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Introduction

The theory of toric varieties lies in the overlap of algebraic geometry and
combinatorics. The rich interplay between these two fields in the context of
the theory has led to a number of results in both areas. Some notable exam-
ples of the application of algebro-geometrical techniques to combinatorial
problems include:

• Counting lattice points in convex polytopes via the Riemann-Roch
theorem (see, e.g., the survey article [Bri95] by M. Brion).

• The proof, due to R.P. Stanley, of McMullen’s conjectures on the
number of faces of a simplicial convex polytope, obtained via Hard
Lefschetz in [Sta80].

On the other hand, the combinatorial description of toric varieties allowed
the proof of many important results in algebraic geometry, such as:

• The stable reduction theorem, in the area of resolution of singularities,
proved in [KKMS73].

• The characterization, due to M. Demazure, of the algebraic subgroups
of maximal rank of Cremona groups, in the seminal paper [Dem70].

Since the conception of the theory in the early 1970’s, toric varieties have
found applications in many other fields. In [CK99], for example, D.A. Cox
and S. Katz explore the connections between toric geometry and mirror
symmetry. The role of toric surfaces as natural generalizations of Bézier
surfaces is described by R. Krasauskas in [Kra01], together with many in-
teresting pictures. Other areas where techniques coming from the theory of
toric varieties have been successfully applied include Diophantine geometry
(see, e.g., [Roj16]), algebraic statistics and computational biology (see, e.g.,
[SS05]).

This thesis was initially motivated by the work of O. Karpenkov in the
area of lattice geometry. In his paper [Kar06], he introduced functions anal-
ogous to the familiar trigonometric ones such as sine, cosine and tangent.
Many of the properties holding for classical functions have their counterpart
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in the realm of lattice geometry. In particular, the well known fact that the
sum of the (inner) angles of a triangle in the plane equals π has a lattice
analogue. This proved to be a key idea for the complete classification of
lattice triangles. More precisely, the results obtained by O. Karpenkov al-
low us to enumerate all lattice triangles of fixed lattice area up to lattice
equivalence. Here by lattice equivalence we mean an affine transformation
preserving the lattice. These results are useful, for example, in the study
of singularities of toric varieties (see Appendix A in [Kar06]). At this point
there is one natural question: is it possible to translate such properties into
the language of algebraic geometry? To (or, better, begin to) answer this
question one needs to set up the machinery of algebraic geometry in the
context of toric varieties: this thesis serves that purpose. Moreover, in the
last chapter some applications to the original problem are given.

There are several possible definitions of toric variety that can be en-
countered in the literature. The most common, and historically one of the
earliest to be studied, starts with a convex “lattice cone” σ in some vector
space. To this cone one associates an affine variety, called the affine toric
variety of σ. When we have a collection of cones satisfying certain given
properties, the corresponding affine toric varieties can be glued to form a
toric variety. In Chapter 1 we show how to build such a collection of cones
starting from a polytope and study the properties of the corresponding toric
variety.

Another common construction of toric varieties starts from a lattice M
in some Euclidean space R

n and a polytope K whose vertices lie in the
lattice. Let k be an algebraically closed field of characteristic 0 and denote
by k× its group of units. Consider the finite set A = {α0, . . . , αm} given by
the intersection of K with the lattice M . If we write αi = (αi1, . . . , αin) for
i = 0, . . . ,m, then we have a map

ϕA : (k×)n → P
m
k

from (k×)n to projective m-space P
m
k given by

ϕA(t1, · · · , tn) = (tα01

1 · · · tα0n
n : . . . : tαm1

1 · · · tαmnn ).

The closure in the Zariski topology of the image of (k×)n under ϕA is called
the projective toric variety of the polytope K.

In the last part of Chapter 1 we show how to give the above construction
for polytopes whose vertices lie in an abstract lattice, i.e. in a free finitely
generated abelian group. This generalization seems to be quite natural, but
it does not appear to be present explicitly in the literature.

In Chapter 2, after setting up all the machinery of divisors and invertible
sheaves on toric varieties, we prove (see Theorem 2.4.3 on page 51) that the
two approaches described in the first chapter are equivalent.
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The last chapter is devoted to complex toric varieties. The analytical
structure of these objects makes it possible to give a description of some
invariants suc as the fundamental group and the cohomology groups in terms
of lattice objects. In particular, we show in Section 3.2 that the Euler
characteristic (the alternating sum of the dimensions of the cohomology
groups) of the complex toric variety of a polytope equals the number of
vertices of the polytope. This result is already present in the literature in a
different form (see, e.g., [Dan78]), but without any connection to the theory
of plane lattice geometry. Consider the following situation: we have a given
two-dimensional toric variety (a toric surface) coming from a polygon and
we want to know from which polygon it came. The aforementioned result,
in the form described in this thesis, lets us distinguish whether it came from
a triangle, a quadrangle, etc.

In this work we are concerned exclusively with toric varieties arising from
polytopes: such objects are very particular, for example they are always
projective. Arbitrary toric varieties, even though not always projective, still
share many of the properties holding for polytopal toric varieties. Further
generalizations are possible, and useful: for example, one could drop the
assumption of separatedness and study toric prevarieties. In [W lo97], J.
W lodarczyk proved that every normal variety admits an embedding into
a toric prevariety. For the applications to lattice geometry, however, the
setting of toric varieties coming from polytopes is the most natural and
appropriate one.

As stated above, the motivation of this thesis is the study of lattice poly-
gons. Since the toric variety associated to a non-degenerate lattice polygon
always has dimension two (it is a so-called toric surface), in theory we could
just work with two-dimensional lattices and vector spaces. Nonetheless,
there is very little extra effort involved in setting up a description valid in
higher dimensions (i.e. for polytopes instead of a polygon). This approach
is the one taken in this work.

The standard textbooks on the theory of toric varieties are [Ful93],
[Oda88] and [Ewa96]. In all of these, the varieties are studied over the
field of complex numbers, but most of the results are valid for arbitrary
algebraically closed fields of characteristic zero. The treatments of W. Ful-
ton in [Ful93] and G. Ewald in [Ewa96] lean on the algebraic side of the
theory, while T. Oda [Oda88] prefers an analytical approach. Among the
three books listed above, the one by Fulton requires some prior knowledge
of algebraic geometry, while the other two aim at giving an introduction to
algebraic geometry through toric varieties. The first part of [Ewa96] also
provides a brief but thorough introduction to convex geometry and convex
polytopes. For a more advanced treatment of the theory of toric varieties,
the survey article [Dan78] by V.I. Danilov is a superb starting point.
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I am grateful to my supervisor Oleg Karpenkov for his constant attention
to this work and to Bas Edixhoven, who answered with patience my endless
questions. Particular thanks go to my wife Leonora, who always supported
(and at times endured) me, and to my fellow ALGANT students.

Organization of this thesis

In Chapter 1 we start by recalling the basic results of convex geometry and
algebra needed in the thesis. We introduce two constructions of the toric
variety of a polytope and study its basic properties. In particular we show
that such a variety is integral, separated and normal. In the last part of the
chapter, we show that every toric variety contains a dense algebraic torus.
This allows us to define the toric variety of a polytope lying in an abstract
lattice.

In Chapter 2 we study divisors on toric varieties and their associated
sheaves. We give criteria for such sheaves to be ample or very ample and
apply them to show that a polytopal toric variety is always projective. In
the last section we show that the two constructions defined in Chapter 1 are
actually equivalent.

In Chapter 3 we study toric varieties over the field of complex numbers.
We describe the topology of affine toric varieties and use this description to
compute the Euler characteristic of the toric variety of a polytope.



Chapter 1

Toric varieties from

polytopes

In this chapter we present two different constructions of the toric variety as-
sociated to a lattice polytope and study its basic properties. All the vector
spaces throughout this work are tacitly assumed to be finite-dimensional vec-
tor spaces over the real numbers. All fields are assumed to be algebraically
closed of characteristic zero.

1.1 Some convex geometry

In this section we include some basic facts about convex geometry which are
used throughout the whole thesis. The book [Ewa96] contains an extensive
treatment of these topics, with the applications to the theory of toric vari-
eties in mind. The reader interested in a more general approach to convexity
may consult, for example, [Roc96] or [Web94].

Let N be a lattice of rank n, that is, a finitely generated free abelian
group of rank n (then N ∼= Z

n). We denote by NR the associated real vector
space NR = N ⊗Z R and we set M = HomZ(N,Z), which is isomorphic
to Z

n. If we denote by MR the real vector space M ⊗Z R, we find that
MR

∼= Hom(NR,R): in other words, MR is isomorphic to the dual of NR.
We denote by 〈·, ·〉 the natural pairing MR × NR → R. Unless otherwise
specified, whenever we specify a lattice N , we always assume that its rank
is n.

Let now V be a vector space. An integral structure on V is the datum
of a lattice N such that NR = V . In this case MR is identified with the dual
V ∨ = Hom(V,R). Whenever we talk about “lattice objects” (e.g. lattice
cones, lattice polygons, etc.), we assume such an integral structure to be
given.

Definition 1.1.1. A (polyhedral) cone in a vector space V is the positive
hull (the set of linear combinations with non-negative real coefficients) of a
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finite set of vectors of V , that is:

σ =

{
m∑

i=1

λisi

∣∣∣∣∣ si ∈MR, λi ∈ R≥0

}

for S = {s1, . . . , sm} ⊂ V . We also write σ = pos(S) or σ = pos(s1, . . . , sm).
A lattice cone in V = NR (or just a lattice cone, if there is no possibility of
confusion) is a cone in V which can be generated by elements of N , that is,
which can be written as the positive hull of a finite set of elements of N . A
lattice cone is said to be strongly convex if it does not contain lines through
the origin (non-zero linear subspaces).

In this thesis we are mainly concerned with “lattice objects”, therefore we
use the words “lattice cone” (resp. lattice polytope, resp. lattice polygon)
and the words “cone” (resp. polytope, resp. polygon) interchangeably,
always referring to the lattice object. When we want to state properties
holding for general (non-lattice) objects, we always make it clear.

Strong convexity in the previous definition may seem a bit technical, but
we will see in Section 1.8 that it has a very intuitive explanation and plays
a fundamental role in the theory of toric varieties. For more details we refer
to the aforementioned section. We now introduce the notions of face and
dual lattice cone and state a useful proposition (1.1.6 below) that can be
found in [Ful93], page 14.

Definition 1.1.2. The dual cone σ∨ of a lattice cone σ in NR is the set:

σ∨ = {u ∈MR | 〈u, v〉 ≥ 0∀v ∈ σ}.

Remark 1. Note that, for a lattice N endowing V with an integral struc-
ture, the dual lattice M endows the dual V ∨ with an integral structure as
well. This means that Definition 1.1.1 and all other definitions involving
“lattice objects” make sense also for cones in V ∨.

Example 1.1.3. Let N = Z
2, then NR = R

2. Let e1 = (1, 0), e2 = (0, 1)
be the standard basis of R

2. Then the light blue set of Figure 1.1(a) is a
lattice cone, generated by e1 and e1 + e2.

Example 1.1.4. Let N = Z
2, then NR = R

2. Let e1 = (1, 0), e2 = (0, 1) be
the standard basis of R

2. Then the light blue set of Figure 1.1(b) is a cone,
generated by e1 and − 1√

2
e1 + e2, but not a lattice cone.

Let Hu be the hyperplane determined by an element u of V ∨:

Hu = {v ∈ V | 〈u, v〉 = 0},

then Hu determines two sets, called its closed half-spaces, as follows:

H+
u = {v ∈ V | 〈u, v〉 ≥ 0}, H−

u = {v ∈ V | 〈u, v〉 ≤ 0}.
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e1 + e2

e1

(a) A lattice cone in R
2.

e1

e2 −
1√
2
e1

(b) A cone in R
2 which is not

a lattice cone.

Figure 1.1: Examples 1.1.3 and 1.1.4

Let u be in V ∨ and let H = Hu be the corresponding hyperplane. We say
that H is a supporting hyperplane of a cone σ if σ∩H 6= ∅ and σ is contained
in at least one of the closed half-spaces H+ and H− determined by H.

From now on, we always denote by u⊥ the hyperplane Hu of an element
u in V ∨. This notation comes from the general situation of a subset S of
V ∨ to which we associate the set

S⊥ = {v ∈ V | 〈u, v〉 = 0∀u ∈ S}.

Definition 1.1.5. A face τ of a cone σ is the intersection of σ with any
of its supporting hyperplanes. We consider σ as an improper face of itself.
The dimension of a face τ is the dimension of its linear span (recall that
the linear span of a subset A of V is the intersection of all linear subspaces
of V containing A). Faces of dimension zero are called vertices and faces of
dimension one are called rays.

If N has rank 1, then we can enumerate explicitly all possible cones. Let
e be the generator of N , then the only possible cones (see also Figure 1.2)
up to translation and dilation are:

1. The trivial cone {0}, of dimension 0;

2. The ray pos(e) spanned by e, of dimension 1;

3. The cone pos(e,−e) spanned by e and −e, of dimension 1.

Note that the last cone is not strongly convex, since it contains (it is actually
equal to) NR.

