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1 Introduction

For X = {xn}∞n=0 any integer sequence, we denote by DX the set of all prime
numbers p that divide some non-zero term of the sequence X . We will refer to
the elements of the set DX as the prime divisors of X .

Let S be a set of prime numbers. We define the natural density of S as

δ(S) = lim
x→∞

|{p ≤ x | p ∈ S}|
|{p ≤ x | p prime }| .

The question we are interested in is: when does δ(DX) exist and when it
exists, can we compute its exact value?

In this thesis, we only consider linearly recurrent sequences, i.e. sequences
for which there exists k ≥ 1, such that

xn+k =
k−1∑

i=0

aixn+i for n ≥ 0,

where ai ∈ Z, a0 6= 0. We call k the order of the recurrence. The polynomial
f(x) = xk−ak−1x

k−1−...−a0 ∈ Z[x] is the characteristic polynomial associated
to the given recurrence relation. We assume that f is separable, such that we
have

f(x) =
k∏

i=1

(x − αi) ∈ Q[x],

where αi 6= αj for i 6= j. In this case, the terms of the sequence X = {xn}∞n=0

can be expressed as

xn =
k∑

i=1

ciα
n
i for n ≥ 0.

From here, it easily follows, that for first order sequences the density question
is trivial. On the other hand, for third order sequences the question is still an
open problem, [10]. Hence, we will consider only second order linear recurrences.

Let the sequence X satisfy the recurrence relation

xn+2 = axn+1 + bxn,

where a, b ∈ Z and the characteristic polynomial is f(x) = x2 − ax − b ∈ Z[x].
We will assume that X does not satisfy a first order recurrence, so b 6= 0.

In the separable case, the terms of X can be expressed in the form

xn = cαn + cαn for n ≥ 0,

where α and α are distinct roots of f . We denote by q = α
α . Note that the

“root quotient” q is defined only up to inversion. We call the sequence X non-
degenerate if q is not a root of unity. It can easily be proved (see [9]) that in the
case of degenerate sequences the set of prime divisors is finite or cofinite, so we
will consider only non-degenerate cases.
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Let p be a prime coprime to α and c. Then, we have the equivalence

p divides xn ⇔ (
α

α
)
n

= −c

c
∈ (O/pO)∗,

where O denotes the ring of integers of the field generated by the roots of f .
Let us denote r = − c

c . Note that, just as the root quotient, r is defined up to
inversion. Then, for all but finitely many primes p, we obtain

p divides some term of X ⇔ 〈r〉 ⊂ 〈q〉 ⊂ (O/pO)∗.

Thus, we formulated the problem we are trying to solve without any reference to
recurrent sequences. We consider the element r in the group Q(q)∗/〈q〉. One can
easily see that in the non-degenerate case the field Q(q) coincides with Q(α).

In the case of second order sequences, the key distinction is between the
torsion and the non-torsion case. We refer to the case when r is a torsion element
in the group Q(q)∗/〈q〉 as the torsion case of the problem, and the corresponding
sequences are known as torsion sequences.

Depending on whether the polynomial f is reducible or irreducible over Q,
we consider a rational and a quadratic case. In the rational case q ∈ Q∗, while
in the quadratic case q is a quadratic integer of norm 1.

Ward [13] proved that any non-degenerate integer second order linear recur-
rent sequence has an infinite number of prime divisors.

Here, we consider the torsion case. “Generically”, (Q(q)∗/〈q〉)tor = {±1}.
More precisely, this occurs when Q(q) does not contain any roots of unity differ-
ent than ±1 and when q is not a power in Q(q)∗/{±1}. The case r = 1 is trivial,
we have δ(DX ) = 1. Hence, we assume r = −1 and consider the sequence

xn = αn + αn for n ≥ 0.

In the case r = −1, q ∈ Q∗ it is possible to give an unconditional proof
of the existence of the density. The main idea goes back to Hasse [4], who
explicitly computed the density of certain non-degenerate integer second order
linear recurring sequences with reducible characteristic polynomial.

More precisely, Sierpinski in [12] proposed the problem concerning the exis-
tence of the density of primes p for which the order of 2 modulo p is even. For a
prime p > 2 this question is equivalent to the question when does p divide some
term of the sequence {2n + 1}∞n=0. Note that this is exactly the case r = −1,
q = 2. Hasse [4] found a method and used it to establish a more general result;
he determined the density of prime divisors of the sequence {an + 1}∞n=0, where
a is a square-free integer.

We will describe Hasse’s method briefly. Let us denote X = {an +1}∞n=0, for
some square-free integer a. Let

S = {p | p is an odd prime number }

and
DX = {p ∈ S | p divides some term of X }.
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For a prime p, coprime to a, we have the equivalences

p | an + 1 for some n ⇔ −1 ∈ 〈a〉 ∈ F∗
p ⇔ order of (a mod p) in F∗

p is even.

We consider the subgroup H ⊂ F∗
p consisting of all elements of odd order. Its

index equals 2k, where k = ord2(p− 1). By Dirichlet’s theorem, the probability
that a prime p has k = ord2(p− 1) equals 2−k. Next, if we consider non-square
a, then, heuristically, for a prime p, such that k = ord2(p − 1), the probability
that a ∈ H is 2−k. Hence, the density of primes for which (a mod p) has odd
order should equal

∞∑

k=1

1

4k
=

1

3
.

To make this heuristic argument into a proof, for fixed k ∈ Z≥0, we consider
all prime numbers p, such that 2k‖p − 1. We partition the set S into pairwise
disjoint sets Sk ⊂ S such that

Sk = {p ∈ S| p ≡ 1 + 2k (mod 2k+1)}

and

S =

∞⋃

k=1

Sk.

Having the equivalence

p ∈ Sk ⇔ p splits completely in the field Q(ζ2k), but not in the
field Q(ζ2k+1).

and using the Chebotarev density theorem we obtain the densities δ(Sk) = 2−k,
in accordance with Dirichlet’s theorem.

We consider the sets
D

(k)
X = DX ∩ Sk.

Having the equivalence

a ∈ H ⇔ a is a 2kth power in F∗
p,

if we denote
D

(k)

X = Sk \ D
(k)
X ,

we obtain

p ∈ D
(k)

X ⇔ p splits completely in the field Q(ζ2k , 2k√
a), but not in

the field Q(ζ2k+1 , 2k√
a).

Again, using the Chebotarev density theorem we find the densities

δ(D
(k)

X ) =
1

[Q(ζ2k , 2k√
a) : Q]

− 1

[Q(ζ2k+1 , 2k√
a) : Q]

= 4−k “generically”.
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Finally, from
∞∑

k=1

δ(S+
k ) = δ(S+)

we conclude

δ(DX) = 1 −
∞∑

k=1

δ(D
(k)

X ).

Using Hasse’s method, Ballot [1] completely determined the densities of the
sets of prime divisors of the sequences {an + bn}∞n=0, for a, b ∈ Z 6=0,

a
b 6= {±1},

which correspond to the case r = −1, q ∈ Q∗.
Lagarias [6], observed that Hasse’s method can be extended to certain second

order linear recurrences with irreducible characteristic polynomials. In this case
the computation is more involved and it is done in two stages depending on
whether p splits or stays inert in the field Q(q).

In [8], P. Moree and P. Stevenhagen considered the Lucas sequence XK

associated with a real quadratic extension K, defined by

XK = {TrK/Q(εn)}∞n=0 = {εn + ε̄n}∞n=0,

where ε is a fundamental unit of K. They proved that the set of prime divisors
of the sequence XK has a natural density δK and determines it for each K.

Here, we extend this method to the “generalized Lucas sequences”.

