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§1. INTRODUCTION

The term “motive” (or sometimes “motif”, due to the French origin of the word)
goes back to Grothendieck’s idea of a universal, “motivic” cohomology theory for
algebraic varieties, which he threw in in the late 1960s. Such a theory meant an
“embedding” of the category Var(k) of smooth projective varieties over a field k
into a suitable close-to-abelian category, so that all “sufficiently good” cohomology
theories on Var(k) would factor through this embedding. Manin [16] proposed the
following approximation to this construction. He introduced the additive category of
correspondences Corr(k), whose objects are the same as the objects of Var(k), and
the morphisms, called correspondences, between two objects X and Y (for simplicity
assume X irreducible) are the elements of the Chow group CH gim x (X X Y), i.e. the
cycles of dimension dim X on X xY modulo rational equivalence (see [8]). The pseudo-
abelian envelope of Corr(k) is the category of effective Chow motives Chow®/” (k).
It is obtained by adding to Corr(k) the kernels of all projectors. The image of
X € ObVar(k) under the natural functor

Var(k) — Corr(k) — Chow®// (k)

is called the motive of X and denoted by M(X).

The category Chow®/ (k) has a rich structure. Our interest is in the additive
decompositions of the motives M(X), X € ObVar(k). For example, the canonical
morphism P} — Spec k yields the decomposition

M(P}) = M(Speck) L,

where L is an object of Chow®/ (k) called the Tate motive. This decomposition
immediately generalizes as M(P}) = @, L, where L’ denotes the i-th tensor power
of L. It appears that a similar decomposition of a motive can be obtained for any
variety X having a filtration by closed subvarieties

h=XoCX;C...C Xy=X,

where the differences U; = X; \ X;_; are “sufficiently good”, for example, isomorphic
to affine spaces Agi. (The most general statement is given in [7, Cor. 66.4], and
originates from Karpenko [15].)

Observe that our model example, the projective space P}, is a projective homoge-
neous variety of the algebraic group PGL,, , and the natural filtration Spec k = P C

. C IP’Z’l C P} is in fact induced by the Bruhat decomposition of PGL,, ;. This
gives us hope to obtain such a filtration for any homogeneous G-variety, where G is
a reductive algebraic group. The main goal of the present manuscript is to give an
overview of the recent results in this direction obtained by Kock [17], Chernousov,
Gille and Merkurjev [3], and Chernousov, Merkurjev [4].

Let GG be a reductive algebraic group over k, and let V' be a projective G-homogeneous
variety which is isomorphic over an algebraic closure K of k to the (geometric) quotient
of G by a subgroup P. Since V' is projective, P is necessarily a parabolic subgroup of
G. If G is a k-split group, then, in particular, P is defined over k and V' is isomorphic
to G/P over k. This situation is indeed a complete analogue of P}. Namely, the
Bruhat decomposition for G induces on V' a structure of a cellular space, with cells
isomorphic to affine spaces of known dimensions. This allows to compute the Chow
group of V| which is just a free abelian group with generators corresponding to the
closures of cells, and to obtain a decomposition of the motive M(V') into a sum of
twisted Tate motives. This result is due to Kock [17]. If G is not k-split, but only
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k-isotropic, that is, possesses a non-trivial k-split subtorus, and if P is still defined
over k (equivalently, V has a k-point), a certain “gluing” of the above Bruhat cells is
possible. This gives a coarser k-filtration of V', and with differences which are no more
affine spaces, but affine bundles over some smooth projective varieties. Nevertheless,
such a filtration is still subject to the decomposition theorem, and hence provides a
motivic decomposition of V. This is the main result of [3]. Finally, the paper [4] gen-
eralizes both these results and provides a way to compute M (V') under the hypothesis
that G is k-isotropic and possesses a non-trivial k-defined parabolic subgroup P’, but
not necessarily coinciding with P. The main idea of [4] is to decompose the motive of
a product V x V', where V and V' are projective homogeneous G-varieties, possibly
without any k-points. In case when one of these varieties, say V', has a k-point, we
obtain a decomposition of the motive of the other one, V', using pull-back.

The thesis is organized as follows. In § 2 we briefly recall the most basic notions and
results pertaining to algebraic varieties and groups. In §3 we define an abstract root
system ® and prove some technical lemmas which will be used later on. After this we
pass to the detailed study of algebraic groups. In §4 we recall the notion of a geomet-
ric quotient of varieties and algebraic groups, and reproduce the classical construction
of the quotient of an algebraic group by a closed subgroup (Theorem 4.7) In §5 we
describe the structure of reductive algebraic groups over an algebraically closed field.
In particular, we prove the Bruhat decomposition (Theorem 5.12) and the classifica-
tion of parabolic subgroups (Theorem 5.13). In §6 we discuss how the results of the
previous chapter can be carried over to the case of a group over a non-algebraically
closed field. The next chapter, §7, is devoted to the detailed proof of the results
of Kock (Theorem 7.3) and Chernousov-Merkurjev (Theorem 7.7) mentioned above.
Finally, in §8 we use these results to obtain some explicit motivic decompositions.

§2. PRELIMINARIES

In the present chapter we introduce the basic notions we will use in this work,
and manifest the principal conventions. We also recall some elementary results on
algebraic varieties and groups that seem important for further exposition. Our main
reference is the classical book by Borel [1].

Throughout the thesis, k& denotes a field, K denotes an algebraic closure of k, and
ks denotes the separable closure of k£ in K.

1. Schemes and Varieties. For any scheme X, we denote by Ox the structure
sheaf of X, and if  is a point of this scheme, we write O, for the local ring at this
point, m, for the maximal ideal of Oy, and k(z) for the residue field Ox ,/m,. For
a morphism f : X — X’ we denote by f* the morphism of sheaves corresponding to
f.
For us a k-variety (or a variety over k) is a reduced separated scheme of finite type
over k. We say that a K-variety V is defined over k, if there exists a k-variety W such
that W Xgpecr Spec K = V. Such a variety W is not necessarily unique, but whenever
we say that a variety V is defined over k, we have in mind that we fix some k-variety
of this kind; we will denote it by V. Thus, a k-defined variety V over K is actually
a pair (V, V) together with an isomorphism V' Xgpecr Spec K = V.

Let V be a variety over K. We will denote by V(K) the set of K-valued points of
V', which also coincides with the set of all closed points of V. Unless explicitly stated
otherwise, “r is a point of V7 means that x is an element of V(K), that is, a closed
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point. If V is defined over k, then the embedding k£ — K induces an embedding
of the set ,V (k) of all k-valued points of the variety ,V into V(K); we will denote
the image of this embedding by V (k). We will sometimes use the fact that V (k) is
dense in V(K) ( [1, Cor. AG.13.3]). For shortness, we will sometimes write K[V] and
E[V] instead of Oy (V) and O,y (V). We also denote by K (V') the ring of rational
functions on V/, i.e. the limit lim Oy (U), where U runs over all open dense subsets of
V.

A morphism of K-varieties f 1 V — V' is just a morphism of K-schemes. Since
the set of closed points is dense in the underlying topological space of a variety, the
morphism f is uniquely determined by a continuous map f: V(K) — V'(K) and by
ff. If V and V' are varieties defined over k, a morphism f : V — V' is said to be
defined over k, if it comes from a morphism of k-schemes pf : V' — ,V’. Observe
that when f is an isomorphism, ;. f is also an isomorphism (of k-schemes) [10, Prop.
2.7.1].

For any variety V', we have the natural notions of open and closed subvarieties of
V' (note that there is only one closed subvariety with a given underlying topological
space). If V' is a K-variety defined over k, we will also say that a (closed or open)
subvariety W is a k-defined subvariety, if W comes from a (closed or open) subvariety
of V. This is the same as to say that W is a k-defined variety, and the embedding
W — V is a k-defined morphism. We will occasionally say that a (closed or open)
subset S C V(K) is k-defined, meaning that the corresponding subvariety of V' is.

We denote by I' the Galois group Gal (ks/k). Let V be a k-defined variety over K.
We define the action of ¢ € I' on V' as the morphism of schemes

01V =1V Xgpeck Opec K — 1V Xgpecr Spec K =V,

induced in a natural way by the automorphism Spec K — Spec K corresponding to
the extension to K of 071 : k, — k,. This morphism o : V — V is clearly defined
over ks. It takes a closed (resp. open) subvariety W of V' to a closed (resp. open)
subvariety o(W). In the affine case o(W) is just the subvariety obtained by applying
o to the coefficients of equations defining W.

Observe that if A is a k-algebra and B = A®y ks, then A is the set of I'-fixed points
of B, if I' acts on B through the factor ks;. This implies that in the affine case, and
hence in general, a morphism of k-varieties f : V' — V' is defined over k if and only if
it is defined over k, and I'-invariant. The latter can also be checked on the k,-valued
points of ;. V and ; V’'. Consequently, a subvariety W of V is defined over k if and
only if it is defined over ks and W (ks) is I-invariant (see [1, AG.14.3-14.4]).

Recall that a variety V is called normal, if any local ring (or, equivalently, any local
ring at a closed point) of V' is a normal ring, i.e. is integrally closed in its field of
fractions. A dominant morphism of varieties f : V' — W is called separable, if for any
irreducible components V' of V and W’ of W such that W’ is the closure of f(V"),
the induced embedding K (W') — K (V') is a separable extension of fields. It follows
from [5, Exp. 5, Th. 2] that a bijective separable morphism of irreducible normal
varieties is an isomorphism.

A variety is called quasi-projective, if it is isomorphic to an open subvariety of a
projective variety.

By the dimension dim V' of a variety V' we always mean the topological dimension.
However, since our varieties are schemes of finite type over a field, it can be understood
as the maximal dimension of a local ring at a closed point. Moreover, most our



5

varieties (e.g. algebraic groups, see below) are smooth, and hence dim V' is also the
dimension of a tangent space in following sense.
Let z be a closed point of a K-variety V. The tangent space to V at x is defined as

T.V = Der g (Oy,, k(x)),

the Oy-module of all K-linear derivations of Oy, with values in k(z) = Oy, /m, =
K. Tt is canonically isomorphic to the Oy -module (m,/m?2)* = Hom g (m,/m2, K).
Therefore, an irreducible K-variety V' is smooth if and only if dimV = dimg T,V
for any closed point x € V. If V = SpecA is an affine variety, we also have
T,V = Der g(A, k(x)), where k(z) becomes an A-module via the localization map
A=0y(V)— Oy,. If f:V — V’'is a morphism of varieties, the corresponding map
f%: Oy 4(z) — Oy, induces a natural morphism

which we call the tangent morphism at x. We will sometimes use the fact that a
morphism of smooth varieties is separable if and only if every irreducible component
of V' contains a closed point z such that (df), is surjective ( [1, Th. AG.17.3]).

For any n > 0, we write A} and PP} for the n-dimensional affine space over k and
the k-dimensional projective space over k respectively.

2. Algebraic groups. An algebraic group G over k (or an algebraic k-group) is a
k-variety G endowed with three structure morphisms: m : G x G — G (the multi-
plication), ¢ : G — G (the inverse), e : Speck — G (the unit element), which are
morphisms of k-varieties and satisfy the usual group axioms. A morphism of alge-
braic groups is a morphism of varieties which is also a homomorphism of groups, i.e.
respects the structure morphisms. In the present thesis all algebraic groups are sup-
posed to be affine. By an element of a group G we mean an element of G/(k), which
is a group in the abstract sense.

We say that an algebraic group G over K is defined over k, if G is defined over k
as a variety and the structure morphisms of G are k-defined morphisms. The notion
of a k-defined morphism of algebraic groups is analogous.

The basic examples of algebraic groups include the “additive” group G, = Spec k[z],
the “multiplicative” group G, = Spec k[z, z7!], the general linear group

GL,,, = Speck[z;j, 1 <i,j <n; 1/det(z;;)], n>1

(in fact, Gy, x = GL1 ). The groups G, x and G,, i are the only connected algebraic
K-groups of dimension 1 ([1, Th. 10.9]).

Let V be a k-vector space. For a k-defined algebraic group G, a morphism of
algebraic groups G — GL(V ®; K) = GL, k, induced by a k-morphism ,G —
GL(V) = GL, 4, is called a k-representation of G. When we discuss k-representations,
we sometimes say that a K-vector subspace W of a K-vector space V ®, K =2 K" is
defined over k; this means that W is is generated by W N k™. If W is G-invariant,
this allows us to define the induced k-representation G — GL(W).

From now on, let G be an algebraic K-group defined over k. Unless explicitly stated
otherwise, by a subgroup of G we mean a closed algebraic subgroup over K, that is, an
algebraic group H, which is a closed subvariety of G such that the closed embedding
H — G commutes with the structure morphisms. The subgroup H is said to be
k-defined subgroup, if it is k-defined as a subvariety. (Since the structure morphisms
of H come from those of G, they are automatically k-defined.)



Observe that a closed subvariety H C G possesses a structure of an algebraic K-
subgroup if and only if H(K) is an abstract subgroup of G(K). Indeed, for example,
if I ={feA| flgu =0} is the ideal of A = K|[G] defining H as a variety, then the
invariance of H(K) under i : G — G means that [ is invariant under ¢, and hence
we have a correctly defined morphism i* : A/I — A/I, with A/I = K[H]. Observe
that this structure on H is moreover unique. Consequently, if we are provided with a
closed subset S C G(K) which is also a subgroup, we also have a uniquely determined
closed subgroup H of G such that S = H(K).

We define the kernel ker ¢ and the image im ¢ of a K-morphism ¢ : G — G’ as the
closed subgroups corresponding to ker p(K) C G(K) and imp(K) C G'(K) (see [1,
Cor. 1.4]).

We denote by G° the connected component of the point e in G. It is a closed
normal k-defined subgroup of finite index, whose cosets are both the connected and
the irreducible components of G [1, Prop. 1.2].

For any subset S C G(K), the group-theoretic centralizer Cgk)(S) is always a
closed subset of G(K). Therefore, we can speak of a closed subgroup C¢(S) of G. In
what follows, when we speak of a centralizer Cq(H) of a subvariety H of G, we mean
that it is a closed subgroup of G constructed in the above way from the set S = H(K).
In particular, the centre C(G) of G is the closed subgroup corresponding to the group-
theoretic centre C(G(K)). If § C G(K) is a closed subset, i.e. corresponds to a
closed subvariety of G, then the group-theoretic normalizer Ng(x)(S) is also closed,
and can be considered as an algebraic subgroup of G, the normalizer of S (or of
the corresponding subvariety). However, the question of whether Cg(S) or Ng(S) is
defined over k, if G and S are, is more subtle (see [1, Prop. 1.7]).

We say that a (closed) subgroup H of G is normal in G, if Ng(H) = G.

Other important subgroups of G are the terms of its derived and descending central
series. It appears that if H is a closed k-defined normal subgroup of GG, then the group-
theoretic commutator subgroup [G(K), H(K)] is a closed k-defined subset of G(K) [1,
Prop. 2.3|, and hence provides a closed k-defined algebraic subgroup [G, H| of G. This
allows us to define a solvable (resp. nilpotent) algebraic group as one which is solvable
(resp. nilpotent) as an abstract group.

Since G is an algebraic group, the tangent space T.G = Der (A, k(e)), where
A = K|G], possesses a natural structure of a Lie algebra over K (see [1, 3.3-3.5]).
Considered with this structure, it is called the Lie algebra of G and denoted by L(G).
For example, L(GL, k) = gl, g, the Lie algebra of all matrices n x n with the Lie
bracket [X,Y] = XY —Y X. For a closed subgroup H of G defined by an ideal I C A,
the Lie algebra L(H) is naturally a Lie subalgebra of L(G), defined by

L(H) = {X € L(G) | X|, = 0}.
We say that an algebraic k-group H acts on a k-variety V, if there is a given
morphism of k-varieties ¢ : H x V' — V (which we may abbreviate to ¢(g,v) = g-v =

gv, g € H,v €V if gis a k-valued point of H) satisfying the commutative diagrams

mXidV e><idv

HxHxV —HXxXV and Spec K XV —H x V.

HxV Vv Vv




The variety V is called H-homogeneous, if the map

HxV 22, v xvy,

where pry denotes the projection of H x V' to V, is surjective. If H = G is a K-
group, and V is a K-variety, the fact that V' is G-homogeneous means that G(K) acts
transitively on V(K). The action of G on a V is said to be defined over k, if G, V
and ¢ are defined over k. The following result on K-actions is rather simple, but of
utmost importance:

Closed orbit lemma ([1, Prop. 1.8]) Let G be an algebraic K-group acting on a
K-variety V. Then each G-orbit is a smooth variety which is open in its closure in
V. Its boundary is a union of orbits of strictly lower dimension. In particular, the
orbits of minimal dimension are closed.

The group G acts on itself via conjugation, and via right and left translations.
Consider, in particular, the right translation by a (closed) point g of G

G — G

T = xg

The corresponding map of K-algebras p, : K[G] — K|G] satisfies p,f(x) = f(zg)
for any f € KI[G|, « € G. By [1, Prop. 1.9-1.10] we can choose a finite system
of generators {f,..., f,} of the algebra K[G] so that the n-dimensional K-subspace
W of K[G] spanned by these elements is invariant under all p,, ¢ € G(K). The
corresponding morphism

p:G— GL(W)

provides a closed homomorphic embedding of G into GL,, x (in other words, a faithful
representation). This shows that every algebraic group is in fact a matrix group.
Observe that if G is defined over k then all f; can be chosen in k[G], and the above
embedding is moreover defined over k.

The closed embedding ¢ : G — GL,, g, constructed above, allows us to introduce
the notions of a semi-simple and a unipotent element of G. Namely, g € G(K) is called
semi-simple (resp. unipotent) if its image under ¢ is a semi-simple (resp. unipotent)
matrix in the usual sense. The correctness of this definition, i.e. its independence of
the embedding, is proved in [1, Th. 4.4]. We can also define the Jordan decomposition
in G. If p(g) = hshy, is the (multiplicative) Jordan decomposition of ¢(g) in GL, x
with hg the semi-simple factor of ¢(g) and h, the unipotent one, then hg, h, € ¢(G),
and therefore there is a (unique) decomposition g = gsg, in G, with g, semi-simple
and g, unipotent. We denote by G and G, the sets of semi-simple and unipotent
elements of G respectively. The group G is called unipotent, if G(K) = G,,. The set
G, is a closed subset of G(K) ([1, 4.5]), but we usually can say nothing about Gjy,
and none of them is a subgroup. However, if GG is a connected solvable group, then
G, is a subgroup of G(K) [1, Th. 10.6], and hence can be considered as an algebraic
subgroup.

