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§ 1. Introduction

The term “motive” (or sometimes “motif”, due to the French origin of the word)
goes back to Grothendieck’s idea of a universal, “motivic” cohomology theory for
algebraic varieties, which he threw in in the late 1960s. Such a theory meant an
“embedding” of the category Var(k) of smooth projective varieties over a field k
into a suitable close-to-abelian category, so that all “sufficiently good” cohomology
theories on Var(k) would factor through this embedding. Manin [16] proposed the
following approximation to this construction. He introduced the additive category of
correspondences Corr(k), whose objects are the same as the objects of Var(k), and
the morphisms, called correspondences, between two objects X and Y (for simplicity
assume X irreducible) are the elements of the Chow group CH dimX(X × Y ), i.e. the
cycles of dimension dimX onX×Y modulo rational equivalence (see [8]). The pseudo-
abelian envelope of Corr(k) is the category of effective Chow motives Choweff (k).
It is obtained by adding to Corr(k) the kernels of all projectors. The image of
X ∈ ObVar(k) under the natural functor

Var(k) → Corr(k) → Choweff (k)

is called the motive of X and denoted by M(X).
The category Choweff (k) has a rich structure. Our interest is in the additive

decompositions of the motives M(X), X ∈ ObVar(k). For example, the canonical
morphism P1

k → Spec k yields the decomposition

M(P1
k)
∼= M(Spec k)⊕ L,

where L is an object of Choweff (k) called the Tate motive. This decomposition
immediately generalizes as M(Pnk) =

⊕n
i=0 Li, where Li denotes the i-th tensor power

of L. It appears that a similar decomposition of a motive can be obtained for any
variety X having a filtration by closed subvarieties

∅ = X0 ⊆ X1 ⊆ . . . ⊆ XN = X,

where the differences Ui = Xi \Xi−1 are “sufficiently good”, for example, isomorphic
to affine spaces Adi

k . (The most general statement is given in [7, Cor. 66.4], and
originates from Karpenko [15].)

Observe that our model example, the projective space Pnk , is a projective homoge-
neous variety of the algebraic group PGLn,k, and the natural filtration Spec k = P0

k ⊆
. . . ⊆ Pn−1

k ⊆ Pnk is in fact induced by the Bruhat decomposition of PGLn,k. This
gives us hope to obtain such a filtration for any homogeneous G-variety, where G is
a reductive algebraic group. The main goal of the present manuscript is to give an
overview of the recent results in this direction obtained by Köck [17], Chernousov,
Gille and Merkurjev [3], and Chernousov, Merkurjev [4].

LetG be a reductive algebraic group over k, and let V be a projectiveG-homogeneous
variety which is isomorphic over an algebraic closureK of k to the (geometric) quotient
of G by a subgroup P . Since V is projective, P is necessarily a parabolic subgroup of
G. If G is a k-split group, then, in particular, P is defined over k and V is isomorphic
to G/P over k. This situation is indeed a complete analogue of Pnk . Namely, the
Bruhat decomposition for G induces on V a structure of a cellular space, with cells
isomorphic to affine spaces of known dimensions. This allows to compute the Chow
group of V , which is just a free abelian group with generators corresponding to the
closures of cells, and to obtain a decomposition of the motive M(V ) into a sum of
twisted Tate motives. This result is due to Köck [17]. If G is not k-split, but only
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k-isotropic, that is, possesses a non-trivial k-split subtorus, and if P is still defined
over k (equivalently, V has a k-point), a certain “gluing” of the above Bruhat cells is
possible. This gives a coarser k-filtration of V , and with differences which are no more
affine spaces, but affine bundles over some smooth projective varieties. Nevertheless,
such a filtration is still subject to the decomposition theorem, and hence provides a
motivic decomposition of V . This is the main result of [3]. Finally, the paper [4] gen-
eralizes both these results and provides a way to compute M(V ) under the hypothesis
that G is k-isotropic and possesses a non-trivial k-defined parabolic subgroup P ′, but
not necessarily coinciding with P . The main idea of [4] is to decompose the motive of
a product V × V ′, where V and V ′ are projective homogeneous G-varieties, possibly
without any k-points. In case when one of these varieties, say V , has a k-point, we
obtain a decomposition of the motive of the other one, V ′, using pull-back.

The thesis is organized as follows. In § 2 we briefly recall the most basic notions and
results pertaining to algebraic varieties and groups. In § 3 we define an abstract root
system Φ and prove some technical lemmas which will be used later on. After this we
pass to the detailed study of algebraic groups. In § 4 we recall the notion of a geomet-
ric quotient of varieties and algebraic groups, and reproduce the classical construction
of the quotient of an algebraic group by a closed subgroup (Theorem 4.7) In § 5 we
describe the structure of reductive algebraic groups over an algebraically closed field.
In particular, we prove the Bruhat decomposition (Theorem 5.12) and the classifica-
tion of parabolic subgroups (Theorem 5.13). In § 6 we discuss how the results of the
previous chapter can be carried over to the case of a group over a non-algebraically
closed field. The next chapter, § 7, is devoted to the detailed proof of the results
of Köck (Theorem 7.3) and Chernousov-Merkurjev (Theorem 7.7) mentioned above.
Finally, in § 8 we use these results to obtain some explicit motivic decompositions.

§ 2. Preliminaries

In the present chapter we introduce the basic notions we will use in this work,
and manifest the principal conventions. We also recall some elementary results on
algebraic varieties and groups that seem important for further exposition. Our main
reference is the classical book by Borel [1].

Throughout the thesis, k denotes a field, K denotes an algebraic closure of k, and
ks denotes the separable closure of k in K.

1. Schemes and Varieties. For any scheme X, we denote by OX the structure
sheaf of X, and if x is a point of this scheme, we write OX,x for the local ring at this
point, mx for the maximal ideal of OX,x, and κ(x) for the residue field OX,x/mx. For
a morphism f : X → X ′ we denote by f ] the morphism of sheaves corresponding to
f .

For us a k-variety (or a variety over k) is a reduced separated scheme of finite type
over k. We say that a K-variety V is defined over k, if there exists a k-variety W such
that W ×Spec k SpecK ∼= V . Such a variety W is not necessarily unique, but whenever
we say that a variety V is defined over k, we have in mind that we fix some k-variety
of this kind; we will denote it by kV . Thus, a k-defined variety V over K is actually
a pair (V, kV ) together with an isomorphism kV ×Spec k SpecK ∼= V .

Let V be a variety over K. We will denote by V (K) the set of K-valued points of
V , which also coincides with the set of all closed points of V . Unless explicitly stated
otherwise, “x is a point of V ” means that x is an element of V (K), that is, a closed
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point. If V is defined over k, then the embedding k ↪→ K induces an embedding
of the set kV (k) of all k-valued points of the variety kV into V (K); we will denote
the image of this embedding by V (k). We will sometimes use the fact that V (ks) is
dense in V (K) ( [1, Cor. AG.13.3]). For shortness, we will sometimes write K[V ] and
k[V ] instead of OV (V ) and O

kV (kV ). We also denote by K(V ) the ring of rational
functions on V , i.e. the limit lim−→OV (U), where U runs over all open dense subsets of
V .

A morphism of K-varieties f : V → V ′ is just a morphism of K-schemes. Since
the set of closed points is dense in the underlying topological space of a variety, the
morphism f is uniquely determined by a continuous map f : V (K) → V ′(K) and by
f ]. If V and V ′ are varieties defined over k, a morphism f : V → V ′ is said to be
defined over k, if it comes from a morphism of k-schemes kf : kV → kV

′. Observe
that when f is an isomorphism, kf is also an isomorphism (of k-schemes) [10, Prop.
2.7.1].

For any variety V , we have the natural notions of open and closed subvarieties of
V (note that there is only one closed subvariety with a given underlying topological
space). If V is a K-variety defined over k, we will also say that a (closed or open)
subvariety W is a k-defined subvariety, if W comes from a (closed or open) subvariety
of kV . This is the same as to say that W is a k-defined variety, and the embedding
W ↪→ V is a k-defined morphism. We will occasionally say that a (closed or open)
subset S ⊆ V (K) is k-defined, meaning that the corresponding subvariety of V is.

We denote by Γ the Galois group Gal (ks/k). Let V be a k-defined variety over K.
We define the action of σ ∈ Γ on V as the morphism of schemes

σ : V = kV ×Spec k SpecK → kV ×Spec k SpecK = V,

induced in a natural way by the automorphism SpecK → SpecK corresponding to
the extension to K of σ−1 : ks → ks. This morphism σ : V → V is clearly defined
over ks. It takes a closed (resp. open) subvariety W of V to a closed (resp. open)
subvariety σ(W ). In the affine case σ(W ) is just the subvariety obtained by applying
σ to the coefficients of equations defining W .

Observe that if A is a k-algebra and B = A⊗k ks, then A is the set of Γ-fixed points
of B, if Γ acts on B through the factor ks. This implies that in the affine case, and
hence in general, a morphism of k-varieties f : V → V ′ is defined over k if and only if
it is defined over ks and Γ-invariant. The latter can also be checked on the ks-valued
points of ksV and ksV

′. Consequently, a subvariety W of V is defined over k if and
only if it is defined over ks and W (ks) is Γ-invariant (see [1, AG.14.3-14.4]).

Recall that a variety V is called normal, if any local ring (or, equivalently, any local
ring at a closed point) of V is a normal ring, i.e. is integrally closed in its field of
fractions. A dominant morphism of varieties f : V → W is called separable, if for any
irreducible components V ′ of V and W ′ of W such that W ′ is the closure of f(V ′),
the induced embedding K(W ′) → K(V ′) is a separable extension of fields. It follows
from [5, Exp. 5, Th. 2] that a bijective separable morphism of irreducible normal
varieties is an isomorphism.

A variety is called quasi-projective, if it is isomorphic to an open subvariety of a
projective variety.

By the dimension dimV of a variety V we always mean the topological dimension.
However, since our varieties are schemes of finite type over a field, it can be understood
as the maximal dimension of a local ring at a closed point. Moreover, most our
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varieties (e.g. algebraic groups, see below) are smooth, and hence dimV is also the
dimension of a tangent space in following sense.

Let x be a closed point of a K-variety V . The tangent space to V at x is defined as

TeV = DerK(OV,x, κ(x)),

the OV,x-module of all K-linear derivations of OV,x with values in κ(x) = OV,x/mx
∼=

K. It is canonically isomorphic to the OV,x-module (mx/m
2
x)

∗ = HomK(mx/m
2
x, K).

Therefore, an irreducible K-variety V is smooth if and only if dimV = dimK TxV
for any closed point x ∈ V . If V = SpecA is an affine variety, we also have
TxV = DerK(A, κ(x)), where κ(x) becomes an A-module via the localization map
A = OV (V ) → OV,x. If f : V → V ′ is a morphism of varieties, the corresponding map
f ] : OV ′,f(x) → OV,x induces a natural morphism

(df)x : TxV → Tf(x)V
′,

which we call the tangent morphism at x. We will sometimes use the fact that a
morphism of smooth varieties is separable if and only if every irreducible component
of V contains a closed point x such that (df)x is surjective ( [1, Th. AG.17.3]).

For any n ≥ 0, we write An
k and Pnk for the n-dimensional affine space over k and

the k-dimensional projective space over k respectively.

2. Algebraic groups. An algebraic group G over k (or an algebraic k-group) is a
k-variety G endowed with three structure morphisms: m : G × G → G (the multi-
plication), i : G → G (the inverse), e : Spec k → G (the unit element), which are
morphisms of k-varieties and satisfy the usual group axioms. A morphism of alge-
braic groups is a morphism of varieties which is also a homomorphism of groups, i.e.
respects the structure morphisms. In the present thesis all algebraic groups are sup-
posed to be affine. By an element of a group G we mean an element of G(k), which
is a group in the abstract sense.

We say that an algebraic group G over K is defined over k, if G is defined over k
as a variety and the structure morphisms of G are k-defined morphisms. The notion
of a k-defined morphism of algebraic groups is analogous.

The basic examples of algebraic groups include the “additive” group Ga,k = Spec k[x],
the “multiplicative” group Gm,k = Spec k[x, x−1], the general linear group

GLn,k = Spec k[xij, 1 ≤ i, j ≤ n; 1/ det(xij)], n ≥ 1

(in fact, Gm,k = GL1,k). The groups Ga,K and Gm,K are the only connected algebraic
K-groups of dimension 1 ([1, Th. 10.9]).

Let V be a k-vector space. For a k-defined algebraic group G, a morphism of
algebraic groups G → GL(V ⊗k K) ∼= GLn,K , induced by a k-morphism kG →
GL(V ) ∼= GLn,k, is called a k-representation of G. When we discuss k-representations,
we sometimes say that a K-vector subspace W of a K-vector space V ⊗k K ∼= Kn is
defined over k; this means that W is is generated by W ∩ kn. If W is G-invariant,
this allows us to define the induced k-representation G→ GL(W ).

From now on, let G be an algebraic K-group defined over k. Unless explicitly stated
otherwise, by a subgroup of G we mean a closed algebraic subgroup over K, that is, an
algebraic group H, which is a closed subvariety of G such that the closed embedding
H ↪→ G commutes with the structure morphisms. The subgroup H is said to be
k-defined subgroup, if it is k-defined as a subvariety. (Since the structure morphisms
of H come from those of G, they are automatically k-defined.)
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Observe that a closed subvariety H ⊆ G possesses a structure of an algebraic K-
subgroup if and only if H(K) is an abstract subgroup of G(K). Indeed, for example,
if I = {f ∈ A | f |H = 0} is the ideal of A = K[G] defining H as a variety, then the
invariance of H(K) under i : G → G means that I is invariant under i], and hence
we have a correctly defined morphism i] : A/I → A/I, with A/I = K[H]. Observe
that this structure on H is moreover unique. Consequently, if we are provided with a
closed subset S ⊆ G(K) which is also a subgroup, we also have a uniquely determined
closed subgroup H of G such that S = H(K).

We define the kernel kerϕ and the image imϕ of a K-morphism ϕ : G→ G′ as the
closed subgroups corresponding to kerϕ(K) ⊆ G(K) and imϕ(K) ⊆ G′(K) (see [1,
Cor. 1.4]).

We denote by G◦ the connected component of the point e in G. It is a closed
normal k-defined subgroup of finite index, whose cosets are both the connected and
the irreducible components of G [1, Prop. 1.2].

For any subset S ⊆ G(K), the group-theoretic centralizer CG(K)(S) is always a
closed subset of G(K). Therefore, we can speak of a closed subgroup CG(S) of G. In
what follows, when we speak of a centralizer CG(H) of a subvariety H of G, we mean
that it is a closed subgroup of G constructed in the above way from the set S = H(K).
In particular, the centre C(G) of G is the closed subgroup corresponding to the group-
theoretic centre C(G(K)). If S ⊆ G(K) is a closed subset, i.e. corresponds to a
closed subvariety of G, then the group-theoretic normalizer NG(K)(S) is also closed,
and can be considered as an algebraic subgroup of G, the normalizer of S (or of
the corresponding subvariety). However, the question of whether CG(S) or NG(S) is
defined over k, if G and S are, is more subtle (see [1, Prop. 1.7]).

We say that a (closed) subgroup H of G is normal in G, if NG(H) = G.
Other important subgroups of G are the terms of its derived and descending central

series. It appears that ifH is a closed k-defined normal subgroup of G, then the group-
theoretic commutator subgroup [G(K), H(K)] is a closed k-defined subset of G(K) [1,
Prop. 2.3], and hence provides a closed k-defined algebraic subgroup [G,H] of G. This
allows us to define a solvable (resp. nilpotent) algebraic group as one which is solvable
(resp. nilpotent) as an abstract group.

Since G is an algebraic group, the tangent space TeG = DerK(A, κ(e)), where
A = K[G], possesses a natural structure of a Lie algebra over K (see [1, 3.3–3.5]).
Considered with this structure, it is called the Lie algebra of G and denoted by L(G).
For example, L(GLn,K) = gln,K , the Lie algebra of all matrices n × n with the Lie
bracket [X, Y ] = XY −Y X. For a closed subgroup H of G defined by an ideal I ⊆ A,
the Lie algebra L(H) is naturally a Lie subalgebra of L(G), defined by

L(H) = {X ∈ L(G) | X| I = 0}.

We say that an algebraic k-group H acts on a k-variety V , if there is a given
morphism of k-varieties ϕ : H×V → V (which we may abbreviate to ϕ(g, v) = g ·v =
gv, g ∈ H, v ∈ V , if g is a k-valued point of H) satisfying the commutative diagrams

H ×H × V

idH×ϕ
��

m×idV // H × V

ϕ

��
H × V

ϕ // V

and SpecK × V
e×idV //

∼=
��

H × V

ϕ
wwooooooooooooo

V

.
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The variety V is called H-homogeneous, if the map

H × V
ϕ×prV−−−−→ V × V,

where prV denotes the projection of H × V to V , is surjective. If H = G is a K-
group, and V is a K-variety, the fact that V is G-homogeneous means that G(K) acts
transitively on V (K). The action of G on a V is said to be defined over k, if G, V
and ϕ are defined over k. The following result on K-actions is rather simple, but of
utmost importance:

Closed orbit lemma ([1, Prop. 1.8]) Let G be an algebraic K-group acting on a
K-variety V . Then each G-orbit is a smooth variety which is open in its closure in
V . Its boundary is a union of orbits of strictly lower dimension. In particular, the
orbits of minimal dimension are closed.

The group G acts on itself via conjugation, and via right and left translations.
Consider, in particular, the right translation by a (closed) point g of G

G → G
x 7→ xg

The corresponding map of K-algebras ρg : K[G] → K[G] satisfies ρgf(x) = f(xg)
for any f ∈ K[G], x ∈ G. By [1, Prop. 1.9–1.10] we can choose a finite system
of generators {f1, . . . , fn} of the algebra K[G] so that the n-dimensional K-subspace
W of K[G] spanned by these elements is invariant under all ρg, g ∈ G(K). The
corresponding morphism

ρ : G→ GL(W )

provides a closed homomorphic embedding of G into GLn,K (in other words, a faithful
representation). This shows that every algebraic group is in fact a matrix group.
Observe that if G is defined over k then all fi can be chosen in k[G], and the above
embedding is moreover defined over k.

The closed embedding ϕ : G → GLn,K , constructed above, allows us to introduce
the notions of a semi-simple and a unipotent element of G. Namely, g ∈ G(K) is called
semi-simple (resp. unipotent) if its image under ϕ is a semi-simple (resp. unipotent)
matrix in the usual sense. The correctness of this definition, i.e. its independence of
the embedding, is proved in [1, Th. 4.4]. We can also define the Jordan decomposition
in G. If ϕ(g) = hshu is the (multiplicative) Jordan decomposition of ϕ(g) in GLn,K
with hs the semi-simple factor of ϕ(g) and hu the unipotent one, then hs, hu ∈ ϕ(G),
and therefore there is a (unique) decomposition g = gsgu in G, with gs semi-simple
and gu unipotent. We denote by Gs and Gu the sets of semi-simple and unipotent
elements of G respectively. The group G is called unipotent, if G(K) = Gu. The set
Gu is a closed subset of G(K) ([1, 4.5]), but we usually can say nothing about Gs,
and none of them is a subgroup. However, if G is a connected solvable group, then
Gu is a subgroup of G(K) [1, Th. 10.6], and hence can be considered as an algebraic
subgroup.

We call a morphism of algebraic K-groups χ : G→ Gm,K a character of G. We say
that a character χ is k-defined, if it comes from a morphism kG→ Gm,k. We denote
the set of all characters of G by X∗(G), and the set of all k-defined characters by
X∗(G)k. Since OGm,K

(Gm,K) = K[x, x−1], we can identify each character χ ∈ X∗(G)

with an element of K[G], namely, with the image of x under χ] : K[x, x−1] → K[G];
if χ ∈ X∗(G)k, this will be an element of k[G]. It is clear that if χ1, χ2 are characters,
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then their pointwise product

χ1 · χ2 : G→ G×G
χ1×χ2

−→ Gm,K ×Gm,K → Gm,K ,

where the first map is the diagonal map and the last map is the product map, is also
a character of G. The same is true for the inverse χ−1(g) = χ(g)−1 of a character,
and 1(g) = 1, g ∈ G, behaves as a unit, so X∗(G) is an abelian group, and X(G)∗k is
a subgroup of X∗(G).

