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Abstract

In his paper [14], A. Granville proved several strong results about the dis-
tribution of square-free values of polynomials, under the assumption of the
abc-conjecture. In our thesis, we generalize some of Granville’s results to
k-free values of polynomials (i.e., values of polynomials not divisible by the
k-th power of a prime) . Further, we generalize a result of Granville on the
gaps between consecutive square-free numbers to gaps between integers, such
that the values of a given polynomial f evaluated at them are k-free.

All our results are under assumption of the abc-conjecture.
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Notation

Let f: R — C and g : R — C be complex valued functions and h : R — R*.
We use the following notation:

f(X) =g(X) + O(h(X)) as X — o0
if there are constants Xy and C' > 0 such that
7(X) = g(X)] < Ch(X)
for all X € R and X > Xj;
F(X)=g(X)+ o(h(X))as X — oo iff limx_, % = 0;

F(X) ~ g(X) as X — oo iff limy e L5 = 1.

9(X)
We write f(X) < g(X) or g(X) > f(X) to indicate that f(X) = O (¢9(X))
We denote by ged (ag, as, ... ,a,), lem (ag, as, . .. ,a,), the greatest common

divisor, and the lowest common multiple, respectively, of the integers
ar, a2, ... ,0p.

We say that a positive integer n is k-free if n is not divisible by the k-th
power of a prime number.



Chapter 1

Introduction

In 1985, Oesterlé and Masser posed the following conjecture:

The abc-conjecture. Fiz ¢ > 0. If a, b, c are coprime positive integers satis-
fying a + b = c then
c <. N(abc)'te,

where for a given integer m, N(m) denotes the product of the distinct primes
dividing m.

In fact, Oesterlé first posed a weaker conjecture, motivated by a conjecture
of Szpiro regarding elliptic curves. Then Masser posed the abc-conjecture
as stated above motivated by a Theorem of Mason, which gives an similar
statement for polynomials.
On its own, the abc-conjecture merits much admiration. Like the most in-
triguing problems in Number Theory, the abc-conjecture is easy to state but
apparently very difficult to prove.The abc-conjecture has many fascinating
applications; for instance Fermat’s last Theorem, Roth’s theorem, and the
Mordell conjecture, proved by G. Faltings [1] in 1984.
Another consequence is the following result proved by Langevin [22] and
Granville [11]:
Assume that the abc-conjecture is true. Let F(X,Y) € Q[X,Y] be a homo-
geneous polynomial of degree d > 3, without any repeated linear factor such
that F'(m,n) € Z for all m,n € Z. Fix £ > 0. Then, for any coprime integers
m and n,

N (F(m,n)) > max{|m], |n|}*7>7*,

where the constant implied by > depends only on € and F. With this conse-
quence we generalize some results of Granville [11] on the distribution prob-
lem for the square free values of polynomials to the distribution problem for
k-free values of polynomials for every k& > 2.



Let f(X) € Q[X] be a non-zero polynomial without repeated roots such that
f(n) € Z for all n € Z.

In his paper, Granville proved, under the abc-conjecture assumption, that
if ged, ez (f(n)) is square free, then there are asymptotically ¢y N positive
integers n < N such that f(n) is square free, where ¢y is a positive constant
depending only on f.

In section 3.1, we generalize this as follows:

Assume the abc-conjecture. Let k be an integer > 2 and suppose that ged,,cq, (f(n))
is k-free. Then there is a positive constant cyy, such that:

#{neZ:n<N, f(n) k-free} ~cppN as N — oo

If we do not assume the abc-conjecture only under much stronger constraints
results have been proved. For example Hooley [1&] obtained only the following
result.

Let f(X) be an irreducible polynomial of degree d > 3 for which ged,,c;, f(n)
is (d — 1)-free. Then if S(z) is the number of positive integers < x for which
f(n) is (d — 1)-free, we have as © — o0

ste) =[] (1= 2282 + 0 (g )

where wy(p) = #{0 < n < p»': f(n) =0 (mod p? ')} and A is a positive
constant depending only on f.

In section 3.2 we will investigate the problem of finding an h = h(x) as small
as possible such that, for z sufficiently large, there is an integer m € (z,x + h]
such that f(m) is k-free, where f(X) € Q[X] is irreducible and f(n) € Z for
every n € Z.

This problem has been investigated in the case f(X) = X and k = 2 by Roth
[20], and Filaseta and Trifonov [10].In particular Filaseta and Trifonov have
shown in 1990 that there is a constant ¢ > 0 such that, for x sufficiently large,
the interval (z,x + h] with h = cz®37 contains a square free number. Using
exponential sums, they showed that 8/37 may be replaced by 3/14. A few
years later, in 1993, the same authors obtained the following improvement:
there exists a constant ¢ > 0 such that for x sufficiently large the interval
(x, x4 cx'/3log :U] contains a square free number. Under the abc-conjecture,
Granville [11] showed that h(z) = 2° (¢ > 0 arbitrary) can be taken.

Again assuming the abc-conjecture we extend this as follows:

For every ¢ > 0 and every sufficiently large x, there is an integer m &€
(x,x + 2°] such that f(m) is k-free.