Remark 2. It is obvious from the definition of a supporting hyperplane
that a face τ of a cone σ is of the form

τ = σ ∩ u⊥ = {v ∈ σ | 〈u, v〉 = 0}

for some vector u of the dual cone σ∨.
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e

e−e

0

Figure 1.2: The three lattice cones of dimension one in R

Proposition 1.1.6. Let σ be a cone in the vector space NR, then the
following conditions are equivalent:

(1) σ contains no non-zero linear subspaces of NR;

(2) σ ∩ (−σ) = {0};

(3) {0} is a face of σ;

(4) σ∨ spans N∨
R

= MR.

Remark 3. Even if a cone σ is strongly convex, its dual σ∨ might not be
strongly convex (see Figure 1.3). Nonetheless, requiring in addition σ to
be n-dimensional (which amounts to asking that σ spans NR), Proposition
1.1.6 ensures us that also σ∨ is strongly convex.

Figure 1.3: A strongly convex cone whose dual is not strongly convex.

Definition 1.1.7. A fan ∆ in NR is a collection of strongly convex lattice
cones such that:

1. If τ is a face of a cone σ, then τ is a cone of ∆;

2. If σ1 and σ2 are cones of ∆, then σ1 ∩ σ2 is a face of both.
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Definition 1.1.8. The support of a fan ∆ in NR, denoted by supp(∆), is
the union of all its cones, i.e.

supp(∆) =
⋃

σ∈∆

σ.

At this point we introduce the notion of lattice polytope, following the
same pattern as in the description of lattice cones. We need the slightly
more general notion of a supporting affine hyperplane: an affine hyperplane
Hu in a finite-dimensional real vector space V is a set of the form

Hu = {v ∈ V | 〈u, v〉 = a},

for some u in V ∨ and a in R. As in the linear case, an affine hyperplane
H = Hu determines two closed half spaces

H+ = {v ∈ V | 〈u, v〉 ≥ a}, H− = {v ∈ V | 〈u, v〉 ≤ a}.

We say that H is a supporting affine hyperplane of a convex set S if S∩H 6= ∅
and S is contained in at least one of the closed half-spaces H+ and H−

determined by H.

Definition 1.1.9. A polytope K in a vector space V is the convex hull of a
finite set of vectors of V , that is, a set of the form:

K =

{
m∑

i=1

λisi

∣∣∣∣∣ si ∈MR, λi ∈ R≥0,

s∑

i=1

λi = 1

}

for S = {s1, . . . , sm} ⊂ V . We also use the notation K = conv(S) or
K = conv(s1, . . . , sm).

Figure 1.4: A lattice triangle and a lattice pentagon in R
2 for N = Z

2.

Definition 1.1.10. A face F of a polytope K is the intersection of K with
a supporting affine hyperplane. We consider K as an improper face of itself.
The dimension of a face is the dimension of the affine subspace of K it spans
(recall that the affine span of a set A of V is the intersection of all affine
subspaces of V containing A). Faces of dimension zero are called vertices
and faces of dimension one are called edges.
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Figure 1.5: A lattice cube in a three-dimensional lattice.

Definition 1.1.11. A lattice polytope in V = NR is a polytope whose ver-
tices lie in N .

1.2 The projective toric variety of a polytope

In this section we describe the first construction of a toric variety. To do
so, we have to choose an isomorphism between the ambient lattice and Z

n.
In other words, we consider lattices in Euclidean space. In Section 1.10 we
show how to define a toric variety intrinsically in terms of an abstract lattice.

Consider a lattice polytope K in NR. Choose an isomorphism N ∼= Z
n

such that the basis of N corresponds to the standard one

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

In other words, we identify the lattice points of NR with n-tuples of integers.
Let A = K ∩ N be the set of lattice points of K. Let k be a field and P

m

projective m-space over k, where m + 1 is the cardinality of A. Writing

A = {α0, . . . , αm} = {(α01, . . . , α0n), . . . , (αm1, . . . , αmn)},

we have a map
ϕA : (k×)n → P

m

defined by

ϕA(t1, . . . , tn) = (tα01

1 · · · tα0n
n : . . . : tαm1

1 · · · tαmnn ).

For simplicity we set t = (t1, . . . , tn) and, for αi = (αi1, . . . , αin), we set
tαi = tαi11 tαi22 · · · tαinn , so we can write ϕA as

ϕA(t) = (tα0 : . . . : tαn).

The Zariski closure of the image of ϕA is called the projective toric variety
YK associated to K:

YK = im(ϕA).



1.3. THE MONOID ALGEBRA 15

One could define in general the projective toric variety YA associated to
any set A contained in Z

n - this is where the notation ϕA comes from. In
contrast to the case of toric varieties from polytopes (see section 1.7), such
varieties need not be normal: an immediate example is the cuspidal cubic
curve x0x

2
2 − x3

1 = 0 in P
2, which is the YA for A = {0, 2, 3} ⊂ Z.

1.3 The monoid algebra

To further proceed, we need to introduce some facts related to monoids and
monoid algebras.

A semigroup (S,+), or just S, is a set S together with an associative
binary operation + : S × S → S. A monoid1 S is a semigroup S with an
identity element, denoted by 0. In a monoid not necessarily every element
(possibly no element at all, except for 0) has an inverse. We could say that
“a monoid is almost a group”, in the sense that if every element of a monoid
S is invertible, then S is a group. A monoid (S,+) is said to be commutative
if the operation “+” is commutative. If S and T are two monoids, we say
that a map f : S → T is a monoid homomorphism if f is compatible with
the structure of the monoids, i.e. if f(a+ b) = f(a) + f(b) for every a and
b in S and f(0S) = 0T , where 0S and 0T are the identity elements of S and
T respectively.

A group is in a natural way, by forgetting the extra structure given by
the existence of inverses, a monoid. The set I of all invertible elements of a
monoid S clearly forms a group under restriction of the operation + to the
set I × I, but it is not true that every monoid can be embedded in a group.
To be more precise, given a monoid S it is not possible in general to find a
group G containing S as a sub-monoid. An example is the free monoid on
the set of symbols {a, b, c} with relations {ab = ac} (here the operation is
concatenation of symbols).

Suppose now that a monoid S satisfies the cancellation property :

c+ a = c+ b⇒ a = b and a+ c = b+ c⇒ a = b, ∀a, b, c ∈ S,

then S is said to be cancellative. When S is a commutative cancellative
monoid, it is always possible to find an embedding in a group. Commuta-
tivity is really necessary here, since there are examples of non-commutative
cancellative monoids having the property that a+ b = a for some elements
a and b even though b is not the zero element. In such cases, could we
find a group containing our monoid, it would be possible to add −a to both

1It would be more intuitive to associate the letter M to a monoid, but, on one hand,
monoids arising in the theory of toric varieties are usually denoted by S; on the other hand,
we reserved the letter M for the dual lattice. Moreover, many authors call “semigroup”
the object that we are calling monoid, so ours is not such a bad notation after all.



16 CHAPTER 1. TORIC VARIETIES FROM POLYTOPES

sides and arrive at a contradiction. The free monoid defined in the previous
paragraph is an example of this situation.

Suppose now that we have a monoid S together with a field k, then we
can form the monoid algebra k[S], whose elements are finite formal linear
combinations with coefficients in k of symbols χu, for u in S. This construc-
tion is completely analogous to the case when, starting from a group G and
a field k, we form the group algebra k[G]. Elements of k[S] are then of the
form ∑

finite

auχ
u

for au in k and u in S. Multiplication is defined on the basis {χu}u∈S as

χuχv = χu+v

and extended by linearity on the whole k[S]. This is a k-algebra with identity
χ0, which we denote by 1.

If we now set S = Z
n, then S is a commutative cancellative monoid.

There is a natural isomorphism of k-algebras between k[Zn] and the algebra
k[t1, . . . , tn, t

−1
1 , . . . , t−1

n ] of Laurent polynomials in the variables t1, . . . , tn.
This isomorphism is given on the basis {χα}α∈Zn of k[Zn] by

χα 7→ tα1

1 · · · tαnn ,

where α = (α1, . . . , αn).
We will sometimes denote k[t1, . . . , tn, t

−1
1 , . . . , t−1

n ] simply by k[t, t−1]
and write tα instead of tα1

1 · · · tαnn , for α = (α1, . . . , αn).
As stated above, a cancellative commutative monoid S can always be

embedded in a group G. If such G is a finitely generated free abelian group
(this will always be the case for the monoids arising in the theory of toric
varieties) of rank n, then G is isomorphic to Z

n (as a group and thus as
a monoid). It follows that the inclusion S →֒ G gives rise to an injective
homomorphism of k-algebras

k[S] →֒ k[Zn]

and since, by the previous discussion, k[Zn] ∼= k[t, t−1], we have an injective
homomorphism of k-algebras

k[S] →֒ k[t, t−1].

We say that a monoid S is finitely generated if there exist elements
a1, . . . , am (called generators) such that every s in S can be written in the
form

s = λ1a1 + · · · + λmam, λi ∈ Z≥0.

It is obvious that the corresponding monoid algebra k[S] is then a finitely
generated k-algebra.
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1.4 The affine toric variety of a cone

The goal of the present section is to show how a lattice cone naturally gives
rise to an affine variety. Recall that to each cone σ in the vector space NR

there corresponds a dual cone σ∨ in MR. To proceed further, we need the
following two important lemmas.

Lemma 1.4.1 (Farkas’ lemma). If σ is a lattice cone in V = NR, then its
dual σ∨ is a lattice cone in V ∨ = MR.

Proof. See, for example, [Roc96], §19 and §22.

By Lemma 1.4.1, it makes sense to intersect (in the sense that the in-
tersection is non-empty) the dual σ∨ of a lattice cone σ with M . We set
Sσ = σ∨ ∩M : this is evidently a monoid if we take the usual sum of vectors
in MR as operation and the zero vector as identity. Furthermore, since Sσ
is contained in M ∼= Z

n, then it is also commutative and cancellative.
Let now V = NR. The usual inner product on R

n induces an inner
product on V and therefore a norm. Being V finite-dimensional, we know
from the theory of topological vector spaces that the metric topology given
by this norm is the unique Hausdorff topology on V up to equivalence. When
we refer to topological properties of V (e.g. closedness, compactness, etc.)
we always assume the above topological structure to be given.

Lemma 1.4.2 (Gordan’s lemma). If σ is a lattice cone in V = NR, then Sσ
is a finitely generated monoid.

Proof. By Lemma 1.4.1, the cone σ∨ is the positive hull of a finite number
of vectors ui, . . . , um in M :

σ∨ = pos(u1, . . . , um).

Consider the set

K =

{
m∑

i=1

λiui

∣∣∣∣∣λi ∈ R, λi ∈ [0, 1]

}
.

It is clear that K is compact in MR. Since M is a discrete subgroup of MR,
the intersection K ∩M is a finite set. If u is an element of Sσ = σ∨ ∩M ,
then we can express it as a linear combination with non-negative coefficients
of the generators ui of σ∨:

u = a1u1 + · · · + amum.

Write ⌊ai⌋ for the largest integer smaller than or equal to ai. Then for each
of the ai’s we have ai = ⌊ai⌋ + bi, where bi = ai − ⌊ai⌋. Clearly, we have
0 ≤ bi ≤ 1. It follows that

u = a1u1 + · · · + amum = ⌊a1⌋u1 + · · · + ⌊am⌋um + b1u1 + · · · + bmum,
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which becomes, on setting w = b1u1 + · · · + bmum,

u = ⌊a1⌋u1 + · · · + ⌊am⌋um + w.

Finally, all the ui’s are in K∩M and, by construction w = b1u1 + · · ·+bmum
is in K ∩M as well, so that u is a combination with integer coefficients of
elements of K ∩M . By the arbitrariness of the choice of u, we conclude
that Sσ is generated as a monoid by the elements of the finite set K ∩M ,
in particular Sσ is finitely generated.

We can now see a connection to algebraic geometry: starting from a cone
σ in NR, we have built a monoid Sσ = σ∨ ∩M . Given a field k, we can
associate to Sσ (as in Section 1.3) the monoid algebra Rσ = k[Sσ]. Since
Sσ is finitely generated by Lemma 1.4.2, Rσ will be a finitely generated
k-algebra, hence we obtain an affine variety Uσ by taking the (maximal)
spectrum of Rσ:

Uσ = Spec(Rσ).

In this thesis we are exclusively concerned with varieties over an alge-
braically closed field k, so the notion of maximal spectrum is sufficient to
study them. Since there is no possibility of confusion, we denote by Spec(R)
the maximal spectrum of a finitely generated k-algebra R. The term variety
is used in the sense of [Kem93] and [Mil92].

Definition 1.4.3. Let σ be a cone in NR. The affine variety Uσ defined
above is called the affine toric variety associated to the cone σ.

Remark 4. By Lemma 1.4.1, the dual σ∨ of σ is generated by a finite
number of vectors u1, . . . , um in M . It is straightforward to check that we
can express σ as

σ = {v ∈ NR | 〈ui, v〉 ≥ 0, ∀i = 1, . . . ,m}.

This means that σ is a finite intersection of half-spaces, i.e., in the notation
of Section 1.1,

σ =
m⋂

i=1

H+
ui
.

Remark 5. There is a bijective correspondence between points of an affine
toric variety Uσ = Spec(k[Sσ]) and monoid homomorphisms from Sσ to k,
where k is considered as a multiplicative monoid.

