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Chapter 1

Introduction

In this masters thesis we will be concerned with the topology of isolated singular points on

complex hypersurfaces. As the name suggests, this is a meeting point of two different areas of

mathematics, namely algebraic topology and algebraic geometry.

On the side of algebraic geometry there are plane algebraic curves, objects which have been

studied for centuries. These studies include the classification of the possible singular points on

an algebraic curve. One can distinguish between local concepts, such as the order of the singular

point and the number of distinct tangents to it on the one hand, and global concepts, such as

the maximum number of singular points of a certain type. We will only be interested in the

local questions.

The introduction of topological methods to study this algebraic situation dates from the

beginning of the 20th century. In the historical overview given in [Dur99] it is explained that at

the time there was interest in studying complex algebraic surfaces. In the easier case of complex

algebraic curves, or Riemann surfaces, one standard device is to present them as coverings of

the Riemann sphere, ramified over a few isolated points, called the discriminant locus of the

covering. In the neighbourhood of an element of the discriminant locus, the situation is easy to

understand and visualize: locally the projection is just z 7→ zn for some integer n.

One can carry out a similar construction for algebraic surfaces by describing them as cov-

erings of the complex plane. Then the discriminant locus becomes a complex curve. In the

neighbourhood of the smooth points of this curve, the situation was understood, so the atten-

tion turned to the singular points of this discriminant curve. Brauner (see [Bra28]) studied this

situation by considering the intersection of the discriminant curve with a small 3-sphere in C2

centered around a singular point on the discriminant curve. This intersection is a knot in S3,

and studying the fundamental group of the complement of this knot gives information about

the local branching of the surface under consideration above the singular point.

It thus became important to understand the possible knots that can arise in this way. In his

paper, Brauner carried out the construction described in Chapter 4, showing how to construct

the iterated torus knots when given the equation of the curve. This used the recently developed

methods of algebraic topology to calculate the fundamental groups of the complements of the

knots.

Shortly thereafter, Kähler ([Käh29]) gave a much simpler way to derive the same results, by

1



2 CHAPTER 1. INTRODUCTION

using a polydisk instead of a sphere. The benefits of using this approach is described in Chapter

4. The final result stated in that chapter, about the equivalence of the Puiseux pairs and the

corresponding knot, follows from subsequent work done by Zariski [Zar32] and Burau [Bur32].

The case described in Chapter 2 is a generalization of the above. There are of course

many ways to generalize. Instead of algebraic curves one considers algebraic sets of arbitrary

dimension. One considers only the case where the algebraic set is a hypersurface, in other words,

given by a single equation. Finally, one restricts to the case of an isolated singular point.

For this case, Milnor ([Mil68]) introduced the Milnor fibration. One considers a small sphere

Sε
∼= S2n−1 in Cn centered around the critical point, and then intersect this sphere with the

hypersurface to find a link K in S2n−1. The way that K is embedded in S2n−1 gives information

about the singular point. To study this, Milnor constructed a fibration of S2n−1 \K over S1.

In Chapter 2 we explain this construction, relying heavily on Milnor’s book [Mil68].

The fiber of this fibration is called the Milnor fiber of the singularity. Invariants of the

singularity can be computed by just considering the topology of the Milnor fiber. The simplest

invariant is called the Milnor number of the singularity, and can be defined as the middle Betti

number of the Milnor fiber. In Chapter 3 we derive some topological properties of this fiber,

and define some of the associated invariants.

The method used is that of applying a perturbation to a function, i.e. changing it a little bit

so that the complicated critical point splits up into many simple ones. It is important to point

out that we do not make any mention of the most common method of studying singularities,

namely that of finding a resolution of the singularity. We also do not go into the details of the

analytic geometric background, which is necessary if one is to make a more algebraic study of

singularities. This theory can be found in [BK86] for example.

The material described in this thesis is quite established by now. More recently, people have

considered the cases where some of the hypotheses are relaxed. For instance, see [Loo84] for an

investigation into the case of isolated complete intersection singularities (i.e. no longer just on

hypersurfaces). Also see the work of Siersma (for example [Sie01]) for the case of non-isolated

singularities.



Chapter 2

The Milnor fibration

2.1 Some definitions

Before starting, let us recall some basic definitions of objects that will be used throughout. We

will use the concepts of algebraic sets (real or complex) as well as smooth manifolds, as well as

functions defined on such objects.

For smooth manifolds, it will be important to distinguish between regular and critical points

of real-valued functions. A critical, or singular point is simply a point where the differential of

the function is not surjective. A regular point is a point which is not critical. And a critical

value is simply the image of a critical point. In the same way we can define regular and critical

points and values of complex analytic functions on complex manifolds.

For algebraic sets, let’s start by letting K denote either R or C. Then an algebraic set

V ⊂ Kn is the vanishing set of a finite set of polynomials f1, . . . , fr ∈ K[x1, . . . , xn]. We can

assume that these polynomials form a set of generators for the ideal I(V ), where I(V ) denotes

the set of polynomials in K[x1, . . . , xn] which vanish on V . Now consider the matrix ( ∂fi

∂xj
)

evaluated at any point of V . Let ρ be the maximal rank attained by this matrix on V . Then a

point x of V is said to be regular if the matrix ( ∂fi

∂xj
) attains this maximal rank at x, otherwise

the point is said to be singular.

2.2 Introducing the main object of study

Our starting point will be a complex hypersurface. This is the vanishing set V (f) ⊂ Cn of

a polynomial f ∈ C[z1, . . . , zn]. We can and will assume f to be square-free throughout the

thesis. We are interested in what V (f) looks like in the neighbourhood of a point x ∈ V (f).

We consider not only the topology of V (f) in a neighbourhood of x, but also the way in which

it is embedded into Cn. Let g ∈ C[z1, . . . , zn], and define x ∈ V (f) and y ∈ V (g) to be

topologically equivalent, if there exists neighbourhoods U and W of x and y respectively, and

a homeomorphism φ : U → W such that φ(V (f) ∩ U) = V (g) ∩W . In other words, if the pair

(U, V (f) ∩ U) is homeomorphic to (W,V (g) ∩W ).

If x is a regular point, then the situation is simple: By the implicit function theorem x is

topologically equivalent to any point on the hypersurface in Cn defined by the equation z1 = 0.

3



4 CHAPTER 2. THE MILNOR FIBRATION

Thus the interesting case is when x is a singular point. We will restrict our attention to the case

where x is an isolated singular point, although many of the theorems will be valid for the more

general case.

2.3 The conical structure

In order to facilitate comparing different singular points, we restrict the neighbourhood U of x

to always be an open ball Bε of radius ε, centred at x. For simplicity, we take x to be the origin

from now on. Then it will follow from theorem 2.3.4 proved below, that for a given singular

point (at the origin), there exists some ε > 0 such that (Bε, V (f) ∩ Bε) is homeomorphic to

(Bε′ , V (f) ∩Bε′) for any 0 < ε′ < ε.

We will then make a further simplification, and show that we can restrict ourselves to the

boundary of the ball, Sε = δBε. The aim of this section is then to prove that two singular

points are topologically equivalent precisely if the pairs (Sε, V (f) ∩ Sε) and (Sµ, V (g) ∩ Sµ) are

homeomorphic for ε, µ > 0 small enough.

First, some basic facts about algebraic sets will be needed recalled (for the proofs, see [Mil68]):

Let V be a non-empty algebraic set in Rn or Cn.

Lemma 2.3.1. The set Vs of singular points of V is also an algebraic set which is strictly

contained in V .

Theorem 2.3.2. The set V \ Vs of non-singular points of V forms an analytic manifold.

Theorem 2.3.3. Let x ∈ V be a non-singular point, or an isolated singular point. Then there

exists an ε > 0 such that Sε′ intersects V transversally, and hence in a smooth manifold for all

0 < ε′ ≤ ε.

Now for the theorem about the conical structure around the singular point.

Theorem 2.3.4. Let V be a real or complex algebraic set as before, and let x ∈ V be a non-

singular point or an isolated singular point. Then there exists an ε > 0 such that the pair

(Bε, V ∩Bε) is homeomorphic to the pair (C(Sε), C(V ∩Sε)), where C(X) denotes the cone over

X.

Proof. Start by choosing ε > 0 small enough so that V ∩ Bε contains no singular points other

than (possibly) x, and such that Sε′ intersects V transversally for all ε′ ≤ ε. Let r be the

polynomial function defined by r(y) = ||y − x||2. Let y ∈ Sε. Then ker(dr(y)) = TySε (since Sε

is a level-set of r) and thus the transversality condition means precisely that y is a regular point

of r restricted to V . This will be used later on.

Recall that ifX is a topological space, then the cone overX, denoted by C(X), is constructed

by forming the product X × [0, 1] and identifying X × {0} to a point. In the present context it

has a concrete interpretation: If we denote V ∩ Sε by K, then C(K) is simply the set of lines

joining x with points of K. Thus C(Sε) is simply Bε.

The idea of the proof is to construct a smooth vector field v on Bε \ {x} such that the lines

in the cone just referred to will correspond to the solution curves of v and each solution curve
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will have exactly one point on Sε. The vector field will have the following two properties: The

vector v(y) will point away from x for all y, in the sense that the inner product 〈v(y), y − x〉

will always be strictly positive. Furthermore, letting Vr := V \ Vs denote the regular part of V ,

then v(y) will be tangent to Vr whenever y is in Vr.

First we construct v locally. Given any point yα ∈ Bε \ {x}, we will construct a vector field

vα in a neighbourhood Uα of yα satisfying the above two properties.

If yα /∈ V , then let Uα be a neighbourhood of yα such that Uα∩V = ∅, and let vα(y) = y−x.

If yα does belong to V , and hence to Vr, then choose local coordinates u1, . . . , un around yα

so that Vr corresponds to u1 = · · · = uk = 0 around yα. This implies that the tangent vectors
∂

∂uk+1
(yα), . . . , ∂

∂un
(yα) span the tangent space of Vr at yα. But yα being a regular point of r|Vr

implies that at least one of these tangent vectors, say ∂
∂uh

(yα) does not lie in the kernel of dr(yα),

i.e. ∂r
∂uh

is not zero at yα. Now let Uα be a small connected neighbourhood of yα in which ∂r
∂uh

is

non-zero. For y ∈ Uα, define vα(y) = ± ∂
∂uh

(y) = ±( ∂y1

∂uh
, . . . , ∂yn

∂uh
), choosing + if ∂r

∂uh
is positive,

otherwise choosing −. If y ∈ Uα ∩V then since vα(y) is a tangent vector to the coordinate curve

uh lying entirely in Vr, it follows that vα(y) must be tangent to Vr.

For the other condition, note that r(y) = (y1−x1)
2 + · · ·+(yn−xn)2, hence ∂r

∂yi
= 2(yi−xi).

So

2〈vα(y), y − x〉 =
n
∑

i=1

2(yi − xi)(vα)i

=
n
∑

i=1

∂r

∂yi

(

±
∂yi

∂uh

)

= ±
∂r

∂uh

which is positive for all y ∈ Uα.

Now let {λα} be a partion of unity on Bε, such that the support of λα is contained in Uα.

Then define the vector field v on Bε \ {x} by

v(y) =
∑

α

λα(y)vα(y).

The vector field v has the two required properties, but we would like solution curves of the

vector field to all take the same time in moving from x to a point on the boundary of Bε. This

can be done by normalizing the vector field:

w(y) =
v(y)

〈2(y − x), v(y)〉
.

Now look for solutions p(t) of the differential equation dy
dt = w(y). Such solutions must exists

locally (see [Hur58]) and are unique: If y0 ∈ Bε \ {x}, then there is some interval (α, β) in R

containing t0 and a solution p(t) defined on this interval with p(t0) = y0. (To avoid problems if

y is on the boundary of Bε, we can assume that the original vector field was constructed on a

slightly larger ball, say Bε′ with ε′ > ε.)
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Consider the function r(p(t)). The normalization was chosen in order to give:

dr

dt
=

n
∑

i=1

∂r

∂yi

dyi

dt

=
n
∑

i=1

2(yi − xi)wi(y)

= 〈2(y − x), w(y)〉

= 1,

where p(t) = y. Thus r(p(t)) = t + c, for some constant c. By translating the interval of

definition, we can assume that c = 0. So the solution p(t) is defined on some interval (α, β)

contained in the interval (0, ε′2) (since 0 < r(p(t)) < ε′2). We would like to show that the

solution can actually be extended to be defined on an interval (0, β ′), where β′ > ε2.

Using Zorn’s lemma, the solution can be extended to a maximum open interval (α′, β′).

Suppose α′ > 0. Let (tn)n≥1 be a sequence in (α′, β′) converging to α′. Then the corresponding

sequence (p(tn))n≥1 will have a limit point in the compact set Bε′2 , call it y0. Since r(p(t)) = t,

we have r(y0) = α′ > 0. Hence y0 ∈ Bε′2 \ {x}, and w is a smooth vector field around y0.

Then (see [Mil68, p.21]) there exists a neighbourhood W of y0 and an interval I around

α′ such that for any y1 ∈ W and t1 ∈ I, there exists a unique solution q(t) to the differential

equation satisfying the initial condition q(t1) = y1. Now pick a point t2 ∈ I ∩ (α′, β′), let

y2 = p(t2), and let q(t) be the unique solution satisfying q(t2) = y2. Then by uniqueness, p(t)

and q(t) must coincide on the interval I ∩ (α′, β′). Hence we can extend p(t) to be defined on

the larger interval I ∪ (α′, β′), contradicting the maximality of (α′, β′). Thus α′ = 0. Similarly

it can be shown that β′ = ε′2 > ε2.

Note that the solution p(t) on (0, ε2] is uniquely determined by its value p(ε2) ∈ Sε. So we can

define a function P (t, y) on (0, ε2]×Sε by setting P (t, y) = p(t) where p(t) is the unique solution

curve starting at y ∈ Sε. Then P maps (0, ε2] × Sε diffeomorphically onto Bε \ {x}. (The fact

that the mapping is smooth follows for example from [Lan72, p.80], and by reversing the vector

field one sees that the inverse of the mapping is also smooth, hence it is a diffeomorphism.)

Furthermore, since solution curves which start on V , remain on V , P maps (0, ε2] × K onto

V ∩ (Bε \ {x}) (recall that K = V ∩ Sε)).

The function P (t, y) tends uniformly to x as t tends to 0 since r(P (t, y)) = t. Thus we can

extend P to a mapping from C(Sε) to Bε, which restricts to a mapping of C(K) to V ∩Bε.

2.4 The curve selection lemma

Before we can prove the theorem about the Milnor fibration, we need a rather technical lemma,

called the curve selection lemma by Milnor (see [Mil68]).

Lemma 2.4.1. Let V ⊂ Rn be a real algebraic set, and let U ⊂ Rn be an open set defined by

finitely many polynomial inequalities:

U = {x ∈ Rn | g1(x) > 0, . . . , gm(x) > 0}.
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If the origin of Rn is contained in the closure of U ∩V , then there exists a real analytic curve

γ : [0, δ) → Rn with γ(0) = 0 and γ(t) ∈ U ∩ V for t > 0.

Remark: the origin is contained in V . We can also assume it is not contained in U , since

otherwise the constant curve γ(t) = 0 will satisfy the requirements of the theorem. It follows

that 0 is not an isolated point of V .

Proof. The proof starts by induction on the dimension of V to reduce to the case where the

dimension of V is 1. We will repeatedly make use of the fact that an algebraic set which is

properly contained in an irreducible algebraic set (i.e. a variety) of dimension say n − l, has

dimension strictly lower than n− l. The idea is then to replace V with an algebraic set of lower

dimension which still satisfies the hypotheses of the lemma.