Now, let sq,59,... denote the positive integers m in ascending order such
that f(m) is k-free.
The main purpose of chapter 4 is to study the average moments of s, 11 — s,;

that is, the asymptotic behaviour of 2 > (sy41 — sn)* as & — 0o,
Sn+1Sz

It was Erdds [5] who began to study this problem in the case f(X) = X.
Erdos showed that, if 0 < A < 2, then

Z (Spi1 — Sn)" ~ faz as x — oo (1.1)

Sn+1 Sm

where 34 is a function depending only on A. In 1973 Hooley[19] extended
the range of validity of this result to 0 < A < 3; and in 1993, Filaseta [9]
extended this further to 0 < A <29/9 =3,222...

In our case we will allow any A > 0 and generalize this result to every
irreducible polynomial f(X) € Q[X] such that f(n) is an integer for every
n € Z. Before we state our Theorem we recall the result obtained by Beasley
and Filaseta [1] without the assumption of the abe-conjecture.

Let d = deg(f) > 2, and let k > (v/2 — 1/2)d. Let

(2s+d)(k—s)—d(d—1)

= st k=) T d2s+ 1)’
where
B 1 if2<d<4
S‘{ [(V2—-1)d/2] ifd>5
Let

(2k+c92—4

{iﬁti—if@@—lﬂ)gkgd
$2 =

where 7 is the largest positive integer such that r(r — 1) < 2d. Then ¢; > 0,
QbQ > 07
and if

O<A<mm{¢12 Z; k}

then for every irreducible polynomial f(X) € Z[X] of degree d such that
ged,ep f(n) is k-free,

Z (Spa1 — Sn)A ~ Bar as T — 00

Sn+1 <z

for some constant 34 depending only on A, f(x), and k.
Assuming the abc-conjecture we establish the following result, which was
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proved by Granville [11] in the special case f(X) = X, k=2

Let k be an integer > min (3,deg(f)). Let f(X) € Q[X] be an irreducible
polynomial without any repeated root such that f(n) € Z for allm € Z and
ged,,ez f(n) is k-free. Suppose the abe-congecture is true. Then for every real
A > 0 there exists a constant 34 > 0 such that:

Z (Spi1 — sn)* ~ Buz  as x — .

sn<x



Chapter 2

The abc-conjecture and some
consequences

2.1 The abc-conjecture

We recall the abc-conjecture.
The abc-conjecture [Oesterlé Masser,Szpiro].
Fix e > 0. If a,b, c are coprime positive integers satisfying a + b = c then

c <. N(abe)'*e,

where for a given integer m, N(m) denotes the product of the distinct primes
dividing m.

2.2 Consequences of the abc-conjecture

Now we state a consequence of the abc-conjecture, obtained independently
by Granville [11] and Langevin [22] [23], on which all our results will rely.

Theorem 2.1. Assume that the abc-conjecture is true. Let F(X,Y) €
Q[X,Y] be a homogeneous polynomial of degree d > 3, without any repeated
linear factor such that F(m,n) € Z for all m,n € Z. Fix € > 0. Then, for
any coprime integers m and n,

N (F(m,n)) > max{|m|, |n[}*7*7,
where the constant implied by > depends only on € and F.

The proof of this Theorem depends on some Lemmas which we state after
giving some definitions.



Let p(z) = % a rational function, where f(z),g(z) € C[z] are coprime

polynomials. We define deg(p) = max (deg(f), deg(g)).
¢ defines a map from P! (C) = C U {oc} to P! (C) by defining;:
(1) ¢(z) = 00 if 2 # 00, g(2) = 0;

(i) ¢(o0) = oo if deg(f) > deg(g);

(iii) ¢(co) = 0 if deg(f) < deg(g);

(iv) p(o0) = le(f)/le(g) if deg(f) = deg(g),

where lc(f) denotes the leading coefficients of a polynomial f.
We define the multiplicity, mult., (@) of ¢ at zg € P!(C) as follows:

- if zg # 00, p(20) # oo we define mult,,(¢) to be the integer n such that
©(2) — p(20) = c(z — 29)" + (higher power of (2 — z)) and ¢ # 0;

- if 29 # 00, p(z9) = 00, define mult,,(¢) = mult,, (i);

- if zg = 0o, define mult,,(¢) = mult,,(¢*) where p*(2) = ¢ (1).

z

We say that ¢ is ramified at zq if mult,,(¢) > 1.

We say that ¢ is ramified over wy if there is zg € P*(C) with ¢(2) = wp such
that ¢ is ramified at z.

In general we have > mult,, () = deg(y) for wy € P(C).

z0€p~ 1 (wo)
The following is a special case of the Riemann-Hurwitz formula:

Lemma 2.2. Let ¢ € C(z) be a rational function. Then:
2deg(p) —2= (multy(p) — 1),
20€P1(C)

Proof. For a statement and proof of the general Riemann-Hurwitz formula,
see [24] or [29]. O

Let Q denote the algebraic closure of Q in C.

Lemma 2.3 (Belyi[?]). For any finite subset S of P' (Q), there exists a
rational function ¢(X) € Q(X), ramified only over {0,1,00}, such that

o(S) € {0,1,00}.

