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Introduction

As the title of this thesis suggests we will be studying the average Faltings height formula
(which will be referred to as average height formula all throughout this thesis) of elliptic
curves and abelian varieties.

More precisely, given an elliptic curve E/K defined over a number field K, let p : X →
B be the minimal regular model of E/K with the zero section s : B → X, B = Spec(R),
R denoting the ring of integers of the number field K, then we define the Faltings height
function of the elliptic curve E as:

hF (E) =
1

[K : Q]

(

log #(p∗ωX/B/ω.R)−
∑

v∈S∞

εv log ‖ω‖v

)

where ωX/B is the dualizing sheaf of the arithmetic surface X, ω a non-zero rational
section of the line bundle p∗ωX/B and S∞ denotes the set of infinite places of K and
εv = 1, 2 according to whether Kv

∼= R or C respectively.

The Faltings height function is defined analogously for abelian varieties. Let AK be
an abelian variety defined over a number field K. Let π : N(A) → B be the Néron
model of AK with zero section s : B → N(A), where B = Spec(R), where R denotes
the ring of integers of the number field K. We denote s∗ ∧g ΩN(A)/R by ωA/R. Then the
Faltings height of AK is given as

hF (AK) =
1

[K : Q]

(

log #(ωA/R/R.s)−
∑

v∈S∞

εv log(‖s‖v)
)

The idea of computing the average height formula has its origin in [Fa 1] where he
computes the difference of height of two isogenous semi-abelian varieties. We can state
the formula for abelian varieties as:
Let AK , BK be two abelian varieties defined over a number field K, related by an isogeny
f : AK → BK , let the map extend to f : N(A) → N(B), then the following formula
holds:

hF (BK)− hF (AK) =
1

2
deg(f) − 1

[K : Q]
log #(s∗ωker(f)/R).

This formula will be referred to as the Faltings formula.
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Let E/K be a semi-stable elliptic curve defined over a number field K. Let C denote
all the cyclic subgroups of order N in E. Let E

′
denote the quotient of the elliptic curve

E by a cyclic subgroup of order N . Then the following formula known as the average
height formula for semi-stable elliptic curves holds:

1

eN

∑

C

(

hF (E
′
)− hF (E)

)

=
1

2
log N − λN ,

where eN denotes the number of cyclic subgroups of order N , and λN is a constant which
depends only on N .

Let AK be a principally polarised abelian variety defined over a number field K with
good reduction at a prime p. Let Gi denote the isotropic subgroups of order pg in A[p].
Let Ai denote the quotient abelian variety A/Gi. Then the following formula which
would be referred to as the average height formula for abelian varieties holds:

∑

C

(hF (Ai)− hF (A)) =
(eg

2
−m(g, p)

)

log p.

where the sum runs over all isotropic subgroups of order pg in A[p], e denotes the number
of isotropic subgroups of order pg in A[p], and m(g, p) denotes a constant which depends
on g, p.

We will start with the proof of Faltings formula for isogenous abelian varieties in
chapter one. We will first study the classical theory of height functions in section one
and two of chapter one and then proceed to study Faltings height function in section
three. In section four we first study the concept of Néron model and why the Faltings
stable height remains an invariant under field extension. Finally using all the concepts
studied till then we prove Faltings formula for isogenous abelian varieties.

There are at least three ways of approaching the average height formula of elliptic
curves. One approach involving basic concepts of Arakelov intersection theory due to
Robin de Jong [Ro], one due to Autissier [Au] which involves the concepts of calculating
the height on the moduli space of elliptic curves, and another approach which involves
concepts from both the methods. We develop Arakelov intersection theory in section
one and two of chapter two. In section three we give the proof of average height formula
using Robin de Jong’s approach. In section four we give an outline of the approach
adopted by Autissier, and give the third proof which makes use of results from both the
approaches.

In chapter three we prove the average height formula for abelian varieties. We have
only one way of proving the average height formula for abelian varieties. It involves the
properties of Ap

g,n, the moduli space of principally polarised abelian varieties with good
reduction at p and of type (g;n). We introduce the basic notions, like the definitions

4



Contents

of abelian schemes, good reduction of abelian varieties, standard sympletic pairing in
section one. In section two we study arithmetic intersection theory of arithmetic vari-
eties. In section three we look at another reformulation of Faltings formula for isogenous
abelian varieties in terms of Cartier divisors, using the intersection theory developed in
section three. In section four we prove the average height formula using all the theory
that is developed in the first three sections.

In chapter four we conclude our thesis with a few remarks on the different techniques
adopted in proving the average height formula for elliptic curves, and why that only
Autissier’s approach is naturally generalised to abelian varieties.
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1 Faltings Formula for Isogenous Abelian

Varieties

In this chapter we study the basic notions around height functions and the formula
given by Faltings for isogenous abelian varieties.
In section 1 we look at how height functions are defined on projective space. In section
2 we study how height functions are defined on projective varieties. In section 3 we look
at how height functions are defined via metrized line bundles and how Faltings height
function is defined. In section 4 we look at the proof of Faltings formula for isogenous
abelian varieties.

We closely follow Silverman’s article ’The Theory of Height Functions’ from [AG].

1.1 Height on Projective Space

In this section we see how the height function is defined over a projective space. In
the next section we extend this definition to projective varieties.

Let us denote the set of places over the number field K by MK , the set of non-
archimedean places by M f

K and the set of archimedean places by M∞
K . For v ∈

M∞
K , ‖a‖v denotes |τ(a)|εv where τ : K → C is an embedding associated to the place v

and εv = 1 or 2 according to whether τ is a real or a complex embedding respectively
for a ∈ K. For v ∈M f

K ‖a‖v denotes |a|[Kv:Qv ]
v , where |a|v is the usual v-adic absolute

value on K,Kv denotes the completion of the field K with respect to v, for a ∈ K.

1.1 Definition. A height function is defined as a function from the points of a
projective space Pn(K) defined over a number field K to the field of real numbers:

HK : Pn(K)→ R

where HK(P ) =
∏

v∈MK

max {‖x◦‖v , ............, ‖xn‖v}

for all P ∈ Pn(K).

The height function does not depend on the choice of homogeneous coordinates of the
projective space Pn(K), it is well-defined, but the height function HK evidently depends
on the number field K .
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1 Faltings Formula for Isogenous Abelian Varieties

For a finite extension L/K, we know that
∑

[Lw : Kv] = [L : K], where the sum is
over the places w ∈ ML lying over a given v ∈ MK . Hence we can relate the height
function HK defined over Pn(K) with HL defined over Pn(L):

HL(P ) = HK(P )[L:K].

We can always choose homogeneous coordinates for a point P ∈ Pn(K) with some
xi = 1. Hence HK(P ) which does not depend on the choice of coordinates is always ≥
1 for all points P ∈ Pn(K).

We saw that our height function HK depends on the number field K. So we now
define what is called the absolute height function which is independent of the field of
definition.

1.2 Definition. The absolute height function is a function from Pn(Q̄) to the field
of real numbers :

H : Pn(Q̄)→ R,

H(P ) = HK(P )1/[K:Q]

where K is any number field such that P ∈ Pn(Q̄.).

EXAMPLE: Let P ∈ Pn(Q). Let P = (x◦ : x1 : .... : xn) where xi ∈ Z and
gcd(x◦, x1, ..., xn)=1. Then

H(P ) = max {|x◦| , |x1| , ...., |xn|} .

Then it is easy to see that the set {P ∈ Pn(Q) : H(P ) ≤ C} for some constant C is
finite.

If P = (x◦ : .... : xn) ∈ Pn(Q̄) , then we can define Q(P ) as

Q(P ) = Q (x◦/xi : .... : xn/xi) for some xi 6= 0

Now we state a very important property of the absolute height function H.

Theorem 1.3 (Finiteness Theorem) Let C and d be constants. Then

S =
{

P ∈ Pn(Q̄) : H(P ) ≤ C and [Q(P ) : Q] ≤ d
}

is a finite set.

Proof. We first prove that the set

S
′
=
{

P ∈ P1(Q̄) : H(P ) ≤ C
′

and [Q(x) : Q] = d
′
}

7



1 Faltings Formula for Isogenous Abelian Varieties

is finite.
Let P

′ ∈ P1(Q̄) and[Q(x) : Q] = d. Let x1, ...., xd be the conjugates of x over Q and let
1 = s◦,.....sd be the elementary symmetric polynomials in x1, ....., xd. Then each sj is in
Q,and x is a root of the polynomial.

F (X) =
d
∑

j=0

(−1)jsjX
d−j =

d
∏

i=1

(X − x(i)) ∈ Q[X].

Now using the triangle inequality , one easily checks that H([1, sj ]) ≤ cjH([1, x])j for
certain constants cj which do not depend on x. Hence we can see that there are finitely
many sets of sj’s , hence finitely many possibilities for the polynomial F (X), and so only
finitely many possibilities for x.

Now choose homogeneous coordinates for P = (x◦ : ... : xn) with some xi = 1. Let us
denote Q(P ) by K. Then

HK(P ) =
∏

v∈MK

{max ‖x◦‖v , ..... ‖xn‖v} ≥ max
j

HK(xj)

Hence H(P ) ≥ H((1 : xj)) for all j. Now P
′
=[1,xj ] ∈ Pn(Q̄) with H(P

′
) ≤ C , and

[Q(x) : Q] ≤ d. But from the above argument there are only finitely many possibilities
for such an xi. Hence the set S is finite. �

In practice the logarithm of the absolute function is more widely used. Hence

h(P ) = log H(P )

will be referred to as the ’height function’ from now on.

1.2 Height on Projective Varieties

In the last section we saw how the height function is defined over projective spaces.
In this section we see how height functions are defined on projective varieties defined
over Q̄.

In order to define a height function on V , a projective variety of dimension n over
Q̄, we take a map from V into projective space and use the height function from the
previous section.

2.1 Definition. Let F : V → Pn be a morphism. The (logarithmic) height on V
relative to F is defined by

hF : V (Q̄)→ R, hF (P ) = h(F (P )).

8



1 Faltings Formula for Isogenous Abelian Varieties

It is well-known that any morphism from the projective variety V , F : V → Pn into
the projective space Pn is associated to an invertible sheaf (or line bundle) on V , namely
the pull-back of the twisting sheaf, F ∗OP(1).
In fact we know that if X is any scheme over A, and φ : X → Pn

A an A-morphism of
X to Pn

A, then ` = φ∗(O(1)) is an invertible sheaf on X, and the global sections s◦,
s1,.....,sn where si=φ∗(xi) generate the sheaf `. Conversely any invertible sheaf ` and
global generating sections si determine a morphism φ : X → Pn

A. This statement has
been proved in [Ha] chapter two proposition 7.1. Naturally many different maps give
rise to the same sheaf. Hence we can expect the height function to be essentially same
for the morphisms which determine the same sheaf. The following proposition says that
they are essentially the same.

2.2 Definition. Two height functions h and h
′
defined on a projective variety V are

said to be equivalent if
∣

∣

∣
h− h

′
∣

∣

∣
is bounded as P ranges over V (Q̄).

2.3 Theorem. Let

F : V → Pn andG : V → Pm

be two maps of V such that F ∗OPn(1) ∼= G∗OPm(1). Then hF and hG are equivalent.

Proof. Let E be a divisor in the linear system of `. (That is E ≥ 0 and ` ≈ OV (E)).
Then on the complement of E, we can write F = [f◦, f1, ...fn] and G = [g◦, ...gn] with
rational functions fi and gj such that
(fi) and (gj) such that

(fi) = Di −E and (gj) = Dj
′ −E for divisors Di D

′

j ≥ 0.

We are guarenteed of such a divisors from arguments from [Ha] II.7.8.1.

We know that the F has no base points on V which means that the Di’s have no point
in common. Let K be a common field of definition for V , f◦, f1,...,fn and g◦,....,gm .
Now pick any j and look at the ideal I = (f◦/gj , ......fn/gj) in the ringR = K [f◦/gj , ......fn/gj ].
Since (fi/gj)=Di-D

′

j and the Di’s have no point in common, it follows that I is the unit
ideal. Suppose not, then there will be a maximal ideal M of R containing I. Since
Spec(R) is isomorphic to an open subset of V containing the complement of D

′

j ,M will

correspond to a point P of V not in D
′

j such that (fi/gj)(P ) = 0 for all i. But then P
will lie in the support of all Di ,yielding a contradiction.

Hence we can find a polynomial φj(T◦, ......Tn) ∈ K [T◦, ...Tn] having no constant term
such that

φj(f◦ ◦ /gj , ......fn/gj) = 1

9



1 Faltings Formula for Isogenous Abelian Varieties

Taking the v-adic absolute value and using the triangle inequality, one easily finds a
constant C1=C1(v, F,G, φj) ≥ 0 such that for all P in the complement of D

′

j ,

max
{

|f◦/gj(P )|v , ..... |fn/gj(P )|v
}

≥ C1

We can choose C1 = 1 for all but finitely many v, independent of P . (Note that it may
be necessary to extend K so that P (K).)
Next multiply through by |gj(P ) |v . Then the equality also holds for gj(P ) = 0, so
taking the maximum over j yields:

max {|f◦|v , ..... |fn|v} ≥ C2max {|g◦(P )|v , ..... |gm(P )|v}
for a constant C2=C2(v,F,G)≥ 0, where P ranges over the complement of E and C2=1
for all but finitely many v. Now raise to the [Kv : Qv] power, multiply over all v ∈ Mk

and take the [K : Q] th root. This gives

H(F (P )) ≥ C3H(G(P )),

with C3=C3(F,G) > 0 , as P ranges over the complement of E in V .
Next , since ` has no base points , we can choose finitely many divisors E1,...,Er in the
linear system for ` so that the Ei’s have trivial intersection. In this way we obtain the
above inequality on all of V . Taking logarithms gives one of the desired bounds, and
the others followed by symmetry. �

Now that we have the desired equivalence we try to relate Pic(V ), the group of equiv-
alence classes of invertible sheaves and the group of height functions modulo constant
functions .
Let us denote the group of functions {h : V → R} mod O(1) by H(V ).