Analogously, we define a cocharacter λ of G as a morphism λ : Gm,K → G, and we
denote the set of all cocharacters resp. the set of all k-defined cocharacters of G by
X∗(G) resp. X∗(G)k. These sets are also abelian groups with respect to the natural
product, and we have a Z-pairing

〈 , 〉 : X∗(G)×X∗(G) → Z,
defined by 〈χ, λ〉 = m, if (χ ◦ λ)] : K[x, x−1] → K[x, x−1] sends x to xm.

An algebraic K-group T is called an n-dimensional torus, if it is isomorphic to
(Gm,K)n for some n ≥ 0. If moreover T is defined over k and kT is isomorphic to
(Gm,k)

n, then T is called a k-split torus. If T is an n-dimensional torus, then both
X∗(T ) and X∗(T ) are isomorphic to Zn, and the above pairing X∗(T )×X∗(T ) → Z
is a perfect pairing. It is easy to see that a k-defined torus T is k-split if and only if
X∗(T ) = X∗(T )k.

The Galois group Γ = Gal (ks/k) acts on X∗(G) and X∗(G) in a natural way, taking
f to σ ◦ f ◦ σ−1 for any σ ∈ Γ (we consider k(Gm,K) = Gm,k). For characters this
action coincides with the one induced from the Galois action on K[G]. A character
or a cocharacter is defined over k if and only if it is Γ-invariant.

Let T be a torus acting on an algebraic group G via the morphism ϕ : T ×G→ G.
Then the corresponding tangent maps dϕt : L(G) → L(G) provide a representation
T → GL(L(G)). In general, if T → GLn,K is a representation of a torus T , then the
image of T is conjugate to a subgroup of the group Dn of all diagonal matrices in
GLn,K [1, Prop. 8.2]. Hence we can write

L(G) =
⊕

χ∈X∗(T )

L(G)χ,

where L(G)χ = {v ∈ L(G) | t · v = χ(t)v ∀ t ∈ T}. The set of non-zero characters
χ ∈ X∗(T ) such that L(G)χ 6= 0 is denoted by Φ(T,G) and called the set of roots of
G with respect to T . (This should not be confused with the notion of an abstract root
system, § 3; cf. Theorem 5.10.) Observe that if H is a T -invariant subgroup of G,
then L(H) ⊆ L(G), and hence Φ(T,H) ⊆ Φ(T,G).

§ 3. Abstract root systems and Weyl groups

Let V be a finite dimensional vector space over Q. We call an element of GL(V ) a
reflection, if it has order 2 and induces the identity on a subspace of codimension 1.
We say that w is a reflection with respect to α ∈ V , if w(α) = −α.

Let V ∗ = Hom Q(V,Q), and denote by 〈 , 〉 the natural pairing of V and V ∗. Then
for any reflection w with respect to α ∈ V there exists a unique λ = λw ∈ V ∗ such
that w(x) = x− 〈x, λ〉α for any x ∈ V .

A abstract root system (or just a root system for shortness) is a pair (V,Φ), where
V is a finite dimensional Q-vector space, and Φ is subset of V , satisfying:

(1) Φ is finite, does not contain 0, and spans V .
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(2) If α, β ∈ Φ are linearly dependent, then α = β or α = −β.
(3) For each α ∈ Φ there is a reflection wα with respect to α which preserves Φ

(such a reflection is necessarily unique).
(4) For any α, β ∈ Φ one has wα(β) = β − nβ,αα with nβ,α ∈ Z.

(These numbers nα,β are, actually, the products 〈β, λα〉, where λα = λwα is the corre-
sponding element of V ∗.)

Two root systems (V,Φ) and (V ′,Φ′) are called isomorphic, if there exists a vector
space isomorphism ϕ : V → V ′ such that ϕ(Φ) = Φ′ and ϕ preserves the integers nβ,α
from the definition of a root system.

The number dimV is called the rank of the root system Φ.
We denote the subgroup of GL(V ) generated by all wα, α ∈ Φ, by WΦ and call it

the Weyl group of the root system Φ. Since Φ is finite and generates V , it is a finite
group.

A subset Π ⊆ Φ is called a system of simple roots (or a system of fundamental roots,
or a basis) for Φ if Π is a basis of V , and any root β ∈ Φ can be represented as a sum
β =

∑
α∈Π

mαα, with mα being integral coefficients, all non-negative or all non-positive.

We call an element λ ∈ V ∗ regular (with respect to Φ), if 〈α, λ〉 6= 0 for any α ∈ Φ.
Clearly, regular elements exist.

Theorem 3.1. Let (V,Φ) be an abstract root system.

(1) For any regular element λ ∈ V ∗, there exists one and only one system of
simple roots Π in Φ such that 〈α, λ〉 > 0 for any α ∈ Π, and conversely, for
any system of simple roots Π there is such a λ.

(2) The Weyl group W = WΦ acts simply transitively on the set of systems of
simple roots in Φ.

(3) For any system of simple roots Π ⊆ Φ, the Weyl group W is generated by wα,
α ∈ Π.

Proof. See [14, Th. 10.1, Th. 10.3]. �

From now on, we fix a system of simple roots Π in an abstract root system Φ.
We will denote by Φ+ = Φ+(Π) (resp. Φ− = Φ−(Π)) the set of roots which are

decomposed into a linear combination of elements of Π with non-negative (resp. non-
positive) coefficients. The elements of Φ+ (resp. Φ−) are called the positive (resp.
negative) roots with respect to Π. Clearly, Φ = Φ+ ∐

Φ−. The definition of a root
system implies also that Φ− = −Φ+.

Let W = WΦ. We set
R = R(Π) = {wα | α ∈ Π}.

By Theorem 3.1, any element w ∈ W can be represented as a product w = w1 . . . wm
with wi ∈ R. If the number of factors m is the minimal possible, this decomposition
is said to be reduced; then we set l(w) = m and call it the length of w (with respect
to Π).

Lemma 3.2. Let w = v1 . . . vm, vi ∈ R, be a reduced decomposition of w ∈ W and let
v ∈ R.

(1) There are only two possibilities for l(vw):
a) l(vw) = l(w) − 1, and then there exists 1 ≤ i ≤ m such that vw =
v1 . . . vi−1vi+1 . . . vm is a reduced decomposition of vw;
b) l(vw) = l(w) + 1, and then vw = vv1 . . . vm is a reduced decomposition of
vw.
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(2) If w = v′1 . . . v
′
t is any decomposition of w with v′i ∈ R, then there exist 1 ≤

s1 < . . . < sm ≤ t such that w = v′s1 . . . v
′
sm

is a reduced decomposition of w.

Proof. For (1) see [2, Ch. IV, §1, Prop. 4]. To prove (2), observe that if the
decomposition w = v′1 . . . v

′
t is not reduced, then there is 2 ≤ i ≤ t such that

w′ = v′i . . . v
′
t is a reduced decomposition, and l(v′i−1w

′) ≤ l(w′). Then (1) implies that
l(v′i−1w

′) = l(w′)−1 and there exists i ≤ j ≤ t such that v′i−1w
′ = v′i . . . v

′
j−1v

′
j+1 . . . v

′
t.

The claim now follows by induction on t. �

For any w ∈ W we set

Φ+
w = {α ∈ Φ+ | w−1(α) ∈ Φ+} and Φ′

w = {α ∈ Φ+ | w−1(α) ∈ Φ−}.

Lemma 3.3. Let w ∈ W , α ∈ Π. Then

(1) l(wwα) = l(w) + 1 if and only if w(α) ∈ Φ+;
(2) l(wαw) = l(w) + 1 if and only if w−1(α) ∈ Φ+;
(3) l(w) = |Φ′

w| = |Φ′
w−1|.

Proof. The claim of (1) is proved in [14, 10.2, Lemma C]. Since l(w) = l(w−1), the
claim (2) follows from (1), as well as the equality l(w) = |Φ′

w| from l(w) = |Φ′
w−1 |. We

prove l(w) = |Φ′
w−1 | by induction on l(w).

Let β ∈ Φ+. Then β =
∑
mγγ, γ ∈ Π, where all mγ are non-negative. If β 6= α,

then mγ > 0 for at least one γ 6= α, since Φ+ does not contain proportional roots.
Since the coefficient near γ in wα(β) = β − nβ,αα also equals mγ, the root β is in Φ+.
This shows that Φ′

w−1
α

= {α}, and hence l(wα) = |Φ′
w−1

α
|.

Let w = wα1 . . . wαm , αi ∈ Π, be a reduced decomposition of w, that is, m = l(w).
Set α = αm and w′ = wwα. Then l(w′) = l(w) − 1 and l(w′wα) = l(w′) + 1. By the
induction hypothesis

l(w′) = |Φ′
w′−1| = |{α ∈ Φ+ | w′(α) ∈ Φ−}|

and w′(α) ∈ Φ+. Then Φ′
w′−1 ⊆ Φ+ \ {α}, and since wα takes to Φ− only one positive

root α, we have

|{α ∈ Φ+ | w(α) ∈ Φ−}| = |{α ∈ Φ+ | w′(α) ∈ Φ−}|+ 1.

Then l(w) = l(w′) + 1 = |{α ∈ Φ+ | w(α) ∈ Φ−}| = |Φ′
w−1|. �

Let I ⊆ Π. We will denote by ∆I the subset of Φ spanned by I, and by WI the
subgroup of W generated by all wα, α ∈ I. By [2, Ch. VI, §1.7, Cor. 4] ∆I is a root
system, and, clearly, WI = W (∆I). We write ∆+

I = Φ+ ∩∆I and ∆−
I = Φ− ∩∆I .

Lemma 3.4. Let I, J ⊆ Π and w ∈ W . The double coset WIwWJ contains a unique
element w0 of minimal length, and any element w′ ∈ WIwWJ can be written in the
form w′ = aw0b, where a ∈ WI , b ∈ WJ and l(w′) = l(a) + l(w0) + l(b).

Proof. Let w0 be any element of minimal length in WIwWJ . We can write w′ = cw0d
for some c ∈ WI , d ∈ WJ . By Lemma 3.2 (2) there is a reduced decomposition
of w′ which is obtained from the product of reduced decompositions of c, w0, and
d by erasing some factors. Since c ∈ WI , d ∈ WJ , by Lemma 3.2 (2) they possess
reduced decompositions with all factors in WI and WJ respectively, and we take these
decompositions. Let a and b be the products left from c and d, respectively. Then
a ∈ WI and b ∈ WJ . Since w0 was an element of minimal length in WIwWJ , we have
erased no factors from the reduced decomposition of w0. Then w′ = aw0b, and since
the decomposition of w′ is reduced, the decompositions we have obtained for a, w0, b
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are reduced as well. Hence l(w′) = l(a)+ l(w0)+ l(b). This also implies the uniqueness
of w0. �

The elements of minimal length in the double cosets of WIwWJ , w ∈ W , form a
complete system of representatives for WI\W/WJ , which we denote by W I,J . They
are also characterized as follows.

Lemma 3.5. For any w ∈ W we have w ∈ W I,J if and only if w(∆+
J ) ⊆ Φ+ and

w−1(∆+
I ) ⊆ Φ+.

Proof. If w ∈ W I,J , by Lemma 3.4 we have l(wwα) > l(w) for any α ∈ J and
l(wαw) > l(w) for any α ∈ I. Then by Lemma 3.3 we have w(J) ⊆ Φ+ and w−1(I) ⊆
Φ+. Since w is additive and the sum of positive roots is a positive root, the result
follows. Conversely, if w ∈ W satisfies w(∆+

J ) ⊆ Φ+ and w−1(∆+
I ) ⊆ Φ+, then by

Lemma 3.3 it satisfies l(wwα) > l(w) for any α ∈ J and l(wαw) > l(w) for any
α ∈ I. Let w0 be the element of the smallest length in the coset WIwWJ , and write
w = aw0b, a ∈ WI , b ∈ WJ . Then l(w) = l(a)+ l(w0)+ l(b) by Lemma 3.4, and hence
l(a−1wb−1) = l(w) − l(b−1) − l(a−1). Suppose that one of a, b, say, a, is non-trivial.
Then since each multiplication by an element of R changes the length by ±1 only, we
must have l(wαw) < l(w), where wα is the first from the right element in the reduced
decomposition of a−1. Since a−1 has a reduced decomposition with terms in WI , this
is a contradiction. �

§ 4. Quotients of varieties and algebraic groups

In the present chapter we reproduce the classical construction of the (geometric)
quotient of an algebraic group G by a closed subgroup H (Theorem 4.7). The idea is
to define an action of G on a projective space PnK so that H is precisely the stabilizer
of a certain (closed) point x, and to identify G/H with the G-orbit of x. This is made
possible by the fundamental theorem of Chevalley (Theorem 4.2).

1. Chevalley theorem. In order to prove the existence of a quotient of an algebraic
group G over k by a k-subgroup H, we need to construct a certain representation of G,
which behaves well with respect to H. This representation is provided by the action
of G on its affine algebra K[G] with the help of the “exterior powers” construction.

Let V be a finite dimensional vector space over a field k. Recall that both the group
GL(V ) and the corresponding Lie algebra gl(V ) act in a natural way on the exterior
powers Λm(V ), m ≥ 0, of V . More precisely, we have a homomorphism of algebraic
groups ∧m : GL(V ) → GL(Λm(V )), given by

∧mg(v1 ∧ . . . ∧ vm) = g(v1) ∧ . . . ∧ g(vm)

for any g ∈ GL(V ). The corresponding tangent morphism d∧m : gl(V ) → gl(Λm(V )),
gives also the action of gl(V ), in the way

d∧mX(v1 ∧ . . . ∧ vm) =
m∑
i=1

v1 ∧ . . . ∧ vi−1 ∧Xvi ∧ vi+1 ∧ . . . ∧ vm

for any X ∈ gl(V ). These actions satisfy the following

Lemma 4.1. Let U be a d-dimensional subspace of an n-dimensional vector space V
over k, and let g ∈ GL(V ), X ∈ gl(V ). Then

∧dg(ΛdU) = ΛdU ⇐⇒ g(U) = U
d∧dX(ΛdU) ⊆ ΛdU ⇐⇒ X(U) ⊆ U.
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Proof. In both cases the implication ⇐ is clear. To prove the inverse ones, we first
choose a basis e1, . . . , en of V in such a way that e1, . . . , ed span U , and em, . . . , em+d

span g(U). Then ΛdU is generated by e1 ∧ . . . ∧ ed, and ∧dg(ΛdU) is generated by
em ∧ . . . ∧ em+d. These elements of ΛdV are collinear if and only if m = 1, that is, if
and only if g(U) = U .

To prove the second equivalence, we observe that it is linear in X, and not affected
by substituting X −Y instead of X, provided Y (U) ⊆ U . Denote by W the subspace
of U , consisting of all elements whose images under X are in U . Denote by p a
projection map V → W , and set Y = X ◦ p. Then Y (U) ⊆ U , and it is easy to see
that (X − Y )(U) does not intersect U . So, it is enough to prove our claim in case
when X(U) ∩ U = 0. In this case we can choose such a basis e1, . . . , en of V that
e1, . . . , ed span U , ed+1 = X(e1), . . . , ed+m = X(em) span X(U), and em+1, . . . ed span
kerX ∩ U . Then

d∧dX(e1 ∧ . . . ∧ ed) =
d∑
i=1

e1 ∧ . . . ∧ ei−1 ∧Xei ∧ ei+1 ∧ . . . ∧ ed

=
m∑
i=1

e1 ∧ . . . ∧ ei−1 ∧ ei+m ∧ ei+1 ∧ . . . ∧ ed.

The latter sum cannot be collinear to e1 ∧ . . .∧ ed unless m = 0, that is, X(U) = 0 ⊆
U . �

Theorem 4.2 (Chevalley). Let G be an algebraic group defined over k, with Lie
algebra g. Let H be a closed k-defined subgroup of G with Lie algebra h. Then there
is a k-representation ϕ : G → GLn,K, which is a closed embedding, and a k-defined
line L ⊆ Kn such that

H = {g ∈ G | ϕ(g)L = L},
h = {X ∈ g | dϕ(X)L ⊆ L}.

Proof. Denote K[G] by A and k[G] by Ak. Let I denote the ideal of A, corresponding
to H. Since H is defined over k, I is generated by Ik = I ∩ Ak. For any finite set S
of generators of the ideal Ik ⊆ Ak, by [1, Prop. 1.19] we can find a finite-dimensional
k-defined (that is, generated by its intersection with Ak) subspace W of A, containing
S, which is invariant under all translation maps ρg, g ∈ G (see § 2). Set M = I ∩W .
Since both I and W are defined over k, then M also is. Clearly, the ideal I is also
generated by Mk. Further, both I and W are invariant under all ρh, h ∈ H, so M
also is. Since ρh are invertible, this means ρh(M) = M for any h ∈ H. By [1, Cor.
3.12] we also have X(M) ⊆M for any X ∈ h.

Conversely, if ρg(M) = M for some g ∈ G, then ρg(I) = I, because M generates
I and ρg is an algebra automorphism. Since ρg(f)(x) = f(gx) = 0 for any f ∈ I,
x ∈ H, by the definition of I we get gx ∈ H, so g ∈ H. This means that

H = {g ∈ G | ρg(M) = M}.

Analogously, if X(M) ⊆ M for some X ∈ g, then X(I) ⊆ I, since M generates the
ideal I and X is a derivation. And hence X ∈ h by [1, Prop. 3.8], which proves that

h = {X ∈ g | X(M) ⊆M}.

Now we set V = ΛdW , where d = dimM , and let L = ΛdM . Observe that
V ∼= Λd(W ∩ Ak) ⊗k K, and L ∼= Λd(M ∩ Ak) ⊗k K, where W ∩ Ak and M ∩ Ak
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are considered as k-vector spaces. Now the representation ρ : G→ GL(W ) induces a
k-representation ϕ : G→ GL(V ) ∼= GLn,K and Lemma 4.1 implies that

H = {g ∈ G | ϕ(g)L = L} and h = {X ∈ g | dϕ(X)L ⊆ L}.
If this representation is not an embedding, we should replace ϕ by the sum ϕ ⊕ ϕ′,
where ϕ′ : G→ GLm,K is any k-representation of G which is a closed embedding. �

Using the theorem above, we can prove even more in case when the subgroup H of
G is a normal subgroup.

Theorem 4.3. Let G be an algebraic group defined over k, and let N be a normal
k-defined subgroup of G. Let g and n denote the Lie algebras of G and N respectively.
Then there is a linear k-representation ψ : G→ GLn,K such that

N = kerψ and n = ker(dψ).

Proof. Let A = K[G]. By Theorem 4.2 there exists a k-representation ϕ : G →
GL(V ) ∼= GLn,K , such that N is the stabilizer of a line L = 〈v〉 ⊆ V , also defined over
k. Set χ0(g) = g·v

v
, g ∈ N . It is a character of the group N , defined over k. Indeed, if

we choose a basis of V with the first vector in L, we see that the representation map

ϕ] : K
[
xij, 1 ≤ i, j ≤ n; 1/ det(xij)

n
i,j=1

]
→ A

factors through the canonical projection

K [xij, 1/ det(xij)] → K [xij, 1/ det(xij)]
/
(xi1 = 0, 1 < i ≤ n).

Then we can define the K-algebra homorphism

(χ0)
] : K[x, x−1] → A

so that it takes x to the image of x11. Since ϕ is a k-representation and L is k-defined,
we see that χ0 ∈ X∗(N)k, because it is invariant under the action of Γ = Gal (ks/k).
We assign to any character χ ∈ X∗(N) the subspace

Vχ = {v ∈ V | g · v = χ(g)v for any g ∈ N}.
Clearly, each Vχ is a N -invariant subspace of V , and all non-zero subspaces Vχ, χ ∈
X(G), are linearly independent. Set

F =
⊕

χ∈X(N)ks

Vχ.

This subspace is invariant under G, since for any χ ∈ X(N)ks , x ∈ Vχ, g ∈ G and
h ∈ N we have

ϕ(h)ϕ(g)(x) = ϕ(g)ϕ(g−1hg)(x) = χ(g−1hg)g(x),

and, clearly, g · χ : N → Gm, defined by (g · χ)(h) = χ(g−1hg) is also a character
of N over ks, because the conjugation by g is an algebraic k-group automorphism of
N . Note that with the above notation ϕ(g)Vχ = Vg·χ, since g· : X(N)ks → X(N)ks is
invertible; so, ϕ(g) acts as a permutation of the spaces Vχ.