Firstly we note that we can assume V to be irreducible, since if it is not, then it can be

replaced by an irreducible component passing through the origin.

Next, if we let Vs denote the set of singular points of V , then we can assume that the origin

does not lie in the closure of Vs ∩ U . Because if it does, then we can replace V by Vs, which is

a proper algebraic subset of V and hence has lower dimension. Hence there is a neighbourhood

of the origin in which U does not contain any singular points of V .

Denote the dimension of V by n− l, and let the polynomials f1, . . . , fk be generators of the

ideal I(V ). We can consider the one-forms dfi ∈ T ∗Rn and specifically the co-tangent vectors

dfi(x) ∈ T ∗
xRn. For a point x ∈ V , x is a singular point precisely if

rank(span{df1(x), . . . , dfk(x)}) < l.

If W is a subspace of

T ∗
x Rn ∼= (TxRn)∗

then let W⊥ denote the subspace of Rn on which all the elements of W vanish.

Define the following functions:

r(x) = ||x||,

g(x) = g1(x)g2(x) · · · gm(x)

and let V ′ ⊂ V be the set of x for which

rank(span{df1(x), . . . , dfk(x), dr(x), dg(x)}) ≤ l + 1.

Now to apply the idea explained at the beginning of the proof of replacing V with V ′, we

just have to verify that V ′ satisfies the hypotheses.

The first step is to show that 0 is in the closure of U ∩V ′. Since 0 is in the closure of U ∩V ,

we can choose an arbitrary small ε > 0 such that Sε contains points of U ∩V . Then consider the

compact set K consisting of x ∈ V ∩ Sε such that g1(x) ≥ 0, . . . , gm(x) ≥ 0. Since the function

g is continuous, it must attain a maximum value at some point of K, say at x′. Now for any

point y in the non-empty set U ∩V ∩Sε, we have gi(y) > 0 for all i, hence y ∈ K, and g(y) > 0.

Thus g(x′) ≥ g(y) > 0, so x′ ∈ U .
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It remains to be shown that x′ ∈ V ′. By the result of the previous section, we can assume

that Sε intersects U ∩ V transversally. This means that

TxV * TxSε

for any x in U ∩V ∩Sε, using the fact that around such a point U ∩V is a smooth manifold.

But

TxV = ∩i ker dfi(x) = (span{df1(x), . . . , dfk(x)})
⊥ and

TxSε = ker dr(x),

hence

(span{df1(x), . . . , dfk(x)})
⊥ * ker dr(x)

or equivalently,

dr(x) /∈ span{df1(x), . . . , dfk(x)}.

It follows that

rank(span{df1(x), . . . , dfk(x), dr(x)}) = l + 1.

Next we consider the function g restricted to the smooth manifold U ∩V ∩Sε. The function

g|U∩V ∩Sε
attains a maximum at x′, hence it has a critical point at x′. This means precisely that

Tx′(V ∩ Sε) ⊂ ker dg(x′).

Following the same reasoning as above, it follows that

dg(x′) ∈ span{df1(x), . . . , dfk(x), dr(x)}

and hence

rank(span{df1(x
′), . . . , dfk(x

′), dr(x′), dg(x′)}) = l + 1

which means that x′ ∈ V ′.

Thus now we can replace V by V ′. But this will lower the dimension only if V ′ 6= V . In the

case where V ′ = V we can repeat the above construction using the function xig(x) in the place

of g(x), where x = (x1, . . . , xn). Let V ′
i be the set of all x ∈ V such that

rank(span{df1(x), . . . , dfk(x), dr(x), d(xig)(x)}) ≤ l + 1.

Then a similar argument as above shows that 0 ∈ U ∩ V ′
i . Thus we can replace V by one of

the V ′
i ’s. This will work unless V = V ′ = V ′

1 = · · · = V ′
n. The claim is that this can only happen

if the dimension of V is 1.

Using what was done above, we can choose a point x′ in U ∩ V such that

rank(span{df1(x
′), . . . , dfk(x

′), dr(x′), dg(x′)}) = l + 1.
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If V = V ′, then x′ ∈ V ′, hence dg(x′) must belong to the l + 1-dimensional vector space

span{df1(x
′), . . . , dfk(x

′), dr(x′), dg(x′)}. Similarly, if V = V ′
i , then d(xig)(x

′) must belong to

this vector space. Using the identity d(xig) = (dxi)g + xi(dg) and the fact that g(x′) 6= 0, it

follows that dxi(x
′) also belongs to this l + 1-dimensional vector space. But the dxi(x

′)’s form

a basis for T ∗
x′Rn. Thus l + 1 = n, so V is n− l = 1 dimensional.

Now we assume the local description of one-dimensional real varieties. (See [Mil68, p.28].)

Since 0 is a non-isolated point of the one-dimensional variety V , a small neighbourhood of V

will consist of a union of finitely many branches which intersect only at 0. Each branch is

homeomorphic to an open interval of real numbers under a homeomorphism x = γ(t) which is

given by a power series

γ(t) = a1t+ a2t
2 + a3t

3 + . . .

which converges for |t| < ε.

Since 0 ∈ U ∩ V , one of the finitely many branches of V passing through 0 must contain

points of U arbitrarily close to 0. Let x = γ(t) with |t| < ε be an analytic parametrization of

this branch. Then for each gi, we must have either gi(γ(t)) > 0 or gi(γ(t)) ≤ 0 for all t in some

interval (0, ε′) (since gi(γ(t)) is analytic). Thus the half-branch γ((0, ε′)) is either contained in U ,

or disjoint from U , and similarly for the half-branch γ((−ε′, 0)). But by assumption γ((−ε′, ε′))

contains points of U arbitrarily close to 0. Hence one of the half-branches must be contained in

U . Thus either γ(t) or γ(−t) gives the required curve to complete the proof of the lemma.

2.5 The fibration theorem

From now on V will denote a complex hypersurface. Thus far we have seen that the topological

type of an isolated singular point x ∈ V is determined by its intersection K = V ∩ Sε with a

small sphere Sε centered at x. The topological type of x is then determined by the pair (Sε,K).

The main result of this section is that Sε \K is a smooth fiber bundle over the circle S1. This

fiber bundle is uniquely determined by giving a single fiber as well as an automorphism of this

fiber corresponding to a generator of the fundamental group of S1. Much of this thesis will be

about describing this fiber in certain special cases, as well as the corresponding automorphism.

Several invariants can be computed from this construction. They are all topological invariants

of the singular point, but not necessarily complete topological invariants.

Note that throughout this section it is not necessary to assume that the critical point is

isolated. This becomes necessary in the next section however. The fibration described in this

section was first described by Milnor ([Mil68]) and we will be following his exposition closely.

Getting back to the purpose of this section, let’s start by defining the objects concerned. Let

f be a complex polynomial in n variables and let V ⊂ Cn be its vanishing set. We assume that

the origin is contained in V . For any given ε > 0 we let K denote the intersection of V with a

sphere Sε centred at the origin. Then define a map φ : Sε \K → S1 by setting

φ(z) =
f(z)

|f(z)|
.
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The set Sε \K is an open subset of Sε, hence it is a 2n− 1-dimensional real manifold. The

first step towards showing that φ is a fibration over S1 is to show that its fibers are manifolds.

So we must show that it is regular everywhere, i.e. that its differential is surjective everywhere.

This will be done by giving a simple criterion for determining whether a given point z ∈ Sε \K

is a critical point of φ, and then showing that ε can be chosen small enough so that this criterion

will never be satisfied.

First a definition. For a given analytical function g(z1, . . . , zn) of n complex variables, define

the gradient of g to be the vector

grad g =

(

∂g

∂z1
, . . . ,

∂g

∂zn

)

.

The reason for taking the complex conjugates in this definition is that it allows us to give a

simple expression for the directional derivative of g in the direction of a vector v at a point z.

If p(t) is a path such that p(0) = z and p′(0) = v, then this directional derivative is given by

dg(p(t))

dt

∣

∣

∣

t=0
= 〈

dp

dt

∣

∣

∣

t=0
, grad g(z)〉

= 〈v, grad g(z)〉,

where 〈a, b〉 =
∑

j ajbj is the hermitian inner product on Cn.

In what follows we will often be needing the vector grad log f(z) for a given z ∈ Cn such

that f(z) 6= 0. Taking the gradient of a function at a point only requires knowing the value

of the function in a small neighbourhood of that point. So in this case we can restrict z ′ to a

neighbourhood of z in Cn such that the image of this neighbourhood under f is contained in a

simply connected neighbourhood of f(z) which avoids 0. On such a simply connected set we can

choose a branch of the multivalued function log f and then apply the formula for the gradient

given above. Since the values on two specific different branches differ by the constant 2πin for

some fixed integer n, the gradient does not depend on which branch is chosen. Note that we

can write

grad log f(z) =

(

∂ log f

∂z1
(z), . . . ,

∂ log f

∂zn
(z)

)

=
1

f(z)

(

∂f

∂z1
(z), . . . ,

∂f

∂zn
(z)

)

=
grad f(z)

f(z)
.

Lemma 2.5.1. The function φ : Sε \ K → S1 has a critical point at z precisely if the vector

i grad log f(z) is a real multiple of z.

Proof. Consider the multi-valued real function θ(z) defined by

f(z)

|f(z)|
= eiθ(z)
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As with the logarithm function, we can show that the derivative of θ(z) is well defined for any

z by choosing a single-valued branch around a sufficiently small neighbourhood of the desired

point z.

Taking the logarithm of both sides of the above equation gives

iθ(z) = log(f(z)) − log(|f(z)|).

Multiplying both sides by −i and taking the real part gives

θ(z) = Re(−i log(f(z))).

For a given vector v, let p(t) be a path such that p(0) = z and p′(0) = v. Then the directional

derivative of θ in the direction of v is given by

dθ(p(t))

dt

∣

∣

∣

t=0
= Re

(

d(−i log f(p(t)))

dt

∣

∣

∣

t=0

)

= Re〈v, grad (−i log f(z))〉

= Re〈v, i grad log f(z)〉.

At any point of z ∈ Cn, the tangent space is Cn, equipped with the hermitian inner product.

This tangent space can be identified with R2n in the standard way ((x1 + iy1, . . . , xn + iyn) gets

mapped to (x1, y1, . . . , xn, yn)). Under this identification, the standard inner product on R2n

corresponds to the real part of the hermitian inner product, as can be seen in the case n = 1

from

Re〈x+ iy, v + iw〉 = xv + yw.

Now since the vector z seen as an element of TzR2n is normal to Sε at z ∈ Sε, we can write

Tz = Rz ⊥ TzSε, where ⊥ denotes the direct sum of two vector spaces which are mutually

orthogonal. Thus (TzSε)
⊥ = Rz.

Consider the differential dθ(z) : TzR2n → R. The point z is a critical point of θ|Sε
precisely

if dθ(z) vanishes on TzSε. But we have just seen that dθ(z) vanishes on R(i grad log f(z))⊥.

Hence z is critical point precisely if TzSε ⊂ R(i grad log f(z))⊥. Since both vector spaces

have dimension 2n − 1, this is equivalent to TzSε = R(i grad log f(z))⊥, which is equivalent to

(TzSε)
⊥ = R(i grad log f(z)).

Thus z is a critical point precisely if R(i grad log f(z)) = Rz, that is if i grad log f(z) is a

real multiple of z.

Thus now we have a simple criterion for deciding whether a point z ∈ Sε \ K is a critical

point of θ|Sε
. Next we must show that ε can be chosen small enough so that this criterion is

never satisfied.

We will prove something slightly stronger:

Lemma 2.5.2. There exists an ε > 0 such that for all z ∈ Cn\V with ‖z‖ ≤ ε, the two vectors z

and grad log f(z) are either linearly independent over C or grad log f(z) = λz where λ ∈ C\{0}

with | arg λ| < π
4 .
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Note that if i grad log f(z) is a real multiple of z, then grad log f(z) = −icz where c is a

positive real constant, so λ = −ic for which the absolute value of the argument is π
2 >

π
4 . Thus

this point z cannot be a critical point of θ restricted to S‖z‖.

The method for proving this lemma is to assume that there are points arbitrarily close to the

origin not satisfying the requirement, then using the curve selection lemma to find an analytic

curve starting at the origin consisting of such points, and then using the following lemma to

arrive at a contradiction:

Lemma 2.5.3. Let p : [0, ε) → Cn be a real analytic path with p(0) = 0 and p(t) ∈ Cn \ V for

t > 0, i.e. f(p(t)) 6= 0 for t > 0. Furthermore, suppose that for t > 0 we have

grad log f(p(t)) = λ(t)p(t)

where λ(t) ∈ C. Then λ(t) 6= 0 for t small, and the argument of λ(t) tends to 0 as t→ 0.

Proof. Consider the Taylor expansions

p(t) = atα + a1t
α+1 + a2t

α+2 + · · · ,

f(p(t)) = btβ + b1t
β+1 + b2t

β+2 + · · · ,

grad f(p(t)) = ctγ + c1t
γ+1 + c2t

γ+2 + · · · ,

where the leading coefficients a, b, c are non-zero. Note that a, ai, c, ci ∈ Cn, while b, bi ∈ C.

These series are all convergent for |t| < ε′ for some ε′.

For each t > 0 we have

grad log f(p(t)) = λ(t)p(t),

or equivalently,

grad f(p(t)) = λ(t)p(t)f(p(t)).

Substituting the above Taylor expansions gives

(ctγ + · · · ) = λ(t)(abtα+β + · · · ).

It follows that λ(t) is a quotient of real analytic functions, and hence has a Laurent expansion

of the form

λ(t) = λ0t
γ−α−β(1 + k1t+ k2t

2 + · · · ).

Furthermore, comparing leading coefficients, we get c = λ0ab. Substituting this into the

power series expansion of the identity df
dt = 〈dp

dt , grad f〉 gives

(βbtβ−1 + · · · ) = 〈αatα−1 + · · · , λ0abt
γ + · · · 〉

= α||a||2λ0bt
α−1+γ + · · · .

Comparing leading coefficients gives β = α||a||2λ0, which proves that λ0 is a positive real

number. Thus the argument of λ(t) tends to 0 as t tends to 0. Note that λ(t) 6= 0 for t > 0, t

small enough.
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Proof of Lemma 2.5.2. There are two cases to consider. First suppose that Cn \ V contains

points z arbitrarily close to the origin for which

grad log f(z) = λz 6= 0,

and with the argument of λ having absolute value greater than π
4 . In other words, assume

that λ lies in the open half-plane where Re((1 + i)λ) < 0 or where Re((1 − i)λ) < 0.

The idea is now to express these conditions by polynomial equalities and inequalities in order

to use the curve selection lemma.

Let W be the set of all z in Cn for which the vectors grad f(z) and z are linearly dependent.

So z ∈W if and only if the equations

zj

(

∂f

∂zk

)

= zk

(

∂f

∂zj

)

are satisfied for all j and k. Setting zj = xj + iyj , and taking real and imaginary parts, we

obtain a collection of real polynomial equations in the real variables xj and yj . It follows that

W ⊂ Cn is a real algebraic set.

Note that a point z ∈ Cn \ V belongs to W if and only if

grad f(z)

f(z)
= λz

for some complex number λ (because f(z) 6= 0 outside V ). Now multiplying with f(z) and

taking the inner product with f(z)z gives

〈grad f(z), f(z)z〉 = λ||f(z)z||2.

So if we define the function λ′ on Cn by

λ′(z) = 〈grad f(z), f(z)z〉,

then for z ∈W \ V for which λ(z) 6= 0 we have that λ′(z) is also non-zero, and the quotient
λ′(z)
λ(z) is a positive real number. Hence in this case λ(z) and λ′(z) have the same argument.