2.4 Definition. Let ` be a sheaf without base points on V . The height function
associated to ` is the class of functions h` ∈ H(V ) obtained by taking the height function
hF for any map F associated to `. (From theorem 1.2 h` is well defined.)
Proposition 2.5 Let ` and M be base point-free sheaves on V . Then h`⊗M and
(

h` + hM
)

are equivalent.
Proof. Let F = [f◦, ....fn] and [g◦, ....gm] be maps associated to ` and M respectively.
Then

T = [...., figj ....]0≤i≤n,0≤j≤m : V → Pnm+n+m.

is the map associated to the invertible sheaf `⊗M. This map is obtained by composing
the diagonal morphism D : V → V × V with the composition of the map F :V×V →
Pn × Pm with the Segre embedding S : Pn × Pm → Pnm+n+m:

T = S ◦ (F ×G) ◦D

Since max
{

.., |figj |v ..
}

= max {.., |fi|v ..}max
{

.., |gj |v ..
}

we have
hT (p) = hF (P ) + hG(P ) + O(1) for all P in V �
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1 Faltings Formula for Isogenous Abelian Varieties

We know that the set of equivalence classes of invertible sheaves Pic(V ) on the pro-
jective variety V is a group under the operation ⊗. Hence it is very natural to associate
to the invertible sheaf ` = `1 ⊗ `−1

2 the height function h`1 − h`2 .

In fact from proposition 2.5 we can check that h`⊗`−1

= h` − h` = 0. So we are now
all set to relate the group of invertible sheaves under equivalence classes Pic(V ) with
H(V ). In fact we can formulate all that we have seen into the following theorem:

2.6 Theorem. (a) There exists a unique homomorphism

φ : Pic(V )→H(V ),

`→ h`

with the property that if ` has no base points and F : V → Pn is a morphism associated
to `, then

h` = hF + O(1).

(b) If f : V → W is a morphism of smooth varieties, and ` is an invertible sheaf on W ,
then

hf∗` = h` ◦ f + O(1)

[That is, the homomorphism in (a) is functorial with respect to morphisms of smooth
varieties.]
Proof. (a) The map is well defined: for any two functions on V to be equivalent they
have to be associated to the same invertible sheaf. The map φ preserves the group struc-
ture as well. The height function associated to `⊗M, h`⊗M is equal to h` + hM from
proposition 2.5. Also the height function corresponding to OV is a constant function.
Hence φ is a group homomorphism.
(b) If ` has no base points and F : W → Pn is associated to `, F ◦ f : V → Pn is the
morphism associated to f ∗`. But hF◦f = hF ◦ f .Hence hF ◦ f is equivalent to hf∗`. �

2.7 Corollary (Finiteness). If ` is an ample sheaf on V , then for all
constants C and d, the set

S =
{

P ∈ V (Q̄) : h`(P ) ≤ C and [Q(P ) : Q] ≤ d
}

is finite.
Proof. (From [Ha] theorem 7.5 chapter 2 ) Since ` is ample, `⊗m is very ample for some
integer m ≥ 0. From proposition 2.6 we have h`⊗m

= mh`. Let F : V → Pn be an
embedding associated to `⊗m. Let P ∈ S, then we have

C ≥ h`(P ) = (1/m)h`⊗m

(P ) + O(1) = h(F (P )) + O(1).

11



1 Faltings Formula for Isogenous Abelian Varieties

From proposition 1.3 we know that the number of F (P ) satisfying
h(F (P )) ≤ C and [Q(P ) : Q] ≥ d is finite. Hence S is finite. �

1.3 Heights and Metrized Line Bundles

In this section we look at how height functions can be defined via metrized line bundles
on Spec(R), where R is the ring of a integers of a number field K.

3.1 Definition. Let X be a scheme. A line bundle over X is a locally free OX module
of rank 1.

3.2 Definition. A metrized line bundle on Spec(R) is a pair (`, |.|), where ` is a
line bundle on Spec(R), and for each v ∈ M∞

K |.|v is a v-adic norm (metric) on the
one-dimensional Kv-vector space `⊗R Kv.

3.3 Definition. The degree of a metrized line bundle (`, |.|) is defined as

deg(`, |.|) = log #(`/Rt) −
∑

v∈M∞
K

εv log |t|v

where εv = [Kv : Qv] for any t ∈ ` such that t 6= 0.

The degree of a line bundle is independent of the choice of t. That is because :
Consider any other section s ∈ ` , s = at for some a ∈ K ∗, then

log #(`/Rs)−
∑

v∈M∞
K

εv log |s|v = log #(`/Rat)−
∑

v∈M∞
K

εv log |at|v

= log # ((`/Rt)(Rt/Rat)) −
∑

v∈M∞
K

εv log |at|v

Now consider

log #(Rt/Rat) = log(
∣

∣NK/Q(a)
∣

∣) =
∑

τ

log |τ(a)|

where τ : K → C are the complex embeddings of K,

∑

τ

log |τ(a)| =
∑

v∈M∞
K

εv log |a|v .

Hence we have

log #(`/Rs)−
∑

v∈M∞
K

εv log |s|v = log #(`/Rt) −
∑

v∈M∞
K

εv log |t|v .

12



1 Faltings Formula for Isogenous Abelian Varieties

Example: If R is a P.I.D., then ` is free, so we can choose a t ∈ ` so that ` = Rt. Then

deg(`, |.|) = −
∑

v∈M∞
K

log ‖t‖v .

In particular, if R = Z , then up to + or - 1 there is a unique generator t for ` and then
deg(`, |.|) = − log |t|∞.
Metrized Line Bundles on Varieties

In this subsection we define the height function associated to a metrized line bundle
` of a smooth projective variety V defined over a number field K.

3.4 Definition. Let v ∈ MK . A v-adic metric on ` a line bundle defined on the
projective variety over K consists of a (non-trivial) v-adic norm |.|v on each fiber `P⊗Kv

such that norms vary continuously with P ∈ V (Kv). That is if f ∈ H◦(U, `) is a section
on some open set U , and if U(Kv) is given the v-adic topology, then the map

U(Kv)→ [0,∞), P → |fP |v

is continuous.

Let f be a non-zero section of Γ(U, `), and D = (f) be the divisor of f . Then

|fP |v = 0 ⇐⇒ fP = 0 ⇐⇒ P ∈ Supp(D)

From the fact that the norms vary continuously and the above equation we can interpret
|fP |v as the v-adic distance from P to D.

3.5 Lemma Let v ∈ M∞
K , and suppose that |.|v , |.|′v are two v-adic metrics on `.

Then there exist constants c1 and c2 such that

c1 |.|v ≤ |.|
′

v ≤ c2 |.|v on V (Kv)

Proof. In this proof we use the fact V (Kv) is compact. V (Kv) is compact as V is
projective. Let us now choose an fP 6= 0 ∈ `P for each P ∈ V(Kv). Then |fP |v / |fP |v′
is independent of choice of fP . Now consider the map

F : V (Kv)→ (0,∞), P → |fP |v / |fp|
′

v .

Since F is continuous and V (Kv) is compact, the image of F in the set (0,∞) is compact
as well. Hence there exist constants c1, c2 such that c1 ≤ F (P ) ≤ c2 for all P ∈ V (Kv),
which is the desired result. �

13



1 Faltings Formula for Isogenous Abelian Varieties

Let us consider a very ample line bundle ` defined on the projective variety V . There
exists an embedding F : V → Pn

K corresponding to the very ample line bundle `. (i.e.
` ≈ OPn(1) ). Once we fix an embedding of V in Pn

K any point P ∈ V (K) extends
uniquely to a point in Pn

Z(R). Or in other words it extends to a map

P : Spec(R)→ Pn
Z.

Hence if we are given v-adic metrics on OPn(1) for each v ∈ M∞
K , then the pull back

P ∗OPn(1) becomes a metrized line bundle on Spec(R). The following proposition relates
the degree of the line bundle P ∗OPn(1) with the height function associated to `.

3.6 Proposition. With hypothesis as above, fix v-adic metrics on OPn(1) for each
v ∈ M∞

K . Then

deg P ∗OPn(1) = [K : Q]h`(P ) + O(1)

(where O(1) represents a bounded function )
Proof. First observe that from lemma 3.5 and the definition of the degree of a metrized
line bundle, if the metrics on OPn(1) are changed, then the degree of P ∗OPn(1) changes
only by a bounded function. Hence it suffices to prove the proposition for any choice of
metrics on OPn(1).
Now we construct a metric on OPn(1). For each v ∈M∞

K , we define a v-adic metric on
OPn(1) as follows. Let x ∈ H◦(Pn,OPn) be a global section. Then we define |x(P )|v for
each P ∈ V (Kv) as

|x(P )|v = min
0≤i≤n

xi(P )6=0

{|(x/xi)(P )|v} .

Let x◦, ....xn be the global sections which generate OPn(1) and P ∗(xi) = xi(P ) for each
P ∈ Pn(K).

Let v ∈ M∞
K be an archimedean valuation.

|x◦(P )|v = min
0≤i≤≤n

{|(x◦/xi)|v} (from the definition of the metric on).OPn(1)

On the other hand,

P ∗OPn(1)/Rx◦(P ) ≈
(

n
∑

i=0

Rxi(P )

)

/Rx◦(P )

≈
(

n
∑

i=0

R(xi/x◦(P )

)

/R;

14



1 Faltings Formula for Isogenous Abelian Varieties

So

#(P ∗OPn(1)/Rx◦(P )) =

∣

∣

∣

∣

∣

NK/Q

(

n
∑

i=0

R(xi/x◦)

)∣

∣

∣

∣

∣

−1

=
∏

v∈M◦
K

max
0≤i≤n

‖(xi/x◦)(P )‖v .

(here we view the xi’s as functions on Pn(K))

Hence for this choice of metrics on OPn(1),

deg P ∗OPn(1) = # log(P ∗OPn(1)/Rx◦(P )) −
∑

v∈M
K

log ‖x◦(P )‖v

= log





∏

v∈M◦
K

max
0≤i≤n

‖(xi/x◦)(P )‖v



 −
∑

v∈M
K

log min
0≤i≤n

‖(x◦/xi(P )‖v

=
∑

v∈MK

log max
0≤i≤n

‖(xi/x◦)(P )‖v (by considering the xi’s functions over Pn(K) )

= [K : Q]h([1, x1/x◦(P ), ...., xn/x◦(P )]) ( by definition of height function )

= [K : Q]h`(P ) + O(1). �

3.7 Remark. One could define the height function associated to a line bundle ` de-
fined on a projective variety (defined over a number field K) as h` = 1

[K:Q]deg(P ∗OPn(1))

where P is a point in Pn(K). We have just seen in proposition 3.6 that this way of defin-
ing height a function is the same as the way we did before.

1.4 Faltings Formula for Abelian Varieties

We have seen the classical theory of height functions in the preceding sections. Propo-
sition 3.6 realizes the height function as the degree of a metrized line bundle. But we
cannot expect the height function associated to any arbitrary chosen line bundle to be
invariant under field extensions. So we will try to find a metrized line bundle, for which
the height function associated to it would remain invariant under a field extension. In
this section we will see that the Faltings height function associated to a specific metrized
line bundle, namely ωA/R where AK is an abelian variety defined over a number field
K and R its ring of integers, comes very close to our requirement of being an invariant
under field extensions.

In this section we define Faltings height function and then prove the Faltings formula
for isogenous abelian varieties. Before setting out to prove the formula we look at a
few definitions and review what we have done in the last sections. In fact we find that
Faltings formula follows trivially by writing out all the definitions and concepts we have
seen so far.

15



1 Faltings Formula for Isogenous Abelian Varieties

4.1 Definition. A group variety over K is a variety over K together with morphisms

m : V × V → V (multiplication),

inv : V → V (inverse),

and an element ε ∈ V (K) such that the structure on V (K̄) defined by m and inv is
that of a group and with identity element ε.

4.2 Definition. A complete group variety is called an abelian variety.
Remark: Abelian varieties are projective and commutative.

4.3 Definition. Let f : A→ B be a homomorphism of abelian varieties. The kernel
N of f is a closed subgroup scheme of A of finite type over K. If f is surjective and has
finite kernel then it is called an isogeny.

In order to define a height function one first needs a metrized line bundle on Spec(R).
But we assume that our Abelian variety is defined over a number field. So now we see
what a Néron model is , and how it is useful in our scheme of finding a metrized line
bundle over Spec(R).

4.4 Definition. Let S be a Dedekind scheme of dimension 1 with function field
K = K(S). Let AK be an abelian variety over K. The Néron model N(A) of AK over
S is a scheme π : N(A)→ S which is smooth, separated and of finite type, with generic
fiber isomorphic to AK , and that verifies the following universal property:
For any smooth scheme X over S, the canonical map

MorS(X,N(A)) →MorK(XK , AK)

is bijective.
Let AK be an abelian variety defined over a number field K, then we denote s∗∧gΩ1

N(A)/R

by ωA/R where s is the zero section s : Spec(R) → N(A), of the Néron model N(A).
This is a metrized line bundle over Spec(R). We will see very soon how the metrics are
defined on this line bundle.

4.6 Definition. We define the Faltings height function of the Abelian variety AK

defined over a number field K as

hF (AK) =
1

[K : Q]
deg(ωA/R)

If π : N(A) → Spec(R) is proper, then π∗ωA/K
∼= s∗ ∧g Ω1

N(A)/R , and then hF (AK) an

be defined as 1
[K:Q]deg(π∗ ∧g Ω1

N(A)/R). We need to introduce the concept of semi-stable

and good reduction to see whether hF (AK) remains invariant under a field extension of
K.

16



1 Faltings Formula for Isogenous Abelian Varieties

4.7 Definition. Let AK be an abelian variety defined over the function field K of
the Dedekind scheme S = Spec(R) where R is a Dedekind domain. We say that AK has
good reduction at v a prime in R if and only if there exists a scheme π : X → Spec(Rv),
which is smooth and proper, such that the generic fiber of this morphism is AK .
By the universal property of the Néron model we can conclude that N(A) is proper at
v, if and only if AK has good reduction at a prime v in S. If AK has good reduction at
all primes belonging to S, then AK is said to have good reduction.

4.8 Definition. Let the hypothesis be the same as the one in above definition. If
N(A)◦ is the open subgroup scheme whose fibers are the connected components of a
Néron model N(A), then the abelian variety AK is said to be semi-stable at v a prime in
R, if N(A)◦k(v) is an extension of an abelian variety by a torus, where k(v) is the residue
class field of Rv. If AK has semi-stable reduction for all primes v in R, then AK is said
to have semi-stable reduction.

4.9 Theorem. hF (AK) is invariant under the extension of ground field for abelian
varieties with semi-stable reduction, where AK is an abelian variety defined over a num-
ber field K.
Proof. We only outline the main idea of the proof. The main idea involved is as fol-
lows. If AK has semi-stable reduction over K, then it is known that N(AK)◦ ×Spec(OK)

Spec(OL) is canonically isomorphic to N(AL)◦, where N(A)◦ denotes the open subgroup
scheme whose fibers are connected components of the Néron model N(A) (for proof one
can look at [CL] ). Hence it follows that hF (AK) = hF (AL) �

But if AK does not have a semi-stable reduction over K then its Néron model would
not commute with base change of number fields, so we cannot expect our hF (AK) to
be invariant under base change. Hence we define another height function hgeom which
remains invariant under base change.
Every abelian variety XK becomes semi-stable over a field extension L over K by the very
well known semi-stable reduction theorem. We define the geometric height hgeom(AK) =
hF (AL). If AK has semi-stable reduction over K, then hgeom(AK) = hF (AK).