Moreover, since the Galois group Gal (ks/k) acts on X(N)ks in a natural way, and ϕ
is defined over k, the space F is Gal (ks/k)-invariant, and, consequently, also defined
over k. Since, finally, L ⊆ F , we can assume that V = F without any loss of generality.

Now consider

W = {x ∈ gl(V ) | x(Vχ) ⊆ Vχ for any χ ∈ X(N)ks}.
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Clearly, W ∼=
⊕

gl(Vχ). The adjoint representation Ad : GL(V ) → GL(gl(V )), which
is defined as Ad(x)(y) = x−1yx, x ∈ GL(V ), y ∈ gl(V ), induces the action of ϕ(G) on
gl(V ). Since an element y ∈ W preserves all Vχ, and ϕ(g) ∈ GL(V ) permutes them,
ϕ(g)−1yϕ(g) ∈ W , so W is ϕ(G)-invariant. This allows to define a representation

ψ : G→ GL(W ), ψ(g) = Ad ◦ ϕ(g)|W .

Observe that ψ is defined over k, since Ad, ϕ and W are (the latter because Gal (ks/k)
permutes the spaces Vχ).

Let us prove that ψ satisfies the claim of the theorem. Clearly, N ⊆ ker(ψ), because
it is mapped to the scalar matrices in each gl(Vχ), and therefore commutes with W .
Conversely, if g ∈ G is in ker(ψ), it means that ϕ(g) commutes with any w ∈ W , in
particular, ϕ|Vχ commutes with the whole gl(Vχ), so it is a scalar. It implies that ϕ(g)
leaves L stable, so g ∈ N . Hence indeed N = ker(ψ).

The above also shows that n ⊆ ker(dψ), since dψ takes n into the Lie algebra
of {e}, which is isomorphic to K and has only one derivation, the trivial one. To
prove the converse inclusion, we recall that d(Ad) = ad : gl(V ) → gl(gl(V )) acts as
ad(X)(Y ) = XY − Y X for any X, Y ∈ gl(V ). Hence, if X ∈ g is in the kernel of
dψ, its image (dϕ)(X) ∈ gl(V ) commutes with all gl(Vχ), hence acts on Vχ as a scalar
(maybe zero), hence takes L into L, and therefore, X ∈ n. �

2. Quotient morphisms. Let π : V → W be a k-defined morphism of k-defined
varieties over K. We say that π is a (geometric) quotient morphism defined over
k, if π is surjective and open, and for any open subset U ⊆ V the map π] induces
an isomorphism from OW (π(U)) onto the set of f ∈ OV (U) which are constant (as
functions) on the set-theoretic fibers of π|U .

Theorem 4.4 (Universal Property). Let π : V → W be a quotient morphism
defined over k. If ϕ : V → X is a morphism of K-varieties constant on the fibers of
π, then there exists a unique morphism ψ : W → X making the diagram

V
π //

ϕ   A
AA

AA
AA

A W

ψ

���
�
�

X

commutative. If ϕ is a k-defined morphism, then so is ψ.

Proof. It is clear that we can define a unique map of sets ψ : W → X such that
ϕ = ψ ◦ π. Since π is open and ϕ is continuous, this map is also continuous. Further,
for any U ⊆ X open, its inverse image U ′ = ϕ−1(U) is also open, so

π] : OW (π(U ′)) → {f ∈ OV (U ′) | f is constant on fibers of π|U ′} ⊆ OV (U ′)

is an isomorphism of K-algebras. Since ϕ is constant on fibers of π, all elements of
ϕ](OX(U)) ⊆ OV (U ′) also are, so we can define a map of K-algebras

ψ] = (π])−1◦ ϕ] : OV (U) → OW (π(U ′)).

If ϕ] and π] (that is, ϕ and π) are defined over k, then this map is defined over k as
well, since it takes O

kX(kU) into O
kW

(
k(π(U ′))

)
= O

kW (kπ(kU
′)). It makes ψ into a

(k-defined) morphism of varieties, because for any two open sets U1 ⊆ U2 ⊆ X the
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map ϕ] commutes with restriction maps

OX(U2) −−−→ OX(U1)

ϕ]

y ϕ]

y
OV (U ′

2) −−−→ OV (U ′
1)

where U ′
2 = ϕ−1(U2) and U ′

1 = ϕ−1(U1), and

(π])−1 : ϕ](OX(U1)) → OW (π(U ′
1)), (π])−1 : ϕ](OX(U2)) → OW (π(U ′

2))

are isomorphisms, so also commute with restriction maps. �

In certain important cases we can distinguish quotient morphisms using the follow-
ing criterion.

Lemma 4.5. Let π : V → W be a surjective open separable morphism of irreducible
K-varieties, and assume W is normal. Then π is a quotient morphism.

Proof. We need to verify only that for any open subset U ⊆ V , π] is an isomorphism
from OW (π(U)) onto the set of f ∈ OV (U) which are constant on the fibers of π|U .
Since V is irreducible, U also is; since π(U) is open and W is irreducible, π(U) is
irreducible as well. Since both U and π(U) are open dense subsets of V and W
respectively, we have the equality of the fields of rational functions K(U) = K(V )
and K(π(U)) = K(W ). Hence, the morphism π|U : U → π(U) is separable, if π is.
Finally, since normality is a local property, π(U) is normal, if W is. This shows that
it is enough to consider the case U = V , π(U) = W .

Since all K[V ] → K(V ), K[W ] → K(W ) and π] : K(W ) → K(V ) are injective,
we can identify K[V ], K[W ] and K(W ) with subalgebras of K(V ). We need to prove
that every f ∈ K[V ] constant on the fibers of π lies in the subring π](K[W ]) = K[W ]
of K(V ). By [1, Prop. AG.18.2], any such f is purely inseparable over K(W ), so by
the separability of π we have f ∈ K(W ). If f 6∈ K[W ], that is, f is not defined in
x = π(y) ∈ W , then by [1, Lemma AG.18.3] there is a point x′ = π(y′) ∈ W such
that 1/f is defined at x′ and (1/f)(x′) = 0. But this means that 1/f considered
as an element of K(V ) is defined and vanishes at y′ ∈ V , which is impossible, since
f ∈ K[V ] is defined everywhere. �

3. Quotients of varieties by groups. Throughout this subsection we suppose that
G is an (affine) k-defined algebraic K-group, V is a k-defined K-variety, and G acts
on V with a k-defined action.

We call a surjective morphism π : V → W of K-varieties an orbit map, provided
the fibers of π are the orbits of G in V . A (geometric) quotient of V by G defined over
k is an orbit map π : V → W which is a k-defined quotient morphism in the sense of
the previous subsection. In particular, it satisfies the following universal property:

Universal property. If (W,π) is a k-defined quotient of V by G, and ϕ : V → X
is a morphism of varieties constant on the G-orbits in V , then there exists a unique
morphism ψ : W → X making the diagram

V
π //

ϕ   A
AA

AA
AA

A W

ψ

���
�
�

X

commutative. If ϕ is a k-defined morphism, then so is ψ.
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Hence, the k-defined quotient of V by G over k, if it exists, is unique up to a unique
k-defined isomorphism. We will denote it by V/G.

Lemma 4.6. Suppose π : V → W is an open separable G-orbit map, and assume
that W is a normal variety and that all irreducible components of V are open. Then
(W,π) is a quotient of V by G.

Proof. Since π is surjective and open, it maps each irreducible component V ′ of V
onto an irreducible component W ′ of W . Since W is normal, for any x ∈ W its local
ring OW,x is integrally closed, hence x lies in a unique irreducible component; this
means that all irreducible components of W are disjoint. Since π is an orbit map, the
set U = π−1(W ′), is G-invariant. Therefore it is enough to prove the claim for the
case W irreducible.

Observe that G acts transitively on the set {V1, . . . , Vn} of irreducible components
of V . Indeed, for any irreducible component Vi of V and any g ∈ G, we have that
gVi is also an irreducible component; and GVi = π−1(π(Vi)) = π−1(W ) = V . Further,
by Lemma 4.5, each π|Vi

: Vi → W is a quotient of Vi by the stabilizer group Hi of
Vi in G. Now for any open U ⊆ V , if f ∈ OV (U) is stable on the fibers of π|U , we
can represent it as f =

∑
i fi, where fi ∈ OV

(
π−1(π(U))∩ Vi

)
. Then each fi is stable

on the fibers of π|Vi
, intersected with Ui = π−1(π(U)) ∩ Vi, hence fi = (π|Vi

)](gi) for
some gi ∈ OW

(
π(Ui)

)
. Since f is constant on the fibers of π, the functions gi coincide

on intersections π(Ui)∩ π(Uj), and there exists g ∈ OW

(
π(U)

)
= OW

(⋃
i π(Ui)

)
such

that g|π(Ui) = gi for any i. Then f = π](g), and thus lies in π](OV (U)). This proves
that π : V → W is a quotient of V by G. �

Theorem 4.7. Let G be a k-defined algebraic group over K and let H be a closed k-
defined subgroup of G. Then there exists a k-defined quotient π : G→ G/H, and both
G/H and k(G/H) are smooth quasi-projective varieties. If H is a normal subgroup of
G, then G/H is an k-defined algebraic group and π is a morphism of groups.

Proof. By Theorem 4.2 we have a k-representation ϕ : G→ GL(V ) and a line L ⊆ V
defined over k such that

H = {g ∈ G | ϕ(g)L = L} and h = {X ∈ g | dϕ(X)L ⊆ L},

where g and h are the Lie algebras of G and H respectively. Let dimV = n, and let
q : V \ {0} → P(V ) ∼= Pn−1

K denote the projection onto the projective space of lines
in V . Let x = q(L \ {0}) ∈ Pn−1

K (k). The group G acts on Pn−1
K via g · y = q(ϕ(g)y),

y ∈ Pn−1
K (K), and this action is k-defined. The variety Gx ⊆ Pn−1

K is quasi-projective,
since, being an orbit of G, it is an open subset of its closure by the closed orbit lemma.
The map

π : G → Gx
g 7→ g · x

is an orbit map with respect to the action of H on G by right multiplication, since
H is the stabilizer of x. It is also defined over k, since x is a k-defined point. The
variety k(Gx) is clearly defined over k; it is an open subset of its closure, since the
canonical projection Pn−1

K → Pn−1
k is both open and closed, and hence k(G/P ) is also

quasi-projective. The smoothness of Gx implies that of k(Gx) by [12, Prop. 17.7.1].
It leaves to prove only that ker(dπ) = h. Indeed, suppose that it is true. Then since

dimG = dimH + dimGx (this follows from the fact that G/H ∼= Gx as a topological
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space) and Gx, as an orbit of G, is smooth, we have

dimTy(Gx) = dimGx

= dimG− dimH

= dim g− dim h

= dim g− dim ker(dπ)

= dimTπ−1(y)G− dim ker(dπ)π−1(y),

which implies by [1, Th. AG.17.3] that π is separable. Since any smooth variety
is normal, we have that Gx is normal. Further, all fibers of π are isomorphic to
H as varieties, and all irreducible components of H are cosets of H◦ in H, so also
isomorphic; this shows that all irreducible components of fibers of π have the same
dimension, hence by [1, Cor. to Prop. AG.18.4] π is open. Summing up, π : G→ Gx
is an open separable orbit map to a normal variety, and all irreducible components of
G are, clearly, open, so Lemma 4.6 says that π is a quotient map. Consequently, we
need to prove only that ker(dπ) = h.

Choose a non-zero element v of L and define

λ : G → V \ {0}
g 7→ ϕ(g)v

so that π = q ◦ λ and (dλ)e(X) = dϕ(X)v for any X ∈ g; here we identify V with
TeV = Te(V \ {0}). Now since the kernel of (dq)v is equal to L, we have that for
X ∈ g

(dπ)e(X) = 0 ⇐⇒ dϕ(X)L ⊆ L,

and the statement on the right is equivalent to X ∈ h.
Now suppose that H is a normal subgroup of G. In this case Theorem 4.3 permits

to choose ϕ : G→ GL(V ) so that H = kerϕ and h = ker(dϕ). Since ϕ is a k-defined
morphism of algebraic groups, ϕ(G) is a closed k-defined subgroup of GL(V ), and
hence a k-defined algebraic group. Since H is precisely the stabilizer of e ∈ GL(V )
with respect to the left multiplication by G (via ϕ), that is, ϕ(G) = Ge, we can prove
as above that π = ϕ : G→ ϕ(G) is a quotient map. �

§ 5. Reductive groups over an algebraically closed field

In the present chapter we discuss the structure of a connected algebraic group G
overK, first in a general situation, and then in the case when G is a reductive algebraic
group (see the definition below; the basic properties are summarized in Theorem 5.7).
In particular, we obtain the Bruhat decomposition for G (Theorem 5.12), and deduce
the classification and the main properties of parabolic subgroups of G (subsection 5).
Here we do not touch upon the questions of rationality (i.e. of being defined over
a smaller field k) of our objects; these are considered in § 6. Thus throughout this
chapter all algebraic groups, varieties etc. are over K, and we tend to omit K from
our notation.

1. Borel subgroups. Let G be a connected algebraic group (over K). A subgroup
B of G is called a Borel subgroup, if it is a maximal connected solvable subgroup of
G. An overgroup of a Borel subgroup is called a parabolic subgroup.

We summarize the main properties of parabolic and Borel subgroups in Theorem 5.1
below. In particular, we will prove that for any parabolic subgroup P , the quotient
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variety G/P is not only quasi-projective, as it was shown in Theorem 4.7, but even
projective. To obtain this result, we need the notion of a flag variety.

Let V be an n-dimensional K-vector space. For any d ≥ 0, consider the Grass-
mannian Grd(V ), which is the set of all d-dimensional subspaces of V . It admits an
embedding (cf. Lemma 4.1) into the projective space P(ΛdV ), namely, the one sending
a subspace W to the line ΛdW . (This map is also known as the Plücker embedding.)
It is well-known (for example, [1, 10.3]) that the image of Grd(V ) is a closed algebraic
subset of P(ΛdV ). Hence we can introduce on Grd(V ) the structure of a projective
variety. Further, if W ∈ Grd(V ) and W ′ ∈ Grd′(V ) are two subspaces of V , the fact
W ⊆ W ′ is also expressed by algebraic equations on the coordinates in ΛdV × Λd′V .
This allows us to define the flag variety of V as the set

F(V ) = {(V1, . . . , Vn) ∈ Gr1(V )× . . .×Grn(V ) | Vi ⊆ Vi+1, 1 ≤ i < n},
with the structure of a projective variety induced from P(Λ1V × . . .× ΛnV ).

Theorem 5.1. Let G be a connected algebraic group.

(1) All Borel subgroups are conjugate in G.
(2) A subgroup P ⊆ G is parabolic if an only if G/P is a projective variety.
(3) If an automorphism of G fixes all elements of a Borel subgroup B, then it is

the identity.
(4) If P is a parabolic subgroup of G, then P is connected and P = NG(P ).

Proof. Let B be a Borel subgroup of maximal dimension in G. By Theorem 4.2 there
is a faithful representation π : G→ GL(V ) with a line V1 ⊆ V such that

B = {g ∈ G | ϕ(g)V1 = V1} and L(B) = {X ∈ g | dϕ(X)V1 ⊆ V1}.
Then B also acts on V/V1, and by the Lie-Kolchin theorem ([1, Th. 10.5]) there is a
flag F = (V1 ⊆ V2 ⊆ . . . ⊆ Vn = V ) in V , stabilized by B. G acts on the whole flag
variety F(V ) of V via π. Since B is the stabilizer of V1, it is also the stabilizer of F .
As in the proof of Theorem 4.7, we have G/B ∼= G · F ⊆ F(V ). If some other flag
F ′ ∈ F(V ) has the stabilizer B′ in G, then B′ too is a solvable subgroup of G, and
the maximality of dimB implies dimB′ ≤ dimB. Hence also dimG/B ≤ dimG/B′,
so G · F is an orbit of minimal dimension for G, and hence closed. Then G/B is a
projective variety, since the variety of flags is projective. Further, any other Borel
subgroup D of G acts on G/B in a natural way, and hence by [1, Th. 10.4] it has
there a fixed point. This means that DxB ⊆ xB for some x ∈ G, or x−1Dx ⊆ B. By
the maximality of a Borel subgroup x−1Dx = B, so all Borel subgroups are conjugate.

Let P be a parabolic subgroup of G, and B a Borel subgroup contained in P . Then
G/B → G/P is a surjective map from a complete variety, hence G/P is complete
and, consequently, projective. Conversely, if a subgroup P of G is such that G/P is
projective, then any Borel subgroup B has a fixed point in G/P , and, as above, its
conjugate lies in P . This proves the second statement of the theorem.

The completeness of the variety G/B implies that any automorphism ϕ of G which
is identical on B, is also identical on the whole G. Indeed, the morphism ϕ′ : G→ G
defined by ϕ′(g) = ϕ(g)g−1 factors through the quotient map G → G/B, hence its
image is both complete and affine, and thus a point.

Now let us prove (4). First we show that if the claim is true for all Borel subgroups,
then it is true for any parabolic subgroup. Indeed, let n ∈ NG(P ) and let B be a
Borel subgroup contained in P . Then nBn−1 is also a Borel subgroup, hence by the
conjugacy of Borel subgroups of P we have pnBn−1p−1 = B for some p ∈ P . By our
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assumption, pn ∈ B, but then n ∈ P . To see that P is connected, observe that the
identity component P ◦ is also a parabolic subgroup, and P is in its normalizer.

It remains to show that every Borel subgroup B of G satisfies B = NG(B). We
argue by induction on dimG. If dimG ≤ 2, then G = B, because if dimB ≤ 1, then
B is abelian, hence by (3) any x ∈ B acts on G trivially, so B is central in G, and
then G itself is abelian. In the general case, denote NG(B) by N , and let T be a
maximal torus of B. The conjugacy of all maximal tori of B (for example, [1, Th.
10.6]) implies N ⊆ B · NG(T ), so it is enough to prove that NG(T ) ∩ N ⊆ B. Let
S = CT (n) for some element n ∈ N ∩NG(T ). We have three possibilities.

(i) dimS > 0, S◦ ⊆ C(G). In this case we easily get n ∈ B, applying induction to
G/S◦.

(ii) dimS > 0, S◦ 6⊆ C(G). Then CG(S◦) 6= G is a connected algebraic group, as it
is the centralizer of a torus [1, Cor. 11.12], and n ∈ CG(S◦). By [1, Prop. 11.15] the
intersection B ∩ CG(S◦) is a Borel subgroup of CG(S◦), hence the induction applied
to CG(S◦) gives n ∈ B.

(iii) dimS = 0, that is, S is finite. Consider the map f : T → T , f(t) = [n, t]. Since
ker f = S has dimension 0, f is surjective. This means T ⊆ [N,N ]. By Theorem 4.2
there is a faithful representation π : G → GL(V ) with a line L ⊆ V such that N is
the stabilizer of L. Then N acts on L via a character χ ∈ X∗(N). Since the image
of χ is abelian and consists of semi-simple elements, we have that both [N,N ] and
the unipotent part Bu of B are in kerχ. Then also B is in kerχ. But this means
that for any x ∈ L the orbit map G → V , g 7→ g · x, factors through G/B and so
has a complete affine image, that is, is constant. Then G = N = B and everything is
proved. �

Recall that a torus over K is an algebraic group isomorphic to (Gm,K)n for some
n ≥ 0.

Corollary 5.1.1. All maximal tori of G are conjugate.

Proof. Since a torus is a solvable subgroup, it is contained in a Borel subgroup. By the
theorem all Borel subgroups are conjugate, and inside a solvable group all maximal
tori are conjugate by [1, Th. 10.6]. �

Let B = B(G) denote the set of all Borel subgroups of G. Since G acts on B
transitively, and NG(B) = B, the map

G/B → B
gB 7→ gBg−1

is correctly defined and bijective. This allows us to consider B as a variety, with the
structure induced from G/B. Observe that it is a projective variety.

Subgroups of the form CG(T ), where T is a maximal torus of G, are called Cartan
subgroups of G. Each subgroup CG(T ) is connected, since by [1, Cor. 11.12] all
centralizers of tori are connected. We also have NG(T )◦ = CG(T )◦ ([1, Cor. 8.10]).
Hence the quotient group

W = W (T,G) = NG(T )/CG(T )

is finite. It is called the Weyl group of G corresponding to T . Observe that since all
maximal tori of G are conjugate, the groups W (T,G) corresponding to different T are
isomorphic.