Note that λ′(z) is a polynomial function of the real variables xj and yj .

Now let U+ (respectively U−) be the open set consisting of z ∈ Cn satisfying the real

polynomial inequality Re((1 + i)λ′(z)) < 0 (respectively Re((1 − i)λ′(z)) < 0).

Note that a point z is in W ∩ (U+ ∪U−) precisely if the conditions given at the beginning of

the proof are satisfied. This is because if z ∈ U+ ∪ U− then λ′(z) 6= 0, hence grad log f(z) 6= 0.

And z ∈ W guarantees that grad log f(z) = λz. Finally, using again that z ∈ U+ ∪ U− implies

that the argument of λ′, and hence of λ, has absolute value strictly greater than π
4 . The converse

is clear.

Thus our assumption can be translated as saying that there are points z arbitrarily close to

the origin with z ∈ W ∩ (U+ ∪ U−). This implies that 0 ∈ W ∩ U+ or 0 ∈ W ∩ U−. Applying

the curve selection lemma gives an analytic path p : [0, ε) → Cn with p(0) = 0 and with either

p(t) ∈W ∩ U+ for all t > 0 or p(t) ∈W ∩ U− for all t > 0. In either case, for each t > 0 we get

grad log f(p(t)) = λ(t)p(t)
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with

|argument λ(t)| >
π

4
,

contradicting Lemma 2.5.3.

It remains to consider the case where there are points z ∈ W \ (V ∩W ) arbitrarily close to

the origin for which λ′(z) = 0 or | arg λ′(z)| = π
4 . But then we consider the algebraic subset

W ′ ⊂W defined by imposing the additional equation

Re((1 + i)λ′(z))Re((1 − i)λ′(z)) = 0,

and let U ′ be the set of z for which |f(z)|2 > 0. The above condition then means that there

are points arbitrarily close to the origin in W ′ ∩ U ′. Thus we can apply the curve selection

lemma again to find a path p : [0, ε) → Cn for which p(0) = 0 and p(t) ∈ W ′ ∩ U ′ for t > 0.

Then for some ε′ > 0 either p(t) = 0 for all t ∈ [0, ε′), or p(t) 6= 0 and | arg λ′(t)| = π
4 . The

first possibility would contradict one of the conclusions of the lemma (namely, that λ(t) 6= 0 for

t > 0), while the other would also contradict the lemma. This completes this last case, and the

proof of the lemma.

Thus we can prove the following corollary:

Corollary 2.5.4. There exists an ε′ > 0 such that for any 0 < ε ≤ ε′, the map φ : Sε \K → S1

has no critical points.

Proof. Let ε′ be a number found by Lemma 2.5.2. Then the corollary follows directly from

Lemma 2.5.1.

It follows that for each eiθ ∈ S1, the fiber

Fθ = φ−1(eiθ) ⊂ Sε \K

is a smooth 2n− 2-dimensional manifold.

Next we want to show that φ is a locally trivial fibration. The idea is to construct a vector

field v on Sε \ K such that solution curves of the differential equation dz
dt = v(z) carry fibers

of φ onto other fibers of φ. So if we denote φ(z) = f(z)
|f(z)| by eiθ(z) as in the beginning of the

section, then the first requirement on the vector field v is that the directional derivative of θ(z)

in the direction of v(z) must be constant along a fiber of φ, for simplicity say it must be 1

everywhere. Using the expression for this directional derivative found in the proof of Lemma

2.5.1 this translates into requiring that

Re〈v(z), i grad log f(z)〉 = 1

for all z in Sε \ K. It will be seen that a further requirement is necessary to enable us to

extend a local solution of the differential equation to a sufficiently large interval.

This is all by way of motivating the following lemma.
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Lemma 2.5.5. Let ε′ be as in Corollary 2.5.4. If ε < ε′ then there exists a smooth tangential

vector field v on Sε \K such that for each z ∈ Sε \K the complex inner product

〈v(z), i grad log f(z)〉

is non-zero, and its argument is strictly less than π
4 in absolute value.

Proof. As in the proof of Lemma 2.3.4 about the conical structure around a singular point, it

suffices to construct such a vector field locally around any point zα ∈ Sε \K.

There are two possible cases. Firstly, if the vectors zα and grad log f(zα) are linearly inde-

pendent over C, then the linear equations

〈v(zα), zα〉 = 0

〈v(zα), i grad log f(zα)〉 = 1

have a simultaneous solution for v(zα). The first equation implies in particular that

Re〈v(zα), zα〉 = 0,

so v(zα) is tangent to Sε at zα.

Otherwise, if grad log f(zα) = λzα for some non-zero complex number λ, then set v(zα) = izα.

Then Re〈izα, zα〉 = 0, so again v(zα) is tangent to Sε at zα. Furthermore, it follows from Lemma

2.5.2 that λ has argument less than π
4 in absolute value, hence

〈izα, i grad log f(zα)〉 = izα(−i)λzα

= λ‖zα‖
2

has argument less than π
4 in absolute value.

In either case one can construct a vector field vα on Sε \K in a neighbourhoud of zα which

is tangent to Sε and such that vα(zα) = v(zα). The condition

| arg〈vα(z), i grad log f(z)〉| <
π

4

is an open condition, and hence it will hold in a neighbourhoud of zα where vα is defined.

Using a partition of unity, we obtain a global vector field v satisfying the same properties, and

completing the proof of the lemma.

Now create a vector field w on Sε \K by normalizing:

w(z) =
v(z)

Re〈v(z), i grad log f(z)〉
.

The vector field w then satisfies two properties. Firstly,

Re〈w(z), i grad log f(z)〉 = 1

for all z, and since v and w have the same argument, it follows that

|Im〈w(z), i grad log f(z)〉| < 1.

Now consider the solutions of the differential equation dz
dt = w(z). The following lemma

shows that a local solution can be extended to be defined on the whole of R.



16 CHAPTER 2. THE MILNOR FIBRATION

Lemma 2.5.6. Given any z0 ∈ Sε \ K, there exists a unique smooth path p : R → Sε \ K

satisfying the differential equation dp(t)
dt = w(p(t)) with initial condition p(0) = z0.

Proof. Such a solution exists locally, and can be extended over some maximum interval of real

numbers. We just need to verify that p(t) does not tend to K as t tends to some finite limit

t0. This is equivalent to showing that f(p(t)) does not tend to 0, or also equivalently, that

Re(log f(p(t))) does not tend to −∞ as t tends to some t0.

But the derivative

d

dt
(Re log f(p(t))) = Re(

d

dt
log f(p(t)))

= Re〈
dp(t)

dt
, grad log f(p(t))〉

= −Im〈
dp(t)

dt
, i grad log f(p(t))〉

has absolute value less than 1. Hence |f(p(t))| is bounded away from 0 as t tends to any

finite limit.

Now setting φ(z) = eiθ(z) as before, we find that

dθ(p(t))

dt
= Re〈

dp

dt
, i grad log f(p(t))〉

= 1.

Hence

θ(p(t)) = t+ c

where c is a constant. The point p(t) is a smooth function both of t and of the initial

value z0 = p(0). For a proof of this result, see [War83, p.37] as well as the reference there to

[Hur58, p.27]. Thus for every t we can define a function ht from Sε \ K to itself by setting

ht(z0) = p(t), where p is the solution of the differential equation dp
dt = w with p(0) = z0. Then

ht is a diffeomorphism from Sε \K to itself taking each fiber Fθ = φ−1(eiθ) onto the fiber Fθ+t.

The fibration theorem follows:

Theorem 2.5.7. For ε < ε′, the space Sε \K is a smooth fiber bundle over S1, with projection

mapping given by φ(z) = f(z)
|f(z)| .

Proof. For a given eiθ ∈ S1, define a neighbourhood U as

U = {ei(t+θ) ∈ S1
∣

∣ |t| <
π

2
}

Then the trivialization function λ : U × Fθ → φ−1(U) given by λ(ei(t+θ), z) → ht(z) is a

diffeomorphism showing that φ is locally trivial.

One could ask in what sense this fibration depends upon ε. To compare different fibrations,

we use the following definition:
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Definition 2.5.8. Let f : E → B and f ′ : E′ → B′ be smooth fibrations. Then f and f ′ are

equivalent if there exist diffeomorphisms Φ : E → E ′ and φ : B → B′ such that φ ◦ f = f ′ ◦ Φ.

Let ε1, ε2 < ε′. Then by the above theorem, both Sε1 \K and Sε2 \K can be seen as smooth

fiber bundles over S1, with the same projection mapping given by φ(z) = f(z)
|f(z)| . It is possible

to show that these fibrations are equivalent, by constructing a fiber-preserving diffeomorphism

from Sε1 to Sε2 . We will not give the details here, since they are very similar to those of Lemma

2.5.5 and Proposition 2.6.5.

2.6 An equivalent fibration

There are two fibrations in the literature commonly referred to as the Milnor fibration. The

one originally constructed by Milnor was described in the previous section. In this section we

describe the other fibration, and show that the two are equivalent.

Let f be a complex polynomial with an isolated singularity at 0. Then Theorem 2.3.3 states

that for a sufficiently small ε > 0, the fiber f−1(0) intersects the sphere Sε transversally, i.e.

f−1(0) ∩> Sε.

Lemma 2.6.1. There exists a δ > 0 such that f−1(t) ∩> Sε for all t ∈ Dδ, where Dδ denotes

the open disk around 0 ∈ C with radius δ.

Proof. Identify Cn with R2n and C with R2 in the standard way. Let zα ∈ f−1(0) ∩ Sε. Then

since zα is a regular value of f as a complex polynomial, it must also be a regular value of

f = (f1, f2) as a map from R2n to R2. (To see this, recall that the determinant of the Jacobian

matrix of a holomorphic function on C is given by |f ′|2. So if the holomorphic function is

regular, i.e. f ′ 6= 0, then the associated smooth function will also be regular.) Thus ker df(zα)

has dimension 2n− 2. Let g denote the map f restricted to Sε. Then

f−1(0) ∩> Sε at zα

⇔ ker df(zα) * TzαSε

⇔ ker dg(zα) (= ker df(α) ∩ TzαSε) has dimension 2n− 3

⇔ g is regular at zα.

Now we show that g is regular in a neighbourhood of zα. Choose local coordinates x1, . . . , x2n

around zα such that Sε corresponds to the hyperplane {x2n = 0} and zα corresponds to 0. Then

x1, . . . , x2n−1 forms a set of local coordinates for Sε and so the condition that g is regular at zα

translates into the statement that the matrix
(

∂fi

∂xj

)

1≤i≤2;1≤j≤2n−1

is nonsingular at 0. That means that it contains some 2 × 2 submatrix with non-zero

determinant. But since the determinant function is continuous and R \ {0} is open, this same

submatrix will have non-zero determinant in a neighbourhood of 0. Hence g is regular in a
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neighbourhood of zα, say Uα ∩ Sε. This implies that for any z ∈ Uα ∩ Sε, f
−1(t) ∩> Sε at z,

where t = f(z).

Now for any zα ∈ f−1(0) ∩ Sε we construct such an open neighbourhood Uα.

Let U =
⋃

α Uα. We would like to find an open disk Dδ around 0 ∈ R2 such that

f−1(Dδ) ∩ Sε ⊆ U ∩ Sε.

Suppose this cannot be done. In other words, suppose that there exists a sequence (tn)n≥1

in R2 converging to 0 such that f−1(tn) ∩ Sε * U ∩ Sε for every n ≥ 1. Then let (zn)n≥1

be a sequence in Sε \ U , such that f(zn) = tn. Since Sε \ U is compact, we can, by taking

a convergent subsequence, assume that (zn)n≥1 converges to a point z ∈ Sε \ U . Since f is

continuous, it follows that (tn)n≥1 converges to f(z). But since limits are unique, f(z) = 0.

Hence z ∈ f−1(0) ∩ Sε ⊆ U ∩ Sε, which is a contradiction. Thus there exists a δ > 0 with the

required property.

This lemma will enable us to apply the following proposition to our case:

Proposition 2.6.2 (Ehresmann’s fibration theorem). Let f : E → B be a proper submersion

between the manifolds-with-boundary E and B. Then f is a locally trivial fibration, i.e. for

any b ∈ B there exists a neighbourhood U of b and a diffeomorphism (called the trivialization)

from f−1(U) to U × f−1(b) preserving the projection to U . Moreover, if A is a closed subset of

E such that f restricted to A is still a submersion, then the trivialization can be chosen to map

f−1(U)∩A onto U × (f−1(b)∩A). In this case we say that f is a locally trivial fibration of the

pair (E,A) over B.

For the proof see [Ehr47] and [Lam81]. We remark that throughout this thesis, the closed

subset A ⊂ E will always be the boundary of E, i.e. ∂E.

Proposition 2.6.3. Choose ε > 0 and δ > 0 in such a way as to satisfy the conditions of Lemma

2.6.1. Let E = Bε ∩f
−1(Dδ \{0}) and B = Dδ \{0}. Denote the restriction of f to E by ψ̃, and

consider the closed subset ∂E = Sε ∩ f
−1(Dδ \ {0}) ⊂ E. Then ψ̃ is a locally trivial fibration of

the pair (E, ∂E) over B.

Proof. By Ehresmann’s fibration theorem, we just have to show that ψ̃ is a proper submersion

and ψ̃ restricted to ∂E is still a submersion.

Let V ⊂ Dδ \ {0} be compact. Then it is closed, hence ψ̃−1(V ) is closed. But ψ̃−1(V ) ⊂ Bε

is also bounded, hence it is compact. Thus ψ̃ is proper.

Let x ∈ E \ ∂E. Then in a neighbourhood of x, ψ̃ = f . But the function f is a submersion

everywhere except at the origin, hence ψ̃ is a submersion at x. Now let

x ∈ ∂E = f−1(Dδ \ {0}) ∩ Sε.

But if y = f(x), then by the previous lemma, f−1(y) ∩> Sε at x, hence f (and also ψ̃) is

still a submersion when restricted to ∂M .
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Note that replacing δ by a smaller positive value, say δ′ > 0, would yield an equivalent

fibration. The equivalence could be established by constructing a vector field on Dδ \ {0} whose

flow creates a diffeomorphism from Dδ \ {0} to Dδ′ \ {0}, and then lifting this vector field

horizontally to E.

The alternative description of the Milnor fibration, denoted by ψ, is found by restricting ψ̃

to the pre-image of a circle, say ∂Dδ′ = Sδ′ , where 0 < δ′ < δ, and leaving out the boundary

∂Bε. This is still a locally trivial fibration:

ψ : Bε ∩ f
−1(Sδ′) → Sδ′ = S1.

We replace δ′ by δ in what follows.

Now we want to show that this fibration is equivalent to the fibration φ : Sε \ f
−1(0) → S1,

where φ(x) = f(x)
|f(x)| . This will be done in two steps. First we will show that the fibration ψ is

equivalent to φ′, which is φ restricted to Sε \ f
−1(Dδ). Then we show that φ′ is equivalent to φ.

Lemma 2.6.4. There exists a smooth vector field v on Bε \ V such that the inner product

〈v(z), grad log f(z)〉

is real and positive for all z ∈ Bε \V , and such that the inner product 〈v(z), z〉 has constant

real part.

Proof. The proof is similar to the proof of Lemma 2.5.5. It is enough to construct such a vector

field in the neighbourhood of any point zα ∈ Bε \ V . There are two cases to consider. Firstly, if

the vectors zα and grad log f(zα) are linearly independent over C, then the linear equations

〈v(zα), grad log f(zα)〉 = 1 and

〈v(zα), zα〉 = 1

have a simultaneous solution for v(zα).