We call a morphism of algebraic K-groups x : G — G,, x a character of G. We say
that a character x is k-defined, if it comes from a morphism ,G' — G, . We denote
the set of all characters of G by X*(G), and the set of all k-defined characters by
X*(GQ)y. Since Og,, (G k) = K[z, 27", we can identify each character x € X*(G)
with an element of K[G], namely, with the image of z under x* : K[z, 27! — K[G];
if x € X*(G)y, this will be an element of k[G]. It is clear that if 1, x2 are characters,
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then their pointwise product

X1XX2
X1 Xx2:G—=GxG — Gm,KXGm,K—’Gm,K,
where the first map is the diagonal map and the last map is the product map, is also
a character of G. The same is true for the inverse y~'(g) = x(g)~' of a character,
and 1(g) = 1, g € G, behaves as a unit, so X*(G) is an abelian group, and X (G); is
a subgroup of X*(G).

Analogously, we define a cocharacter A of G as a morphism A : G, k — G, and we
denote the set of all cocharacters resp. the set of all k-defined cocharacters of G by
X, (G) resp. X,(G)g. These sets are also abelian groups with respect to the natural
product, and we have a Z-pairing

(,): X*(G) x X,(G) — Z,

defined by (x,\) = m, if (x o A\)f : K[z, 27!] — K|z, 27!] sends x to 2™.

An algebraic K-group T is called an n-dimensional torus, if it is isomorphic to
(G.x)"™ for some n > 0. If moreover T is defined over k and ;7T is isomorphic to
(G )", then T is called a k-split torus. If T is an n-dimensional torus, then both
X*(T) and X,(T') are isomorphic to Z", and the above pairing X*(T") x X.(T) — Z
is a perfect pairing. It is easy to see that a k-defined torus 7' is k-split if and only if
XHT)=X*(T)g.

The Galois group I' = Gal (ks /k) acts on X*(G) and X, (G) in a natural way, taking
ftooofoo ! for any o € T' (we consider (G, x) = Gx). For characters this
action coincides with the one induced from the Galois action on K[G]. A character
or a cocharacter is defined over £ if and only if it is [-invariant.

Let T be a torus acting on an algebraic group G via the morphism ¢ : T'x G — G.
Then the corresponding tangent maps dy; : L(G) — L(G) provide a representation
T — GL(L(G)). In general, if T — GL,, g is a representation of a torus 7', then the
image of T' is conjugate to a subgroup of the group D, of all diagonal matrices in
GL, i [1, Prop. 8.2]. Hence we can write

LG = D LGy
XEX*(T)
where L(G), = {v € L(G) | t-v = x(t)v Vt € T}. The set of non-zero characters
X € X*(T) such that L(G), # 0 is denoted by ®(7,G) and called the set of roots of
G with respect to T. (This should not be confused with the notion of an abstract root

system, §3; cf. Theorem 5.10.) Observe that if H is a T-invariant subgroup of G,
then L(H) C L(G), and hence ®(T, H) C ®(T,G).

§3. ABSTRACT ROOT SYSTEMS AND WEYL GROUPS

Let V be a finite dimensional vector space over Q. We call an element of GL(V') a
reflection, if it has order 2 and induces the identity on a subspace of codimension 1.
We say that w is a reflection with respect to o € V', if w(a) = —a..

Let V* = Hom g(V, Q), and denote by ( , ) the natural pairing of V' and V*. Then
for any reflection w with respect to o € V' there exists a unique A = A, € V* such
that w(z) = z — (xz, \) a for any x € V.

A abstract root system (or just a root system for shortness) is a pair (V, ®), where
V' is a finite dimensional Q-vector space, and ® is subset of V', satisfying:

(1) @ is finite, does not contain 0, and spans V.



(2) If a, § € P are linearly dependent, then a =  or @ = —f3.
(3) For each o € ® there is a reflection w, with respect to a which preserves ®
(such a reflection is necessarily unique).
(4) For any «, 5 € ® one has w,(5) = f — nga with ng, € Z.
(These numbers n, g are, actually, the products (4, o), where A, = A, is the corre-
sponding element of V*.)

Two root systems (V, ®) and (V’, ®’) are called isomorphic, if there exists a vector
space isomorphism ¢ : V' — V' such that ¢(®) = ¢’ and ¢ preserves the integers ng,
from the definition of a root system.

The number dim V' is called the rank of the root system ®.

We denote the subgroup of GL(V) generated by all w,, o € ®, by Wg and call it
the Weyl group of the root system ®. Since ® is finite and generates V, it is a finite
group.

A subset IT C & is called a system of simple roots (or a system of fundamental roots,
or a basis) for ® if II is a basis of V', and any root 3 € ® can be represented as a sum

B = > mya, with m, being integral coefficients, all non-negative or all non-positive.
a€cll
We call an element A € V* regular (with respect to @), if (o, \) # 0 for any o € P.

Clearly, regular elements exist.

Theorem 3.1. Let (V,®) be an abstract root system.

(1) For any regular element N € V*, there exists one and only one system of
simple roots 11 in ® such that (o, \) > 0 for any o € 11, and conversely, for
any system of simple roots 11 there is such a A.

(2) The Weyl group W = We acts simply transitively on the set of systems of
simple roots in .

(3) For any system of simple roots I1 C ®, the Weyl group W is generated by w,,
a e Il

Proof. See [14, Th. 10.1, Th. 10.3]. O

From now on, we fix a system of simple roots Il in an abstract root system ®.

We will denote by & = ®*(II) (resp. &~ = & (II)) the set of roots which are
decomposed into a linear combination of elements of IT with non-negative (resp. non-
positive) coefficients. The elements of ®* (resp. ®7) are called the positive (resp.
negative) roots with respect to II. Clearly, ® = ®T[[®~. The definition of a root
system implies also that &~ = —®™,

Let W = Ws. We set

R=R(Il) = {w, | a € I1}.
By Theorem 3.1, any element w € W can be represented as a product w = wy ... wy,
with w; € R. If the number of factors m is the minimal possible, this decomposition

is said to be reduced; then we set [(w) = m and call it the length of w (with respect
to II).

Lemma 3.2. Let w = vy ..., v; € R, be a reduced decomposition of w € W and let
v e R.
(1) There are only two possibilities for l[(vw):
a) l(vw) = l(w) — 1, and then there exists 1 < i < m such that vw =
U1 ... Vi_10i41 - - - Uy 1S @ Teduced decomposition of vw;
b) l(vw) = l(w) + 1, and then vw = vvy ... vy, is a reduced decomposition of
vw.
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(2) If w = vy ...v; is any decomposition of w with v, € R, then there exist 1 <

/

51 < ... < 8, <t such that w = v, ...v, s a reduced decomposition of w.

Proof. For (1) see [2, Ch. IV, §1, Prop. 4]. To prove (2), observe that if the
decomposition w = v]...v, is not reduced, then there is 2 < ¢ < t such that
w' =) ... v, is a reduced decomposition, and [(v,_;w’) < I(w'). Then (1) implies that
l(vi_yw') = I(w') — 1 and there exists i < j <t such that v;_jw' =v;... v} v}, ... 0.
The claim now follows by induction on ¢. O

For any w € W we set
o ={acd" |w'(a) e ®d"} and @, ={acd®" |w ' (a)c P }.

Lemma 3.3. Let w € W, a € 1. Then

(1) l(wwy) = l(w) + 1 if and only if w(a) € OF;

(2) lwew) = l(w) 4+ 1 if and only if w™(a) € OF;

(3) l(w) = |®,| = [D, .
Proof. The claim of (1) is proved in [14, 10.2, Lemma C]. Since {(w) = [(w™?), the
claim (2) follows from (1), as well as the equality [(w) = |®,,| from I(w) = |®/ _,|. We
prove [(w) = |®/ _,| by induction on I(w).

Let 3 € ®*. Then § = Y m,7, v € II, where all m, are non-negative. If 5 # «,
then m, > 0 for at least one v # «, since ®* does not contain proportional roots.
Since the coefficient near v in w, () = f — ng o« also equals m.,, the root 3 is in ®*.
This shows that ® _, = {a}, and hence l(w,) = |®! _,|.

Let w = w,, - .waam, a; € II, be a reduced decomgosition of w, that is, m = l(w).
Set a = a,,, and W’ = ww,. Then [(w') = l(w) — 1 and I(w'w,) = l[(w") + 1. By the
induction hypothesis

l(w) =19, 1] ={a e ®" |w'(a)c P}

and w'(«) € ®*. Then &, , C &1\ {a}, and since w, takes to @~ only one positive
w
root «a, we have

Haedt |w(a) e d }=[{acd" |uw(a) e d }+1.
Then l(w) =l(w') + 1= [{a € & | w(a) € P} = |P/ .| O

Let I C II. We will denote by A; the subset of ® spanned by I, and by W; the
subgroup of W generated by all w,, « € I. By [2, Ch. VI, §1.7, Cor. 4] A; is a root
system, and, clearly, W; = W(Aj). We write AT = ®* N A;and Ay = d~ NA;.

Lemma 3.4. Let I,J C1II and w € W. The double coset WiwW; contains a unique
element wy of minimal length, and any element w' € WrwW; can be written in the
form w' = aweb, where a € Wi, b€ W; and l(w') = l(a) + {(wy) + (D).

Proof. Let wy be any element of minimal length in W;wW;. We can write w’ = cwyd
for some ¢ € Wy, d € W;. By Lemma 3.2 (2) there is a reduced decomposition
of w" which is obtained from the product of reduced decompositions of ¢, wy, and
d by erasing some factors. Since ¢ € Wy, d € W, by Lemma 3.2 (2) they possess
reduced decompositions with all factors in W; and W} respectively, and we take these
decompositions. Let a and b be the products left from ¢ and d, respectively. Then
a € Wrand b e W;. Since wy was an element of minimal length in W;wW, we have
erased no factors from the reduced decomposition of wy. Then w’ = awyb, and since
the decomposition of w’ is reduced, the decompositions we have obtained for a, wq, b
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are reduced as well. Hence {(w') = l(a)+{(wy)+1(b). This also implies the uniqueness
of wy. O

The elements of minimal length in the double cosets of W;wW;, w € W, form a
complete system of representatives for W;\W/W, which we denote by W/, They
are also characterized as follows.

Lemma 3.5. For any w € W we have w € W' if and only if w(AY) C &+ and
w(AT) C o,

Proof. If w € W1/ by Lemma 3.4 we have l(ww,) > l(w) for any @ € J and
[(waw) > I(w) for any a € I. Then by Lemma 3.3 we have w(J) C ®* and w™(I) C
®*. Since w is additive and the sum of positive roots is a positive root, the result
follows. Conversely, if w € W satisfies w(A}) C &+ and w™(Af) C &, then by
Lemma 3.3 it satisfies l[(ww,) > l(w) for any a € J and l[(w,w) > l(w) for any
a € I. Let wy be the element of the smallest length in the coset WywW);, and write
w = awpb, a € Wi, b € W;. Then l(w) = l(a) + {(wy) + {(b) by Lemma 3.4, and hence
l(a twb™) = I(w) = 1(b~") — I(a™'). Suppose that one of a,b, say, a, is non-trivial.
Then since each multiplication by an element of R changes the length by +1 only, we
must have [(w,w) < I(w), where w,, is the first from the right element in the reduced
decomposition of a=!. Since a~! has a reduced decomposition with terms in W;, this
is a contradiction. O

§4. QUOTIENTS OF VARIETIES AND ALGEBRAIC GROUPS

In the present chapter we reproduce the classical construction of the (geometric)
quotient of an algebraic group G by a closed subgroup H (Theorem 4.7). The idea is
to define an action of G on a projective space P} so that H is precisely the stabilizer
of a certain (closed) point x, and to identify G/H with the G-orbit of . This is made
possible by the fundamental theorem of Chevalley (Theorem 4.2).

1. Chevalley theorem. In order to prove the existence of a quotient of an algebraic
group GG over k by a k-subgroup H, we need to construct a certain representation of G,
which behaves well with respect to H. This representation is provided by the action
of G on its affine algebra K[G] with the help of the “exterior powers” construction.

Let V be a finite dimensional vector space over a field k. Recall that both the group
GL(V') and the corresponding Lie algebra gl(V') act in a natural way on the exterior
powers A™(V'), m > 0, of V. More precisely, we have a homomorphism of algebraic
groups A™ : GL(V) — GL(A™(V)), given by

ATg(oy Ao Avg) = g(v) Ao A g(om)
for any g € GL(V'). The corresponding tangent morphism dA™ : gl(V) — gl(A™(V)),
gives also the action of gl(V'), in the way
d/\mX(Ul/\/\Um) :Zvl/\.../\Uifl/\XUi/\'Ui+1/\.../\Um
i=1

for any X € gl(V'). These actions satisfy the following

Lemma 4.1. Let U be a d-dimensional subspace of an n-dimensional vector space V
over k, and let g € GL(V), X € gl(V). Then
Ng(AWU) = AU <= g(U)=U
AN X (ANU) C AU = X(U) CU.
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Proof. In both cases the implication < is clear. To prove the inverse ones, we first
choose a basis ey, ...,e, of V in such a way that e;,...,es span U, and e,,, ..., €mniq
span g(U). Then AU is generated by e; A ... A eq, and Alg(A?U) is generated by
em A ... A emiq. These elements of AV are collinear if and only if m = 1, that is, if
and only if g(U) =U.

To prove the second equivalence, we observe that it is linear in X, and not affected
by substituting X — Y instead of X, provided Y (U) C U. Denote by W the subspace
of U, consisting of all elements whose images under X are in U. Denote by p a
projection map V' — W, and set Y = X op. Then Y (U) C U, and it is easy to see
that (X — Y)(U) does not intersect U. So, it is enough to prove our claim in case
when X(U)NU = 0. In this case we can choose such a basis ey,...,e, of V that
e1,...,eqspan U, eg1 = X(€1),...,€qem = X(em) span X (U), and €11, . .. €4 Span
ker X NU. Then

d
AN'X(ex Ao Neq) = Y et Ao Aeii AXeiAei AL Aeg
i=1

61/\...Aei_l/\€i+mA€i+1A...A6d.

NE

=1

The latter sum cannot be collinear to e; A ... A eg unless m = 0, that is, X(U) =0 C
U. (|

Theorem 4.2 (Chevalley). Let G be an algebraic group defined over k, with Lie
algebra g. Let H be a closed k-defined subgroup of G with Lie algebra fy. Then there
is a k-representation ¢ : G — GL, i, which is a closed embedding, and a k-defined
line L C K™ such that

H = {geG|plg)L =L}
b = {Xeg|dp(X)LC L}

Proof. Denote K[G] by A and k|G| by Ag. Let I denote the ideal of A, corresponding
to H. Since H is defined over k, I is generated by I, = I N Ag. For any finite set S
of generators of the ideal I, C Ay, by [1, Prop. 1.19] we can find a finite-dimensional
k-defined (that is, generated by its intersection with Ay) subspace W of A, containing
S, which is invariant under all translation maps p,, g € G (see §2). Set M =INW.
Since both I and W are defined over k, then M also is. Clearly, the ideal I is also
generated by Mj. Further, both I and W are invariant under all p,, h € H, so M
also is. Since py, are invertible, this means p,(M) = M for any h € H. By [1, Cor.
3.12] we also have X (M) C M for any X € b.

Conversely, if p,(M) = M for some g € G, then p,(I) = I, because M generates
I and p, is an algebra automorphism. Since py(f)(z) = f(g9x) = 0 for any f € I,
x € H, by the definition of I we get gr € H, so g € H. This means that

H={geG|p(M)=M}

Analogously, if X (M) C M for some X € g, then X(/) C I, since M generates the
ideal I and X is a derivation. And hence X € § by [1, Prop. 3.8], which proves that

h={Xeg|X(M)C M}

Now we set V = AW, where d = dim M, and let L = A?M. Observe that
V 2 A WNA) @ K, and L & AYM N Ag) @ K, where W N Ay, and M N Ay
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are considered as k-vector spaces. Now the representation p : G — GL(WW) induces a
k-representation ¢ : G — GL(V') = GL,, x and Lemma 4.1 implies that

H={geG|p(g)L=L} and bh={Xcgl|dp(X)LCL}.

If this representation is not an embedding, we should replace ¢ by the sum ¢ & ¢/,
where ¢’ : G — GL,, k is any k-representation of G which is a closed embedding. [

Using the theorem above, we can prove even more in case when the subgroup H of
G is a normal subgroup.

Theorem 4.3. Let G be an algebraic group defined over k, and let N be a normal
k-defined subgroup of G. Let g and n denote the Lie algebras of G and N respectively.
Then there is a linear k-representation ¢ : G — GL,, x such that

N =kerty and n=ker(dy).

Proof. Let A = K[G]. By Theorem 4.2 there exists a k-representation ¢ : G —
GL(V) = GL,, g, such that N is the stabilizer of a line L = (v) C V, also defined over
k. Set xo(g9) = £%, g € N. It is a character of the group N, defined over k. Indeed, if
we choose a basis of V' with the first vector in L, we see that the representation map

oK [xij, 1<4,j<n; 1/ det(xij)zjzl} — A

factors through the canonical projection
K [xy, 1/ det(zi;)] — K [x55, 1/ det(zy;)]/(xq =0, 1 <i < n).
Then we can define the K-algebra homorphism
(xo)* : K[z,27'] — A

so that it takes x to the image of x1;. Since ¢ is a k-representation and L is k-defined,
we see that yo € X*(N)g, because it is invariant under the action of I' = Gal (k,/k).
We assign to any character y € X*(N) the subspace

Vi={veV]g-v=x(g)v for any g € N}.

Clearly, each V, is a N-invariant subspace of V, and all non-zero subspaces V,, x €
X (@), are linearly independent. Set

F= V.