For any maximal torus T of G, the set of T -invariant Borel subgroups is precisely
the set of all B ∈ B such that T ⊆ B. We will denote this set by BT .
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Lemma 5.2. The group W = W (T,G) acts on BT , and the action is simply transitive.
In particular, |BT | is finite.

Proof. Observe that CG(T ) is a nilpotent algebraic group. Indeed, the quotient
CG(T )/T contains no semi-simple elements, since T is the maximal torus of CG(T ),
and thus CG(T )/T is unipotent. Hence both T and CG(T )/T are nilpotent, so CG(T )
also is. Now the nilpotency of CG(T ) implies that it is contained in a Borel subgroup
B ∈ BT . The conjugacy of Borel subgroups (Theorem 5.1) and of maximal tori inside
a Borel subgroup imply that CG(T ) is contained in any Borel subgroup from BT .
Hence W acts on BT . The transitivity of the action is implied by the transitivity
of the action of G and the conjugacy of tori inside a Borel subgroup. Suppose that
n ∈ NG(T ) satisfies nBn−1 = B. Then n ∈ B∩NG(T ) = NB(T ) by Theorem 5.1. But
since B is a solvable group, we have NB(T ) = CB(T ) ([1, Th. 10.6]), so n ∈ CG(T ).
This proves that the action is simply transitive. �

Theorem 5.3. Let α : G → G′ be a surjective morphism of algebraic groups. Then
for any maximal torus T of G, its image α(T ) = T ′ is a maximal torus of G′, and α
induces surjective maps

B(G) → B(G′),
B(G)T → B(G′)T

′
,

W (T,G) → W (T ′, G′).

If kerα ⊆
⋂

B∈B(G)

B, all these maps are bijective.

Proof. Let B be a Borel subgroup of G. Then α induces a surjective morphism
G/B → G′/α(B), and hence G′/α(B) is complete, since G/B is. Then G′/α(B)
is projective, and α(B) is parabolic by Theorem 5.1. But it is also connected and
solvable, so it is a Borel subgroup of G′. The conjugacy of Borel subgroups and the
surjectivity of α implies that we get all Borel subgroups of G′.

Now since α preserves the Jordan decomposition, if T is a maximal torus of B, then
T ′ = α(T ) is a maximal torus of α(B), and hence of G′, because α(B) is a maximal
solvable subgroup. Clearly, the map B(G)T → B(G′)T

′
is also surjective. And the

map of Weyl groups is surjective, because they act simply transitively on B(G)T and
B(G′)T

′
respectively.

If kerα ⊆
⋂

B∈B(G)

B, then the map B(G) → B(G′) is injective, and this implies the

injectivity of all other maps. �

The subgroup R(G) =
( ⋂
B∈B

B
)◦

is called the radical of G. It is the unique maximal

connected solvable normal subgroup of G. Its subgroup Ru(G) = R(G)u is called the
unipotent radical of G. It is the unique maximal connected unipotent normal subgroup
of G. The group G is called reductive (respectively, semi-simple) if Ru(G) = {e}
(respectively, R(G) = {e}). Theorem 5.3 implies that G/Ru(G) is always reductive,
and G/R(G) is always semi-simple.

Lemma 5.4. If G is a reductive algebraic group, then R(G) = C(G)◦, and it is a
torus.

Proof. Clearly, C(G)◦ ⊆ R(G). Since G is reductive, we have R(G) = R(G)s, so it
is a torus. The centralizer of a torus is connected ([1, Cor. 11.12]), so CG(R(G)) =
NG(R(G))◦ = G and R(G) ⊆ C(G)◦. �
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2. Groups of semi-simple rank 1. The semi-simple rank of a connected algebraic
group G is the dimension of T/(T ∩R(G)), that is, the dimension of a maximal torus
in G/R(G).

We are going to study the groups of semi-simple rank 1. The model example of such
a group is the projective linear group PGL2,K = GL2,K/C(GL2,K), whose K-points
look as follows. The group

C(GL2,K)(K) =
{(

c 0
0 c

)
| c ∈ K∗

}
is the group of scalar 2× 2 matrices. Denote the projection GL2,K(K) → PGL2,K(K)
by (

a b
c d

)
7→

[
a b
c d

]
.

The subgroup

T (K) =
{[

a 0
0 b

] ∣∣∣ a, b ∈ K∗
}

=
{[

a 0
0 1

] ∣∣∣ a ∈ K∗
}

is the group of K-points of the maximal torus T of PGL2,K . Clearly, T has rank
1. The group PGL2,K is perfect [1, 10.8], hence not solvable, so its semi-simple rank
equals 1.

All algebraic groups of semi-simple rank 1 are characterized in the following way.

Lemma 5.5. Let G be an algebraic group, T a maximal torus of G, and W = W (T,G)
the Weyl group of G. The following conditions are equivalent:

(1) G has semi-simple rank 1;
(2) |W | = 2;
(3) G/B ∼= P1

K for any Borel subgroup B of G;
(4) there exists a surjective morphism of algebraic groups ϕ : G → PGL2,K such

that kerϕ =
⋂
B∈B

B.

Proof. (1) ⇒ (2) Since G has semi-simple rank 1, it is not solvable, then dim(G/B) ≥
1. As in the proof of Theorem 4.7 we can choose a representation G→ GL(V ) so that
G/B is isomorphic to a closed subvariety Gx of P(V ), where V is a K-vector space.
Then by [1, Prop. 13.5] T has at least dim(G/B) + 1 = 2 fixed points in G/B, so BT
has at least two elements. Thus |W | ≥ 2. On the other hand, by Theorem 5.3 W
is isomorphic to the Weyl group of the quotient G/R(G), and the latter is embedded
into Aut (Gm,K), which consists of two elements; so |W | ≤ 2.

(2) ⇒ (3) |W | > 1 implies that G is not solvable, and hence dim(G/B) ≥ 1. As
above, T has at least dim(G/B) + 1 fixed points in the projective variety G/B, so
|W | ≥ dim(G/B)+1. This implies dim(G/B) = 1. Since T acts non-trivially on G/B,
we can find a cocharacter λ : Gm,K → T such that λ(Gm,K) also acts non-trivially.
Since G/B is an irreducible variety of dimension 1, for any non-fixed x ∈ G/B the
orbit map Gm,K → λ(Gm,K)x ⊆ G/B is dominant. Since G/B is complete, this map
can be extended to a dominant morphism P1

K → G/B ([1, AG.18.5]). Then G/B is
isomorphic to P1

K by [13, Th. 6.3].
(3) ⇒ (4) Since G/B ∼= P1

K , by [1, Prop. 10.8] the action of G on G/B is given
by a morphism ϕ : G → PGL2,K . Clearly, kerϕ =

⋂
B′∈B

B′. Since G is not solvable,

ϕ(G) is not solvable as well. Then dim(ϕ(G)) > 2, as all groups of smaller dimension
are solvable, see the proof of Theorem 5.1 (4). Since PGL2,K is connected and has
dimension 3, ϕ is surjective.
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(4) ⇒ (1) The existence of ϕ implies by Theorem 5.3 that the semi-simple rank of
G equals that of PGL2,K , and PGL2,K has semi-simple rank 1. �

The groups of semi-simple rank 1 are actually the “building blocks” for general
reductive groups (Theorem 5.7), and their properties summarized in the following
theorem are implicitly used in almost every statement that follows.

Theorem 5.6. Let G be an algebraic group of semi-simple rank 1. Let T be a maximal
torus of G, acting on G by conjugation, and let B and B′ be the two elements of BT .
Then

(1) The unipotent radical Bu of B is isomorphic to Ga,K; Φ(T,B) consists of one
element, Φ(T,B) = {α}, and L(B) = L(T ) ⊕ gα, where dim gα = 1. The
subgroup Bu is the unique T-invariant connected subgroup of G with the Lie
algebra gα. The same holds for B′ with −α instead of α.

(2) B ∩B′ = T , and L(B) ∩ L(B′) = L(T ).
(3) L(G) = L(B) + L(B′) = L(T )⊕ gα ⊕ g−α, and Φ(T,G) = {α,−α}.

Proof. By Lemma 5.5, there is a surjective morphism ϕ : G → PGL2,K with the
kernel I =

⋂
Q∈B

Q. By Theorem 5.3, ϕ(T ) is a maximal torus and ϕ(B) a Borel

subgroup of PGL2,K . Since all Borel subgroups and all maximal tori are conjugate
(Theorem 5.1 and Corollary 5.1.1), composing ϕ with an automorphism of PGL2,K ,

we may assume that ϕ(T ) is the standard torus
{[

a 0
0 b

]
, a, b ∈ K∗

}
of PGL2,K ,

and ϕ(B) is the standard Borel subgroup
{[

a c
0 b

]
, a, b ∈ K∗, c ∈ K

}
. It is easy

to see that the unipotent radical ϕ(B)u of ϕ(B) coincides with
{[

1 c
0 1

]
, c ∈ K

}
,

and hence ϕ(B)u ∼= Ga,K . Since Ru(G) = {e}, the kernel ker(ϕ|Bu) is finite; then
dimBu = 1. But Ga,K is the only connected unipotent K-group of dimension 1,
hence Bu

∼= Ga,K . Being a connected solvable group, B is a semidirect product of its
maximal torus T and Bu by [1, 10.6], hence L(B) = L(T )⊕L(Bu). Since Bu

∼= Ga,K ,
it coincides with L(Bu) as a variety, hence dimL(Bu) = 1 and T acts on Bu by means
of the same unique character α ∈ X∗(T ) as on L(Bu). Since ϕ(B) is not abelian, T
acts on Bu non-trivially, so Φ(T,B) = {α}.

The matrix
[

0 1
1 0

]
∈ PGL2 normalizes ϕ(T ), so it is a representative of the non-

trivial element of the Weyl group W (ϕ(T ),PGL2,K) (recall that |W (ϕ(T ),PGL2,K)| =
2). Hence ϕ(B′) coincides with

{[
a 0
c b

]
, a, b ∈ K∗, c ∈ K

}
, and, similarly, B′

u
∼=

Ga,K . It is easy to see that ϕ(T ) acts on ϕ(B) and ϕ(B′) with two inverse characters;
hence the action of T on B′

u is given by −α.
Further, Bu ∩ B′

u is a T -invariant subgroup of Bu
∼= Ga,K . Since Bu ∩ B′

u 6= Bu

and the action of T is a non-trivial linear action, we must have Bu ∩ B′
u = {e}.

Consequently, B ∩B′ = T . By the same token, L(B) ∩ L(B′) = L(T ). Then

dim(L(B) + L(B′)) = dimB + dimB′
u = dimB + 1,

and since by Lemma 5.5 we have dimG = dimB + 1, we obtain

L(G) = L(B) + L(B′) = L(T )⊕ L(Bu)⊕ L(B′
u).

Then also Φ(T,G) = {α,−α}.
Now the only thing to prove is that Bu is the unique T -invariant connected subgroup

with the Lie algebra L(Bu) = gα. Let H be another such subgroup of G. Since
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dimH = 1, we have H ∼= Gm,K or H ∼= Ga,K . In the first case T has to centralize
H, since NG(H)◦ = CG(H)◦ by [1, Cor. 8.10], but T acts non-trivially on L(H).
Hence H ∼= Ga,K , in particular, H is unipotent. Then T nH is a connected solvable
subgroup of G containing T , and therefore T nH coincides with B or B′. Because of
the Lie algebra it coincides with B, and the result follows. �

3. Structure of reductive groups. From now on, let the group G be a reductive
algebraic group. We fix a maximal torus T of G, and set Φ = Φ(T,G), the set of
roots of G with respect to the conjugation action of T . We will denote by g the Lie
algebra L(G) of G, and by gα the subspace of g = L(G) corresponding to the root
α ∈ Φ(T,G).

Observe that the Weyl group W = W (T,G) acts on X∗(T ) via

w(χ)(t) = χ(wtw−1), w ∈ W, χ ∈ X∗(T ), t ∈ T.
Theorem 5.7. Let G be a reductive algebraic group. Let T be a fixed maximal torus
of G, and denote by Φ = Φ(T,G) the set of roots of G with respect to the conjugation
action of T on G. Then

(1) L(T ) coincides with the set of T -stable elements of g, and g = L(T )⊕
⊕
α∈Φ

gα.

(2) R(G) = C(G)◦ =
( ⋂
α∈Φ

Tα

)◦
, where Tα = (kerα)◦.

(3) Φ generates a subgroup of finite index in X∗(T/C(G)◦) ⊆ X∗(T ). If α, β ∈ Φ
are linearly dependent, then α = ±β.

(4) Gα = CG(Tα) is a reductive group of semi-simple rank 1, and L(Gα) = L(T )⊕
gα ⊕ g−α; consequently, dim gα = 1, and W (T,Gα) ⊆ W (T,G) consists of
two elements 1 and wα, where wα is a reflection on X∗(T ) ⊗ Q, satisfying
wα(α) = −α.

(5) For any α ∈ Φ, there is a unique connected T -invariant subgroup Uα of G such
that L(Uα) = gα. This subgroup is the unipotent part of a Borel subgroup of
Gα containing T ; consequently, Uα ∼= Ga,K and Gα = 〈T, Uα, U−α〉.

(6) For any B ∈ BT the set of roots Φ(B) = Φ(T,B) contains exactly one element
of any pair {α,−α}; hence, Φ = Φ(B)

∐
(−Φ(B)). Moreover, there exists

λ ∈ X∗(T ) such that Φ(B) = {α ∈ Φ | 〈α, λ〉 > 0}.
(7) For any λ ∈ X∗(T ) such that 〈α, λ〉 6= 0 for any α ∈ Φ, there exists a unique

Borel subgroup Bλ ∈ BT such that Φ(Bλ) = {α ∈ Φ | 〈α, λ〉 > 0}.
Proof. See [1, Th. 13.18]; essentially based on Theorem 5.6. �

Corollary 5.7.1. Let H be a closed connected T -invariant subgroup of G. Then

L(H) = L(T ∩H)⊕
⊕

α∈Φ(T,H)

gα,

H = 〈(T ∩H)◦; Uα, α ∈ Φ(T,H)〉 .
Proof. Since the representation of T in g is completely reducible, we have

L(H) = (L(T ) ∩ L(H))⊕
⊕

α∈Φ(T,H)

(L(H) ∩ gα).

Since all gα have dimension 1, the intersection L(H) ∩ gα equals gα or 0. By [1, 9.2,
Cor.], we also have L(T ∩H) = L(T ) ∩ L(H), hence the equality for the Lie algebra.
To prove the second equality, observe that if H = CH(T ), then L(H) = L(H ∩T ) and
hence H = (H ∩ T )◦, and the statement is clear. If H 6= CH(T ), by [1, Prop. 9.4] H
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is generated by all subgroups CH(Tα)
◦ = (H ∩Gα)

◦, α ∈ Φ(T,H). Hence it is enough
to prove the equality for H ⊆ Gα. In this case, if H is solvable, then α ∈ Φ(T,H)
implies T n H = T n Uα, since T n Uα and T n U−α are the only T -invariant Borel
subgroups of Gα. If H is not solvable, then it contains unipotent elements of two
distinct Borel subgroups, and since H is T -invariant, it contains the whole unipotent
radicals of these subgroups. This implies that T n H = Gα, and hence H contains
both Uα and U−α. �

Corollary 5.7.2. Let B be a Borel subgroup of G, and let U be its unipotent radical.

(1) L(U) =
⊕

α∈Φ(B)

gα.

(2) Denote L(U) by u. The map

H 7→ h = L(H)

is a lattice monomorphism from the lattice Λ of all T -invariant closed sub-
groups H of U to the lattice of all T -invariant Lie subalgebras h of u.

(3) For any subgroup H ∈ Λ we have

H = 〈Uα, α ∈ Φ(T,H)〉 = 〈Uα, gα ⊆ h〉 .
Moreover, H is connected, and directly spanned by Uα, α ∈ Φ(T,H), in the
sense that if α1, . . . , αn are all roots of Φ(T,H) in any order, the product
morphism

Uα1 × . . .× Uαn → H

is an isomorphism of varieties.
(4) If for some u ∈ U and H ∈ Λ we have uHu−1 ∈ Λ, then uHu−1 = H.

Proof. See [1, Prop. 14.4].
�

Our next goal is to show that Φ = Φ(T,G) is an abstract root system in the sense
of § 3. For any α ∈ Φ, let θα denote an isomorphism between Ga,K and Uα. We
introduce the action of T on Ga,K so that tθα(x)t

−1 = θα(α(t)x) for any t ∈ T and
x ∈ K = Ga,K(K).

Lemma 5.8 (Chevalley commutator formula). Let α, β ∈ Φ be such that α 6= ±β.
Then

[θα(x), θβ(y)] =
∏
r,s>0,

rα+sβ∈Φ

θrα+sβ(crα+sβx
rys)

for some constants crα+sβ ∈ K and for all x, y ∈ K.

Proof. For any α 6= ±β ∈ Φ, since they are linearly independent, we can find a
cocharacter λ ∈ X∗(T ) such that 〈γ, λ〉 6= 0 for any γ ∈ Φ, and both 〈α, λ〉 and 〈α, β〉
are positive. By Theorem 5.7, there is a Borel subgroup B = Bλ ∈ BT such that

Φ(T,B) = Φ(B) = {γ ∈ Φ | 〈γ, λ〉 > 0}.
Then α, β ∈ Φ(B). Let U be the unipotent radical of B. Then Φ(T,B) = Φ(T, U).
By Corollary 5.7.2, if α1, . . . , αn are all roots of Φ(T, U) = Φ(B), the product map

Uα1 × . . .× Uαn → U

is an isomorphism of varieties. Then [θα(x), θβ(y)] =
∏

1≤i≤n θαi
(Pi(x, y)) for some

polynomials Pi in two variables x, y. Further, for any t ∈ T we have t[θα(x), θβ(y)]t
−1 =
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[tθα(x)t
−1, tθβ(y)t

−1], hence αi(t)Pi(x, y) = Pi(α(t)x, β(t)y). This easily implies that
all Pi are monomials, and non-zero only when αi = rα + sβ. �

Let Ψ be any subset of Φ such that Ψ is closed under addition and Ψ ⊆ Φ(B) for
some Borel subgroup B ∈ BT . The subgroup

UΨ = 〈Uα, α ∈ Ψ〉

is a T -invariant closed subgroup of U . An easy induction on |Ψ| shows that UΨ is the
subgroup with Lie algebra

L(UΨ) =
⊕
α∈Ψ

gα,

and hence by Corollary 5.7.2 UΨ is directly spanned by Uα, α ∈ Ψ.

Lemma 5.9. Let α ∈ Φ, and let wα ∈ W = W (T,G) be the generator of the subgroup
W (T,Gα). Then for any β ∈ Φ we have

wα(β) = β − nβ,αα,

where nβ,α ∈ Z. In particular, nα,α = 2.

Proof. By Theorem 5.7 wα(α) = −α, hence the case α = ±β is clear. Suppose that
α 6= β. Consider the set

Ψ = {rα + sβ ∈ Φ | r, s ∈ Z, s > 0}.

It is, clearly, closed under addition, and we can find a Borel subgroupB ∈ BT such that
Ψ ⊆ Φ(B) as in the proof of Lemma 5.8. Further, for any γ ∈ Ψ we have iγ± jα ∈ Ψ
for any i, j > 0, hence Uα and U−α normalize UΨ by Lemma 5.8. Then the subgroup
Gα also does. Consider wα ∈ W as an element of NGα(T ). Then wαUβw

−1
α ⊆ UΨ. But

wαUβw
−1
α = Uwα(β), hence gwα(β) ⊆ L(UΨ) and wα(β) ∈ Ψ. Then wα(β) = rα + sβ,

r, s ∈ Z. The fact that wα has order 2 implies that s = 1. �

Theorem 5.10. Let V be the Q-vector space X∗(T/C(G)◦)⊗Z Q, identified canoni-
cally with a subspace of X∗(T )⊗Z Q. Then Φ = Φ(T,G) is a abstract root system in
V with Weyl group W = W (T,G).

Proof. By the very definition of Φ(T,G), it is finite and does not contain 0. By
Theorem 5.7 Φ(T,G) generates V = X∗(T/C(G)◦) ⊗ Q, and posesses the necessary
reflections wα. By Lemma 5.9 these reflections act with integral coefficients. Also by
Theorem 5.7 the elements ±αΦ(T,G) are the only elements linearly dependent with
α ∈ Φ(T,G). Hence Φ is a root system.

