.

��

// OK/q

��
OL

// OL/p

Applying the Spec-functor reverses the arrows. So we have

Spec OL/p

��

�

�

// V

��

⊆ // Spec OL

��
Spec OK/q

�

�

// U
⊆ // Spec OK

We reduce T modulo q, a prime of OK . That is by definition

T̃q = T̃ ×Spec OK
Spec OK/q.

Now consider what happens if we change base by Spec OL/p to Spec OK/q, then we
have

T̃q ×Spec OK/q Spec OL/p ∼= (T̃ ×U V ) ×V Spec OL/p

∼= Gm,V ×V Spec OL/p

∼= Gm,OL/p.

Hence
T̃q(OK/q) ⊆ T̃q(OL/p)

= T̃q ×Spec OK/q Spec OL/p(OL/p)

∼= Gm,OL/p(OL/p).

Let λ ∈ T (K) = T̃ (K). Then λ ∈ Gm,V (L), since

T̃ (K) ⊆ T̃ (L)

= (T̃ ×U V )(L)

= Gm,V (L).

By Schinzel’s theorem there is a prime ideal p of OL such that

n = order( λ ∈ (T̃ ×U V )p(OL/p) )

= order( λ ∈ (T̃q ×Spec OK/q Spec OL/p) (OL/p) )

= order( λ ∈ T̃q(OK/q) ),

where q = p ∩ OK .
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Mathematik und ihrer Grenzgebiete, vol. 21, 1990.

[6] Y. Bugeaud, P. Corvaja, U. Zannier, An upper bound for the G.C.D. of an−1 and
bn − 1, Math. Z. 243 (2003), 79–84.

[7] J. W. S. Cassels, Global fields, Algebraic number theory, J. W. S. Cassels and A.
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