Proof. This useful Lemma is proved, for instance, by Serre as Theorem B on
page 71 of [28] (for variations, see Belyi [2], Elkies [1], Langevin [22], [23], or
Granville [16]). O



Lemma 2.4. Let F(X,Y) € Q[X,Y] be any non-zero homogeneous polyno-
maial. Then we can determine a positive integer D, and homogeneous polyno-
mials a(X,Y),b(X,Y),c(X,Y) € Z[X,Y] all of degree D, without common
factors such that:

(1) a(X,Y)b(X,Y)e(X,Y) has exactly D+2 non-proportional linear factors,
including the factors of F;
(ii) a(X,Y)+b(X,Y) = ¢(X,Y).
Proof. We apply Lemma 2.3 with S = {(«, 3) € P! : F(a, 3) = 0}. Let ¢(X)
be the rational function from Lemma 2.3, and write ¢(X/Y) = a(X,Y)/c(X,Y),
where a(X,Y),c¢(X,Y) € Z[X,Y] are homogeneous forms, of the same de-
gree as ¢, (call it D) and without common factors. Let b(z,y) = c(z,y) —
a(x,y). Note that:
o(z/y) =0 if and only if a(x,y
¢(x/y) =1 if and only if b(z,y
o(z/y) = oo if and only if ¢(x,y) =

number of distinct ¢ € P1(Q) for which ¢(¢) = u, then #¢71(0) + #¢~ (1) +
#¢~1(c0) equals the number of distinct linear factors of a(z, y)b(z, y)c(x,y),
by the observation immediately above. On the other hand, applying the
Riemann-Hurwitz formula to the map ¢ : P! — P!, and the fact that ¢ is
ramified only over {0, 1, 00} we get:

2D = 2+ > (mult,(¢) — 1)

uep~!({0,1,00})

=24+ > D- > 1

ue{0,1,00} u€p—1{0,1,00}

= 24+ > D+ > #7'(u)
ue{0,1,00} ue{0,1,00}

= 2+ Y {D—-#o ()}
ue{0,1,00}

Thus #¢1(0) +#¢ 1 (1) +#¢ 1 (c0) = D+2 which concludes the proof. [
Here we give the definition of discriminant, resultant, and some of their

properties.

Definition 2.5. Let, g(X) = b[[[_,(X — 3;) € Q[X] then we define the

discriminant of g by:

A(g) =072 H (B — 5;)%.

1<i<j<r

8



Definition 2.6. The resultant of two non-zero polynomials

T

X) = [J(x = ). 9(x) = e J[(X =) € QL)

J=1

15 defined by:

g)=ve 1116 -

i=1j=1

We easily deduce from these definitions the following properties:
(R1) R(f,g9) = (=1)"R(g, [);
(R2) R(f,g)=0" E!J(@);

(R3) A(f) = (=)0 R(f, )

(R4) If f(X),9(X) € Z[X], there exist two polynomials
a(X),b(X) € Z|X] with deg(a) < r — 1, deg(b) < s — 1 such that:

a(X)f(X) +b(X)g(X) = R(f,9).

For this last remark see [21] .

Definition 2.7. Let F(X,Y) = Y ;X*7'Y", G(X,Y) = > b, X"7Y7 be
i=0 Jj=0

two binary homogeneous polynomials in Z[X,Y] such that ag # 0, by # 0.

Then we define the resultant of F' and G, R(F,G), by: R(F,G) = R(f,q9),

where f(X) = F(X,1) and g(X) = G(X, 1).

Lemma 2.8. Let F,G € Z[X,Y] be two binary homogeneous polynomials,
without common factor. Let m,n € Z with ged(m,n) = 1. Then:

ged (F(m,n),G(m,n)) |R(F,G).
Proof. Let F(X,Y) (é) and G(X,Y) =Y"g (5) then by (R4) there
are two polynomlals a (X) b(X) e Z[X] such that a(X)f(X)+b(X)g(X) =

R(f,g). Now put A(X,Y)=Y""'a (), B(X,Y)=Y*"'5 (). Then
AX)Y)F(X,Y)+ B(X,Y)G(X,Y) =Y R(F,G).

So
ged (F(m,n),G(m,n)) [n" P IR(F,G).

9



By interchanging m and n we get:
ged (F(m,n), G(m,n)) |m" " 'R(F,G),
since ged(m,n) = 1. Thus,
ged (F(m,n),G(m,n)) |R(F,G).

For more details see [21] or [25].

Proof of Theorem 2.1. There is no loss of generality to assume that

F(X,Y) € Z|X,Y]. Let d = deg(F) and let a(x,y),b(z,y),c(z,y) be the

homogeneous polynomials from Lemma 2.4. By multiplying together the irre-

ducible factors of a(z, y)b(z, y)c(x, y), we obtain a new polynomial F(z,y)G(z,y)

of degree D + 2.