Proof. Over an algebraically closed field k, the affine variety Spec(R) corre-
sponding to a finitely generated k-algebra R can be identified with the set
of k-algebra homomorphisms from R to k. To prove the assertion made in
the remark, we then have to find a bijective correspondence

Homk-alg.(k[Sσ], k) ↔ Hommon.(Sσ, k)
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between the set of k-algebra homomorphism from k[Sσ] to k and the set of
monoid homomorphisms from Sσ to k. Indeed, to a k-algebra homomor-
phism f : k[Sσ] → k we associate a map f∗ : Sσ → k defined as

f∗(u) = f(χu),

where χu is the basis element of k[Sσ] corresponding to u. We have

f∗(u1 + u2) = f(χu1+u2) = f(χu1χu2) = f(χu1)f(χu2) = f∗(u1)f∗(u2)

and
f∗(0) = f(χ0) = f(1) = 1,

so f∗ really is a monoid homomorphism. On the other hand, to a monoid
homomorphism φ : Sσ → k, we associate the map φ̃ : k[Sσ] → k defined on
the basis as

φ̃(χu) = φ(u)

and extended by linearity. We have

φ̃(χu1χu2) = φ̃(χu1+u2) = φ(u1 + u2) = φ(u1)φ(u2) = φ̃(χu1)φ̃(χu2),

so φ̃ is a k-algebra homomorphism. It is clear that these two associations
are mutually inverse.

1.5 Normality of affine toric varieties

We would like to say more about the monoid algebra Rσ and the correspond-
ing affine toric variety Uσ = Spec(Rσ). Since Sσ is contained in M , which is
a finitely generated free abelian group, we identify Rσ with a subalgebra of
k[t, t−1] as in Section 1.3. We denote by tu ∈ k[t, t−1] the Laurent monomial
corresponding to the basis element χu of Rσ.

The above identification allows us to see some properties of the affine
toric variety Uσ. Let us be more precise: the algebra k[t, t−1] of Laurent
polynomials is the localization of the ring of polynomials k[t] = k[t1, . . . , tn]
at the element t1t2 · · · tn. In particular, being the localization of an integral
domain, k[t, t−1] is an integral domain itself and therefore so is Rσ. In
geometrical terms, this means that Uσ is integral as an affine variety (i.e.,
reduced and irreducible). Furthermore, since k[t] is a unique factorization
domain, so is every localization of it, in particular k[t, t−1] . Since every
unique factorization domain is integrally closed, we conclude that k[t, t−1]
is integrally closed.

An important property of affine toric varieties (which carries over to
general toric varieties, as we will see in the next section) is that they are
normal. A general affine variety V = Spec(R) is said to be normal if it is
irreducible and its local rings OV,p at each p of V are integrally closed. It
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is well known that this last condition is equivalent to the k-algebra R being
integrally closed (see, e.g., [Har83]).

In the case of the affine toric variety Uσ = Spec(Rσ) of a cone σ, we have
shown in the first two paragraphs that Uσ is irreducible. Normality of Uσ
then follows from the next proposition.

Proposition 1.5.1. Let σ be a cone in NR, then its corresponding monoid
algebra Rσ is an integrally closed ring.

Proof. By Remark 4 σ∨ =
⋂m
i=1H

+
vi

, where vi ∈ (σ∨)∨ = σ. If we set
τi = pos(vi) = {λivi : λi ∈ R≥0}, then

Sσ = σ∨ ∩M =

(
m⋂

i=1

H+
vi

)
∩M =

m⋂

i=1

(
H+
vi
∩M

)
=

m⋂

i=1

Sτi

and therefore

Rσ = k[Sσ] = k

[
m⋂

i=1

Sτi

]
=

m⋂

i=1

k[Sτi ] =

m⋂

i=1

Rτi .

Now, each of the Rτi is a a subalgebra of

k[t1, . . . , tn, t
−1
1 , . . . , t−1

n ]

of the form
k[ti1 , . . . , til , t

−1
j1
, . . . , t−1

jm
],

where the indices i1, . . . , il, . . . , j1, . . . , jm are integers between zero and n.
In particular each of them is a unique factorization domain and hence an
integrally closed domain. Their intersection Rσ is then integrally closed.

1.6 The toric variety of a polytope

We have seen in Section 1.2 a construction of the toric variety of a polytope.
In the present section we introduce a second construction, which involves a
substantially larger amount of work, but highlights the deep connection to
convex geometry and combinatorics.

We fix a field k. If we start with a lattice polytope K in MR, then for
each face F there is a lattice cone

σF = {v ∈ NR | 〈u, v〉 ≤ 〈u′, v〉 ∀u ∈ F,∀u′ ∈ K}. (1.1)

Remark 6. Let K be a lattice polytope in MR. The set

{σF |F is a face of K}

of cones σF corresponding to faces of K forms a fan ∆K , called the fan of
K.
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Lemma 1.6.1. The fan ∆K of a polytope K covers the whole vector space
NR, i.e.

supp(∆K) = NR.

Proof. Let v be a vector in NR and set α = inf{〈u, v〉|u ∈ K}. Since a convex
polytope is the convex hull of its vertices, we can just take the infimum as
u varies in the vertices of K, i.e.

α = inf{〈u, v〉 |u ∈ vert(K)}.

The set vert(K) is finite, hence α is the minimum of the set and it is attained
for some vertex ũ, i.e.

α = 〈ũ, v〉.

For any other vector u in the polytope we thus have

〈u, v〉 ≥ α = 〈ũ, v〉,

which means, according to (1.1), that v is in the cone σũ of the vertex ũ

For a polytope K in MR we define the codimension of any face F to be

codim(F ) = rank(M) − dim(F ).

According to the previous section, to each of the lattice cones σF in ∆K

there corresponds the affine toric variety UσF over k. The structure of a
convex polytope is such that these varieties satisfy the conditions needed
to glue them and obtain a new variety: this will be the toric variety XK

associated to K.

Remark 7. If we rewrite the cone associated to a face F of a lattice polytope
K as

σF = {v ∈ NR | 〈u′ − u, v〉 ≥ 0 ∀u ∈ F,∀u′ ∈ K},

we immediately see that the previous construction is translation-invariant
and dilation-invariant. Specifically, if we consider another lattice polytope
K ′ of the form K ′ = u+ K for u ∈ M , i.e. K ′ = {u+ w|w ∈ K}, the fans
∆K and ∆K ′ coincide. Furthermore, if we consider the dilated polytope
mK = {mu|u ∈ K}, where m is a positive integer, this is still a lattice
polytope. The fans ∆K and ∆mK clearly coincide.

In terms of toric varieties, this implies that all translations and dilations
of a polygon K give rise to the same variety.

Lemma 1.6.2. Let K be a polytope in MR. The map

F → σF

sending each face to the cone σF of (1.1) is a one-to-one correspondence
between faces of K and cones of ∆K . This correspondence satisfies

dim(σF ) = codim(F ).
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Proof. According to the previous remark, dilating the polytope K by an
integer and translating it by a lattice vector does not change the fan ∆K .
We can therefore assume that K contains the origin in its interior (see
Chapter 3 for the definition). This means that ∆K can be obtained as the
face fan of the so-called polar polytope K◦. The lemma then follows from
the properties of this fan (see, e.g., [Ewa96] or [Zie95]).

We want to be more precise on how to glue affine toric varieties, but first
we need to discuss one fact from convex geometry.

Lemma 1.6.3. Let σ be a lattice cone and τ = σ ∩ u⊥ for u ∈ σ∨ one of
its faces, then Sτ = Sσ + Z≥0(−u).

Proof. Let v ∈ Sτ = τ∨ ∩M , we claim the following:

∃p ∈ R≥0 : v + pu ∈ σ∨,

which can be written as

∃p ∈ R≥0 : 〈v + pu,w〉 ≥ 0 ∀w ∈ σ. (1.2)

It is enough to check this for the generators u1, . . . , us of Sσ. Indeed,
suppose that for each generator ui there exists a real number pi satisfying
(1.2). If we set p = maxni=1(pi), then (1.2) holds for every vector v in Sτ by
bilinearity of the natural pairing.

Let ui be any one of the generators. Suppose now that 〈u, ui〉 = 0, then
ui is already in σ ∩ u⊥ = τ . Since v ∈ τ∨, it follows that 〈v, ui〉 ≥ 0 and
therefore

〈v + pu, ui〉 = 〈v, ui〉 + p〈u, ui〉 = 〈v, ui〉 ≥ 0.

If instead 〈u, ui〉 > 0, we can simply choose pi = − 〈v,ui〉
〈u,ui〉 so that

〈v + piu, ui〉 = 〈v, ui〉 + pi〈u, ui〉 ≥ 0.

We have thus shown that a real number p as in (1.2) exists. For such p,
set l = ⌈p⌉ (i.e., l is the smallest integer greater than or equal to p), then
v + lu ∈ σ∨ ∩M = Sσ and

v = (v + lu) + l(−u) ∈ Sσ + Z≥0(−u).

Conversely, let v ∈ Sσ+Z≥0(−u), then v = w+ l(−u) for some integer l ≥ 0
and for any t ∈ τ we have

〈v, t〉 = 〈w + l(−u), t〉 = 〈w, t〉 − l〈u, t〉.

Since t lies in τ = σ∩u⊥, then 〈u, t〉 = 0 and since w ∈ Sσ, then 〈w, t〉 ≥ 0, so
that 〈v, t〉 ≥ 0, that is, v ∈ τ∨. Clearly v also lies in M and thus v ∈ Sτ .



1.6. THE TORIC VARIETY OF A POLYTOPE 23

If τ is a face of a lattice cone σ, then we obviously have σ∨ ⊂ τ∨, so that
σ∨ ∩M ⊂ τ∨ ∩M . Since σ∨ ∩M = Sσ and τ∨ ∩M = Sτ by definition, we
can write Sσ ⊂ Sτ and consequently Rσ ⊂ Rτ . This inclusion of k-algebras
induces a morphism of affine varieties ιτ,σ : Uτ → Uσ.

Proposition 1.6.4. Let σ be a lattice cone and τ a face of σ, then the
induced morphism ιτ,σ : Uτ → Uσ embeds Uτ as a principal open subset of
Uσ.

Proof. In general, let U be an affine variety U = Spec(A). For every f in A
there is an isomorphism of affine varieties between the principal open subset
D(f) of Spec(A) and Spec(Af ), where Af is the localization of A at f (i.e.,
the localization of A at the multiplicative subset {fn : f ∈ A,n ≥ 0}). Thus
it is enough to show that Rτ is the localization of Rσ at some element of
Rσ.

Let τ = σ ∩ u⊥ for some u ∈ σ∨. From Lemma 1.6.3 we have that

Sτ = Sσ + Z≥0(−u).

If v ∈ Sτ , then we can write it as v = v′ + l(−u) for some integer l ≥ 0 and
v′ ∈ Sσ. In the k-algebra Rσ this means that the basis elements are of the
form

χv = χv
′+l(−u) =

χv
′

(χu)l
.

This shows that Rτ is the localization of Rσ at χu.

Remark 8. With notation as in the above proof, the principal open subset
of Uσ corresponding to Uτ is D(χu), where τ = σ ∩ u⊥.

We now go back to the fan ∆K = ∆ we associated to a polytope K at
the beginning of this section and consider the collection of affine varieties
U = {Uσ}σ∈∆. Let σ and ρ be two cones of ∆, then, by definition of fan,
their intersection σ ∩ ρ is again a cone of ∆. By Proposition 1.6.4, σ ∩ ρ
is embedded as a principal open subset of Uσ via the map ισ∩ρ,σ and as a
principal open subset of Uρ via the map ισ∩ρ,ρ. Setting

Uσ,ρ = ισ∩ρ,σ(Uσ∩ρ)

and consequently
Uρ,σ = ισ∩ρ,ρ(Uσ∩ρ),

we have a collection
V = {Uσ,ρ}σ,ρ∈∆.

The affine varieties Uσ,ρ are Zariski open subsets of Uσ for each cone σ of
the fan. Finally, by setting

ϕσ,ρ = ισ∩ρ,ρ ◦ ι
−1
σ∩ρ,σ : Uσ,ρ → Uρ,σ,
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we get a collection of (iso)morphisms

P = {ϕσ,ρ}σ,ρ∈∆.

It is straightforward to check that the data of U , V and P satisfy the condi-
tions needed to glue the affine toric varieties of U along the subvarieties of
V, as stated in [Sha94].

Definition 1.6.5. The object constructed above is called the toric variety
XK associated to the polytope K.

Remark 9. All constructions carried out until now remain valid with the
prime spectrum instead of the maximal spectrum. What we have shown is
that XK is a scheme of finite type over the field k. Note that XK is a variety
in the sense of Liu ([Liu02], 2.3.47). In this scheme-theoretic setting, the
next section would show that XK is an integral separated scheme of finite
type over k, i.e. a variety in the sense of Hartshorne ([Har83], II.4, page
105).

1.7 Properties of toric varieties

In this section we discuss three of the main properties of a toric variety,
namely normality, separatedness and completeness.

Let XK be the toric variety associated to a polytope K in MR, and let
(U ,V,P) be the data from which XK is obtained. First of all we note that
every affine toric variety Uσ in U is irreducible and hence connected.

Proposition 1.7.1. The toric variety XK of a polytope K is irreducible.

Proof. For each ordered pair of cones (σ, ρ) in the fan ∆K , the intersection
σ ∩ ρ is a face of both σ and ρ, hence

Uσ,ρ = ισ∩ρ,σ(Uσ∩ρ) = ισ∩ρ,σ
(
Spec(Rσ∩ρ)

)

is non-empty. Connectedness of each affine piece Uσ then implies that XK is
connected as well. Since each affine piece is irreducible and XK is connected,
it follows that also XK is irreducible, as desired.