XEX(N)ks

This subspace is invariant under G, since for any x € X(N)i,, v € V,, g € G and
h € N we have

e(h)e(g)(x) = e(9)e(g " hg)(z) = x(g~ " hg)g(z),

and, clearly, g - x : N — G, defined by (g - x)(h) = x(¢g *hg) is also a character
of N over kg, because the conjugation by ¢ is an algebraic k-group automorphism of
N. Note that with the above notation ¢(g)V, = V., since g- : X (N ), — X(N)y, is
invertible; so, ¢(g) acts as a permutation of the spaces V.

Moreover, since the Galois group Gal (ks/k) acts on X (N), in a natural way, and ¢
is defined over k, the space F' is Gal (ks/k)-invariant, and, consequently, also defined
over k. Since, finally, L C F'| we can assume that V' = F' without any loss of generality.

Now consider

W ={zegl(V)|z(V,) CV, for any x € X(N),}
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Clearly, W = @ gl(V,). The adjoint representation Ad : GL(V) — GL(gl(V')), which
is defined as Ad(z)(y) =  'yz, x € GL(V), y € gl(V), induces the action of ¢(G) on
gl(V). Since an element y € W preserves all V,, and ¢(g) € GL(V') permutes them,
0(9) 'yp(g) € W, so W is ¢(G)-invariant. This allows to define a representation

Y G — GL(W), (g) = Adow(g)|w.

Observe that v is defined over k, since Ad, ¢ and W are (the latter because Gal (ks/k)
permutes the spaces V).

Let us prove that ¢ satisfies the claim of the theorem. Clearly, N C ker(¢), because
it is mapped to the scalar matrices in each gl(V} ), and therefore commutes with W.
Conversely, if g € G is in ker(?), it means that ¢(g) commutes with any w € W, in
particular, @[y, commutes with the whole gl(V} ), so it is a scalar. It implies that ¢(g)
leaves L stable, so ¢ € N. Hence indeed N = ker(¢)).

The above also shows that n C ker(di), since dip takes n into the Lie algebra
of {e}, which is isomorphic to K and has only one derivation, the trivial one. To
prove the converse inclusion, we recall that d(Ad) = ad : gl(V) — gl(gl(V)) acts as
ad(X)(Y) = XY —YX for any X,Y € gl(V). Hence, if X € g is in the kernel of
dy, its image (dp)(X) € gl(V') commutes with all gl(V, ), hence acts on V) as a scalar
(maybe zero), hence takes L into L, and therefore, X € n. O

2. Quotient morphisms. Let 7 : V. — W be a k-defined morphism of k-defined
varieties over K. We say that 7 is a (geometric) quotient morphism defined over
k, if 7 is surjective and open, and for any open subset U C V the map 7* induces
an isomorphism from Oy (7(U)) onto the set of f € Oy (U) which are constant (as
functions) on the set-theoretic fibers of 7| .

Theorem 4.4 (Universal Property). Let m# : V. — W be a quotient morphism
defined over k. If o : V — X 1is a morphism of K-varieties constant on the fibers of
m, then there exists a unique morphism ¢ : W — X making the diagram

V—"=W
|
XV
X

commutative. If ¢ is a k-defined morphism, then so is 1.

Proof. 1t is clear that we can define a unique map of sets v : W — X such that
@ =1 om. Since 7 is open and ¢ is continuous, this map is also continuous. Further,
for any U C X open, its inverse image U’ = ¢~1(U) is also open, so

7 Ow(n(U")) — {f € Oy(U’) | f is constant on fibers of 7|} € Oy (U)

is an isomorphism of K-algebras. Since ¢ is constant on fibers of 7, all elements of
W (Ox(U)) C Oy (U') also are, so we can define a map of K-algebras

v = (1) o f L Oy (U) — Ow(x(U")).

If ¥ and 7 (that is, ¢ and 7) are defined over k, then this map is defined over k as
well, since it takes O, x(,U) into O,w (x(7(U"))) = Ouw (x7(xU’)). It makes 1 into a
(k-defined) morphism of varieties, because for any two open sets U; C Uy C X the
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map ¢ commutes with restriction maps

Ox(Us) —— Ox(Uy)

@”J wﬁl
Ov(Uz) —— Ov(U})
where U} = o= }(U,) and U] = ¢ (U,), and

(75) "1 HOx (Uh)) — Ow(n(U7)),  (7%) 7" 2 F(Ox(U2)) — Ow(n(Uy))
are isomorphisms, so also commute with restriction maps. O

In certain important cases we can distinguish quotient morphisms using the follow-
ing criterion.

Lemma 4.5. Let w7 : 'V — W be a surjective open separable morphism of irreducible
K-varieties, and assume W is normal. Then 7 is a quotient morphism.

Proof. We need to verify only that for any open subset U C V, 7 is an isomorphism
from Oy (7(U)) onto the set of f € Oy (U) which are constant on the fibers of 7| .
Since V' is irreducible, U also is; since 7(U) is open and W is irreducible, 7(U) is
irreducible as well. Since both U and w(U) are open dense subsets of V and W
respectively, we have the equality of the fields of rational functions K(U) = K(V)
and K (m(U)) = K(W). Hence, the morphism 7|y : U — w(U) is separable, if 7 is.
Finally, since normality is a local property, 7w(U) is normal, if W is. This shows that
it is enough to consider the case U =V, n(U) = W.

Since all K[V] — K(V), K[W] — K(W) and 7* : K(W) — K(V) are injective,
we can identify K[V], K[W] and K (W) with subalgebras of K (V). We need to prove
that every f € K[V] constant on the fibers of 7 lies in the subring 7*(K[W]) = K[W]
of K(V). By [1, Prop. AG.18.2], any such f is purely inseparable over K (W), so by
the separability of 7 we have f € K(W). If f ¢ K[W], that is, f is not defined in
r = mw(y) € W, then by [1, Lemma AG.18.3] there is a point 2’ = 7(y') € W such
that 1/f is defined at 2’ and (1/f)(z’) = 0. But this means that 1/f considered
as an element of K (V) is defined and vanishes at y' € V', which is impossible, since
f € K[V] is defined everywhere. O

3. Quotients of varieties by groups. Throughout this subsection we suppose that
G is an (affine) k-defined algebraic K-group, V is a k-defined K-variety, and G acts
on V with a k-defined action.

We call a surjective morphism 7 : V. — W of K-varieties an orbit map, provided
the fibers of 7 are the orbits of G in V. A (geometric) quotient of V' by G defined over
k is an orbit map m : V' — W which is a k-defined quotient morphism in the sense of
the previous subsection. In particular, it satisfies the following universal property:

Universal property. If (W, n) is a k-defined quotient of V by G, and ¢ : V — X
15 a morphism of varieties constant on the G-orbits in V', then there exists a unique
morphism ¢ : W — X making the diagram

V—=W
|
XV
X

commutative. If ¢ is a k-defined morphism, then so is 1.
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Hence, the k-defined quotient of V' by G over k, if it exists, is unique up to a unique

k-defined isomorphism. We will denote it by V/G.

Lemma 4.6. Suppose w : V. — W s an open separable G-orbit map, and assume
that W is a normal variety and that all irreducible components of V' are open. Then
(W, ) is a quotient of V by G.

Proof. Since 7 is surjective and open, it maps each irreducible component V' of V'
onto an irreducible component W’ of W. Since W is normal, for any = € W its local
ring Oy, is integrally closed, hence z lies in a unique irreducible component; this
means that all irreducible components of W are disjoint. Since 7 is an orbit map, the
set U = = 1(W’), is G-invariant. Therefore it is enough to prove the claim for the
case W irreducible.

Observe that G acts transitively on the set {V,...,V,,} of irreducible components
of V. Indeed, for any irreducible component V; of V' and any ¢ € G, we have that
gV; is also an irreducible component; and GV; = 7=} (7(V;)) = 7~ }(W) = V. Further,
by Lemma 4.5, each 7|y, : V; — W is a quotient of V; by the stabilizer group H; of
Vi in G. Now for any open U C V', if f € Oy(U) is stable on the fibers of 7|y, we
can represent it as f = >, f;, where f; € Oy (7' (x(U)) N'V;). Then each f; is stable
on the fibers of |y, intersected with U; = 7= 1(7(U)) N V;, hence f; = (7|v;)*(g;) for
some g; € Ow (W(Ul)) Since f is constant on the fibers of 7, the functions g; coincide
on intersections 7(U;) N7(U;), and there exists g € Ow (7(U)) = Ow (U, 7(U;)) such
that gl.w,) = g; for any i. Then f = 7%(g), and thus lies in 7#(Oy(U)). This proves
that 7 : V' — W is a quotient of V' by G. U

Theorem 4.7. Let G be a k-defined algebraic group over K and let H be a closed k-
defined subgroup of G. Then there exists a k-defined quotient m : G — G/H, and both
G/H and (G/H) are smooth quasi-projective varieties. If H is a normal subgroup of
G, then G/H is an k-defined algebraic group and m is a morphism of groups.

Proof. By Theorem 4.2 we have a k-representation ¢ : G — GL(V) and a line L CV
defined over k such that

H={geG|p(g)L=L} and h={X€g|dp(X)LCL}

where g and b are the Lie algebras of G and H respectively. Let dim V' = n, and let
q:V\{0} - P(V) = P%! denote the projection onto the projective space of lines
in V. Let x = q(L\ {0}) € P (k). The group G acts on P " via gy = q(¢(9)y),
y € P 1K), and this action is k-defined. The variety G C P% ! is quasi-projective,
since, being an orbit of G, it is an open subset of its closure by the closed orbit lemma.
The map
m:G — Grx
g = gz

is an orbit map with respect to the action of H on G by right multiplication, since
H is the stabilizer of x. It is also defined over k, since x is a k-defined point. The
variety ,(Gx) is clearly defined over k; it is an open subset of its closure, since the
canonical projection P} — P! is both open and closed, and hence (G/P) is also
quasi-projective. The smoothness of Gz implies that of ,(Gz) by [12, Prop. 17.7.1].

It leaves to prove only that ker(dm) = h. Indeed, suppose that it is true. Then since
dim G = dim H + dim Gz (this follows from the fact that G/H = Gz as a topological
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space) and Gz, as an orbit of G, is smooth, we have
dim7,(Gz) = dimGx
= dimG —dim H
= dimg—dimb
= dimg — dim ker(dr)
dim 751,y G — dim ker(dm) 1

y)

which implies by [1, Th. AG.17.3] that 7 is separable. Since any smooth variety
is normal, we have that Gz is normal. Further, all fibers of m are isomorphic to
H as varieties, and all irreducible components of H are cosets of H® in H, so also
isomorphic; this shows that all irreducible components of fibers of m have the same
dimension, hence by [1, Cor. to Prop. AG.18.4] 7 is open. Summing up, 7 : G — Gx
is an open separable orbit map to a normal variety, and all irreducible components of
G are, clearly, open, so Lemma 4.6 says that 7 is a quotient map. Consequently, we
need to prove only that ker(dr) = b.
Choose a non-zero element v of L and define

A:G — V\{0}
g — (g

so that 7 = go A and (d\).(X) = dp(X)v for any X € g; here we identify V' with
T.V = T.(V \ {0}). Now since the kernel of (dq), is equal to L, we have that for
Xeg

(dm)e(X) =0 <= dp(X)L C L,

and the statement on the right is equivalent to X € b.

Now suppose that H is a normal subgroup of GG. In this case Theorem 4.3 permits
to choose ¢ : G — GL(V) so that H = ker ¢ and h = ker(dy). Since ¢ is a k-defined
morphism of algebraic groups, ¢(G) is a closed k-defined subgroup of GL(V'), and
hence a k-defined algebraic group. Since H is precisely the stabilizer of e € GL(V)
with respect to the left multiplication by G (via @), that is, ¢(G) = Ge, we can prove
as above that m = ¢ : G — ¢(G) is a quotient map. O

§5. REDUCTIVE GROUPS OVER AN ALGEBRAICALLY CLOSED FIELD

In the present chapter we discuss the structure of a connected algebraic group G
over K, first in a general situation, and then in the case when G is a reductive algebraic
group (see the definition below; the basic properties are summarized in Theorem 5.7).
In particular, we obtain the Bruhat decomposition for G' (Theorem 5.12), and deduce
the classification and the main properties of parabolic subgroups of G (subsection 5).
Here we do not touch upon the questions of rationality (i.e. of being defined over
a smaller field k) of our objects; these are considered in §6. Thus throughout this
chapter all algebraic groups, varieties etc. are over K, and we tend to omit K from
our notation.

1. Borel subgroups. Let G be a connected algebraic group (over K). A subgroup
B of G is called a Borel subgroup, if it is a maximal connected solvable subgroup of
G. An overgroup of a Borel subgroup is called a parabolic subgroup.

We summarize the main properties of parabolic and Borel subgroups in Theorem 5.1
below. In particular, we will prove that for any parabolic subgroup P, the quotient
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variety G/P is not only quasi-projective, as it was shown in Theorem 4.7, but even
projective. To obtain this result, we need the notion of a flag variety.

Let V be an n-dimensional K-vector space. For any d > 0, consider the Grass-
mannian Grg(V'), which is the set of all d-dimensional subspaces of V. It admits an
embedding (cf. Lemma 4.1) into the projective space P(A%V), namely, the one sending
a subspace W to the line AYW. (This map is also known as the Pliicker embedding.)
It is well-known (for example, [1, 10.3]) that the image of Gry(V) is a closed algebraic
subset of P(AYV). Hence we can introduce on Grg(V') the structure of a projective
variety. Further, if W € Gry(V) and W' € Grg (V) are two subspaces of V, the fact
W C W' is also expressed by algebraic equations on the coordinates in AV x A%V,
This allows us to define the flag variety of V' as the set

FV)={(V1,..., V) € Gri(V) x ... x Gr,(V) | V; T Viyq, 1 <i<n},
with the structure of a projective variety induced from P(A'V x ... x A"V).

Theorem 5.1. Let G be a connected algebraic group.

(1) All Borel subgroups are conjugate in G.

(2) A subgroup P C G is parabolic if an only if G/P is a projective variety.

(3) If an automorphism of G fizes all elements of a Borel subgroup B, then it is
the identity.

(4) If P is a parabolic subgroup of G, then P is connected and P = Ng(P).

Proof. Let B be a Borel subgroup of maximal dimension in G. By Theorem 4.2 there
is a faithful representation 7 : G — GL(V') with a line V; C V such that

B={geGlp(gVi=W} and L(B)={X cg|dp(X)Vi CW}.

Then B also acts on V/Vi, and by the Lie-Kolchin theorem ([1, Th. 10.5]) there is a
flag F=(V; CVo C ... CV,=V)in V, stabilized by B. G acts on the whole flag
variety F (V) of V via 7. Since B is the stabilizer of V4, it is also the stabilizer of F.
As in the proof of Theorem 4.7, we have G/B = G - FF C F(V). If some other flag
F' € F(V) has the stabilizer B’ in G, then B’ too is a solvable subgroup of G, and
the maximality of dim B implies dim B’ < dim B. Hence also dimG/B < dim G/ B/,
so G - F' is an orbit of minimal dimension for GG, and hence closed. Then G/B is a
projective variety, since the variety of flags is projective. Further, any other Borel
subgroup D of G acts on G/B in a natural way, and hence by [1, Th. 10.4] it has
there a fixed point. This means that DB C xB for some € G, or 2 !Dx C B. By
the maximality of a Borel subgroup z~!Dx = B, so all Borel subgroups are conjugate.

Let P be a parabolic subgroup of GG, and B a Borel subgroup contained in P. Then
G/B — G/P is a surjective map from a complete variety, hence G/P is complete
and, consequently, projective. Conversely, if a subgroup P of G is such that G/P is
projective, then any Borel subgroup B has a fixed point in G/P, and, as above, its
conjugate lies in P. This proves the second statement of the theorem.

The completeness of the variety G/B implies that any automorphism ¢ of G which
is identical on B, is also identical on the whole G. Indeed, the morphism ¢’ : G — G
defined by ¢'(g) = p(g9)g~" factors through the quotient map G — G/B, hence its
image is both complete and affine, and thus a point.

Now let us prove (4). First we show that if the claim is true for all Borel subgroups,
then it is true for any parabolic subgroup. Indeed, let n € Ng(P) and let B be a
Borel subgroup contained in P. Then nBn~! is also a Borel subgroup, hence by the
conjugacy of Borel subgroups of P we have pnBn~'p~! = B for some p € P. By our
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assumption, pn € B, but then n € P. To see that P is connected, observe that the
identity component P° is also a parabolic subgroup, and P is in its normalizer.

It remains to show that every Borel subgroup B of G satisfies B = Ng(B). We
argue by induction on dim G. If dim G < 2, then G = B, because if dim B < 1, then
B is abelian, hence by (3) any x € B acts on G trivially, so B is central in G, and
then G itself is abelian. In the general case, denote Ng(B) by N, and let T be a
maximal torus of B. The conjugacy of all maximal tori of B (for example, [1, Th.
10.6]) implies N C B - Ng(T'), so it is enough to prove that Ng(T) NN C B. Let
S = Cr(n) for some element n € N N Ng(T). We have three possibilities.

(i) dim S > 0, S° C C(G). In this case we easily get n € B, applying induction to
G/S°.

(ii) dim S > 0, S° € C(G). Then Cg(S°) # G is a connected algebraic group, as it
is the centralizer of a torus [1, Cor. 11.12], and n € Cs(S°). By [1, Prop. 11.15] the
intersection B N Cg(S°) is a Borel subgroup of C¢(S°), hence the induction applied
to C(S°) gives n € B.

(iii) dim S = 0, that is, S is finite. Consider the map f: T — T, f(t) = [n,t]. Since
ker f = S has dimension 0, f is surjective. This means 7" C [N, N]. By Theorem 4.2
there is a faithful representation 7 : G — GL(V') with a line L C V such that N is
the stabilizer of L. Then N acts on L via a character y € X*(N). Since the image
of x is abelian and consists of semi-simple elements, we have that both [V, N] and
the unipotent part B, of B are in ker y. Then also B is in ker y. But this means
that for any « € L the orbit map G — V, g — g - z, factors through G/B and so
has a complete affine image, that is, is constant. Then G = N = B and everything is
proved. O

Recall that a torus over K is an algebraic group isomorphic to (G, k)" for some
n > 0.