Let m,n € Z with ged(m,n) = 1 and put r = ged(a(m,n),b(m,n)). r is

bounded since it divides R(a,b) which is a non-zero integer. Now using this
(m,n) + b(m,n) _

remark we apply the abc-conjecture directly to the equation GT -

c(m,n)

—— to get
1+e/D

max {|a(m, n)|, |b(m,n)|} < Hp ’

plabe

where here and below constants implied by < depend on F' and e. This
implies:

1—e2/D?

max {Ja(m, n)|, |b(m, n)[}' /" < | T p <{]Ir]|:

plabe plabe

hence

max {|a(m,n)[, [b(m,n)| }' P < | [[ p| < Glm.n) [ [] »

pIFG plF(m,n)

Now to finish our proof it remains to find an upper bound and a lower bound
respectively for |G(m,n)| = 225274 giminP+2-4-7 and

wmax{[a(m, )| [, )} o

Wite (m, n) = max{{ml, [n]}, thus |G(m,n)| = [S25 gaminD+2-4] <

10



HP+2=4 Note that for every fixed real a, |m — an| < H. Moreover, for
every real o and 8 with o« # [ we have (m — an) — (m — n) = —(a —
B)n, and a(m — fn) — B(m — an) = (a — F)m. Thus, we deduce that
max{|m — an|,|m — fn|} > H. So, since a(z,y),b(x,y) have no common
factors, max{|a(m,n)|,|b(m,n)|} > HP. Substituting these two estimates
into the equation above we get:

max{a(m,n), b(m,n)}'=</P
11 {a(m,n),b(m,n)}

P> G(m,n)

primes p|F(m,n)

> max{ml, |07 =2,

]

If we wish to consider f(X) € Z[X], then we can obtain a stronger
consequence of Theorem 2.1 than comes from simply setting n = 1. If f(X)
has degree d then we let F'(X,Y) = Y1 f(X/Y); thus f(X) = F(X,1), but
deg(F') = deg(f) + 1. So now, applying Theorem 2.1,

3 | B e T e
primesp|f(m) primes p|F(m,1)
This yields

Corollary 2.9. Assume that the abc-conjecture is true. Suppose that
f(X) € Z[X], has no repeated roots. Fiz e > 0. Then

H P> |m|deg(f)—1—6.
primes p|f(m)
Where the constant implied by > depends on f and €.

The next result, although an immediate corollary of the Theorem 2.1,
will be stated like a Theorem because it will play an important role in what
follows.

Theorem 2.10. Let k be an integer > 2. Assume that the abc-conjecture is
true. Suppose that F(X,Y) € Z[X,Y] is homogeneous, without any repeated
linear factors. Fiz ¢ > 0. If there exists an integer q such that ¢* divides
F(m,n) for some coprime integers m and n then ¢ < max{|m|, |n|}@+)/(k=1),

Also, if f(X) € Z|[X] has no repeated roots and ¢~ divides f(m), then
g < |m|(1+s)/(k—1).

Here the constants implied by < depend on ¢, and F, f respectively.
Proof. By Theorem 2.1 we have

[T 7> max{jm|, |n|}oeo -2

primes p|F (m,n)

11



This is equivalent to

max{|m], [n|}** [T  »> max{lml, |n[}=®.

primes p|F (m,n)

This implies that

|F(m,n)| < max{|m], [n|}**¢ - I »

primes p|F (m,n)

Since clearly
¢ I p<IFmn),

primes p|F (m,n)

we obtain
g < max{|m|, |n|}+)/ ¢

as required.

In the case f(X) € Z[X] the proof is similar.

12



Chapter 3

Asymptotic estimate for the
density of integers n for which

f(n) is k-free

Let k be an integer > 2; let f(X) € Q [X] be a polynomial such that f(n) € Z
for all n € Z and ged,, 5, f(n) is k-free. Now we will use the previous chapters
to derive an asymptotic estimate for the number of positive integers n < N
such that f(n) is k-free. Further we prove that for every ¢ > 0 and every
sufficiently large z there is an integer m € [z,z + 2°), for which f(m) is
k-free. Both results are proved assuming the abc-conjecture.

3.1 Asymptotic estimate of integers n for which
f(n) is k-free

Let k£ be an integer > 2 and f (X) a polynomial in Q[X] of degree d with-
out any repeated roots. We assume that f(m) € Z for all m € Z and
ged,,ez(f(m)) is k-free. Under these conditions, we expect that there are
infinitely many integers m for which f(m) is k-free but unconditionally this
is far from being established.

The following result is an extension of a result of Granville [11] from square-
free values to k-free values of polynomials.

Theorem 3.1. Assume that the abc-conjecture is true. Then, as N — oo,
there are ~ cg N positive integers n < N for which f(n) is k-free, with:

S

pprime

13



where, for each prime p, wyi(p) denotes the number of integers a in the range
1 <a <p* for which f(a) =0 (mod p).

We first give a definition.

Definition 3.2. For a polynomial f(X) € Q[X], we define L(f) := lem (b, A(bf)),
where b is the smallest positive integer such that bf(X) € Z[X].

In the prove of this Theorem we need some auxiliary results.

Lemma 3.3 (Hensel’s lemma). Let f(z) be a polynomial with integer coeffi-
cients of degree d, and let ag € Z be such that f(ap) =0 (mod p), f'(ag) Z0
(mod p). Then for every k > 1 there is precisely one congruence class

a (mod p*) such that

f(@)=0 (mod p*), a=ay (mod p).
Proof. For this proof see also [20)]. O
=0

Remark 3.4. If p does not divide the discriminant of f, and f(r)
(mod p), then f'(r) £ 0 (mod p).