Xα = {TrK/Q(αn)}∞n=0 = {αn + ᾱn}∞n=0,

where α is any quadratic integer and K the corresponding quadratic field. We
will prove our main theorem.

Main Theorem. The density of prime divisors of the generalized Lucas se-
quence Xα exists for every non-zero quadratic integer α for which α/α is not a
root of unity and it is a rational number strictly between 0 and 1.

Moreover, we will compute it for “generic” α, as well as for some special
“non-generic” α’s. At the end, we will give some numerical data obtained ap-
proximating the ratio

|{p ≤ x | p ∈ DXα}|
|{p ≤ x | p prime }|

for some α.
We begin presenting some theory necessary for understanding the proof of

the main theorem.
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2 Background Material

This is a short outline of the theory used in the main proof. Its only purpose
is to recall the terminology and some well-known facts. We present the theory
concentrating on the statements that are going to be useful for us in what follows
and mainly without either proofs or particular references. In the section 2.1, we
were mostly following the exposition given in [3] and [5], except for 2.1.4, where
we were also using [7]. In the section 2.2 we followed [2], [11].

2.1 Number Fields

2.1.1 Galois Extensions

Let K be a number field and L a finite extension of K of degree n. We denote
by OK , resp. OL the ring of integers of K, resp. L. If p is a prime ideal of K,
then

pOL = Pe1

1 ...Peg
g ,

where the Pi’s are distinct primes of L lying above p. The integer ei, also written
as ePi|p, is called the ramification index of p in Pi. For Pi | p, we consider the
field extension OL/Pi of OK/p. Its degree, written as fi or fPi|p, is the inertial
degree of p in Pi. There exists a remarkable relation among the numbers ei, fi

and n.

Theorem 2.1. Let K ⊂ L be number fields and let p be a prime of K. If ei,
resp. fi, i = 1, ..., g are the ramification indices, resp. inertial degrees, then

g∑

i=1

eifi = [L : K].

We say that prime p of K is unramified in L if all ei equal 1.

Theorem 2.2. Let K ⊂ L be an extension of number fields. Then a prime p of
K ramifies in L if and only if p divides the discriminant of L over K.

In particular, only finitely many primes are ramified.
Most of all the extensions K ⊂ L we will deal with will be Galois extensions.

In this case we have the following.

Theorem 2.3. Let K ⊂ L be Galois. If p is a prime of K, then the Galois
group Gal(L/K) acts transitively on the primes of L that are lying above p. If
we write

pOL = Pe1

1 ...Peg
g ,

then e1 = ... = eg = e and f1 = ... = fg = f . Also, efg = n.

Let L/K be a Galois extension. Then prime p of K ramifies in L if e > 1,
and is unramified if e = 1. If p satisfies the stronger condition e = f = 1, we say
that p splits completely in L. In this case, p is product of n = [L : K] distinct
primes Pi in L.
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Let P be a prime of L. We define the decomposition group

DP = {σ ∈ Gal(L/K) | σ(P) = P}

and the inertia group

IP = {σ ∈ Gal(L/K) | σ(α) ≡ α (mod P) for all α ∈ OL}.

Trivially, IP ⊂ DP. Also, OL/P is a finite Galois extension of OK/p, where

p = OK ∩ P. Let us denote G̃ = Gal((OL/P)/(OK/p)). Now, any σ ∈ DP

induces an element σ̃ ∈ G̃. Thus the map σ 7→ σ̃ defines a homomorphism
DP → G̃, whose kernel is exactly IP.

Theorem 2.4. Let K ⊂ L be Galois. If p is a prime of K and P prime of L
lying above p, then the homomorphism DP → G̃ is surjective. Thus DP/IP

∼= G̃.

It is not hard to see that |G̃| = fP|p and |DP| = eP|pfP|p. From here,

|IP| = eP|p. Hence, if P is unramified in L, we have DP
∼= G̃.

The structure of the Galois group G̃ is well-known: if OK/p has q = NK/Q(p)

elements, then G̃ is a cyclic group with canonical generator given by the Frobe-
nius automorphism x 7→ xq . Thus, if p is unramified in L, there is is a unique
σ ∈ DP that maps to the Frobenius element. Moreover, we have the following
theorem

Theorem 2.5. Let K ⊂ L be Galois. Let p be an unramified prime in K. If P

is a prime in L lying above p, then there is a unique element σP ∈ Gal(L/K)
such that for all α ∈ OL,

σP(α) ≡ αNK/Q(p) (mod P).

This automorphism σP is called the Frobenius element of P in Gal(L/K).
From the last theorem, we can easily deduce following properties of the Frobe-
nius element:

• If τ ∈ Gal(L/K), then στ(P) = τσPτ−1.

• The order of σP is the inertial degree f = fP|p.

• A prime p splits completely in L if and only if σP = 1.

The Frobenius element restricts well to subfields: if K ⊂ L and L ⊂ M are
Galois extensions of number fields, then σP ∈ Gal(M/K) maps by restriction
to σP ∈ Gal(L/K), where P is a prime of M , and P = P ∩ OL.

We define the Frobenius symbol of p in L/K to be the conjugacy class
{σP | P|p} in Gal(L/K).

When K ⊂ L is an abelian extension, the Frobenius element σP depends
only on the underlying prime p = P∩OK . It follows that in the case Gal(L/K)
abelian, we can denote the Frobenius element associated to P simply by σp,
independently of a choice of a prime P lying above p.
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2.1.2 Quadratic Fields

Let K be a number field and let OK be its ring of integers. We say that K
is a quadratic number field if [K : Q] = 2. It can easily be showed that every
quadratic number field can uniquely be written as Q(

√
d), where d is a square-

free integer.

Theorem 2.6. If d ≡ 2, 3(mod 4), then OK = Z[
√

d].

If d ≡ 1(mod 4), then OK = Z[−1+
√

d
2 ].

Knowing how to find an explicit integral basis for OK , makes it easy to
compute the discriminant of quadratic number fields. We have

Theorem 2.7. Let ∆K denote the discriminant of K. Then

∆K =

{
4d d ≡ 2, 3 (mod 4),
d d ≡ 1 (mod 4).

Now, we want to determine how rational primes p split in OK .

Theorem 2.8. Let K be a quadratic number field of discriminant dK , and let
the nontrivial automorphism of K be denoted α 7→ α′. Let p be a prime number.

(i) If (d
p ) = 0, then pOK = p2, for some prime ideal p of OK .

(ii) If (d
p ) = 1, then pOK = pp′, where p′ = {γ′ | γ ∈ p} 6= p are prime in OK .

(iii) If (d
p ) = −1, then pOK is prime in OK .

In our proof of the main theorem, we will make use of the following lemma.

Lemma 2.9. Let K be a quadratic field and α ∈ K \ Q. Then the extension
K(

√
α) is normal over Q if and only if N(α) is a square in K.

Proof : The extension K(
√

α)/Q is normal if and only if K(
√

α) = K(
√

α).
By Kummer theory, this is equivalent to α ∈ α · K∗2, which is equivalent to
N(α) = αα ∈ K∗2. �

2.1.3 Cyclotomic Fields

Let K be a number field and n > 1 be an integer. We consider the extension
L = K(ζn), where ζn is a nth primitive root of unity. Clearly, L is a normal
extension of K.

If σ ∈ Gal(L/K), then σ(ζn) = ζk
n, for some integer k, (n, k) = 1. The map

σ 7→ k is a canonical map of Gal(L/K) into the group (Z/nZ)∗. In particular,
[L : K] ≤ ϕ(n).

Let us consider the extensions Q(ζn).

Theorem 2.10. The extension Q(ζn) is a normal extension of Q of degree
ϕ(n); its Galois group Gal(Q(ζn)/Q) is naturally isomorphic to (Z/nZ)∗.
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Corollary 2.11. For prime p - n the Frobenius element σp ∈ Gal(Q(ζn)/Q) of
p is given by σp(

∑
aiζn) =

∑
aiζ

ip
n , for ai ∈ Q.