Let WΦ be the Weyl group of Φ as an abstract root system. Clearly, WΦ ⊆ W .
Recall that W acts simply transitively on the set of Borel subgroups B ∈ BT , hence
|W | = |BT |. On the other hand, by Theorem 5.7, for each Borel subgroup B ∈ BT
there is an element λ ∈ X∗(T ) such that Φ(B) = {α ∈ Φ | 〈α, λ〉 > 0}. Since
Φ = Φ(B)

∐
(−Φ(B)), this element λ is regular in the sense of Theorem 3.1, and

therefore Φ(B) contains a system of simple roots. Hence each B defines a system
of simple roots in Φ, and these systems are distinct, since the Lie algebras of Borel
subgroups are. The Weyl group WΦ acts simply transitively on the systems of simple
roots (Theorem 3.1), so |WΦ| ≥ |BT |. This means that WΦ = W . �
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4. The Bruhat decomposition. As above, we fix a maximal torus T of G and
set Φ = Φ(T,G). Let us fix also a Borel subgroup B ⊇ T . By Theorem 5.10 Φ
is an abstract root system, hence by Theorem 5.7 combined with Theorem 3.1 we
can choose a (unique) system of simple roots in Φ such that Φ(B) = Φ+, the set of
positive roots with respect to Π. Theorem 5.7 also implies the existence of a unique
Borel subgroup B− of G such that Φ(B−) = Φ− = −Φ(B), the set of negative roots.
We denote the unipotent radicals of B and B− by U and U− respectively.

Recall that an element w ∈ W is actually a coset of NG(T ) modulo CG(T ). We
allow ourselves to write w instead of its representative n ∈ NG(T ) in those formulas
that do not depend on the choice of such a representative.

We set

Uw = U ∩ wUw−1 and U ′
w = U ∩ wU−w−1.

By Corollary 5.7.2 these subgroups are generated by all subgroups Uα such that α is
in the set

Φ(Uw) = Φ+
w = {α ∈ Φ+ | w−1(α) ∈ Φ+} or Φ(U ′

w) = Φ′
w = {α ∈ Φ+ | w−1(α) ∈ Φ−}

respectively.

Lemma 5.11. If w,w′ ∈ W and Φ+
w = Φ+

w′, then w = w′.

Proof. See [2]. �

Theorem 5.12. (1) Bruhat decomposition of G. The group G is the disjoint
union of double cosets BwB, w ∈ W :

G =
∐
w∈W

BwB.

For any w ∈ W the morphism

U ′
w ×B → BwB
(x, y) 7→ xwy

is an isomorphism of varieties.
(2) Cellular decomposition of G/B. The variety G/B is the disjoint union of

the U-orbits Uwx0, w ∈ W :

G/B =
∐
w∈W

Uwx0,

where x0 ∈ G/B is the image of B under the projection G → G/B. For any w ∈ W
the morphism

U ′
w → Uwx0

u 7→ uwx0

is an isomorphism of varieties.

Proof. Observe that since B = T n U and W normalizes T , we have BwB = UwB
and Bwx0 = Uwx0. Hence (1) and (2) are essentially equivalent, and it’s enough to
prove that

1) if w,w′ ∈ W and Uwx0 = Uw′x0, then w = w′;
2) G = BWB;
3) the map of varieties U ′

w×B → BwB, defined in the theorem, is an isomorphism.
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Proof of 1). The equality Uwx0 = Uw′x0 means that there is an u ∈ U such that
w′x0 = uwx0. But this implies that

Uw′ = U ∩ w′Uw′−1 = U ∩ w′Bw′−1

= U ∩ uwBw−1u−1

= u(U ∩ wBw−1)u−1

= uUwu
−1.

Then uUwu
−1 = Uw′ is a T -invariant subgroup of U , hence Uw′ = Uw by Corol-

lary 5.7.2. This also implies Φ(Uw) = Φ(Uw′), and then w′ = w by Lemma 5.11.
Proof of 2). First we see that 2) holds if G has semi-simple rank 1. In this case

|W | = 2, and by 1) it’s enough to show that U has only 2 orbits on G/B. Clearly, U
acts non-trivially on the point x ∈ G/B corresponding to the opposite Borel subgroup
B−. Since G/B is a complete variety, if we identify U ∼= Ga,K with P1

K minus a point,
the orbit map U → Ux ⊆ G/B extends to a map P1

K → G/B by [1, AG.18.5]. By
Lemma 5.5, we have G/B ∼= P1

K ; since the image of the above map should be complete
and one-dimensional, it is equal to G/B. Thus G/B is a union of Ux and the unique
point, which is nothing but x0.

For a general G, this implies that Gαx = (Uαx) ∪ (Uαwαx) for any α ∈ Φ, x ∈ BT .
Indeed, if we consider the Borel subgroup Bx ∩ Gα of Gα, with Bx being the Borel
subgroup of G, corresponding to x, it is either the subgroup with the unipotent radical
Uα, and then it is just the above statement, or the subgroup with the unipotent radical
U−α = wαUαwα. In the latter case the above statement gives Gαx = (wαUαwαx) ∪
(wαUαx), which implies Gαx = (Uαwαx) ∪ (Uαx).

Further, we note that for any α ∈ Π the set of roots Ψ = Φ+ \ {α} is closed; the
corresponding group UΨ is normalized by T , and by Uα, U−α, since for any γ ∈ Ψ the
combination rα+ sγ, s > 0, if it is a root, is a positive root, different from α. Hence
UΨ is normalized by Gα by Lemma 5.8. We have B = UT = UαUΨT , which implies
that

GαBx = GαUαUΨTx = GαUΨTx

= GαUΨx = UΨGαx

= UΨ(Uαwαx) ∪ UΨ(Uαx)

= Uwαx ∪ Ux

for any x ∈ BT . Then we have

GαBwB = (UwαwB) ∪ (UwB) ⊆ BWB.

But the subgroups Gα, α ∈ Π, generate G, hence G = G · BWB ⊆ BWB, and 2) is
proved.

Proof of 3). We prove that the map

f : U ′
w ×B → BwB
(x, y) 7→ xwy

is an isomorphism. Since Uw = U ∩ wUw−1, we have Uww ⊆ wU . Analogously,
U ′
ww ⊆ wU−. Then

BwB = UwB = (U ′
wUw)wB = U ′

wwB,

so f is surjective. And f is injective, since U ′
ww ⊆ wU−∩Uw implies U ′

ww∩B = {e}.
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Now if f is separable, it is an isomorphism by [1, Th. AG.18.2]. On the other hand,
by [1, Th. AG.17.3] f is separable, if

(df)(e,e) : T(e,e)(U
′
w ×B) → Tw(BwB)

is surjective. But since dim(BwB) ≤ dim(U ′
w × B), the latter is equivalent to the

injectivity of (df)(e,e). So let us prove that (df)(e,e) is injective. We have T(e,e)(U
′
w ×

B) = TeU
′
w ⊕ TeB and

(df)(e,e)(X,Y ) = d(f ◦ i1)eX + d(f ◦ i2)eY for any X ∈ TeU ′
w, Y ∈ TeB,

where i1 and i2 denote the natural embeddings

i1 : U ′
w → U ′

w ×B
x 7→ (x, e)

and
i2 : B → U ′

w ×B
x 7→ (e, x)

.

But the maps f ◦ i1 and f ◦ i2 are just the right and the left multiplication by w inside
G, hence (df)(e,e) is the sum of two isomorphisms

d(f ◦ i1)e : TeU
′
w → Tw(U ′

ww) and d(f ◦ i2)e : TeB → Tw(wB).

Since Φ(T, U ′
w) = Φ′

w = {α ∈ Φ+ | w−1(α) ∈ Φ−} does not intersect Φ(T,wBw−1) =
w(Φ+), we have Tw(U ′

ww) ∩ Tw(wB) = 0. Hence ker(df)(e,e) = 0. �

5. Parabolic subgroups. We keep the notation of the previous subsection. In par-
ticular, T is a fixed maximal torus, and B ⊆ T a fixed Borel subgroup of the reductive
group G.

A parabolic subgroup P of G is called standard, if it contains B. Since all Borel
subgroups of G are conjugate, any parabolic subgroup is conjugate to a standard
parabolic subgroup. This standard parabolic subgroup is moreover unique, since if
parabolic subgroups P and Q = gPg−1 both contain B, then B = p(gBg−1)p−1 for
some p ∈ P , since all Borel subgroups of P are conjugate by Theorem 5.1. By the
same theorem this means pg ∈ B, and hence P = Q.

For any subset I ⊆ Π we will denote by WI the subgroup of W = W (Φ), generated
by all wα, α ∈ I. This subgroup is the Weyl group of the root subsystem ∆I of Φ,
generated by I (see § 3).

Theorem 5.13. Let G be a reductive algebraic group, T a maximal torus of G, B a
Borel subgroup containing T .

(1) The map I 7→ BWIB is a bijection of the set of all subsets of Π onto the set
of all standard parabolic subgroups of G.

(2) Let P , Q be two standard parabolic subgoups of G corresponding to the subsets
I, J ⊆ Π. Then

G =
∐
w∈W̃

QwP

for any set W̃ of representatives of double cosets WJ \W/WI .

Lemma 5.14. For any wα, α ∈ Π, and any w ∈ W we have

(1) wαBwB ⊆ BwαwB ∪BwB and BwBwα ⊆ BwwαB ∪BwB;
(2) if l(wαw) = l(w) + 1, then wαBwB ⊆ BwαwB;
(3) if l(wαw) = l(w)− 1, then wαBwB ∩BwB 6= ∅.
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Proof. The first inclusion in (1) follows from the equality GαBwB = (UwαwB) ∪
(UwB) appearing in the proof of Theorem 5.12. The second one follows from the first
if we invert both sides.

To prove (2), we use the induction on l(w). Considering any reduced decomposition
of w, we can write w = w′wβ, where w′ ∈ W , β ∈ Π and l(w′) = l(w) − 1. Suppose
that wαBwB 6⊆ BwαwB; then wαBwB ∩ BwB 6= ∅, and hence wαBw ∩ BwB 6= ∅.
Then also wαBwwβ ∩BwBwβ 6= ∅. But

l(wαw
′) ≥ l(wαw

′wβ)− 1 = l(wαw)− 1 ≥ l(w)− 1 = l(w′),

so by the hypothesis wαBwwβB = wαBw
′B ⊆ Bwαw

′B, which implies BwBwβ ∩
Bwαw

′B 6= ∅. By (1) we have

wBwβB ⊆ BwwβB ∪BwB = Bw′B ∪BwB,

hence Bwαw
′B intersects one of Bw′B, BwB and hence coincides with it by Theo-

rem 5.12. But wαw
′ = w′ is impossible, and wαw

′ = w is impossible as well, because
l(w′) < l(w) ≤ l(wαw). This proves the claim.

It leaves to prove (3). Observe that wαBwα 6⊆ B, since wαUαwα = U−α 6⊆ B. Since
by (1) we have wαBwαB ⊆ B∪BwαB, this implies wαBwα∩BwαB 6= ∅. Muptiplying
this by wαw, we get wαBw ∩ BwαBwαw 6= ∅. If l(w2

αw) = l(w) ≥ l(wαw), by (2)
BwαBwαw ⊆ BwB. Hence wαBw ∩BwB 6= ∅. �

Proof of Theorem 5.13. (1) Lemma 5.14 easily implies that each BWIB is a subgroup
of G. It is a closed subgroup, since it is generated by B and by Gα, α ∈ I, which
are all irreducible subvarieties of G containing 1, hence generate a closed subgroup
by [1, Prop. 2.2]. So each BWIB is a standard parabolic subgroup of G. Conversely,
let P be any standard parabolic subgroup of G. Set WP = P ∩ W . Since B ⊆
P , by Theorem 5.12 we have P =

∐
w∈WP

BwB. Set I = {α ∈ Π | wα ∈ WP}.

Obviously, BWIB ⊆ P . To prove the inverse inclusion, consider any w ∈ WP . Let w =
wα1 . . . wαr be a reduced decomposition of w with respect to Π. Since l(wα1w) < l(w),
by Lemma 5.14 we have wα1BwB ∩ BwB 6= ∅, which implies wα1 ∈ P . Proceeding
by induction, we see that all wαi

, 1 ≤ i ≤ r, are in P , and hence in WI . Then
w ∈ BWIB, and also P =

∐
w∈WP

BwB ⊆ BWIB.

(2) By (1) we know that Q = BWJB and P = BWIB. Since WJW̃WI = W ,
the Bruhat decomposition for G implies that G =

⋃
w∈W̃

QwP . Suppose that QwP =

Qw′P for some w,w′ ∈ W̃ , that is, w′ ∈ BWJBwBWIB. By Lemma 5.14 we have
WJBwBWI ⊆ BWJwWIB, hence w′ ∈ BWJwWIB. Then the Bruhat decomposition
implies that w′ ∈ WJwWI . �

We say that a parabolic subgroup P of G is a parabolic subgroup of type I, if P is
conjugate to the standard parabolic subgroup BWIB.

For a subset I ⊆ Π, we set

TI =
(⋂
α∈I

kerα
)◦
.

Theorem 5.15. Let PI = BWIB be a standard parabolic subgroup of a reductive
group G, corresponding to the subset I ⊆ Π. Set ΣI = Φ+ \∆I . Then

(1) CG(TI) is a reductive algebraic group, Φ(T,CG(TI)) = ∆I .
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(2) PI = CG(TI) n Ru(PI), and the unipotent radical Ru(PI) of PI is equal to
UΣI

= 〈Uα, α ∈ ΣI〉 .
(3) We have TI = C(CG(TI))

◦ = CG(TI) ∩ R(PI), it is a maximal torus and a
Cartan subgroup of the radical R(PI).

Proof. Denote CG(TI) by H. It is is a closed connected subgroup of G by [1, Cor.
11.12], and it contais T . Therefore H = 〈T ; Uα, α ∈ Φ(T,H)〉 by Corollary 5.7.1. If
for some α ∈ Φ the group Uα centralizes TI , then U−α also does. This means that H
is in fact generated by Gα, α ∈ Φ(T,H). Now if Ru(H) is non-trivial, being a closed
connected T -invariant subgroup of G, it contains some Uα, α ∈ Φ(T,H). But then
Uα ⊆ (Ru(H)∩Gα)

◦ ⊆ Ru(Gα), and Ru(Gα) = {e} by Theorem 5.7. This proves that
H is reductive.

Clearly, all Uα, α ∈ ∆I , centralize TI . Hence gα ⊆ L(H), α ∈ ∆I , which implies
∆I ⊆ Φ(T,H). Conversely, if for some β ∈ Φ the group Uβ centralizes TI , this means
that TI ⊆ ker β. But if β 6∈ ∆I , the roots in I and β are linearly independent. This
means that there exists λ ∈ X∗(T ) such that 〈α, λ〉 = 0 for all α ∈ I and 〈β, λ〉 6= 0.
Then λ(Gm) ⊆ T is contained in TI , but not in ker β. Hence Φ(H) = ∆I , and (1) is
proved.

Further, by the definition of ΣI and by Lemma 5.8 the group H normalizes UΣI
.

Then UΣI
∩ H is a normal unipotent subgroup of H, and hence UΣI

∩ H is finite,
because H is reductive. But then UΣI

∩H is central in H, since H is connected and
acts on UΣI

∩ H. But C(H) is contained in all Borel subgroups of H, and hence in
T , which means that UΣI

∩H consists of semi-simple elements. Since it is unipotent,
we have UΣI

∩H = {e}. Since the Lie algebras L(Uσ) and L(H) do not intersect as
well, the product X = H · UΣI

inside G is the semi-direct product H n UΣI
. Clearly,

Ru(X) = UΣI
. Since B ⊆ X, it is a standard parabolic subgroup. Since both H and

UΣI
are contained in PI , we have PI = X. This proves (2).

By Theorem 5.7 applied to the reductive group H, we have TI = C(H)◦ = R(H),
since Φ(T,H) = ∆I . Moreover, TInUΣI

is normal in PI and solvable, hence contained
in R(PI). Then TI ⊆ H∩R(PI). Since TI is the radical of H, we have TI = H∩R(PI).
This also shows that R(PI) = TInUΣI

, and so TI is a maximal torus of R(PI). Finally,
TI coincides with its centralizer in R(PI), since CG(TI) = H by the definition of H.
This finishes the proof of (3). �

§ 6. Split and non-split reductive algebraic groups

Let G be a reductive algebraicK-group defined over k. We are interested in whether
the subgroups of G considered in § 5, such as maximal tori, Borel subgroups, parabolic
subgroups etc., are in fact k-defined subgroups, and under what conditions. Recall
that whenever we say that a subvariety resp. a subgroup of a k-defined group G is
defined over k, we mean, on one hand, that it is a k-defined variety resp. a k-defined
group, and on the other hand, that its embedding into G is defined over k.

We will use the following fundamental result: any k-defined algebraic group G
contains a maximal torus T defined over k, and the corresponding Cartan subgroup
CG(T ) is also k-defined [6, Exp. XIV, Th. 1.1].

1. Structure of k-defined reductive groups. From now on, let G be a reductive
algebraic K-group defined over k. Recall that a torus T defined over k is called k-split,
if kT is isomorphic to (Gm,k)

n for some n ≥ 0. The group G is called isotropic over k,
if it contains a non-trivial k-split torus, and anisotropic over k otherwise. Further, G
is called k-split, if it contains a k-split maximal torus.
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By [1, Prop. 8.11] any k-defined torus T splits over a finite separable extension of
k; in particular, any algebraic group defined over k is ks-split.

Theorem 6.1. Let G be k-split reductive group with a k-split maximal torus T . Then
the subgroups Uα, α ∈ Φ = Φ(T,G), are defined over k, and the isomorphisms θα :
Ga,K → Uα, α ∈ Φ, of § 5, subsection 3, can be chosen so that they are extensions to
K of k-isomorphisms Ga,k → k(Uα).

Proof. [1, Th. 18.7] �

Corollary 6.1.1. Let G be k-split reductive group with a k-split maximal torus T .
Then the Weyl group W = W (T,G) is defined over k in the sense that every coset in
NG(T )/CG(T ) contains an element of G(k).

Proof. For any α ∈ Φ, the subgroup Gα = 〈T, Uα, U−α〉, α ∈ Φ, is defined over k
by Theorem 6.1. By Theorem 5.7 it is a reductive algebraic group of semi-simple
rank 1. Set Bα = T n Uα and B−α = T n U−α. These are Borel subgroups of Gα,
and they are as well defined over k. By [1, Prop. 15.2] the group Bα, acting by
translations on the complete k-defined variety Gα/B−α ∼= P1

K , has a fixed point in
(Gα/B−α) (k). By [1, Cor. 15.7] the restriction Gα(k) → (Gα/B−α) (k) of the natural
projection π : Gα → Gα/B−α is surjective, hence there is an element g ∈ Gα(k) such
that BαgB−α = gB−α. Then g−1Bαg = B−α. Let n ∈ NGα(T ) be any representative
of the class wα ∈ W (recall that W (T,Gα) ⊆ W ). Then nBαn

−1 = B−α as well, hence
gn ∈ Bα∩B−α = T , because Bα and B−α are self-normalizable by Theorem 5.1. This
shows that for any α ∈ Φ the coset in NG(T )/CG(T ) corresponding to wα contains
an element of G(k). Since W is generated by wα, α ∈ Φ, this means that every coset
contains an element of G(k). �

Corollary 6.1.2. Let G be a k-split reductive group with a maximal k-defined torus
T , B a Borel subgroup of G containing T , U the unipotent radical of B. For any T -
invariant closed subgroup H of U , if α1, . . . , αn are all roots of Φ(T,H) in any order,
then the product morphism

k(Uα1)× . . .× k(Uαn) → k(H)

is an isomorphism of k-varieties. Consequently, kH is isomorphic to An
k as a variety.

Proof. Follows from Corollary 5.7.2 and the fact that an isomorphism defined over k
is a k-isomorphism ([10, Prop. 2.7.1]). �

We see that if G is k-split, all T -invariant connected subgroups of G are k-defined.
In the general case the criterion is given by the following lemma.

Lemma 6.2. Let G be a k-defined reductive group, and let T be a maximal torus of
G defined over k. A closed connected T -invariant subgroup H of G is defined over k
if and only if both (H ∩ T )◦(ks) and Φ(T,H) are Γ = Gal (ks/k)-invariant.