Corollary 3.5. Let f(X) € Q[X] be a polynomial of degree d, such that
f(n) € Z for alln € Z and let p be a prime such that p does not divide L(f).
Then:

win(p) = {a (mod p*): f(a) =0 (mod p*)}| < d.

Proof. Let f(X) = apX?+a; X' +...+ay. Let b be as in the Definition 3.2
and let g(X) = bf(X). Then g(X) = bg X + b, X941 + ... + by € Z[X] with
bi=ba; (i=0,1,....d).
Now f(a) =0 (mod p*) is equivalent to g(a) = 0 (mod p*) since p does not
divide b.
The congruence g(X) =0 (mod p) has at most d solutions modulo p (since
g(X) =0 (mod p) has at most d zeros in IF,,).
Let xy,xs,... ,2, (mod p) be the solutions to ¢g(X) =0 (mod p).
We have L(f) = lem (b, A(g)), so by assumption, p does not divide A(g).
Further,

Alg) = £boR(g,9").
Now if there is an integer a such that p|g(a), p|¢’(a) then p|R(g, ¢’). That is,
p|A(g). But this is against our assumption.
So if g(a) =0 (mod p), then ¢'(a) # 0 (mod p).
Now let a (mod p*) be a solution to f(z) = 0 (mod p*). Then g(a)
0 (mod p*), so g(a) = 0 (mod p). Hence a = x; (mod p) for some i
{1,2,...,r}. But the residue class a (mod p*) such that g(a) =0 (mod p*
and a = x; (mod p) is unique, by Lemma 3.3.

m

N

14



In what follows, we assume that f(X) € Q[X], f(m) € Z for all m € Z
and ged,, oy f(m) is k-free.

Proposition 3.6. Let « be a fized real number > 1.

Then uniformly for w > 0, the number of integers n € (u,u + N] for which
f(n) is not divisible by the k-th power of a prime p < aN is ~ cspN as
N — o0.

Remark 3.7. By this we mean the following: for everye > 0 there is Ny > 0
such that for every N > Ny and every u > 0 we have:

|S(U,N) —Cf7]€N| < eN,

where S (u, N) is the number of integers n € (u,u+ N| such that f(n) is
not divisible by the k-th power of a prime p < aN.

Proof. Let z = k+1 log N and choose N large enough such that z > L(f);

let M =[[pF=exp |k logp) = ) By the prime number theorem
p<z p<z

6(z) = z+o(z), and so M = errt B N(+o() — Narto) a5 N — oo

For every prime p < 2z and every number x > 0, there are %wf,k(p) integers
n € (x,z + M] such that f(n) =0 (mod p*). Hence there are M <1 — wf%k(p))
integers n € (z,x + M| such that f(n) is not divisible by p*. So, by the Chi-

nese Remainder Theorem, there are exactly M [] (1 — w%@)) integers n in
p<z

any interval (z,x + M|, for which f(n) is not divisible by the k-th power of
a prime p < z. Thus there are

ot (5 + o)L (1= =52 ) = (1 o) )T (1 457)

p<z p<z

integers n € (u,u + N] for which f(n) is not divisible by the k-th power of
a prime p < z. Notice that the constant implied by O does not depend on w.
Now, if a prime p does not divide L(f) then by Corollary 3.4, wy(p) < d.

Hence 1
w
Z f; < dz Z =5 < k1"

p>z p>z n>z

This yields, that csi/ [] <1 — w%@) =140 (z,ﬁ%l) , and so we have proved
p<z
that, uniformly in u, there are ~ ¢f N, as N — oo, integers n in the interval

(u,u 4+ NJ for which f(n) is not divisible by the k-th power of a prime p < z.
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As we have shown above there are w;(p){N/p* + O(1)} integers in the
interval (u,u + N] for which f(n) = 0 (mod p*), for any given prime p. If
p > z then this number is, by Corollary 3.4, < dN/p* + O(d). Therefore the
number of integers n € (u,u + N] such that there is a prime p € (2, aN] for
which f(n) =0 (mod p) is

N N N
<4 Y (ﬁ + 1) € it N = o(N).

z<p<laN

Then the number of integers n € (u,u + N| such that f(n) is not divisible
by the k-th power of a prime p < z but f(n) = 0 (mod p*) for some prime
p € (z, aN] is equal to o(IN) hence the number of integer n € (u,u + N| for
which f(n) is not divisible by the k-th power of a prime p < alNV is ~ ¢cpp N
uniformly in v as N — oo. [

We complete the proof of Theorem 3.1 by showing that, for any fixed
e > 0, there are O(eN) integers n < N for which f(n) is divisible by the
square of a prime > N. Observe that this result is true for f(X) it is true for
all irreducible factors of f(X); thus we will assume that f(X) is irreducible.
Hence it is sufficient to prove the following:

Theorem 3.8. Assume that the abc-conjecture is true. Suppose that f(X) €
Q[X] s irreducible of degree d > 2, with f(n) € Z for n € Z. Then for every
e > 0 there are O(eN) integers n < N such that f(n) is divisible by the
square of a prime p > N.