Proposition 1.7.2. The toric variety XK of a polytope K is reduced.

Proof. The variety XK is covered by the affine varieties Uσ, as σ varies in
the fan ∆K of K. Since each Uσ is reduced (see Section 1.5), also XK is
reduced.

The two previous propositions show that XK is reduced and irreducible
and therefore integral. To prove that XK is also separated we need one more
result from convex geometry.
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Lemma 1.7.3. Let σ and ρ be two lattice cones intersecting in a common
face τ , then

Sτ = Sσ + Sρ

Proof. See, for example, [Ful93], Proposition 3, Section 1.2.

Proposition 1.7.4. The toric variety XK of a polytope K is separated.

Proof. Set X = XK . We need to show that the image of the diagonal map
∆ : X ×X → X is closed, or, equivalently, that (X ×X) \ ∆(X) is open.
Since

(X ×X) \ ∆(X) =
⋃

σ,ρ

(
(Uσ × Uρ) \ ∆(Uσ∩ρ)

)
,

where the union ranges over all cones σ and ρ of the fan of K, it is sufficient
to prove the statement in the affine case. We have then to prove that the
image of the diagonal map δ : Uσ∩ρ → Uσ × Uρ is closed.

Since Uσ = Spec(Rσ), Uρ = Spec(Rρ) and Uσ∩ρ = Spec(Rσ∩ρ) are affine
varieties, the diagonal map δ corresponds to a homomorphism of k-algebras

δ∗ : Rσ ⊗Rρ → Rσ∩ρ,

hence it is sufficient to check surjectivity of δ∗.
Explicitly, the homomorphism δ∗ sends a basis element χu⊗χv of Rσ⊗Rρ

to χu+v in Rσ∩ρ. Since σ and τ are cones of the fan of K, their intersection
is a common face of both, hence by Lemma 1.7.3 the map

Sσ ⊕ Sρ → Sσ∩ρ

is surjective.
Finally, since Rσ∩ρ = k[Sσ∩ρ] and Rσ ⊗Rρ = k[Sσ]⊗ k[Sρ] = k[Sσ ⊕Sρ],

also δ∗ is surjective, as we wanted to show.

A last important property to be discussed in this section is completeness.
One general way to construct a toric variety starts by taking any fan ∆ in
NR and building a toric variety by glueing the affine toric varieties Uσ of
cones σ in ∆, exactly as we did in Section 1.6, but without the assumption
that the fan comes from a polytope. Such varieties need not be complete,
but the next proposition, whose proof can be found in [Ful93] or [Oda88],
show that toric varieties coming from polytopes are always complete.

Proposition 1.7.5. Let ∆ be a fan in NR. Then the corresponding toric
variety is complete if and only if the support of ∆ covers all of NR, i.e. if
and only if

supp(∆) =
⋃

σ∈∆

σ = NR

Indeed, the fan ∆K associated to a polytope XK has such a property by
Lemma 1.6.1, so XK is complete.
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1.8 Torus actions and torus orbits

The origin of the name “toric variety” is closely related to the presence of
an algebraic action of a torus on every toric variety: in this section we study
this action in detail. The main point is that every toric variety contains an
algebraic torus as a dense open subset. As a by-product, we obtain that the
dimension of a toric variety equals the rank of the ambient lattice.

Let, as usual, N be a lattice and NR its associated real vector space.
Consider the set {0} consisting of the zero vector alone: it is trivially a
lattice cone, so we can study the corresponding affine toric variety U{0}.
The dual of {0} is

{0}∨ =
{
u ∈MR : 〈u, v〉 ≥ 0 ∀v ∈ {0}

}
= MR,

so that
S{0} = {0}∨ ∩M = MR ∩M = M

and therefore
R{0} = k[S{0}] = k[M ].

We can endow U{0} with a structure of algebraic group. Since it is affine,
we can just give the multiplication, inverse and identity maps at the level
of k-algebras. More precisely, multiplication corresponds to

k[M ] → k[M ] ⊗ k[M ] (1.3)

χu 7→ χu ⊗ χu,

taking inverses corresponds to

k[M ] → k[M ] (1.4)

χu 7→ χ−u

and the identity corresponds to:

k[M ] → k (1.5)

χu 7→ 1.

Choosing an isomorphism M ∼= Z
n we obtain k[M ] ∼= k[t, t−1] as in the

end of Section 1.3. Then

U{0} ∼= Spec
(
k[t, t−1]

)
= Spec

(
k[t1, . . . , tn]t1···tn

)

which, as an algebraic group, is the product of n copies of the multiplicative
algebraic group Gm (i.e. the affine line A

1
k minus the origin). As a group,

we have that

U{0} ∼= Gm × · · · × Gm
∼= k× × · · · × k× = (k×)n

where k× is the (multiplicative) group of non-zero elements of k. In the
terminology of algebraic groups, we say that U{0} is an affine algebraic n-
torus or just an affine algebraic torus.
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Definition 1.8.1. The affine toric variety U{0} is called the torus of N and
it is denoted by TN or just T .

It is straightforward to check that the multiplication map on T defines
an algebraic action of T on itself. Note that, on identifying points of U{0}
with monoid homomorphisms (see Remark 5), tha action of T on itself is
simply given by multiplication of maps: to a pair

(t : M → k, φ : Sσ → k)

it associates the homomorphism

Sσ → k

u 7→ t(u)φ(u).

Since
Spec(k[t, t−1]) = Spec(k[t1, . . . , tn]t1···tn),

the torus T , as an algebraic subset of kn, can be expressed as

T = kn \ V(t1 · · · tm),

which is nothing but (k×)n. In this setting, the action of T on itself is given
simply by componentwise multiplication.

Remark 10. One question that may arise at this point is: can we generalize
the above construction to any affine toric variety Uσ? Unfortunately, there
is no natural algebraic group structure on Uσ. The “best” we can do is
define a multiplication map and identity map as in (1.3) and (1.5) with Sσ
in place of M . In this case, however, the inverse map cannot be defined as
in (1.4) because Sσ is just a monoid (and not a group).

Let now σ be a strongly convex lattice cone in NR, then {0} is face of σ.
We know from Section 1.6 that U{0} can be embedded as a principal open
subset of Uσ via the map ι = ι{0},σ : U{0} → Uσ. Under this map, T is
isomorphic to ι(U{0}) as a subvariety of Uσ. Multiplication Uσ × Uσ → Uσ
clearly induces, by restriction, an action t : T×Uσ → Uσ. Since k[Sσ] ⊂ k[M ]
for every strongly convex lattice cone σ, looking at the k-algebra homomor-
phism determined by t we see that the restriction of t to T × T gives the
natural action of T on itself.

Remark 11. The above description characterizes affine toric varieties. In-
deed, Oda proves in [Oda78] the following. Let X be a normal affine variety
containing an algebraic torus T as a dense open subset. Suppose that, in
addition, there exists an action T ×X → X extending the natural action of
T on itself. Then X is of the form X = Uσ for a lattice cone σ in some real
vector space MR associated to a lattice M .
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Proposition 1.8.2. The toric variety XK associated to an n-dimensional
polytope K is n-dimensional.

Proof. We have seen that the affine toric variety Uσ associated to a cone σ
contains the torus T as an open subvariety. Since Uσ is irreducible,

dim(Uσ) = dim(T ) = n.

Since XK is covered by affine toric varieties Uσ as σ varies in ∆K , and since
XK is irreducible, the dimension of XK is n as well.

We would like to study in detail the action of the torus on XK . An
important fact is the existence of a correspondence between orbits and faces
of the polygon.

For a cone σ, there is a monoid homomorphism xσ sending each invertible
element of Sσ to 1 and every other element to 0:

xσ(u) =

{
1 if −u ∈ Sσ,

0 otherwise.
(1.6)

The point corresponding to this homomorphism is called the distinguished
point of Uσ.

We denote by Oσ the orbit of xσ under the action of T :

Oσ = T · xσ.

To describe explicitly Oσ we note first that an element u of Sσ is invert-
ible if and only if u belongs to σ⊥ ∩M . Indeed, if both u and −u lie in
Sσ = σ∨∩M , then for any element v of σ we have 〈u, v〉 ≥ 0 and 〈−u, v〉 ≥ 0.
Since 〈u, v〉 + 〈−u, v〉 = 〈u− u, v〉 = 0, it follows that 〈u, v〉 = 〈−u, v〉 = 0.
The converse implication is obvious, so we can rewrite (1.6) as

xσ(u) =

{
1 if u ∈ σ⊥ ∩M,

0 otherwise.
(1.7)

Remark 12. Let σ be a cone in NR and xσ its distinguished point. By
definition, the value of xσ at u in Sσ = σ∨ ∩M is 1 if and only if also −u
lies in σ∨ ∩M . Whenever σ is strongly convex and of dimension n, its dual
σ∨ is strongly convex as well (see Remark 3) and thus the only vector u in
σ∨ whose inverse −u belongs to σ∨ is 0. In this case we can write xσ as

xσ(u) =

{
1 if u = 0,

0 if u 6= 0.
(1.8)
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Now, for a point of the torus T corresponding to a homomorphism
t : M → k, the product with xσ is given by

txσ(u) =

{
t(u) if u ∈ σ⊥ ∩M ,

0 otherwise

and this evidently means that the orbit Oσ can be identified with the set of
monoid homomorphisms from σ⊥ ∩M to k. We have therefore shown that

Oσ = Spec(k[σ⊥ ∩M ]).

Remark 13. The orbits of distinguished points actually are all the orbits
of the action of T . Indeed, let σ be a cone and Uσ the corresponding affine
toric variety. Point (a) of the proposition on page 54 of [Ful93] says that

Uσ =
⋃

τ

Oτ ,

where τ ranges over all the faces of σ.

We have described the orbit of the distinguished point of a cone under
the action of the torus. It is convenient to give an abstract description of
that orbit as the torus of some toric variety. Such a description is the aim
of the remaining part of this section.

Set M(σ) = σ⊥ ∩M . If σ has dimension l, then M(σ) is a sublattice of
M of rank n − l. On the other hand, the intersection of N with σ, is not
in general a sublattice of N (see figure 1.6), but we can still consider the
sublattice it generates (i.e. the subgroup of N it generates), given by

N ∩ σ + (−N ∩ σ) = {u1 + u2 |u1,−u2 ∈ N ∩ σ}

and denoted by Nσ. Being it a normal subgroup of N , we can form the
quotient lattice N/Nσ, denoted by N(σ): it is straightforward to check that
N(σ) and M(σ) are dual to each other.

Definition 1.8.3. Let ∆ be a fan and let τ be a cone of ∆. The star of τ ,
denoted by Star(τ) is the set of cones in ∆ containing τ .

If σ is a cone in Star(τ), we set

σ̄ = (σ + (Nτ )R) /(Nτ )R,

which is contained in N(τ)R. Note that σ̄ is a lattice cone because σ is. We
define the set ∆(τ) as

∆(τ) = {σ̄ |σ ∈ Star(τ)}.

In the proof of Lemma 1.8.5 we make use of the following result.
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σ

N

σ⊥

M

N ∩ σ

N M

M(σ)

Figure 1.6: N ∩ σ and M(σ) for a one-dimensional strongly convex cone σ
in R

2.

Lemma 1.8.4. Let τ be a face of a cone σ and v1, v2 two vectors in σ. Then
v1 + v2 belongs to τ if and only if both v1 and v2 belong to τ .

Proof. One implication is obvious. For the other, assume that v1 + v2 is in
τ . By Remark 2 we can write τ = u⊥ ∩ σ for some vector u in σ∨. We then
have

〈u, v1 + v2〉 = 0,

so that
〈u, v1〉 = −〈u, v2〉.

Moreover, since v1 and v2 are in σ, then

〈u, v1〉 ≥ 0, 〈u, v2〉 ≥ 0

and therefore we must have

〈u, v1〉 = 〈u, v2〉 = 0.

This shows that both v1 and v2 belong to u⊥∩σ, which is nothing but τ .

Lemma 1.8.5. The set ∆(τ) is a fan in N(τ)R.
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Proof. We need to check that each cone in ∆(τ) is strongly convex and that
∆(τ) satisfies the two conditions of Definition 1.1.7.

Let σ̄ be a cone of ∆(τ). By Proposition 1.1.6, strong convexity is
equivalent to σ̄ ∩ (−σ̄) consisting of the zero vector alone. Assume that v̄ is
in σ̄ ∩ (−σ̄), then v satisfies

v = v1 + w1 = −v2 + w2, (1.9)

for some vectors v1, v2 in σ and w1, w2 in (Nτ )R. If z1 . . . , zs are the gen-
erators of Nτ = τ ∩ N + (−τ ∩ N), then every element z of (Nτ )R can be
written as

s∑

i=1

aizi −
s∑

i=1

bizi,

where the ai’s and bi’s are non-negative real numbers. This means that
every element of (Nτ )R can be written as a difference of elements of τ (but
not of τ ∩N). In particular, we have that

w1 = α1 − β1, w2 = α2 − β2,

for some vectors α1, α2, β1, β2 in τ . From (1.9) we obtain

v1 + v2 = w2 − w1 = (α2 + β1) − (α1 + β2)

and therefore that

v1 + v2 + (α1 + β2) = (α2 + β1).