4.10 Definition. Let f : A → B be a homomorphism of abelian varieties. If f is
surjective and the kernel of f is finite then f is called an isogeny.

Before we embark on the task of proving the Faltings formula we look at how the
v-adic metrics are defined the projective rank 1 R-module ωA/R.
ωA/R ⊗R K is canonically isomorphic to Γ(AK ,∧gΩAK/K).
For each infinite place v, we put a metric on ωA/R ⊗Kv by:

‖ω‖2v = 2−g

∫

A(K̄v)
|ω ∧ ω̄|

17



1 Faltings Formula for Isogenous Abelian Varieties

for all ω ∈ ωA/R.
In fact this metric comes from the hermitian inner product on ωA/R ⊗Kv :

< ω, µ >v= 2−g

∫

A(K̄v)
|ω ∧ µ̄|

Now we finally state and prove Faltings formula for isogenous abelian varieties.

4.11 Proposition. (Faltings Formula). Let fK : AK → BK be an isogeny of
abelian varieties AK , BK defined over a number field K with ring of integers R. Let
N(A), N(B) be the Néron models of A and B. By the universal property of Néron
models fK extends to a morphism f : N(A) → N(B). Let G be the kernel of the
morphism f . Then

hF (BK)− hF (AK) =
1

2
log deg(fK)− 1

[K : Q]
log(#(s∗ΩG/R))

Proof.

hF (BK)− hF (AK) =
1

[K : Q]

(

deg(ωB/R)− deg(ωA/R)
)

=
1

[K : Q]
log #(ωB/R/R.s)− 1

[K : Q]
log(ωA/R/R.t)

+
1

[K : Q]

∑

v∈M∞
K

εv log |t|v −
1

[K : Q]

∑

v∈M∞
K

εv log(|s|v)

for s, t non-zero elements of ωB/R, ωA/R respectively.
We have an injection f ∗(ωB/R)→ ωA/R , we can choose t to be f ∗(s).

∫

A(K̄v)

∣

∣f∗(s) ∧ f̄∗(s)
∣

∣ = deg(fK)

∫

B(K̄v)
|s ∧ s̄|

⇒ |f∗(s)|v =
√

d |s|v

Hence
∑

v∈M∞
K

εv log(|f ∗(s)|v) =
∑

v∈M∞
K

εv log(
√

deg(fK) |s|v)

Hence
1

[K : Q]

∑

v∈M∞
K

εv log |f∗(s)|v −
1

[K : Q]

∑

v∈M∞
K

εv log(|s|) =
∑

v∈M∞
K

√

deg(fK)

=
1

2
log deg(fK) (1.1)

Now consider

log #(ωB/R/R.s)− log #(ωA/R/R.f∗(s)) = log #(ωB/R/R.(s))

− log #(ωA/R/R.f∗ωB/R)(f∗ωB/R/R.f∗(s))

= − log #(ωA/R/f∗ωB/R) (as f∗ is injective)
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1 Faltings Formula for Isogenous Abelian Varieties

We have the following exact sequence :

0→ f∗ΩN(B)/R → ΩN(A)/R → ΩN(A)/N(B) → 0

So ωA/R
∼= ωB/R ⊗ s∗ΩG/R

Hence we have
log #(ωA/R/f∗ωB/R) = # log s∗(ΩG/R) (1.2)

From equation 1.1 and 1.2 we have the desired relation:

hF (BK)− hF (AK) =
1

2
log deg(fK)− 1

[K : Q]
log(#s∗(ΩG/R)) �
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2 Average Height of Quotients of a

Semi-Stable Elliptic Curve

In the last chapter we have seen the Faltings height formula for abelian varieties. In this
chapter we look at the average Faltings height of quotients of a semi-stable elliptic curve
by its cyclic subgroups of a fixed order.
Autissier first proved this formula in [Au1] as mentioned in the introduction. The ap-
proach opted by Autissier in [Au1] involves the the measure of arithmetic complexity of
modular curve X◦(N) and also a result due to Kühn on the height of the modular curve
X◦(1). In this chapter we first look at a more elementary approach due to Robin de
Jong in [Ro], then briefly outline Autissier’s method in [Au1], and then look at another
approach which involves both these approaches. Robin de Jong’s approach involves the
basic concepts of Arakelov intersection theory from [Ar] and [Fa 2].

As stated above we prove the following formula for a semi-stable elliptic curve in this
chapter:

1

eN

∑

C

(

hF (E
′
)− hF (E)

)

=
1

2
log N − λN (2.1)

where eN is the number of cyclic subgroups of E of order N , C runs over the cyclic
subgroups of order N and λN is a constant dependent only on N .

In section 1 of this chapter we look at the Arakelov Green function defined on a
compact and connected Riemann surface of genus g > 0. In section 2 we look at the
Arakelov intersection theory on arithmetic surfaces. In section 3 we prove 2.1 as a
consequence of all the theory developed in the first 2 sections. In the final section we
briefly outline the approach of 2.1 using Autissier’s method, which actually carries onto
the abelian varieties case. We then look at another method which uses results of both
the approaches.

2.1 Arakelov Green Function

Let X be a compact connected Riemann surface of genus g > 0.
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2 Average Height of Quotients of a Semi-Stable Elliptic Curve

1.1 Definition. Let X be a connected, compact Riemann surface of genus g > 0.
Then H◦

(

X,Ω1
X

)

is equipped with a Hermitian inner product

(ω, η)→ i

2

∫

X
ω ∧ η̄.

Let (ω1, ..., ωg) be an orthonormal basis with respect to this inner product . We then
define the Arakelov (1, 1)-form µ to be µ = i

2g

∑g
k=1 ωk ∧ ω̄k.

It is easy to check that
∫

X µ = 1 and µ is independent of choice of basis. Using this
Arakelov (1,1) form we now define the Arakelov Green Function.

1.2 Definition. The Arakelov-Green function G is the unique function
G : X ×X → R≥0 such that the following properties holds:
(1) for all P ∈ X the function log G(P,Q) is C∞ for Q 6= P ;
(2) for all P ∈ X we can write log G(P,Q) = log |zP (Q)|+ f(Q) locally about P , where
zP is a local coordinate about P and where f is C∞ about P ;
(3) for all P ∈ X we have

∂Q∂̄Q log G(P,Q)2 = 2πiµ(Q)

for Q 6= P
(4) for all P ∈ X we have

∫

X log G(P,Q)µ(Q) = 0
The existence of such a function is proved by Arakelov in [Ar]. Properties 1,2,3 determine
the Green function up to a constant, and then condition 4 determines a unique Green
function. Symmetry of Green function G(P,Q) = G(Q,P ) follows from application of
Stokes’s theorem and the conditions 1,2,3 and 4.

The Arakelov Green function determines a smooth hermitian metric on the line bun-
dles OX(D) ,where D is a divisor on X. In our case it suffices to consider just points.
Let s be a canonical generating section of the line bundle OX(P ). The metric determined
by the Arakelov Green function ‖.‖OX(P ) on OX(P ) is given by:

‖s‖OX(P ) = G(P,Q) for any Q ∈ X.

1.3 Definition. Let Ω1
X be the sheaf of holomorphic 1-forms of X.

Let ∆ : X → X ×X be the diagonal embedding and OX×X(−∆) the sheaf of holomor-
phic functions vanishing on the diagonal with zeros of order 1. Then there exists an
isomorphism called the adjunction isomorphism

OX×X(−∆) ∼= Ω1
X .

OX×X(−∆) carries the hermitian metric defined by ‖s‖ (P,Q) = G(P,Q) with s the
canonical generating section of the line bundle OX×X(−∆) .The unique metric on Ω1

X

that makes the adjunction isomorphism an isometry is called the Arakelov metric ‖.‖Ar .
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2 Average Height of Quotients of a Semi-Stable Elliptic Curve

1.4 Definition. Let X be a connected Riemann surface, and ` be a holomorphic line
bundle on X, equipped with a C∞ hermitian metric ‖.‖. The curvature form of (`, ‖.‖)
is a (1,1)-form defined locally as

curv‖‖ =
−1

2πi
∂Q∂̄Q log(‖s‖2)

where s is the local generating section of ` and it satisfies the condition
∫

X

−1

2πi
∂Q∂̄Q log ‖.‖2 = deg`

This is because every hermitian line bundle can be built up from OX(P ), which comes
with the hermitian metric ‖s‖OX(P ) = G(P,Q). Hence from property 3 of the Green
function, we can conclude that the curvature form is independent of the generating
section s that we choose.

1.5 Definition. A smooth Hermitian metric ‖.‖ on a line bundle ` on X is called
admissible if its curvature form is a multiple of µ. Arakelov has proved in [Ar] that ‖.‖Ar

is an admissible metric on Ω1
X .

1.6 Proposition. Let P be a point on X and let z be a local coordinate about P .
Then the norm of dz in Ω1

X ‖dz‖Ar is given by the formula
‖dz‖Ar (P ) = limQ→P |z(P )− z(Q)| /G(P,Q).

Proof. Proposition 2.5 of [Ro].

We are now ready to state the complex projection formula for divisors on Riemann
surfaces. Later in the next section we see that this formula comes to our aid in proving
an Arakelov projection formula.

1.7 Proposition. (Complex Projection Formula) Let X and X ′ be Riemann
surfaces of genus 1 and GX and GX′ be the Arakelov Green functions of X and X ′

respectively. Suppose we have a non constant holomorphic map f : X → X
′
. Let D be

a divisor on X
′
. Then the canonical isomorphism of line bundles

f∗OX′ (D) ∼= OX(f∗D)

is an isometry. In particular we have a projection formula:
for any P ∈ X the formula

GX(f∗D,P ) = GX
′ (D, f(P ))

holds.
Proof. Proposition 3.2 of [Ro].
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2 Average Height of Quotients of a Semi-Stable Elliptic Curve

We now prove a formula for what is known as the ”Energy of an Isogeny”. Later in
section 3 while we prove 2.1 the corollary of this proposition helps us a great deal. But
before we look at the proposition we need a notation.

Let ω be a holomorphic differential of norm 1 in H ◦
(

X,Ω1
X

)

. Then we denote ‖ω‖Ar

by A(X). This is an invariant of X.

1.8 Proposition. (Energy of an Isogeny). Let X and X
′
be 1-dimensional com-

plex tori related by an isogeny f : X → X
′
of degree N . Then we have the following

formula:
∏

P∈ker(f),P 6=0

G(0, P ) =

√
N.A(X)

A(X ′)

Proof. The idea of the proof is that we compute the norm of the map f ∗(Ω1
X′ )→ Ω1

X

and show that it is equal to
∏

P∈ker(f),P 6=0

G(0, P ).

Given the isogeny f : X → Y of degree N . We then have the isomorphism between

f∗(Ω1
X′ )→ Ω1

X (2.2)

(as f is an isogeny and X, X
′
can be viewed as complex elliptic curves).

We know from the arguments in the proof of the Faltings formula(proposition 4.11)
in last chapter that the norm of the isomorphism

f∗ : H◦
(

X
′
,Ω1

X
′

)

→ H◦
(

X,Ω1
X

)

.

is
√

N . So consider an ω
′ ∈ H◦

(

X
′
,Ω1

X′

)

of norm 1. We have the Arakelov metric on

Ω1
X′ so ω

′
has norm A(X

′
) in Ω1

X′ .

Now consider f ∗(ω
′
). It has norm

√
N in H◦

(

X,Ω1
X

)

. Hence the norm in Ω1
X of f∗(ω

′
)

is
√

N.A(X) as an element of the line bundle Ω1
X . Hence we can now compute c , the

norm of f ∗ when viewed as an isomorphism of line bundles:

c =

√
N.A(X)

A(X ′)
.

From Proposition 1.7 we have:

f∗(OX
′ (0)) ∼= OX(Ker(f)) (2.3)

and that f ∗ to be an isometry on OX′(0) . We tensor 2.2 and 2.3. Since Ω1
X

′ ⊗OX′ (0) =

Ω1
X′ (0) and Ω1

X ⊗ OX(ker(f)) =
⊗

P∈ker(f), P 6=0 OX(P ), we have the following isomor-
phism:

f∗(Ω1
X′ (0)) ∼= Ω1

X′ (0)⊗
⊗

P∈ker(f), P 6=0

OX(P )
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2 Average Height of Quotients of a Semi-Stable Elliptic Curve

which has norm c. c can again be calculated by looking at how f ∗ acts on an element
belonging to Ω1

X′(0).

f∗(
dz

z
)→ dz

z
⊗ s,

where s is the canonical section of
⊗

P∈ker(f), P 6=0 OX(P ). dz
z has norm 1 in Ω1

X′(0)).
The line bundle OX(P ) is equipped with the smooth hermitian metric ‖.‖OX

(P ) such
that ‖t‖OX(P ) = G(P,Q) for any Q ∈ X, and t the canonical generating section of
OX(P ).
So the norm of s;

‖s‖ =
∏

P∈ker(f),P 6=0

‖s‖OX(P ) (0)

is by definition of ‖s‖OX(P ) equal to

∏

P∈ker(f) ,P 6=0

G(0, P ).

Hence we have the norm of f ∗ to be equal to

c =
∏

P∈ker(f),P 6=0

G(0, P ) =

√
N.A(X)

A(X ′)
. �

We conclude this section with a nice corollary to proposition 1.8.

Corollary 1.9. Let X be a 1-dimensional complex torus. Let X[N ] be the kernel of
the multiplication by N map N : X → X. Then we have the formula

∏

P∈X[N ],P 6=0

G(0, P ) = N

Proof. X is an elliptic curve and multiplication by N is an isogeny of degree N 2 , i.e.
#X[N ] = N 2. Hence the formula follows. �

2.2 Arakelov Intersection Theory

In this section we look at the basic notions of Arakelov intersection theory on the minimal
regular model of a semi-stable elliptic curve over a number field K. Arakelov intersection
theory is a very powerful tool to study the arithmetic complexities of algebraic curves
and varieties. We start off with the notion of a minimal regular model for an elliptic
curve, Arakelov divisors and then state the well known Arakelov projection formula.
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2 Average Height of Quotients of a Semi-Stable Elliptic Curve

2.1 Definition. An arithmetic surface is a proper flat morphism p : X → B of
schemes with X regular and with B the spectrum of ring of integers of a number field
K, such that the generic fiber is a geometrically connected curve of genus 1, and a section
O : B → X of p is given , we then call p : X → B an elliptic arithmetic surface.