The second case is if zα = λ grad log f(zα) for some λ ∈ C. Then let v(zα) = λzα. From

Lemma 2.5.2 it follows that Re(λ) > 0. Then

〈v(zα), grad log f(zα)〉 = ‖zα‖
2 and

Re〈v(zα), zα〉 = Re(λ)‖zα‖
2 > 0.

So in either case we get a vector v(zα) satisfying all the conditions of the lemma except that

the inner product 〈v(zα), zα〉 has positive real part, but not necessarily constant real part. We

can extend this vector to a vector field in a neighbourhood of zα satisfying the same conditions.

Using a partition of unity as before gives a global vector field v. To meet the final requirement,

we normalize this vector field by replacing v(z) with

v(z)

Re(〈v(z), z〉)

for any z ∈ Bε \ V . Note that the denominator is always non-zero, and that Re〈v(z), z〉 = 1

for the resulting vector field v.
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Using this lemma, we can prove the following:

Proposition 2.6.5. There is a diffeomorphism from Bε∩f
−1(Sδ) to Sε\f

−1(Dδ) which restricts

to a diffeomorphism between the fibers ψ−1(c) = Bε∩f
−1(c) and φ′−1( c

|c|), where φ′ is as defined

above and |c| = δ.

Proof. Let z0 ∈ Bε ∩ f
−1(Sδ). Let v be as in Lemma 2.6.4 and let p(t) be the solution of the

differential equation

dp(t)

dt
= v(p(t)) (2.1)

with initial condition p(0) = z0. Since

〈v(p(t)), grad log f(p(t))〉

is real, it follows that

〈v(p(t)), i grad log f(p(t))〉

is purely imaginary, and hence has real part 0. But we have shown before that this real

part is the derivative of the argument of f(p(t)). Hence the argument of f(p(t)) is constant.

It also follows that |f(p(t))| is a strictly-increasing function of t, by performing the following

calculation:

〈
dp(t)

dt
, grad log f(p(t))〉 = 〈

dp(t)

dt
,
grad f(p(t))

f(p(t))
〉

=
1

f(p(t))
〈
dp(t)

dt
, grad f(p(t))〉

=
1

f(p(t))

d

dt
f(p(t))

=
1

f(p(t))

d

dt
|f(p(t))|

(

f(p(t))

|f(p(t))|

)

=
1

|f(p(t))|

d

dt
|f(p(t))| > 0,

hence

d

dt
|f(p(t))| > 0.

Using the other condition gives

d‖p(t)‖2

dt
=

d

dt
(Re〈p(t), p(t)〉)

= 2Re〈
dp(t)

dt
, p(t)〉 > 0.

Hence ‖p(t)‖ is a strictly increasing function of t.

Thus for some value of t, say t1, we must have p(t1) ∈ Sε. Define a function Θ from

Bε ∩ f
−1(Sδ) to Sε by setting Θ(z0) = p(t1). Since the argument remains constant, Θ preserves

the fibration. The image of the function Θ is contained in Sε \ f
−1(Dδ), since |f(p(0))| = δ, and
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|f(p(t))| is strictly increasing, hence |f(p(t1))| > δ. But this is the entire image, because we can

also start with a point in Sε \ f
−1(Dδ) and take a solution which goes the other way, and will

eventually arrive at a point of Bε ∩ f
−1(Sδ).

Thus the fibrations ψ and φ′ are equivalent.

Now for the second part:

Proposition 2.6.6. The fibrations φ′ and φ are equivalent.

Proof. To show this, we need to construct a smooth vector field on Sε \f
−1(0) such that flowing

along this vector field gives a fiber-preserving diffeomorphism from Sε \ f
−1(0) to Sε \ f

−1(Dδ).

To do this, we consider the real-valued, positive function |f | on Sε \ f
−1(0).

First we use the curve selection lemma to show that for any θ ∈ R, δ can be chosen small

enough so that |f | restricted to the fiber of φ above eiθ ∈ S1 has no critical points on the part

of the fiber lying in Sε ∩ f
−1(Dδ \ {0}). Suppose this were not true. Then there would exist

critical points z of the restriction of |f | with |f(z)| arbitrarily close to 0. This set of critical

points would have a limit point z0 on the compact set Sε and by continuity f(z0) = 0. Then

with the intention of applying the curve selection lemma (Lemma 2.4.1), we let U ⊂ R2n be the

open set where |f |2 > 0, and V the set of critical points of |f |2 restricted to the fiber of φ above

eiθ ∈ S1. Note that U and V are given by polynomial inequalities and equalities respectively.

Then we can use the curve selection lemma to conclude the existence of a smooth curve

p : (0, ε′) → Sε \ f
−1(0)

consisting entirely of critical points, with p(t) tending to z0 as t tends to 0. But then |f(p(t))|

must be constant along this path, and hence cannot tend to |f(p(0))| = 0.

Thus δ can be chosen small enough so that |f | restricted to the fiber of φ above eiθ ∈ S1 has

no critical points on the part of the fiber lying in Sε ∩ f
−1(Dδ \ {0}), as desired. By possibly

choosing δ slightly smaller, we can assume that |f | also has no critical points when restricted to

nearby fibers.

Using the compactness of S1, we can find a single δ such that the restriction of |f | to any of

the fibers of φ has no critical points in Sε ∩ f
−1(Dδ \ {0}).

Next we construct a vector field on Sε \ f
−1(0). This is done in several steps. Fix a δ′ with

0 < δ′ � δ. Then by replacing δ by δ − δ′ in the above argument, we can assume that the

restriction of |f | to the fibers of φ has no critical points in Sε ∩ f
−1(Dδ+δ′ \ {0}).

Let z ∈ Sε ∩ f
−1(Dδ+δ′ \ {0}), and let θ denote the argument of f(z), i.e. φ(z) = eiθ. Now

let |f |θ denote the restriction of |f | to the fiber above eiθ ∈ S1. Define

v(z) =
∇|f |θ(z)

‖ ∇|f |θ(z) ‖
,

where ∇ denotes the usual real gradient.

In this way we constuct a vector field v on Sε ∩ f
−1(Dδ+δ′ \ {0}) which is clearly tangent to

the fibers. To show it is smooth, note that in local coordinates, φ is a projection from R2n−1 to

R, mapping (x1, . . . , x2n−1) to x1 (using the fact that φ has no critical points by Lemma 2.5.2).
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And in these local coordinates, v is simply (0, ∂|f |
∂x2

, . . . , ∂|f |
∂x2n−1

) divided by its norm, which is

clearly smooth.

Note that if p(t) is a local solution of the differential equation dp(t)
dt = v(p(t)), then

d

dt
|f(p(t))| = 1.

Let g be a smooth function on (0,∞) such that

g(t) = 1 for t ≤ δ,

g(t) ∈ [0, 1] for t ∈ (δ, δ + δ′) and

g(t) = 0 for t ≥ δ + δ′.

Now let w be the vector field on Sε \ f
−1(0) defined by

w(z) = v(z)g(|f(z)|) if z ∈ Sε ∩ f
−1(Dδ+δ′ \ {0}) and

w(z) = 0 otherwise.

Since g is smooth, the vector field w is smooth.

Finally we can define Θ from Sε \ f
−1(0) to Sε \ f

−1(Dδ) as follows: for a given z, let p(t) be

the solution of the differential equation dp(t)
dt = w(p(t)) defined over a maximum open interval

with p(0) = z. Then let Θ(z) = p(δ). The function Θ is then a fiber-preserving diffeomorphism,

completing the proof of the second part. Thus the two descriptions of the Milnor fibration are

equivalent.



Chapter 3

The Milnor fiber

The goal of this chapter to to study the topology of the Milnor fiber. Our first goal is to

determine its homology groups.

3.1 Geometric monodromy

In the previous chapter we showed that the function

F : Bε ∩ f
−1(∂Dδ) → ∂Dδ

given by F (z) = f(z), is a locally trivial fibration (it follows from Proposition 2.6.3). As

before, f is a polynomial in n complex variables with an isolated singular point at the origin.

Denote the total space of the fibration by E := Bε∩f
−1(∂Dδ) and the base space by B := ∂Dδ.

We will denote the fiber above a point z ∈ B by Fz and refer to it as the Milnor fiber. Let

Diff(Fδ) denote the group of diffeomorphisms of Fδ, and Diff0(Fδ) the normal subgroup of

diffeomorphisms isotopic to the identity. Then the mapping class group of Fδ is defined as

Γ(Fδ) := Diff(Fδ)/Diff0(Fδ).

We will show that there is a natural group homomorphism from π1(∂Dδ, δ) to Γ(Fδ). Since

π1(∂Dδ, δ) ∼= Z is cyclic, it is enough to describe this map for a generator. This generator will

be the path γ, where

γ : [0, 1] → ∂Dδ

is given by γ(t) = δe2πit. The corresponding diffeomorphism of the fiber Fδ is found as

follows: We construct a vector field on the base space such that γ is the flow along this vector

field. Then this vector field is lifted to a vector field on the total space. The flow along this

vector field then gives a diffeomorphism of the fiber, and it remains to show that it is defined

up to isotopy. This diffeomorphism will be called the geometric monodromy and will be denoted

by h.

Before we carry out the construction explicitly, note that given simply the fiber Fδ and

the geometric monodromy, we can reconstruct the entire fibration F . The total space is the

23
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quotient of Fδ × [0, 1] by the equivalence relation which identifies (z, 0) with (h(z), 1), and then

the mapping to S1 is simply given by the projection onto the second factor.

Let w be the vector field on ∂Dδ given by w(δe2πit) = 2πiδe2πit. Let γ be the flow along

this vector field such that γ(0) = δ. Then γ is the extension of the path γ defined above, to R,

defined in the same way. Let {Uα} be a collection of open sets covering E such that F restricted

to any one of these open sets is given as a projection in suitable coordinates. In other words,

for a given α, F |Uα
is of the form (x1, . . . , x2n−1) 7→ x1. Furthermore, if Uα ∩ ∂E 6= ∅ we can

choose the coordinates in such a way that Uα ∩ ∂E corresponds to the part where x2n−1 = 0.

Let y be a local coordinate for the base space in this case. Define a vector field vα on Uα

by setting vα(x1, . . . , x2n−1) = w1(x1)
∂

∂x1
, where w(x1) = w1(x1)

∂
∂y . Then vα has the property

that dFz(vα) = w(F (z)) for any z ∈ Uα. Furthermore, if z ∈ ∂E, then vα(z) ∈ Tz∂E ⊂ TzE.

By using a partition of unity subordinate to the cover {Uα}, we can, as in Theorem 2.3.4

for example, create a global vector field v with the properties that TzF (vα) = w(F (z)) for any

z ∈ E, and v(z) ∈ Tz∂E ⊂ TzE for z ∈ ∂E.

Now for any t ∈ R construct a diffeomorphism ht from Fδ to Fγ(t) as follows: Let z0 ∈ Fδ,

and let p(t) be the solution of the differential equation dz
dt = v(z) with p(0) = z0, defined over a

maximal interval. We claim that p can be defined on the whole of R. To see this, suppose that

p is defined on an open interval (a, b) with b <∞. Then by the compactness of E, we can find a

point z0 ∈ E such that p(t) tends to z0 as t tends to b from below. There exists a unique solution

q of the same differential equation such that q(b) = z0 on a small neighbourhood (b − δ, b + δ)

of b. If z0 /∈ ∂E, then this is clear. Otherwise, if z0 ∈ ∂E, then we use the fact that v(z0) is

tangent to ∂E to find a local solution contained in ∂E and hence in E. By uniqueness the two

solutions coincide on (b − δ, b), and thus p can be defined on the larger interval (a, b + δ). A

similar argument shows that p can be defined on (a − δ, b) for some δ > 0 if a > −∞. Thus,

using Zorn’s lemma, we can conclude that p is defined on R.

Then define ht(z0) as p(t). Since v is a lifting of w, and F (p(0)) = γ(0), it follows that

F (p(t)) = γ(t) and hence ht(z0) ∈ Fγ(t).

Since γ(0) = γ(1) = δ, we see that h1 is a diffeomorphism of Fδ.

Note that we could have chosen a different lifting of the vector field w. We want to show

that this would not change the diffeomorphism h1 in an essential way.

Proposition 3.1.1. Let v′ be a vector field on E which is another lifting of w (i.e. dFz(v
′) =

w(F (z)) for any z ∈ E, and v′(z) ∈ Tz∂E ⊂ TzE for z ∈ ∂E), and let h′ be the associated

family of diffeomorphisms. Then h1 and h′1 are isotopic.

Proof. Let E denote the space E × [0, 1]. Define a vector field V on E by setting

V (z, s) = ((1 − s)v(z) + sv′(z), 0).

The vector field V is smooth. As in the above argument, we can use solutions of the

differential equation dz
dt = V (z) to construct a diffeomorphism H from Fδ × [0, 1] ⊂ E to itself

by flowing along these solution curves for one unit of time t. Composing with the projection to
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the first factor gives the homotopy (also denoted H)

H : Fδ × [0, 1] → Fδ

such that H(z, 0) = h(z) and H(z, 1) = h′(z) for all z ∈ Fδ. Furthermore, for any fixed

s ∈ [0, 1], the function H(z, s) is a diffeomorphism from Fδ to itself, hence H is in fact an

isotopy between h and h′.

Definition 3.1.2. The diffeomorphism h := h1 from Fδ to itself is called the geometric mon-

odromy. It is defined up to isotopy. The induced homomorphism h∗ on the homology groups

H∗(Fδ,Z) is called the algebraic monodromy.

One last fact about the diffeomorhism h:

Lemma 3.1.3. The diffeomorphism h can be taken to be the identity on the boundary

∂Fδ = ∂Bε ∩ f
−1(δ).

Proof. Consider the fibration given by the restriction of f :

(Bε \Bε/2) ∩ f
−1(D2δ) → D2δ

where δ is chosen small enough. By Ehresmann’s fibration theorem applied to

(Bε \Bε/2) ∩ f
−1(D2δ) → D2δ,

this fibration is locally trivial. But since D2δ is contractible, the fibration is in fact trivial.

Thus its restriction

(Bε \Bε/2) ∩ f
−1(∂Dδ) → ∂Dδ

is also trivial. Note that the total space of this last fibration is an open subset, say U0, of

E, and contains ∂E. Using this open set, we can modify the construction of the vector field v

of E given above in the following way:

Let U0 be one of the Uα’s used to cover E, and assume that none of the other Uα’s intersect

the boundary ∂E. For these other Uα’s, we construct the local lifting vα as before, but for the

vector field v0 on U0, we use the trivialization of U0
∼= (Bε \Bε/2) ∩ f

−1(δ) × S1 to construct a

vector field whose flow leaves the first factor invariant, and which is a lifting of w on S1. Thus

in particular, flowing along this vector field leaves the boundary ∂E invariant. This is still valid

for the global vector field v obtained as before by a partition of unity, since the other Uα’s do

not intersect the boundary.

3.2 Homology groups of Milnor fiber

In order to study the Milnor fiber of f , one method is to apply a small perturbation to the

function f such that all its critical points become non-degenerate. Let us make these notions

more precise.
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Definition 3.2.1. A complex analytic function g defined on an n-dimensional complex manifold

with boundary M , is said to be Morse if all its critical points are contained in M \ ∂M , if the

Hessian
(

∂2g
∂xi∂xj

)

1≤i,j≤n
is non-degenerate at each critical point, and if all the critical values are

distinct.

It can be shown that a critical point of g is non-degenerate precisely if there are local

coordinates around it such that g can be written as z2
1 + · · · + z2

n. For the proof, see [Mil63].