Remark 3.9. We may assume d > 2 since the square of any prime p > N
is > N? and so, if N is sufficiently large, cannot divide a non-zero value of
a linear polynomial.

Proof. Consider the new polynomial,
FX) = fXO)fX+Df(X+2)-- f(X+1-1),

where [ is an integer to be chosen later.

We claim that this polynomial has no repeated factors. Indeed, suppose that
F(X) has repeated factors. Then, f(X + 1) = f(X + j) for certain integers
i,J with 7 # j, since f is irreducible. By substituting X for X + ¢ we obtain
f(X)=f(X+n) where n =7 — i #0.

Taking X = 0,n,2n,... ,etc we obtain f(n) = f(0
f(Bn) = f(0),..., i.e. the polynomial f(X) — f
This is impossible since f is not constant.

For every n < N, write n = jl + 4, where 0 <i <[ and 0 < j < [N/I]. Note

), f(2n) = f(n) = f(0),
(0) has zeros 0,n,2n,...

16



that if there exist a prime ¢ > N such that ¢* divides f(n), then ¢ J] p <

plf(n)
|f(n)] < Ne) hence [] p < N9~ Thus if two of the f(n + 1) were
plf(n)
divisible by squares of primes > N, we would have [[ p < Nde&(F)=2

plF(n)
contradicting Corollary 2.9. This implies that there is at most one number

f(n+14),0 < i <[, which is divisible by the square of a prime > N. Thus,
in total there are O(N/I) integers n < N such that f(n) is divisible by the
square of a prime > N. Selecting [ = [1/¢] the result follows. O

Remark 3.10. If k > 3 Theorem 3.1 follows directly from Proposition 3.6
and Theorem 2.10.

3.2 On gaps between integers at which a given
polynomial assumes k-free values

In this section we investigate the problem of finding an as small as possible
function h = h(z) such that for a given polynomial f and for every sufficiently
large z, there is an integer m € (z, z + h| such that f(m) is k-free.

The following result was proved by Granville [11] in the case f(X) = X,
k=2.

Theorem 3.11. Let k > 2. Let f(X) € Q[X] be an irreducible polynomial
of degree d > 1. Assume again that f(m) € Z for m € Z and that ged, ez,
is k-free. If the abc-conjecture is true then for every e > 0 and for every

sufficiently large z there is an integer m € (z,z+ 2°] such that f(m) is
k-free.

Proof. Choose ¢ such that ¢y, <1 —c¢ < 1, and [ := [5/ce]. Define g(X) =
FX+DfX+2)- fF(X+1).

By proposition 3.6, there is zy depending only on f, [, k, ¢ such that for every
z > zp, there are < (1 — ¢)z° integers m € (z, z + 2°] such that f(m) is not
divisible by the k-th power of a prime < z°. Suppose that there is no integer
m € (z,z+ 2°] such that f(m) is k-free, thus there are a least cz° integers
m € (z,z+ 2] such that f(m) is divisible by p* for some prime p > 2°.
Assuming 2z, is sufficiently large, z > 2y, we claim that there is an integer
mo € (z,z+ 2°] such that at least § of the integers f(mg + 1), f(mo +
2),..., f(mo+1) are divisible by the k-th power of a prime > 2°. Thus g(m)
is divisible by the square of an integer > (2°)%. Hence g(m) is divisible by
the square of an integer > m? and this last statement contradicts Theorem
2.10. [

17



Proof of the claim: Assume z is large enough such that z§ > [. Let a be the
largest integer at most z and r the largest integer such that a + rl < z + 2°.
Suppose that none of the sets {a+1,... ,a+1}, {a+1+1,... ;a+2l},...,
{a+ (r—1)+1,... ,a+rl} contains more than (¢/2)l integers m for which
f(m) is divisible by the k-th power of a prime p > z°. Then (z,z + 27]
contains altogether at most

c c
—rl+1l < —zf41
2r+ _2z+
c 5
< =
- 2 +[ce]
< czf

such integers, assuming z is sufficiently large, contradicting our assumption.
O
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Chapter 4

The average moments of

Sn+1 — Sn

In this chapter we will state the most important result of our thesis.

Let k be an integer and let f(X) € Q[X] be an irreducible polynomial of
degree d such that f(n) € Z for all n € Z and ged, oy, f(n) is k-free.

Let {sn}22, be the ordered sequence of positive integers m such that f(m)
is k-free. Suppose that k& > min(3,d + 1).

The following result was proved by Granville [11] in the case f(X) = X,
k=2

Theorem 4.1. Suppose the abc-conjecture is true. Then for every real A > 0
there exists a constant B4 > 0 such that:

Z (Sp1 — sn)A ~ (s as x — 00.

sp<x
We start with a Lemma.

Lemma 4.2. Assume the abc-conjecture. Let aq,as,... ,a; be fized integers.
Then there is a number Yo = Y{a,as,....a;} Such that the number of integers
m < x such that f(m), f(m+ a1),...,f(m+ a) are all k-free is ~ v,2 as
r — 00.