2.2 Definition. Minimal Arithmetic Surface: We say that an arithmetic surface p :
X → B with generic fiber of positive genus is called minimal if every proper B-morphism
X → X

′
with p

′
: X

′ → B an arithmetic surface, is an isomorphism.

2.3 Definition. Let E be an elliptic curve over a number field K. If the generic fiber
of the minimal arithmetic surface
p : X → B is isomorphic to E , then we call p : X → B the minimal regular model of E
over K.

The existence of such a minimal model for every elliptic curve E over K is known.
(chapter 9, proposition 3.19 and corollary 3.24 [QL]) In general we say a model p : X → B
with the generic fiber isomorphic to the given elliptic curve verifies a property T if
p : X → B verifies T .

2.4 Remark. Every elliptic curve is indeed an abelian variety of dimension 1. And
it is also known that the minimal model X of every elliptic curve E contains the Néron
model as a dense open sub scheme. By the universal property of the Néron model any
isogeny f : E → E

′
extends over a dense open sub-scheme U of X to give B-morphism

U → X
′

and hence a rational map f : X → X
′
. We also have the following theorem

from [QL] (chapter 9,theorem 2.7).

2.5 Theorem. Let X → S be a regular fibered surface. Let φ : X → Z be a rational
map from X to a projective S-scheme Z. Then there exists a projective birational
morphism f : X̃ → X made up of a finite sequence of blowing ups of closed points

X̃ = Xn → .....→ X◦ = X,

and a morphism g : X̃ → Z such that φ ◦ f = g.

Hence we have a proper birational morphism π : X̃ → X made up of finite sequence
of blowing ups of singular points, and a morphism

f̃ : X̃ → X
′

such that f̃ = f.π .

All throughout this chapter p : X → B is an arithmetic surface with the generic fiber
XK geometrically connected. Here B is the ring of integers of a number field K. Let Sf

denote the set of primes of OK .
S∞ denote the infinite places . So S = Sf ∪ S∞ denotes all the places of K .
Now we define what an Arakelov divisor is.
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2 Average Height of Quotients of a Semi-Stable Elliptic Curve

2.6 Definition. An Arakelov divisor on X is a formal sum

D = Df + D∞

where Df is a Weil divisor on X and D∞ is a formal linear combination:

D∞ =
∑

v∈S∞

rvEv,

with real coefficients rv. Ev are formal symbols corresponding to the Riemann surfaces
X(K̄v) for an infinite place v.
Ev = p−1 (Spec(kv) for finite places where kv is the residue class field at v. We denote
its order by qv.

To a non zero rational function f on X we associate an Arakelov divisor (f) = (f)fin+
(f)inf where (f)fin is then usual divisor of f .

(f)inf =
∑

v∈S∞

rv.Ev where rv = −
∫

Xv

log ‖f‖v .µv

where Xv is the Riemann surface X(K̄v) over Kv = C and µv is the (1,1)-form associated
to the Riemann surface Xv which we have discussed in the last section.
We denote the set of Arakelov divisors on X by ˆDiv(X). This set carries a group
structure. In fact the group admits a decomposition

ˆDiv(X) ∼= Div(X) ×⊕v∈S∞Xv

2.7 Definition. We say two divisors D and D
′
are linearly equivalent if their difference

is an Arakelov divisor (f) for some non zero rational function f . We denote group of
Arakelov divisors on X modulo their equivalence classes by Ĉl(X).

The following proposition proved by Arakelov in [Ar] is the main theorem which defines
the Arakelov intersection for two Arakelov divisors. We are not going into the proof of
it, but look at how Arakelov intersection is defined in [Ar].

2.8 Proposition. There exists a natural bilinear symmetric intersection pairing
ˆDiv(X) × ˆDiv(X) → R . This pairing factors through linear equivalence , giving an

intersection pairing ˆCl(X) × ˆCl(X) → R This pairing defined above goes by the name
of Arakelov intersection pairing.
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2.9 Definition. Let P and Q be two Arakelov divisors on X. If P or Q is a sum
of fibers Xv with v ∈ S∞ or of components of fibers Ev, v ∈ Sf , then the intersection
product is zero. (assuming they have no components in common)
In the most common case when P and Q are sections (P,Q) is

(P,Q) =
∑

v∈S

(P,Q)v

For v ∈ Sf , we define

(P,Q)v = log qv.(usual intersection multiplicity)

This is non zero when P , Q intersect Ev at the same point ,and this is seen as logarithm of
the v- adic distance between P , Q ∈ X(K) ⊆ X(Kv), where Kv is the v- adic completion
of K .
For infinite places ,we define

(P,Q)v = −εv. log G(P,Q) (v ∈ S∞)

where
ε = 1, for Kv = R, ε = 2, for Kv = C

G(P,Q) can be viewed as the norm evaluated at Q of the constant section 1 of OX(P )
for the Hermitian metric (which is given by the Arakelov Green function) we discussed
in last section.

For any arithmetic surface which is a proper, flat morphism p : X → B of schemes,
with X regular, we define an admissible line bundle L on X to be a line bundle L with
a smooth hermitian metric on the restrictions of L to Xv. The group of isometry classes
of line bundles is denoted by ˆPic(X) .

It is natural to ask whether P̂ ic(X) is isomorphic to Ĉl(X) or not. Arakelov has proved
that they are indeed isomorphic. We also have the desired isomorphism.[Ar](Proposition
2.2)

2.10 Proposition. The group Ĉl(X) is canonically isomorphic to ˆPic(X).

So from now on whenever we write the Arakelov intersection (P,L) for P a section and
L an admissible line bundle we actually mean (P,D) where D is the Arakelov divisor
corresponding to the admissible line bundle L under the canonical isomorphism.

We have seen in last chapter (1.3), the definition of degree of a metrized line bundle
L on Spec(R) to be

Deg(L, ‖.‖) = log(#(L/R.s))−
∑

v∈S∞

εv log ‖s‖v (2.4)
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2 Average Height of Quotients of a Semi-Stable Elliptic Curve

2.11 Proposition. Let L be an admissible line bundle on X , let P : B → X be a
section of p, and let s be a nonzero rational section of L. Then we have

(P,L) = log #(P ∗L/P ∗s.OK)−
∑

v∞

εv log ‖P ∗s‖v .

The proof follows straight from the definitions and it is all about checking, which we
omit. But it is worth observing here that P ∗L is a projective module of rank 1 over B
together with hermitian metrics at infinite primes where P : B → X is a section of X.
Hence P ∗L is a metrized line bundle over B. Hence proposition 2.11 translates to

(P,L) = deg(P ∗L)

Corresponding to the dualizing sheaf ωX/B there exists a an admissible line bundle
which we again denote by ωX/B . The metrics at infinity are given by Arakelov norm.
We have the classical adjunction formula on complex arithmetic surfaces , and it is not
very surprising to see the same holds with Arakelov intersection as well. But the proof
of the following formula uses the concepts of moduli stacks of elliptic curves, so we skip
the proof.

2.12 Proposition.(Adjunction Formula) Let P : B → X be a section of p. Then we
have the formula

(P, P ) = −(P, ωX/B)

Proof. Proposition 7.3 of [Ro]. So we have just seen that analogous to the classical
adjunction formula we have the Arakelov adjunction formula. So similar to the classical
projection formula one can expect the Arakelov projection formula. But before going to
see what it could be we need to define pullbacks and push forwards of Arakelov divisors.

2.13 Definition. Let p : X → B and p
′
: X

′ → B be arithmetic surfaces. Suppose
there exists a B- morphism f : X → X

′
. Let D be an Arakelov divisor on X , and

write D = Dfin +
∑

v∈S rvEv. We define the push forward

f∗(D) = f∗(Dfin) + N.
∑

v∈S∞

rvE
′

v

where f∗(Dfin) is the usual push forward of Weil Divisor and N is the degree of f .
Now let D

′
be an Arakelov divisor on X

′
. The pullback f ∗ is defined to be:

f∗(D
′
) = f∗(D

′

fin) +
∑

v∈S∞

r
′

v.E
′

v

on X where f ∗(Dfin) is the usual pull back of a Weil divisor. Now we are ready to
state the Arakelov projection formula. The formula holds for Arakelov divisors as well,
analogous to Weil Divisors.
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2.14 Proposition. Let E and E
′

be elliptic curves over a number field K, related
by an isogeny f : E → E

′
. Let p : X → B and p

′
: X

′ → B be arithmetic surfaces over
the ring of integers of K with generic fibers isomorphic to E and E

′
respectively and

suppose that f extends to a B-morphism f : X → X
′
. Then for any Arakelov divisor D

on X and any Arakelov divisor D
′
on X

′
the following equality holds.

(f∗D
′
, D) = (D

′
, f∗D)

Proof. The proof is solely based on the moving lemma from [QL] (corollary 9.1.10),
the classical projection formula and proposition 1.8 (complex projection formula). One
can look into [Ro] proposition 6.2 for details.

As in the case of Weil divisors the following result for Arakelov divisors follows very
easily from the Arakelov projection formula.

2.15 Corollary. With the same hypothesis as the proposition above, if we have two
Arakelov divisors D

′

1 and D
′

2 on X
′
, then the following formula holds true:

(f∗D
′

1, f
∗D

′

2) = N.(D
′

1, D
′

2)

where N is the degree of the isogeny f .

The following lemma is very useful in our scheme of proving eq 2.1 and would be
needed in the next section.

2.16 Lemma. Let p : X → B be a minimal arithmetic surface with generic fiber
of genus 1 and with relative dualizing sheaf ωX/B . The canonical homomorphism
p∗p∗ωX/B → ωX/B is an isomorphism.
Proof. [QL] corollary 9.3.27.

So we see here that the some of classical formulae which hold for Weil divisors do hold
for Arakelov divisors. The next proposition links the norm of the minimal discriminant
ideal of the elliptic curve with the self Arakelov intersection of a section on the minimal
regular model of the elliptic curve. But unlike the proofs of other propositions we have
seen so far (which followed more or less from the classical results and the very definitions
of Arakelov divisors) the proof of this proposition makes extensive use of properties of
the moduli stack of stable curves.
We need to define what a semi-stable elliptic curve is:

2.17 Definition. Let p : X → B be an elliptic arithmetic surface. We call p semi-
stable if any fiber of p is either non-singular, or an n-gon of projective lines. We call an
elliptic curve E over a number field K semi-stable if there exists a semi-stable elliptic
arithmetic surface over the ring of integers of K whose generic fiber is isomorphic to E.
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We know that a semi-stable elliptic surface is always minimal. And given any elliptic
curve over a number field K, there exists a finite extension L over K such that E become
semi-stable over L .

2.18 Proposition. Let E be a semi stable elliptic curve over a number field K,
and let p : X → B be its regular minimal model over the ring of integers of K . Let
P : B → X be a section of p, and let 4(E/K) the minimal discriminant ideal of E over
K. Then the following formula holds:

(P, P ) = − 1

12
log
∣

∣NK/Q(4(E/K))
∣

∣ .

Proof. [Ro] Proposition 7.2 or [Sp].

From proposition 7 and adjunction formula one can observe

−(P, P ) =
1

12
log
∣

∣NK/Q(4(E/K))
∣

∣

= deg(P ∗ωX/B).

2.3 Average Height of Quotients

In this section we will be looking into the first proof of the Average height formula
for elliptic curves. We have developed all the machinery that goes into the proof. In
next section we will see that the average height formula can also be proved by looking
at X(1), the moduli space of elliptic curves. We will find in the next chapter that the
method of looking at the moduli space is indispensable in case of higher dimensions.
But in case of elliptic curves the Arakelov Green function gives us the intersections at
infinity which is no longer the case in higher dimensions.

Let E/K be an elliptic curve defined over a number field K. Let p : X → B be the
minimal regular model of E/K. We state the Faltings height formula for an elliptic
curve which we have already done in the case of abelian varieties.

hF (E) =
1

[K : Q]
deg(ωE/K) =

1

[K : Q]
deg(s∗ωX/K)

=
1

[K : Q]
deg(p∗ωX/K)

Hence we can state Faltings formula (lemma 1.4.11 of chapter 1) for elliptic curves as :

3.1 Proposition. Let E and E
′
be semi stable elliptic curves over a number field K,

and an isogeny f : X → X
′
, of degree N , Then

hF (E
′
)− hF (E) =

1

2
log N − 1

[K : Q]
log #Ωker(f)/B

Proof. Follows straight from lemma 4.11 of chapter 1. �
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If p : X → B is a regular minimal model of E over OK with O : B → X the zero
section and ω the dualizing sheaf, then we can always assume K is large enough to make
all the N -torsion points of E to be K-rational. Which in turn implies E

′
the quotient

of E by a cyclic subgroup of order N is an elliptic curve over K.

We would be needing the following lemma which is used many a times in the proof of
equation 2.1.
3.2 Lemma. Let M be a positive integer such that M | N . Let X be an elliptic curve
over an algebraically closed field of characteristic zero. Then each cyclic subgroup of
order M is contained in exactly eN/eM cyclic subgroups of order N .
Proof. Let us consider the pairs (EM , EN ), where EN denotes a cyclic subgroup of
order N , and EM denotes a cyclic subgroup of order M both contained in the N -torsion
group of the elliptic curve X and EM ⊂ EN . Since there exists a unique subroup of
order M in EN the number of such pairs (EM , EN ) are just eN in number.
Let a given subgroup of the N -torsion group EM of order M be contained in e subgroups
of order N of the N -torsion group. The number e remains the same for each subgroup
EM of order M in the N -torsion group. We again compute the pairs (EM , EN ) . We
can choose EM in eM ways and EN in e ways.
We then have e.eM = eN . Hence we can conclude that each cyclic subgroup of order
M is contained in exactly eN/eM cyclic subgroups of order N �

We restate 2.1 once again and proceed with the proof.

3.3 Proposition. Let E be a semi-stable elliptic curve over a number field K. For
a finite subgroup C of E, we denote by E

′
the quotient of E by C. Then we have the

formula
1

eN

∑

C

(

hF (E
′
)− hF (E)

)

=
1

2
log N − λN

where the sum runs over the cyclic subgroups of E of order N . We have many ways of
writing the Faltings height function of which we use the one which is most convenient
to prove our average height formula. We look for the most convenient reformulation of
height function. The following lemma happens to be the one.

3.4 Lemma. Let E be a semi-stable elliptic curve over a number field K. Let
p : X → B be the minimal regular model for E over OK . Let O : B → X be the zero
section and ω be the relative dualizing sheaf of p, then we have

(O,ω)

[K : Q]
= hF (E)− 1

[K : Q]

∑

v∈S∞

εv log ‖A‖ (Xv).