The next statements will concern the factorization of primes p in the exten-
sion Q(ζn).

Theorem 2.12. If p is a prime not dividing n then it is unramified in Q(ζn)
and its residue degree fp is the least integer f ≥ 1 such that pf ≡ 1(mod n).

Corollary 2.13. If p - n is prime, then p splits completely in Q(ζn)/Q if and
only if p ≡ 1(mod n).

At the end, we state a lemma about quadratic subfields of Q(ζ2∞).

Lemma 2.14. The only quadratic subfields of Q(ζ2∞) are the quadratic subfields
Q(

√
−1), Q(

√
2) and Q(

√
−2) of Q(ζ8).

Proof : By construction of Q(ζ2∞), it is enough to prove that the extensions
Q(ζ2k) do not have any other quadratic subfields, where k ≥ 3.

We have Gal(Q(ζ2k )/Q) ∼= (Z/2kZ)∗ ∼= Z/2Z × Z/2k−2Z, so if k ≥ 3 the
Galois group Gal(Q(ζ2k )/Q) has exactly 3 subgroups of index 2, hence Q(ζ2k )
has exactly 3 quadratic subfields. This proves the lemma.

2.1.4 The Chebotarev Density Theorem

Let K ⊂ L be be number fields and L Galois over K. To every unramified
prime ideal P we associate its Frobenius element σP. Conversely, we have that
every element from Gal(L/K) is the Frobenius element for infinitely many prime
ideals of L. More precisely, we have the following theorem

Theorem 2.15. (Chebotarev Density Theorem). Let K ⊂ L be Galois, and let
C ⊂ Gal(L/K) be a conjugacy class. Then the set

S = {p | p a prime of K, p - ∆L/K , σp ∈ C}

has density δ(S) = |C|/|Gal(L/K)|.

Here, by density we mean the natural density. If S is a set of primes of K,
we define the natural density of S to be

δ(S) = lim
x→∞

|{p | NK/Q(p) ≤ x, p ∈ S}|
|{p | NK/Q(p) ≤ x, p prime}|

if this limit exists. In the case K = Q, the set S is a set of prime numbers and

δ(S) = lim
x→∞

|{p ≤ x | p ∈ S}|
|{p ≤ x | p prime }| .

Hence, if the density δ(S) in the theorem is positive, we easily deduce that
the set S has to be infinite.
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Note that if the natural density exists then it is equal to the Dirichlet density,
but the converse is not true; there are cases where the Dirichlet density exists
but the natural density does not. Originally, the statement of the Chebotarev
Density Theorem referred to the Dirichlet density, but it was shown later that
it is valid for either notion of density.

In the case L/K is abelian, we have the following.

Corollary 2.16. Let L be an abelian extension of K and σ ∈ Gal(L/K). Then
the set

S = {p | p a prime of K, p - ∆L/K , σp = σ}
has density δ(S) = 1/[L : K] and hence is infinite.

Applying the previous corollary to the extension Q(ζn)/Q, we obtain a fa-
mous theorem of Dirichlet.

Corollary 2.17. For any a ∈ (Z/nZ), the set {p | p ≡ a(mod n)} has density
1/ϕ(n).

At last, let us state and prove the lemma that it is going to be widely used
in the proof of the main theorem.

Lemma 2.18. Let S be a set of prime numbers and let us partition the set S into
pairwise disjoint sets Sk ⊂ S, where k ≥ 1 and S =

⋃∞
k=1 Sk. For D ⊂ S, we

define Dk = D∩Sk, for k ≥ 1. Then S =
⋃∞

k=1 Sk and S \D =
⋃∞

k=1(Sk \Dk).
If the sets Sk, Dk and S, where k ≥ 1, have a natural density, and

δ(S) =
∞∑

k=1

δ(Sk),

then sets D, S \ D have densities, as well. Moreover

δ(D) =
∞∑

k=1

δ(Dk)

and

δ(S \ D) =

∞∑

k=1

δ(Sk \ Dk).

Proof : Having that the sets Sk and Dk, where k ≥ 1, have natural densities
we obtain that the sets Sk \ Dk, where k ≥ 1, have density, and

δ(Sk \ Dk) = δ(Sk) − δ(Dk).

Both D and S\D are countable disjoint unions of sets of primes having a natural
density. Hence, it follows that D has lower density δ−(D) ≥ ∑∞

k=1 δ(Dk), and
that S \D has lower density δ−(S \D) ≥ ∑∞

k=1 δ(Sk \Dk). These lower densities
add up to δ(S), so in fact they are densities. Indeed,
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δ−(D) + δ−(S \ D) ≤ δ(S)
=

∑∞
k=1 δ(Sk)

=
∑∞

k=1(δ(Dk) + δ(Sk \ Dk))
=

∑∞
k=1 δ(Dk) +

∑∞
k=1 δ(Sk \ Dk)

≤ δ−(D) + δ−(S \ D).
Hence

δ−(D) + δ−(S \ D) = δ(S),

and

δ(D) = δ−(D) =

∞∑

k=1

δ(Dk),

δ(S \ D) = δ−(S \ D) =
∞∑

k=1

δ(Sk \ Dk). �

2.2 Kummer Extensions and Kummer Theory

Let K be a number field. For an integer n > 1, we denote with ζn an nth
primitive root of unity. We assume that ζn ∈ K.

Let a be a non-zero element of K and let L = K( n
√

a) be the splitting field
of xn − a. We have a map

Gal(L/K) ↪→ 〈ζn〉

σ 7→ σ( n
√

a)
n
√

a
.

Note that this is independent of the choice of n
√

a, since choices differ by a root
of unity, which is already in K. Moreover, this is a group homomorphism, hence
the extension L/K is abelian.

Theorem 2.19. Let a be a non-zero element of K and L = K( n
√

a) the splitting
field of the polynomial xn − a. There is a group homomorphism of Gal(L/K)

into 〈ζn〉, given by σ 7→ σ( n
√

a)
n
√

a
. In particular, if a is of order n in K∗/K∗n, the

Galois group is cyclic of order n.

Kummer theory gives that, conversely, if L/K is cyclic of degree n, and
ζn ∈ K, then there exists α ∈ L such that L = K(α) and αn ∈ K.

More generally, there is a bijection

{L : K ⊂ L ⊂ Kab, Gal(L/K)n = 1} ↔ {W : K∗n ⊂ W ⊂ K∗}

between abelian extensions L of K of exponent dividing n and subgroups W ⊂
K∗ containing K∗n, defined by

W 7−→ K(
n
√

W )
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L∗n ∩ K∗ 7−→L.

If L corresponds to W , then we have a perfect pairing

Gal(L/K)× W/K∗n → 〈ζn〉

(σ, a) 7→ σ( n
√

a)
n
√

a
.

That is,
Gal(L/K) ∼= Hom(W/K∗n, 〈ζn〉).

This pairing is Galois equivariant, as for ϕ ∈ Aut(K) we have

(σ, a)ϕ = (ϕσϕ−1, ϕa),

for any a ∈ W/K∗n.
We conclude this section with the Schinzel’s theorem.

Theorem 2.20 (Schinzel). For a ∈ K∗, the polynomial xn − a has abelian
splitting field over K if and only if aw ∈ K∗n, with w = ](〈ζn〉 ∩ K).
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3 Main Theorem

Let α be a quadratic integer and K the corresponding quadratic field. Here, by a
quadratic integer we mean an algebraic number whose minimal polynomial over
Q is of degree 2. The Lucas sequence associated with α is the integer sequence

Xα = {TrK/Q(αn)}∞n=0 = {αn + ᾱn}∞n=0,

where ᾱ stands for the conjugate of α. This sequence satisfies the second order
linear recurrence

xn+2 = TrK/Q(α)xn+1 − NK/Q(α)xn for n ≥ 0.