Corollary 5.1.1. All maximal tori of G are conjugate.

Proof. Since a torus is a solvable subgroup, it is contained in a Borel subgroup. By the
theorem all Borel subgroups are conjugate, and inside a solvable group all maximal
tori are conjugate by [1, Th. 10.6]. O

Let B = B(G) denote the set of all Borel subgroups of G. Since G acts on B
transitively, and Ng(B) = B, the map

G/B — B
gB — g¢Bg™!

is correctly defined and bijective. This allows us to consider B as a variety, with the
structure induced from G/B. Observe that it is a projective variety.

Subgroups of the form Cq(T'), where T' is a maximal torus of G, are called Cartan
subgroups of G. Each subgroup Cg(T) is connected, since by [1, Cor. 11.12] all
centralizers of tori are connected. We also have Ng(7T')° = Ce(T)° ([1, Cor. 8.10]).
Hence the quotient group

W =W(T,G) = Ng(T)/Cs(T)

is finite. It is called the Weyl group of G corresponding to T'. Observe that since all
maximal tori of G are conjugate, the groups W (T, G) corresponding to different 7" are
isomorphic.

For any maximal torus 7" of GG, the set of T-invariant Borel subgroups is precisely
the set of all B € B such that T'C B. We will denote this set by B”.
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Lemma 5.2. The group W = W (T, G) acts on BT, and the action is simply transitive.
In particular, |BY| is finite.

Proof. Observe that Cg(T) is a nilpotent algebraic group. Indeed, the quotient
Ce(T)/T contains no semi-simple elements, since 7' is the maximal torus of C¢(T),
and thus C¢(T')/T is unipotent. Hence both T" and C¢(T")/T are nilpotent, so C(T)
also is. Now the nilpotency of Cs(T') implies that it is contained in a Borel subgroup
B € BT. The conjugacy of Borel subgroups (Theorem 5.1) and of maximal tori inside
a Borel subgroup imply that Cg(7T) is contained in any Borel subgroup from B7.
Hence W acts on BT. The transitivity of the action is implied by the transitivity
of the action of G and the conjugacy of tori inside a Borel subgroup. Suppose that
n € Ng(T) satisfies nBn~! = B. Then n € BNNg(T) = Ng(T) by Theorem 5.1. But
since B is a solvable group, we have Ng(T') = Cp(T) ([1, Th. 10.6]), so n € Cx(T).
This proves that the action is simply transitive. O

Theorem 5.3. Let o : G — G’ be a surjective morphism of algebraic groups. Then
for any mazimal torus T of G, its image a(T) =T is a maximal torus of G', and «
induces surjective maps
B(G) — B(&),
B(G)" — B(G")",
W(T,G) — W(T',G").
If kera C () B, all these maps are bijective.
BeB(G)

Proof. Let B be a Borel subgroup of G. Then « induces a surjective morphism
G/B — G'Ja(B), and hence G'/a(B) is complete, since G/B is. Then G'/a(B)
is projective, and «(B) is parabolic by Theorem 5.1. But it is also connected and
solvable, so it is a Borel subgroup of G'. The conjugacy of Borel subgroups and the
surjectivity of o implies that we get all Borel subgroups of G'.

Now since « preserves the Jordan decomposition, if 7" is a maximal torus of B, then
T" = a(T) is a maximal torus of a(B), and hence of G’, because a(B) is a maximal
solvable subgroup. Clearly, the map B(G)T — B(G')™ is also surjective. And the
map of Weyl groups is surjective, because they act simply transitively on B(G)? and
B(G"T" respectively.

If keraw € () B, then the map B(G) — B(G’) is injective, and this implies the

BeB(G)
injectivity of all other maps. O

The subgroup R(G) = ( N B) is called the radical of G. 1t is the unique maximal
BeB
connected solvable normal subgroup of G. Its subgroup R,(G) = R(G), is called the

unipotent radical of G. It is the unique maximal connected unipotent normal subgroup
of G. The group G is called reductive (respectively, semi-simple) if R,(G) = {e}
(respectively, R(G) = {e}). Theorem 5.3 implies that G/R,(G) is always reductive,
and G/R(G) is always semi-simple.

Lemma 5.4. If G is a reductive algebraic group, then R(G) = C(G)°, and it is a
torus.

Proof. Clearly, C(G)° C R(G). Since G is reductive, we have R(G) = R(G)s, so it
is a torus. The centralizer of a torus is connected ([1, Cor. 11.12]), so Cq(R(G)) =
N¢(R(G))° = G and R(G) C C(G)°. O
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2. Groups of semi-simple rank 1. The semi-simple rank of a connected algebraic
group G is the dimension of T'/(T'N R(G)), that is, the dimension of a maximal torus
in G/R(G).

We are going to study the groups of semi-simple rank 1. The model example of such
a group is the projective linear group PGLy g = GLg /C(G L2 ), whose K-points
look as follows. The group

C(GLy k) (K) = {( - ) lce K*}

is the group of scalar 2 x 2 matrices. Denote the projection GLy i (K) — PGLy x(K)
by

The subgroup

100 ={[3 8] [ave ) ={[3 1] [ocx)

is the group of K-points of the maximal torus 7" of PGLgy . Clearly, T' has rank
1. The group PGLy f is perfect [1, 10.8], hence not solvable, so its semi-simple rank
equals 1.

All algebraic groups of semi-simple rank 1 are characterized in the following way.

Lemma 5.5. Let G be an algebraic group, T' a mazimal torus of G, and W = W (T, G)
the Weyl group of G. The following conditions are equivalent:

1) G has semi-simple rank 1;

2) [W|=2;

3) G/B = P} for any Borel subgroup B of G;

4) there exists a surjective morphism of algebraic groups ¢ : G — PGLg x such

that kerp = (] B.

BeB

Proof. (1) = (2) Since G has semi-simple rank 1, it is not solvable, then dim(G/B) >
1. As in the proof of Theorem 4.7 we can choose a representation G — GL(V') so that
(/B is isomorphic to a closed subvariety Gz of P(V'), where V' is a K-vector space.
Then by [1, Prop. 13.5] T has at least dim(G/B) + 1 = 2 fixed points in G/B, so B”
has at least two elements. Thus |W| > 2. On the other hand, by Theorem 5.3 W
is isomorphic to the Weyl group of the quotient G/R(G), and the latter is embedded
into Aut (G, k), which consists of two elements; so || < 2.

(2) = (3) |[W] > 1 implies that G is not solvable, and hence dim(G/B) > 1. As
above, T has at least dim(G/B) + 1 fixed points in the projective variety G/B, so
|W| > dim(G/B)~+1. This implies dim(G/B) = 1. Since T acts non-trivially on G/ B,
we can find a cocharacter A : G,, x — T such that A\(G,, i) also acts non-trivially.
Since G/ B is an irreducible variety of dimension 1, for any non-fixed x € G/B the
orbit map G,k — MG, x)xr C G/B is dominant. Since G/B is complete, this map
can be extended to a dominant morphism P — G/B ([1, AG.18.5]). Then G/B is
isomorphic to Pk by [13, Th. 6.3].

(3) = (4) Since G/B = PL., by [1, Prop. 10.8] the action of G on G/B is given
by a morphism ¢ : G — PGLy k. Clearly, kerp = () B’. Since G is not solvable,

B'eB
©(@) is not solvable as well. Then dim(p(G)) > 2, as all groups of smaller dimension
are solvable, see the proof of Theorem 5.1 (4). Since PGLg k is connected and has
dimension 3, ¢ is surjective.

(
(
(
(
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(4) = (1) The existence of ¢ implies by Theorem 5.3 that the semi-simple rank of
G equals that of PGLg -, and PGL; x has semi-simple rank 1. O

The groups of semi-simple rank 1 are actually the “building blocks” for general
reductive groups (Theorem 5.7), and their properties summarized in the following
theorem are implicitly used in almost every statement that follows.

Theorem 5.6. Let G be an algebraic group of semi-simple rank 1. LetT' be a mazimal
torus of G, acting on G by conjugation, and let B and B’ be the two elements of BY.
Then

(1) The unipotent radical B, of B is isomorphic to G, k; ®(T, B) consists of one
element, ®(T,B) = {a}, and L(B) = L(T) ® g, where dimg, = 1. The
subgroup B, 1is the unique T-invariant connected subgroup of G with the Lie
algebra g.. The same holds for B' with —a instead of c.

(2) BNB' =T, and L(B) N L(B") = L(T).

(3) L(G) = L(B) + L(B) = L(T) & go ® g, and &(T, G) = {0, —a}.

Proof. By Lemma 5.5, there is a surjective morphism ¢ : G — PGLy g with the

kernel I = () Q. By Theorem 5.3, ¢(T') is a maximal torus and ¢(B) a Borel
QeB
subgroup of PGLs i. Since all Borel subgroups and all maximal tori are conjugate

(Theorem 5.1 and Corollary 5.1.1), composing ¢ with an automorphism of PGLs g,
we may assume that ¢(7') is the standard torus {[ o 2 }, a,b € K*} of PGLy k,

and ¢(B) is the standard Borel subgroup {[ o b ], a,be K*, ce K}. It is easy

to see that the unipotent radical ¢(B), of ¢(B) coincides with {[ (1) 1 }, ce K},

and hence ¢(B), = G, k. Since R,(G) = {e}, the kernel ker(p|p,) is finite; then
dim B, = 1. But G,k is the only connected unipotent K-group of dimension 1,
hence B, = G, k. Being a connected solvable group, B is a semidirect product of its
maximal torus 7" and B, by [1, 10.6], hence L(B) = L(T) ® L(B,). Since B, = G, k,
it coincides with L(B,,) as a variety, hence dim L(B,) = 1 and T" acts on B, by means
of the same unique character a € X*(7T') as on L(B,,). Since ¢(B) is not abelian, T
acts on B, non-trivially, so ®(7', B) = {«a}.

The matrix [ ? (1) ] € PG L, normalizes ¢(T), so it is a representative of the non-
trivial element of the Weyl group W (p(T"), PGLg k) (recall that |W (¢(T),PGLy k)| =

2). Hence ¢(B’) coincides with {[ : 2 }, a,be K*, ce K}, and, similarly, B] =

Gax. It is easy to see that ¢(T") acts on ¢(B) and ¢(B’) with two inverse characters;
hence the action of 7" on B is given by —a.

Further, B, N B, is a T-invariant subgroup of B, = G, k. Since B, N B, # B,
and the action of 7' is a non-trivial linear action, we must have B, N B, = {e}.
Consequently, BN B' = T. By the same token, L(B) N L(B’) = L(T'). Then

dim(L(B) + L(B')) = dim B 4+ dim B;, = dim B + 1,
and since by Lemma 5.5 we have dim G = dim B + 1, we obtain
L(G)=L(B)+ L(B')=L(T) ® L(B,) ® L(B.).
Then also ®(7,G) = {a, —a}.

Now the only thing to prove is that B, is the unique T-invariant connected subgroup
with the Lie algebra L(B,) = g.. Let H be another such subgroup of G. Since
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dimH =1, we have H = G,, k or H = G, . In the first case T" has to centralize
H, since Ng(H)° = Cg(H)° by [1, Cor. 8.10], but T" acts non-trivially on L(H).
Hence H = G, k, in particular, H is unipotent. Then 7" x H is a connected solvable
subgroup of G containing 7', and therefore T x H coincides with B or B’. Because of
the Lie algebra it coincides with B, and the result follows. U

3. Structure of reductive groups. From now on, let the group G be a reductive
algebraic group. We fix a maximal torus T" of G, and set ® = ®(T,G), the set of
roots of G with respect to the conjugation action of 7. We will denote by g the Lie
algebra L(G) of G, and by g, the subspace of g = L(G) corresponding to the root
ae d(T,G).

Observe that the Weyl group W = W(T, G) acts on X*(T') via

w(x)(t) = x(wtw™"), weW, xe X*(T), teT.

Theorem 5.7. Let G be a reductive algebraic group. Let T be a fixed mazimal torus
of G, and denote by ® = ®(T,G) the set of roots of G with respect to the conjugation
action of T' on G. Then

(1) L(T) coincides with the set of T-stable elements of g, and g = L(T) ® P ga-
N Ta>0, where T, = (ker a)°.

(2) RG)=CGr=(n

(3) @ generates a subgroup of finite index in X*(T/C(G)°) C X*(T). If a,f €
are linearly dependent, then o = 3.

(4) G, = Cg(T,) is a reductive group of semi-simple rank 1, and L(G,) = L(T) &
Oa D g_o; consequently, dimg, = 1, and W(T,G,) € W(T,G) consists of
two elements 1 and w,, where w, is a reflection on X*(T) ®@ Q, satisfying
we(a) = —a.

(5) For any a € O, there is a unique connected T-invariant subgroup U, of G such
that L(Uy) = @o. This subgroup is the unipotent part of a Borel subgroup of
Gy containing T'; consequently, U, = G, x and G, = (T, U,, U_,).

(6) For any B € BT the set of roots ®(B) = ®(T, B) contains eractly one element
of any pair {a, —a}; hence, & = ®(B)11 (—P(B)). Moreover, there exists
X € X.(T) such that ®(B) ={a € ® | (o, \) > 0}.

(7) For any A € X,(T) such that (o, \) # 0 for any o € @, there exists a unique
Borel subgroup By € BY such that ®(By) = {a € ® | (o, A) > 0}.

Proof. See [1, Th. 13.18]; essentially based on Theorem 5.6. O

Corollary 5.7.1. Let H be a closed connected T-invariant subgroup of G. Then
L) =LTme @ o
a€®(T,H)
H={(TnH) U,, a € ®(T,H)).
Proof. Since the representation of T' in g is completely reducible, we have
LH) = (LT)NLH)® @ (LH)Nga).
a€d(T,H)

Since all g, have dimension 1, the intersection L(H) N g, equals g, or 0. By [1, 9.2,
Cor.], we also have L(T'N H) = L(T) N L(H), hence the equality for the Lie algebra.
To prove the second equality, observe that it H = Cy(7T), then L(H) = L(HNT) and
hence H = (H NT)°, and the statement is clear. If H # Cy(T), by [1, Prop. 9.4] H
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is generated by all subgroups Cy(7,)° = (HNG,)°, o € ®(T, H). Hence it is enough
to prove the equality for H C G,. In this case, if H is solvable, then oo € ®(T, H)
implies T'x H =T x U,, since T' X U, and T' x U_, are the only T-invariant Borel
subgroups of G. If H is not solvable, then it contains unipotent elements of two
distinct Borel subgroups, and since H is T-invariant, it contains the whole unipotent
radicals of these subgroups. This implies that 7" x H = G,, and hence H contains
both U, and U_,,. O

Corollary 5.7.2. Let B be a Borel subgroup of G, and let U be its unipotent radical.

1) LU)= D g

acd(B)
(2) Denote L(U) by u. The map
Hw—b=L(H)

is a lattice monomorphism from the lattice A of all T-invariant closed sub-
groups H of U to the lattice of all T-invariant Lie subalgebras by of u.
(3) For any subgroup H € A we have
H=(Us, a € ®(T H))=(Ua, 8. Ch).

Moreover, H is connected, and directly spanned by U,, o € ®(T, H), in the
sense that if oq,...,a, are all roots of ®(T,H) in any order, the product
morphism
Upy X ... xU,, — H
is an isomorphism of varieties.
(4) If for some u € U and H € A we have uHu™' € A, then uHu ' = H.

Proof. See [1, Prop. 14.4].
U

Our next goal is to show that & = ®(7,G) is an abstract root system in the sense
of §3. For any o € @, let 6, denote an isomorphism between G, x and U,. We
introduce the action of T on G, i so that td,(z)t™' = 0,(a(t)x) for any t € T and
re K= GG’K(K).

Lemma 5.8 (Chevalley commutator formula). Let a, 5 € ® be such that o # £0.

Then
[0 (2),05(y)] = H Ora+s8(Cra+spt"y®)

r,8>0,
ra+spBed

for some constants crq1sp € K and for all x,y € K.

Proof. For any a # £ € &, since they are linearly independent, we can find a
cocharacter A € X, (T) such that (v, \) # 0 for any v € ®, and both (a, A\) and (o, )
are positive. By Theorem 5.7, there is a Borel subgroup B = By € BT such that

O(T,B) =®(B) ={y€®| (7,\) > 0}.

Then «, 5 € ®(B). Let U be the unipotent radical of B. Then ®(T, B) = &(T,U).
By Corollary 5.7.2, if aq, ..., «a, are all roots of ®(T,U) = ®(B), the product map

Usyy X ... xU,, —U

is an isomorphism of varieties. Then [0o(2),05(y)] = [],<i<, 0o, (Pi(x,y)) for some
polynomials P; in two variables z,y. Further, for any t € T we have t[0, (), 05(y)]t ™! =
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[t0, ()t t05(y)t 1], hence a;(t)P;(z,y) = Pi(a(t)z, B(t)y). This easily implies that
all P; are monomials, and non-zero only when o; = ra + sg. O

Let ¥ be any subset of ® such that ¥ is closed under addition and ¥ C ®(B) for
some Borel subgroup B € BY. The subgroup

Uy = <Ua, OZE\II>

is a T-invariant closed subgroup of U. An easy induction on |¥| shows that Uy is the
subgroup with Lie algebra

L(U\I!) = @gaa

acV

and hence by Corollary 5.7.2 Uy is directly spanned by U,, a € W.

Lemma 5.9. Let o € @, and let w, € W = W(T, G) be the generator of the subgroup
W(T,G,). Then for any § € ® we have

wa(ﬁ) = ﬁ — Ng.aQ,
where ng o € Z. In particular, ng o = 2.

Proof. By Theorem 5.7 w,(a) = —a, hence the case « = £ is clear. Suppose that
a # 3. Consider the set

UV={ra+se®|rsecZ, s>0}.