Proof. From lemma 2.16 we have

p∗p∗ω ∼= ω
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Hence we have φ : p∗ω ∼= O∗ω.
Now consider (O,ω):

(O,ω) = deg(O∗ω) (from proposition 2.11, )

deg(O∗ω) =
1

[K : Q]

(

log #(O∗ω/O∗s.OK)−
∑

v∈S∞

εv log ‖s‖v,O∗ω

)

where s is a section of ω. From φ : p∗ω ∼= O∗ω we have

‖s‖v,p∗ω = ‖s‖v,O∗ω . ‖A‖ (Xv)

Hence #(p∗ω/p∗s.OK) = #(O∗ω/O∗s.OK). Hence we have

(O,ω) = deg(O∗ω),

deg(O∗ω) =
1

[K : Q]

(

log #(p∗ω/s.OK)−
∑

v ∈S∞

εv log ‖ω‖v,p∗ω −
∑

v ∈S∞

εv log ‖A‖ (Xv)

)

= hF (E) − 1

[K : Q]

∑

v ∈S∞

εv log ‖A‖ (Xv)

hence the lemma is proved. �.

It is known that the number of cyclic subgroups of order N of an elliptic curve over
C denoted by eN is given by

eN = N
∏

p|N

(

1 +
1

p

)

.

The following 2 lemmas together with the above lemma prove our 2.1.
We denote by C a cyclic subgroup of order N , by E

′
quotient of E by C, and p : X

′ → B
the regular minimal model of E

′
over B, O

′
the zero section, ω

′
the dualizing sheaf and

fC : E → E
′
the isogeny between E and E

′
.

3.5 Lemma. We have
∑

C

(

(O,ω)− (O
′
, ω

′
)
)

= 0

where the sum runs over cyclic subgroups of order N .

Proof. The proof of the lemma makes extensive use of the Arakelov projection for-
mula, adjunction formula and a Möbius inversion argument. We can extend the N -
torsion points of E over the regular minimal model X of E over K.
Let us fix an M such that M | N . We consider E[M ] the set of sections corresponding
to M -torsion points on E. Hence E[M ] is a subgroup of E[N ]. Now consider Ē[M ] the
set of sections corresponding to points on E of exact order M .
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Consider E
′
quotient elliptic curve given by E/E[M ]. We have an isogeny M : E → E

(multiplication by M) with kernel E[M ]. (Here E[M ] is indeed the set of M -torsion
points , which is not to be confused with Ē[M ] defined in last paragraph.)
To proceed further we need to apply the Arakelov projection formula . But we have seen
that in order to apply the formula our map M should extend to a B morphism X → X,
but from the remark 1, we know that we can work with a cover X̃ of X . But this is not
bad as it would give only exceptional curves at singular points on the fibers and such
curves have empty intersection with sections of X̃ → B.
Now

∑

Q∈E[M ]Q6=0

(Q,O) + (O,O) = (M ∗O,O)

= (O,O)
∑

Q∈E[M ]Q6=0

(Q,O) = 0 from (2.5)

Now consider,
∑

Q∈E[N ] Q6=0

(Q,O) =
∑

M |N

∑

Q∈Ē[M ]Q6=0

(Q,O)

Denote
∑

Q∈E[N ] Q6=0

(Q,O) by g(N)

Denote
∑

Q∈Ē[M ]Q6=0

(Q,O) by f(M)

Then we have
g(N) =

∑

M |N

f(M)

hence by Möbius inversion argument we have:

f(N) =
∑

M |N

µ(N/M)g(M) where µ is the Möbius function

but we know that
g(M) =

∑

Q∈E[M ] Q6=0

(Q,O) = 0.

Hence
f(M) =

∑

Q∈Ē[M ]Q6=0

(Q,O) = 0 for all M | N. (2.5)

Now consider
∑

C

(

(O,ω)− (O
′
, ω

′
)
)

=
∑

C

(

(O
′
, O

′
)− (O,O)

)

(By adjunction formula)

=
∑

C

∑

Q∈C,Q6=0

(Q,O) (By the projection formula)
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As
∑

C

∑

Q∈C,Q6=0

(Q,O) + (O,O) = (f ∗CO
′
, O)

= (O
′
, O

′
)

Hence
∑

C

∑

Q∈C,Q6=0

(Q,O) =
∑

M |N

eN

eM

∑

Q∈Ē[M ]

(Q,O) (By the Lemma 3.2)

= 0 (By equation 2.5 )

The following lemma coupled with the two lemmas 3.4 and 3.5 proved above we have
the proof of 2.1.

3.6 Lemma. Let X be a one dimensional complex torus and G the Arakelov Green
function on X .Then

1

eN

∑

C

∑

Q∈C,Q6=0

log G(O,Q) = λN

where the first sum runs over the cyclic subgroups of X of order N , and the second sum
runs over non zero points of C.

Proof. For a positive integer M | N let us denote the set of M torsion points on X
by X[M ], and the set of M torsion points of exact order M by X̄[M]. By corollary 1.10
in section 1, we have

∑

Q∈X[M ],Q6=0

log G(0, Q) = log M

We now use the multiplicative version of Möbius inversion formula:
∏

Q∈X[N ],Q6=0

G(0, Q) =
∏

M |N

∏

Q∈X̄[M ]

G(0, Q)

Denote
∏

Q∈X[N ],Q6=0

G(0, Q) by j(N)

∏

Q∈X̄[M ]

G(0, Q) by h(M)

j(N) =
∏

M |N

h(M)

Then by the Möbius inversion argument we have

h(N) =
∏

M |N

(f(M))µ(d)
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Hence we have

∑

Q∈X̄[M ]

log G(0, Q) =
∑

d|M

∑

Q∈X[M/d]

µ(d) log G(0, Q)

= −
∑

Q∈X[pr−1]

log G(0, Q) +
∑

Q∈X[pr]

log G(0, Q) (When M = pr for some prime p)

= log p (WhenM = pr for some prime p)

∑

Q∈X̄[M ]

log G(0, Q) = 0(if M is not of the form pr for some prime P)

That is because: it suffices to prove for M = st , where s, t are primes and s 6= t .

∑

Q∈X̄[M ]

log G(0, P ) = −
∑

Q∈X[s]

log G(0, Q) −
∑

Q∈X[t]

log G(0, Q) +
∑

Q∈X[st]

log G(0, Q) = 0

Now by lemma 2.2 we have

1

eN

∑

C

∑

Q∈C,Q6=0

log G(0, Q) =
1

eN

∑

M |N,M>1

eN

eM

∑

Q∈X̄[M ]

log G(0, Q)

Hence we have

1

eN

∑

C

∑

Q∈C,Q6=0

log G(0, Q) =
∑

p|N,p‖N

(

1

ep
+ ... +

1

epr

)

log p

Now consider
(

1

ep
+ ... +

1

epr

)

=
1

p(1 + 1
p)

+ .... +
1

pr(1 + 1
p)

And,

1

p(1 + 1
p)

+ .... +
1

pr(1 + 1
p)

=
1

p + 1

(

1− 1
pr

1− 1
p

)

=
pr − 1

pr−1(p2 − 1)

Hence we have
1

eN

∑

C

∑

Q∈C,Q6=0

log G(O,Q) = λN

Now we can prove proposition 3.3 (or eq 2.1) by gluing all these 3 lemmas.
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Proof of proposition3.3. We glue lemmas 3.4, 3.5 and 3.6 and prove the average
height formula for elliptic curves.

1

eN

∑

C

(

hF (E
′
)− hF (E)

)

=
1

eN

1

[K : Q]

∑

C

(

(O
′
, ω

′
)− (O,ω)

)

+
1

eN

1

[K : Q]

∑

C

∑

v

εv log ‖A‖ (X
′

v)

− 1

eN

1

[K : Q]

∑

C

∑

v

εv log ‖A‖ (Xv) (from lemma 3.4 )

=
1

eN

1

[K : Q]

∑

C

∑

v

εv log
‖A‖ (X

′

v)

‖A‖ (Xv)
(from lemma 3.5)

=
1

eN

1

[K : Q]

∑

C

∑

v

εv

(

log
√

N
)

− 1

eN

1

[K : Q]

∑

C

∑

v

εv log
∏

P∈C
P 6=0

G(0, P v) (from proposition 1.9)

=
1

2
log N − 1

eN

1

[K : Q]

∑

v

εvλN (from 3.6 )

=
1

2
log N − λN �

2.4 Autissier’s Proof

In this section we look at Autissier’s way of proving 2.1, and then give a proof of the
average height formula using both Autissier’s approach and Robin de Jong’s approach.
His method involves the moduli spaces X(1) and X0(N). As stated earlier we would
only give an outline of the proof. We will see in complete detail in the next chapter
that the same method carries on to Abelian varieties. In fact it happens to be the most
convenient the way of proving the average height formula for abelian varieties.

We denote the equivalence classes of isomorphic elliptic curves, the moduli space of
elliptic curves by X(1).
We denote by X◦(N) the Deligne-Rapoport compactification of the moduli space of
cyclic isogenies of elliptic curves of degree N .

4.1 Definition. The modular group denoted by Γ(1), is the quotient group

Γ(1) = SL2(Z)/
{

+
−Id

}

where Id is the identity matrix.

4.2 Definition. We define Γ0(N) the subgroup of Γ(1) as

Γ0(N) =

{[

a b
c d

]

∈ Γ(1) : c ≡ 0(Mod N)

}
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4.3 Definition. The extended upper half plane H∗ is the union of the upper half
plane H and the Q-rational points of the projective line,

H∗ = H ∪ P1(Q) = H ∪Q ∪ {∞}

Γ(1) defines a natural action on H∗ as follows

for γ =

[

a b
c d

]

∈ Γ(1), τ ∈ H, γ(τ) =
aτ + b

cτ + d

for γ =

[

a b
c d

]

τ =

[

x
y

]

∈ P1(Q), γ(τ) =

[

ax + by
cx + dy

]

4.4 Theorem. There exists a one- one correspondence between the following sets :

{elliptic curves defined over C}
C− isomorphisms

←→ {Λτ} ←→ Γ(1) \H

where {Λτ} denotes the equivalence classes of homothetic lattices.
Proof. The proof can be found in [Si] proposition 4.4 chapter 1.

So we now see that X(1)(C), the moduli space of complex elliptic curves is nothing
but Γ(1) \H∗. We can also identify X0(N)(C) with the moduli space of ordered pairs
(E,C) where E is an complex elliptic curve and C a cyclic subgroup of order N . Two
such pairs (E,C) and (E

′
, C

′
) are said to be equivalent if some isomorphism from E to

E
′
takes C to C

′
.

4.5 Remark. 1. The j-invariant j : X(1)
∼=→ P1

Z is an isomorphism .
2. X0(N) is a normal arithmetic surface.

Let us denote X×ZX by P . We have a finite morphism iN : X0(N) → P , which
associates to each cyclic isogeny α : E → E

′
of degree N to its source and target (E,

E
′
). Let us denote the image of this morphism iN by TN . TN is bi-rational to X0(N).

TN is an integral Cartier divisor on P .

Let [∞] denote the divisor associated to the point ∞ ∈ X(1)(Z). Let us denote
OX(1) ([∞]) = j∗OP1(1) by M .

4.6 Definition. Let X be an arithmetic surface, W a closed set of X(C) stable
under complex conjugation and L̂ = (L, ‖ ‖) an invertible sheaf on X with a family of
Hermitian norms ‖ ‖ on LC such that they vary continuously on X(C) −W , then L̂ is

said to be singular along W . If for a family ‖ ‖′ (L,‖ ‖′) is C∞ , the function log(‖ ‖ / ‖ ‖′)
is L1

2 and L̂ is said to be L1
2 singular along W .
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2 Average Height of Quotients of a Semi-Stable Elliptic Curve

Let L̂ be an invertible sheaf on X singular along W . Let Z1(X) be the group of 1-
cycles on X. Let us denote the group of 1-cycles D ∈ Z1(X) such that the support of
DC ∪W = φ by Z1(X,W ).

4.7 Definition. Let X be an arithmetic variety and L̂ be L1
2 singular along a closed

set W ⊂ X(C) which is stable under complex conjugation . Let Y ∈ Z1(X,W ) be a
1-cycle. We then define the height of Y relative to L̂ as
1. If Y is a horizontal divisor , then hL̂(Y)=deg(L̂|Y ) , where deg denotes the arithmetic
degree defined above.
2. If Y is a vertical divisor, that is contains a fiber of a prime number p, then hL̂(Y)=
degFp(L|Y ) log p.

Remark 4.8 The isometry classes of L1
2 singular L̂’s form a group denoted by

Pic(X;L1
2). From [Bo] we have the following symmetric bilinear form.

< . >: Pic(X;L1
2)× Pic(X;L1

2)→ R

For a L̂ ∈ Pic(X;L1
2) the height of X relative to L̂ is given by

hL̂(X) =< L̂.L̂ >.

Now with all this theory we an attack our problem of trying to define height function
on invertible sheaves on our moduli space X(1).
So let us now consider the invertible sheaf M = j∗OP1(1) on X(1). Let us consider the
metric ‖.‖m given by

‖1‖m = |∆(τ)| (im(τ))6 (2.6)

M̂= (M;‖.‖m) is an hermitian ,invertible and L1
2 sheaf along ∞C.

Now let us consider E an elliptic curve over Q̄. This defines a point x ∈ X(1)(Q̄).Let
Y be the point on X(1)(Q̄) corresponding to E. The following proposition proved by
Faltings in [Fa 3] provides us the relation between Faltings height function and the height
function that we have defined here.

4.9 Proposition. Let E be a semi-stable elliptic curve defined over a number field
K . Let ∆(E/K) be the minimal discriminant ideal of E over K. Then the following
formula holds as the sum runs over the complex embeddings over K.

hF (E) =
1

[K : Q]

(

1

12
log
∣

∣NK/Q(∆(E/K))
∣

∣ − 1

12

∑

v

εv log((2π)12 ‖∆‖ (Xv))

)

where ‖∆‖ (X) is equal to |∆(τ)| (im(τ))6 if X is isomorphic to C/(Z + τZ)
Proof From lemma 3.4 we have that

(O,ω) = hF (E)− 1

[K : Q]

∑

v∈S∞

εv log ‖A‖ (Xv) (2.7)
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2 Average Height of Quotients of a Semi-Stable Elliptic Curve

But from the adjunction formula (proposition 2.12) and proposition 2.18, we have that

(O,ω) =
1

12
log
∣

∣NK/Q(E/K)
∣

∣ .

But from [Fa 2] or proposition 4.6 from [Ro] we have that

A(X) =
1

(2π) ‖∆‖ (X)1/12

Hence we have

hF (E) =
1

[K : Q]

(

(O,ω)−
∑

v∈S∞

log ‖A‖ (Xv)

)

=
1

[K : Q]

(

1

12
log
∣

∣NK/Q(∆(E/K))
∣

∣ − 1

12

∑

v

εv log((2π)12 ‖∆‖ (Xv))

)

. �

From proposition 4.9 we can conclude that hF (E) = 1
[K:Q]

1
12hM̂ (Y ).