We will consider only non-degenerate sequences, so we assume that α/α is not
a root of unity. We are interested in the existence of the natural density δα of
the set of primes dividing at least one term of the sequence Xα. In particular,
we show that δα exists for every α and we compute it for “generic” α.

First, we will prove that the density δ+
α of the primes that split completely

in K and divide some term of Xα and the density δ−α of the primes that are
inert in K and divide some term of Xα exist. Since there are only finitely many
primes that ramify in K, they do not have any influence on the density, so we
are not considering them. Finally, δα = δ+

α + δ−α .
This chapter will be dedicated to the proof of the main theorem.

Theorem 3.1. The density δα exists for every non-zero quadratic integer α for
which α/α is not a root of unity and it is a positive rational number.

Along this proof, we will assume that K 6⊂ Q(ζ8). The case when K is the
quadratic subfield of Q(ζ8) will be studied in section 4.1.

We write K = Q(
√

d), where d is a squarefree integer. Let p be a prime
number coprime to α. We have

p divides xn = αn + ᾱn ⇔ (α/α)n = −1 ∈ (O/pO)∗.

Let us denote q = α/α. We assume p - 2d. In the following lemma we obtain the
characterization of primes p that divide some term of Xα in terms of the order
of q ∈ (O/pO)∗.

Lemma 3.2. Let p and α be as above. Then

p divides some term of Xα ⇔ the order of q = α/α ∈ (O/pO)∗ is even .

Proof : Since NK/Q(q) = 1 we obtain that

q ∈ κp = ker[N : (O/pO)∗ → F∗
p].

In the split case the group (O/pO)∗ ∼= F∗
p ×F∗

p is a product of two cyclic groups
of order p− 1 and the norm map N : (O/pO)∗ → F∗

p is given by multiplication,
so κp is the cyclic subgroup of (O/pO)∗ of order p − 1. On the other hand, in
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the inert case (O/pO)∗ ∼= F∗
p2 is a cyclic group of order p2 − 1 and the norm

map N : (O/pO)∗ → F∗
p raises all elements to the power p + 1. Here, we have

that κp is a cyclic group of order p+1. Summarizing, we obtain that κp is cyclic
group of order p − ( d

p ). Thus −1 is the unique element of order 2 in the group
κp. This ends the proof of the lemma.

We will continue with the proof of the theorem. Both in the split and in the
inert case, we will describe the parity of the order of q ∈ (O/pO)∗ in terms of
the splitting behavior of a prime p in some infinite algebraic extension of Q.

Split case. Let

S+ = {p | p is an odd prime number, coprime to α that splits completely in K}

and
D+ = {p ∈ S+| p divides some term of Xα} ⊂ S+.

If p ∈ S+, we have (O/pO)∗ ∼= F∗
p × F∗

p, so q ∈ (O/pO)∗ has odd order if

and only if q is 2kth power in (O/pO)∗, where p− 1 has exactly k = ord2(p− 1)
factors 2. Writing the last condition as p ≡ 1 + 2k (mod 2k+1), this leads us to
a partition of the set S+ into pairwise disjoint sets S+

k ⊂ S+ such that

S+
k = {p ∈ S+| p ≡ 1 + 2k (mod 2k+1)}

and

S+ =

∞⋃

k=1

S+
k .

Since p splits completely in K, the condition p ≡ 1 (mod 2k) implies that p
splits completely in the field K(ζ2k), obtained by adjoining to K a primitive 2k

root of unity. On the other hand, condition that p is not congruent to 1 modulo
2k+1 implies that p does not split completely in the field K(ζ2k+1), obtained by
adjoining to K a primitive 2k+1 root of unity. Finally, having the equivalence

p ≡ 1 + 2k (mod 2k+1) and splits
completely in K

⇔ p splits completely in K(ζ2k),
but not in K(ζ2k+1),

and using the Chebotarev density theorem, we obtain that the natural density
of S+

k inside the set of all primes is

δ(S+
k ) = [K(ζ2k ) : Q]−1 − [K(ζ2k+1) : Q]−1.

Taking into account that the this sum is a telescopic sum, we obtain

∞∑

k=1

δ(S+
k ) = [K : Q]−1 = 1/2 = δ(S+).

Now, for p ∈ S+
k , we have

17



the order of q ∈ (O/pO)∗ is odd ⇔ q is a 2kth power in (O/pO)∗

⇔ p splits completely in the field
K(ζ2k , 2k√q),

and finally

p ∈ S+
k does not divide some

term of Xα

⇔ p splits completely in the field
K(ζ2k , 2k√q), but not in the
field K(ζ2k+1 , 2k√q).

We denote
D+

k = D+ ∩ S+
k .

Using the Chebotarev density theorem, we obtain that the complement of D+
k

in S+
k has natural density

δ(S+
k \ D+

k ) = [K(ζ2k , 2k√q) : Q]−1 − [K(ζ2k+1 , 2k√q) : Q]−1.

From here, we obtain that the set D+
k has a density as well. We have

D+ =

∞⋃

k=1

D+
k

and

S+ \ D+ =

∞⋃

k=1

(S+
k \ D+

k ).

By lemma 2.18,

δ(D+) =

∞∑

k=1

δ(D+
k )

and

δ(S+ \ D+) =

∞∑

k=1

δ(S+
k \ D+

k ).

Having

δ+
α = δ(D+) = δ(S+) − δ(S+ \ D+) =

1

2
− δ(S+ \ D+)

we conclude

δ+
α =

1

2
−

∞∑

k=1

([K(ζ2k , 2k√q) : Q]−1 − [K(ζ2k+1 , 2k√q) : Q]−1). (1)

If we denote
Fk = K(ζ2k , 2k√q)

we obtain

δ(S+
k \ D+

k ) =

{
1
2 [Fk : Q]−1 if ζ2k+1 /∈ Fk

0 otherwise.

18



We will prove that there exists N ∈ Z≥1 such that for all k ≥ N , a primitive
root of unity ζ2k+1 generates a quadratic extension over Fk and [Fk+1 : Fk ] = 4.
In particular, we obtain that for k > N , the extension Fk = K(ζ2k , 2k√q) is
nontrivial extension over K(ζ2k ), and this will be used later in the proof.

Having that [K(ζ2k ) : Q] = 2k for all k, it is enough to consider the extension
Fk/K(ζ2k).

We have the diagram

PSfrag replacements

F3 = K(ζ8, 8
√

q)

K(ζ8, 4
√

q)

K(ζ8,
√

q) F2 = K(i, 4
√

q)

K(ζ8) K(i,
√

q)

Q(ζ8) K(i) F1 = K(
√

q)

K

Q

K(ζ16,
√

q)

K(ζ16)

For k = 1, we have
[F1 : K] = 2 ⇔ q 6∈ K∗2.

If k = 2, by Kummer theory,

[F2 : K(i)] = 4 ⇔ [K(i,
√

q) : K(i)] = 2,

and we obtain
[F2 : K(i)] = 4 ⇔ q 6∈ 〈−1〉 · K∗2.

Now, let k = 3. Again, applying Kummer theory,

[F3 : K(ζ8)] = 8 ⇔ [K(ζ8,
√

q) : K(ζ8)] = 2.