It is, clearly, closed under addition, and we can find a Borel subgroup B € B” such that
U C ®(B) as in the proof of Lemma 5.8. Further, for any v € ¥ we have iy + jo € ¥
for any ¢,7 > 0, hence U, and U_, normalize Uy by Lemma 5.8. Then the subgroup
G, also does. Consider w,, € W as an element of Ng_ (7). Then waUﬁwgl C Uyg. But
woUgwy ' = Uy, (p), hence gy, 5 C L(Uy) and w,(3) € ¥. Then wa(8) = ra + sf3,
r,s € Z. The fact that w, has order 2 implies that s = 1. U

Theorem 5.10. Let V' be the Q-vector space X*(T'/C(G)°) ®z Q, identified canoni-
cally with a subspace of X*(T) ®z Q. Then ® = ®(T, Q) is a abstract root system in
V' with Weyl group W = W(T,G).

Proof. By the very definition of ®(7,G), it is finite and does not contain 0. By
Theorem 5.7 (T, G) generates V = X*(T/C(G)°) ® Q, and posesses the necessary
reflections w,. By Lemma 5.9 these reflections act with integral coefficients. Also by
Theorem 5.7 the elements +a® (7T, G) are the only elements linearly dependent with
a € O(T,G). Hence  is a root system.

Let Wg be the Weyl group of ® as an abstract root system. Clearly, W C W.
Recall that W acts simply transitively on the set of Borel subgroups B € B”, hence
|W| = |BT|. On the other hand, by Theorem 5.7, for each Borel subgroup B € B
there is an element A € X,(7T') such that ®(B) = {a € ® | (a,A) > 0}. Since
¢ = ¢(B)II(—P(B)), this element A is regular in the sense of Theorem 3.1, and
therefore ®(B) contains a system of simple roots. Hence each B defines a system
of simple roots in ®, and these systems are distinct, since the Lie algebras of Borel
subgroups are. The Weyl group Wg acts simply transitively on the systems of simple
roots (Theorem 3.1), so [Wg| > |BT|. This means that Wg = W. O
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4. The Bruhat decomposition. As above, we fix a maximal torus 7" of G and
set & = O(T,G). Let us fix also a Borel subgroup B O T. By Theorem 5.10 &
is an abstract root system, hence by Theorem 5.7 combined with Theorem 3.1 we
can choose a (unique) system of simple roots in ® such that ®(B) = ®*, the set of
positive roots with respect to II. Theorem 5.7 also implies the existence of a unique
Borel subgroup B~ of G such that ®(B~) = &~ = —®(B), the set of negative roots.
We denote the unipotent radicals of B and B~ by U and U~ respectively.

Recall that an element w € W is actually a coset of Ng(T') modulo Cq(T). We
allow ourselves to write w instead of its representative n € Ng(7') in those formulas
that do not depend on the choice of such a representative.

We set

Us=UNwUw™' and U, =UnwU w "

By Corollary 5.7.2 these subgroups are generated by all subgroups U, such that « is
in the set

o(U,) =, ={aed" |w(a) ed"} or ®U,) =9, ={aed" |w(a)ed}
respectively.

Lemma 5.11. If w,w’ € W and ®;, = ®F,, then w =w'.

Proof. See [2]. O

Theorem 5.12. (1) Bruhat decomposition of G. The group G is the disjoint
union of double cosets BwB, w € W:

G = ]_[ BwB.

weWw

For any w € W the morphism
U,xB — BuwB

(z,y) — zwy
is an isomorphism of varieties.

(2) Cellular decomposition of G/B. The variety G/B s the disjoint union of
the U-orbits Uwxy, w € W:

G/B = H Uwxo,
weW
where xy € G/B is the image of B under the projection G — G/B. For any w € W
the morphism
U, — Uwaxg
U UWTg

15 an isomorphism of varieties.

Proof. Observe that since B =T x U and W normalizes T, we have BwB = UwB
and Bwzy = Uwzy. Hence (1) and (2) are essentially equivalent, and it’s enough to
prove that

1) if w,w" € W and Uwzy = Uw'zy, then w = w';

2) G = BWB;

3) the map of varieties U], x B — BwB, defined in the theorem, is an isomorphism.
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Proof of 1). The equality Uwzy = Uw'zy means that there is an u € U such that
w'ry = uwxg. But this implies that

Uy =Unuw'Uw™" = UnwBw™!
= UNuwBw vt
= u(UNwBw Hu™!

= wUyu™t.

Then wU,u! = U, is a T-invariant subgroup of U, hence U, = U, by Corol-
lary 5.7.2. This also implies ®(U,,) = ®(U,), and then v’ = w by Lemma 5.11.

Proof of 2). First we see that 2) holds if G has semi-simple rank 1. In this case
|W| =2, and by 1) it’s enough to show that U has only 2 orbits on G/B. Clearly, U
acts non-trivially on the point x € G /B corresponding to the opposite Borel subgroup
B~. Since G/B is a complete variety, if we identify U 2 G, x with P} minus a point,
the orbit map U — Uz C G/B extends to a map P}, — G/B by [1, AG.18.5]. By
Lemma 5.5, we have G/ B = PL; since the image of the above map should be complete
and one-dimensional, it is equal to G/B. Thus G/B is a union of Uz and the unique
point, which is nothing but z.

For a general G, this implies that G,z = (Uyz) U (Uywaz) for any a € &, x € BT.
Indeed, if we consider the Borel subgroup B, N G, of G, with B, being the Borel
subgroup of GG, corresponding to z, it is either the subgroup with the unipotent radical
U., and then it is just the above statement, or the subgroup with the unipotent radical
U_o = waUqw,. In the latter case the above statement gives Gox = (waUswax) U
(woUqx), which implies Gz = (Uywax) U (Uy).

Further, we note that for any a € II the set of roots ¥ = ®* \ {«} is closed; the
corresponding group Uy is normalized by T', and by U,, U_,, since for any v € ¥ the
combination ra + sv, s > 0, if it is a root, is a positive root, different from «. Hence
Uy is normalized by G, by Lemma 5.8. We have B = UT = U,UyT, which implies
that

G,Bxr = G, U UyTx =G UyTx
= GaU\yZE = U\yGal‘
= U\p(anal’) U U\p(Ua]J)
Uw,zUUx
for any x € BY. Then we have
GoBwB = (Uw,wB) U (UwB) C BWB.

But the subgroups G,, a € 11, generate G, hence G = G - BWB C BWB, and 2) is
proved.
Proof of 3). We prove that the map

f:U,xB — BwB
(z,y) = 2wy

is an isomorphism. Since U, = U N wUw™!, we have U,w C wU. Analogously,
Ul,w C wU~. Then

BwB =UwB = (U,,U,)wB = U, wB,

so f is surjective. And f is injective, since U, w C wU~ NUw implies U, wN B = {e}.
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Now if f is separable, it is an isomorphism by [1, Th. AG.18.2]. On the other hand,
by [1, Th. AG.17.3] f is separable, if

(df)(e,e) : T(e,e)(U;] X B) — Tw(BwB)

is surjective. But since dim(BwB) < dim(U,, x B), the latter is equivalent to the
injectivity of (df)(ee). So let us prove that (df).) is injective. We have T{. 0 (U;, x
B) = T.U" & T,B and

(df) o) (X,Y) = d(f 0i1).X +d(f 0 i)Y for any X € TLU,, Y € T.B,
where 2; and 75 denote the natural embeddings

ile{U — U,L/UXB
x — (z,€)

in: B — U, xB

and r — (e 1)

But the maps foi; and foiy are just the right and the left multiplication by w inside
G, hence (df)(c,e) is the sum of two isomorphisms

d(foir)e: T.U, — T,(U,w) and d(fois)e:TeB — T,(wB).

Since ®(T,U))) = !, = {a € ®* | w'(a) € P~} does not intersect (T, wBw™ ') =
w(®"), we have T,(U,,w) N T,,(wB) = 0. Hence ker(df ), = 0. O

5. Parabolic subgroups. We keep the notation of the previous subsection. In par-
ticular, T' is a fixed maximal torus, and B C T a fixed Borel subgroup of the reductive
group G.

A parabolic subgroup P of G is called standard, if it contains B. Since all Borel
subgroups of G are conjugate, any parabolic subgroup is conjugate to a standard
parabolic subgroup. This standard parabolic subgroup is moreover unique, since if
parabolic subgroups P and Q = gPg~! both contain B, then B = p(gBg~')p~! for
some p € P, since all Borel subgroups of P are conjugate by Theorem 5.1. By the
same theorem this means pg € B, and hence P = Q).

For any subset I C II we will denote by W} the subgroup of W = W (®), generated
by all w,, a € I. This subgroup is the Weyl group of the root subsystem Aj of ®,
generated by I (see §3).

Theorem 5.13. Let G be a reductive algebraic group, T a maximal torus of G, B a
Borel subgroup containing T .

(1) The map I — BW;B is a bijection of the set of all subsets of 11 onto the set
of all standard parabolic subgroups of G.

(2) Let P, Q be two standard parabolic subgoups of G corresponding to the subsets
I,J CII. Then

G= H QuwP
weWw

for any set W of representatives of double cosets W, \W / Wy.

Lemma 5.14. For any w,, o € 11, and any w € W we have

(1) woBwB C Bw,a2wBU BwB and BwBw, C Bww,B U BwB;
(2) if H(waw) =Il(w)+ 1, then waBwB C Bw,wB;
(3) if l(waw) =1l(w) — 1, then waBwB N BwB # 0.
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Proof. The first inclusion in (1) follows from the equality G,BwB = (Uw,wB) U
(UwB) appearing in the proof of Theorem 5.12. The second one follows from the first
if we invert both sides.

To prove (2), we use the induction on I(w). Considering any reduced decomposition
of w, we can write w = w'wg, where w’ € W, g € Il and [(w') = l[(w) — 1. Suppose
that woaBwB ¢ Bw,wB; then w,BwB N BwB # (), and hence w,Bw N BwB # (.
Then also w, Buwg N BwBwg # (). But

Lwaw") > l(waw'wg) — 1 = l(waw) — 1 > l(w) — 1 =1(w),

so by the hypothesis w, BwwzB = w,Buw'B C Bw,w'B, which implies BwBwg N
Bw,w'B # (). By (1) we have

wBwgB C BwwsB U BwB = Bw'BU BwB,

hence Bw,w'B intersects one of Bw'B, BwB and hence coincides with it by Theo-
rem 5.12. But w,w’ = w’ is impossible, and w,w’ = w is impossible as well, because
[(w") < l(w) < l(wqw). This proves the claim.

It leaves to prove (3). Observe that w,Bw, € B, since w,Usw, = U_, € B. Since
by (1) we have w, Bw,B C BUBw,B, this implies w, Bw, N Bw,B # (). Muptiplying
this by waw, we get w, Bw N Bw,Bw,w # 0. If [(w2w) = l(w) > l(waw), by (2)
Bw,Bw,w C BwB. Hence w,Bw N BwB # (. a0

Proof of Theorem 5.13. (1) Lemma 5.14 easily implies that each BW;B is a subgroup
of G. It is a closed subgroup, since it is generated by B and by G,, a € I, which
are all irreducible subvarieties of G' containing 1, hence generate a closed subgroup
by [1, Prop. 2.2]. So each BW;B is a standard parabolic subgroup of G. Conversely,
let P be any standard parabolic subgroup of G. Set Wp = PN W. Since B C
P, by Theorem 5.12 we have P = [] BwB. Set [ = {a € Il | w, € Wp}.

weWp
Obviously, BW;B C P. To prove the inverse inclusion, consider any w € Wp. Let w =

Way - - - Wa, be areduced decomposition of w with respect to II. Since [(w,,w) < I(w),
by Lemma 5.14 we have w,, BwB N BwB # (), which implies w,, € P. Proceeding
by induction, we see that all w,,, 1 < ¢ < r, are in P, and hence in W;. Then
w € BW;B, and also P = || BwB C BW;B.

weWp
(2) By (1) we know that Q@ = BW;B and P = BW;B. Since W,WW; = W,
the Bruhat decomposition for G implies that G = |J QwP. Suppose that QuwP =
weWw
Qu'P for some w,w’ € W, that is, w’' € BW;BwBW;B. By Lemma 5.14 we have
W;BwBW; C BW;wW;B, hence w' € BW ;wW;B. Then the Bruhat decomposition
implies that w' € W;wW7. O

We say that a parabolic subgroup P of G is a parabolic subgroup of type I, if P is
conjugate to the standard parabolic subgroup BW;B.

For a subset I C II, we set
T = (ﬂ keroz) )

Theorem 5.15. Let P, = BW|B be a standard parabolic subgroup of a reductive
group G, corresponding to the subset I C 1. Set ¥y = ®T\ A;. Then

(1) Cq(Ty) is a reductive algebraic group, (T, Ce(Tr)) = Af.
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(2) Pr = Cq(Ty) x R.(Pr), and the unipotent radical R,(Pr) of P is equal to
UZI = <Ua, o€ Z[) .

(3) We have Ty = C(C(T1))° = Ca(Tr) N R(Pr), it is a mazimal torus and a
Cartan subgroup of the radical R(Py).

Proof. Denote Cq(T7) by H. It is is a closed connected subgroup of G' by [1, Cor.
11.12], and it contais T". Therefore H = (T'; U,, a € ®(T, H)) by Corollary 5.7.1. If
for some a € ® the group U, centralizes T, then U_, also does. This means that H
is in fact generated by G,, o € ®(T, H). Now if R,(H) is non-trivial, being a closed
connected T-invariant subgroup of G, it contains some U,, o € ®(T, H). But then
U, C (R.(H)NG,)® € R.(G,), and R,(G,) = {e} by Theorem 5.7. This proves that
H is reductive.

Clearly, all U,, o € Ay, centralize T7. Hence g, € L(H), a € Ay, which implies
A; C O(T, H). Conversely, if for some [ € ® the group Us centralizes T7, this means
that T C ker 8. But if § € Ay, the roots in [ and [ are linearly independent. This
means that there exists A € X, (T) such that (o, A\) =0 for all @« € I and (5, \) # 0.
Then A(G,,) € T is contained in 77, but not in ker 3. Hence ®(H) = Ay, and (1) is
proved.

Further, by the definition of ¥; and by Lemma 5.8 the group H normalizes Uy, .
Then Uy, N H is a normal unipotent subgroup of H, and hence Uy, N H is finite,
because H is reductive. But then Uy, N H is central in H, since H is connected and
acts on Uy, N H. But C(H) is contained in all Borel subgroups of H, and hence in
T, which means that Uy, N H consists of semi-simple elements. Since it is unipotent,
we have Uy, N H = {e}. Since the Lie algebras L(U,) and L(H) do not intersect as
well, the product X = H - Uy, inside G is the semi-direct product H x Uy,. Clearly,
R,(X) = Uy,. Since B C X, it is a standard parabolic subgroup. Since both H and
Us,, are contained in Pj, we have Py = X. This proves (2).

By Theorem 5.7 applied to the reductive group H, we have Ty = C'(H)° = R(H),
since ®(T', H) = Ay. Moreover, T x Uy, is normal in Py and solvable, hence contained
in R(Pr). Then Ty C HNR(Pr). Since T; is the radical of H, we have Tt = HNR(Fy).
This also shows that R(P;) = Ty x Us;,, and so 17 is a maximal torus of R(Pr). Finally,
Tt coincides with its centralizer in R(P), since C(T;) = H by the definition of H.
This finishes the proof of (3). O

§6. SPLIT AND NON-SPLIT REDUCTIVE ALGEBRAIC GROUPS

Let G be a reductive algebraic K-group defined over k. We are interested in whether
the subgroups of GG considered in § 5, such as maximal tori, Borel subgroups, parabolic
subgroups etc., are in fact k-defined subgroups, and under what conditions. Recall
that whenever we say that a subvariety resp. a subgroup of a k-defined group G is
defined over k, we mean, on one hand, that it is a k-defined variety resp. a k-defined
group, and on the other hand, that its embedding into G is defined over k.

We will use the following fundamental result: any k-defined algebraic group G
contains a maximal torus T defined over k, and the corresponding Cartan subgroup
Cq(T) is also k-defined [6, Exp. XIV, Th. 1.1].

1. Structure of k-defined reductive groups. From now on, let G be a reductive
algebraic K-group defined over k. Recall that a torus T defined over k is called k-split,
if T is isomorphic to (G, ;)" for some n > 0. The group G is called isotropic over k,
if it contains a non-trivial k-split torus, and anisotropic over k otherwise. Further, G
is called k-split, if it contains a k-split maximal torus.
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By [1, Prop. 8.11] any k-defined torus 7" splits over a finite separable extension of
k; in particular, any algebraic group defined over k is ks-split.

Theorem 6.1. Let G be k-split reductive group with a k-split maximal torus T'. Then
the subgroups U,, a € & = ®(T,G), are defined over k, and the isomorphisms 0, :
Gox — Uy, a € @, of §5, subsection 3, can be chosen so that they are extensions to
K of k-isomorphisms Gg i — 1(U,).

Proof. [1, Th. 18.7] O

Corollary 6.1.1. Let G be k-split reductive group with a k-split maximal torus T.
Then the Weyl group W = W(T, G) is defined over k in the sense that every coset in
Ng(T)/Cq(T) contains an element of G(k).

Proof. For any a € ®, the subgroup G, = (T,U,,U_,), a € @, is defined over k
by Theorem 6.1. By Theorem 5.7 it is a reductive algebraic group of semi-simple
rank 1. Set B, =T x U, and B_, =T x U_,. These are Borel subgroups of G,
and they are as well defined over k. By [1, Prop. 15.2] the group B,, acting by
translations on the complete k-defined variety G,/B_, = P}, has a fixed point in
(Go/B_a) (k). By [1, Cor. 15.7] the restriction G, (k) — (Go/B_4) (k) of the natural
projection 7 : G, — G,/B_, is surjective, hence there is an element g € G, (k) such
that B,gB_o = gB_o. Then g7'B,g = B_,. Let n € Ng_(T) be any representative
of the class w, € W (recall that W (T, G,) € W). Then nB,n~! = B_, as well, hence
gn € B,NB_, =T, because B, and B_, are self-normalizable by Theorem 5.1. This
shows that for any a € ® the coset in Ng(T')/Cq(T) corresponding to w, contains
an element of G(k). Since W is generated by w,, o € ®, this means that every coset
contains an element of G(k). O

Corollary 6.1.2. Let G be a k-split reductive group with a mazximal k-defined torus
T, B a Borel subgroup of G containing T', U the unipotent radical of B. For any T -
invariant closed subgroup H of U, if ay, ..., «, are all roots of ®(T, H) in any order,
then the product morphism

k(Ua1> X ... X k(Uan) — k(H)
is an isomorphism of k-varieties. Consequently, yH 1s isomorphic to A} as a variety.