Having seen how Faltings height function is related to the height function defined on
an invertible sheaf on X(1), we now proceed to see how this theory can be used to prove
equation 2.1.
We have the projection maps pr1, pr2 from P to X(1). Let us put L̂ = pr∗1M̂ ⊗ pr∗2M̂ .
We have already stated that TN the image of iN is an integral divisor on P .
Let Y be a integral Weil divisor on X(1) and [k(Y ):Q] = n. As M is a very ample
invertible sheaf we have a global section s of M⊗n on X(1) such that div(s) = Y .
Let us denote

πi = pri ◦ iN : X0(N)→ X(1)

Hence we have map π2∗ : Z1(X0(N)) → Z1(X(1)) . Let us denote π2∗(div(π∗1s)) by
(TN∗Y ) where π∗1 is the inverse image of the invertible sheaf M on X0(N). (TN∗Y ) is a
1-cycle on X(1).

The idea now is to compute the height of the divisor TN and the one cycle TN∗Y rela-
tive to the hermitian line bundles L̂ and M . Once hL̂(TN ) and hM̂ (TM∗) are computed
we can get the average height formula by applying the relation:

1

12n

1

[K : Q]
hM̂ (TN∗Y ) =

eN
∑

i=1

hF (Ei) and hF (E) =
1

12

1

[K : Q]
hM̂ (Y )

In fact all we need is a formula for hM̂ (TN∗(Y )) in terms of hM̂ (Y )).

Autissier first computes hL̂(TN (Y )) and then uses the relation hL̂
|Y

′
(Y

′
) = 2hM̂ (Y )+

12k1n, to compute hM̂ (TN∗(Y )), where k1 is 12ζ
′
(−1)− log π− 12 and ζ is the Riemann

zeta function.
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2 Average Height of Quotients of a Semi-Stable Elliptic Curve

4.10 Proposition. Let N ≥ 1, Y an integer point of X(1) (i.e. an integral closed
sub-scheme) such that YC ∩ ∞C = φ. Let [k(Y ) : Q] = n. Then we have the following
formulae.

hL̂(TN ) = 12eN (log N −2λN +4k1),
1

neN
hM̂ (TN∗Y ) =

1

[K : Q]
hM̂ (Y )+6 log N −12λN .

(2.8)
Proof [Au 1], theorem 3.2.

We now look at an alternate approach of proving the average height formula. Autissier
uses the following 2 lemmas in his proof of proposition 4.10. On observing closely
these two lemmas coupled with our two lemmas 3.5 and 2.12 give the average height
formula. This approach involves basic properties of modular forms and ∆(τ) the modular
discriminant.

Before we state and prove the two lemmas we look at the basic concepts of modular
forms and ∆(τ) the modular discriminant.

4.11 Definition. Let k be an integer. A meromorphic function f : H→ C is weakly
modular of weight k if

f(γ(τ)) = (cτ + d)kf(τ) for γ =

[

a b
c d

]

∈ SL2(Z) and τ ∈ H.

4.12 Definition. A cusp form of weight k is a function f : H → C such that the
following conditions hold.
1. f is holomorphic on H
2. f is weakly modular of weight k.
3. f is holomorphic at ∞.
4. The leading coefficient a◦ of the fourier expansion of f

f(τ) =
∞
∑

n=1

anqn , q = e2πiτ

is zero.
It is easy to see that limim(τ)→∞ f(τ) = 0, as qn → 0 as im(τ)→∞.

Now let us consider the modular discriminant

∆ : H→ C ∆(τ) = q

∞
∏

k=1

(1− qk)24.

∆(τ) is the unique cusp-form of weight 12 on SL2(Z). The leading coefficient a◦ = 0
and a1 = 1 in the Fourier expansion of ∆(τ).

40



2 Average Height of Quotients of a Semi-Stable Elliptic Curve

Now consider the set of matrices CN defined as:

CN =

{

γ =

[

a b
0 d

]

∈ M2(Z); aγdγ = N, aγ ≥ 1, 0 ≤ bγ ≤ dγ − 1 and gcd(aγ , bγ , dγ) = 1

}

eN = #CN = N
∏

p|N

(

1 +
1

p

)

The following lemma gives us all the cyclic sub lattices Λτ ′ of order N of a lattice Λτ

in the complex plane.

4.13 Lemma. Let τ ∈ H and consider the lattice Λτ = [1, τ ]. Then

1.Consider the sub lattice Λτ ⊂ [1, τ ] of index N , there is a unique γ =

[

a b
c d

]

∈ CN

such that Λτ = d[1, γ(τ)].

2. Conversely if γ =

[

a b
c d

]

∈ CN , then d[1, γ(τ)] is a cyclic sub lattice of index N

in [1, τ ].
Proof. The proof can be found in [Co], lemma 11.24 chapter 11.

Let E/K be an elliptic curve defined over a number field K. Let E
′
be a the elliptic

curve obtained by quotient of E by a cyclic subgroup of order N . Let Λτ belong to the
isomorphic class of lattices that corresponds to E, then from theorem 4.13 and 4.4 we
can safely conclude that Λγτ belongs to the isomorphic classes of lattices that correspond
to E

′
for some γ ∈ CN . Let p : X → B be the regular minimal model of E/K. Then Xv

for each infinite place is a 1-dimensional complex torus. Let X
′
be the regular minimal

model of E
′
, then Λτ ′ the lattice corresponding to X

′

v is a cyclic sub lattice of order N

in Λτ the lattice corresponding to Xv, for each infinite place v. Hence τ
′
= γτ for some

γ ∈ CN .

The following two lemmas are proved by Autissier in [Au] in proving the average height
formula.

4.14 Lemma. For N ≥ 2, and for all τ ∈ H we have

∏

γ∈CN

∆(γ(τ)) = [−∆(τ)]eN .

Proof. [Au 2] lemma 2.2 . �

4.15 Lemma.
∑

γ∈CN

log
dγ

aγ
= eN (log N − 2λN )
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2 Average Height of Quotients of a Semi-Stable Elliptic Curve

Proof. We use finite mathematical induction to prove the lemma. Let us denote L.H.S
by SN . For N = 1, the lemma holds. Let us assume that the lemma holds for all N < r.
If r is a prime, we have Sr = (r − 1) log r (as when we have dγ = r, and aγ = 1 bγ can
take r values from 0 to r − 1, when dγ=1, then bγ = 0, and aγ = 1)
If r = st, where s, t are co-prime then one can check that we have the relation

Sst = [etSs + esSt].

Since s, t are < r, we ca conclude that the lemma holds for r.
If r = pa for some prime p, then one can directly calculate as

Sr = [pr−1(p + 1)r − 2
pr − 1

p− 1
] log p

Hence by the principle of finite mathematical induction we can conclude that the lemma
holds for all positive integers. �

Let us consider im(γτ) for γ =

[

a b
c d

]

∈ CN . im(γτ) = im(aτ+b
d ) = im(aτ

d ) =

a
d im(τ).

Proof of eq 2.1. Now we can easily prove the average height formula for elliptic
curves by combining lemma 4.13, 4.14 and 4.9 of this section , and lemmas 3.5 and 2.12
of section 3, 2 respectively of this chapter.

1

eN

∑

C

(

hF (E
′
)− hF (E)

)

=
1

[K : Q]

1

eN

∑

C

1

12

(

log
∣

∣

∣NK/Q(∆(E
′
/K))

∣

∣

∣ − log
∣

∣NK/Q(∆(E/K))
∣

∣

)

+
1

[K : Q]

1

eN

∑

C

1

12

∑

v

εv

(

log(2π)12 ‖∆‖ (Xv)− log(2π)12 ‖∆‖ (X
′

v)
)

=
1

[K : Q]

1

eN

∑

C

(

(O,O)− (O
′
, O

′
)
)

proposition 4.9 and lemma 2.16

+
1

[K : Q]

1

eN

1

12

∑

v

εv

∑

C

(

log ‖∆‖ (Xv)− log ‖∆‖ (X
′

v)
)

= 0 +
1

[K : Q]

1

eN

1

12

∑

v

εv

∑

γ∈CN

(log |∆(τ)| − log |∆(γτ)|) from lemma 3.5

+
1

[K : Q]

1

eN

1

12

∑

v

εv

∑

γ∈CN

(

log
∣

∣(im(τ))6
∣

∣− log
∣

∣(im(γτ))6
∣

∣

)

= 0 +
1

[K : Q]

1

eN

1

12

∑

v

εv

∑

γ∈CN

(

log(
dγ

aγ
)6
)

from lemma 4.14

=
1

2
log N − λN from lemma 4.15 �
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3 Average Faltings Height of Isogenous

Abelian Varieties

We have seen in the last chapter a proof of the formula for the Faltings height of the
quotients of a semi-stable elliptic curve by its cyclic subgroups of fixed order. In this
chapter we look at the formula for the average height of the quotients of a principally
polarised abelian variety of dimension g, with good reduction at a prime p by isotropic
subgroups of order pg.

In the last chapter we have seen that the formula for the elliptic curve case could be
derived in three ways. One due to Robin de Jong which involved Arakelov intersection
theory, one due to Autissier which involved advanced concepts like the height of the
modular curve and another which involved concepts from both the approaches. As we
have stated before, in the case of abelian varieties to proceed with elementary methods
would be a very tedious job.

We have 3 sections in this chapter. In the first section we look at the basic definitions
and the basic notion of intersection of Cartier divisors on arithmetic varieties.
In section 2 we discuss at an alternate way of looking at the Faltings Formula (lemma
4.11 of chapter 1 of this thesis) in terms of the arithmetic intersection product of a
Cartier divisor and the basic concepts of a moduli scheme Ap

g,n. In section 3 we finally
prove the average height formula for isogenous p-ordinary principally polarised abelian
varieties.

3.1 Basic Notions

1.1 Definition. A group functor F over a fixed scheme S is a co-functor from
the category of schemes over S to the category of groups. If the group functor F is
representable (by a scheme over S) and if G/S is the representative object, we call G a
group scheme over S.

1.2 Definition. An abelian scheme π : A → S of relative dimension g is a proper,
smooth group scheme over a Noetherian base scheme S whose geometric fibers are con-
nected and of dimension g. The fibers of an abelian scheme are abelian varieties.
It is well known that an abelian scheme is a commutative group scheme.
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3 Average Faltings Height of Isogenous Abelian Varieties

1.3 Definition. Let π : A→ S be an abelian scheme with unit section e : S → A.
1. For any invertible sheaf ` on A a rigidification of ` is an isomorphism ε : OS → e∗`.
2. The relative Picard functor Pic(A/S) is given by the isomorphism classes of invertible
sheaves ` on A×S T with rigidification along eT = eS × T.
3. The sub-functor Pic◦(A/S) of Pic(A/S) is given by the isomorphism classes of
invertible sheaves ` on A ×S T with rigidification along eT such that for all t ∈ T ,
`⊗ k(t) is algebraically equivalent to zero on At.
4. The dual abelian scheme denoted by At is the algebraic space representing the relative
Picard functor Pic◦(A/S).
It is well known that At is an abelian scheme over S.

1.4 Definition. A polarization of A/S is a homomorphism λ : A→ At such that for
each geometric point s̄ of S, λs̄ = λ(`s̄) for some ample invertible sheaf `s̄ on As̄. Here
λ(`s̄) is a map A→ At such that a→ t∗a`⊗`−1, where ta is the translation-by-a-map. We
say that A is principally polarized if λ is an isomorphism. The degree of the polarization
is its degree as an isogeny from A to At.
We will be considering only principally polarised abelian varieties in this chapter, with
more adjectives attached to them, which will be defined in this section.
Let g and n ≥ 0, and p a prime number. Then we denote Z/nZ by Cn and let Cn × µn

be denoted by Gn. Let Gg
n denote (Z/nZ)g × µg

n. Cn and µn are Z-schemes.
Let us consider the Z-morphism

φm : Gg
n → Gg

n

defined by φm(a1, ζ1, ...., ag , ζg) = (ma1, ζ1, ...,mag , ζg).

1.5 Definition. Let A abelian variety of genus g over a field K of characteristic p. If
A admits a polarization whose degree of polarization is prime to p, then A is said to be
p-ordinary if the p-kernel of A A[p](K̄) ∼= (Z/pZ)g i.e. AK̄ [p] is isomorphic as a group
scheme to (Z/pZ)g × µg

p.

1.6 Definition. An abelian scheme A over S is said to be p-ordinary when all the
geometric fibers of π : A→ S in characteristic p are ordinary abelian varieties.

1.7 Definition. An abelian variety A of dimension g over Q̄ is said to have a good
reduction at p, when there exists a finite, flat and integral Z(p)-algebra R ⊂ Q̄ and a

p-ordinary R-abelian scheme A
′
such that A

′

Q̄
= A.

Consider the isogeny nA : A→ A. We have the dual isogeny nAt : At → At. We then
have a canonical skew symmetric non degenerate pairing given by:

en : A[n]×At[n]→ µn
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Let a, a
′ ∈ A[n], At[n] respectively. Let D be the divisor on A corresponding to a

′
.

Then we have

ēn(a, a
′
) = g/g ◦ ta.

where (g) = n−1
A D and nA is the multiplication by the integer n map. This pairing is

called the Weil pairing.
If λ is a principal polarization then we have a canonical non-degenerate skew symmetric
pairing

A[n]×A[n]→ µn

also called the Weil pairing. We will be referring to this pairing in all our work.

We will also recall what is called the symplectic pairing: Let S be a base scheme and
n ∈ Z be ≥ 1. We have a standard sympletic pairing

e : (Z/nZ)g × (µn,S)g × (Z/nZ)g × (µn,S)g → µm,S ,

e ((a1, ζ1, ...., ag , ζg), (b1, ζ1, .., bg , ζg)) =

g
∏

i=1

(e2πi
ai
n ζie

−2πi
bi
n ζ−1

i ).

We shall be denoting a principally polarised abelian scheme of dimension g by (A/S;λ)
where λ is a principal polarization.

1.8 Definition. A symplectic level n structure on an abelian scheme (A/S;λ) is an
isomorphism

α : Gg
n;S : →̃A[n]

which identifies the standard symplectic pairing with the Weil pairing on A[n]. When
such an isomorphism exists for some n, then we say that the abelian scheme (A;λ;α) is
of type (g, n).
Here one can observe that if p | n, and if (A/S;λ) admits a symplectic level n structure
then A is p-ordinary.
Let r be an integer ≥ 1. We assume that p 6 | n for the rest of the section.