On the other hand,

[K(ζ8,
√

q) : K(ζ8)] = 2 ⇔ [K(i,
√

q] : K(i)] = 2 ∧ K(ζ8) 6= K(i,
√

q).
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The field K(ζ8,
√

q) is the compositum of the V4 extensions Q(ζ8) and K(
√

q) of
Q, so the fields K(ζ8) and K(i,

√
q) coincide if and only if one of the quadratic

subfields Q(
√

q±1/
√

q) of K(
√

q) is equal to one of the three quadratic subfields
of Q(ζ8). We have

[F3 : K(ζ8)] = 8 ⇔ q 6∈ 〈−1〉 · K∗2 ∧ Tr(q) ± 2 6∈ 〈−1, 2〉 · Q∗2.

Proposition 3.3. If [F3 : K(ζ8)] = 8, then [Fk : K(ζ2k )] = 2k, for all k ≥ 1.

Proof : If K(ζ8,
√

q) is quadratic over K(ζ8), then it is a V4 extension over
K(i), so it is not equal to K(ζ16), which is C4 extension over K(i). From here,
the proof easily follows by induction.

Thus, if for 1 ≤ k ≤ 3, no “accident” happens, i.e. the extension Fk is of the
maximal degree 4k over Q, then [Fk : Q] = 4k for all k ≥ 1.

Moreover, if only in the case k = 3 an “accident” happens, i.e. the exten-
sions Q(ζ8) and K(

√
q) are not linearly disjoint over Q, we have the following

statement.

Proposition 3.4. If q 6∈ 〈−1〉 ·K∗2, but [F3 : K(ζ8)] = 4, then [Fk : K(ζ2k )] =
2k−1, for all k ≥ 3.

Proof : If K(ζ8, 4
√

q) = K(ζ16), then x4 − q has an abelian splitting field over
K which is, by Schinzel’s theorem, equivalent to q2 ∈ K4, i.e. q ∈ 〈−1〉 · K2.
�

Now, we can consider the general case. We write q = ±q2s

0 , where s ∈ Z≥0

and q0 6∈ 〈−1〉 · K∗2. Then, if q = q2s

0 , for k ≤ s, the extension Fk/K(ζk
2 ) is

trivial. On the other hand, for q = −q2s

0 , we obtain [Fk : K(ζ2k)] = 2, if k ≤ s. In
the case k ≥ s+1, the extensions K(ζk

2 , 2k√q)/K(ζ2k ) and K(ζk
2 , 2k√−q)/K(ζ2k )

have the same degree. Using propositions 3.3 and 3.4, we obtain the following.

Theorem 3.5. If q = ±q2s

0 , where s ∈ Z≥0 and q0 6∈ 〈−1〉 · K∗2, then for
k ≥ max{3, s + 1}

[Fk : Q] =

{
22k−s if Tr(q0) ± 2 6∈ 〈−1, 2〉 · Q∗2,

22k−1−s if Tr(q0) ± 2 ∈ 〈−1, 2〉 · Q∗2.

It easily follows, that if k ≥ N = max{3, s + 1}, then

[Fk+1 : Fk] = 4,

and
[Fk(ζ2k+1) : Fk ] = 2.

Hence, using (1), we obtain

δ+
α =

1

2
− (

N∑

k=1

δ(S+
k \ D+

k ) +
1

2

∞∑

k=N

1

22k−m
),

where

m =

{
s if Tr(q0) ± 2 6∈ 〈−1, 2〉 · Q∗2,

s − 1 if Tr(q0) ± 2 ∈ 〈−1, 2〉 · Q∗2.
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Thus δ+
α ∈ Q.

To prove that δ+
α > 0, it is enough to prove that for some k ∈ Z≥1, δ(D+

k ) >
0. Having, δ(D+

k ) = δ(S+
k ) − δ(S+

k \ D+
k ), for k > N , we obtain

δ(D+
k ) =

1

2
[K(ζ2k) : Q]−1(1 − 1

2k−m
) =

1

2k+1
(1 − 1

2k−m
),

and since k − m > 0, we obtain δ(D+
k ) > 0, and moreover δ+

α > 0.
On the other hand, δ+

α < 1
2 , since for k ≥ N , the density

δ(S+
k \ D+

k ) =
1

22k−m+1
> 0.

Inert case. Let p be an odd prime that is inert in K/Q. Then, p is coprime
to α and q ∈ (O/pO)∗. Let

S− = {p | p odd prime inert in K}

and
D− = {p ∈ S−| p divides some term of Xα} ⊂ S−.

Suppose first that p ≡ 1(mod 4). We denote

S−
1 = {p ∈ S−| p ≡ 1 (mod 4)}

and
D−

1 = D− ∩ S−
1 .

We easily obtain δ(S−
1 ) = 1

4 .
Having that NK/Q(q) = 1, we obtain qp+1 = 1 ∈ (O/pO)∗. Since κp is a

subgroup of the cyclic group (O/pO)∗ of index p− 1, all the elements in κp are

p − 1th powers. In particular, q = x2 ∈ (O/pO)∗. Then N(x) = xp+1 = q
p+1

2 =
±1 ∈ (O/pO)∗, where N is the norm map N : (O/pO)∗ → F∗

p. As p+1
2 is odd,

we have the equivalence

the order of q is odd ⇔ N(x) = 1.

Let us consider the extension K(
√

q)/Q. Since NK/Q(q) = 1, by lemma
2.9, this extension is normal, hence Galois. Moreover, it is abelian. If σp ∈
Gal(K(

√
q)/Q) is the Frobenius element of p, restricting it to the field K, we

obtain the Frobenius element of p in the abelian group Gal(K/Q). We have the
diagram

K(
√

q)

Q(
√

q − 1/
√

q) K Q(
√

q + 1/
√

q)

〈σ〉

Q

21



Note that this diagram may collapse, in the case
√

q ∈ K. Otherwise it is V4.
Using that

σp |K= id ⇔ p splits completely in K,

we obtain the equivalence

p is inert in K/Q ⇔ the Frobenius element σp of p in the abelian
group Gal(K(

√
q)/Q) is such that σp |K 6= id.

For inert p, the equivalence

N(x) = 1 ⇔ σp(
√

q) = (
√

q)−1

shows that the condition N(x) = 1 determines σp uniquely. Hence, if p ≡ 1
(mod 4) is a prime that is inert in K/Q, we have

p is does not divide some term of
Xα

⇔ the Frobenius element σp

of p in the abelian group
Gal(K(

√
q)/Q) is the

unique element σ such that
σ(
√

q) = (
√

q)−1.

If the fields K, Q(
√

q − 1/
√

q), Q(
√

q + 1/
√

q) are linearly disjoint over Q,
i.e. q is not a square in K, then for prime p ≡ 1(mod 4) we have

σp = σ ⇔ p splits in Q(
√

q + 1/
√

q)/Q and is inert in Q(
√

q − 1/
√

q)/Q.

Hence we have to consider the case when one of the fields Q(
√

q+1/
√

q), Q(
√

q−
1/

√
q) equals Q(

√
−1) separately.

For Q(
√

q − 1/
√

q) = Q(
√
−1), no prime p ≡ 1(mod 4) is inert in Q(

√
q −

1/
√

q)/Q, so the density δ(S−
1 \ D−

1 ) = 0.

If Q(
√

q + 1/
√

q) = Q(
√
−1), every prime p ≡ 1(mod 4) splits in Q(

√
q +

1/
√

q)/Q, so the density δ(S−
1 \ D−

1 ) = 1
4 .

In the case K, Q(
√

q − 1/
√

q), Q(
√

q + 1/
√

q) 6= Q(
√
−1), using the Cheb-

otarev density theorem, we deduce

δ(S−
1 \ D−

1 ) =
1

2
· 1

[K(
√

q) : Q]
=

{
1
4 if q is a square in K,
1
8 otherwise,

where 1
2 arises from the density of primes p ≡ 1(mod 4).

Next, we assume p ≡ 3(mod 4) and we follow the argument similarly to the
split case.