In our case, the function g will always be defined on the whole of Cn, but conceptually it is

better to allow for the case where g is only defined in a neighbourhood of the origin.

Definition 3.2.2. Let µ = (µ1, µ2, . . . , µn), where 0 < µi ≤ ∞ for every i. Then the set

Pµ = {z = (z1, . . . , zn) ∈ Cn | |zi| < µi}

is called a polydisk of multiradius µ.

Using this, we have the following definition.

Definition 3.2.3. Let Pη1
⊂ Cn and Pη2

⊂ Ck be two polydisks. Let g be a complex analytic

function in n variables defined on Pη1
, and let F : Pη1

×Pη2
→ C be a complex analytic function

such that F (z1, . . . , zn, 0, . . . , 0) = g(z1, . . . , zn) for all (z1, . . . , zn) ∈ Pη1
. Then F is said to be

a deformation of g. In the case where k = 1, the deformation is given by a family of functions

gt : Pη1
→ C, where gt(z) = F (z, t), and g0 = g.

Henceforth, one can assume that Pη1
= Cn and Pη2

= Ck.

We want to show that we can find a one-parameter deformation (i.e. with k = 1) of the

polynomial f such that f1 is Morse, and such that f−1
t (s) is transversal to the sphere Sε for

t ∈ [0, 1] and s ∈ Dδ. For any t ∈ [0, 1], ft will be a polynomial.

For any a = (a1, . . . , an) ∈ Cn, let

la : Cn → C

be the linear function mapping (z1, . . . , zn) ∈ Cn to
∑

aizi. Also let fa := f − la, so that

f0 = f .

Lemma 3.2.4. There exist δ, η > 0, such that f−1
a (s) ∩> Sε for |s| < δ and ‖a‖ < η, and such

that the critical values of fa on Bε are all contained in the open disk Dδ.

Proof. The proof is similar to that of Lemma 2.6.1. Define a function

G : Cn × Cn → C × Cn

which maps (z, a) to (fa(z), a). Let A := Sε × Cn ⊂ Cn × Cn. We know that f−1
0 (0) ∩> Sε.

It follows that G−1(0) ∩> A.

Let zα ∈ G−1(0)∩A. Then using a similar argument as in Lemma 2.6.1 but with G instead

of f , it can be shown that there exists an open neighbourhood Uα of zα such that for any
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z ∈ Uα ∩ A, we have G−1(w) ∩> A, where G(z) = w. Writing w = (s, a), this tranversality

condition is equivalent to f−1
a (s) ∩> Sε.

Repeating this for every zα ∈ G−1(0) ∩ A, we get a collection of open sets {Uα}. Now we

just have to show that it is possible to find a neighbourhood V of (0, 0) ∈ C × Cn such that

G−1(V ) ∩ A is covered by U := ∪αUα. So suppose it is not possible. Then there exists a

sequence (sn, an) ∈ C × Cn converging to (0, 0) such that G−1(sn, an) ∩ A * ∪αUα. Note that

G−1(sn, an) = f−1
an

(sn) × {an}.

Then we can find a sequence (zn, an) ∈ A ⊂ Cn × Cn such that G(zn, an) = (sn, an), and

such that (zn, an) /∈ U . From the definition of A we see that zn is bounded by ε. Since an

converges to 0, it is also bounded, hence the sequence (zn, an) is bounded, so we can assume it

converges to (z, a), say, by taking a convergent subsequence. But then G(z, a) = (0, 0), hence

(z, a) ∈ G−1(0) ∩A ⊂ U . But this contradicts the fact that every term (zn, an) lies outside U .

Thus it is possible to find the required neighbourhood V of (0, 0), which in its turn contains

all points (s, a) with |s| < δ and ‖a‖ < η for some δ and η. Pick any such (s, a), and let

z ∈ f−1
a (s)∩Sε. This is equivalent to requiring that (z, a) ∈ G−1(s, a)∩A. Thus (z, a) ∈ Uα for

some α. Hence f−1
a (s) ∩> Sε at z, as required.

Regarding the final statement of the lemma: since the critical values of f0 on Bε (this is just

0) are all contained in the disk Dδ, we can, by further restricting η and using continuity, ensure

that the critical values of fa on Bε are also contained in the disk for ‖a‖ < η.

Now we want to find some a with ‖a‖ < η such that fa is a Morse function. This can be

done by the following lemma:

Lemma 3.2.5. For almost all a ∈ Cn, the function fa = f − la is a Morse function.

Proof. Consider the function df : Cn → Cn with component functions ( ∂f
∂z1

, . . . , ∂f
∂zn

). By Sard’s

lemma, almost all a = (a1, . . . , an) ∈ Cn are regular values for df . This implies that we can find

such an a with ‖a‖ < η. We now show that for such an a, the function fa has only non-degenerate

critical points.

So suppose that a is a regular value for df . Note that fa has a critical point at z precisely

if ∂f
∂zi

(z) = ai for all i, that is, if z lies in (df)−1(a). But since a is a regular value of df , the

Jacobian of df at z must have non-zero determinant. This Jacobian is

(

∂2f

∂zi∂zj

)

ij

.

But this is also the expression for the Hessian of fa at z, which shows that z is a non-

degenerate critical point of fa. Thus fa has only non-degenerate critical points.

This means that fa is almost a Morse function: the critical values also need to be distinct.

This can be achieved by adding an arbitrarily small linear function, because the set of linear

functions for which it will not work is a set of measure 0. Since the set of regular values of df

is open, then the new fa would still have only non-degenerate critical points, and hence it is a

Morse function.
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Thus we have found an a (call it a0) with ‖a0‖ < η and fa0
Morse. But recall that we wanted

a perturbation such that f1 satisfies these properties. This can be done by reparametrizing the

perturbation. To be precise, for any t ∈ C, we henceforth denote by ft the function which was

denoted by fta0
up to now. Then ft is a one-parameter deformation of f with f1 being a Morse

function. This should be kept in mind during what follows to avoid confusion.

The strategy for studying the Milnor fiber of the function f = f0 is to first show that there

are homeomorphisms:

Bε ∩ f
−1
0 (Dδ) ∼= Bε ∩ f

−1
1 (Dδ) and

Bε ∩ f
−1
0 (δ) ∼= Bε ∩ f

−1
1 (δ).

Since Bε ∩f
−1
0 (δ) is the Milnor fiber of f , this means that we can instead study Bε ∩f

−1
1 (δ),

which is simpler since f1 is Morse.

Lemma 3.2.6. There is a diffeomorphism between Bε ∩ f
−1
0 (Dδ) and Bε ∩ f

−1
1 (Dδ).

Proof. The proof uses Ehresmann’s fibration theorem. Let G : Cn ×C → C×C be the function

mapping (z, t) to (ft(z), t). Let M denote the set Bε × C ∩ G−1(Dδ × Dη), and denote the

restiction of G to this domain also by G. Note that the image is of course contained in Dδ ×Dη.

Now consider the composition of G with the projection onto the second factor, Dη. In other

words, the function G′ : M → Dη where G′ = π2 ◦ G. This function is clearly a submersion

everywhere, since it maps (z, t) to t. Thus by Ehresmann’s fibration theorem it is locally trivial.

But because Dη is contractible, it is in fact a trivial fibration. Hence the fibers above 0 and 1

are diffeomorphic, as required.

Lemma 3.2.7. The space Bε ∩ f
−1(Dδ) is contractible.

Proof. The proof is from [AGZV88].

The first (and largest) step is to create a deformation retraction from Bε ∩ f−1(Dδ) to

Bε ∩ f
−1(0).

Let εi = ε
2i for i ≥ 0. This gives a monotonically decreasing sequence converging to 0 and

starting at ε0 = ε. Define a sequence (δi)i≥0 inductively, by letting δ0 = δ, and for each i ≥ 1

choosing δi < δi−1 such that the level set f−1(w) is transverse to the sphere Sεi
for any w ∈ Dδi

.

The function f determines locally trivial, and hence also trivial, fibrations

Ei = f−1(Dδi
) ∩ (Bε0 \Bεi

) → Dδi
.

The trivializations of these fibrations can be chosen so that they coincide on the intersections

Ei ∩ Ei−1 = f−1(Dδi
) ∩ (Bε0 \Bεi−1

).

Now consider the deformation gt of the disk Dδ0 , defined for 0 ≤ t ≤ δ0 and given by

gt(z) =











tz

‖z‖
for ‖z‖ ≥ t,

z for ‖z‖ ≤ t.
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The mapping gt maps the disk Dδ0 of radius δ0 into the disk of radius t, keeping the latter

fixed. The mapping g0 is a deformation retraction of the disk Dδ0 into the point 0. Since the

function f defines the locally trivial fibration

f−1(Dδ0 \ 0) ∩Bε0 → Dδ0 \ 0,

there exists a family Gt (0 < t ≤ δ0) of mappings of the set f−1(Dδ0)∩Bε0 into itself lifting

the homotopy gt. This family can be chosen in accordance with the structure of the direct

product on the sets

Ei = f−1(Dδi
) ∩ (Bε0 \Bεi

)

for t ≤ εi. The family can then be extended to a family Gt (0 ≤ t ≤ δ0) in which the mapping

G0 is a deformation retraction of the set f−1(Dδ0) ∩ Bε0 into the set f−1(0) ∩ Bε0 . Thus these

two spaces are homotopic.

It remains to show that f−1(0)∩Bε0 is contractible. But in the previous chapter we showed

that it is homeomorphic to the cone over f−1(0) ∩ Sε0 , and thus it is contractible.

Combining the previous two results, we conclude that Bε ∩ f−1
1 (Dδ) is contractible. The

next lemma allows us to restrict our attention to f1 from now on.

Lemma 3.2.8. There is a diffeomorphism between Bε ∩ f
−1
0 (δ) and Bε ∩ f

−1
1 (δ).

Proof. Let G : Bε × Cn → C × Cn be the function which maps (z, a) to (fa(z), a). Use the

injective mapping λ : [0, 1] → C × Cn, λ(t) = (δ, ta0) to identify [0, 1] with its image L under

λ. Denote the restriction of G to G−1(L) by G′. The function G′ is a submersion and proper,

hence by Ehresmann’s fibration theorem, it is a locally trivial fibration which is trivial since

[0, 1] is contractible. Thus all the fibers are diffeomorphic, including G′−1(0) ∼= Bε ∩ f
−1
0 (δ) and

G′−1(1) ∼= Bε ∩ f
−1
1 (δ).

From now on, let Yt := Bε ∩ f
−1
t (Dδ) and let Xft

:= Bε ∩ f
−1
t (δ). Then what we have seen

above is that Y1 is contractible, and Xf1
⊂ Y1 is diffeomorphic to the Milnor fiber Xf0

⊂ Y0

which we want to study. Now consider the long exact homology sequence of the pair (Y1, Xf1
):

→ H̃k(Xf1
) → H̃k(Y1) → Hk(Y1, Xf1

) → H̃k−1(Xf1
) →

Since Y1 is contractible, H̃k(Y1) = 0 for all k ≥ 0. It follows that there is a group isomorphism

Hk(Y1, Xf1
) ∼= H̃k−1(Xf1

)

for k ≥ 1.

Denote the critical values of f1 on Bε by z1, . . . , zµ. Recall that f1 was chosen so that

they all lie in the disk Dδ. Around each one of them we can choose a Milnor disk Dδi
and a

corresponding Milnor ball Bεi
around the corresponding critical point on f−1

1 (zi). The disks are

chosen to be small enough to be contained in Dδ and mutually disjoint, and similarly the balls

must be contained in Bε and mutually disjoint.
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z3

z2 z1

δ3

δ2
δ1

δ

γ3

γ2

γ1

Figure 3.1: The system of paths in Dδ for µ = 3

Next, we construct a system of paths, γi, each from δ to a fixed point δi on the boundary

of Dδi
(see Figure 3.1). The paths are chosen so that they only coincide at δ. Denote by Γ the

union of all the paths, and let Γ be the set

Γ ∪

µ
⋃

i=1

Dδi
.

The set Γ is a deformation retract of the disk Dδ. The mapping f1 is a locally trivial fibration

over the complement of Γ (and thus a trivial fibration), hence this deformation retraction can

be lifted to a deformation retraction of Y1 to f−1
1 (Γ) ∩Bε.

The set Γ deformation retracts onto the point δ. The mapping f1 is a locally trivial fibration

over Γ, hence it is trivial, so f−1
1 (Γ) ∩Bε is homotopic to Xf1

.

For every k we get the following group isomorphisms:

Hk(Y1, Xf1
) ∼= H̃k−1(Xf1

)

∼= H̃k−1(f
−1
1 (Γ) ∩Bε)

∼= Hk(f
−1
1 (Γ) ∩Bε, f

−1
1 (Γ) ∩Bε).

The first isomorphism was proven above. The last isomorphism is proved in a similar way by

considering the long exact sequence of the pair (f−1
1 (Γ)∩Bε, f

−1
1 (Γ)) and using the contractibility

of f−1
1 (Γ)∩Bε (since it is homotopic to Y1). The middle isomorphism follows from the homotopy

equivalence between Xf1
and f−1

1 (Γ) ∩Bε.
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Applying excision to remove f−1
1 (δ) ∩Bε gives the first isomorphism in the following:

Hk(f
−1
1 (Γ) ∩Bε, f

−1
1 (Γ) ∩Bε)

∼= Hk(f
−1
1 (Γ) ∩Bε \ f

−1
1 (δ) ∩Bε, f

−1
1 (Γ) ∩Bε \ f

−1
1 (δ) ∩Bε)

∼= Hk

(

µ
⋃

i=1

f−1
1 (Dδi

) ∩Bε,

µ
⋃

i=1

f−1
1 (δi) ∩Bε

)

∼= Hk

(

µ
⋃

i=1

(f−1
1 (Dδi

) ∩Bεi
),

µ
⋃

i=1

(f−1
1 (δi) ∩Bεi

)

)

∼=

µ
⊕

i=1

Hk

(

f−1
1 (Dδi

) ∩Bεi
, f−1

1 (δi) ∩Bεi

)

∼=

µ
⊕

i=1

H̃k−1(Milnor fiber of a Morse point).

The second and third isomorphisms follow by retraction.

It remains to determine the reduced homology groups of the Milnor fiber of a Morse point.

Lemma 3.2.9. The Milnor fiber of a Morse point is diffeomorphic to the disk bundle of the

tangent bundle of the sphere Sn−1.

Proof. The following proof comes from [AGZV88, p.23].

Let g : Cn → C be the Morse function given by g(z1, . . . , zn) =
∑n

i=1 z
2
i . First we show that

the radii of the Morse ball and Morse disk can be taken to be 2 and 4 respectively. In other

words, we have to show that g−1(w) ∩> S2 for |w| < 4.

Let z ∈ g−1(w) ∩ S2, and suppose that g−1(w) is not transversal to the sphere S2 at z.

Then dr2(z) is linearly dependent on dg(z) and dg(z), that is dr2(z) = αdg(z) + βdg(z), where

α, β ∈ C. We have

dg(z) = 2
∑

zjdzj

dg(z) = 2
∑

zjdzj

dr2 =
∑

zjdzj +
∑

zjdzj

from which it follows that

zj = 2αzj for j = 1, . . . , n.

But zj 6= 0 for some j. Thus |2α| = 1, and so

r2(z) =
∑

zjzj = 2α
∑

z2
j = 2αg(z).