Proof. Follows from Corollary 5.7.2 and the fact that an isomorphism defined over k
is a k-isomorphism ([10, Prop. 2.7.1]). O

We see that if G is k-split, all T-invariant connected subgroups of G are k-defined.
In the general case the criterion is given by the following lemma.

Lemma 6.2. Let G be a k-defined reductive group, and let T' be a mazimal torus of
G defined over k. A closed connected T-invariant subgroup H of G is defined over k
if and only if both (H NT)°(ks) and ®(T, H) are I' = Gal (ks /k)-invariant.

Proof. The direct implication is clear. To prove the inverse, we observe that the torus
T is ks-split ([1, Prop. 8.11]), and hence the corresponding subgroups U, a € (T, G),
are defined over kg by Theorem 6.1. On the other hand, (T'N H)° is defined over k;,
since any closed subgroup of a split torus is defined over the field where it splits. hence
the groups U, (ks), a € ®(T, H), are permuted by I', and (H NT)°(k;) is I'-invariant.
Then the closure of ((H NT)°(ks); Ua(ks), a € ®(T, H)) is defined over k by [1, Th.
AG.14.4]. Since for any K-variety V the set V (k) is dense in V, this closure coincides
with H by Corollary 5.7.1. O
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Theorem 6.3. Let G be a k-defined reductive algebraic group.

(1) If S is a k-split subtorus of G, then there ezists a k-defined parabolic subgroup
P of G such that P = Cg(S) x Ry (P).

(2) Conversely, let P be a proper k-defined parabolic subgroup of G. Then R(P),
R,(P) are defined over k. If Sy is a mazimal k-defined torus of R(P) and S
is a mazximal k-split subtorus of R(P) contained in Sy, then Cg(Sy) = Ca(S)
is also k-defined and P = Cg(S) X R,(P) is a k-defined isomorphism.

(3) In the above setting, P is a minimal k-defined parabolic subgroup of G if and
only if S is a mazximal k-split torus of G.

(4) All minimal k-defined parabolic subgroups of G are conjugate under G(k).

Proof. See [1, Prop. 20.4-20.9]. O

Corollary 6.3.1. If P and P’ are two k-defined parabolic subgroups of G conjugate
under G(K), then they are conjugate under G(k).

Proof. Let Q and )’ be two minimal k-defined parabolic subgroups contained in P
and P’ respectively. By Theorem 6.3 we have gQg~! = Q' for an element g € G(k).
Then gPg~' NP’ O @', hence gPg~' N P’ contains a Borel subgroup (not necessarily
defined over k) of G. Since P’ and P are conjugate, this means that gPg~' = P’. O

2. The x-action of the Galois group. From now on, let S be a maximal (k-defined
and) k-split torus of a k-defined reductive group G, and let 7" be a maximal k-defined
torus of G containing S. The group G is called quasi-split over k, if C¢(S) =T. By
Theorem 6.3 this is equivalent to the existence of a k-defined Borel subgroup of G.

Let us define what is called the x-action of I' = Gal (ks/k). Observe that ' acts by
permutations on the set of all conjugacy classes of parabolic subgroups of GG. Clearly,
it also acts on its subset consisting of conjugacy classes of maximal proper parabolic
subgroups. By Theorem 5.15 these classes are in one-to-one correspondence with
the elements of a fixed system of simple roots II of the root system ® of G. The
corresponding action of I" on II is called the x-action. There is also an equivalent way
to define it, based on the natural action of I' on the group of characters X*(7"), which
contains ®. For any o € T', o(II) is a system of simple roots for ®; then by Theorem 3.1
there is a unique element w, of the Weyl group of G such that w,(o(IT)) = II. We
set 0* = w, o 0. The action of I' on Il via ¢*, o € T, is the same as the one defined
above.

We say that the group G over k is of inner (resp. outer) type, if the x-action on II
is trivial (resp. non-trivial).

All parabolic subgroups of G conjugate to the standard parabolic subgroup P of
type J C II, that is, all parabolic subgroups of type J, are in one-to-one correspon-
dence with all (closed) points of the quotient variety G/P (Theorem 5.1). Recall
(Theorem 4.7) that we construct G/P as a G-orbit for an action of G on some pro-
jective space P%. Even if P is not k-defined, we can still require that this action is
k-defined, i.e. comes from an action of ;G on P} (cf. the proof of Theorem 4.2). We
call the variety G/P endowed with such an embedding the variety of parabolic sub-
groups of G of type J, and say that it is defined over k, if it is a k-defined subvariety
of P} with respect to (P%) = P}.

Lemma 6.4. Let P be a parabolic subgroup of G of type J C I1. The projective variety
G/ P of parabolic subgroups of type J is defined over k if and only if J is stable under
the x-action. If it holds, the variety (G /P) is a smooth projective k-variety.



33

Proof. Since G is kg-split, by Lemma 6.2 any parabolic subgroup P is defined over
ks, and hence G/P also is. Then G/P is defined over k, that is, stable under the
action of I on [P, if and only if I' preserves the conjugacy class of P. But this means
precisely that the subset J C II, corresponding to this conjugacy class, is stable under
the s-action. Further, it is clear that ,(G/P) is projective, since it is the image of
G/ P under the natural projection P} — P}. The smoothness of 1(G/P) follows from
the smoothness of G/P by [12, Prop. 17.7.1]. O

Lemma 6.5. Suppose that the minimal k-defined parabolic subgroups of G are of type
Iy C1I. Then G contains a k-defined parabolic subgroup of type I if and only if Iy C I
and I 1is stable under the x-action.

Proof. If P is a k-defined parabolic subgroup of type I, then P contains a minimal
k-defined parabolic subgroup; assuming it to be standard, we see that I, C I by
Theorem 5.13. The variety G/P is defined over k by Theorem 4.7, hence I is stable
under the x-action by Lemma 6.4.

To prove the converse, let Py be a standard minimal k-defined parabolic subgroup
of GG, containing the k-defined torus 7', and let P be a standard parabolic subgroup
of type I, containing F,. Consider ¢ € I'. We have defined an element w, € W =
W(T,G) such that 0* = w, o 0. Since Py is k-defined, by Lemma 6.2 the set of
roots ®(T, Py) is invariant under o~!. Further, recall that ¢*(IT) = II, and I, is stable
under o*. Then the set ®(T, P,), being the union of ®* and of the root subsystem Ay,
generated by Iy, is also o*-stable. Hence ®(T, F) is invariant under w, = 0* o oL
Since T is also invariant under the action of w,, this means that w, normalizes F,.
Since Py = Ng(F), we have w, € Py C P, and hence ®(7T, P) is invariant under
w,. But ®(T, P) is also o*-invariant, hence it is invariant under ¢ = w; ' o o*. Thus
we have proved that ®(7, P) is invariant under all ¢ € T". Since P contains T, it is
therefore k-defined by Lemma 6.2. U

The data consisting of the x-action of I' on the system of simple roots II, and of the
type Iy C II of minimal k-defined parabolic subgroups of G, is called the Tits index
of G (see [20]).

Lemma 6.6. If G is a quasi-split semi-simple algebraic group defined over k, and the
x-action on I s trivial, then G is a k-split algebraic group.

Proof. We need to prove that GG contains a k-split maximal torus. Clearly, we can
assume that the standard Borel subgroup B is defined over k. Now let o € II be
a simple root, and let P be the standard parabolic subgroup of type {a} C II. By
Lemma 6.5 combined with the fact that all minimal k-defined parabolic subgroups are
conjugate over k, the subgroup P is defined over k. By Theorem 5.15 the intersection
T, = TN R(P) is a maximal torus of R(P), and G, = C¢(T,) is a reductive algebraic
group with the root system ®(7',G,) = {o,—a}. By Lemma 6.2 the intersection
TNR(P) is a k-defined torus of R(P), hence by Theorem 6.3 the group G, is defined
over k. Applying Lemma 6.2 again, we see that ®(T, G, ) = {«, —a} is I-invariant. On
the other hand, since B is defined over k, the set (7', B) is [-invariant, and therefore
{a} = ®(T, B)N{a, —a} is [-invariant as well. This shows that all characters a € 11
of the torus T" are defined over k. Since G is semi-simple, by Theorem 5.10 the set II
spans the Q-vector space X*(7T') ®z Q. Hence all characters of T" are defined over k,
and T is a k-split torus. Il
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§7. MoOTIVIC DECOMPOSITIONS OF PROJECTIVE HOMOGENEOUS VARIETIES

Let X be a k-variety, and let G be a reductive algebraic K-group defined over
k. We say that X is a projective homogeneous k-variety of GG, if X is isomorphic to
k(G/P), where P is a parabolic subgroup of G, and G/P is a k-defined variety of
parabolic subgroups in the sense of §6. In this case X is indeed a smooth projective
k-variety by Lemma 6.4, and homogeneous with respect to the action of G. In the
present chapter we study the motives (see the definition below) of such varieties. Our
main tool is Theorem 7.1, originating from Karpenko [15], which says that a suitable
filtration of X by closed subvarieties will provide an explicit additive decomposition
of the motive M(X). The rest of the chapter is devoted to construction of such
filtrations in different cases. The most general result is given in Theorem 7.7, which
is [4, Th. 6.3] of Chernousov and Merkurjev.

1. The category of effective Chow motives. Let Var(k) be the category of
smooth projective varieties over k. For any object X of Var(k), we denote by CH ,(X)
the p-th Chow group of X, that is, the group of cycles of dimension p modulo rational
equivalence [7, 8].

The category Corr (k) of correspondences over k is the category whose objects are
the same as the objects of Var(k), and the morphisms, called correspondences, are
given by

Hom corr() (X)Y) = @ CH gim x, (Xi X Y),
=1
where X1,..., X, are the irreducible components of X. The composition (3o a of two
correspondences o € Hom corr(r) (X, Y) and 8 € Hom corr(i) (Y, Z) is defined as

Boa= (pTXXZ)* (pr;(xY(O‘) 'pr;xz(ﬁ)) )

where prx«z, pry«z, prxxy denote the projections of X xY x Z to the corresponding
factors, upper and lower stars indicate the pull-backs and push-forwards [8, 1.4, 1.7]
respectively, and - is the product in the Chow group [8, Ch. 8]. The category Corr(k)
is an additive category with the abelian group structure on Hom (X,Y") given by the
addition of cycles, and the coproduct of objects being the usual coproduct of varieties.

Identifying a morphism f : X — Y of schemes with the correspondence [I'f] €
Hom corr(k) (X, Y'), the class of the graph of f, we obtain a functor

Var(k) — Corr(k)
(see [15, Prop. 1.4]).

The pseudo-abelian envelope of Corr(k) is called the category of effective Chow
motives and denoted by Chow®// (k). The objects of Chow*// (k), called motives, are
pairs (X, p), where X is an object of Var(k) and p € Hom corr(r) (X, X) is a projector,
that is, satisfies pop = p. The morphisms between two objects (X, p) and (X', p’) are
the compositions p’ o f o p, where f € Hom gorr(r) (X, X'). The category Corr(k) is
embedded into Chow®/ (k) in a natural way. The composition of functors

M : Var(k) — Corr(k) — Chow®// (k)

takes a variety X to the pair M(X) = (X,[Ax]), where Ax is the image of the
diagonal embedding X — X Xgpecr X, i.e. the graph of idx.

The category Chow// (k) inherits the additive structure of Corr(k). Moreover, it
is a symmetric tensor additive category with respect to the tensor product defined by
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the fiber product of varieties

(X7p> & (Y7 Q> = (X X Speck Kp X Q)

Since X Xgpecr Speck = X, the motive M(Speck) is a neutral element for tensor
multiplication. We will denote it by 1.

Let 2 be a k-point of P}. The motive (P}, p), where p = [P} x z] € CH (P}, x Py),
actually does not depend on the choice of z. It is called the Tate motive and denoted
by L. We have M(P}) 2L & 1.

Let L™ denote the n-th tensor power of L. For a motive M € Chow®// (k) we set
M(n) = M ® L". These objects are called the twists of M. For any objects X,Y of
Var(k) and for any r, s > 0 we have

Hom Choweff(k)<M(X)(7")a M(Y)(s)) = @ CH dim x,4r—s(Xi X Y),

i=1
where X1, ..., X, are the irreducible components of X.

Theorem 7.1. Let X be a smooth projective variety over k. Suppose there is a
filtration of X by closed subvarieties

P=X,CXyC...CX,=X

together with flat morphisms f; © X; \ Xi-1 — Y; of constant relative dimension a;
for every 1 =0,2,...,n, where Y; are smooth projective varieties over k. Suppose in
addition that the fiber of every f; over any (not necessarily closed) point y € Y; is
1somorphic to Azi(y). Then there is an isomorphism:

M(X) = @M(Y»(an.

This theorem was originally proved by Karpenko [15, Th. 6.5, Cor. 6.11] for the
case when the maps f; : X; \ X;_1 — Y are vector bundle morphisms, using the
results of Rost [19]. Later in [3, Th. 7.2] Chernousov, Gille and Merkurjev noticed
that the proof actually applies to flat maps with fibers isomorphic to affine spaces,
and the current version of the book by Elman, Merkurjev and Karpenko [7, Cor. 66.4]
contains this theorem in the above form.

Proof of Theorem 7.1 (a sketch). Let Z = X,,_1 C X be a closed subvariety of X and
U = X \ Z be the corresponding open subscheme. There is a classical exact sequence
of Chow groups [8, Prop. 1.§]

CH(Z) - CH(X)— CH(U) — 0.

It can be extended to the left by means of the “higher Chow groups” A.(—, K,) [7]
(see also [19]). More precisely, for any p > 0 we have a long exact sequence [7, 52.D]

= A2, Kp) = Apa (X, Kop) — A (U K-p) —
— CH,(Z) - CH,(X) — CH,(U) — 0,
with the identification CH ,(—) = A,(—, K_,). f U — Y =Y, is a flat morphism such

that its fiber at any point z € Y is isomorphic to AZ(Z), the homotopy invariance [7,
Th. 52.11] implies that each pull-back homomorphism A;(Y, K_;) — A;+q(U, K_4_;)
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is an isomorphism, in particular, CH,(Y) = CH,,.4(U). On the other hand, it ap-
pears that A;(Y, K_;) — A;+q(U, K_4_;) factors through the map A; (X, K_4_;) —
Airq(U, K_4_;), and therefore the latter is split surjective. Hence we get

CH,(X) = CH,(Z) ® CH,(U) = CH ,(Z) & CH,,_q(Y).

Since for any smooth projective variety T the set T'x Z, T x X, T x U, T XY
satisfies the same conditions as Z, X, U, Y, we have the equality CH,(T x X) =
CH,(T xZ)@® CH,_4T xY) for any T.

Recall that Z = X,,_;. Proceeding by induction, we obtain an isomorphism
CH,(T x X) =@ ,CH,_4(T xY;), since X_; = 0. If we substitute p = dim7’,
this gives an isomorphism

Hom (M(T), M(X)) = @ Hom (M(T), M(Y)(d)).
Then the Yoneda lemma implies that M(X) = @), M(Y;)(d;). O

2. Motivic decomposition in the split case. Let G be a k-split reductive alge-
braic group, T" a k-split maximal torus of G, ® = &(T,G), W = W(T,G) = Wy, IT a
system of simple roots for ®, and B a Borel subgroup of G corresponding to II.

By Theorem 6.1 all subgroups U,, o € ®, are defined over k. Hence also all standard
parabolic subgroups

P]:BW[B:<T, Ua,OéGA]UZ[>, IQH,

are defined over k, and the projective varieties G/ Py are as well. We will show that
the Bruhat decomposition of G implies that all ,(G/Fr), I C II, are in fact cellular
k-varieties with cells of the form A}, n > 0. This is the simplest possible case of
Theorem 7.1, and we obtain very simple motivic decompositions of x(G/Pr).

Fix I C II and let P = P;. By Lemma 3.4 the set W/ = W%/ of the elements
of minimal length in cosets modulo W is a set of representatives for {e}\W/W; =
W/W;. Hence by Theorem 5.13 we have

G = H BwP.
wew!
Let 7 : G — G/P be the canonical projection. For any w € W, we set
Xy = m(BwP) = BwP/P.

Lemma 7.2. Let G be a k-split reductive algebraic group. Then
(1) G/P= 11 Xu.
weWw!
(2) For any w € W, X,, is a k-defined variety, and ,(X,) = Aiﬁ(w). The closure
of Xy in G/P is contained in X, 11 [] X

w' eWwl,
l(w")<l(w)

(3) Let wy,...,w, be the list of all elements of W' ordered so that their length

7
increases. Then V; = [ Xu,, 0 < @ < n, are closed subvarieties of G/P

k=0
defined over k.
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Proof. The claim of (1) is clear, and (3) follows from (1) and (2). Thus we need to
prove (2). Since P is k-defined, the morphism 7 is also k-defined. By Corollary 6.1.1,
the element w € W/ has a representative in Ng(T') N G(k). Then X,, = n(BwP) is
an orbit of the k-defined point wP € G/P with respect to the action of B on G/P
by left translations. By the closed orbit lemma X, has a structure of a variety, and
since B is k-defined, X,, is also k-defined. To prove that p(X,) = Agw), we recall
Theorem 5.12. It states that in the particular case P = B we have X, = U, where
U!, is the closed T-invariant subgroup of U = B,, corresponding to the set of roots
®! . This followed from the fact (see part 3) of the proof of Theorem 5.12) that the
morphism
f:U,xB — BwB
(,y) — zwy
is an isomorphism. It is easy to see that the proof of this statement carries over to
the morphism
f:U,xP — BwP

with the only difference that the final equality 7., (U, w) N T,(wP) = 0 now follows
from the property w(A;) € ®~ (Lemma 3.5) of the element w € W%, Tt is clear,
moreover, that f is defined over k, and hence provides an isomorphism of k-varieties
k(Xw) = k(U,). By Corollary 6.1.2 the variety ,(U,,) is isomorphic to Agw), since
|O(T,U.)| = |®,,| = l(w) by Lemma 3.3. We finish the proof of (2) observing that by
the closed orbit lemma the closure of the B-orbit X,, is a union of X, and of some
orbits of lower dimension, that is, of some varieties X, with [(w") < l(w). O

We can now deduce the theorem of Kock [17, Th. 2.1].