1.9 Definition. Let (A1;λ1) and (A2;λ2) be principally polarised abelian schemes
of dimension g. Let f : A2 → A1 be an isogeny of rank prg. f is said to be of type P
when

f t ◦ λ2 ◦ f = [pr] ◦ λ1.

1.10 Definition. Let (A1/S;λ1;α1) and (A2;λ2;α2) be abelian schemes of type
(g, n). Let f : A1 → A2 be an isogeny of rank prg. f is said to be of type PN when

f ◦ α1 = α2 ◦ φpr and f is of type P .
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1.11 Remark. Let (A1/S;λ1;α1) be an abelian scheme of type (g, n) (i.e. it is prin-
cipally polarised of dimension g and equipped with a symplectic level n structure) and
(A2/S;λ2) a principally polarised abelian scheme. Let f : A1 → A2 be an isogeny of
rank prg and of type P . Then there exists a unique symplectic level n structure α2 on
(A2, λ) which makes f an isogeny of type PN .

Let us now consider an algebraically closed field K (K = K̄) . Let (A◦, λ◦) be a
principally polarised abelian variety of dimension g over K. Then we define

1.12 Definition. A closed subgroup G of A◦[p
r] of rank prg is said to be isotropic if

the restriction of the Weil pairing to G i.e. em : G×G→ µn is trivial.

1.13 Theorem. Consider G a subgroup of A◦[p
r] of rank prg. Then G is isotropic iff

there exists a unique principal polarization of A◦/G such that the isogeny A◦ → A◦/G
is of type P .
Proof. The proof can be found in [Mu 1], which we skip .

3.2 Intersection Theory for Arithmetic Varieties

In the last chapter we have seen the Arakelov intersection theory on the regular minimal
model of an elliptic curve. In this section we study arithmetic intersection theory defined
for higher dimensional arithmetic varieties. We will study the basic notions of arithmetic
intersection theory for metrics induced by finite primes.
We first define what an arithmetic variety is: Let p be a prime number, then Z(p) the
localisation of Z at the prime ideal p. Denote Spec(Z(p)) by A◦.

2.1 Definition. An arithmetic variety X is a quasi-projective,reduced and flat scheme
over Z(p). We say a point x ∈ X is an integer point if it is closed and integral as a sub
scheme of X which is finite and flat over Z(p).

2.2 Definition. A Cartier divisor D on X is said to be vertical when DQ, the
restriction of D to XQ is zero. Let DV (X) denote the group of vertical Cartier divisors
on X.
Let us denote the group of Z-linear combinations of integer points of X by Z h

1 (X) and
the group of 0-cycles on X by Z◦(X).
Let D be a vertical Cartier divisor on X and E an integral point of X. We denote by
< D,E > the Weil divisor associated to D|E on E. This pairing extends to a bilinear
form which determines the intersection product:

<;>: DV (X)× Zh
1 → Z◦(X)
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where the action is given by:

< D;
∑

λiEi >→
∑

λi < D;Ei > .

When E is a closed point of X lets put degp(x) = [k(E) : Fp]. We have a homomorphism

degp : Z◦(X)→ Z.

Now we have a bilinear form by composing degp◦ <;>:

< . >p: DV (X)× Zh
1 → Z.

For D ∈ DV (X) and E ∈ Zh
1 (X) we define

< D.E >p= degp < D;E > .

Now we look at a few properties of this intersection product, the one similar to the
projection formula and the proofs of all these propositions can be found in [Fu] or [QL].
Let X and Y be arithmetic varieties over Z(p). Let f : X → Y be a proper morphism
between X and Y . We define the push forward f∗ of k-cycles on X to k-cycles of Y .
For any subvariety V of X, the image W = f(V ) is a closed subvariety of Y . Then there
is an induced embedding of R(W ) (the field of rational functions on W ) in R(V ) (the
field of rational functions on V ) which is a finite field extension if W has same dimension
as V . Now

deg(V/W ) =

{

[R(V ) : R(W )] if dim(W ) = dim(V )
0 if dim(V ) < dim(W )

Now define

f∗[V ] = deg(V/W )[W ].

This extends to a homomorphism called the push forward of cycles from the k-cycles of
X to the k-cycles of Y :

f∗ : Zk(X)→ Zk(Y ).

Now we define the pull back of cycles. A morphism of varieties f : X → Y is said to
be of relative dimension n if for all subvarieties V of Y and all irreducible components
V

′
of f−1(V ), dim(V

′
) = dim(V ) + n. Now let f : X → Y be a morphism of relative

dimension n .Then

f∗ : ZkY → Zn+kX

is given by:

f∗[V ] = [f−1(V )]

where [V ] denotes the cycle corresponding to V .
We know that f ∗ is defined on DV (Y ).

f∗ : DV (Y )→ DV X (3.1)
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We have a projection formula:

< D; f∗E >= f∗ < f∗D;E >, D ∈ DV (Y ), E ∈ Zh
1 (X). (3.2)

Let us consider the arithmetic variety X over Spec(Z(p)) with its structural morphism
π : X → A◦. Let us denote π∗(Z(p)) by Xp. We have

< Xp.E >p= degp < Xp;E >= [k(E) : Q] for all E ∈ Zh
1 (X).

For every f : X → Y finite, flat morphism of arithmetic varieties we have seen how
the f∗ and f∗ are defined on the cycles of X and Y respectively. Let us now consider the
action of f∗. We have a map OY → f∗OX) which is called the direct image of OX in OY .
Now we define the norm map for two arithmetic varieties as defined by Grothendieck in
[EGA 2].

Let X, Y be two arithmetic varieties defined over Z(p). Let f : X → Y be a finite,
flat morphism of rank n ≥ 1. f∗Ox is a locally free module over OY of rank n. Let us
denote f∗OX by B and f∗OY by A. Then B is a locally free A module of rank n. From
6.5 of [EGA 2] we have a map NB/A:

NB/A : B → A

such that

NB/A(IB) = IA

NB/A(f.g) = NB/A(f).NB/A(g) where f, g are 2 sections of B

NB/A(s) = sn s is a section of A

NB/A acts on the invertible sheafs ` on B: .

NB/A(OX) = OY ,

NB/A(`1 ⊗OX
`2) = NB/A(`1)⊗NB/A(`2) where `1, `2 are invertible sheaves on B,

NB/A(`−1) = NB/A(`)−1 ` is an invertible sheaf on B,

NB/A(`) = `⊗n.
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NB/A extends to a map NX/Y : Pic(X) → Pic(Y ). Since there exists a one-one
correspondence between isomorphism classes of invertible sheaves and Cartier divisors
modulo linear equivalence, we get a map:

Nf : DV (X)→ DV (Y ).

such that for any open set U of Y and all invertible sheafs ` on OX and for all mero-
morphic regular sections s defined of ` defined on f−1(U) we have

divU (N(s)) = Nf (divf−1(U)(s)). (3.3)

From 21.5.6 of [EGA 4] we have that f∗f
∗E = nE for all E ∈ DV (Y ). Hence from the

properties of the norm map Nf we can conclude that Nf (f∗D) = nD for all divisors
D ∈ DV (Y ).

We now define the map cycx on an arithmetic variety X defined over Z(p) of dimension
n.

cyc : DV (X)→ Zn−1(X)

cyc(D) =
∑

length(OY (D),x).x̄

where D is a Cartier divisor of X, and Y (D) is the closed subscheme corresponding to
the ideal IX(D) ⊂ OX . The sum runs over all x ∈ X such that co-dimension of x̄ = 1 .

2.3 Proposition. Let f : X → Y be a finite flat morphism of arithmetic varieties
over Z(p). Then for all D ∈ DV (X)

f∗(cyc(D)) = cyc(f∗(D)).

Proof Because of 21.10.17 from [EGA iv].

2.4 Remark. With the same hypothesis as in proposition 2.3 we have cyc(f∗) :
DV (X)→ Z0(Y ) and f∗cyc : DV (X)→ Z0(Y ) and cyc(f∗) = f∗cyc.

We end this section with a proposition:

2.5 Proposition. For all D ∈ DV (X) and for all E ∈ Zh
1 , the following formula

holds:

f∗ < D; f∗E >=< Nf (D);E > and < D.f ∗E >p=< Nf (D).E >p .

Proof. We know that elements of Z1
h are linear combinations of integral points. Hence

it suffices to prove the proposition for one integral point E.
Consider E an integral point. Consider the restriction of f to f−1(E). Denote it by f ′.
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Let (Xi) denote the irreducible components of f−1(E). For all i let η denote the generic
point of Xi and mi the geometric multiplicity of Xi. Then f ∗(E) =

∑

i miXi. Hence

< D; f∗E >=
∑

i

midiv(D|Xi
) = div(D|f−1(E)).

From eq 3.3, proposition 2.3 and remark 2.4 we have f∗div(D|f−1(E)) = divNf ′ (D|f−1E)
.
And divNf ′ (D|f−1E) = Nf (D)|E . Hence we have

Nf (D)|E =< Nf (D);E >= f∗(D|f−1(E))

f∗(D|f−1(E)) = f∗ < Nf (D); f∗E >

and hence < D.f ∗E >p=< Nf (D).E >p �

3.3 Faltings Formula and the Moduli Space A
p
(g,n)

In this section we revisit the Faltings formula proved for abelian varieties.
Let g, r ≥ 0 and p be a prime number, S an arithmetic variety over Z(p). Let A and A

′

be abelian schemes of dimension g. Let f : A→ A
′
be an S-isogeny of rank pr.

3.1 Remark. Let OA, OA′ be the zero sections of A, A
′
, respectively. ωA/S , ωA′/S

be the invertible sheaves O∗A ∧g ΩA/S , O∗
A′ ∧g ΩA′/S .

So we have an OS-morphism j : ωA′/S → ωA/S . S being an arithmetic variety and f
being an isogeny we have that f is etale on AQ, hence j an isomorphism on the generic
fiber SQ .

From section 1.3 of [Ra] we have a unique vertical Cartier divisor Df on S such that
ωA′ ⊗OS(Df ) ∼= ωA.

As f is etale on AQ, the Cartier divisor Df commutes with base change. i.e. if S
′
is an

arithmetic variety on Z(p) and π : S
′ → S is a morphism, then Df

S
′ = π∗Df .

3.2 Remark. Let S = Spec(R) where R ⊂ Q̄ is a finite, flat Z(p)-algebra. Let K
be the field of fractions of R. Let AK , BK be 2 abelian varieties defined over K. Let
f : AK → BK be an isogeny between them of degree d. Let A and B be the Néron
models of AK and BK . Let ωA, ωB be the invertible sheaf of relative differential forms
of A, B. Let us put ωA ⊗ ω−1

B = ωU . In fact deg(ωU ) = deg(V −1
U ), where VU is a non

zero ideal of OS . From remark 3.1 we have V −1
U = OS(Df ).

3.3 Proposition. If R is the ring of integers of a number field K, then

deg(ωA)− deg(ωB) = deg(ωU ) = deg(V −1
U ) = log #(OS/VU )− [K : Q]

2
log d
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holds true.
Proof. This formula is nothing but the reformulation of Faltings formula that we proved
in chapter 1. We have seen that the infinite places contribute [K:Q]

2 log d. All that is left
is to compute the contribution at the finite places.
From the above discussion we have

deg(ωA)− deg(ωB) = deg(ωU ) = deg(V −1
U )

deg(V −1
U ) = log #(V −1

U /R.1)− [K : Q]

2
log d.

= log #(V −1
U .VU/R.VU )− [K : Q]

2
log d

= log #(R/R.VU )− [K : Q]

2
log d. �

With the same hypothesis as in remark 3.1 we proceed to give another expression for
Faltings formula for the two abelian schemes A, A

′
in terms of the Cartier divisor Df .

3.4 Proposition. With hypothesis as in the first paragraph of this section, let A
′

Q̄

and AQ̄ denote the restriction of A, A
′

to Q̄, with f the isogeny of rank pr between
them, then we have

hF (A
′

Q̄
)− hF (AQ̄) =

(

r

2
− < Df .S >p

[K : Q]

)

log p.

Proof. Let L be a field ⊂ Q̄ containing K, such that the abelian varieties AL , A
′

L

(which are the fibers of A, A
′
) are semi stable over L. Let A , A

′
be the Néron models

of the abelian varieties AL , A
′

L over OL respectively. Let R
′
be the integral closure of

R in L. Let us put T = Spec(R
′
) and B = Spec(OL). We have the inclusion R → R

′
,

and the morphism π : T → S. Hence the T -morphism fT extends to a B-morphism
F : A→ A

′
.

As F is etale on AU where U = Spec[1/p] the OB-morphism of J : ω
A
′ → ωA is an

isomorphism on the open set U . From the remark 3.1 there exists a unique, effective,
vertical, Cartier divisor D◦ on B above p such that

ω
A
′ ⊗OB(D◦) ∼= ωA.

And hence we have

D◦T = DfT
= π∗Df .

As the height function is invariant under the extension of ground field we have from
proposition 3.3

hF (A
′

Q̄
)− hF (AQ̄) =

1

[L : Q]

(

deg(ωA
′
L
)− deg(ωAL

)
)

;
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1

[L : Q]

(

deg(ω
A

′
L

)− deg(ωAL
)
)

=
r

2
log p− 1

[L : Q]
log #(OL/OL(D◦T )).

#(OL/OL(D◦T ) is the norm of the ideal corresponding to the ideal D◦T , which is nothing
but

p[k(D◦T |T ):Fp] = p
[k(π∗Df |T

):Fp]
=< π∗Df .T >p .

Hence we have:
#(OL/OL(D◦T )) =< π∗Df .T >p .

By the projection formula we have

< π∗Df .T >p= [L : K] < Df .S >p .

Hence we have:

hF (A
′

Q̄
)− hF (AQ̄) =

r

2
log p− 1

[L : Q]
log p[L:K]<Df .S>p.

=

[

r

2
− [L : K] < Df .S >p

[L : Q]

]

log p

=

[

r

2
− < Df .S >p

[K : Q]

]

log p. �

We now look at the moduli space Ap
(g,n) of p-ordinary principally polarised abelian

schemes of type (g, n) over the scheme Z(p) where g ≥ 1 and n ≥ 3 and p 6 | n. We need
the basic properties of our moduli space Ap

(g,n).

Ap
(g,n) is a contravariant functor Ap

(g,n) : Schemes → Sets which assigns to every scheme

S the set Ap
(g,n)(S) of isomorphism classes of p-ordinary abelian schemes of type (g, n)

defined over the scheme S.
The following theorem asserts that our Ap

(g,n) is an arithmetic variety. We omit the proof

which can be found in [Mu 2].

3.5 Theorem The fine moduli scheme Ap
(g,n) exists when n ≥ 3. Ap

(g,n) is an arith-

metic variety over Z(p) and the geometric fibers of Ap
(g,n) are irreducible.