Proof. The direct implication is clear. To prove the inverse, we observe that the torus
T is ks-split ([1, Prop. 8.11]), and hence the corresponding subgroups Uα, α ∈ Φ(T,G),
are defined over ks by Theorem 6.1. On the other hand, (T ∩H)◦ is defined over ks,
since any closed subgroup of a split torus is defined over the field where it splits. hence
the groups Uα(ks), α ∈ Φ(T,H), are permuted by Γ, and (H ∩ T )◦(ks) is Γ-invariant.
Then the closure of 〈(H ∩ T )◦(ks); Uα(ks), α ∈ Φ(T,H)〉 is defined over k by [1, Th.
AG.14.4]. Since for any K-variety V the set V (ks) is dense in V , this closure coincides
with H by Corollary 5.7.1. �
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Theorem 6.3. Let G be a k-defined reductive algebraic group.

(1) If S is a k-split subtorus of G, then there exists a k-defined parabolic subgroup
P of G such that P = CG(S) nRu(P ).

(2) Conversely, let P be a proper k-defined parabolic subgroup of G. Then R(P ),
Ru(P ) are defined over k. If S0 is a maximal k-defined torus of R(P ) and S
is a maximal k-split subtorus of R(P ) contained in S0, then CG(S0) = CG(S)
is also k-defined and P ∼= CG(S) nRu(P ) is a k-defined isomorphism.

(3) In the above setting, P is a minimal k-defined parabolic subgroup of G if and
only if S is a maximal k-split torus of G.

(4) All minimal k-defined parabolic subgroups of G are conjugate under G(k).

Proof. See [1, Prop. 20.4–20.9]. �

Corollary 6.3.1. If P and P ′ are two k-defined parabolic subgroups of G conjugate
under G(K), then they are conjugate under G(k).

Proof. Let Q and Q′ be two minimal k-defined parabolic subgroups contained in P
and P ′ respectively. By Theorem 6.3 we have gQg−1 = Q′ for an element g ∈ G(k).
Then gPg−1 ∩ P ′ ⊇ Q′, hence gPg−1 ∩ P ′ contains a Borel subgroup (not necessarily
defined over k) of G. Since P ′ and P are conjugate, this means that gPg−1 = P ′. �

2. The ∗-action of the Galois group. From now on, let S be a maximal (k-defined
and) k-split torus of a k-defined reductive group G, and let T be a maximal k-defined
torus of G containing S. The group G is called quasi-split over k, if CG(S) = T . By
Theorem 6.3 this is equivalent to the existence of a k-defined Borel subgroup of G.

Let us define what is called the ∗-action of Γ = Gal (ks/k). Observe that Γ acts by
permutations on the set of all conjugacy classes of parabolic subgroups of G. Clearly,
it also acts on its subset consisting of conjugacy classes of maximal proper parabolic
subgroups. By Theorem 5.15 these classes are in one-to-one correspondence with
the elements of a fixed system of simple roots Π of the root system Φ of G. The
corresponding action of Γ on Π is called the ∗-action. There is also an equivalent way
to define it, based on the natural action of Γ on the group of characters X∗(T ), which
contains Φ. For any σ ∈ Γ, σ(Π) is a system of simple roots for Φ; then by Theorem 3.1
there is a unique element wσ of the Weyl group of G such that wσ(σ(Π)) = Π. We
set σ∗ = wσ ◦ σ. The action of Γ on Π via σ∗, σ ∈ Γ, is the same as the one defined
above.

We say that the group G over k is of inner (resp. outer) type, if the ∗-action on Π
is trivial (resp. non-trivial).

All parabolic subgroups of G conjugate to the standard parabolic subgroup P of
type J ⊆ Π, that is, all parabolic subgroups of type J , are in one-to-one correspon-
dence with all (closed) points of the quotient variety G/P (Theorem 5.1). Recall
(Theorem 4.7) that we construct G/P as a G-orbit for an action of G on some pro-
jective space PnK . Even if P is not k-defined, we can still require that this action is
k-defined, i.e. comes from an action of kG on Pnk (cf. the proof of Theorem 4.2). We
call the variety G/P endowed with such an embedding the variety of parabolic sub-
groups of G of type J , and say that it is defined over k, if it is a k-defined subvariety
of PnK with respect to k(PnK) = Pnk .

Lemma 6.4. Let P be a parabolic subgroup of G of type J ⊆ Π. The projective variety
G/P of parabolic subgroups of type J is defined over k if and only if J is stable under
the ∗-action. If it holds, the variety k(G/P ) is a smooth projective k-variety.
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Proof. Since G is ks-split, by Lemma 6.2 any parabolic subgroup P is defined over
ks, and hence G/P also is. Then G/P is defined over k, that is, stable under the
action of Γ on PnK , if and only if Γ preserves the conjugacy class of P . But this means
precisely that the subset J ⊆ Π, corresponding to this conjugacy class, is stable under
the ∗-action. Further, it is clear that k(G/P ) is projective, since it is the image of
G/P under the natural projection PnK → Pnk . The smoothness of k(G/P ) follows from
the smoothness of G/P by [12, Prop. 17.7.1]. �

Lemma 6.5. Suppose that the minimal k-defined parabolic subgroups of G are of type
I0 ⊆ Π. Then G contains a k-defined parabolic subgroup of type I if and only if I0 ⊆ I
and I is stable under the ∗-action.

Proof. If P is a k-defined parabolic subgroup of type I, then P contains a minimal
k-defined parabolic subgroup; assuming it to be standard, we see that I0 ⊆ I by
Theorem 5.13. The variety G/P is defined over k by Theorem 4.7, hence I is stable
under the ∗-action by Lemma 6.4.

To prove the converse, let P0 be a standard minimal k-defined parabolic subgroup
of G, containing the k-defined torus T , and let P be a standard parabolic subgroup
of type I, containing P0. Consider σ ∈ Γ. We have defined an element wσ ∈ W =
W (T,G) such that σ∗ = wσ ◦ σ. Since P0 is k-defined, by Lemma 6.2 the set of
roots Φ(T, P0) is invariant under σ−1. Further, recall that σ∗(Π) = Π, and I0 is stable
under σ∗. Then the set Φ(T, P0), being the union of Φ+ and of the root subsystem ∆I0

generated by I0, is also σ∗-stable. Hence Φ(T, P0) is invariant under wσ = σ∗ ◦ σ−1.
Since T is also invariant under the action of wσ, this means that wσ normalizes P0.
Since P0 = NG(P0), we have wσ ∈ P0 ⊆ P , and hence Φ(T, P ) is invariant under
wσ. But Φ(T, P ) is also σ∗-invariant, hence it is invariant under σ = w−1

σ ◦ σ∗. Thus
we have proved that Φ(T, P ) is invariant under all σ ∈ Γ. Since P contains T , it is
therefore k-defined by Lemma 6.2. �

The data consisting of the ∗-action of Γ on the system of simple roots Π, and of the
type I0 ⊆ Π of minimal k-defined parabolic subgroups of G, is called the Tits index
of G (see [20]).

Lemma 6.6. If G is a quasi-split semi-simple algebraic group defined over k, and the
∗-action on Π is trivial, then G is a k-split algebraic group.

Proof. We need to prove that G contains a k-split maximal torus. Clearly, we can
assume that the standard Borel subgroup B is defined over k. Now let α ∈ Π be
a simple root, and let P be the standard parabolic subgroup of type {α} ⊆ Π. By
Lemma 6.5 combined with the fact that all minimal k-defined parabolic subgroups are
conjugate over k, the subgroup P is defined over k. By Theorem 5.15 the intersection
Tα = T ∩R(P ) is a maximal torus of R(P ), and Gα = CG(Tα) is a reductive algebraic
group with the root system Φ(T,Gα) = {α,−α}. By Lemma 6.2 the intersection
T ∩R(P ) is a k-defined torus of R(P ), hence by Theorem 6.3 the group Gα is defined
over k. Applying Lemma 6.2 again, we see that Φ(T,Gα) = {α,−α} is Γ-invariant. On
the other hand, since B is defined over k, the set Φ(T,B) is Γ-invariant, and therefore
{α} = Φ(T,B)∩{α,−α} is Γ-invariant as well. This shows that all characters α ∈ Π
of the torus T are defined over k. Since G is semi-simple, by Theorem 5.10 the set Π
spans the Q-vector space X∗(T ) ⊗Z Q. Hence all characters of T are defined over k,
and T is a k-split torus. �
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§ 7. Motivic decompositions of projective homogeneous varieties

Let X be a k-variety, and let G be a reductive algebraic K-group defined over
k. We say that X is a projective homogeneous k-variety of G, if X is isomorphic to

k(G/P ), where P is a parabolic subgroup of G, and G/P is a k-defined variety of
parabolic subgroups in the sense of § 6. In this case X is indeed a smooth projective
k-variety by Lemma 6.4, and homogeneous with respect to the action of kG. In the
present chapter we study the motives (see the definition below) of such varieties. Our
main tool is Theorem 7.1, originating from Karpenko [15], which says that a suitable
filtration of X by closed subvarieties will provide an explicit additive decomposition
of the motive M(X). The rest of the chapter is devoted to construction of such
filtrations in different cases. The most general result is given in Theorem 7.7, which
is [4, Th. 6.3] of Chernousov and Merkurjev.

1. The category of effective Chow motives. Let Var(k) be the category of
smooth projective varieties over k. For any object X of Var(k), we denote by CH p(X)
the p-th Chow group of X, that is, the group of cycles of dimension p modulo rational
equivalence [7, 8].

The category Corr(k) of correspondences over k is the category whose objects are
the same as the objects of Var(k), and the morphisms, called correspondences, are
given by

Hom Corr(k)(X, Y ) =
n⊕
l=1

CH dimXl
(Xl × Y ),

where X1, . . . , Xn are the irreducible components of X. The composition β ◦α of two
correspondences α ∈ Hom Corr(k)(X, Y ) and β ∈ Hom Corr(k)(Y, Z) is defined as

β ◦ α = (prX×Z)∗
(
pr∗X×Y (α) · pr∗Y×Z(β)

)
,

where prX×Z , prY×Z , prX×Y denote the projections of X×Y ×Z to the corresponding
factors, upper and lower stars indicate the pull-backs and push-forwards [8, 1.4, 1.7]
respectively, and · is the product in the Chow group [8, Ch. 8]. The category Corr(k)
is an additive category with the abelian group structure on Hom (X, Y ) given by the
addition of cycles, and the coproduct of objects being the usual coproduct of varieties.

Identifying a morphism f : X → Y of schemes with the correspondence [Γf ] ∈
Hom Corr(k)(X, Y ), the class of the graph of f , we obtain a functor

Var(k) → Corr(k)

(see [15, Prop. 1.4]).
The pseudo-abelian envelope of Corr(k) is called the category of effective Chow

motives and denoted by Choweff (k). The objects of Choweff (k), called motives, are
pairs (X, p), where X is an object of Var(k) and p ∈ Hom Corr(k)(X,X) is a projector,
that is, satisfies p◦ p = p. The morphisms between two objects (X, p) and (X ′, p′) are
the compositions p′ ◦ f ◦ p, where f ∈ Hom Corr(k)(X,X

′). The category Corr(k) is

embedded into Choweff (k) in a natural way. The composition of functors

M : Var(k) → Corr(k) → Choweff (k)

takes a variety X to the pair M(X) = (X, [∆X ]), where ∆X is the image of the
diagonal embedding X → X ×Spec k X, i.e. the graph of idX .

The category Choweff (k) inherits the additive structure of Corr(k). Moreover, it
is a symmetric tensor additive category with respect to the tensor product defined by
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the fiber product of varieties

(X, p)⊗ (Y, q) = (X ×Spec k Y, p× q).

Since X ×Spec k Spec k ∼= X, the motive M(Spec k) is a neutral element for tensor
multiplication. We will denote it by 1.

Let x be a k-point of P1
k. The motive (P1

k, p), where p = [P1
k × x] ∈ CH 1(P1

k × P1
k),

actually does not depend on the choice of x. It is called the Tate motive and denoted
by L. We have M(P1

k)
∼= L⊕ 1.

Let Ln denote the n-th tensor power of L. For a motive M ∈ Choweff (k) we set
M(n) = M ⊗ Ln. These objects are called the twists of M . For any objects X,Y of
Var(k) and for any r, s ≥ 0 we have

Hom Choweff (k)(M(X)(r),M(Y )(s)) =
n⊕
i=1

CH dimXi+r−s(Xi × Y ),

where X1, . . . , Xn are the irreducible components of X.

Theorem 7.1. Let X be a smooth projective variety over k. Suppose there is a
filtration of X by closed subvarieties

∅ = X−1 ⊆ X0 ⊆ . . . ⊆ Xn = X

together with flat morphisms fi : Xi \ Xi−1 → Yi of constant relative dimension ai
for every i = 0, 2, . . . , n, where Yi are smooth projective varieties over k. Suppose in
addition that the fiber of every fi over any (not necessarily closed) point y ∈ Yi is
isomorphic to Aai

κ(y). Then there is an isomorphism:

M(X) ∼=
n⊕
i=1

M(Yi)(ai).

This theorem was originally proved by Karpenko [15, Th. 6.5, Cor. 6.11] for the
case when the maps fi : Xi \ Xi−1 → Yi are vector bundle morphisms, using the
results of Rost [19]. Later in [3, Th. 7.2] Chernousov, Gille and Merkurjev noticed
that the proof actually applies to flat maps with fibers isomorphic to affine spaces,
and the current version of the book by Elman, Merkurjev and Karpenko [7, Cor. 66.4]
contains this theorem in the above form.

Proof of Theorem 7.1 (a sketch). Let Z = Xn−1 ⊆ X be a closed subvariety of X and
U = X \Z be the corresponding open subscheme. There is a classical exact sequence
of Chow groups [8, Prop. 1.8]

CH (Z) → CH (X) → CH (U) → 0.

It can be extended to the left by means of the “higher Chow groups” A∗(−, K∗) [7]
(see also [19]). More precisely, for any p ≥ 0 we have a long exact sequence [7, 52.D]

. . .→ Ap+1(Z,K−p) → Ap+1(X,K−p) → Ap+1(U,K−p) →
→ CH p(Z) → CH p(X) → CH p(U) → 0,

with the identification CH p(−) = Ap(−, K−p). If U → Y = Yn is a flat morphism such
that its fiber at any point z ∈ Y is isomorphic to Ad

κ(z), the homotopy invariance [7,

Th. 52.11] implies that each pull-back homomorphism Ai(Y,K−j) → Ai+d(U,K−d−j)
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is an isomorphism, in particular, CH p(Y ) ∼= CH p+d(U). On the other hand, it ap-
pears that Ai(Y,K−j) → Ai+d(U,K−d−j) factors through the map Ai+d(X,K−d−j) →
Ai+d(U,K−d−j), and therefore the latter is split surjective. Hence we get

CH p(X) ∼= CH p(Z)⊕ CH p(U) ∼= CH p(Z)⊕ CH p−d(Y ).

Since for any smooth projective variety T the set T × Z, T × X, T × U , T × Y
satisfies the same conditions as Z, X, U , Y , we have the equality CH p(T × X) ∼=
CH p(T × Z)⊕ CH p−d(T × Y ) for any T .

Recall that Z = Xn−1. Proceeding by induction, we obtain an isomorphism
CH p(T × X) ∼=

⊕n
i=0 CH p−di

(T × Yi), since X−1 = ∅. If we substitute p = dimT ,
this gives an isomorphism

Hom (M(T ),M(X)) ∼=
n⊕
i=0

Hom (M(T ),M(Yi)(di)).

Then the Yoneda lemma implies that M(X) ∼=
⊕n

i=0M(Yi)(di). �

2. Motivic decomposition in the split case. Let G be a k-split reductive alge-
braic group, T a k-split maximal torus of G, Φ = Φ(T,G), W = W (T,G) = WΦ, Π a
system of simple roots for Φ, and B a Borel subgroup of G corresponding to Π.

By Theorem 6.1 all subgroups Uα, α ∈ Φ, are defined over k. Hence also all standard
parabolic subgroups

PI = BWIB = 〈T ; Uα, α ∈ ∆I ∪ ΣI〉 , I ⊆ Π,

are defined over k, and the projective varieties G/PI are as well. We will show that
the Bruhat decomposition of G implies that all k(G/PI), I ⊆ Π, are in fact cellular
k-varieties with cells of the form An

k , n ≥ 0. This is the simplest possible case of
Theorem 7.1, and we obtain very simple motivic decompositions of k(G/PI).

Fix I ⊆ Π and let P = PI . By Lemma 3.4 the set W I = W ∅,I of the elements
of minimal length in cosets modulo WI is a set of representatives for {e}\W/WI =
W/WI . Hence by Theorem 5.13 we have

G =
∐
w∈W I

BwP.

Let π : G→ G/P be the canonical projection. For any w ∈ W I , we set

Xw = π(BwP ) = BwP/P.

Lemma 7.2. Let G be a k-split reductive algebraic group. Then

(1) G/P =
∐

w∈W I

Xw.

(2) For any w ∈ W I , Xw is a k-defined variety, and k(Xw) ∼= Al(w)
k . The closure

of Xw in G/P is contained in Xw
∐ ∐
w′∈W I ,

l(w′)<l(w)

Xw′.

(3) Let w1, . . . , wn be the list of all elements of W I ordered so that their length

increases. Then Vi =
i∐

k=0

Xwk
, 0 ≤ i ≤ n, are closed subvarieties of G/P

defined over k.
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Proof. The claim of (1) is clear, and (3) follows from (1) and (2). Thus we need to
prove (2). Since P is k-defined, the morphism π is also k-defined. By Corollary 6.1.1,
the element w ∈ W I has a representative in NG(T ) ∩ G(k). Then Xw = π(BwP ) is
an orbit of the k-defined point wP ∈ G/P with respect to the action of B on G/P
by left translations. By the closed orbit lemma Xw has a structure of a variety, and

since B is k-defined, Xw is also k-defined. To prove that k(Xw) ∼= Al(w)
k , we recall

Theorem 5.12. It states that in the particular case P = B we have Xw
∼= U ′

w, where
U ′
w is the closed T -invariant subgroup of U = Bu, corresponding to the set of roots

Φ′
w. This followed from the fact (see part 3) of the proof of Theorem 5.12) that the

morphism
f : U ′

w ×B → BwB
(x, y) 7→ xwy

is an isomorphism. It is easy to see that the proof of this statement carries over to
the morphism

f : U ′
w × P → BwP
(x, y) 7→ xwy,

with the only difference that the final equality Tw(U ′
ww) ∩ Tw(wP ) = 0 now follows

from the property w(∆−
I ) ⊆ Φ− (Lemma 3.5) of the element w ∈ W ∅,I . It is clear,

moreover, that f is defined over k, and hence provides an isomorphism of k-varieties

k(Xw) ∼= k(U
′
w). By Corollary 6.1.2 the variety k(U

′
w) is isomorphic to Al(w)

k , since
|Φ(T, U ′

w)| = |Φ′
w| = l(w) by Lemma 3.3. We finish the proof of (2) observing that by

the closed orbit lemma the closure of the B-orbit Xw is a union of Xw and of some
orbits of lower dimension, that is, of some varieties Xw′ with l(w′) < l(w). �

We can now deduce the theorem of Köck [17, Th. 2.1].

Theorem 7.3. Let G be a k-split reductive algebraic group, and let P = PI , I ⊆ Π,
be a parabolic subgroup of G. There is an isomorphism

M(k(G/P )) ∼=
⊕
w∈W I

Ll(w).

Proof. The filtration X0 ⊆ X1 ⊆ . . . ⊆ Xn, where Xi = k(Vi), 0 ≤ i ≤ n, constructed
in Lemma 7.2, satisfies all conditions of Theorem 7.1, if we take for fi : Xi → Yi
the canonical morphisms Xi → Spec k. Since M(Spec k)(l(w)) = Ll(w), the result
follows. �

3. Motivic decomposition in the non-split case. The results of this subsection
are taken from Chernousov, Gille, Merkurjev [3] and Chernousov, Merkurjev [4]. The
main theorem, Theorem 7.7 (see [4, Prop. 5.1, Th. 6.3]), gives a decomposition of
the motive M(X × X ′), where X and X ′ are projective homogeneous k-varieties of
a k-defined reductive algebraic group G. This is done by constructing a filtration of
X ×X ′, which satisfies Theorem 7.1. In case when one of these varieties, say X, has
a k-point, we can obtain a decomposition of the motive of the other one, X ′, using
pull-back (Corollary 7.7.1). In the particular case X = X ′ this is the main result
of [3], which gives a decomposition of any projective homogeneous variety with a k-
point (Corollary 7.7.2). In the particular case when the reductive group is k-split, we
also deduce the main result of the previous subsection, Theorem 7.3 ([17, Th. 2.1]),
substituting X = k(G/B), where B is a Borel subgroup of G (Corollary 7.7.3).