Proof. As we have seen in the proof of Theorem 3.8, since f is irreducible, no
two among the polynomial f(X), f(X + a1),..., f(X + ;) have a common
factor. So for 4,5 € {1,2,...,l} with ¢ # j, the resultant R;; of f(X + a;)
and f(X +a;) is # 0. Let y = max{|R,;;| : 1 < 4,7 < [,i # j}, then
if p is a prime with p > y then p divides at most one of the polynomials
fm), fim+ay),..., f(m+a).
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k
Now let M = ( IT p> , and let A be the set of integers a € [0, M — 1) such
Py

that none of f(a), f(a+ay),..., f(a+ a) is divisible by the k-th power of a
prime p < y. Hence for every integer m with 0 < m < z we have:

fm), flm+ay),..., f(m + q;) all k-free is equivalent to m = a (mod M)
for some a € A and f(m), f(m +ay),..., f(m + a;) not divisible by p* for
some prime p > y.

Writing m = m’M + a with a € A we obtain:

fim), f(m + a1),..., f(m + a;) k-free is equivalent to m = a (mod M)
for some a € A and g,(m’) k-free, where ¢,(X) = f(a + MX)f(a1 + a +
MX)...flaq+a+ MX).

Now according to Theorem 3.1 assuming the abc-conjecture, there is ¢, > 0
such that

#{m' <2’ g, (m)is k-free} ~ ¢’ asa’ — oo.
S0
H{m <x: f(m), f(m+ay),...,
flm+a), are k-free}| = Z# {M' <IZ 0% gam) k:-free}

M
acA
>3
~ — | T as r — OQ.
M
acA

]

Proof of Theorem 4.1. We introduce some new definitions to simplify our
proof:

First, let S(x;t) be the number of integers n such that s, < z and s,,1—s, =
t.

Let S’ (z,T) denote the number of integers n such that s, < x, and T' <
Spt1— Sn < 2T, and such that there are > (5¢/6)T integers m in the interval
(Sn, Sny1) such that f(m) is not divisible by the k-th power of a prime < 27T
or > T4,

Let ¢t be a positive integer. For any subset I of {1,2,... ,t — 1} we denote
by S; the set of integers n < x for which f(n), f(n +t) and f(n + a) for
all a € I are k-free. Notice that |Sy| denotes the number of integers n < x
such that f(n), f(n+1t) are k-free and without conditions for f(n+1), f(n+
2),...,f(n+t—1). Then by Lemma 4.2, we have |S;| ~ vu0,13 for some
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Y1u{o,13 > 0 and by the rule of inclusion-exclusion,

t—1
S(z,t) = [Se| — Z|5{i}| + Z |Siria}| — Z |S{irsinsisy| + - - -
=1

1<i1<12<t—1 1<11<12<13<t—1
= S 08~ () e = b
I I

as xr — 00.
We claim, that under assumption of the abc-conjecture, we have for every
sufficiently large x, and 1" > 0,

Y S(x,t) <ax/TH

T<t<2T

Then we have:

LY st = 13 Y s

t>T J=0 20 T<t<2i+1T

A
< _Z 2]T A+1 (2'T)
=0

& —

24 X :
< TZ()
< !
=
Therefore
12@ —MAzliﬂMW
T n+1 n - )
sn<zx t=1
1< 1
= =Y Sz, )t + = A
LSS+ Y s
t=1 t>T
1 r c
— =N S(e. Ot + E(x.T), with |E(z.T)| < =
3 2 5@t + BeT), with |8 T)| < 7.

where ¢; is independent of x.

T T
Fixing T and letting  — oo, we infer, 2 3~ S(z, t)t4 — > 6,¢.
t=1 t=1

Hence 1 Z S(z,t)t* is bounded as x — oo, by say c,.
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Now:

3 S 1; W+ <t ok

H

for all z.

T
This implies Z th < g+ & %80 Y 5:t4 is bounded independently of T.
t—l t=1

Thus (4 := Z 5t converges.
t=
Let 6 >0 then for every T' > 0 there is x((J,T") such that

T T

1
b}:Sxt E:Mﬂ<—
for all © > x¢(6,T). There is Ty such that

T 5
‘Z (5ttA - ﬂA| < g
t=1

for all T > Tp.
Take T' > max (TO, g—f;) and then x > ¢ (0,7, thus,

1
=3 (=) = Bl = |—Zsm ~ Bl
sn<x
1 1 &
< =)0 S(a )t — =) S, )t
xtzl xt:l
1 T
+ |EZSxt ZMA|+|Z@ — B4l
L s d
= 7 '3"3
< §+é+é—5
-3 3 3 7
So%Z(sn+1—sn)A—>ﬁAasx—>oo. O
n<x

We can assume that T is sufficiently large. By Theorem 3.11, we know
that S(z,t) = 0 when t > 2 and z is sufficiently large.We apply this with

min (e 45 ) k= 3,d2 2,

e A+1)? A(k—1)
if k>2.d=1.

1
kA(AT])
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Thus we will prove the claim assuming that T' < 2 and z is sufficiently large.
Let B be the smallest integer > A.