Finally,

|g(z)| = r2(z) = 4

which contradicts the assumption that |g(z)| < 4, thus proving the claim.
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Thus the Milnor fiber can be given in this case by g−1(1) ∩B2. Let zj = xj + iyj . Thus the

Milnor fiber as a subspace of R2n is given as the vanishing set of the following equations:

∑

x2
j −

∑

y2
j = 1,

∑

xjyj = 0 and
∑

x2
j +

∑

y2
j ≤ 4.

The disc bundle of the tangent bundle of the sphere Sn−1 can be given in R2n with coordinates

x̃j , ỹj by the equations:

∑

x̃2
j = 1,

∑

x̃j ỹj = 0 and
∑

ỹ2
j ≤ ρ2,

where ρ is the radius of the discs in the bundle. A diffeomorphism between these two spaces

(with ρ =
√

3
2) is given by the mapping

x̃j =
xj

√

∑

x2
j

,

ỹj = yj .

Thus the Milnor fiber of g is homotopic to the sphere Sn−1. It follows that H̃k of the Milnor

fiber of g is 0 for k 6= n− 1, and Z for k = n− 1.

Explicitly, we can consider the sphere Sn−1 as the subset of the Milnor fiber of the Morse

point given by the equations (using the notation of the above lemma)

∑

x2
j = 1 and

yj = 0 for all j.

Then the Milnor fiber deformation retracts onto this sphere, and thus it can be seen as a

generator for the n− 1’th homology group.

Putting it all together yields the expression for the homology groups of Xf1
:

H̃k−1(Xf1
) =







0 if k 6= n

Zµ if k = n

As a consequence we have

Corollary 3.2.10. The number µ is invariant of the chosen perturbation.

And thus we can make the following definition

Definition 3.2.11. The number µ is an invariant of the singularity called the Milnor number.
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3.3 The intersection form and monodromy

In the first section of this chapter we defined the geometric monodromy as a diffeomorphism of

the Milnor fiber (more precisely, as an isotopy class of diffeomorphisms). We then defined the

algebraic monodromy as the automorphisms of the homology groups of the Milnor fiber induced

by this diffeomorphism. In the previous section we saw that only the n− 1’th homology group

is non-trivial. Thus, henceforth, when we speak about the monodromy, we will be referring to

the automophism of this group, Hn−1(Fδ).

First a remark about the number µ that was defined in the previous section as the number

of critical points into which the original critical point splits up when undergoing a perturbation

to make it a Morse function. This number can also be defined in an algebraic way,

µ = dimCC{z1, . . . , zn}/I,

where C{z1, . . . , zn} is the ring of convergent power series in n complex variables, and

I =

〈

∂f

∂z1
, . . . ,

∂f

∂zn

〉

.

It can be shown that the two definitions coincide. See [Loo84] for details.

3.3.1 Vanishing cycles

It turns out that certain cycles in the homology group Hn−1(Fδ) are special in some way, and

will be called vanishing cycles. Futhermore, one can obtain a basis for Hn−1(Fδ) consisting only

out of vanishing cycles, and certain such bases are also special in some way, where any such

special basis will be called a distinguished basis of vanishing cycles. The motivation for this

is that it creates new invariants for the singularity, and that it gives a way to calculate the

algebraic monodromy using a perturbation.

To be able to make the appropriate definitions, consider a perturbation of f as in the previous

section. There we showed that the intersection of the fiber of f1 above any δi with a small ball Bεi

is diffeomorphic to the Milnor fiber of the non-degenerate singularity g =
∑n

i=1 z
2
i . Furthermore,

we showed that the n− 1’th homology group of g is just Z, and we gave an explicit description

of a generating cycle. By considering the inclusion

f−1
1 (δi) ∩Bεi

⊂ f−1
1 (δi) ∩Bε,

where the latter set is just the Milnor fiber (by Lemma 3.2.8), we note that we can consider

this cycle as an element of Hn−1(Fδ). It will be denoted by ∆i. If one looks at the equations for

this cycle in the fiber of g above a point in C moving along a path to the critical value 0, then it

becomes smaller and smaller, and finally shrinks to a point, since only the point (0, . . . , 0) ∈ Cn

satisfies the following equations:

g(z) =
∑

z2
i = 0,

∑

Re(zi)
2 = 0 and

Im(zi) = 0 for all i.
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For this reason it is referred to as a vanishing cycle. In general, a vanishing cycle of the

Milnor fiber would be any n − 1-cycle of the fiber above δ which shrinks to a point along the

path joining δ with some critical value zi under any perturbation.

Corollary 3.3.1. The vanishing cycles ∆1, . . . ,∆µ form a basis for the homology groupHn−1(Fδ).

Proof. This is a corollary of the expression given in the previous section of the homology group

of f as a direct sum of the homology groups of the Milnor fibers of Morse points. Since each

of these direct summands is generated by the corresponding vanishing cycle ∆i, the homology

group Hn−1(Fδ) will be generated by the collection of ∆i’s.

In general, a basis of vanishing cycles found in the way described above is called a weakly

distinguished basis of vanishing cycles. If we renumber the paths γi (see the previous section)

such that moving counter-clockwise along the inner half of a small circle around δ we encounter

in an increasing order γ1, γ2, γ3 and so on, then this is called a distinguished basis of vanishing

cycles. Henceforth we will always assume that the paths were chosen in this fashion.

The purpose of requiring the basis to be distinguished, is that it brings us one step closer

to calculating the monodromy (i.e. the automorphism of Hn−1(Fδ)) using a given perturbation.

Specifically, we will now proceed to associate an automorphism hi∗ of Hn−1(Fδ) to each critical

value such that the monodromy h∗ is given by the composition hµ∗ ◦ · · · ◦ h2∗ ◦ h1∗.

Define λi to be the path in Dδ starting at δ, going along γi to δi, then going anti-clockwise

around the circle ∂Dδi
and then again returning to δ via the path γi. This path does not contain

any critical values of the fibration, and hence induces a diffeomorphism hi of the fiber above δ,

i.e. the Milnor fiber. As before, this induces an automorphism of the homology group Hn−1(Fδ),

which we call hi∗.

It is clear that the composition of paths λ1 · λ2 · · · · · λµ is homotopic to the path around

the boundary of the disk Dδ. And since this composition of paths translates into composition

of automorphisms of the homology group, it verifies the expression for h∗ given above.

The reason for decomposing h∗ in this way, is that we will soon give an expression for hi∗

as a matrix in terms of the basis ∆1, . . . ,∆µ. Composing these matrices will then yield the

matrix for h∗. This expression for hi∗ requires knowing the intersection matrix, so we turn our

attention to that now.

3.3.2 Intersection matrix

Associated to a distinguished basis of vanishing cycles ∆1, . . . ,∆µ is a µ × µ matrix S, where

the i, j’th entry is given by the intersection number ∆i ◦ ∆j . To define this we proceed as

follows: first, choose an orientation for each cycle in the basis. The Milnor fiber is a complex

manifold, and thus has a canonical orientation. The cycles ∆i and ∆j can be represented as n−1

dimensional manifolds in the 2n−2 dimensional Milnor fiber. By applying a small perturbation,

we can assume that they intersect transversally at all points of intersection. This means that at

a given point of intersection, their tangent spaces taken together span the entire tangent space of

the Milnor fiber at that point. Then to every point of intersection (there are only finitely many)
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we associate +1 or −1. To choose which one, let e1, . . . , en−1 be an oriented basis for the tangent

space of ∆i at the point in question and let f1, . . . , fn−1 be an oriented basis for the tangent

space of ∆j . Then if the basis e1, . . . , en−1, f1, . . . , fn−1 of the tangent space of the Milnor fiber

agrees with the original chosen orientation, we associate +1 to this intersection point, otherwise

−1. The intersection number ∆i ◦ ∆j is defined as the sum of all these intersection numbers.

Definition 3.3.2. The matrix S = (∆i◦∆j)i,j is called the intersection matrix of the singularity

with respect to the given distinguished basis of vanishing cycles.

3.3.3 Monodromy

To use the intersection matrix S to calculate the monodromy, we need to use the following

expression, which is derived in [AGZV88, p.44]:

hi∗(a) = a+ (−1)n(n+1)/2(a ◦ ∆i)∆i,

where a ∈ Hn−1(Fδ).

To summarize, we start with a perturbation of the function f , which allows us to find a

distinguished basis of vanishing cycles of Hn−1(Fδ). Then we need to find the intersection

numbers between these vanishing cycles and from those deduce the monodromy h∗.

There is an important condition that the monodromy must satisfy, given by the following

theorem (for a proof, see [Loo84]).

Theorem 3.3.3. The eigenvalues of the monodromy

h∗ : Hn−1(Fδ,C) → Hn−1(Fδ,C)

are roots of unity.

For a particularly simple and hence better understood class of singularities, namely the

Brieskorn singularities, one can predict precisely which roots of unity will occur.

To define a Brieskorn polynomial, let a1, . . . , an > 2 be a sequence of integers, and consider

the following polynomial

f(z1, . . . , zn) = za1

1 + · · · + zan
n .

Again let Fδ denote the Milnor fiber. Then we have the following theorem ([Mil68]).

Theorem 3.3.4 (Brieskorn-Pham). The homology group Hn−1(Fδ) is free abelian of rank

µ = (a1 − 1)(a2 − 1) · · · (an − 1).

The eigenvalues of the monodromy

h∗ : Hn(Fδ,C) → Hn(Fδ,C)

are the products w1w2 · · ·wn where each wj ranges over all aj ’th roots of unity other than 1.

The motivation behind introducing all this, is that we will work out an example in Chapter 5,

and use the previous theorem to verify the roots of unity found by starting with the intersection

matrix.
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Chapter 4

Topological classification of singular

points on plane algebraic curves

At the beginning of the first chapter we referred to the problem of classifying singularities up

to topological equivalence. In general, this problem is unsolved, but in the case where the

polynomial f has only two variables, there is a very beautiful solution. In short, the topological

type of the singular point of such a polynomial f is determined by the so-called Puiseux pairs

of the polynomial.

In this chapter we will explain how one arrives to the Puiseux pairs and how they determine

the topological type of the singularity. We will not give all proofs in detail, but will at least

explain the main ideas and give many examples. Most of the material comes from the very

clearly written book by Brieskorn ([BK86]).

4.1 Introduction

We start with a polynomial f ∈ C[x, y], and we assume that f has a singular point at 0. Then

we consider the vanishing set of f , V = V (f) ⊂ C2, in a neighbourhood of 0. We recall that if

g ∈ C[x, y] is another such polynomial with a singular point at 0, then these two singular points

are topologically equivalent precisely if there are neighbourhoods Uf and Ug of 0 ∈ C2 such that

the pair (Uf , Uf ∩ V (f)) is homeomorphic to the pair (Ug, Ug ∩ V (g)).

Also recall Theorem 2.3.4, which claims the existence of an ε > 0 such that the pair (Bε, V ∩

Bε) is homeomorphic to the pair (C(Sε), C(V ∩Sε)), where C(X) denotes the cone over X. This

means that to every polynomial f , we can associate the pair (Sε,K), where

K := V ∩ Sε.

And if K ′ = V (g) ∩ Sε′ is the corresponding set for the polynomial g, then f and g are

topologically equivalent precisely if there is a homeomorphism from Sε to Sε′ which restricts to

a homeomorphism from K to K ′.

Note that in the n = 2 case, Sε is homeomorphic to the three-sphere, S3. Note that K is

one-dimensional, because the non-singular part of V is two-dimensional (as a real manifold) and

it intersects Sε transversally. The set K is also closed, and hence compact. Thus K is a disjoint

37
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union of a finite number of circles in S3, also known as a link. If f is irreducible as an element

of the ring of convergent power series C{x, y}, then K has only one connected component, and

in this case it is a knot.

Definition 4.1.1. A knot is a subset K ⊂ S3 which is homeomorphic to S1 and with a specified

orientation. Two knots K and L are topologically equivalent, if there is a homeomorphism from

S3 to itself which restricts to an orientation-preserving homeomorphism from K to L.

A link is a subset of S3 which is homeomorphic to the disjoint union of a finite number of

copies of S1. Topological equivalence of links is defined in the same way.

We remark that the term link is also sometimes used to describe the set K ⊂ Sε in the higher

dimensional case (i.e. when f has more than 2 variables).

The problem then reduces to the following: we have to find an appropriate model for Sε,

and we have to find a way to rewrite f such that it is easy to construct the link, and to compare

different links.

4.2 A model for Sε

The set Sε is defined as the set of points in R4 for which the distance to the origin is exactly

ε. By a model for Sε, we mean any space homeomorphic to it. Note that Sε is the boundary of

the closed ball Bε. Instead of a closed ball, we will use something homeomorphic to it, namely

a closed polydisk. Define a closed polydisk with multiradius (δ, η) by

D = {(x, y) ∈ C2 | |x| ≤ δ, |y| ≤ η}.

This polydisk can be written as the product of two circular disks

D = {x ∈ C | |x| ≤ δ} × {y ∈ C | |y| ≤ η}.

This gives an expression for the boundary

∂D = T+ ∪ T−,

where

T+ = {x ∈ C | |x| = δ} × {y ∈ C | |y| ≤ η} ∼= S1 ×D2 and

T− = {x ∈ C | |x| ≤ δ} × {y ∈ C | |y| = η} ∼= D2 × S1

are two solid tori meeting along the two-dimensional torus

T+ ∩ T− = {(x, y) ∈ C2 | |x| = δ, |y| = η} ∼= S1 × S1.

To show that Sε and ∂D are homeomorphic, we give a decomposition of Sε into two solid

tori. Assume that ε2 = δ2 + η2, where δ and η are positive constants. Then

Sε = T+ ∪ T−,
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where

T+ = {(x, y) ∈ Sε | |y| ≤ η} and

T− = {(x, y) ∈ Sε | |x| ≤ δ}.

Then one can define homeomorphisms

T+ → T+ and

T− → T−

by

(x, y) 7→

(

δx

|x|
, y

)

and

(x, y) 7→

(

x,
ηy

|y|

)

,

which combine to give a homeomorphism

ψ : Sε = T+ ∪ T− → T+ ∪ T− = ∂D.

The idea is now to show that for sufficiently small ε, δ and η, there is a homeomorphism

between the pairs (Sε, Sε ∩ V ) and (Σ,Σ∩ V ), where Σ := ∂D. This is proved in [BK86]. There

it is also shown that by possibly applying a change of variables to f , one can assume that the

intersection Σ∩V is completely contained in the interior of one of the two solid tori constituting

Σ, i.e. Σ ∩ V ⊂ int(T+). This shows the advantage of using polydisks: inside T+ we have

|x| = δ. Therefore, to find the set Σ ∩ V , we only need to let x vary along a circle of radius

δ, and see which are the corresponding y values satisfying the equation f(x, y) = 0. For this it

would be useful to solve the equation for y in terms of x. This cannot be done in general, but

it can be done if one allows fractional exponents. This is the subject of the next section.

4.3 Puiseux expansions

Consider the equation f(x, y) = xp − yq = 0. Solving for y, gives y = x
p

q as a solution. More

generally, let f be a polynomial of the form

f(x, y) =
∑

a+bµ=c

αa,bx
ayb,

where µ = p
q , a, b ∈ Z≥0 and c ∈ Q. Such a polynomial is said to be quasihomogeneous. In

this case one can obtain a solution for the equation f = 0 of the form y = txµ by substitution:

f(x, txµ) =
∑

αa,bx
atbxbµ

=
∑

αa,bt
bxc

= g(t)xc.
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Figure 4.1: Example 1: Support of f(x, y) = y4 − 2x3y2 + x6

If t0 is a zero of the polynomial g(t), then y = t0x
µ is a solution of the equation f(x, y) = 0.

As long as f consists of at least two distinct monomials, g(t) will have a zero different from 0,

so the solution will not be trivial.