Since the sum of any of two vectors of a cone lies in the cone itself, on
one hand we get that v1 + v2 is in σ, while on the other hand we get that
v1 + v2 + (α1 + β2) lies in τ . Since σ is a cone of Star(τ), it contains τ and,
since both τ and σ are cones of ∆, τ must be a face of σ. We can thus
repeatedly apply Lemma 1.8.4 to obtain that v1 and v2 lie in τ . From this
it follows that v is contained in Nτ and therefore its class v̄ is the zero one.
This proves that σ̄ is strictly convex.

Assume now that σ̄1 and σ̄2 are two cones in ∆(τ). Let v̄ be a vector in
their intersection σ̄1 ∩ σ̄2, then v is of the form

v = v1 + w1 = v2 + w2,

for some vectors v1 in σ1, v2 in σ2 and w1, w2 in (Nτ )R. Since σ1 and σ2 are
cones of ∆, their intersection is a common face of both. Since both contain
τ , their intersection will contain τ as a face. Similarly to the previous
paragraph, the fact that

v1 = v2 + w2 − w1, v2 = v1 + w1 − w2
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gives that v1 is in σ2 and v2 is in σ1. From this it follows that

σ̄1 ∩ σ̄2 = σ1 ∩ σ2,

in particular σ̄1 ∩ σ̄2 is in ∆(τ).
For the last part of the proof, let σ̄ be a cone of ∆(τ). Let u⊥ ∩ σ̄ be a

face of σ̄ for some u in M(τ). Since M(τ) = τ⊥ ∩M , we see that the face
u⊥ ∩ σ̄ is of the form ρ̄ for ρ = u⊥ ∩ σ. Since ρ is a face of σ which contains
τ by construction, this means that ρ̄ is in ∆(τ).

By the above lemma, ∆(τ) is a fan in N(τ)R and therefore we can as-
sociate to it a variety, exactly as we did in Section 1.6. The reasons behind
the following definition will be evident at the end of this section.

Definition 1.8.6. The toric variety V (τ) obtained from the fan ∆(τ) is
called the abstract orbit closure of τ .

Remark 14. Since τ̄ is trivial in N(τ)R, its affine toric variety Uτ̄ is the
torus of V (τ).

Let σ̄ be a cone of ∆(τ). Since M(τ) = τ⊥ ∩M , the monoid σ̄∨ ∩M(τ)
can be identified with σ∨ ∩ τ⊥ ∩M . The corresponding affine toric variety
is then

Uσ̄ = Spec(k[σ∨ ∩ τ⊥ ∩M ]).

Note that we have a surjective homomorphism (cfr. [Dan78], 2.5) of
k-algebras

k[σ∨ ∩M ] → k[σ∨ ∩ τ⊥ ∩M ] (1.10)

given on the basis as

χu 7→

{
χu if u ∈ σ∨ ∩ τ⊥ ∩M ,

0 otherwise.

Indeed, since σ∨∩ τ⊥ is a face of σ∨ (it is the dual face of τ), the above map
is a k-algebra homomorphism. Surjectivity is obvious. We thus have a map
of affine varieties

iσ : Uσ̄ → Uσ

which is a closed embedding by surjectivity of the homomorphism (1.10).

Remark 15. The cone τ is obviously in Star(τ). In this case, we have the
equality k[τ∨ ∩ τ⊥ ∩M ] = k[τ⊥ ∩M ], so it is obvious that the image of Uτ̄
under the closed embedding i is exactly the orbit Oτ .

Whenever γ̄ is a face of σ̄, then γ is a face of σ (see the proof of Lemma
1.8.5). This means that, in addition to the closed embeddings iσ and iγ ,
we also have the open embeddings ιγ,σ and ιγ̄,σ̄ of Proposition 1.6.4. Their
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compatibility is clear (we can just look at the corresponding homomorphism
of coordinate rings), so we can glue the iσ’s as σ varies in Star(τ). The result
is a closed embedding

i : V (τ) →
⋃

σ∈Star(τ)

Uσ.

If we set
U =

⋃

σ∈Star(τ)

Uσ,

then we have shown that V (τ) can be regarded as a closed subset of U .
Furthermore, by Remark 14 and 15, the torus of V (τ) is the orbit Oτ of the
distinguished point xτ . Since the torus is dense in V (τ) and V (τ) is closed
in U , we see that V (τ) is the closure of Oτ in U . This justifies the name
abstract orbit closure.

1.9 Characters and one-parameter subgroups

The main reference for this section is [Bor91], III.8. Let N be a lattice
of rank n and M its dual lattice, M = HomZ(M,Z). Let T = TN =
Spec(k[M ]) be the torus of N and Gm = Spec(k[t, t−1]) ∼= Spec(k[Z]) ∼= k×

the multiplicative algebraic group.

Definition 1.9.1. The group of characters (or character group) of T is the
set of morphisms of algebraic groups from T to Gm, i.e. the set

Homalg.gr.(T,Gm).

The group of one-parameter subgroups of T is the set of morphisms of alge-
braic groups from Gm to T , i.e. the set

Homalg.gr.(Gm, T ).

Remark 16. The group of one-parameter subgroups is canonically identi-
fied with N , while the character group of T is canonically identified with
M . We do not give a complete proof here, but try to motivate the reason
of this identifications.

Since T and Gm are algebraic groups, their coordinate rings have a natu-
ral structure of Hopf algebras. By [Bor91], 8.3, we have a canonical bijection

Homalg.gr.(Gm, T ) ↔ HomHopf-alg.(k[M ], k[Z]),

where the right hand side is the set of Hopf algebra homomorphisms from
k[M ] to k[Z]. This latter set is in bijection with N . It is easier to see why
if we consider the coordinate ring of the torus as the polynomial ring

k[M ] ∼= k[t1, . . . , tn, t
−1
1 , . . . , t−1

n ]
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and the coordinate ring of the multiplicative algebraic group as

k[Z] ∼= k[u1, u
−1
1 ].

The possible homomorphism from k[t1, . . . , tn, t
−1
1 , . . . , t−1

n ] to k[u1, u
−1
1 ] are

limited by the structure of Hopf algebra. Specifically, the only homomor-
phisms are given on t1, . . . , tn as

t1 7→ uk11 , . . . , tn 7→ ukn1 ,

where k1, . . . , kn are arbitrary integers. Then HomHopf-alg.(k[M ], k[Z]) is in
bijection with Z

n, which is isomorphic to N .
The second assertion follows immediately by [Bor91], page 115, which

states that the character group and the group of 1-parameter subgroups are
dual to each other.

Remark 16 shows in particular that the character group and the group
of one-parameter subgroups are lattices of rank n.

If v is an element of N , then we denote by λv the corresponding (via the
identification of the above proposition) one-parameter subgroup λv : k× → T .
If u is an element of M , we denote by χu the corresponding character
χu : T → k×.

1.10 The projective toric variety of a polytope,

revisited

In this section we generalize the construction of Section 1.2. This is a first
step towards showing the equivalence between projective toric varieties and
the toric varieties defined in Section 1.6.

Consider a lattice polytope K of dimension n in MR. Let

A = {u0, . . . , um}

be the set of lattice points of K, that is, A = K ∩M . Let k be a field and
P
m projective m-space over k. Each lattice point of K defines a character

of the torus T of N (see Section 1.9), so we can define a map

ϕA : T → P
m

as
ϕA(x) = (χu0(x) : . . . : χum(x)).

The Zariski closure of the image of T under the map ϕA is called the
projective toric variety of K.

The choice of an isomorphism of M with Z
n reflects in isomorphisms

MR
∼= R

n and T ∼= (k×)n. Points u of M correspond then to elements
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α = (α1, . . . , αn) of Z
n, points x of the torus T correspond to n-tuples

(t1, . . . , tn) in (k×)n and characters χu correspond to monomials tα1

1 · · · tαnn
in the Laurent algebra k[t1, . . . , tn, t

−1
1 , . . . , t−1

n ]. It is now evident that the
maps ϕA defined in this section and in Section 1.2 are exactly the same.
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Chapter 2

Divisors and support

functions

2.1 Weil divisors and Cartier Divisors

In this section we recall some basic facts, without proofs, about divisors on
normal varieties. We follow mainly [Har83] and [Mil92]: the reader can con-
sult these books for more details. In this section, X is a normal irreducible
variety over a field k.

Recall that for an irreducible variety X, the codimension in X of a
subvariety V is simply the dimension of X minus the dimension of V :

codimX(V ) = dim(X) − dim(V ).

A prime divisor V on X is an irreducible subvariety of X of codimension
one. The group of Weil divisors of X, denoted by Div(X), is the free abelian
group generated by its prime divisors. An element D of Div(X), called a
Weil divisor on X (or just a divisor, if there is no possibility of confusion),
is thus a finite formal sum

D =
∑

finite

niDi (2.1)

of prime divisors Di with integer coefficients. A divisor D as in (2.1) is said
to be effective (written as D ≥ 0) if all the coefficients ni are non-negative.

We denote by k(X) the function field of X, and by k(X)× its multi-
plicative group of units. If V is a prime divisor on X, then there exists a
ring

OV = {f ∈ k(X) | f is defined on an open subset U of X with U ∩ V 6= ∅}.

The ring OV is a discrete valuation ring: we denote its valuation from k(X)×

to Z by ordV . For a non-zero rational function f on X (i.e. f ∈ k(X)×),

37
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the value of ordV (f) is zero for all but finitely many prime divisors V , so
the sum ∑

ordV (f)V

ranging over all prime divisors on X is finite and thus defines a divisor on
X. We set

div(f) =
∑

ordV (f)V

and call it the principal divisor associated to f . Any other divisor Z of
the form Z = div(f), for some non-zero rational function f , is said to be
principal . Two divisors D and D′ are said to be linearly equivalent, written
as D ∼ D′, if their difference D − D′ is principal. The group of divisors
modulo principal divisors is denoted by Cl(X) and called the divisor class
group of X.

To each divisor D on X, we can associate a sheaf OX(D), defined to be
the sheaf such that, for every open subset U of X,

Γ(U,OX(D)) = {f ∈ k(X)× |div(f) +D ≥ 0 on U} ∪ {0}.

In detail, the condition div(f) + D ≥ 0 above means that, if D =
∑
niDi,

then ordDi(f) + ni ≥ 0 for every Di whose intersection Di ∩ U with U is
non-empty.

Remark 17. Let OX be the structure sheaf of the variety X, then:

(1) OX(D) is a coherent sheaf of OX -modules on X,

(2) If D = 0, i.e. D is the trivial divisor on X, then OX(D) = OX ,

(3) If D and D′ are linearly equivalent, then OX(D) ∼= OX(D′) as OX -
modules.

A Cartier divisor on X is the data of:

1. An affine open cover U = {Ui}i∈I ;

2. Non-zero rational function fi on Ui, one for each i in I, such that fi
fj

is a non-zero regular function on the intersections Ui ∩ Uj , for every
i, j in I.

Denoting by O the structure sheaf of X, in sheaf-theoretic terms (cfr.
[Har83], II.6) a Cartier divisor is a global section of the quotient K×/O×,
where K is the constant sheaf with stalk k(X).

Two Cartier divisors D = {(Ui, fi)}i∈I and D′ = {(Vj , gj)}j∈J are iden-

tical when fi
gj

is a non-zero regular function on Ui ∩ Vj for every i in I and

j in J . The group of all Cartier divisors forms an abelian (multiplicative)
group (even though we use additive notation in analogy with the language
of Weil divisors) with identity element {(X, 1)}. A Cartier divisor D is said
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to be principal if it is of the form D = {(X, f)} for some rational function
f on X. Two Cartier divisors D and D′ are said to be linearly equivalent,
written D ∼ D′, if their difference D −D′ is principal.

Each Cartier divisor D = {(Ui, fi)}i∈I determines a Weil divisor on X
as follows: for each prime divisor V on X choose an index i such that the
intersection V ∩ Ui is non-empty. The Weil divisor [D] associated to D is
defined to be

[D] =
∑

ordV (fi)V,

where the sum ranges over all prime divisors V on X. This definition is
independent of the choice of the index i, indeed if i and j are such that
V ∩ Ui 6= ∅ and V ∩ Uj 6= ∅, then fi

fj
is invertible in Ui ∩ Uj and therefore

ordV ( fi
fj

) = 0, which immediately implies ordV (fi) = ordV (fj).

Since X is normal, the map D 7→ [D] sending a Cartier divisor to the
associated Weil divisor is injective. Under this map, principal Cartier divi-
sors correspond to principal Weil divisors, so the group of Cartier divisors
can be embedded as a subgroup of the divisor class group (see [Sha94] or
[Har83]).

2.2 Divisors on toric varieties

A divisor on a toric variety which is invariant under the action of the torus
admits an explicit characterization in terms of lattice objects. The aim of
the present section is to develop and study such powerful description.

Let ∆ be a fan in NR and X the corresponding toric variety. Let more-
over T be the torus of N . If we denote by ∆(1) the set of rays of the fan (see
Definition 1.1.5), then each orbit Oρ corresponding to a ray ρ in ∆(1) is a
torus of dimension n−1. The orbit closure (see Definition 1.8.6) V (ρ) = Oρ
has then the same dimension n−1. It follows that to each ray ρ corresponds
an irreducible subvariety of X of codimension 1, i.e. a prime divisor on X.
We set Dρ = V (ρ).