Let G be a reductive algebraic K-group defined over k. We fix a k-defined maximal
torus T of G, a maximal k-split torus S ⊆ T of G. We consider Φ = Φ(T,G), the
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root system of G, and W = W (T,G), the Weyl group. We also fix a Borel subgroup
B ⊇ T and denote by Π the corresponding system of simple roots in Φ, and by Φ+

(resp. Φ−) the set of positive (resp. negative) roots with respect to Π.
Recall that we define the ∗-action of Γ = Gal (ks/k) on the root system Φ as

σ∗(α) = wσ(σ(α)), σ ∈ Γ, α ∈ Φ

(see § 6). We also consider the corresponding action on W , which is given by σ∗(w) =
wσσ(w)w−1

σ , w ∈ W .
Let I, J ⊆ Π be two sets of simple roots, and let P and P ′ be two standard (i.e.,

containing B) parabolic subgroups of G of types I and J respectively. Suppose that
I and J are invariant under the ∗-action of Γ. Then also the subgroups WI ,WJ of
the Weyl group W are ∗-invariant, and therefore there is a ∗-action of Γ on the set of
double cosets WI\W/WJ .

Since I, J are ∗-stable, by Lemma 6.4 the projective homogeneous G-varieties G/P
and G/P ′ are defined over k. We set

X = k(G/P ) and X ′ = k(G/P
′).

Consider the diagonal action of G on the k-defined variety

(G/P )×SpecK (G/P ′) ∼= (X ×Spec k X
′)×Spec k SpecK.

Lemma 7.4. (1) The assignment w 7→ (P, wP ′w−1) induces a bijection between
the set of double cosets WI\W/WJ and the set of G-orbits in G/P ×G/P ′.

(2) Each G-orbit in G/P × G/P ′ is defined over ks. The above bijection is Γ-
equivariant (where Γ acts on W via the ∗-action, and in a natural way on the
orbits).

Proof. (1) SinceG acts transitively onG/P andG/P ′, anyG-orbit inG/P×G/P ′ con-
tains an element of the form (P, gP ′g−1). It is easy to see that two pairs (P, g1P

′g−1
1 )

and (P, g2P
′g−1

2 ) lie in the same G-orbit if and only if Pg1P
′ = Pg2P

′. This means
that the map g 7→ (P, gP ′g−1) provides a bijection between P\G/P ′ and the set of
all G-orbits. On the other hand, Theorem 5.13 gives a bijection between WI\W/WJ

and P\G/P ′.
(2) Since G is ks-split, by Theorem 6.1 the parabolic subgroups P and P ′, and

hence the action of G on G/P × G/P ′, are defined over ks. Since by Corollary 6.1.1
any coset in W = NG(T )/CG(T ) contains a representative w from G(ks), the pair
(P, wP ′w−1) is a ks-point of the corresponding orbit; hence all orbits are defined over
ks.

To see that the bijection is Γ-equivariant, observe that for any σ ∈ Γ and any
w ∈ W we have σ∗(w) = wσσ(w)w−1

σ , and since I, J are ∗-stable, we have(
wσσ(P )w−1

σ , wσσ(wP ′w−1)w−1
σ

)
=

(
wσσ(P )w−1

σ , σ∗(w)wσσ(P ′)w−1
σ σ∗(w−1)

)
= (P, σ∗(w)P ′σ∗(w)−1).

�

Recall that the set of double cosets WI\W/WJ has a system of representatives W I,J

consisting of the elements of minimal length in the corresponding cosets (Lemma 3.4).
By the previous lemma, each G-orbit in G/P × G/P ′ contains a unique element of
the form (P,wP ′w−1), where w ∈ W I,J .

Lemma 7.5. For any w ∈ W I,J , the subgroup Qw = (P ∩ wP ′w−1) ·Ru(P ) of G has
the following properties.
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(1) Qw is a standard (i.e., containing B) parabolic subgroup of G of type Iw =
I ∩ w(∆+

J ).
(2) For any σ ∈ Γ we have wσσ(Qw)w−1

σ = Qσ∗(w).
(3) If the subgroups P and wP ′w−1 are defined over k, then Qw also is, and

k (Qw/(P ∩ wP ′w−1)) is k-isomorphic to Al(w)
k .

Proof. (1) To prove that Qw is a standard parabolic subgroup, we need to show that
Uα ⊆ Qw for any α ∈ Φ+. Since Ru(P ) ⊆ Bw, it is enough to consider α ∈ ∆+

I .
But since w ∈ W I,J , by Lemma 3.5 we have ∆+

I ⊆ w(Φ+), hence Uα ⊆ wP ′w−1,
and therefore Uα ⊆ wP ′w−1 ∩ P . Now let R ⊆ Π be the type of Qw. It is clear
that Iw ⊆ R. Conversely, let α ∈ R. Then α,−α ∈ Φ(T,Qw), and hence α,−α ∈
Φ(T, P ∩wP ′w−1) = Φ(T, P )∩w(Φ(T, P ′)). This means that α ∈ ∆I ∩w(∆J). Since
α ∈ Π and by Lemma 3.5 we have w(∆−

J ) ⊆ Φ−, this implies α ∈ Iw.
(2) The calculations in the proof of Lemma 7.4 show that P ∩ wP ′w−1 = P ∩

σ∗(w)P ′σ∗(w)−1; on the other hand, wσσ(Ru(P ))w−1
σ = Ru(wσσ(P )w−1

σ ), since this
transformation is an automorphism of G. Hence wσσ(Qw)w−1

σ = Qσ∗(w).
(3) The subgroup Qw is k-defined, since by Lemma 6.2 the intersection P ∩wP ′w−1

is defined over k, and by Theorem 6.3 the unipotent radical Ru(P ) is also k-defined.
Also by Theorem 6.3 there is a k-defined decomposition Qw = CG(S ′)nRu(Q), where
S ′ is the maximal k-split torus contained in T ∩R(Qw) = TIw (cf. Theorem 5.15). By
the same theorem, since S ′ is contained in both parabolic subgroups P and wP ′w−1,
its centralizer CG(S ′) also is. This means that we have a k-defined decomposition
P ∩ wP ′w−1 = CG(S ′) nH, where

H = (P ∩ wP ′w−1) ∩Ru(P ) = wP ′w−1 ∩Ru(P ),

and therefore
Qw/(P ∩ wP ′w−1) ∼= Ru(P )/H.

Observe that both Ru(P ) andH are T -invariant k-defined subgroups of U = Ru(B),
hence by Corollary 5.7.2 their dimensions are equal to |Φ(T,Ru(P ))| resp. |Φ(T,H)|.
Set

Ψ = Φ(T,Ru(P )), Ψ1 = Φ(T,H), Ψ2 = Ψ \Ψ1.

Let us prove that
Ψ2 = {α ∈ Φ+ | w−1(α) ∈ Φ−} = Φ′

w.

It is clear that Ψ = Φ+ \∆+
I and Ψ1 = Ψ ∩ w(Φ+ ∪∆J). Hence

Ψ2 = Ψ \ w(Φ+ ∪∆J) = Ψ ∩ w(Φ− \∆−
J ).

Then the inclusion Ψ2 ⊆ Φ′
w is clear. Conversely, for any α ∈ Φ′

w we have α ∈
Φ+ \∆+

I = Ψ by Lemma 3.5. Since α is a positive root, w−1(α) is a negative root, and
since w(∆−

J ) ⊆ Φ− by Lemma 3.5, we also have α ∈ w(Φ− \∆−
J ). Hence Ψ2 = Φ′

w. In
particular, |Ψ2| = l(w) by Lemma 3.3.

Let H ′ = 〈Uα, α ∈ Ψ2〉. Then, since Ψ2 is an additively closed set of roots, by
Corollary 5.7.2 we have Φ(T,H ′) = Ψ2, and by Lemma 6.2 H ′ is defined over k,
since Ψ2 = Ψ \ Ψ1 is Γ-invariant. By Corollary 5.7.2, we have H × H ′ ∼= Ru(P ) as
a K-variety, the morphism being the product morphism. This morphism is defined
over k, and hence the corresponding k-morphism is also an isomorphism by [10, Prop.
2.7.1]. Then also the natural projection kH

′ → k(Ru(P )/H) is a k-isomorphism.
By [1, Prop. 8.11] the torus T splits over a finite separable extension k′ of k. Then by
Theorem 6.1 H ′ is a k′-solvable group in the sense of [18], that is, possesses a filtration
by normal k′-defined subgroups such that all successive quotients are k′-isomorphic
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to Ga,k′ . Since k′ is a separable extension of k, by [18, Th. 3] a k′-solvable group is
also k-solvable, so H ′ is a k-solvable group. It is also unipotent, hence by [18, Cor. 2
of Th. 1] it is k-isomorphic to the direct product of dimH ′ = |Ψ2| = l(w) copies of

Ga,k. Hence k(Ru(P )/H) ∼= Al(w)
k . �

Let D ∈ WI\W/WJ be the double coset with the representative w ∈ W I,J , and let
OD be the corresponding G-orbit in G/P ×G/P ′. Since the G-stabilizer of the point
(P,wP ′w−1) ∈ OD is equal to P ∩ wP ′w−1, we have an isomorphism

OD
∼= G/(P ∩ wP ′w−1).

Let ZD ∼= G/Qw be the variety of parabolic subgroups of G of type Iw. Consider the
natural G-invariant morphism

λD : OD → ZD
(Q,Q′) 7→ Ru(Q) · (Q ∩Q′).

Clearly, λD is defined over ks.
Let now δ denote the ∗-orbit of the double coset D ∈ WI\W/WJ . Since w = w(D)

is the element of minimal length in D, for any σ ∈ Γ the image σ∗(w) of w is the
element of the minimal length in σ∗(D), and l(w) = l(σ∗(w)). We set

lδ = l(w), if w ∈ W I,J and D = WIwWJ for some D ∈ δ.
Let Oδ =

∐
D∈δ

OD. It is a ks-defined open subvariety of its closure in G/P × G/P ′.

Since Oδ(ks) is Γ-invariant by Lemma 7.4, Oδ is moreover a k-defined variety.
The varieties ZD = G/Qw, D = WIwWJ ∈ δ, need not to be defined over k.

However, there are natural ks-morphisms

σ : ZD → Zσ∗(D),

induced by the action of σ ∈ Γ on the parabolic subgroups of G. Indeed, by Lemma 7.5
(2) the morphism σ : G → G takes a parabolic subgroup of type Iw into a parabolic
subgroup of type Iσ∗(w). Therefore the ks-defined morphism∐

λD : Oδ =
∐
D∈δ

OD →
∐
D∈δ

ZD

(Q,Q′) 7→ Ru(Q) · (Q ∩Q′)

is well-defined and Γ-invariant. Since each ZD is a projective variety, the variety
Zδ =

∐
D∈δ

ZD is defined over k, and, clearly, k(Zδ) is projective (cf. Lemma 6.4). Being

Γ-invariant, the morphism λδ = ∐
λD is also defined over k.

Lemma 7.6. The morphism k(λδ) : k(Oδ) → k(Zδ) is flat and the fiber k(λδ)
−1(z)

of k(λδ) at any (not necessarily closed) point z ∈ k(Zδ) is isomorphic to Alδ
κ(z), where

κ(z) is the residue field at z.

Proof. Denote k(λδ)
−1(z) by Fz. The statement Fz ∼= Alδ

κ(z) can be, clearly, checked

after extending the base to κ(z). Denote κ(z) by L. Then the scheme L(Zδ) =

k(Zδ) ×Spec k Specκ(z), and hence also a scheme ZD for some D ∈ δ, contains a
(closed) point over L. This means that G contains an L-defined parabolic subgroup
Q of type Iw, where w ∈ W I,J is the representative of D. Our definition of the map
λD : OD → ZD, where OD is just any orbit of G in G/P × G/P ′, does not depend
on the choice of the maximal k-defined torus T and the Borel subgroup B ∈ BT ,
corresponding to the set of simple roots Π ⊆ Φ(T,G). Hence we can assume that Q
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is a standard parabolic subgroup of type Iw, that is, Q = Qw. Then since Qw ⊆ P ,
by Lemma 6.5 the parabolic subgroup P is defined over L. Further, for any σ ∈ Γ
we have wσ ∈ Qw (see the proof of Lemma 6.5). Then Theorem 5.13 implies that
wσ ∈ WIw , and since Iw ⊆ w(∆J), we have wσ ∈ wP ′w−1. Therefore, wP ′w−1 is also
defined over L. The above means that both OD

∼= G/(P ∩wP ′w−1) and ZD ∼= G/Qw

are defined over L, and the morphism (λδ)L is actually (λD)L. The fiber of λD at z is
naturally L-isomorphic to the L-defined variety Qw/(P ∩ wP ′w−1). Now Lemma 7.5

(3) implies that Fz is isomorphic to Al(w)
L = Al(w)

κ(z).

To see that f = k(λδ) is flat, we can assume that k = K, since the base extension
morphism k → K is faithfully flat. Observe that ZD is irreducible; let z0 be the
generic point of ZD. By the above (applied to the case when L = κ(z0) and K is an

algebraic closure of κ(z0)), the fiber at z0 is isomorphic to Alδ
κ(z0). Hence we have

OD ×ZD
Specκ(z0) ∼= Alδ

κ(z0)
∼= (Alδ

K ×SpecK ZD)×ZD
Specκ(z0).

Since κ(z0) = OZD,z0 = lim−→OZD
(U), where U runs over all open affine neighbourhoods

of z0, by [11, Cor. 8.8.2.5] there is a open neighbourhood U 3 z0 such that

OD ×ZD
U ∼= (Alδ

K ×SpecK ZD)×ZD
U ∼= Alδ

K ×SpecK U.

The open subset U contains a closed point, because the set of closed points is dense
in ZD. Since the group G acts transitively on the closed points of ZD ∼= G/Qw,
the topological space ZD is covered by open subsets U ⊆ ZD satisfying OD ×ZD

U ∼= Alδ
K ×SpecK U . Since the projection map Alδ

K ×SpecK U → U is flat, the map
λD : OD → ZD is flat as well. �

Theorem 7.7. Let X = k(G/P ) and X ′ = k(G/P
′) be projective homogeneous va-

rieties of a k-defined reductive algebraic group G. In the above notation, there is an
isomorphism

M(X ×Spec k X
′) ∼=

⊕
δ∈∆

M
(
k(Zδ)

)
(lδ),

where ∆ is the set of all orbits for the ∗-action on WI\W/WJ .

Proof. Recall that by Lemma 7.4 the elements of WI\W/WJ are in one-to-one cor-
respondence with the G-orbits in G/P × G/P ′, with the ∗-action on the former co-
inciding with the usual Galois action on the latter; here the orbit corresponding to
D ∈ WI\W/WJ is precisely OD. For every j ≥ 0 let V ′

j be the union of orbits of
dimension at most j. By the closed orbit lemma the closure of an orbit is a union of
this orbit and of some orbits of lower dimension. Hence for any ∗-orbit δ ∈ ∆ such
that for all D ∈ δ the orbit OD has dimension j, the variety

V = Vj−1
∐ ∐

D∈δ

OD = Vj−1
∐
Oδ

is closed. Since it is defined over ks and Γ-invariant, it is defined over k. Hence we
can construct a filtration

∅ = W−1 ⊆ W0 ⊆ . . . ⊆ Wn = G/P ×G/P ′

consisting of closed k-defined subvarieties of G/P×G/P ′ and such that for every i ≥ 0
the difference Wi \Wi−1 coincides with Oδ for some δ ∈ D. This filtration induces the
filtration

∅ = X−1 ⊆ X0 ⊆ . . . ⊆ Xn = X ×X ′
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over k, where Xi = k(Wi), i ≥ 0, with differences of the form k(Oδ). The morphisms

k(λδ) : k(Oδ) → k(Zδ), constructed above, are by Lemma 7.6 flat k-morphisms to

projective k-varieties, with fibers isomorphic to Al(w)
κ(z) for any z ∈ k(Zδ). The varieties

k(Zδ) are smooth, since after the extension of the base field they become isomorphic to
the smooth varieties G/Qw (see [12, Prop. 17.7.1]). Then we can apply Theorem 7.1.

�

Corollary 7.7.1. Under the hypothesis of Theorem 7.7.2, suppose moreover that P
is k-defined, that is, the variety X = k(G/P ) has a k-point. Then there is an isomor-
phism

M(X ′) ∼=
⊕
δ∈∆

M(Yδ)(lδ),

where Yδ ∼= k(Zδ)×X Spec k are smooth projective varieties.

Proof. Let
∅ = X−1 ⊆ X0 ⊆ . . . ⊆ Xn = X ×X ′

be the filtration for X×X ′ = k(G/P ×G/P ′) constructed in the proof of the theorem,
and let Spec k → X be the k-point of X. The products Spec k×XXi = X ′

i then define
a k-filtration of the k-variety (X × X ′) ×X Spec k ∼= X ′. Also by the construction,
for every i ≥ 0 the difference X ′

i \ X ′
i−1 is isomorphic to k(Oδ) ×X Spec k for some

δ ∈ ∆. The variety Zδ =
∐
D∈δ

ZD possesses a natural morphism to X = G/P , since

ZD ∼= G/Qw for a parabolic subgroup Qw ⊆ P . This morphism is clearly defined
over ks and Γ-invariant, hence it is defined over k (if one looks on the quotients as
on varieties of parabolic subgroups of corresponding types). Since the morphism λδ :
Oδ → Zδ comes from morphisms λD : OD → ZD, taking the pair (P,wP ′w−1) ∈ OD

to Qw, we have a commutative diagram of k-morphisms

k(Oδ)

k(λδ)
��

� � //

$$J
JJJJJJJJJ
X ×X ′

pr1

��
k(Zδ) // X

.

Multiplying all varieties by ×XSpec k, we get therefore a k-defined morphism

k(λδ)× idk : k(Oδ)×X Spec k → k(Zδ)×X Spec k = Yδ.

Clearly, the morphism k(λδ) × idk is flat. The k-scheme Yδ = k(Zδ) ×X Spec k is
precisely the fiber of the morphism k(Zδ) → k(G/P ) at the k-point. Hence if k′ is a
finite separable extension k → k′ such that G is k′-split, k′(Z

′
δ) is isomorphic to the

disjoint union of smooth projective fibers k′(P/Qw) of the morphisms k′(G/Qw) →
k′(G/P ) (Lemma 6.4). Therefore k(Z

′
δ) is smooth projective by [12, Prop. 17.7.1]

and [9, Cor. 6.6.5]. Hence we can apply Theorem 7.1. �

The following corollary is the main result of [3].

Corollary 7.7.2. Let G be a k-defined reductive algebraic group, Q a parabolic k-
defined subgroup of G of type I. Then there is an isomorphism

M(k(G/Q)) ∼=
⊕
δ∈∆

M(Yδ)(lδ),

where ∆ is the set of all orbits for the ∗-action on WI\W/WI . If kδ is a finite
extension of k stabilizing every coset D ∈ δ, then Yδ ×Spec k Spec kδ =

∐
D∈δ

YD, where
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the varieties YD, D ∈ δ, are kδ-isomorphic to homogeneous varieties of the reductive
algebraic k-defined group LQ ∼= Q/Ru(Q), having the root system ∆I .

Proof. We apply Theorem 7.7 in case P = P ′ = Q. Then, as in Corollary 7.7.1,
we have M(k(G/P )) ∼=

⊕
δ∈∆M(Yδ)(lδ), where Yδ ∼= k(Zδ) ×k(G/P ) Spec k. Since kδ

preserves a coset D ∈ δ, it also preserves the canonical representative w ∈ W I,I of
D, because it is the unique element of minimal length in D. Hence the subgroup
Qw = Ru(P ) · (P ∩ wPw−1) is defined over kδ. Since T is a k-defined torus, the
torus TI = T ∩ R(P ) of Theorem 5.15 is a maximal k-defined torus of R(P ). If
S ′ is a maximal k-split torus contained in TI , by Theorem 6.3 we have a k-defined
isomorphism CG(S ′) = CG(TI) ∼= P/Ru(P ). By Theorem 5.15, LP = CG(TI) is a
reductive algebraic group with Φ(T, LP ) = ∆I .