In the general case, one separates f into a quasihomogeneous part called f̃ , and a part

consisting of higher order terms (to be made precise later on). Then one finds the solution to

the quasihomogeneous part as above, and uses it as an approximate solution to the equation

f = 0. Substituting the approximate solution yields a new equation. One can iterate this

procedure to obtain succesively more accurate solutions. We will illustrate this process by

means of examples. But first, it is necessary to introduce a geometric concept.

Definition 4.3.1. The support of a power series f(x, y) =
∑

αa,bx
ayb ∈ C{x, y} is defined to

be the subset of (Z≥0)
2 consisting of pairs (a, b) for which αa,b 6= 0, that is

∆(f) = {(a, b) ∈ (Z≥0)
2 | αa,b 6= 0}.

For the first example, let f(x, y) = y4 − 2x3y2 + x6. Then the support of f consists of three

points corresponding to the three monomials (see Figure 4.1).

The condition for f to be quasihomogeneous, in other words that there must exist rational

numbers µ and c such that a + bµ = c for all (a, b) ∈ ∆(f), is clearly equivalent to requiring

that all the points in ∆(f) lie on a straight line. And in this case the gradient of the line will

be − 1
µ and it will intersect the x-axis at (c, 0).

As seen in Figure 4.1, all the points lie on a straight line with slope − 2
3 , hence µ = 3

2 and

we can apply the method described above to find a solution of the form y = tx
3

2 . Substituting

this into the equation for f yields

f(x, tx
3

2 ) = x6(t4 − 2t2 + 1).
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Figure 4.2: Example 2: Support of f(x, y) = y4 − 2x3y2 − 4x5y + x6 − x7

The zeros of g(t) = t4 − 2t2 + 1 = (t2 − 1)2 are t = 1 and t = −1. Thus we get two solutions

for the original equation, namely y = x
3

2 and y = −x
3

2 .

For the second example, let f(x, y) = y4 − 2x3y2 − 4x5y+x6 −x7. Then as can be seen from

Figure 4.2, the points do not all lie on a straight line anymore. We can however write f as a

sum

f = f̃ + h

where f̃ = y4 − 2x3y2 + x6 is the quasihomogeneous part which we saw in the previous

example, and h = −4x5y − x7 is an higher order term. The order of a monomial xayb is taken

to be a+ µb in this case instead of the usual a+ b. Thus all the monomials in f̃ have order 6,

while the two monomials of h have orders 6 1
2 and 7 respectively. This is just a different way of

saying that all the points corresponding to the monomials of h lie to the right or above of the

line going through the points corresponding to the monomials of f̃ .

Now we use the solution y = x
3

2 of f̃(x, y) = 0 as an approximate solution for f(x, y) = 0.

We write the true solution as

y = x
3

2 (1 + y1).

Also, in order to avoid working with fractional exponents of x, we replace x
1

2 by x1. Substi-

tuting all this in f(x, y) gives

f(x, y) = f(x2
1, x

3
1(1 + y1))

= x12
1 · f1(x1, y1),

where

f1(x1, y1) = y4
1 + 4y3

1 + 4y2
1 − 4x1y1 − 4x1 − x2

1.
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Again, we consider the support ∆(f1). Below we will describe a systematic way of finding

the quasihomogeneous part of f1, but in this case we just note that we can again write f1 as a

sum

f1 = f̃1 + g1

where f̃1 = 4y2
1 − 4x1 are the monomials corresponding to points on the line, and g1 =

y4
1 +4y3

1 −4x1y1−x
2
1 are the higher order terms. Solving f̃1(x1, y1) = 0 for y1 is easy in this case

because there are only two terms, giving the solution y1 = x
1

2

1 . Of course, we know that there

should exist a solution of the form t1x
1

2

1 since the slope of the line is −2, and we could follow

the previous method of substitution to deduce that t1 = ±1.

Now following the same path as before, we conclude that y1 = x
1

2

1 should give an approximate

solution of f1. But if we do the substitution, then we get

f1(x1, x
1

2

1 ) = x2
1 + 4x

3

2

1 + 4x1 − 4x
3

2

1 − 4x1 − x2
1 = 0.

Thus y1 = x
1

2

1 is a solution of the equation f1(x1, y1) = 0, and hence

y = x
3

2 (1 + y1) = x
3

2 (1 + x
1

2

1 ) = x
3

2 (1 + x
1

4 ) = x
3

2 + x
7

4

is a solution of the original equation f(x, y) = 0.

After these examples, we now give a short description of what the general procedure would

involve. Firstly one needs to assume that there is at least one point of ∆(f) lying on the y-axis.

This can always be done by applying a coordinate change to f if necessary. One then takes

the lowest point on the y-axis, and considers the family of straight lines in the plane passing

through this point. Starting with the vertical line in this family, one rotates it anticlockwise

until it encounters a point of ∆(f) not lying on the y-axis. The monomials of f corresponding

to the points on this line then form the quasihomogeneous part of f . As in the examples, all the

points in the support now lie on the right of or above this line. One then finds a solution for the

quasihomogeneous part, uses it as an approximate solution in order to find a new equation, and

iterates, as in the second example. In general the process does not end after a finite number of

steps. Rather, one finds an infinite series for y in terms of fractional powers of x.

Before making this more precise, we give the following definition.

Definition 4.3.2. Let

f =
∑

a,b≥0
(a,b)6=(0,0)

αa,bx
ayb ∈ C{x, y}

be a convergent power series. Then f is said to be y-general if the power series f(0, y) ∈ C{y}

does not equal 0, and f is called y-general of order m if α0,m 6= 0 and α0,i = 0 for i < m.

It is not hard to show (see [Fis01, p.105]) that if f has order m, then f can be made to be

y-general of order m via a linear change of coordinates.

Then there is the following theorem (see [Fis01, p.137] and [BK86, p.386]):
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Theorem 4.3.3. Let f ∈ C{x, y} be irreducible and y-general of order m. Then there exists

an ε0 > 0 such that for any 0 < ε < ε0 there exists a δ > 0 such that if

V = {(x, y) ∈ C2 | |x| < δ, |y| < ε, f(x, y) = 0}

is the vanishing set of f in a neighbourhood of 0, then one can find a converging power series

y(z) ∈ C{z} for which the mapping

π :D
δ

1
m

→ C2

z 7→ (zm, y(z))

is a holomorphic surjection onto V , the restriction

π : D
δ

1
m

\ {0} → V \ {0}

is biholomorphic, and π−1(0) = {0}.

In other words, for z small enough we have f(zn, y(z)) = 0 (where n = m in the theorem).

It can be shown that this power series y(z) is unique up to replacing z by ζk
nz, where ζn is a

primitive n-th root of unity, and k ∈ Z.

By replacing z with x
1

n we get the following definition:

Definition 4.3.4. The series y(x) =
∑

i αix
i
n obtained by replacing z with x

1

n is called a Puiseux

expansion for the curve with equation f(x, y) = 0. It satisfies the equation f(x, y(x)) = 0 for

small values of x.

4.4 Puiseux pairs

For this section we will assume that f is irreducible in the ring C{x, y}.

As a result of the previous two sections, we now have a method for constructing the set

Σ ∩ V ⊂ Σ. We start by constructing a Puiseux expansion y(x) for f(x, y) = 0. For a given

value of x, there are up to n corresponding values for y depending on which branch of the

multivalued function x
1

n we choose. As before, we choose the parameters of the polydisk in such

a way that Σ ∩ V is completely contained in the interior of one of the two solid tori comprising

the boundary Σ of the polydisk. Then we let x move along the circle with radius δ, and trace

the n or less paths followed by the corresponding values of y in int(T+).

As an example, consider the polynomial f(x, y) = y2 − x3. Let x(t) be a path around the

unit circle

x(t) = e2πit.

The solutions of f(x(t), y) = 0 are then

y1(t) = e2πi( 3

2
)t and

y2(t) = −e2πi( 3

2
)t.
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Figure 4.3: Graph of solutions

Figure 4.4: The corresponding knot

Instead of viewing the domain of t as a circle, we consider it to be the interval [0, 1] with the

endpoints identified. The the graphs of the two solutions lie on the cylinder

[0, 1] × S1 ⊂ [0, 1] × C,

as can be seen in Figure 4.3.

Now consider the cylinder with the circles on the ends identified, giving a torus. This torus

lies inside the solid torus T+ making up part of Σ. It is clear that the union of the two solution

graphs gives a knot inside Σ. By viewing the cylinder in Figure 4.3 from the top and connecting

the ends, we see that the knot looks as in Figure 4.4.

In principle this could be carried out for the Puiseux expansion corresponding to any polyno-

mial f(x, y) to give a corresponding link. Furthermore, two polynomials are topologically equi-

valent precisely if the corresponding links are equivalent. Thus we need to ask which changes of

the Puiseux expansion really change the link in an essential way, and which changes just perturb

it slightly into something equivalent to the original.

It will be helpful to consider two examples. For the first example, suppose that the Puiseux

expansion of f is y = x
3

2 + x
7

4 . 1 Consider first the approximation y = x
3

2 . The knot is then

again as in Figure 4.4. Now consider the full expression for y. The radius of the circle along

which x moves, i.e. δ, can be taken to be very small, in which case the contribution of the

second term x
7

4 is small compared to that of the first term x
3

2 . Thus in the figure of the knot

for the full expression (Figure 4.5), we can see that each string has been replaced by two strings

twisting around each other. Without giving a proof, it is plausible that the resulting knot is not

equivalent to the knot corresponding to the approximate solution y = x
3

2 . Thus the addition

1As a multivalued function one should choose the branches of the different terms to be consistent with each

other. To avoid ambiguity one could rewrite the expansion as y = x
6
1 + x

7
1, where x = x

4
1, which makes it clear

that there are only 4 possible branches, and not 8. Similar remarks apply to the expansions which follow.
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Figure 4.5: The knot (without the ends joined) of y = x
3

2 + x
7

4

Figure 4.6: The knot (without the ends joined) of y = x
3

2 + x
37

2

of the second term in the Puiseux expansion produces an essential change in the corresponding

knot.

For the second example, suppose that the Puiseux expansion of f is y = x
3

2 + x
37

2 . Again

consider the approximate solution y = x
3

2 , giving the knot from Figure 4.4. This time, the

addition of the extra term x
37

2 does not yield extra strings, as seen in Figure 4.6. Rather,

each string now oscillates around its previous position. It is possible to smooth out the strings,

showing that the two knots are equivalent in this case.

The examples suggest that adding a term in the Puiseux expansion only alters the equivalence

class of the knot if the denominator of the exponent of the term increases, since this implies

that the number of strings must increase.

Now assume that f is y-general of order m, where m is the order of f . This is equivalent

to requiring that the y-axis is not a tangent at the singular point of the curve V (f). It is also

equivalent to requiring that the smallest exponent in the Puiseux expansion is at least 1.

We now proceed to define what are called the Puiseux pairs of f . Firstly, let us write the

Puiseux expansion of f in the form

y =
∑

αkx
k,

with k ∈ Q, k ≥ 1. Then if all k are integers, no Puiseux pairs are defined. Otherwise, there

is a smallest k1 which is not an integer. We can write

k1 =
n1

m1

where n1 > m1 and n1 and m1 are relatively prime. The pair (m1, n1) is called the first

Puiseux pair of f . Some of the following exponents may be of the form q
m1

, but if not all of

them are, then we will come to a k2 which cannot be expressed in that form. We then write k2

in the form

k2 =
n2

m1m2
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where m2 > 1 and n2 and m2 are relatively prime. The numbers n2 and m2 are uniquely

determined by these conditions, and we define the pair (m2, n2) as the second Puiseux pair.

In general, if the Puiseux pairs (m1, n1), · · · , (mj , nj) are already defined, then let kj+1 be

the smallest exponent for which the preceding exponents can all be expressed in the form

k =
q

m1 · · ·mj
,

while kj+1 cannot. Writing

kj+1 =
nj+1

m1 · · ·mj+1

with nj+1 and mj+1 relatively prime and mj+1 > 1, we define (mj+1, nj+1) to be the next

Puiseux pair.

Eventually this process has to stop (because there is a bound on the size of the denominators

of the exponents). Thus we get a finite sequence (m1, n1), . . . , (mg, ng) of pairs of integers.

Definition 4.4.1. The pairs (m1, n1), . . . , (mg, ng) defined in this way are called the Puiseux

pairs of f .

For example, if y = x
3

2 + x
7

4 , then the Puiseux pairs are

(m1, n1) = (2, 3)

(m2, n2) = (2, 7).

The above reasoning should make the following theorem plausible ([BK86, p.411]).

Theorem 4.4.2. Puiseux expansions with the same Puiseux pairs give topologically equivalent

knots.

4.5 Torus knots

The knots that arise from irreducible polynomials are all of a very special kind, called iterated

torus knots. In this section we will describe how the Puiseux pairs of a polynomial can be used

to define the corresponding knot. This is relevant to being able to construct the Milnor fiber in

the next chapter.

Firstly we will consider torus knots. These are the knots associated to polynomials of the

basic form f(x, y) = xp − yq where p and q are relatively prime. As before, we consider the knot

K = Sε ∩ V (f), or more explicitly

K = {(x, y) ∈ C2 | |x|2 + |y|2 = ε2, xp = yq}.

The second condition implies that |x|p = |y|q, and if we solve this for |y| and substitute into

the first condition, we find positive constants η and µ such that |x| = η and |y| = µ for all

(x, y) ∈ K. Note that these two constants satisfy the equations

η2 + µ2 = ε2

ηp = µq.
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Figure 4.7: Torus knot of type (5, 2)

Now recall that we constructed a model for Sε as the union of two solid tori

Sε = T+ ∪ T−,

where

T+ = {(x, y) ∈ Sε | |y| ≤ µ} and

T− = {(x, y) ∈ Sε | |x| ≤ η}.

The intersection of these two solid tori is a two-dimensional torus consisting of all points in

Sε for which |x| = η and |y| = µ. Thus we see that K lies inside this torus. This torus can be

modelled as S1 × S1 by the mapping

ψ : S1 × S1 → T− ∩ T+ ⊂ C2

(a, b) 7→ (ηa, µb)

Then K is precisely the image of S1 after composing ψ with the map S1 → S1 × S1 taking

t ∈ S1 to (tq, tp). Hence we see that K is obtained by moving around the torus T− ∩ T+ p times

in the one direction and q times in the other direction. See Figure 4.7 for the case where p = 2

and q = 5.

Note that the polynomial f in this case has just one Puiseux pair, namely (q, p). Now we

want to consider the more general case of an arbitrary irreducible polynomial f (in two variables,

with an isolated singular point at 0 as usual). First, it is necessary to explain the concept of

iterated torus knots.

In the example of the torus knot, we had a torus, and we constructed a knot on this torus

depending on two relatively prime integers p and q. It is important to note that we also had a

trivialization of the torus, in other words, a map between the torus and S1 × S1. Choosing a

different trivialization would in general give a different knot.

To construct the torus knot, we could also have started with a simple (untied) knot inside

Sε. Then we consider a small tubular neighbourhood of this knot, and consider the surface of

this solid torus. If we use the correct trivialization then we will get the same torus knot as

before. The idea of the iterated torus knot is to repeat this process. In other words, one then

considers a small tubular neighbourhood of the torus knot, and constructs another knot on its

surface. This knot is again determined by two integers specifying how many times it must turn
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around the torus in the one direction and how many times in the other direction. It turns out

that these two numbers are exactly the next Puiseux pair.

