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1 Introduction

Let A be a finite abelian group; the main goal of this thesis is to analyze
Z[A]* as a module over a large ring of operators. To do this we do not look
at the action of the automorphisms group of A on the group of units, but we
consider a large set of operators that has a monoid structure; in this way we
have an action that makes the unit group into a module over a monoid ring.

The study of units of a cyclotomic field Q((, ), where (, is a primitive n-th
root of unity, is an interesting and well-known problem. Since describing the
whole group of units turns out not to be easy, the most natural thing to do
first is to study a subgroup made by elements with an easy structure; what
is usually considered, for n not congruent to 2 modulo 4 is the subgroup of
the so-called cyclotomic units, made by units contained in the multiplicative
group generated by +(,, and elements of the form 1 — (7, for 1 <a <n —1.
This is a subgroup of full rank in Z[(,]* and it is possible to explicit a Z-basis
of it. Cyclotomic units have also a structure of module over the ring Z[G|,
where G = (Z/nZ)* is the Galois group of the cyclotomic field Q((,) over Q,
but already when n is not a prime power this structure is not so easy; more
details about this can be found in the works of Conrad [5] and Solomon [25].

If C is a finite cyclic group of order n and we consider its associated group
ring, we get a ring of the form Z[C] = Z[x]/(z"™ — 1), that is contained in the
maximal order of the product of number fields Q[z]/(z" — 1) = [],,, Q(Ca),
where (; is a primitive d-th root of unity.

In this way we establish a connection between units in a group ring and
units in cyclotomic fields. We can try to use this connection in both direc-
tions: we can use what is already known about cyclotomic units to deduce
information about units in cyclic group rings or, otherwise, try to enlighten
the setting of cyclotomic units by explaining the structure of units in a cyclic
group ring.

As it is for cyclotomic units, general units in a cyclic group ring are not
easy to describe either, so what one needs to do is to restrict to a subgroup
made by units, which will be called constructible, that can be expressed by
an explicit formula.

One can ask what the gain is by passing to units in group rings instead
of working directly with cyclotomic units. What we get is that, for any
prime p, we can lift the Frobenius map modulo p to the whole ring, since
7, : © — P belongs to the endomorphisms of Z[z]/(z™ — 1). In this way
we give to Z[x]/(x™ — 1) the structure of A-ring; this notion was introduced
by Grothendieck, to give an abstract setting for studying the structure on



Grothendieck groups inherited from exterior power operations. However, it
seems that the study of abstract A-rings will have something to say about
number theory. For this we refer to the paper by Bart de Smit and James
Borger, "Galois theory and integral models of A-rings" [7].

Adding the morphisms 7, : © — 2P, for any prime p|n, to the group of
automorphisms (Z/nZ)* we obtain an action of the monoid (Z/nZ)°, where
the © indicates that we are considering the multiplicative structure of the
ring. By doing this we get a finer module structure, which gives a nicer de-
scription of the units.

Dealing with actions of the monoid (Z/nZ)°, we are interested in knowing
more about Z[(Z/nZ)°]-modules and therefore, before doing this, we need to
know something more about the ring itself. One question that can arise is
whether the ring is reduced, i.e. if it does not contain nontrivial nilpotents,
and, if this is the case, what its discriminant over 7 is.

At this point it was quite natural to start dealing with a general finite
commutative monoid. This is also a reasonable thing to do for the following
reason: as (Z/nZ)*, that is the Galois group of the cyclotomic extension
Q(¢,) over Q, is the set of invertible elements of the monoid (Z/nZ)°, the
ray class group of a number field K is the set of invertible elements of a
monoid, called the Deligne-Ribet monoid [6].

We found an easy criterion to decide if the integral monoid ring Z[M]
of a finite commutative monoid M is reduced; if this is the case, we call M
itself reduced. The criterion deals just with the elements of the monoid and
shows clearly how reduced monoids are a good generalization of finite abelian
groups. This comes out to be true in a really surprising way, since there is an
equivalence of categories between finite reduced commutative monoids and
functors from a finite lattice to finite abelian groups.

Thanks to this equivalence of categories, we are also able to extend duality
of abelian groups to reduced monoids. This will turn out to be a nice tool,
giving us another easy criterion to decide if a monoid ring is reduced and, if
this is not the case, to compute its reduction.

The computation of the discriminant of the monoid ring comes directly
from the description of the monoid M as a lattice of finite abelian groups
and it is easily seen to be a slight generalization of the finite abelian group
case.

Moreover, since C[M], for M a finite commutative monoid, is an artinian
ring, it admits a decomposition into a product of artinian local rings. To un-
derline that the monoid (Z/nZ)° has some particular property, we compute
its components and we deduce that C[(Z/nZ)°] is a complete intersection
ring.