Further, YD is precisely the fiber of the morphism kδ
(G/Qw) → kδ

(G/P ) at the
kδ-point P , and hence is naturally kδ-isomorphic to

kδ
(P/Qw) ∼= kδ

(
LP/(LP ∩ wPw−1)

)
.

Since ∆+
I ⊆ w(Φ+) by Lemma 3.5, the group LP ∩ wPw−1 is a parabolic kδ-defined

subgroup of LP , and thus Yδ is a homogeneous LP -variety. �

Corollary 7.7.3 (Theorem 7.3). Let G be a k-split reductive algebraic group, Q a
parabolic subgroup of G of type I. There is an isomorphism

M(G/Q) ∼=
⊕

D∈W/WI

LlD ,

where each number lD is the length l(w) of the representative w ∈ W ∅,I of D ∈ W/WI .

Proof. We apply Corollary 7.7.1 in the case P = B, P ′ = Q. Let w ∈ W I = W ∅,I .
Since G is k-split, the ∗-action is trivial, and the subgroups P , P ′, wP ′w−1, Qw are
defined over k by Theorem 6.1. Any ∗-orbit δ ⊆ W/WI consists of one element,
δ = {D}. We have Iw = ∅ ∩w(∆+

I ) = ∅, hence Qw = B = P . Then the k-varieties Yδ
of Corollary 7.7.1 satisfy

Yδ ∼= k(G/B)×
k(G/B) Spec k ∼= Spec k.

Hence M(Yδ)(lδ) ∼= LlD . �

§ 8. Examples of motivic decompositions

In the present chapter we use the results of § 7 to obtain some explicit motivic
decompositions. We keep the same notation as above. Namely, G denotes a k-defined
reductive algebraic group over K, T a maximal k-defined torus of G, Φ = Φ(T,G) the
set of roots of G with respect to T , W = W (T,G) the corresponding Weyl group, and
Π a fixed system of simple roots in Φ, corresponding to a Borel subgroup B containing
T . We write Π = {α1, . . . , αn}, where n is the rank of Φ and the numbering of roots
follows Bourbaki [2]. All parabolic subgroups we speak of are standard.

1. Motive of a projective space. Let G = PGLn+1,K , the projective linear group
of dimension n + 1 over K, and let kG = PGLn+1,k, the same group over k. This
is a k-split semi-simple group with the root system Φ = An. The Weyl group W
is isomorphic to the symmetric group Sn+1, with the reflection wαi

corresponding to
the transposition (i, i + 1). Let P be the standard parabolic subgroup of G of type
I = Π \ α1. The corresponding variety X = k(G/P ) is isomorphic to Pnk . The Weyl
group WI is identified with the subgroup of Sn+1 generated by all reflections except
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for (12), and is isomorphic to Sn, since ∆n is spanned by {α2, . . . , αn} and hence is a
root system of type An−1.

By Corollary 7.7.3, we have M(X) ∼=
⊕

D∈W/WI

Ll(D). Since |Sn+1|/|Sn| = n + 1, the

quotient W/WI has n+ 1 elements. Consider the elements

wi = (i, i+ 1)(i− 1, i) . . . (12) = (1, i+ 1, i, . . . , 2), 1 ≤ i ≤ n.

Clearly, l(wi) = i, and for any 1 < j ≤ n we have l(wi · (j, j + 1)) = i + 1. Then by
Lemma 3.5 these elements are the representatives of minimal length in their cosets
modulo WI , and since they are of different lengths, they form, together with e, the
whole set W ∅,I . Thus our decomposition of X becomes

M(Pnk) =
n⊕
i=0

Li = 1⊕ L⊕ . . .⊕ Ln,

the classical decomposition of [16] (in fact, it follows directly from the definition of L).

2. Groups of type F4. Let G be a k-defined semi-simple algebraic group over k
such that Φ = F4. Since the Dynkin diagram (see [2]) of F4 has no non-trivial
automorphism, the ∗-action on Π = {α1, α2, α3, α4} is always trivial, that is, G is of
inner type. The Tits classification [20] states that there are only three possibilities for
minimal k-defined parabolic subgroups of G. Namely, either G is k-anisotropic, that
is, has no non-trivial k-defined parabolic subgroup, or G is k-quasi-split, and hence
k-split by Lemma 6.6, or the minimal k-defined parabolic subgroup of G is of type
{α1, α2, α3}.

The split case. In case when G is k-split, G has a k-defined parabolic subgroup
P of any possible type I ⊆ Π, and the situation is subject to Corollary 7.7.3. For
example, in the particular case P = B we obtain the decomposition

M(G/B) ∼=
⊕
w∈W

Ll(w).

The isotropic case. Consider now the case when the minimal k-defined parabolic
subgroup P of G is of type I = {α1, α2, α3}. For any parabolic subgroup P ′ of type J ,
we obtain a decomposition of the motive M

(
k(G/P

′)
)

using Corollary 7.7.1. Namely,
since the ∗-action is trivial, we have the decomposition

M(k(G/P
′)) ∼=

⊕
w∈W I,J

M(Yw)(l(w)),

where Yw ∼= k(G/Qw) ×
k(G/P ) Spec k for any w ∈ W I,J (we have k(Zδ) = k(ZD) for

any D ∈ δ ⊆ WI\W/WJ). Each Yw is therefore the fiber of the natural k-morphism
ϕ : k(G/Qw) → k(G/P ) at the point corresponding to kP . Since P is defined over k,
by Theorems 6.3 and 5.15 we have a k-defined isomorphism P ∼= L n Ru(P ), where
L is a k-defined reductive algebraic group with the root system ∆I = B3. The group
L∩Qw = L∩wP ′w−1 is a parabolic subgroup of L of type Iw ⊆ I, since ∆+

I ⊆ w(Φ+)
by Lemma 3.5. The variety L/L ∩Qw of parabolic subgroups of L of type Iw admits
a natural embedding into the variety G/Qw of parabolic subgroups of G of type Iw,
given by

i : L/L ∩Qw → G/Qw

Q 7→ QnRu(P ).

Since the ∗-action is trivial, L/L ∩ Qw is also defined over k. Then, clearly, the
embedding i is also defined over k, because it is defined over ks and Γ-invariant. Since
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over K it is the isomorphism

L/L ∩Qw
∼= P/Qw

∼= (G/Qw)×G/P SpecK,

it also provides a k-isomorphism k(L/L ∩ Qw) ∼= Yw. Summing up, we have the
decomposition

M(k(G/B)) ∼=
⊕

w∈W I,J

M (k(L/L ∩Qw))(l(w)) ,

where L/L ∩ Qw is the variety of parabolic subgroups of type Iw in the reductive
k-group L of type ∆I = B3.

For example, let P ′ = B, the parabolic subgroup of type J = ∅. Since Iw = ∅
for any w ∈ W I,∅, all these k-varieties L/L ∩ Qw are isomorphic the the variety
L/L ∩ B of Borel subgroups of the reductive k-group L of type ∆I = B3. Let us
compute W I,∅. We have |W | = 27 · 32 and |WI | = 23 · 3! = 24 · 3. Computer try-out
provides the following reduced decompositions of the elements wi, 1 ≤ i ≤ 24, of
W I,∅ = W {α1,α2,α3},∅:

i wi l(wi)

1 e 0

2 wα4 1

3 wα4wα3 2

4 wα4wα3wα2 3

5 wα4wα3wα2wα1 4

6 wα4wα3wα2wα3 4

7 wα4wα3wα2wα1wα3 5

8 wα4wα3wα2wα3wα4 5

9 wα4wα3wα2wα1wα3wα2 6

10 wα4wα3wα2wα1wα3wα4 6

11 wα4wα3wα2wα1wα3wα2wα3 7

12 wα4wα3wα2wα1wα3wα2wα4 7

13 wα4wα3wα2wα1wα3wα2wα3wα4 8

14 wα4wα3wα2wα1wα3wα2wα4wα3 8

15 wα4wα3wα2wα1wα3wα2wα3wα4wα3 9

16 wα4wα3wα2wα1wα3wα2wα4wα3wα2 9

17 wα4wα3wα2wα1wα3wα2wα3wα4wα3wα2 10

18 wα4wα3wα2wα1wα3wα2wα4wα3wα2wα1 10

19 wα4wα3wα2wα1wα3wα2wα3wα4wα3wα2wα1 11

20 wα4wα3wα2wα1wα3wα2wα3wα4wα3wα2wα3 11

21 wα4wα3wα2wα1wα3wα2wα3wα4wα3wα2wα1wα3 12

22 wα4wα3wα2wα1wα3wα2wα3wα4wα3wα2wα1wα3wα2 13

23 wα4wα3wα2wα1wα3wα2wα3wα4wα3wα2wα1wα3wα2wα3 14

24 wα4wα3wα2wα1wα3wα2wα3wα4wα3wα2wα1wα3wα2wα3wα4 15

Thus we have

M(k(G/B)) ∼=
15⊕
i=0

M (k(L/L ∩B)) (i)⊕
11⊕
i=4

M (k(L/L ∩B)) (i)

∼= M(k(L/L ∩B))⊗M(P7)⊗ (M(P8)⊕ L4).
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Let us compute also the motive M(k(G/P )). The set W I,I = W {α1,α2,α3},{α1,α2,α3}

consists of those elements w ∈ W I,∅ which are the representatives of minimal length of
their double cosets WIwWI . This condition is equivalent by Lemma 3.3 to w(α) ∈ Φ+

for each α ∈ I. Testing the elements of W I,∅ computed above, we obtain W I,I =
{w1 = e, w2, w8, w13, w24}. Since the ∗-action is trivial, the decomposition looks as

M(k(G/P )) ∼=
⊕

w∈W I,I

M(k(P/Qw))(l(w)) ∼=
⊕

w∈W I,I

M(k(L/L ∩ wPw−1))(l(w)).

Here L ∼= P/Ru(P ) is a k-defined reductive algebraic group with the root system
∆I = B3 (containing the system of simple roots {α1, α2, α3}), the same as occurred
in the computation for G/B, and L/L∩wPw−1 is the variety of parabolic subgroups
of L of type Iw. The types Iw = I ∩ w(∆+

I ), w ∈ W I,I , are the following.

w ∈ W I,I l(w) Iw = I ∩ w(∆+
I )

w1 0 {α1, α2, α3}
w2 1 {α1, α2}
w8 5 {α2, α3}
w13 8 {α1, α2}
w24 15 {α1, α2, α3}

Hence we obtain the decomposition

M(k(G/P )) ∼= 1⊕M(k(L/P1,2))(1)⊕M(k(L/P2,3))(5)⊕M(k(L/P1,2))(8)⊕ L15

∼= 1⊕M(k(L/P1,2))(1)⊗
(
1⊕ L7

)
⊕M(k(L/P2,3))(5)⊕ L15,

where Pi,j denotes the standard parabolic subgroup of L of type {αi, αj}.
The anisotropic case. If the group G is k-anisotropic, we still can compute the

motives of products like G/P ×G/P ′, using Theorem 7.7 itself. Let us compute, for
example, M(k(G/P × G/P ′)), where P is a parabolic subgroup of type {α1, α2, α3}
(the same as above, but not defined over k now) and P ′ is the parabolic subgroup of
G of type J = {1, 4}. Since the ∗-action is trivial, we have the decomposition

M
(
k(G/P ×G/P ′)

) ∼= ⊕
w∈W I,J

M(k(G/Qw))(l(w)),

where G/Qw is the variety of parabolic subgroups of G of type Iw. Computer try-out
gives the following list for W I,J ⊆ W I,∅.

w ∈ W I,J l(w) Iw = I ∩ w(∆+
J )

w1 0 {α1}
w3 2 {α1, α3}
w4 3 {α3}
w6 4 ∅
w9 6 {α2}
w11 7 {α2}
w14 8 {α2}
w16 9 ∅
w20 11 {α3}
w22 13 {α1, α3}
w23 14 {α1}
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This gives the decomposition

M
(
k(G/P ×G/P ′)

) ∼= M(k(G/P{α1}))⊕M(k(G/P{α1,α3}))(2)⊗
(
1⊕ L11

)
⊕M(k(G/P{α3}))(3)⊗

(
1⊕ L8

)
⊕M(k(G/B))(4)⊗

(
1⊕ L5

)
⊕M(k(G/P{α2}))(6)⊗M(P2

k).

3. Groups of type 3D4. Let G be a k-defined semi-simple algebraic group with
Φ = D4. The group of automorphisms of the Dynkin diagram of Φ is isomorphic
to S3, and the ∗-action of Γ on Π can be non-trivial. We consider the case when Γ
acts as the cyclic group of order 3, that is, by three permutations {id, r, r2}, where
r(α1) = α3, r(α3) = α4, r(α4) = α1, and r(α2) = α2.

The only ∗-stable subsets of Π are ∅, {α2}, {α1, α3, α4}, and Π. Let us compute
M(k(G/P ×G/P ′)), where P is of type {α1, α3, α4} and P ′ is of type {α2}. The set
of representatives W I,J of the classes WI\W/WJ consists of the following elements
wi, 1 ≤ i ≤ 15.

i wi l(wi) Iwi
= I ∩ wi(∆+

J )

1 e 0 ∅
2 wα2wα1 2 {α1}
3 wα2wα3 2 {α3}
4 wα2wα4 2 {α4}
5 wα2wα1wα3 3 ∅
6 wα2wα1wα4 3 ∅
7 wα2wα3wα4 3 ∅
8 wα2wα1wα3wα4 4 ∅
9 wα2wα1wα3wα2wα4 5 ∅
10 wα2wα1wα4wα2wα3 5 ∅
11 wα2wα3wα4wα2wα1 5 ∅
12 wα2wα1wα3wα2wα4wα2wα1 7 {α3}
13 wα2wα1wα3wα2wα4wα2wα3 7 {α1}
14 wα2wα1wα3wα4wα2wα1wα3 7 {α4}
15 wα2wα1wα3wα2wα4wα2wα1wα3 8 ∅

By Theorem 7.7 we obtain the following decomposition:

M(k(G/P ×G/P ′)) ∼= M(Y )(2)⊗ (1⊕L5)⊕M(k(G/B))⊗ (1⊕L3⊕L4⊕L5⊕L8),

where Y is a k-variety such that

Y ×Spec k SpecK ∼= G/P{α1}
∐
G/P{α3}

∐
G/P{α4}

(three isomorphic projective quadrics of dimension 6).

4. Odd-dimensional orthogonal groups. Let G be a k-defined semi-simple al-
gebraic group such that kG is the special orthogonal group SO2n+1,k(q), where q
is a quadratic form over k. Then Φ = Bn, and the minimal k-defined parabolic
subgoup of G has type Π \ {α1, α2, . . . , αr}, where r ≥ 0 is the Witt index of
q (see [20]). Consequently, if G is isotropic, the parabolic subgroup P of type
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I = Π \ {α1} = {α2, α3, . . . , αn} is k-defined. Let us compute the motivic decom-
positions provided by P . Note that the ∗-action on Π is trivial, since the Dynkin
diagram of Bn has no non-trivial automorphisms.

As above, we need to compute the set of representatives W I,∅ of WI\W . Consider
the element

w̃ = wα1wα2 . . . wαn−1wαnwαn−1 . . . wα2wα1 .

of the Weyl group W .

Lemma 8.1. The above decomposition of w̃ is reduced.

Proof. We show that this decomposition of w̃ is reduced, or, equivalently, l(w̃) =
2n − 1, by induction on n. The case n = 2 can be checked by hand. Suppose
further that the decomposition w̃′ = wα2 . . . wαn−1wαnwαn−1 . . . wα2 is reduced. Then
by Lemma 3.3 there are exactly l(w̃′) roots α ∈ Φ+ such that (w̃′)−1(α) ∈ Φ−. Since
w̃′ is also an element of the Weyl group WΠ\{α1} of the root subsystem ∆Π\{α1} of Φ,
all these roots are in ∆+

Π\{α1}. Hence (w̃′)−1(α1) ∈ Φ+, and consequently, l(wα1w̃
′) =

l(w̃′)+1 = 2n−2 by the inductive assumption. To show that l(w̃) = 2n−1 = wα1w̃
′+1,

we need moreover to prove that wα1w̃
′(α1) ∈ Φ+. Since the length of w̃′ is also equal

to the number of positive roots it sends to Φ−, the same reasoning as above shows
that w̃′(α1) ∈ Φ+. Then if wα1w̃

′(α1) ∈ Φ−, we must have w̃′(α1) = α1, since it is the
only positive root sent to Φ− by wα1 . On the other hand, since l(w̃′wα2) = l(w̃′)− 1,
we have w̃′(α2) ∈ ∆−

Π\{α1}. Now if w̃′(α1) = α1, then the root w̃′(α1 + α2) has both

positive and negative coefficients in its decomposition into a sum of simple roots,
which is impossible. Hence wα1w̃

′(α1) ∈ Φ+, and l(w̃) = 2n− 1. �

We can prove in a similar fashion that l(wαi
w̃) = l(w̃)+1 for any αi ∈ Π\{α1} = I,

and therefore w̃ is the element of minimal length in its coset WIw̃, that is, lies in W I,∅.
Consider the set A of all products of the form wα1wα2 . . . wαi

, 1 ≤ i ≤ n, and of the
form wα1wα2 . . . wαnwαn−1 . . . wαi+1

wαi
, n − 1 ≥ i ≥ 1 (all continuous subwords of

w̃ = wα1wα2 . . . wαn−1wαnwαn−1 . . . wα2wα1 starting from the left). For any αi ∈ I,
since l(wαi

w̃) = l(w̃) + 1, we also have l(wαi
w) = l(w) + 1 for any w ∈ A; hence

all elements w ∈ A are the elements of minimal length in their respective cosets
WIw. Since they are of different lengths, their cosets are distinct. Since there are
exactly 2n − 1 of them, and |W |/|WI | = 2nn!/2n−1(n − 1)! = 2n, together with the
representative e of the coset P they form the set W I,∅.

Now we compute, for example, M(k(G/P × G/B)). Since the ∗-action is trivial,
by Theorem 7.7 we have

M(k(G/P ×G/B)) ∼=
⊕

w∈W I,∅

M(k(G/B))(l(w))

∼=
2n−1⊕
i=0

M(k(G/B))(i) ∼= M(k(G/B))⊗ P2n−1.

If G is isotropic, that is, P is k-defined, we can compute M(k(G/B)) by Corol-
lary 7.7.1. As in the F4 example, we obtain

M(k(G/B)) ∼=
⊕

w∈W I,∅

M(k(L/L ∩B))(l(w)) ∼= M(k(L/L ∩B))⊗ P2n−1,

where L is a reductive k-defined subgroup of G with Φ(T, L) = ∆I = Bn−1. If P is
not a minimal k-defined parabolic subgroup, that is, the Witt index r is greater than
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1, the group L is also isotropic, and we can continue by induction. Then we have

M(k(G/B)) ∼= M(k(G
′/B′))⊗ P2nr−r2 ,

where G′/B′ is the variety of Borel subgroups of a k-defined anisotropic reductive
group G′ with the root system Bn−r.

Let us also compute M(k(G/P )) using Corollary 7.7.2. It is clear that the subset
W I,I ⊆ W I,∅ consists of three elements e, wα1 , w̃. We have Ie = I ∩∆+

I = I; Iwα1
=

I ∩ wα1(∆
+
I ) = I \ {α2}, since wα1(αi) = αi for any i > 2, and no linear combination

of α1 and α2 is in ∆I ; finally, one easily checks by induction that Iw̃ = I ∩ w̃(∆+
I ) = I.

Thus we have the decomposition

M(k(G/P )) ∼= M(k(L/L ∩ P ))⊕M(k(L/L ∩Qwα1
))(1)⊕M(k(L/L ∩ P ))(2n− 1)

∼= 1⊕M(k(L/L ∩ P{α1,α2}))(1)⊕ L2n−1.

Proceeding by induction, we get

M(k(G/P )) ∼= Pr−1 ⊕M(k(G
′/P ′))(r)⊕ L2nr−r(r+1)/2,

where G′ is as above and G′/P ′ is the corresponding variety of parabolic subgroups
of G′.
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