Definition 2.2.1. A Weil divisor D =
∑
niDi on the toric variety XK is

said to be T -invariant if every prime divisor Di is invariant under the action
of the torus T on XK .

Proposition 2.2.2. The T -invariant Weil divisors are exactly the divisors
of the form

∑
ρ∈∆(1) nρDρ.

Proof. Recall that, by definition, Dρ is the orbit closure V (ρ) of the cone ρ.
By the proposition in [Ful93], page 54, we have

Dρ =
⋃

σ∈Star(ρ)

Oσ .
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Therefore Dρ is a union of orbits and hence T -invariant, so any sum of the
form

∑
ρ∈∆(1) nρDρ is T -invariant.

On the other hand, if D =
∑
niDi is a T -invariant Weil divisor, each

Di is invariant and thus a union of orbits. The torus T is also an orbit and,
since T is dense in XK , the intersections T ∩ Di with each Di are empty
(because prime divisors have codimension 1 in X). Since XK \ T is a union
of orbit closures corresponding to rays, i.e.

XK \ T =
⋃

ρ∈∆(1)

Dρ

then every Di must be one of the Dρ’s.

We turn now our attention to T -invariant Cartier divisors.

Definition 2.2.3. A Cartier divisor D on a toric variety X is said to be
T -invariant if it corresponds to a T -invariant Weil divisor.

We start by giving a description of the Cartier divisor corresponding to a
character of the torus T . Since a character χu is a non-zero rational function
on the toric variety XK , then {(XK , χ

u)} is a Cartier divisor which we denote
by div(χu). For each ray ρi in ∆(1), denote by vi the corresponding minimal
generator (i.e. the first lattice point along the ray, starting from the vertex).
The proof of the next three statements can be found in [Ful93], page 61.

Lemma 2.2.4. Let XK be the toric variety associated to a polytope K in
MR. Let u be an element of M and χu its corresponding character, then

ordDρi = 〈u, vi〉

for every ρi ∈ ∆(1).

Corollary 2.2.5. The Weil divisor associated to the principal Cartier divi-
sor {(XK , χ

u)} is ∑

ρi∈∆(1)

〈u, vi〉Dρi .

For affine toric varieties, a very strong result holds.

Theorem 2.2.6. Let Uσ be the affine toric variety of a cone σ in NR, then
every T -invariant Cartier divisor on Uσ is of the form {(Uσ , χ

u)} for some
character χu of the torus T . In particular, every T -invariant Cartier divisor
on Uσ is principal.

Remark 18. Theorem 2.2.6 permits us to describe a T -invariant Cartier
divisor D on a general toric variety XK . Indeed, consider the open cover of
XK given by the affine toric varieties Uσ, as σ varies in ∆ = ∆K . By the
above theorem, for each σ we can find an element u(σ) of M such that the
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local equation of D on Uσ is χ−u(σ) (the notation with the minus is used to
conform to the literature), so that

D = {(Uσ, χ
−u(σ))}σ∈∆

is the description of the T -invariant Cartier divisor D.

We can make use of Theorem 2.2.6 and Corollary 2.2.5 to determine when
two T -invariant Cartier divisors are the same. Since the group of Cartier
divisors is embedded in the group of Weil divisors, two Cartier divisors are
identical if and only if their associated Weil divisors are so. In particular,
two T -invariant Cartier divisors D = {(Uσ, χ

u)} and D′ = {(Uσ, χ
u′)} (for

u and u′ in M) on an affine toric variety Uσ are identical if and only if
[D] =

∑
ρi∈∆(1) 〈u, vi〉Dρi and [D′] =

∑
ρi∈∆(1) 〈u

′, vi〉Dρi are identical. This
happens if and only if

∑

ρi∈∆(1)

〈u, vi〉Dρi =
∑

ρi∈∆(1)

〈u′, vi〉Dρi

and therefore if and only if

∑

ρi∈∆(1)

〈u, vi〉 − 〈u′, vi〉 =
∑

ρi∈∆(1)

〈u− u′, vi〉 = 0

This last statement is equivalent to saying that u−u′ lies in σ⊥ ∩M , which
is the sublattice of M we denoted by M(σ) (on page 29). Therefore we have
proven the following:

Theorem 2.2.7. There is a bijection between the set of T -invariant Cartier
divisors on an affine toric variety Uσ and the quotient lattice M/M(σ).

2.3 Ample sheaves and support functions

In this section we give a characterization of the sheaf associated to a T -
invariant divisor. This allows us to state two criteria for such a sheaf to be
ample or very ample.

Recall that (see Definition 1.1.8) the support supp(∆) of a fan ∆ is
defined to be the union of all its cones.

Definition 2.3.1. A function ψ : supp(∆) → R is said to be a ∆-linear
support function if it is linear on each cone σ of ∆, i.e. on each cone it
is determined by a linear function, and assumes integer values at lattice
vectors, i.e.

ψ(supp(∆) ∩N) ⊂ Z.

If there is no possibility of confusion, we call ψ just a support function.
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We say that a general function ϕ from a real vector space V to R is
convex if

ϕ(tv1 + (1 − t)v2) ≥ tϕ(v1) + (1 − t)ϕ(v2) (2.2)

for all vectors v1, v2 in V and all t ∈ [0, 1] ⊂ R. In convex geometry, one
calls such function “concave” instead of “convex”, but in the theory of toric
variety is customary to use our denomination.

A function ϕ from a real vector space V to R is called positive homoge-
neous if ϕ(λv) = λϕ(v) for any v in V and non-negative real λ. Obviously,
any linear function is positive homogeneous.

Lemma 2.3.2. A positive homogeneous function ϕ : V → R is convex if
and only if

ϕ(v1 + v2) ≥ ϕ(v1) + ϕ(v2) (2.3)

for all vectors v1 and v2 in V .

Proof. Suppose ϕ is convex. If v1 and v2 are vectors of V , then

1

2
ϕ(v1 + v2) = ϕ(

1

2
v1 +

1

2
v2) ≥ ϕ(

1

2
v1) + ϕ(

1

2
v2) =

1

2
ϕ(v1) +

1

2
ϕ(v2),

hence ϕ(v1 + v2) ≥ ϕ(v1) + ϕ(v2).

Conversely, suppose that ϕ satisfies (2.3). If v1 and v2 are vectors of V
and t is a real number contained in [0, 1], then

ϕ(tv1 + (1 − t)v2) ≥ ϕ(tv1) + ϕ((1 − t)v2) = tϕ(v1) + (1 − t)ϕ(v2),

proving that ϕ is indeed convex.

Definition 2.3.3. A ∆-linear support function ψ is said to be strictly convex
if it is convex and the linear functions determined by different cones are
different.

Let now ∆ be a fan and X the associated toric variety. Combining
Remark 18 and Theorem 2.2.7, we see that a Cartier divisor is specified by
the data {u(σ) ∈M/M(σ)}σ∈∆.

Proposition 2.3.4. There is a bijective correspondence between T -invariant
Cartier divisors on a toric variety X and ∆-linear support functions.

Proof. Suppose D is the divisor determined by {u(σ)}σ∈∆. Identifying M
with the set of Z-linear group homomorphisms HomZ(N,Z), each vector
u(σ) defines an R-linear function from NR to R (by extension of scalars)
whose restriction to the cone σ depends only on the residue class modulo
M(σ). We denote this function again by u(σ). For any two cones σ and γ in
∆, their intersection is a common face of both, so the divisors corresponding
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to u(σ) and u(γ) agree on Uσ∩γ and thus the corresponding linear functions
agree on σ ∩ γ. Therefore the function ψD : supp(∆) → R defined as

ψD(v) = 〈u(σ), v〉,

where σ is a cone containing v, is well-defined and satisfies the first condition
of Definition 2.3.1. It is obvious that ψD assumes integer values at lattice
vectors, since for u ∈ M and v ∈ N the value 〈u, v〉 is integer. This shows
that ψD is indeed a support function.

Conversely, let ψ : supp(∆) → R be a support function. We define a
Weil divisor on X by setting

Dψ =
∑

ρ∈∆(1)

−ψ(vi)Dρi , (2.4)

where vi is the minimal generator of the ray ρi. By construction, Dψ is
T -invariant. Consider the open cover of X by the affine toric varieties Uσ,
for σ in ∆. Since ψ is linear on each cone, then ψ(vi) = 〈u(σ), vi〉, for some
u(σ) in M . Using equation (2.4), we see that Dψ is given locally on Uσ as

div(χ−u(σ)).

This u(σ) is well defined modulo M(σ). Indeed, suppose we have two vectors
u1(σ) and u2(σ) such that

ψ(w) = 〈u1(σ), w〉, ψ(w) = 〈u2(σ), w〉

for any vector w of σ. Then we must have

〈u1(σ) − u2(σ), v〉 = 〈u1(σ), w〉 − 〈u(γ), v〉 = 0,

and this can happen if and only if u1(σ) − u2(σ) lies in σ⊥ ∩M , which is
nothing but M(σ).

The previous lines also show that the local data determined by Dψ is
compatible, so it is clear that that Dψ corresponds to a T -invariant Cartier
divisor.

Using the description of a T -invariant Cartier divisor given above, we
can see that any such divisor D defines a polytope PD. Let ψD be the
support function defined by D, then, identifying vectors u of MR with linear
functions from NR to R, we define PD to be

PD =
{
u ∈MR |u ≥ ψD on supp(∆)

}
(2.5)

Identifying D with its corresponding Weil divisor [D] =
∑
niDρi , we can

rewrite (2.5) as
PD = {u ∈MR | 〈u, vi〉 ≥ −ni ∀i} (2.6)

A priori, (2.6) only says that PD is a polyhedron (an intersection of closed
half spaces), but it is shown in [Ful93], page 67, that PD is in fact bounded
and therefore a polytope.
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Lemma 2.3.5. Let X be a toric variety and T = Spec(k[M ]) its torus. Let
D be a T -invariant Cartier divisors and O(D) its associated sheaf. If we
denote by O the structure sheaf of X, then we have

Γ(T,O(D)) = Γ(T,O).

Proof. By definition of the sheaf O(D), we have

Γ(T,O(D)) = {f ∈ k(X)× |div(f) +D ≥ 0 on T} ∪ {0}. (2.7)

By Theorem 2.2.6, the divisor D is of the form div(χu), for some u in M ,
so we can rewrite (2.7) as

Γ(T,O(D)) = {f ∈ k(X)× |div(f) + div(χu) ≥ 0 on T} ∪ {0},

which, since div(f) + div(χu) = div(fχu), becomes

Γ(T,O(D)) = {f ∈ k(X)× |div(fχu) ≥ 0 on T} ∪ {0}.

In general, a principal divisor on a normal variety is effective if and only if
it is a regular function. We thus get

Γ(T,O(D)) = {f ∈ k(X)× | fχu ∈ k[M ]} ∪ {0},

from which it follows immediately that

Γ(T,O(D)) = Γ(T,O).

Note that k[M ] can be expressed as a direct sum

k[M ] =
⊕

u∈M
kχu,

so the previous lemma says that

Γ(T,O(D)) =
⊕

u∈M
kχu.

We can give a similar description for a T -invariant divisor on any toric
variety. Let K be a polytope in MR, ∆ = ∆K its fan and X = XK the
associated toric variety. We denote by vi the minimal generators of the rays
ρi of ∆. Let D = Dψ the T -invariant Cartier divisor on X corresponding to
a support function ψ and O(D) the associated sheaf.

Theorem 2.3.6. With notation as above we have

Γ(X,O(D)) =
⊕

u∈PD∩M
kχu,

where PD is the polytope of (2.6).
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Proof. Consider the open cover of X given by affine toric varieties Uσ cor-
responding to cones σ in ∆. As in the proof of Proposition 2.2.2, D is
supported on the complement of T , so the domain of every rational func-
tion in Γ(Uσ,O(D)) contains T . This means that we have an inclusion
Γ(Uσ,O(D)) ⊂ Γ(T,O(D)) and therefore, on the open affine Uσ, the princi-
pal divisor div(f) of a rational function f on X is given locally by div(χu),
for some u ∈M . By Corollary 2.2.5 we have

div(χu)
∣∣
Uσ

=
∑

ρi∈∆(1)∩σ
〈u, vi〉Dρi .

Furthermore, since the divisor Dψ is by definition

Dψ =
∑

ρi∈∆(1)

−ψ(vi)Dρi ,

its restriction to Uσ is given by the terms of the sum corresponding to
minimal generators lying in σ, i.e. :

Dψ

∣∣
Uσ

=
∑

ρi∈∆(1)∩σ
−ψ(vi)Dρi .

From what we said, we can write

div(f) +D
∣∣
Uσ

=
∑

ρi∈∆(1)∩σ

(
〈u, vi〉 − ψ(vi)

)
Dρi . (2.8)

Set now PD(σ) = {u ∈MR | 〈u, vi〉 ≥ ψ(vi) ∀vi ∈ σ}. Since the sections over
Uσ of O(D) are given by

Γ(Uσ,O(D)) =
{
f ∈ k(X)×

∣∣∣ div(f) +D
∣∣
Uσ

≥ 0
}
∪ {0},

according to (2.8), such sections are actually given by

⊕

u∈PD(σ)∩M
kχu.