However, we still have to address the question of choosing the trivialization. This involves

choosing a longitude circle and a latitude circle on the torus. These are two non-trivial loops on

the torus with intersection number ±1. Given such circles, one can find a trivialization (that is

a mapping from the torus to S1 × S1) such that the longitude circle corresponds to {t1} × S1

and the latitude circle to S1 × {t2} for some t1, t2 ∈ S1. The following method to choose these

two circles comes from the book of Brieskorn ([BK86]).

We fix a decomposition of Sε = T− ∪ T+ into two solid tori by writing ε2 = η2 + µ2 as

previously described. From that description also follows the trivializations

T+
∼= S1 ×D2

T− ∼= D2 × S1.

We call a knot K regularly embedded when it is contained in

int(T+) ∼= S1 × int(D2),

and the projection K → S1 is a differentiable orientation-preserving covering. Of course in

our cases we will always be able to assume that the knot satisfies this requirement. Then we

choose a tubular neighbourhood T of K which is small in the sense that for each t ∈ S1, the

intersection T∩({t}×D2) consists of disjoints disksDi(t) around the points pi(t) ofK∩({t}×D2).

We choose the boundary of one such disk as the longitude circle on F = ∂T . As a latitude circle

on F , we choose a curve whose points qi(t) ∈ Di(t) are such that qi(t) − pi(t) has constant

direction in D2.

We now proceed to define iterated torus knots in a recursive fashion.

Definition 4.5.1. The trivial knot S1 × {0} ⊂ S1 ×D2 ⊂ S3 is the torus knot of order 0. A

torus knot of type (m1, n1) on the boundary of a tubular neighbourhood of the trivial knot is

a torus knot of order 1 and type (m1, n1). If we take the tubular neighbourhood to be small

enough, then this knot is regularly embedded.

Now assume that Ki ⊂ S1 ×D2 ⊂ S3 is a regularly embedded torus knot of order i and type

(m1, n1), . . . , (mi, ni), and let Ki+1 be a torus knot of type (mi+1, ni+1) on a tubular neighbour-

hood of Ki. Then Ki+1 is called a torus knot of order i+ 1 and type (m1, n1), . . . , (mi+1, ni+1).

Torus knots of higher order are called iterated torus knot.

The point of making these definitions is to be able to state the following proposition (see

[BK86, p.438]).

Proposition 4.5.2. The knot corresponding to the Puiseux expansion

y = x
n1
m1 + x

n2
m1m2 + · · · + x

ng

m1···mg

with Puiseux pairs (m1, n1), . . . , (mg, ng) is an iterated torus knot of order g and type

(m1, n1), . . . , (mg, ng).
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Furthermore, one can use methods from knot theory to classify the iterated torus knots,

yielding the following result.

Proposition 4.5.3. Puiseux expansions with different Puiseux pairs give different iterated torus

knots.

Combining this with Theorem 4.4.2 shows that Puiseux expansions have the same Puiseux

pairs if and only if they give the same iterated torus knots.

In conclusion, the results of this chapter can be summarized by the following theorem:

Theorem 4.5.4. Let f ∈ C{x, y} be a convergent power series with an isolated singularity at 0.

Then f can be parametrized by a Puiseux expansion with Puiseux pairs (m1, n1), . . . , (mg, ng).

Furthermore, the intersection of V (f) with a small sphere Sε is an iterated torus knot of type

(m1, n1), . . . , (mg, ng). Two such isolated singularities are topologically equivalent if and only if

their Puiseux pairs coincide.
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Chapter 5

Constructing the Milnor fiber

As in the previous chapter, we will restrict ourselves to the case where f is a polynomial in two

variables, and for simplicity assume it to be irreducible in the ring of convergent power series

C{x, y}. Let K ⊂ Sε be the corresponding knot as described before. Then the associated Milnor

fibration is the fibration of Sε \K over S1. The knot K is the boundary of the closure of any of

the fibers (see [Mil68, p.55]). In this chapter we will refer to the closure of any of the fibers as

the Milnor fiber and denote it by Fδ. It is a compact two dimensional manifold-with-boundary,

with the boundary consisting of a single connected component homeomorphic to S1.

In this chapter we will describe two different ways of constructing the Milnor fiber up to

homeomorphism. It only depends on the corresponding knot. The first way (from [AGZV88])

will be a very intuitive method which only works for the simplest cases but allows one to find

the corresponding vanishing cycles on the Milnor fiber. The second way (from [BK86]) will be

valid for any irreducible polynomial f with a single Puiseux pair. For the more general case of

an arbitrary number of Puiseux pairs, one can consult [BK86, p.555] for a construction of the

Milnor fiber, although it soon becomes very hard to visualize the Milnor fiber together with its

embedding into S3.

5.1 Constructing the Milnor fiber by using a perturbation

In the beginning of [AGZV88] it is shown how to obtain the Milnor fiber, the associated vanishing

cycles and the monodromy for a few very simple examples. In this section we will use this method

for a slightly more complicated example. Although the procedure does not easily generalize to

more complicated examples, it gives one a nice geometric picture and some intuition about the

basic objects that were defined in Chapter 3.

The example we will consider is f(x, y) = y2 − x5. Consider the perturbation

ft(x, y) = y2 − x5 + 5t4x,

where t ∈ C. For t 6= 0, the function ft has 4 critical points, namely

(e
kπi
2 t, 0), k = 0, 1, 2, 3,

51
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or equivalently

(±t, 0), (±it, 0).

The corresponding critical values are ±4t5 and ±i4t5. By calculating the second partial

derivatives, one can verify that for t 6= 0, all the critical points of ft are non-degenerate, and

since the critical values are distinct, it follows that ft is a Morse function. Hence we can consider

t to be a small fixed value, different from 0, and use the resulting function f̃ := ft to determine

the Milnor fiber of f . Take t to be positive and real for simplicity.

It has been shown in a previous chapter that the Milnor fiber of f is given by taking the

fiber of f̃ above δ, intersected with a small ball Bε which contains all the critical points. By

using Ehresmann’s fibration theorem we could show that f̃ gives a locally trivial fibration over

the disk Dδ with the critical values removes. It follows that the Milnor fiber of f is also given by

taking the fiber of f̃ above 0, intersected with the same small ball Bε. In the previous chapter

we saw that the small ball can be replaced by a polydisk

D = {(x, y) ∈ C2 | |x| ≤ δ, |y| ≤ µ}.

By choosing δ > t and µ large enough, we get the following description of the Milnor fiber

in this case:

f̃−1(0) ∩D = {(x, y) ∈ C2 | y2 = x5 − 5t4x, |x| ≤ δ}.

By µ large enough, we mean that the condition |y| ≤ µ is automatically satisfied for the

points in the above set. This set is part of the Riemann surface corresponding to the equation

y2 = x5 − 5t4x. To construct it, we solve for y

y = ±
√

x(x4 − 5t4)

and find the branching points:

x = 0

x = 5
1

4 e
kπi
2 t, where k = 0, 1, 2, 3.

If we wanted to construct the entire Riemann surface corresponding to the equation, we

would have had to include ∞ as a branching point. Then there would be six branching points

on the Riemann sphere, which could be joined pairwise by non-intersecting paths. One would

then take two concentric Riemann spheres, cut each along these same paths, and join them again

in such a way that crossing a path takes one from the inner sphere to the outer sphere, and vice

versa.

Since we only want to construct a small part of the Riemann surface, we need to take two

closed disks of radius δ, and cut them along appropriate paths joining the branching points.

Note that since there are an uneven number of branching points, one of the branching points

will be joined to a point on the boundary of the disk. This is actually the path going to the

branching point at ∞. Figure 5.1 shows the five branch points and the paths.
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Figure 5.1: One of two disks used to construct the Milnor fiber

Figure 5.2: An intermediate step in deforming the Milnor fiber

Figure 5.3: Milnor fiber in a recognizable form
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∆i

λ

Figure 5.4: Effect of λ moving to one of the critical values

Figure 5.5: Branching points change as λ moves

It takes some effort to visualize the process, and to deform the resulting surface into some-

thing recognizable. (See Figure 5.2 for an intermediate step.) But having done that, one finds

that the Milnor fiber is homeomorphic to the surface-with-boundary in Figure 5.3.

Next, we want to consider the problem of finding the vanishing cycles on the Milnor fiber.

From the explanation in the second chapter, we know that we should consider how the fiber of

f̃ above a point λ ∈ C changes as λ approaches one of the critical values. For each critical value

there should be one cycle in the first homology group which vanishes as can be seen in Figure

5.4. To find these vanishing cycles, we look at how the branch points move as λ goes from 0 to

one of the critical values. Figure 5.5 shows what happens when λ moves from 0 to 4t5. The right

side of the figure shows the path followed by λ. The left side shows how the branching points

change. Two of the branching points move towards each other and become one. The associated

vanishing cycle must thus be a cycle which encircles these two branching points. One can draw

the cycle on the Milnor fiber as follows: fix a point on the cycle as being on the first of the two

closed disks used to construct the Milnor fiber. Then move along the cycle, alternating disks

everytime you cross one of the paths between branching points.

On the disks used to construct the Milnor fiber, the cycles look simply as in Figure 5.6. For

each cycle, we choose an orientation, and label them as shown in the figure. It is then possible

to draw the cycles on the resulting Milnor fiber. Figure 5.7 shows the Milnor fiber as before,

but with four oriented cycles generating the first homology group. By working carefully, one can

compute expressions for the vanishing cycles in terms of this basis (note that these expressions
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∆1

∆2

∆3

∆4

Figure 5.6: Vanishing cycles on disk

α1
α2

β1

β2

Figure 5.7: Milnor fiber with generators of first homology group

depend upon the way in which one goes from Figure 5.2 to Figure 5.3):

∆1 = α1

∆2 = α1 − β1

∆3 = α1 + α2 − β1

∆4 = α1 + α2 − β1 − β2

It is easy to see that the intersection numbers of the α’s and β’s are

α1 ◦ β1 = −1

α2 ◦ β1 = 1

α2 ◦ β2 = −1

and 0 for all the rest. From this we can deduce the intersection matrix for the distinguished

basis of vanishing cycles:

S = (∆i ◦ ∆j)i,j =













0 1 1 1

−1 0 1 1

−1 −1 0 1

−1 −1 −1 0













.

As explained before on page 34, to each vanishing cycle ∆i, we can associate a diffeomorphism

hi of the Milnor fiber Fδ. This gives an associated homomorphism hi∗ of the homology group



56 CHAPTER 5. CONSTRUCTING THE MILNOR FIBER

∆i ∆i

a a

(0, 0)

(0, 2π)

(1, 0)

(1, 2π)

(0, 0)

(0, 2π) (1, 2π)

(1, 4π)
unfolding

Figure 5.8: Performing a Dehn twist

H1(Fδ). Since the ∆i’s form a basis for this homology group, we can express hi∗ in terms of this

basis. On page 35 we gave the formula (with n− 1 = 1)

hi∗(a) = a− (a ◦ ∆i)∆i,

where a ∈ H1(Fδ). In the present case where n = 2, it is actually not too hard to deduce

the formula. The first step would be to show that the diffeomorphism hi corresponding to the

loop ∆i is simply a Dehn twist around ∆i. See Figure 5.8 for a description of a Dehn twist. Let

a ∈ H1(Fδ). Then near every point of intersection between a and ∆i, the effect of hi is to replace

the part of a close to the point of intersection with either a + ∆i or a − ∆i. The sign depends

upon our convention of which way the Dehn twist goes, and on the intersection number at that

point (1 or −1). By taking care of the signs, one arrives at the above expression for hi∗(a).

Applying this formula by using the above intersection matrix, gives

h1∗ =













1 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1













, h2∗ =













1 0 0 0

−1 1 1 1

0 0 1 0

0 0 0 1













,

h3∗ =













1 0 0 0

0 1 0 0

−1 −1 1 1

0 0 0 1













, h4∗ =













1 0 0 0

0 1 0 0

0 0 1 0

−1 −1 −1 1













.

Now we can calculate the monodromy

h∗ = h4∗ ◦ h3∗ ◦ h2∗ ◦ h1∗ =













1 1 1 1

−1 0 0 0

0 −1 0 0

0 0 −1 0













.

The eigenvalues of h∗ are −ζ5,−ζ
2
5 ,−ζ

3
5 and −ζ4

5 , where ζ5 = e
2πi
5 is a fixed primitive 5-th

root of unity. Note that these are exactly the roots predicted by Theorem 3.3.4.
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Figure 5.9: Different branching pattern

Figure 5.10: Milnor fiber constructed in different way

Finally, with the next section in mind, we give an alternative branching pattern (see Figure

5.9), which allows us to express the Milnor fiber in a different format (see Figure 5.10). Again,

it requires a bit of thought to convince oneself that the Milnor fiber is indeed of this form. The

corresponding vanishing cycles are now easier to visualize: choose one of the strips connecting

the upper disk with the lower disk. Then each of the four vanishing cycles can be found by

starting with a point on this marked strip, moving up to the upper disk, then across to one of

the other four strips, down this strip, and across the lower disk to where the marked strip starts,

and then up again to the point on this strip where the loop started. It is now also simpler to

deduce the intersection matrix, which turns out to be exactly the same as before.

5.2 Constructing the Milnor fiber as a spanning surface

Consider again the knot K ⊂ S3 and the Milnor fiber Fδ. As mentioned before, Fδ has K as its

boundary. In knot theory it is shown that for any given knot L ⊂ S3, one can find an orientable

surface-with-boundary M , such that ∂M = L (see [Rol90]). Such a surface is called a spanning

surface. The genus of such a surface is defined as the genus of the compact surface obtained

by attaching a disk to the boundary (which is homeomorphic to S1). Among all such surfaces,

there will be some that obtain a certain minimal genus. In such cases the surface is called a

minimal Seifert surface corresponding to the knot.
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Figure 5.11: Part of knot

Figure 5.12: How to attach a rectangle at each crossing

Two Seifert surfaces are said to be equivalent if there is a homeomorphism of S3 taking

the one surface to the other. In general, a knot may have inequivalent Seifert surfaces, but in

our case this does not occur. This is because all the knots we deal with are fibered knots. For

the details see [BK86, p.542]. It then follows from the Neuwirth-Stallings Theorem (see [Mil68,

p.83]) that the Milnor fiber is a Seifert surface for the knot K. There is a general method to

find a Seifert surface of a given knot (described in [Rol90] and [BK86]), so thus we can apply

this method in our case to find the Milnor fiber using just the knot K. We will describe this for

the case we are interested in, namely a torus knot of type (p, q) in S3.

Consider the knot to be drawn on the surface of a torus in the manner described previously.

In other words, twisting p times around in the one direction, and q times in the other direction.

Then we project the knot onto a plane which is perpendicular to the axis of rotational symmetry

of the torus (i.e. the axis passing through the hole). Then the knot can be seen as constructed

by cyclically joining p copies of the q strings shown in Figure 5.11 end-to-end.

To construct the spanning surface, we start by attaching a twisted rectangle to each crossing,

in the sense shown in Figure 5.12. Now if we remove the interiors of these rectangles, and the

parts of their boundaries lying on the projection of the knot, then what remains is q disjoint

circles. We then attach a disk to each of these circles (such that the circle is the boundary of

the disk). Then the disks together with the little rectangles make up the desired surface.

To be able to visualize the resulting surface, we move these disks so that they are stacked

on top of each other (with some space in between). Then the little rectangles become stretched

into long strips with a single twist. Thus two disks which are next to each other are connected

by p strips, each twisted once in the same direction. See Figure 5.13 for the case where p = 4

and q = 3. Note that for p = 5 and q = 2 we again get the surface obtained in the previous

section in Figure 5.10.
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Figure 5.13: Milnor fiber as disks with joining strips
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