In the last section, we deal with units in a group ring. If A is a finite
abelian group, the units of the ring Z[A], considered as a Z-module, can be
decomposed in the torsion part (—1) x A times a free abelian group.

If A is a finite abelian group of exponent n, the ring Z[A] and also the
unit group Z[A]* are endowed with an action of the monoid (Z/nZ)° and
therefore they have a structure of Z[(Z/nZ)°]-modules. As we said above,
describing the structure of the whole group turns out not to be easy, so what
one tries to do is to construct and understand the structure of subgroups of
finite index in the whole group of units.

The first step in this process is to restrict to cyclic subgroups C' C A.
The second is to restrict to units that have a standard form and can be "con-
structed" in a easy way. This was done first by Bass, in |2|, where he gave a
way to construct a set of multiplicative independent units of full rank. Af-
terwards Hoechsmann and Ritter, in [19], gave a way to build, for p-groups,
a set of full rank of multiplicatively independent units, called constructible,
in such a way that the index was much smaller than the one obtained by
Bass; two years later Hoechsmann improved his construction and extended
it to every finite abelian group [10].

What we want to underline is the role that the Z[(Z/nZ)°]-module struc-
ture plays. This was already noticed by Hoechsmann and Ritter in their
paper mentioned above, but we try to do it in a more systematic way, chang-
ing a little bit the point of view. The main result we obtain in this section
is the following: suppose A is cyclic of order n and (Z/nZ)°/(—1) is cyclic,
then the above mentioned group of constructible units is a cyclic Z[(Z/nZ)°]-
submodule of Z[A]*.



2 Monoids

2.1 Preliminaries and basic definitions

In this first chapter we deal with finite commutative monoids and their inte-
gral monoid rings (from now on we will skip the adjective integral: all monoid
rings have to be considered over Z, if there is no further specification). The
latter are just a generalization of integral group rings of finite abelian groups,
which are all reduced, while monoid rings in general are not; so, we want a
criterion that tells us which monoid rings are reduced and which ones are
not: this will be the object of the first main theorem.

With the second theorem we describe a way to compute the reduction of
a monoid ring, which we will find out to be also a monoid ring, where the
monoid lives in the subcategory of the so-called reduced monoids. On this
category there is also a duality given by characters and, with this tool, we
can find another criterion for Z[M] to be reduced and we can compute the
reduced monoid that gives the reduction of the monoid ring. Furthermore,
we will give a description of the category of reduced monoids in terms of
lattices of abelian groups; this will also explain the duality we mentioned
above in terms of the duality of abelian groups.

Definition 2.1. A monoid is a triple (M, %, e), where M is a set, * : M X
M — M is an associative binary operation with a unit element e.

A monoid morphism f : M — M’ between two monoids (M, %, e) and
(M« €') is a map from M to M’ such that

o f(myxmy) = f(my)«" f(my) for any two elements mq, my of M.

o f(e)=¢.
A monoid (M, x, e) is said to be commutative if my x my = mgy * my for any
two elements mq, mo of M.

We say that an element, that will be denoted by 0, of a monoid (M, %, e)
is a zero for M if m %0 = 0% m = 0 for every m € M.

From now on we will drop the star to indicate the product in the monoid
(M, x, e), defining myms to be mq x my for every my, my € M.

Remark 2.2. If there is another element ¢/ € M that satisfies the axiom
of the unit element e of M, i.e. ¢m = me’ = m for every m € M, then
e = ee/ = €. Moreover if an element m € M admits an inverse, i.e. an
element m’ such that mm’ = m’m = e, then this element is unique; indeed if
also m” is an inverse of m, we have that m’ = m’e = m'mm” = em” = m".
We will indicate with M* the set of invertible elements of a monoid M.

A group is just a monoid such that every element admits an inverse.
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From now on we will restrict to commutative monoids, so, also if we forget
the adjective, the monoid must be considered commutative.

Example 2.3. e Given aring R, considering only its multiplicative struc-
ture we obtain a monoid which we will indicate with the symbol R°

e A simple class of monoids is the one made by cyclic monoids, i.e. gen-
erated by one element. A cyclic monoid can be infinite, and therefore
isomorphic to the monoid coming from the additive structure of natu-
ral numbers with the zero included, or it can be finite and in this case
it must be of the form (z | 2™ = 2™), where n; > ny are distinct
non-negative integers; this means that M = {1,z,...,2™ '} with the
multiplication defined by addition of the exponents, where we consider
ny = No.

We can represent a finite cyclic monoid with the following p-shaped
picture, where the arrows stand for multiplication by .

no N $n2+1

1 T - ... - T

L_|

Definition 2.4. If R is a commutative ring and M is a monoid we de-
fine the monoid ring R[M] to be the free R-module with basis M. Then
R[M] is naturally a ring with addition defined by addition in the module.
Multiplication between two elements ), _,, a;l and > _, b,m is defined by

(X ienr @)D merr bmm) = 321 near(@ibm)lm, that is extending by linearity
the product of the monoid.