Now, the space of global sections Γ(X,O(D)) is the intersection of all
the subspaces Γ(Uσ,O(D)) corresponding to the open sets of the cover, so
we finally get

Γ(X,O(D)) =
⋂

σ∈∆

Γ(Uσ,O(D)) =
⊕

u∈PD∩M
kχu.
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Remark 19. Let ψ be a ∆-linear support function, with ∆ the fan of a
polytope in MR. Assume that there exist u(σ) ∈ MR such that ψ(v) =
〈u(σ), v〉 for any v in σ. In this case it is straightforward to check that ψ is
convex if and only if for every maximal cone σ of ∆ and v in supp(∆) we
have

〈u(σ), v〉 ≥ ψ(v).

In the following, we often consider the sheaf O(D) on the toric variety
X as a line bundle. In this case, a global section is a map s : X → O(D)
such that the composition with the standard projection on O(D) is trivial.
Theorems 2.3.9 and 2.3.7 give a very explicit criterion in terms of the support
function ψD to determine when O(D) is ample or very ample.

Theorem 2.3.7. Let X be the toric variety of a polytope K and ∆ its
fan. Let D be the divisor associated to a support function ψ, then O(D) is
generated by its sections if and only if ψ is convex.

Proof. We claim the following:

The sheaf O(D) is generated by its sections if and only if for
every maximal cone σ of ∆ there is a u(σ) in PD ∩M such that
D + div(χu(σ)) is effective and its restriction to Uσ is trivial.

If O(D) satisfies the above condition, it is clearly generated by its sections.
Conversely, suppose O(D) is generated by its sections and let σ be any
maximal cone of ∆. Then, for any point x in Uσ there exists a global
section of O(D) not vanishing at x. In particular, such a section exists for
the distinguished point xσ. By Theorem 2.3.6, the vector space of global
sections is generated by elements of the form χu, for u in PD ∩M . This
means that there is a u(σ) in M such that D + div(χu(σ)) ≥ 0 and the
support of D + div(χu(σ)) does not contain xσ. Since xσ is fixed by the
action of the torus, it lies in every invariant subvariety of Uσ, so that the
restriction of D + div(χu(σ)) to Uσ must be trivial. This shows our claim.

Denote by v1, . . . , vs the minimal generators of the rays ρ1, . . . , ρs in ∆.
Recall that D is defined as

D =
s∑

i=1

−ψ(vi)Dρi .

On Uσ, the divisor D becomes

D
∣∣
Uσ

=
∑

vi∈σ
−ψ(vi)Dρi .

Similarly, by Corollary 2.2.5, the principal divisor div
(
χu(σ

)
can be written

as

div(χu(σ)) =
s∑

i=1

〈u(σ), vi〉Dρi ,
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which can be expressed on Uσ as

div(χu(σ))
∣∣
Uσ

=
∑

vi∈σ
〈u(σ), vi〉Dρi .

We can now specify the condition of D + div(χu(σ)) being trivial on Uσ
as

ψ(vi) = 〈u(σ), vi〉 for every minimal generator vi contained in σ,

which is equivalent to

ψ(v) = 〈u(σ), v〉 for every v in σ.

Similarly, the condition of D + div(χu(σ)) being effective translates as

ψ(v) ≤ 〈u(σ), v〉 for every v in supp(∆) = NR.

Finally, by Remark 19, ψ satisfies these conditions if and only if it is
convex as a support function, thus proving the theorem.

A useful reference for the last part of this section is Section II.7 of [Har83],
in particular the part “Morphisms to Pn”.

Denote by P
r projective r-space over k. Let D be a T -invariant Cartier

divisor on a toric variety XK such that O(D) is generated by its sections.
Choosing and ordering a basis {χui

∣∣ ui ∈ PD ∩M} gives a morphism

fD : XK → P
r (2.9)

x 7→ (χu0(x), . . . , χur(x))

where r+ 1 = #PD ∩M . Such a mapping is a closed embedding if and only
if the sheaf O(D) is very ample. As in the previous theorem, we can give a
characterization of this condition in terms of the support function ψ of D.

Proposition 2.3.8. Let D be a T -invariant Cartier divisor on a toric variety
X, then O(D) is very ample if and only if ψD is strictly convex and for every
maximal cone σ of ∆, Sσ is generated by {u− u(σ)|u ∈ PD ∩M}.

Proof. We denote by T0, . . . , Tr the homogeneous coordinates in P
r and by

Vk the open sets of P
r defined by Tk 6= 0. Such open sets cover P

r and, in
homogeneous coordinates, are described as

Vk = Spec(k[Ti/Tk | 0 ≤ i ≤ r]).

Let σ and γ be two maximal cones of ∆ with, then there are indexes
j, k such that u(σ) = uj and u(γ) = uk. With this notation, it is ev-
ident that fD(Uσ) = Vj ∩ fD(XK). Moreover, since ψD is strictly con-
vex, u(σ) is different from u(γ) whenever σ is different from γ, so we
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have that σ ∩ (uj − uk)
⊥ = σ ∩ γ. Note that for σ = γ this is still true,

since in such case we have that uj = uk and (uj − uk)⊥ = 0⊥ = NR, so
σ ∩ (uj − uk)⊥ = σ ∩ σ = σ. It follows that

Uσ ∩ f
−1
D (Vk) = Uσ∩γ .

Now fix γ. Since the affine toric varieties Uσ cover X as σ varies in ∆, we
get that

f−1
D (Vk) = Uγ .

The corresponding morphism of affine varieties fD|Uγ → Vk is induced by
the k-algebra homomorphism

k[Ti/Tk | 0 ≤ 1 ≤ r] → k[Sγ ]

Ti/Tk 7→ χui/χuk = χui−u(γ)

The morphism fD|Uγ → Vk is a closed immersion if and only if the above
map is surjective, i.e. if and only if ui− u(γ) generates Sγ . This proves one
implication.

For the other implication, assume that fD is a closed immersion, then
the inverse image f−1

D (Vj) of every Vj is an affine open subset of X (see
[Har83], Section II.7). It being invariant under the action of the torus, it
must be the affine toric variety of some cone γ of ∆. If σ is any other
maximal cone, then take j to be the index such that uj = u(σ). Since
f−1
D (Vj) ⊃ Uσ, then we must actually have f−1

D (Vj) = Uσ. This implies that
γ ∩ (u(σ)−u(γ))⊥ = σ∩γ for any two maximal cones σ and τ , which shows
(as in the proof of the first implication) that ψD is strictly convex.

Theorem 2.3.9. Let D be a T -invariant Cartier divisor on a toric variety
X, then O(D) is ample if and only if ψD is strictly convex.

Proof. By Proposition II.7.5 in [Har83], O(D) is ample if and only O(D)⊗m

is very ample for some positive integer m. Since O(D)⊗m = O(mD) and
ψmD = mψD, one implication is a corollary of Proposition 2.3.8.

Conversely, suppose that ψD is strictly convex. Denote by v1, . . . , vs the
minimal generators of the rays ρ1, . . . , ρs in ∆. If we denote by mPD the
dilation by a positive integer m of the polytope PD, then

PmD = {u ∈MR | 〈u, vi〉 ≥ mψ(vi)∀i = 1, . . . , s} = mPD.

As above, since PmD = mPD and ψmD = mψD, we can apply Proposition
2.3.8. Then it is sufficient to prove that there exists a positive integer m
such that Sσ is generated by

{u−mu(σ) |u ∈ mPD ∩M}, (2.10)

for every maximal cone σ in ∆.
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Recall that the divisor D is given by D =
∑s

i=1 −ψ(vi)Dρi . If u lies
in Sσ then u + mu(σ) lies in mPD for sufficiently large m. Indeed, if a
maximal generator vi lies in σ, we have 〈u, vi〉 ≥ 0 and, since u(σ) is in PD,
〈u(σ), vi〉 ≥ ψ(vi). It follows that

〈u+miu(σ), vi〉 = 〈u, vi〉 +mi〈u(σ), vi〉 ≥ mi〈u(σ), vi〉

for any positive integer mi. If vi is not in σ, since ψ is strictly convex we
have 〈u(σ), vi〉 > ψ(vi). If 〈u, vi〉 ≥ 0, we are in the same situation as before,
while if 〈u, vi〉 < 0, we can take any integer mi such that

mi > 〈u, vi〉/
(
ψ(vi) − 〈u(σ), vi〉

)
.

The largest of the mi’s chosen for each maximal generator vi is the desired
integer.

Finally, since the monoids Sσ are finitely generated, and u+mu(σ) lies
in mPD for sufficiently large m, Sσ is generated by elements of the form
u−mu(σ) as u varies in mPD ∩M . This proves the theorem.

2.4 Projective toric varieties

In this section we prove that every toric variety arising from a polytope is
projective. This fact makes it possible to compare the two different con-
structions of a toric variety we have studied, and show that they are indeed
equivalent.

Let K be a polytope in MR and ∆ its fan in NR. Recall that, by Lemma
1.6.1, the support of ∆ is such that supp(∆) = NR. We define a function
ψK from supp(∆) to R as

ψK(v) = inf{〈u, v〉 |u ∈ K}. (2.11)

We call this function the support function of K. For this name to make
sense we need to check that ψK actually is a support function as defined in
2.3.1.

Proposition 2.4.1. The support function ψK of a polytope K is a ∆-linear
support function.

Proof. We have to prove that ψK is linear on each cone σ of ∆ and assumes
integer values at lattice vectors.

Let σ be a cone of ∆ and v any vector in σ, then σ is the cone σF ,
for some face F of K (see Section 1.6). By definition, a face F of K is the
intersection of a supporting affine hyperplane H with the polytope K. With
notation as in Section 1.1, this means

F = H ∩K and F ⊂ H+.
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Here H is a supporting affine hyperplane corresponding to an element w in
NR, and H+ is the closed half-space determined by H, i.e.

H = {u ∈MR | 〈u,w〉 = a}, H+ = {u ∈MR | 〈u,w〉 ≥ a},

where a is a real number. The choice of w is not unique, in our case we can
even take w to be v. It follows that

〈u, v〉 ≥ a ∀u ∈MR. (2.12)

By definition of the cone σF , for any vector w in σF the following holds for
any u in K and u′ in F :

〈u,w〉 ≥ 〈u′, w〉 ∀u ∈ K,∀u′ ∈ F, (2.13)

so that, combining (2.12) and (2.13), we get

〈u,w〉 ≥ a ∀u ∈ K. (2.14)

This last equation really says that inf{〈u, v〉 |u ∈ K} = a and hence

ψK(v) = a.

Moreover, since for any vector on the face F this minimum is obtained, we
have

ψK(v) = 〈u(σ), v〉,

for some u(σ) in F . Since the vector u(σ) depends only on the face F , it
depends only on the cone σ. The identification of vectors of MR with linear
functions from NR to R proves the first part of the proposition (that is, ψK
is linear on each cone).

For the second part, note that a polytope is the convex hull of its vertices.
This means that we can actually write ψK as

ψK(v) = min{〈u, v〉 |u ∈ vert(K)},

being the set vert(K) of vertices of K a finite set. Note that the vertices
of K lie in M because K is a lattice polytope. Since 〈u, v〉 is an integer
whenever u and v are lattice vectors (i.e. u ∈ M,v ∈ N), then ψK(v) is an
integer whenever v is a lattice vector. This shows the second part of the
proposition and concludes the proof.

Remark 20. The support function ψK of a polytope K is strictly convex.
Indeed, convexity follows from the very definition, since

inf{a+ b | a ∈ A, b ∈ B} ≥ inf{a | a ∈ A} + inf{b | b ∈ B}

for arbitrary sets A and B of real numbers. Moreover, in the notation of
the previous proof, the value on a cone σF is determined by a vector u(σF )
in the face F . The corresponding linear function is different from the one
determined by any u(σG), where G is a face of K distinct from F .
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At this point it is possible to apply the results of Section 2.3 to obtain a
key property of a toric variety.

Proposition 2.4.2. The toric variety of a polytope is projective.

Proof. Let K be a polytope in MR and XK the associated toric variety.
The previous remark shows that the support function ψK is strictly convex.
Then, by Theorem 2.3.9, ψK determines a divisor D on XK whose associated
sheaf O(D) is ample. By [Har83], II.7.5, there exists an integer such that the
sheaf O(D)⊗m on XK is very ample. Since XK is complete, in particular it
is proper, so XK is a proper algebraic variety admitting a very ample sheaf.
This shows that XK is projective.

Having established that the toric variety of a polytope is projective, it
makes sense to compare the different definitions of toric variety we have given
in Section 1.10 and Section 1.6. With notation as in the above sections we
have the following.

Theorem 2.4.3. The varieties YK and XK , defined in Section 1.6 and
Section 1.10 respectively, are isomorphic.

Proof. Let K be a polytope and ψ its support function, as defined in (2.11).
The divisor determining the embedding in projective space of XK is the
divisor Dψ associated to ψ. By definition, this divisor is given by

∑

ρi∈∆(1)

−ψ(vi)Dρi ,

hence the corresponding polytope is

PDψ = {u ∈MR|〈u, vi〉 ≥ ψ(vi) ∀i},

which gives PD as an intersection of half-spaces. In the proof of Proposi-
tion 2.4.1 we have seen that the values of ψ are determined by the half-spaces
containing the polytope K. This means that the polytope PD is actually K.
The embedding in projective space fD of (2.9) is determined by the lattice
points of PD, i.e. by the points of PD ∩M = K ∩M . In Section 1.10 we
denoted this last set by A. Moreover, the toric variety XK contains the
torus T as a dense open subset. It is clear that fD restricted to the torus T
gives exactly ψA. We can visualize the situation with the following diagram.