Theorem 7.3. Let G be a k-split reductive algebraic group, and let P = Py, I C 11,
be a parabolic subgroup of G. There is an isomorphism

M((G/P)) = @ LA,
weWwl!
Proof. The filtration Xy C X; C ... C X,,, where X; = ,(V;), 0 < i < n, constructed
in Lemma 7.2, satisfies all conditions of Theorem 7.1, if we take for f; : X; — Y;
the canonical morphisms X; — Speck. Since M(Speck)(l(w)) = L") the result
follows. .

3. Motivic decomposition in the non-split case. The results of this subsection
are taken from Chernousov, Gille, Merkurjev [3] and Chernousov, Merkurjev [4]. The
main theorem, Theorem 7.7 (see [4, Prop. 5.1, Th. 6.3]), gives a decomposition of
the motive M(X x X'), where X and X' are projective homogeneous k-varieties of
a k-defined reductive algebraic group G. This is done by constructing a filtration of
X x X', which satisfies Theorem 7.1. In case when one of these varieties, say X, has
a k-point, we can obtain a decomposition of the motive of the other one, X’, using
pull-back (Corollary 7.7.1). In the particular case X = X’ this is the main result
of [3], which gives a decomposition of any projective homogeneous variety with a k-
point (Corollary 7.7.2). In the particular case when the reductive group is k-split, we
also deduce the main result of the previous subsection, Theorem 7.3 ([17, Th. 2.1]),
substituting X = y(G/B), where B is a Borel subgroup of G (Corollary 7.7.3).

Let G be a reductive algebraic K-group defined over k. We fix a k-defined maximal
torus T' of GG, a maximal k-split torus S C T of G. We consider & = ®(7T,G), the
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root system of G, and W = W (T, G), the Weyl group. We also fix a Borel subgroup
B D T and denote by II the corresponding system of simple roots in ®, and by &+
(resp. @) the set of positive (resp. negative) roots with respect to II.

Recall that we define the x-action of I' = Gal (ks/k) on the root system ® as

c*(a) =w,(o(a)), o€, aed

(see §6). We also consider the corresponding action on W, which is given by ¢*(w) =
weo(w)w;t, we W.

Let I,J C II be two sets of simple roots, and let P and P’ be two standard (i.e.,
containing B) parabolic subgroups of GG of types I and J respectively. Suppose that
I and J are invariant under the x-action of I'. Then also the subgroups Wj, W; of
the Weyl group W are #-invariant, and therefore there is a *-action of I' on the set of
double cosets W, \W /W .

Since I, J are *-stable, by Lemma 6.4 the projective homogeneous G-varieties G/ P
and G /P’ are defined over k. We set

X =4,(G/P) and X' =,(G/P").
Consider the diagonal action of G on the k-defined variety
(G/P) XSpecK (G/Pl) &= (X XSpeck X/> XSpeck SPGCK.

Lemma 7.4. (1) The assignment w +— (P, wP'w™") induces a bijection between
the set of double cosets W \W /W and the set of G-orbits in G/P x G/P'.
(2) Each G-orbit in G/P x G/P' is defined over ks. The above bijection is I'-
equivariant (where I' acts on W wvia the x-action, and in a natural way on the
orbits).

Proof. (1) Since G acts transitively on G/P and G/P’, any G-orbit in G/PxG /P’ con-
tains an element of the form (P, gP'g™!). It is easy to see that two pairs (P, g P'g; ")
and (P, g2P'gy") lie in the same G-orbit if and only if Pg; P’ = PgyP’. This means
that the map g — (P,gP'g™") provides a bijection between P\G/P’ and the set of
all G-orbits. On the other hand, Theorem 5.13 gives a bijection between W, \W/W,
and P\G/P'.

(2) Since G is kg-split, by Theorem 6.1 the parabolic subgroups P and P’, and
hence the action of G on G/P x G/P', are defined over k;. Since by Corollary 6.1.1
any coset in W = Ng(T')/Cq(T) contains a representative w from G(ks), the pair
(P, wP'w™!) is a k,-point of the corresponding orbit; hence all orbits are defined over
ks.

To see that the bijection is I'-equivariant, observe that for any ¢ € I" and any
w € W we have o*(w) = w,o(w)w, ', and since I, J are *-stable, we have

(woo (P)w; !, weo(wPw w,") = (w,o(P)w,", o*(w)w,o(Pw, 'o*(w™))
= (P, o*(w)Po*(w)™").
U

Recall that the set of double cosets W;\W/W has a system of representatives W/
consisting of the elements of minimal length in the corresponding cosets (Lemma 3.4).
By the previous lemma, each G-orbit in G/P x G/P’ contains a unique element of
the form (P,wP'w™!), where w € W1/,

Lemma 7.5. For any w € W57 the subgroup Q. = (P NwP'w™?) - R,(P) of G has
the following properties.
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(1) Qu is a standard (i.e., containing B) parabolic subgroup of G of type I, =
INnw(AY).

(2) For any o € T we have w,0(Qy)w; " = Qo+ (w)-

(3) If the subgroups P and wP'w™' are defined over k, then Q. also is, and
k (Qu/(PNwP'w™h)) is k-isomorphic to A;(w).

Proof. (1) To prove that @, is a standard parabolic subgroup, we need to show that
Uo C Q, for any o € . Since R,(P) C B,, it is enough to consider a € A7.
But since w € W’/ by Lemma 3.5 we have A} C w(®™"), hence U, C wP'w™,
and therefore U, C wP'w™' N P. Now let R C II be the type of Q,. It is clear
that I, € R. Conversely, let « € R. Then o, —a € ®(T,Q,), and hence o, —a €
O(T,PNwP'w™t) = (T, P)Nw(®(T, P')). This means that « € A;Nw(Ay). Since
a € IT and by Lemma 3.5 we have w(A;) C &, this implies a € 1,,.

(2) The calculations in the proof of Lemma 7.4 show that P N wP'w™ = PN
o*(w)P'oc*(w)™; on the other hand, w,o(R,(P))w,! = R,(w,o(P)w,'), since this
transformation is an automorphism of G. Hence w,0(Qu)w, " = Qo+ (w)-

(3) The subgroup Q,, is k-defined, since by Lemma 6.2 the intersection P NwP'w™!
is defined over k, and by Theorem 6.3 the unipotent radical R,(P) is also k-defined.
Also by Theorem 6.3 there is a k-defined decomposition @, = C(S") x R,(Q), where
S’ is the maximal k-split torus contained in 7'N R(Q,,) = Ty, (cf. Theorem 5.15). By
the same theorem, since S’ is contained in both parabolic subgroups P and wP'w™1,

its centralizer C(S’) also is. This means that we have a k-defined decomposition
PNnwPw™ =Cq(S") x H, where

H=(PNnwPw )N R,(P)=wPw'NR,(P),
and therefore
Qu/(PNwPw™ ")~ R,(P)/H.

Observe that both R, (P) and H are T-invariant k-defined subgroups of U = R, (B),
hence by Corollary 5.7.2 their dimensions are equal to |®(T, R,(P))| resp. |®(T, H)|.
Set

U =0(T,R,(P)), U =0T H), Tp=0\T7,.
Let us prove that
Uy={acd" |w'(a) ed }=a.
It is clear that ¥ = ®&T \ A} and ¥; = U Nw(®T U A,). Hence
Uy =0\ w(@ " UA) =0 Nnw(® \Aj).

Then the inclusion Uy C @/ is clear. Conversely, for any @ € ®! we have a €
dT\ A = ¥ by Lemma 3.5. Since « is a positive root, w™!(«) is a negative root, and
since w(A7) € &~ by Lemma 3.5, we also have aw € w(®~ \ A7). Hence ¥y = @/ . In
particular, V5| = [(w) by Lemma 3.3.

Let H' = (U,, a € Uy). Then, since ¥, is an additively closed set of roots, by
Corollary 5.7.2 we have ®(T,H') = WU,, and by Lemma 6.2 H’ is defined over k,
since Uy = U\ Uy is I-invariant. By Corollary 5.7.2, we have H x H' = R,(P) as
a K-variety, the morphism being the product morphism. This morphism is defined
over k, and hence the corresponding k-morphism is also an isomorphism by [10, Prop.
2.7.1]. Then also the natural projection H' — ;(R,(P)/H) is a k-isomorphism.
By [1, Prop. 8.11] the torus T splits over a finite separable extension &’ of k. Then by
Theorem 6.1 H' is a k’-solvable group in the sense of [18], that is, possesses a filtration
by normal k’-defined subgroups such that all successive quotients are k’-isomorphic
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to Ga . Since k' is a separable extension of k, by [18, Th. 3] a k’-solvable group is
also k-solvable, so H' is a k-solvable group. It is also unipotent, hence by [18, Cor. 2
of Th. 1] it is k-isomorphic to the direct product of dim H' = |Uy| = [(w) copies of
Gay. Hence 4(R,(P)/H) =A™ O

Let D € W;\W/W; be the double coset with the representative w € W7/ and let
Op be the corresponding G-orbit in G/P x G/P’. Since the G-stabilizer of the point
(P,wP'w™) € Op is equal to PN wP'w™!, we have an isomorphism

OD = G/(P N wP’w’l).

Let Zp =2 G/Q,, be the variety of parabolic subgroups of G of type I,,. Consider the
natural G-invariant morphism

Ap : Op — Zp
(Q.Q) = R.(Q)-(Q@NQ").
Clearly, A\p is defined over k.
Let now § denote the *-orbit of the double coset D € W, \W /W ;. Since w = w(D)

is the element of minimal length in D, for any ¢ € I' the image o*(w) of w is the
element of the minimal length in ¢*(D), and l(w) = I(c*(w)). We set

ls =1l(w), ifwe W and D = WwW; for some D € .

Let Os = [] Op. It is a ks-defined open subvariety of its closure in G/P x G/P'.
Deéb
Since Ogs(ks) is I-invariant by Lemma 7.4, Oy is moreover a k-defined variety.

The varieties Zp = G/Qn, D = WiwW; € 6, need not to be defined over k.
However, there are natural k,-morphisms

o:Zp— Za*(D),
induced by the action of o € I" on the parabolic subgroups of GG. Indeed, by Lemma 7.5
(2) the morphism ¢ : G — G takes a parabolic subgroup of type I, into a parabolic
subgroup of type Iy«(,). Therefore the k,-defined morphism
Ap: Os=110p — 1l Zp

Des Deé
(@Q.Q) — R.Q)-(QNQ)
is well-defined and I'-invariant. Since each Zp is a projective variety, the variety

Zs = ] Zp is defined over k, and, clearly, ,(Zs) is projective (cf. Lemma 6.4). Being
DEs
[-invariant, the morphism A\s = [[Ap is also defined over k.

Lemma 7.6. The morphism 1(\s) : x(Os) — 1(Zs) is flat and the fiber (As)~*(2)
of k(Xs) at any (not necessarily closed) point z € x(Zs) is isomorphic to Aff(z), where
k(z) is the residue field at z.

Proof. Denote 1(\s)*(z) by F.. The statement F, = Al“(z) can be, clearly, checked

K

after extending the base to k(z). Denote x(z) by L. Then the scheme .(Zs) =
k(Z5) Xspeck Speck(z), and hence also a scheme Zp for some D € 4, contains a
(closed) point over L. This means that G contains an L-defined parabolic subgroup
Q of type I,,, where w € W17 is the representative of D. Our definition of the map
Ap : Op — Zp, where Op is just any orbit of G in G/P x G/P’, does not depend
on the choice of the maximal k-defined torus 7' and the Borel subgroup B € BT,
corresponding to the set of simple roots II C (T, G). Hence we can assume that @
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is a standard parabolic subgroup of type I, that is, ) = @,,. Then since @), C P,
by Lemma 6.5 the parabolic subgroup P is defined over L. Further, for any o € T’
we have w, € @, (see the proof of Lemma 6.5). Then Theorem 5.13 implies that
w, € Wy, and since I, C w(Ay), we have w, € wP'w™!. Therefore, wP'w™! is also
defined over L. The above means that both Op =2 G/(PNwP'w™) and Zp =2 G/Q,,
are defined over L, and the morphism (\s), is actually (Ap)z. The fiber of Ap at z is

naturally L-isomorphic to the L-defined variety Q,,/(P NwP'w™'). Now Lemma 7.5
(3) implies that F, is isomorphic to A" = Alﬁ((u; ;

To see that f = p(\s) is flat, we can assume that & = K, since the base extension
morphism k£ — K is faithfully flat. Observe that Zp is irreducible; let zy be the
generic point of Zp. By the above (applied to the case when L = k(zp) and K is an

algebraic closure of k(zp)), the fiber at zy is isomorphic to Aff(zo). Hence we have
Op Xz, Speck(zg) = Afj(zo) & (Alf{ Xspec K Zp) Xz, Spec k(2p)-

Since £ (20) = Ozp,2 = lim Oz, (U), where U runs over all open affine neighbourhoods
of zg, by [11, Cor. 8.8.2.5] there is a open neighbourhood U 2 z; such that

l l
OD XZn U= (Af( XSpecK ZD) XZn U= A;( XSpecK U.

The open subset U contains a closed point, because the set of closed points is dense
in Zp. Since the group G acts transitively on the closed points of Zp = G/Q.,
the topological space Zp is covered by open subsets U C Zp satisfying Op Xz,
U = Alf( Xspec k U. Since the projection map AZI‘; Xspeck U — U is flat, the map
Ap : Op — Zp is flat as well. O

Theorem 7.7. Let X = 1 (G/P) and X' = 1 (G/P’) be projective homogeneous va-
rieties of a k-defined reductive algebraic group G. In the above notation, there is an
1somorphism
M(X ><Speck Xl) = @M(k(zé))(lé)a
seA
where A is the set of all orbits for the x-action on W \W/W;.

Proof. Recall that by Lemma 7.4 the elements of W;\W/W are in one-to-one cor-
respondence with the G-orbits in G/P x G/P’, with the %-action on the former co-
inciding with the usual Galois action on the latter; here the orbit corresponding to
D € Wi\W/Wj is precisely Op. For every j > 0 let V/ be the union of orbits of
dimension at most j. By the closed orbit lemma the closure of an orbit is a union of
this orbit and of some orbits of lower dimension. Hence for any *-orbit 4 € A such
that for all D € § the orbit Op has dimension j, the variety

V=Vl [[O0p=V, 1105
Deé

is closed. Since it is defined over k, and I'-invariant, it is defined over k. Hence we
can construct a filtration

D=W_,CWoC...CW,=G/PxG/P

consisting of closed k-defined subvarieties of G/P x G /P’ and such that for every i > 0
the difference W; \ W;_; coincides with Oy for some § € D. This filtration induces the
filtration

@:X_ngog...an:XXX/
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over k, where X; = 1 (W;), ¢ > 0, with differences of the form ;(Os). The morphisms
k(As) : k(Os) — k(Zs), constructed above, are by Lemma 7.6 flat k-morphisms to
projective k-varieties, with fibers isomorphic to Af{((uz] % for any 2z € ;(Zs). The varieties
x(Zs) are smooth, since after the extension of the base field they become isomorphic to
the smooth varieties G/Q,, (see [12, Prop. 17.7.1]). Then we can apply Theorem 7.1.

O

Corollary 7.7.1. Under the hypothesis of Theorem 7.7.2, suppose moreover that P
is k-defined, that is, the variety X = ,(G/P) has a k-point. Then there is an isomor-
phism
M(X') = P MY5)(1s),
sen
where Y5 = 1(Zs) X x Spec k are smooth projective varieties.

Proof. Let

@ZX_ngQg...an:XXX/
be the filtration for X x X’ = ;(G/P x G/P’) constructed in the proof of the theorem,
and let Spec k — X be the k-point of X. The products Spec k x x X; = X/ then define
a k-filtration of the k-variety (X x X') xx Speck = X’. Also by the construction,
for every i > 0 the difference X\ X/_; is isomorphic to ,(Os) X x Speck for some

d € A. The variety Zs = [[ Zp possesses a natural morphism to X = G/P, since
Des
Zp = G/Q, for a parabolic subgroup @, € P. This morphism is clearly defined

over ks and I'-invariant, hence it is defined over k (if one looks on the quotients as
on varieties of parabolic subgroups of corresponding types). Since the morphism s :
Os — Zs comes from morphisms A\p : Op — Zp, taking the pair (P,wP'w™) € Op
to ., we have a commutative diagram of k-morphisms

k(Oa)(—>X x X'

ik(N iprl
k(Zs) X
Multiplying all varieties by X xSpec k, we get therefore a k-defined morphism
k()\5> X idk . k(O(g) Xx Speck: — k(Zg) X x Speck: = }/5

Clearly, the morphism g(\s) X idy is flat. The k-scheme Y; = ((Zs) X x Speck is
precisely the fiber of the morphism ,(Z5) — x(G/P) at the k-point. Hence if £’ is a
finite separable extension k& — k' such that G is k’-split, /(Z5) is isomorphic to the
disjoint union of smooth projective fibers y(P/Q,) of the morphisms 1 (G/Q,) —
w(G/P) (Lemma 6.4). Therefore y(Z5) is smooth projective by [12, Prop. 17.7.1]
and [9, Cor. 6.6.5]. Hence we can apply Theorem 7.1. O

The following corollary is the main result of [3].

Corollary 7.7.2. Let G be a k-defined reductive algebraic group, Q) a parabolic k-
defined subgroup of G of type I. Then there is an isomorphism

M(:(G/Q)) = P M(Ys)(ls),
dEA

where A is the set of all orbits for the x-action on W \W/W;. If ks is a finite

extension of k stabilizing every coset D € §, then Ys Xgspeck Specks = [[ Yp, where
Deé
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the varieties Yp, D € §, are ks-isomorphic to homogeneous varieties of the reductive
algebraic k-defined group Lo = Q/R.(Q), having the root system Aj.