If p ∈ S−, we have that q ∈ (O/pO)∗ has odd order if and only if q is a 2lth
power in (O/pO)∗, where p2 − 1 has exactly l = ord2(p

2 − 1) factors 2. The
condition p ≡ 3 (mod 4) implies ord2(p − 1) = 1, so l = ord2(p + 1) + 1 ≥ 2.
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Using the equivalence k = ord2(p + 1) ⇔ p ≡ −1 + 2k (mod 2k+1) we
partition the set S− as

S− =

∞⋃

k=1

S−
k ,

where
S−

k = {p ∈ S−| p ≡ −1 + 2k (mod 2k+1)}.
We denote

D−
k = D− ∩ S−

k .

Note, that the case k = 1 is the case p ≡ 1(mod 4), so we only consider the case
k ≥ 2.

We consider the Frobenius element σp of an unramified prime p in the abelian
group Gal(K(ζ2k+1)/Q). Reasoning as in the case p ≡ 1(mod 4) we obtain the
equivalence

p inert in K/Q ⇔ the Frobenius element σp of p in the abelian
group Gal(K(ζ2k+1)/Q) is such that σp |K 6= id.

For p ≡ −1 + 2k (mod 2k+1), we have σ(ζ2k+1) = ζ−1+2k

2k+1 . This completely

determines σp for p ∈ S−
k , and we obtain the equivalence

p ∈ S−
k ⇔ the Frobenius element σp of p in the abelian group

Gal(K(ζ2k+1)/Q) is the unique element σ such that

σ|K 6= id and σ(ζ2k+1) = ζ−1+2k

2k+1 .

(2)

Using the Chebotarev density theorem we obtain that S−
k has natural density

δ(S−
k ) = [K(ζ2k+1) : Q]−1 =

1

2k+1
, for all k ≥ 2.

Let Bk ⊂ K(ζ2k+1) be the subfield fixed by σ. Since the order of σ in
Gal(K(ζ2k+1)/Q) is 2, we obtain that K(ζ2k+1) is a quadratic extension of Bk

and, since q /∈ Bk, we have K(ζ2k+1) = Bk(q). The construction of Bk yields

p ∈ S−
k ⇔ p splits completely in Bk, but not in K(ζ2k+1)

and the fact that primes in S−
k are inert in K/Q then implies that their exten-

sions in Bk are inert in Bk(q). More precisely, we have the equivalence

p ∈ S−
k ⇔ p splits completely in Bk and has extensions in Bk

that are inert in K(ζ2k+1) = Bk(q).

We have

the order of q ∈ (O/pO)∗ is odd ⇔ q is a 2k+1th power in
(O/pO)∗.
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We have already proved that there exists an integer N ∈ Z≥1, such that for
k ≥ N , an element 2k+1√q generates a nontrivial extension over K(ζ2k+1). Let

q = q2s

0 , where s ∈ Z≥0 and q0 /∈ 〈−1〉 ·K∗2. Then, as we have k +1 rather then
k here, N = max{2, s + 1}. Moreover, for k ≥ N we have

Gal(K(ζ2k+1 , 2k+1√q)/K(ζ2k+1)) ∼= Z/2nZ,

where

n =

{
k + 1 − s if Tr(q0) ± 2 6∈ 〈−1, 2〉 · Q∗2,

k − s if Tr(q0) ± 2 ∈ 〈−1, 2〉 · Q∗2.

Let k ≥ N . For p ∈ S−
k and p ⊂ OK(ζ

2k+1 ) such that p | p, the fields

OK(ζ
2k+1 )/pOK(ζ

2k+1) and OK/pOK are fields of p2 elements, so we obtain

the order of q ∈ (O/pO)∗ is odd ⇔ the extensions of p ∈ S−
k in

K(ζ2k+1) split completely in
K(ζ2k+1 , 2k+1√q)

and finally

p ∈ S−
k does not divide some

term of Xα

⇔ p splits completely in Bk/Q
and has extensions in Bk

that are inert in Bk(q)/Bk

and split completely in
K(ζ2k+1 , 2k+1√q)/Bk(q).

Let us denote Fk = K(ζ2k+1 , 2k+1√q). Note that there is a slight difference in
the definition of Fk between this and the split case. We want to translate the
last condition in terms of Frobenius symbol of p in Gal(Fk/Q). Since Fk/Q is
not an abelian extension, the Frobenius symbol of p will be unique only up to
conjugacy. We have

p ∈ S−
k does not divide some

term of Xα

⇔ the Frobenius symbol of p in
Gal(Fk/Q) is an element of
order 2 in the normal sub-
group Gal(Fk/Bk), that does
not lie in the normal subgroup
Gal(Fk/Bk(q)).

Note that the condition on the Frobenius symbol of p does not depend on the
choice inside the conjugacy class.

If nk denotes the number of such elements and we denote

D−
k = D− ∩ S−

k ,

The Chebotarev density theorem implies

δ(S−
k \ D−

k ) =
nk

[Fk : Q]
.
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We can extend σ to an element σ∗ ∈Gal(Fk/Bk) of order 2 by putting

σ∗( 2k+1√q) = 1/ 2k+1√q,

as shown in the diagram

Fk = K(ζ2k+1 , 2k+1√q)

〈σ∗〉
??

??
??

?

Z/2nZ

��
��

��
��

��
��

��
��

��

Bk( 2k+1√q + 1/ 2k+1√q)

��
��

��
��

��
��

��
��

��
�

Bk(q)

〈σ〉 ??
??

??
??

Bk

The automorphism σ∗ acts by inversion on 〈q〉, and by raising to the −1+ 2kth
power on 〈ζ2k+1〉.

We obtain

Gal(Fk/Bk) ∼= Gal(Fk/Bk(q)) o 〈σ∗〉 ∼= Z/2nZ o Z/2Z,

and the action of σ∗ on Gal(Fk/Bk(q)) follows from the Galois equivariance of
the Kummer pairing

Gal(Fk/Bk(q)) × 〈q〉 → 〈ζ2k+1 .〉

For σ∗ acts on Gal(Fk/Bk(q)) by raising to some power x, and

x ×−1 = −1 + 2k,

we obtain that σ∗ acts on Gal(Fk/Bk(q)) by raising to the 1 − 2kth power.
Let ϕ be a generator of Gal(Fk/Bk(q)). We are searching for the elements

(ϕr, σ∗) ∈ Gal(Fk/Bk) of order 2, where r ∈ {0, 2n − 1}. So, we have

(ϕr, σ∗) has order 2 ⇔ ϕrσ∗ϕrσ∗ = id

⇔ ϕr(2k−2) = id
⇔ 2n | r(2k − 2)
⇔ r = 0 ∨ r = 2n−1.

This yields nk = 2 for all k ≥ N .
Having

δ(S−
1 ) +

∞∑

k≥2

δ(S−
k ) =

1

4
+

∞∑

k≥2

1

2k+1
=

1

2
= δ(S−),
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we can use lemma 2.18, so we obtain

δ−α =
1

2
−(

N∑

k=1

δ(S−
k \D−

k )+
∞∑

k=N

nk

[Fk : Q]
) =

1

2
−(

N∑

k=1

δ(S−
k \D−

k )+
∞∑

k=N

2

2k+1+n
).

As the last term is a geometric series, we obtain δ−α ∈ Q and δα ∈ Q. Moreover,
we have that for k ≥ N ,

δ(S−
k \ D−

k ) =
2

2k+1+n
> 0,

so δ−α < 1
2 and 0 < δα < 1. �
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4 Explicit computations

4.1 The case K ⊂ Q(ζ8)

In this section, we will point out the changes that have to be made in order to
extend the proof of the main theorem to the case K ⊂ Q(ζ8).