T
ϕA

- P
m

∩
XK

⊂ fD

-

It is true for any continuous map g : Y → Z between topological spaces that
g(A) ⊃ g(Ā) for any subset A of X, where Ā is the closure of A. In our
case, the embedding fD is a map of varieties, in particular it is continuous.
From this it follows that, under the embedding in projective space, XK is
isomorphic to the closure of im(ψA), which is nothing but YK .
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Chapter 3

Complex toric varieties

One of the motivating problems for this thesis was the study of lattice poly-
gons in the plane. In this chapter we prove that, for the complex toric variety
of a polytope, the Euler characteristic equals the number of vertices of the
starting polytope. Consider the following situation: we have a given two-
dimensional toric variety (a toric surface) and we want to know from which
polygon it came from. Computing its Euler characteristic lets us distinguish
whether it came from a triangle, a quadrangle, etc.

LetN be a lattice of rank n with dualM , NR andMR their respective real
vector spaces. In this chapter we consider toric varieties over the field C of
complex numbers. Explicitly, let K be a polytope and ∆K its corresponding
fan. We consider the variety XK obtained by glueing the affine toric varieties
Uσ = Spec(C[σ∨ ∩ M ]) corresponding to cones σ in ∆K . Complex toric
varieties admit a very direct description of many topological invariants, e.g.
the Euler characteristic, in terms of combinatorial properties of ∆K .

As a reference for basic facts about algebraic topology used in what
follows (e.g. contractible spaces, deformation retracts of spaces, etc.), the
reader may consult, for example, [Rot88] or [Hat02]. In this chapter we make

y

x

P

y

z

x P

Figure 3.1: The same cone in R
2 and R

3.
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use of the concepts of interior and relative interior of a cone. The cones we
are considering lie inside a finite-dimensional real vector space NR: we give
to this space the topology induced by the Euclidean one. The interior of
a cone σ in NR, denoted by int(σ) is the interior of σ with respect to such
topology. This notion does not always “behave well”: let us illustrate this
with a drawing. In Figure 3.1 we have a cone σ of dimension two in R

2 and
a point which lies in its interior. If we consider σ as sitting in the xy plane
in R

3, then it is still a cone, but now the topological interior is empty! To
address this issue, we consider the relative interior , which is the interior of
σ in the linear subspace it generates.

3.1 Singular cohomology of affine toric varieties

In the present section we study the topology of affine toric varieties. This
is useful to determine their cohomology groups and is a key step for the
computation of the Euler characteristic of a toric variety.

Proposition 3.1.1. Let σ be a strongly convex cone of dimension n in NR,
then its affine toric variety Uσ is contractible.

Proof. To show that Uσ is contractible, we have to find a homotopy between
the identity map of Uσ

idUσ : Uσ → Uσ, φ→ φ

and some constant map
Uσ → Uσ, φ→ P,

sending every element to a single point P . We take P to be the distinguished
point xσ (see (1.6) and (1.7) on page 28). Let v be a lattice vector in int(σ),
i.e. a vector v in int(σ) ∩ N and let I be the closed interval [0, 1] in R.
Identifying points of Uσ with monoid homomorphisms from Sσ to C, we
define a map H : Uσ × I → Uσ as

H(φ, t)(u) =

{
t〈u,v〉φ(u) if t ∈ (0, 1],

xσ(u) if t = 0.

When u is zero, since v lies in the interior of σ, we have 〈u, v〉 = 0, so

H(φ, t)(0) = 1φ(0) = 1 for all t.

When u is non-zero, 〈u, v〉 > 0 and therefore limt→0 t
〈u,v〉φ(u) = 0, so

limt→0H(φ, t) = xσ. To check continuity, we choose explicit generators
s1, . . . , sl of Sσ. By ([Ful93], exercise on page 19), the affine toric variety Uσ
(as an algebraic subset of C

l) is defined by the ideal of C[y1, . . . , yl] generated
by all polynomials of the form

ya11 · · · yall − yb11 · · · ybll ,
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where a1, . . . , al, b1, . . . , bl are solutions of the equation

a1s1 + · · · + alsl = b1s1 + · · · + blsl.

Under this embedding of Uσ in C
l, the distinguished point xσ corresponds

to the point (0, . . . , 0). Indeed, xσ : Sσ → C corresponds to the C-algebra
homomorphism x̃σ : C[Sσ] → C given on the basis as

x̃σ(χu) = xσ(u) =

{
1 if u = 0,

0 otherwise.

This corresponds in turn to the maximal ideal ker(x̃σ) in Spec(C[Sσ]). This
maximal ideal is

ker(x̃σ) =

{
n∑

i=1

αiχ
ui

∣∣∣∣∣ x̃σ(χui) = 0, i = 1, . . . , n

}
=

{
n∑

i=1

αiχ
ui

∣∣∣∣∣ xσ(ui) = 0, i = 1, . . . , n

}
=

{
n∑

i=1

αiχ
ui

∣∣∣∣∣ ui 6= 0, i = 1, . . . , n

}
= C[Sσ] \ C.

This is identified, as a point in C
l, with (0, . . . , 0).

It is now possible to write the map H as

H(α, t) = (t〈s1,v〉α1, . . . , t
〈sl,v〉αl)

for α = (α1, . . . , αl) in Uσ ⊂ C
l and t in [0, 1] ⊂ R. Since v is in the interior

of Sσ, 〈si, v〉 > 0 for all i’s, showing thus continuity of H.
Summarizing, we found a continuous map H : Uσ × I → Uσ such that

H(−, 1) = idUσ and H(−, 0) is the constant map sending each point of Uσ
to xσ. We have thus constructed the required homotopy.

Recall that the orbit of the distinguished point xσ in Uσ under the action
of the torus TN is the affine variety Oσ = Spec(M(σ)) ⊂ Uσ. Using almost
the same proof as above, we have the following:

Proposition 3.1.2. Let σ be a k-dimensional cone in NR with k < n, then
Oσ is a deformation retract of Uσ.

Proof. It is enough to find a continuous function H : Uσ × [0, 1] → Uσ such
that

(1) H(φ, 1) = φ,

(2) H(φ, 0) ∈ Oσ,
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(3) H(θ, 0) = θ,

for all φ in Uσ and θ in Oσ.

We define H in a way similar to the proof of the previous proposition.
In this case, σ is not n-dimensional so we need to choose a lattice vector in
the relative interior of σ, i.e. a vector v in relint(σ) ∩ N . For φ : Sσ → C

and t in [0, 1] we define H(φ, t) as

H(φ, t)(u) =

{
t〈u,v〉φ(u) if t ∈ (0, 1],

xσ(u)φ(u) if t = 0.

Checking for continuity is completely analogous to what we did in the proof
of Proposition 3.1.1.

Let now φ be in Uσ, then H(φ, 1)(u) = φ(u), showing (1). For (2) we
have

H(φ, 0) = φ(u)xσ(u) =

{
φ(u) if u ∈ σ⊥ ∩M = M(σ),

0 otherwise.

This latter map is zero outside M(σ) and thus can be identified with a
monoid homomorphism from M(σ) to C. This shows that H(φ, 0) belongs
to Spec(M(σ)) = Oσ.

For (3), let θ be in Oσ. Then θ is a monoid homomorphism from M(σ)
to C and thus can be identified with its extension by zero to a monoid
homomorphism Sσ → C. It is now obvious that

H(θ, 0) = θ(u)xσ(u) =

{
θ(u) if u ∈ σ⊥ ∩M = M(σ),

0 otherwise,

so that the monoid homomorphismH(φ, 0) can be identified with the monoid
homomorphism θ : M(σ) → C. This shows that the required function H
exists, and thus concludes the proof.

From this last proposition follows that Oσ and Uσ have the same ho-
motopy type and thus the same integral cohomology. This is a very strong
result, since by Remarks 14 and 15 the orbit Oσ is an algebraic torus. The
cohomology of an algebraic torus is well-known: its cohomology groups are
given by the exterior powers of the dual of the first homology group. We
then have the following result.

Corollary 3.1.3. Let σ be a strongly convex cone in NR and Uσ its affine
toric variety. If i is a non-negative integer, then

H i(Uσ ; Z) ∼=

i∧
M(σ). (3.1)
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Proof. By [Ful93], Section 3.2, the fundamental group of an affine toric
variety Uσ is isomorphic to N(σ). Its dual is M(σ), hence the discussion
above proves the corollary for σ of dimension less than n. For σ of dimension
n, we just have to note that σ⊥ = {0} and thus M(σ) = M ∩ σ⊥ = {0}.
The zeroth exterior power of M(σ) is then Z, and all other powers are the
zero group. Since, by Proposition 3.1.1, Uσ has the same homotopy type of
a space with a single point, its zeroth cohomology group is Z and all the
others are zero.

3.2 The Euler characteristic

The results established in the previous section for affine toric varieties per-
mits us to compute the cohomology of general toric varieties. Let then K
be a polytope in MR, let ∆K be its fan in NR and XK the corresponding
toric variety. By a good cover of a topological space X we mean an open
cover U = {Ui}i∈I such that finite intersections of the Ui’s are contractible.
For such covers, Čech cohomology with coefficients in the constant presheaf
ZX (i.e. the presheaf assigning the abelian group Z to each open subset of
X) and singular cohomology with integer coefficients coincide (see [BT82],
III.15).

In our case, the most natural cover to consider is the finite cover {Ui}
of XK given by the affine toric varieties Ui corresponding to the cones σi of
∆K . The problem is that at least two of such cones intersect in the trivial
face {0}. The affine toric variety U{0} is the torus T of Section 1.8, which
is not contractible. We can work around this by replacing the cohomology
with a particular spectral sequence converging to it (see [God73], II, 5.4).

Recall now that the topological Euler characteristic χ(X) of a space X
is defined as the alternating sum

χ(X) =

∞∑

q=0

(−1)qrank (Hq(X; Z)) . (3.2)

Theorem 3.2.1. The Euler characteristic of the toric variety XK associated
to a convex polytope K is the number of n-dimensional cones in its fan ∆K .

Proof. For any open set of XK , let Sq(U) denote the group of singular q-
chains of U (see, e.g., one of the references on algebraic topology listed at
the beginning of this chapter). For any non-negative integer q consider the
presheaf of singular q-cochains of XK , i.e. the sheaf sending an open subset
U of XK to the set

Sq(U) = HomZ(Sq(U),Z).

We denote this presheaf by Sq.
Take the finite cover

U = {Ui}
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consisting of affine toric varieties corresponfing to cones of maximal dimen-
sion. We try to apply the method described above using this cover. Denoting
by C• the Čech complex of U , we can form a double complex

K•,• = C•(U , S•),

whose (p, q)-th term is

Kp,q = Cp(U , Sq) =
⊕

i0<···<ip
Sq(Ui0 ∩ · · · ∩ Uip).

The corresponding spectral sequence, whose E1 term is

Ep,q1 =
⊕

i0<···<ip
Hq(Ui0 ∩ · · · ∩ Uip ; Z),

converges to to the singular cohomology of XK (cfr. [God73]). In the
notation of spectral sequences we write

Ep,q1 ⇒ Hp+q(XK ; Z).

Since the spectral sequence degenerates already at the E1 level, the Euler
characteristic of XK can now be written as

χ(XK) =
∑

p,q

(−1)p+q rank(Ep,q1 ) =

=
∑

p,q

(−1)p+q rank


 ⊕

i0<···<ip
Hq(Ui0 ∩ · · · ∩ Uip ; Z)




and thus, applying Theorem 3.1.3, as

χ(XK) =
∑

p,q

(−1)p+q rank


 ⊕

i0<···<ip

q∧
M(σi0 ∩ · · · ∩ σip)


 . (3.3)

Now, for a cone σ, the q-th exterior power
∧qM(σ) of M(σ) has rank(

k
q

)
, where k is the rank of M(σ). Since for q greater than k,

(
k
q

)
is 0, we

have that

∞∑

q=0

(−1)q rank(

q∧
M(σ)) =

k∑

q=0

(−1)q rank(

q∧
M(σ)) =

=

k∑

q=0

(−1)q
(
k

q

)
=

{
1 if k = 0,

0 otherwise.

Since M(σ) = σ⊥ ∩M has dimension 0 if and only if σ is n-dimensional,
it follows that in (3.3) the terms corresponding to the n-dimensional cones
contribute each by 1, while the terms corresponding to the cones of dimen-
sion less than n do not contribute to the sum. This proves that χ(XK)
equals the number of n-dimensional cones in ∆K .
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As a corollary, we obtain a result which is very useful in the theory of
lattice geometry, as explained in the introduction and at the beginning of
this chapter.

Corollary 3.2.2. The Euler characteristic of the toric variety XK associ-
ated to a convex polytope K is the number of vertices of K.

Proof. Let ∆K the fan of K. By Lemma 1.6.2, the correspondence between
faces of K and cones of ∆K is such that

dim(σF ) = codim(F ), (3.4)

for any face F of K. The fan ∆K is finite and covers all of NR, so maximal
cones have full dimension n = rank(N). By (3.4), this means that maximal
cones correspond to vertices. The corollary then follows from Theorem 3.2.1.
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