Proof Proof in chapter 7 theorem 7.9 in [Mu 2].

Now let us consider isogg the fine moduli scheme of isogenies of rank pg of type PN
between principally polarised abelian schemes of type (g, n) defined over Z(p). isogg is an
integral arithmetic variety on Z(p).(chapter 7, section 3 of [Fa 3]) We have the morphisms
pr1 : isogg → Ap

(g,n) which assigns to each isogeny f : B1 → B2 ∈ isogg its source B1 ,

and pr2 : isogg → Ap
(g,n) which assigns to each isogeny f : B1 → B2 ∈ isogg its target

B2. These two morphisms define a map

pr = (pr1, pr2) : isogg → Ap
(g,n) ×Ap

(g,n).
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Ap
(g,n) is a fine moduli scheme hence there exists a universal abelian scheme A. Now pr∗1A

denoted by A1 and pr∗2 denoted by A2 are the pull backs of the universal abelian scheme
A under pr∗1 and pr∗2 respectively. Hence we have a universal isogeny fun : A1 → A2.
The following proposition guarantees us that our projection maps pri are finite and flat.

3.6 Proposition. The projections pri are finite, flat and of rank e(g,p) = #Sp2g(Z)/(Γ◦(p)),

where Γ◦(p) is the group of matrices

[

M1M2

M3M4

]

∈ Sp2g(Z) such that M3 is congruent

to 0 mod p.
Proof The proof can be found in [Fa 3], chapter vii, proposition 4.1 .

In fact e(g,p) is the number of isotropic subgroups of order pg of the p-torsion group of
a principally polarised abelian variety of dimension g over an algebraically closed field
of characteristic zero.

3.7 Lemma.

e(g,p) =

g
∏

i=1

(pi + 1).

Proof. From the above paragraph we know that e(g,p) = #Sp2g(Z)/(Γ◦(p)). Now

consider the Fp-vector space F = F
2g
p with the standard symplectic pairing. e(g,p) is the

nothing but the number of isotropic subspaces of F . So hence e(g,p) =
T

#Glg(Fp)
, where

T is the number of free orthogonal sets of F with g vectors.
Now we calculate T . We have to count the number of sets of cardinallity g of the 2g-
dimensional Fp vector space F . We can choose our first vector v1 of F in p2g − 1 ways.
Let us denote the span of v1 by V . Then with respect to the standard bilinear form on F
we have F = V ⊕ V

′
where V

′
denotes the orthogonal space of V of dimension (2g− 1).

Now the number of ways in which we can calculate the second vector v2 orthogonal to v1

is p2g−1− p (as we have to discard the multiples of v1 from V
′
in choosing v2). Similarly

we compute v3 by discarding the multiples of both v1, v2 from W
′
, where W

′
is the

orthogonal set of the span of v1, v2 in F which is equal to (p2g−2 − p2). Continuing this
way we have

T =

g−1
∏

i=0

(p2g−i − pi).

Now we want to compute the number of elements of Glg(Fp). We can choose our first
column for a matrix ∈ Glg(Fp) (which can be seen as a vector in the vector space
F

′
= F

g
p) in pg − 1 ways. We can choose our second vector in (pg − p) ways as we have

to make sure that the second vector is not a scalar multiple of the first vector. Similarly
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we can choose our second vector in (pg − p2) ways. In continuing this way we have

#Glg(Fp) =

g−1
∏

i=0

(pg − pi)

Hence

e(g,p) =

∏g−1
i=0 (p2g−i − pi)
∏g−1

i=0 (pg − pi)
.

∏g−1
i=0 (p2g−i − pi)
∏g−1

i=0 (pg − pi)
=

∏g−1
i=0 (p2g−2i − 1)
∏g−1

i=0 (pg−i − 1)

∏g−1
i=0 (p2g−2i − 1)
∏g−1

i=0 (pg−i − 1)
=

g−1
∏

i=0

(pi + 1). �

3.4 Average Height Formula

In this section we prove the average height formula for principally polarised abelian
varieties over Q̄ of dimension g with good reduction at p. We first look at the moduli
space Ap

g,n of all principally polarised abelian schemes defined over the scheme Z(p).
The points of these space are the isomorphism classes of p-ordinary principally polarised
abelian schemes of type (g, n) over Z(p). We see how the objects of Ap

g,n are related to
our principally polarised abelian varieties over Q̄ of dimension g with good reduction at
p. We now see how we can define the height of a principally polarised abelian variety
when it is seen as a point on the moduli space.

The following 3 paragraphs are very technical and we state them only vaguely with-
out any proof, just to give an idea of how the Faltings height function is defined on
equivalence classes of abelian varieties in the moduli space.

4.1 Remark. Faltings has described a way to compactify moduli space of principally
polarised abelian varieties Ag in chapter iv of [CL]. We here summarize the main conse-
quences of the toroidal compactification of the moduli space.
1. There exists a proper scheme Ãg over Spec(Z) containing Ag as a dense open sub-
scheme.

2. There exists a semi-abelian scheme χg

π
→
←↩
ε
Ãg whose each fiber is an extension of an

abelian variety by a torus and which extends the universal scheme over Ag.

4.2 Remark. Let ω = ε∗(∧gΩχg/Ãg
). Global sections of ω⊗k define a morphism from

f : Ãg → Pn, with image Āg is Proj
(

⊕

k∈N Γ(Ãg, ω
⊗k)
)

. And from some non trivial

results of Satake compactification we have that some power ω⊗n of ω descends to an
invertible sheaf `n on Āg; `n is ample on Āg.
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Now consider A a principally polarised abelian variety over a number field K with semi-
stable reduction over OK . AK defines a K-point [AK ] of Ag. Since Ãg is proper, [AK ]
extends to an OK-valued point < AK >: Spec(OK) → Ãg. The pull back of χg by the
map < AK > is a semi-abelian scheme extending AK . From chapter [CL] we have that
the pullback of χg by < AK > is equal to the Néron model N(AK)◦. And we have
ωAK

=< AK >∗ ω. Then we put the moduli theoretic height hgeom = 1/n(h`n
([XK ])).

Since XK has semi-stable reduction over OK , hgeom is nothing but the Faltings height
hF (XK).

4.3 Remark. If A is a principally polarised abelian variety over Q̄ of dimension g
with good reduction at p, then there exists a p-ordinary abelian scheme A

′
defined over

a integral, finite and flat Z(p) algebra R ⊂ Q̄ such that A
′

Q̄
= A from definition 1.6 of

this chapter. In fact for each n ≥ 3 prime to p ,we an find an A
′
of type (g, n) such that

A
′

Q̄
= A.

4.4 Remark. 1. Let (A;λ) be a Q̄ principally polarised abelian variety of dimension
g with good reduction at p. Let G1,...,Ge (e = e(g,p)) be the isotropic subgroups of A[p]
of rank pg and Ai = A/Gi. Then the isogenies fi : A → Ai which are of rank pg are of
type P (by choosing a suitable polarisation) by theorem 1.13 of this chapter for all 1 ≤
i ≤ e.
2. From remark 1.11 for each of these abelian varieties Ai there exists an abelian scheme
A

′

i such that A
′

iQ̄=Ai, A
′

iQ̄ are of type (g, n) and the isogenies fi are of type PN .

4.5 Remark. By virtue of the above remark 4.4 all our isogenies fi’s can now be
viewed as isogenies between A and Ai and hence as an element of isogg.
Now we are all set to prove the average height formula.

4.6 Theorem. Let (A;λ) be a Q̄ principally polarised abelian variety of dimension
g with good reduction at p. Let G1,...,Ge (e = e(g,p)) be the isotropic subgroups of A[p]
of rank pg and Ai = A/Gi. Then there exists an integer m = m(g, p) such that the
following formula

e
∑

i=1

(hF (Ai)− hF (A)) =
(eg

2
−m

)

log p

holds. Here hF (A) denotes the Faltings height defined in chapter 1.
Proof. Let us choose an n ≥ 3 prime to n, then by theorem 3.5 Ap

g,n exists and also
isogp exists. Let us denote Ap

g,n by X. We have already seen in section 3 that there
exists a universal isogeny fun : A1 → A2 over isogg of rank pg and of type PN between
A1 = pr∗1A and A2 = pr∗2A where A is the universal abelian scheme over Ap

g,n.
From remark 3.1 we have an effective, vertical Cartier divisor Dfun

on isogg such that

ωA2
⊗O(Dfun

) ∼= ωA1
.
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We have pr1 : isogg → X. Since isogg and X are both integral arithmetic varieties over
Z(p), we have the norm map Npr1

: DV (isogg)→ DV (X).
Now consider Npr1

(Dfun
) ∈ DV (X), which is vertical and effective on X. From the

properties of the norm function Npr1
stated in section 2 we have Npr1

(Dfun
) contained

in the special fiber Xp of X. From theorem 3.5 we can conclude that Xp is irreducible.
Hence we have Npr1

(Dfun
) = mXp for some positive integer m.

Let us now consider our principally polarised abelian variety (A, λ) over Q̄ of dimension
g with good reduction at p. From remark 4.3 we have an (A

′
,λ

′
) defined over a integral,

finite and flat Z(p)-algebra R ⊂ Q̄ such that A
′

Q̄
= A and is of type (g, n). Hence there

exists a point x
′
corresponding to (A

′
,λ

′
) in X(R). Let us denote by x the image of x

′

in X, which is an integer point being integral and closed.

Now consider the isogeny fi : A → Ai. From remark 4.5 each fi corresponds to a
point Ei in isogg(Q̄). Let Fi be the Zariski closure of this point Ei in isogg.

Let K be a number field containing all the fields k(Fi). Let us denote [K : k(Fi)] by
ai, [K : k(x)] by a and [k(x) : Q] by d. The Fi’s are closed and integral points and hence
integer points of isogg. Now consider the map
pr∗1 : Zh

1 (X)→ Zh
1 (isogg). We have

pr∗1(ax) =

e
∑

i=1

aiFi. (3.4)

We use proposition 3.4 and the universal Cartier divisor Dfun
to get the average height

formula.
From proposition 3.4 we have

hF (Ai) = hF (A) +

[

g

2
− < Dfun

.Fi >

[k(Fi) : Q]

]

log p.

So we have:

hF (Ai) = hF (A) +

[

g

2
− ai

< Dfun
.Fi >

[K : Q]

]

log p.

From equation 1.4, we have:

e
∑

i=1

hF (Ai) = ehF (A) +

(

eg

2
− 1

d
< Dfun

.pr∗1x >p

)

log p.

From proposition 2.5 of this chapter we have:

< Dfun
.pr∗1x >p=< Npr1

(Dfun
).x >p .
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We have just seen that:
Npr1

(Dfun
) = mXp.

Hence

< Dfun
.pr∗1x >p = m < Xp.x >p= m[k(x) : Q] (from arguments in section 2)

= md.

So,
e
∑

i=1

hF (Ai) = ehF (A) +

(

eg

2
− md

d

)

log p.

Hence we have
e
∑

i=1

(hF (Ai)− hF (A)) =
(eg

2
−m

)

log p. �
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4 Conclusion

In the last chapter we have seen a proof of the average height formula for principally
polarised abelian varieties with good reduction at a prime p. In chapter two we have
seen that there exist at least three approaches to prove the average height formula
for semi-stable elliptic curves defined over a number field K. As we saw in the last
chapter, Autissier’s approach of looking at the moduli spaces of abelian varieties is the
only existing method of proving the average height formula for abelian varieties. We
conclude our thesis with a few remarks on why the other two methods are tough to be
generalised to prove the average height formula for abelian varieties, and why we need
so many conditions to prove the average height formula for abelian varieties.

We have seen in chapter two that Robin de Jong’s approach of proving the height for-
mula involves Arakelov intersection theory on regular minimal models of elliptic curves.
We have see that the three lemmas 3.4, 3.5 and 3.6 give us our average height formula.
Lemma 3.4 interprets the Faltings height formula in terms of Arakelov intersection prod-
uct (O,ω) of the zero section O and the dualizing sheaf ω and the Arakelov invariants
A(Xv) of the Riemann surfaces Xv . In other words from proposition 2.18 we can say that
3.4 relates the Faltings height formula of the elliptic curve E and the self-intersection
product (O,O).

We then saw in lemma 3.5 that the average sum
∑

C

(

(O,ω)− (O
′
, ω

′
)
)

= 0. Then

we saw lemma 3.6 and proposition 1.9 give us the average height formula. So the Green
function which gives our Arakelov intersections at infinity plays a very important role
in this method. In the case of abelian varieties though we have an intersection theory
as we have seen in chapter three, we still do not have something analogous to the Green
function which gives the intersection pairings at infinity.

Another method that we have seen in chapter two involves the basic properties of
the cusp form ∆ and makes use of proposition 2.18 and lemma 3.4. This approach is
definitely not possible to be generalised as the modular discriminant ∆ does not have
any analogue in the case of abelian varieties.

In fact the method involving the modular discriminant ∆, is essentially the same as
the approach of Robin de Jong. In [Ro] Robin de Jong proved the following proposition
which links both these methods:
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4 Conclusion

1.1 Proposition. Let X and X
′
be 1-dimensional complex tori related by an isogeny

f : X → X
′
. Then we have

∏

P∈ker(f),P 6=0

G(0, P ) =

√
N. ‖∆‖1/12 (X

′
)

‖∆‖1/12 (X)

Proof. Proposition 4.7 of [Ro].

We have seen a brief sketch of the approach of Autissier. He uses the theory of
L1

2-singular hermitian line bundles which generalizes the Arakelov intersection product
for smooth hermitian line bundles. He computes the height of hM̂ (TN∗(Y )) using this
theory, and the average height formula follows immediately once we see that

1

12

1

[K : Q]
hM̂ (Y ) = hF (E).

This approach was generalised by Autissier himself to the case of abelian varieties. But
the only moduli space that he could use is Ap

g,n. Hence he had to consider only principally
polarised abelian varieties with good reduction at p, and only isotropic subgroups of order
pg while taking the quotients of the abelian variety under consideration.

But it is natural to expect the average height formula even when we take quotients
with respect to all subgroups of order pg. For this we need either a more developed
intersection theory or a more general moduli space retaining the useful properties.

Another important question that is not yet answered is the behaviour of the constant
m(g, p), which comes in the average height formula for abelian varieties. The average
height formula for a semi-stable elliptic curve defined over a number field K, when we
take quotients with respect to cyclic subgroups of order p is

1

eN

∑

C

(

hF (E
′
)− hF (E)

)

=
1

2
log p− 1

(p + 1)
log p.

Here we see that m(g, p) = eN
1

p+1 = 1 for all primes p. But for higher dimensions we do
not yet know how m(g, p) behaves as (g, p) varies. So it would be interesting to know
more about this constant m(g, p).
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