Split case. Here, we will modify the proof of the existence of N ∈ Z≥1 such
that [Fk+1 : Fk] = 4, for all k ≥ N .

Let K = Q(
√
−1) = Q(i). Then, for K(i) = K, we have

[F2 : K(i)] = 4 ⇔ q 6∈ K∗2.

If k = 3, we obtain
[F3 : K(ζ8)] = 8 ⇔ q 6∈ 〈i〉 · K∗2

Now, proposition 3.3 remains true and we obtain the following theorem.

Theorem 4.1. If q = ikq2s

0 , where s ∈ Z≥0 and q0 6∈ 〈i〉 · K∗2, then for
k ≥ N = max{3, s + 2}

[Fk : Q] = 22k−1−s.

Thus,

δ+
α =

1

2
− (

N∑

k=1

δ(S+
k \ D+

k ) +
1

2

∞∑

k=N

1

22k−1−s
),

and, if k ≥ N ,

δ(D+
k ) =

1

2
[K(ζ2k ) : Q]−1(1 − 1

2k−1−s
) =

1

2k
(1 − 1

2k−1−s
).

In the case K = Q(
√
±2), the only difference is the case k = 3, since K(ζ8) =

K(i). We have
[F3 : K(ζ8)] = 8 ⇔ q 6∈ 〈−1〉 · K∗2.

Instead of proposition 3.3, we obtain the following statement.

Proposition 4.2. If q 6∈ 〈−1〉 · K∗2, then [Fk : K(ζ2k )] = 2k, for all k ≥ 1.

The proof follows the same argument, only we consider extensions over K, in-
stead over K(i).
Hence, the theorem.

Theorem 4.3. If q = ±q2s

0 , where s ∈ Z≥0 and q0 6∈ 〈−1〉 · K∗2, then for
k ≥ N = max{3, s + 1}

[Fk : Q] = 22k−1−s.

We obtain

δ+
α =

1

2
− (

N∑

k=1

δ(S+
k \ D+

k ) +
1

2

∞∑

k=N

1

22k−1−s
),
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and for k ≥ N

δ(D+
k ) =

1

2k
(1 − 1

2k−1−s
).

In both cases, we have δ+
α ∈ Q and 0 < δ+

α < 1
2 .

Inert case. First, we assume p ≡ 1(mod 4).
Here, the only problem that can arise is the case K = Q(

√
−1), since then

there are no inert primes that are congruent to 1 modulo 4. Thus, then we have
δ(S−

1 ) = δ(S−
1 \ D−

1 ) = 0.
Now, suppose p ≡ 3(mod 4).
First, we can observe that in the equivalence (2) from the proof of the main

theorem, if p is an odd prime, its Frobenius element σp in the abelian group
Gal(K(ζ2k+1)/Q) =Gal(Q(ζ2k+1)/Q) is given by σp(ζ2k+1) = ζp

2k+1 . If p ∈ S−
k ,

then σp is the unique element σ such that σ(ζ2k+1 ) = ζ−1+2k

2k+1 . For some k, the

condition σ |K 6= id may not be satisfied and we have S−
k = ∅.

Next, to use lemma 2.18, we need

δ(S−
1 ) +

∞∑

k≥2

δ(S−
k ) =

1

2
= δ(S−).

For K = Q(
√
−1), all primes p ≡ 3(mod 4) are inert in K/Q. We have

δ(S−
k ) = [K(ζ2k+1) : Q]−1 =

1

2k
for all k ≥ 2,

and S−
1 = ∅, so

δ(S−
1 ) +

∞∑

k≥2

δ(S−
k ) =

∞∑

k≥2

1

2k
=

1

2
= δ(S−).

Let K = Q(
√

2). For k = 2, p ≡ 3(mod 8), so p is inert in K/Q. For k ≥ 3,
p ≡ 7(mod 8), so p splits in K/Q. We obtain

δ(S−
2 ) = [Q(ζ8) : Q]−1 =

1

4

and
S−

k = ∅ for all k ≥ 3,

so
δ(S−

k ) = δ(S−
k \ D−

k ) = 0 for all k ≥ 3.

We have

δ(S−
1 ) +

∞∑

k≥2

δ(S−
k ) =

1

4
+

1

4
=

1

2
= δ(S−).

Let K = Q(
√
−2). For k = 2, p ≡ 3(mod 8), so p splits in K/Q. For k ≥ 3,

p ≡ 7(mod 8), so p is inert in K/Q. We obtain

S−
2 = ∅,
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so
δ(S−

2 ) = δ(S−
2 \ D−

2 ) = 0,

and

δ(S−
k ) = [K(ζ2k+1) : Q]−1 =

1

2k
for all k ≥ 3.

We have

δ(S−
1 ) +

∞∑

k≥3

δ(S−
k ) =

1

4
+

∞∑

k≥3

1

2k
=

1

2
= δ(S−).

Summarizing, we conclude that if K = Q(
√

2), we have

δ−α =
1

2
− (

2∑

k=1

δ(S−
k \ D−

k )),

and otherwise

δ−α =
1

2
− (

N∑

k=1

δ(S−
k \ D−

k ) +
∞∑

k=N

2

22k+1−s
).

Whence, δα ∈ Q>0.

4.2 Generic case

Let us define generic case as the case where no “anomalies” happen. By this,
we mean that the extension Fk = K(ζ2k , 2k√q)/Q has maximal degree for every
k, i.e. to have the following diagram

Fk = K(ζ2k , 2k√q)

2k

K(ζ2k )

2

Q(ζ2k )

2k−1

Q

Proposition (3.3) implies that if Fk has maximal degree for 1 ≤ k ≤ 3, then the
degree will remain maximal for every k. Hence, the definition.

Definition 4.4. A non-zero quadratic integer α is said to be generic if the
following conditions are satisfied:

(i) The corresponding quadratic field K = Q(α) 6⊂ Q(ζ8).

29



(ii) q 6∈ 〈−1〉 · K∗2.

(iii) Q(
√

q − 1/
√

q), Q(
√

q + 1/
√

q) 6⊂ Q(ζ8).

The conditions (ii) and (iii) in the definition above can be replaced by
equivalent conditions on N(α) and Tr(q), and we obtain the following theorem.

Theorem 4.5. A non-zero quadratic integer α is generic if and only if following
conditions are satisfied:

(i) The corresponding quadratic field K = Q(α) 6= Q(
√
−1), Q(

√
2),Q(

√
−2).

(ii) N(α) /∈ 〈−1, d〉 · Q∗2, where d is the discriminant of the field K over Q.

(iii) Tr(q) ± 2 /∈ 〈−1, 2〉 · Q∗2.

Proof : By lemma 2.14 condition (i) is equivalent to condition K 6⊂ Q(ζ8) in
definition 4.4.

Next, having q = α
α = α2

N(α) , we obtain that q 6∈ 〈−1〉 · K∗2 if and only if

N(α) 6∈ 〈−1〉 · K∗2, which is equivalent to N(α) /∈ 〈−1, d〉 · Q∗2.
Now, let us consider the extensions Q(

√
q− 1/

√
q), Q(

√
q +1/

√
q). We have

Q(
√

q ± 1/
√

q) = Q(
√

Tr(q) ± 2). Hence, the condition (ii) in definition 4.4 is

equivalent to the condition Tr(q) ± 2 /∈ 〈−1, 2〉 · Q∗2. �

Theorem 4.6. In the generic case we have δ+
α = δ−α = 1

3 .

Proof : Split case. In this case, [Fk : Q] = 4k, for all k. Having that q is not
a square in K(ζ2k), for any k, we obtain that [Fk(ζ2k+1) : Fk(ζ2k )] = 2, for all
k, and we conclude

δ+
α =

1

2
− 1

2

∞∑

k=1

1

4k
=

1

3
.