Proof of the claim: By Proposition 3.6, there are > ¢t integers m, for some
constant ¢ < ¢y, in any interval of length ¢t > T, for which f(m) is not
divisible by the k-th power of a prime < 27. For any s, < x counted by
Y r<icor S(x;it) but not by S’(x,T'), there must be > (¢/6)T integers m €
(sn,;n+1) for which f(m) is divisible by the k-th power of a prime p > T4,
Otherwise there would be at most (¢/6)7 integers m € (sp, Sp11) for which
f(m) is divisible by the k-th power of a prime p > T4, implying that we
have > T — (¢/6)T > (5¢/6)T integers m € (S, Spt1) for which f(m) is not
divisible by the k-th power of a prime p > T4. But this means precisely that
sp € S'(x,T), contradicting our choice. Therefore

%( > S(x,t)—S’(x,T)) < > 1

<
T<t<2T m<a

Ip>TA:pF|f(m)

Sl
p>T4A m<z, pk|f(m)

< Y wiklp) (% + 1)
p>TA p

<y Z ﬁk + Z 1

P
A
p>T p>TA

Im<a: p*|£(m)

T
p>T4
Im<a: p*|f(m)

We show that the last sum is < ZzG=5. First assume that & > 2,d = 1.

Then if p*|f(m) we have p < |m|'/* < /% hence

1/k x
Z <™ < TA(k—1)

p>T4A
Im<a: p*|f(m)

by our assumption 7" < :L‘kA(i“"U.
Second assume that k& > 3,d > 2. If p*|f(m) for some integer m < =z,
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by Theorem 2.10, p <4 |m R < x'%?, for every # > 0, so in particular
Y y
3/2

p < x#1 if x is sufficiently large. Hence

Z 1< x% < _r

TA(k-1)
p>TA
Im<x: p*|f(m)

k—5/2
by our assumption 7" < x4®-D>, Thus we conclude that if x is sufficiently

large and T' < x° we have

, T T
( Z S(x,t)—S(m,T)) < Fagmns < A

T<t<2T

For every s,, counted by S’(z;T) we have > (5¢/6)T integers in the interval
(Sn, Snt1) such that f(m) is divisible by the k-th power of a prime in the
range [27, T4]. We consider B-tuples of such integers

Sp<mp <mg < ...<mp < Sp41-

For such a tuple there are primes pi,ps,...,pp with 2T < p; < T4 for
i€{l,2,...,B} such that

f(mj) =0 (mod py),

and the number of such integers is at least ([(SCQ)T]).

Let i1 = 1,q1 = p1; let iy be the smallest index ¢ € {2,3,..., B} such that
pi # p1 Put q2 = py,; let i3 be the smallest index i € {3,4,... , B} such that
pis € {q1,q2}; put g3 = pi,, ete. Consider this sequence, i3 =1 < iy < ... <
1, < B of indices. Let do = m;, —mqy,d3 = m;, —mq, ... ,d, =m;, —my.
The number of possibilities for (dy, ds, ... ,d,) is

< (@),

Now for any fixed (ds,ds, ... ,d,) we have

( fm1) =0 (mod gf) ([ f(m) =0 (mod gf)
f(mi,) =0 (mod ¢5) flmi+dy) =0 (mod g3)
fimi) =0 (mod ¢f) «= { flmi+ds) =0  (mod ¢f)

L f(mi,) E. 0  (mod ¢*) [ S+ dy) E. 0  (mod ¢*)

24



By Corollary 3.4, m; is congruent to one of < d incongruent numbers modulo
qf for each j. So by the Chinese Remainder Theorem, m; belong to one of at
most d* residue classes modulo (¢1¢s . . . g,)*. Hence for each of these residue
classes we have

d* (.T/(Q1QQ ) 1)

possibilities for m;; since (qiqs ... q,)" < TA* < TABF < TAA+DE < 4 this
gives at most
2z g
<QIQ2 cee %L)k
possibilities for m;.
Taking into account the possibilities for (da, ds, ... ,d,) we get at most

< T (z/(qg2 - qu)")

possibilities for (mq, m;,,... ,m;,).
It remains to take into account the m; with ¢ & {1,4s,... ,i,}.
Let i & {1,49,43,... ,i,}. Then p; = ¢; for some j € {1,2,... ,u}, hence

f(m;) = f(my;) =0 (mod qf)

Let wy,wa, ... ,w, be the solutions of f(z) =0 (mod ¢;), 0 < x < g;. Then
by corollary 3.4, r < deg(f). Now since |m;, — m;| < 2T < ¢; we have
m;, —m; = wy, —wy, for some Iy, I € {1,2,...,r}. So given m;,, there are at
most d? possibilities for m;.

This gives altogether at most

(dg)B—u
possibilities for the tuples (m; : i & {1,42,43,... ,%y}).
Hence for the tuples (my, ma,... ,mp) we have at most

T 2/ (e - qu)") (282) 7" < T (2/(@ide - - 4u)®)

possibilities where q1, ¢, . . . , q, are the distinct primes among
P1, P2, - .. ,pg. For given qi, ¢, . .. , g, there are at most u® < BP <« 1 possi-
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bilities for pi,ps, ... ,pp so:

B
Sz TT? < Y > qui_

( )*
u=1 2T<q1 <...<qu<T4 qr---Gu
B 1 u
<oy (x4
u=1 ¢>2T q
< o3 (i)
u=1
< X
T
Hence . .
S'(x,T) < <

TB+1 TA+1L ’

which proves our claim, and completes the proof of Theorem 4.1.
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