Proof. We apply Theorem 7.7 in case P = P’ = (). Then, as in Corollary 7.7.1,
we have M(,(G/P)) = Pscp M(Y5)(ls5), where Ys = 1 (Z5) X, (a/p) Speck. Since ks
preserves a coset D € ¢, it also preserves the canonical representative w € WH! of
D, because it is the unique element of minimal length in D. Hence the subgroup
Quw = Ru(P) - (PN wPw™") is defined over ks. Since T is a k-defined torus, the
torus Ty = T N R(P) of Theorem 5.15 is a maximal k-defined torus of R(P). If
S’ is a maximal k-split torus contained in 77, by Theorem 6.3 we have a k-defined
isomorphism Cq(S’) = Cq(Tr) =2 P/R,(P). By Theorem 5.15, Lp = Cg(Ty) is a
reductive algebraic group with ®(T, Lp) = A;.

Further, Yp is precisely the fiber of the morphism i, (G/Qw) — ,(G/P) at the
ks-point P, and hence is naturally ks-isomorphic to

k(;(P/Qw> = ks (Lp/(Lp ﬂwa_l)) .

Since AT C w(®") by Lemma 3.5, the group Lp NwPw™! is a parabolic ks-defined
subgroup of Lp, and thus Yy is a homogeneous L p-variety. O

Corollary 7.7.3 (Theorem 7.3). Let G be a k-split reductive algebraic group, @ a
parabolic subgroup of G of type I. There is an isomorphism

MG/ = P L,

DeW/Wr
where each number lp is the length l(w) of the representative w € W% of D € W/W7.

Proof. We apply Corollary 7.7.1 in the case P = B, P’ = Q. Let w € W! = W0I.
Since G is k-split, the *-action is trivial, and the subgroups P, P, wP'w™!, Q,, are
defined over k by Theorem 6.1. Any x-orbit § C W/W; consists of one element,
§ = {D}. We have I, = 0 Nw(A}) =0, hence Q,, = B = P. Then the k-varieties Y
of Corollary 7.7.1 satisfy

Y5 = 1(G/B) x,(a/B) Spec k = Speck.
Hence M(Ys)(ls) = Li». O

§8. EXAMPLES OF MOTIVIC DECOMPOSITIONS

In the present chapter we use the results of §7 to obtain some explicit motivic
decompositions. We keep the same notation as above. Namely, G' denotes a k-defined
reductive algebraic group over K, T a maximal k-defined torus of G, ® = ®(T, G) the
set of roots of G with respect to T', W = W(T, G) the corresponding Weyl group, and
IT a fixed system of simple roots in ®, corresponding to a Borel subgroup B containing
T. We write I1 = {ay,...,a,}, where n is the rank of ® and the numbering of roots
follows Bourbaki [2]. All parabolic subgroups we speak of are standard.

1. Motive of a projective space. Let G = PGL,, 41 k, the projective linear group
of dimension n + 1 over K, and let ;G = PGL, 11, the same group over k. This
is a k-split semi-simple group with the root system ® = A,,. The Weyl group W
is isomorphic to the symmetric group 5,41, with the reflection w,, corresponding to
the transposition (é,7 + 1). Let P be the standard parabolic subgroup of G of type
I =1I'\ a;. The corresponding variety X = ;(G/P) is isomorphic to P}. The Weyl
group W7y is identified with the subgroup of 5,1 generated by all reflections except
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for (12), and is isomorphic to S, since A,, is spanned by {as, ..., a,} and hence is a
root system of type A, _;.

By Corollary 7.7.3, we have M(X) = @ L. Since [Sp;1]/|Sn| = n + 1, the
DeW/Wr
quotient W/W; has n + 1 elements. Consider the elements

wi=(,i+0)Gi—1,4)...12)=(,i+1,i,...,2), 1<i<n.

Clearly, I(w;) =i, and for any 1 < j < n we have l(w; - (j,7 + 1)) =i+ 1. Then by
Lemma 3.5 these elements are the representatives of minimal length in their cosets
modulo W}, and since they are of different lengths, they form, together with e, the
whole set W', Thus our decomposition of X becomes

MEPH)=PL =10Lo...0L"

1=0

the classical decomposition of [16] (in fact, it follows directly from the definition of L).

2. Groups of type Fj. Let G be a k-defined semi-simple algebraic group over k
such that ® = F,. Since the Dynkin diagram (see [2]) of F, has no non-trivial
automorphism, the s-action on II = {a1, as, a3, ay} is always trivial, that is, G is of
inner type. The Tits classification [20] states that there are only three possibilities for
minimal k-defined parabolic subgroups of G. Namely, either GG is k-anisotropic, that
is, has no non-trivial k-defined parabolic subgroup, or G is k-quasi-split, and hence
k-split by Lemma 6.6, or the minimal k-defined parabolic subgroup of G is of type
{Oél, g, 063}.

The split case. In case when G is k-split, G has a k-defined parabolic subgroup
P of any possible type I C II, and the situation is subject to Corollary 7.7.3. For
example, in the particular case P = B we obtain the decomposition

M(G/B) = @ LW,
weWw

The isotropic case. Consider now the case when the minimal k-defined parabolic
subgroup P of G is of type I = {a1, as, a3}. For any parabolic subgroup P’ of type J,
we obtain a decomposition of the motive M (k(G /P’ )) using Corollary 7.7.1. Namely,
since the *-action is trivial, we have the decomposition

M@k(G/P)) = D M(Yy)(l(w)),
weWwl,J
where Y, = x(G/Quw) X,(/p) Speck for any w € W7 (we have (Zs) = x(Zp) for
any D € 6 C W,/ \W/W,). Each Y, is therefore the fiber of the natural k-morphism
¢ : 1(G/Qw) — (G/P) at the point corresponding to ,P. Since P is defined over k,
by Theorems 6.3 and 5.15 we have a k-defined isomorphism P = L x R, (P), where
L is a k-defined reductive algebraic group with the root system A; = Bs. The group
LNQ, = LNwP'w™ is a parabolic subgroup of L of type I, C I, since A} C w(®)
by Lemma 3.5. The variety L/L N Q,, of parabolic subgroups of L of type I, admits
a natural embedding into the variety G/@Q,, of parabolic subgroups of G of type I,
given by
i:L/ILNQyw — G/Qu
Q — QxR,(P).

Since the x-action is trivial, L/L N @, is also defined over k. Then, clearly, the
embedding i is also defined over k, because it is defined over kg and I'-invariant. Since
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over K it is the isomorphism
L/L N Qw = P/Qw = (G/Qw> Xa/p SpecK,

it also provides a k-isomorphism ,(L/L N Q,) = Y,,. Summing up, we have the
decomposition
M((G/B)) = D M (L/LNQW))(Uw)),
weWwl,J
where L/L N Q, is the variety of parabolic subgroups of type I, in the reductive
k-group L of type A; = Bs.

For example, let P’ = B, the parabolic subgroup of type J = ). Since I, = 0
for any w € W'P, all these k-varieties L/L N Q,, are isomorphic the the variety
L/L N B of Borel subgroups of the reductive k-group L of type A; = Bs. Let us
compute WP, We have |IW| = 27-3% and |W;| = 2% -3! = 2*.3. Computer try-out
provides the following reduced decompositions of the elements w;, 1 < ¢ < 24, of
WI,@ _ W{al,ag,ag},@:

o~
—~

Slolo|wloNlNo|oo|o|el alw oo
N

wy

Wy WeagWeay Wag Way

O 0| J| | O x| W DN | .
S
Q
N
S
Q
w
S
Q
(V)
S
S

Wy Weg Wy Wy Werg Wy

—_
e}

Wy, WayWeay Weayy Weyg Weyy

—_
—_

Wy WeagWeayWay Wag WayWag

—_
[\

Wey Weg Weg Wey Wz Wy Wayy

—
w

Wy Weay Weay Weyy Wy Wery Warg Wary

,_.
N

Wy Weaz Wy Wea Weg Wy Wayy Wayg

—_
ot

Wy Wy WeagWayy Weoyg Way Wag Way Wag

—_
D

Wy W Wary Wy Werg Weag Wery Weas Wy

—_
~J

Wery Werg Wero Wery Werg Wero Worg Wory Worg Wary

—_
(0.0]
—_
(@]

Weay Weag Wy Wy Weag Wy Wy Weyg Weyy Wy

—_

Ne}
—_
—_

Wy Weg Wy Wy Weyg Wery Werg Weyy Weag Wary Wy

[\~
)
—_
—_

wa4 woc;:, wag wozl wa3 waz wag ch4 wOéa wOé2 wOéS

DO
—
—_
(N}

Wy Weag Wy Wea Weyg Weag Weys Way Wy Wy Wy Wayg

[\
N}
—
w

Wory Wag Wy Wey Wag Wary Werg Wy Wiz Wary Wy W Wary

DO
w
-
s

Wy Weag Wy Wy Weag Wy Weayg Wy Weyg Wy Wy Weyg Weyy Weyg

[\
N
—_
ot

wOé4 wOé3 waQ wal was wa2 wOlS wOé4 wOé3 wOéz wOél wOéS waQ thS wa4
Thus we have

MG(G/B) = @ M(L/LNE) ()& @ MG(L/LNE)()
~ M(x(L/LN B))® M(P") @ (M(P®*) & L*).
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Let us compute also the motive M(z(G/P)). The set W = WWievazeshienasas}
consists of those elements w € WP which are the representatives of minimal length of
their double cosets W;wWj. This condition is equivalent by Lemma 3.3 to w(«) € ®*
for each o € I. Testing the elements of W/ computed above, we obtain W1 =
{w1 = e, wq, wg, w13, way }. Since the x-action is trivial, the decomposition looks as

M(@/P) = @ MGP/Q))Uw) = @ MGL/LNwPw™))(I(w)).
weWw 1 weWw I
Here L = P/R,(P) is a k-defined reductive algebraic group with the root system
A; = B3 (containing the system of simple roots {ay, as, as}), the same as occurred
in the computation for G/B, and L/L NwPw™" is the variety of parabolic subgroups
of L of type I,,. The types I, = I Nw(A}), w € W are the following.

we WH | l(w) | I, = T Nw(AY})
wq 0 {ag, as, a3}
Wo 1 {a1, a3}
wg 5 {ag, a3}
w13 8 {a, s}
Woy 15 {ag, az, a3}

Hence we obtain the decomposition
M((G/P)) = 1& M((L/Pr2))(1) & M((L/Pa3))(5) & M((L/Pr2))(8) & LY
>~ 1@ M((L/Pio)(1) @ (1@ L) @ M((L/P2y3))(5) & L,

where P, ; denotes the standard parabolic subgroup of L of type {a, a;}.

The anisotropic case. If the group G is k-anisotropic, we still can compute the
motives of products like G/P x G/P’, using Theorem 7.7 itself. Let us compute, for
example, M(x(G/P x G/P')), where P is a parabolic subgroup of type {ay, as, a3}
(the same as above, but not defined over k£ now) and P’ is the parabolic subgroup of
G of type J = {1,4}. Since the *-action is trivial, we have the decomposition

M((G/P % G/P)) = @ MG(G/Qu)(I(w))
weWl,
where G/Q,, is the variety of parabolic subgroups of G of type I,,. Computer try-out
gives the following list for W7/ C W10,

we W [ l(w) | I, =1 Nw(AY)

wy 0 {a1}
ws 2 {a1,a3}
Wy 3 {as}
We 4 0

Wy 6 {as}
Wiy 7 {as}
W14 8 {as}
Wig 9 0
Wao 11 {az}
Wao 13 {a, as}
Was 14 {a1}




47

This gives the decomposition
M((G/P X GIP) 2 M((G/Playy)) & MG/ Pray o)) (2)B(1 & LY)
@M(k(G/P{%}))(S)@(l o L®)
M(x(G/B))(4)®(1 & L%)
M(i(G/Pla}))(6) ® M(Py).

3. Groups of type 3D,. Let G be a k-defined semi-simple algebraic group with
® = Dy. The group of automorphisms of the Dynkin diagram of & is isomorphic
to S3, and the *x-action of I' on II can be non-trivial. We consider the case when I'
acts as the cyclic group of order 3, that is, by three permutations {id,r,r?}, where
r(ay) = as, r(ag) = ay, 7(ag) = ag, and r(az) = as.

The only #-stable subsets of II are 0, {as}, {1, a3,a4}, and II. Let us compute
M(.(G/P x G/P")), where P is of type {a1, a3, as} and P’ is of type {as}. The set
of representatives W57 of the classes W;\W/W consists of the following elements
wi, 1 <i < 15.

i | w; Uw;) | Iy, = I Nw;(AT)
1 e 0 0
2 | WayWea, 2 {a1}
3 | WayWas 2 {az}
4 | WayWea, 2 {au}
5 | WayWay Was 3 0
0 | WayWea, Way, 3 0
7 | WayWayWay, 3 0
8 | WayWay WasWay, 4 1]
9 | WayWay WagWayWay, 5 0
10 | Wa, Way Way Way Way 3 0
11 | Way Wy Wey Way Wey,y 5 0
12 | Woy Wy Wag Weay Weay Weay Way 7 {as}
13 | Wy Wy Wag Wy Wy Wy Was 7 {a1}
14 | Wey Wy Wag Wy Way Weay Was 7 {as}
15 | WayWay Was WayWay Way Wy Way |8 0

By Theorem 7.7 we obtain the following decomposition:
MG(G/PxG/P)ZMY)2)21eLl)eMG((G/B)e(1aLl)oLt*aL’ o L?),
where Y is a k-variety such that

Y Xspeck Spec K = G/ P,y U G/ Plagy 1G/ Prayy
(three isomorphic projective quadrics of dimension 6).
4. Odd-dimensional orthogonal groups. Let G be a k-defined semi-simple al-
gebraic group such that ,G is the special orthogonal group SOg,41x(g), where ¢
is a quadratic form over k. Then & = B,, and the minimal k-defined parabolic

subgoup of G has type II \ {1, as,..., .}, where r > 0 is the Witt index of
q (see [20]). Consequently, if G is isotropic, the parabolic subgroup P of type
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I =T\ {1} = {ag,as,...,a,} is k-defined. Let us compute the motivic decom-
positions provided by P. Note that the x-action on II is trivial, since the Dynkin
diagram of B,, has no non-trivial automorphisms.
As above, we need to compute the set of representatives W% of W \W. Consider
the element
W = Wey Wey - - - Wey, Wy, Wey 4+ + » Wy Wey -

of the Weyl group W.
Lemma 8.1. The above decomposition of w is reduced.

Proof. We show that this decomposition of w is reduced, or, equivalently, [(w) =
2n — 1, by induction on n. The case n = 2 can be checked by hand. Suppose
further that the decomposition W' = w,, ... Wy, W, Wa, _; - - - Wa, is reduced. Then
by Lemma 3.3 there are exactly [(@') roots o € @ such that (w')~!(a) € ®~. Since
w' is also an element of the Weyl group Wi fa,1 of the root subsystem A (q,3 of @,
all these roots are in AE\{QI}. Hence (w')"'(ay) € &, and consequently, |(wq, @') =
[(w")+1 = 2n—2 by the inductive assumption. To show that [(w) = 2n—1 = w,, w'+1,
we need moreover to prove that w,, @w'(c;) € ®*. Since the length of @' is also equal
to the number of positive roots it sends to ®~, the same reasoning as above shows
that w'(aq) € ®*. Then if w,, @' (a;) € &, we must have w'(a;) = a, since it is the
only positive root sent to @~ by w,,. On the other hand, since l[(wW'w,,) = ((w') — 1,
we have w'(az) € A, ,,y- Now if @'(an) = ay, then the root w'(ar + az) has both
positive and negative coefficients in its decomposition into a sum of simple roots,
which is impossible. Hence w,,w'(c;) € ®T, and I(w) = 2n — 1. O

We can prove in a similar fashion that [(w,,w) = l[(w)+1 for any «; € T\ {1} = I,
and therefore @ is the element of minimal length in its coset W;w, that is, lies in W59,
Consider the set A of all products of the form wa, Wy, ... ws,, 1 < i < n, and of the
form wa, Wa, - . . Wa, Wa,,_; - - Way, Wa;,  — 1 >4 > 1 (all continuous subwords of
W = WayWay - - - W, Wa, Wa, _; - - WayWy, starting from the left). For any a; € I,
since [(w,,w) = l[(w) + 1, we also have [(w,,w) = l(w) + 1 for any w € A; hence
all elements w € A are the elements of minimal length in their respective cosets
Wrw. Since they are of different lengths, their cosets are distinct. Since there are
exactly 2n — 1 of them, and |W|/|W;| = 2"n!/2""1(n — 1)! = 2n, together with the
representative e of the coset P they form the set W/,

Now we compute, for example, M(x(G/P x G/B)). Since the x-action is trivial,
by Theorem 7.7 we have

M@(G/PxG/B)) = P M(G/B))(U(w))
weWw 1,0

= @ M((G/B))(i) = M((G/B)) @ P

If G is isotropic, that is, P is k-defined, we can compute M (;(G/B)) by Corol-
lary 7.7.1. As in the F,; example, we obtain

M&(G/B) = @ MG(L/LNB))(U(w)) = M((L/LNB)) @ P,

where L is a reductive k-defined subgroup of G with ®(7T,L) = A; = B,,_1. If P is
not a minimal k-defined parabolic subgroup, that is, the Witt index r is greater than
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1, the group L is also isotropic, and we can continue by induction. Then we have
M(x(G/B)) = M(x(G'/B) @ P,

where G'/B’ is the variety of Borel subgroups of a k-defined anisotropic reductive

group G’ with the root system B,,_,.

Let us also compute M (;(G/P)) using Corollary 7.7.2. It is clear that the subset
WT C WP consists of three elements e, w,,,w. We have I, = I N AT = I; Ly, =
I Nwa, (A]) =T\ {ag}, since wq, (a;) = a; for any i > 2, and no linear combination
of a; and ay is in Ay; finally, one easily checks by induction that Iz = INw(A}) = 1.
Thus we have the decomposition
M@G(G/P)) = MG(L/LNP)) & M(L/LNQu,,))(1) & M(L/LNP))(2n —1)

= 1@ MG(L/L N Paya)))(1) L7
Proceeding by induction, we get
M@(G/P)) = P71 M((G'/P)(r) @ L2072,

where G’ is as above and G’/ P’ is the corresponding variety of parabolic subgroups

of G'.
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