Inert case. Let p be an odd prime that is inert in K/Q.
If p ≡ 1(mod 4) we have

δ(S1 \ D1) =
1

2
· 1

[K(
√

q) : Q]
=

1

8
.

Next, for p ≡ 3(mod 4) we have

δ(S−
k \ D−

k ) =
2

[Fk : Q]
, for all k ≥ 2,

where [Fk : Q] = 4k+1. We conclude

δ−α =
1

2
− (

1

8
+

∞∑

k=2

2

4k+1
) =

1

3
. �
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4.3 Extension to some non-generic cases

Although it is hard to state and prove a general result, for a given quadratic
integer α, we can compute the density δα following the proof of the main theo-
rem. Here, we will compute the density in the case when α satisfies conditions
(ii), (iii), but not (i) in definition 4.4.

Theorem 4.7. Let α and K be as above. If K ⊂ Q(ζ2∞), q = α/α is not a
square in K(ζ2∞) and Q(

√
q−1/

√
q), Q(

√
q +1/

√
q) 6⊂ Q(ζ8) then the densities

are as follows.

d = −1 d = 2 d = −2
δα+ 5/12 17/48 17/48
δ−α 5/12 5/16 17/48
δα 5/6 2/3 17/24

Proof : Split case. If k ≥ 3, we have

δ(S+
k \ D+

k ) =
1

2
[Fk : Q]−1 =

1

4k
.

If K = Q(
√
−1), no prime p ≡ 3(mod 4) splits in K, so

S+
1 = ∅

and
δ(S+

1 \ D+
1 ) = 0.

For k ≥ 2, we have [Fk(ζ2k+1) : Fk] = 2, hence

δ(S+
k \ D+

k ) =
1

2
[Fk : Q] =

1

4k
.

Finally,

δ+
α =

5

12
.

For K = Q(
√
±2), [F1(ζ4) : F1] = 2, while [F2(ζ4) : F2] = 1. We conclude

δ+
α =

1

2
− (

1

8
+

∞∑

k=3

1

4k
) =

17

48
.

Inert case. If k ≥ 2, we have

[Fk : Q] = 22k+1.

For K = Q(
√
−1), no prime p ≡ 1(mod 4) is inert in K/Q, so

S−
1 = ∅,

and
δ(S−

1 \ D−
1 ) = 0.
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If k ≥ 2,

δ(S−
k \ D−

k ) =
2

[Fk : Q]
,

thus

δ−α =
1

2
−

∞∑

k=2

1

4k
=

5

12
.

For K = Q(
√
±2),

δ(S−
1 \ D−

1 ) =
1

2
· 1

[K(
√

q) : Q]
=

1

8
.

If K = Q(
√

2), we have

δ(S−
2 \ D−

2 ) =
2

[F2 : Q]

and
δ(S−

k \ D−
k ) = 0 for all k ≥ 3,

as
S−

k = ∅ for all k ≥ 3.

Hence

δ−α =
1

2
− (

1

8
+

1

16
) =

5

16
.

For K = Q(
√
−2), we obtain

S−
2 = ∅,

so
δ(S−

2 \ D−
2 ) = 0,

and

δ(S−
k \ D−

k ) =
2

[Fk : Q]
for all k ≥ 3.

Hence

δ−α =
1

2
− (

1

8
+

∞∑

k=3

1

22k
) =

17

48
. �

4.4 Numerical data

In this section we will present some results obtained numerically, implementing
in GP/PARI an algorithm that computes the ratio

|{p ≤ x | p ∈ DXα}|
|{p ≤ x | p prime }| ,

for some non-zero quadratic integer α and x ∈ R>0. All the results exposed in
table 1 were obtained for x = 50000, that is |{p ≤ x | p prime }| = 5133. For
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a given α, the columns δ+
num, δ−num represent the result obtained numerically,

while the columns δ+
α , δ−α indicate the value given by our theory.

The first three entries are examples of generic α. The following three are
examples of α that satisfies conditions (ii),(iii), but not (i) in definition (4.4),
so densities are as in theorem 4.7.

Next, let α = 1+
√

2. Since K = Q(
√

2) ⊂ Q(ζ8), α is non-generic. Moreover,
from N(α) = −1, we have q = α/α ∈ 〈−1〉 · K∗2, while Tr(q) = −6 implies
Q(

√
q + 1/

√
q) = Q(

√
−1). Thus, α does not satisfies any condition of the

generic case. Since α is a fundamental unit of K, we have δα = 17
24 , by [8].

In the case α = 1 + 4
√
−3 = (2 +

√
−3)2, we have q = ( 1+4

√
−3

7 )2, where

q0 = 1+4
√
−3

7 6∈ 〈−1〉 · K∗2. Having that Tr(q0) ± 2 6∈ 〈−1, 2〉 · K∗2, we obtain
that for k ≥ 1, a primitive root of unity ζ2k+1 generates a quadratic extension
over Fk and that [Fk : Q] = 22k−1. Thus, δ+

α = 1
6 .

In the inert case, if k = 1 the density δ(S−
1 \ D−

1 ) = 1
4 , for q is a square in

K. If k ≥ 2, the extension Fk/K(ζ2k+1) is of degree , and we obtain δ−α = 1
6 , so

δα = 1
3 .

If α = 7
2+ 3

2

√
−7 = −

√
−7( 1+

√
−7

2 )2, we have q = −(π2

π2
)2, where π2 = 1+

√
−7

2

and q0 = π2

π2
6∈ 〈−1〉 · K∗2. Hence, s = 1 and Tr(q0) − 2 = − 1

2 ∈ 〈−1, 2〉 · K∗2.

If k ≥ 3, we obtain that ζ2k+1 6∈ Fk, and [Fk : Q] = 22k−2. For k = 1, the
extensions K(

√
q) and K(ζ4) coincide, so δ(S+

1 \ D+
1 ) = 0. In the case k = 2,

we can see that [F2(ζ8) : F2] = 2 and [F2 : Q] = 1
4 , thus δ(S+

2 \ D+
2 ) = 1

8 , and
δ+
α = 1

3 .

Let us consider the inert case. If k = 1, then δ(S−
1 \ D−

1 ) = 0, for Tr(q0) −
2 =∈ 〈−1, 2〉 · K∗2 implies Q(

√
q + 1/

√
q) = Q(

√
−1). For k ≥ 2, we have

[Fk : K(ζ2k ] > 1, so δ(S−
k \ D−

k ) = 2
22k . Thus δα− = 1

3 .



α δ+
num δ−num δ+

α δ−α

3 + 2
√

5 0.327489 0.336061 1
3 ≈ 0.333333 1

3 ≈ 0.333333

2 +
√

7 0.333918 0.332749 1
3 ≈ 0.333333 1

3 ≈ 0.333333

4 +
√
−5 0.329437 0.335476 1

3 ≈ 0.333333 1
3 ≈ 0.333333

2 + 3
√
−1 0.413209 0.418664 5

12 ≈ 0.416667 5
12 ≈ 0.416667

3 +
√

2 0.349893 0.312877 17
48 ≈ 0.354167 5

16 ≈ 0.3125

7 + 3
√
−2 0.351451 0.360803 17

48 ≈ 0.354167 17
48 ≈ 0.354167

1 +
√

2 0.456263 0.252289 11
24 ≈ 0.458333 1

4 ≈ 0.25

1 + 4
√
−3 0.166764 0.166569 1

6 ≈ 0.166667 1
6 ≈ 0.166667

7
2 + 3

2

√
−7 0.332359 0.330411 1

3 ≈ 0.333333 1
3 ≈ 0.333333

Table 1: Numerical Data
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