Example 2.5. For a finite cyclic monoid M = (x | ™ = z™?), its monoid
ring over a given commutative ring R is obviously the polynomial ring R[z]/(z™ —
"),

Definition 2.6. An element r of a commutative ring R is said to be nilpotent
if there exists a positive integer n such that r™ = 0.

A commutative ring R is called reduced if it has no non-zero nilpotent
elements.

A monoid M is called reduced if its monoid ring Z[M] is reduced.

Example 2.7. For a finite cyclic monoid M = (x | 2™ = 2"?), its integral
monoid ring Z[z|/(x™ — 2"2) is reduced if and only if the smallest between
ny and ne is strictly less than 2. In fact, supposing n; > no, we have the
decomposition

Zlx]/(a" — ") = L]/ (2") x Zla]/(z™ 7" = 1)



by the Chinese remainder theorem. The only nilpotent element of the second
component of the right hand side is 0, since a group ring is reduced, while
Z[z]/(x2™*) has a non trivial nilpotent element if and only if ny > 2.

In the representation with the p-shaped diagram, n, < 2 means that the
tail of the p has length at most 1.

2.2 Reduced monoid rings

In this section we want to give a criterion to decide whether a monoid ring
is already reduced and, if it is not, a way to compute its reduction.

Lemma 2.8. Let M and M’ be finite commutative monoids

e if there is a surjective morphism f : M — M' and M is reduced, then
also M’ is reduced;

e if M and M’ are reduced, then also M x M’ is reduced.
Proof

e First we claim that Z[M] is reduced if and only if Q[M] is. Obvi-
ously, if Z[M] has a non trivial nilpotent element, then the same el-
ement is a non trivial nilpotent also in Q[M]. For the other implica-
tion, take > . amm, with a, = b, /c, € Q, to be nilpotent; then
(ILnens €m) 2 omens @mm is a nilpotent element of Z[M].

Now we want to prove that C[M] = C® Q[M] is reduced if and only if
Q[M] is. As above, a non trivial nilpotent in Q[M] is also a non trivial
nilpotent in C[M]. To prove the converse implication, we notice that
Q[M] is an artinian ring and therefore it is a finite direct product of
local artinian rings. If Q[M] is reduced it decomposes in a product of

number fields and, tensoring with C, we just get a number of copies of
C; therefore C[M] is reduced.

Now, supposing C[M] to be reduced, we have that C[M] = C x ... x C;
we consider the map C[M]| — C[M’] induced by f. Every quotient
C-algebra of C x ... x C is again of the form C x ... x C; this says that
C[M'] is also reduced and going back with the implications above we
eventually obtain that Z[M’] is reduced.

e We just saw that M reduced is equivalent to C[M] reduced. It is
straightforward to see that the map

C[M] ®c C[M'] — C[M x M']
m & m/ = (m,m’)



is an isomorphism of C-algebras. From this we can conclude that M x
M’ is reduced, since the tensor product of factors of the form Cx...x C
is again of that form.

Theorem 2.9. Let M be a finite commutative monoid; then the following
are equivalent:

1. Z[M] is reduced;

2. for every m € M exists an n € Nyy such that m™ = m.

Proof Suppose that for every m € M exists an n € Ny such that m"” =
m; this means that the monoid ring Z[(m)] & Z[z]/ (2™ — z) 2 Z x Z[C,,_1],
where (m) is the monoid generated by m and C,,_; is the cyclic group with
n — 1 elements, is reduced.

Observing that M is a homomorphic image of the monoid [], ., (m),
thanks to the previous lemma we can conclude that Z[M] is reduced.

For the reverse implication, suppose that there exist an m € M such that
m'™ # m for any integer n > 1; since the monoid is finite there must exist two
distinct integers n; and ns bigger or equal than two such that m™ = m"2.
This means that the monoid ring Z[M] contains as a subring Z[(m)], which
by example 2.7 is not reduced, and therefore it is not reduced itself.

Now that we have an easy criterion to compute whether a finite monoid
is reduced, we can construct, starting from a general finite monoid M, a
quotient monoid that realizes the reduction of the monoid ring Z[M]. First
of all, let us make a remark to justify what we are going to do.

Remark 2.10. Let M be a commutative monoid. If m; and my are elements
in M that have the same eventual powers, i.e. there exists an 7 such that for
every n > n, m} = mj, then the element m; — my of the associated monoid
ring is nilpotent. In fact we have that (m; — my)®™ = 0; this comes from
the fact that every monomial in the expansion of (m; — m,)?" will have the
exponent of my or the one of my to be at least n; therefore all the monomials
are equal and summing over all the coefficients of the binomial expansion we
will get 0.

Therefore, if we want to avoid nontrival nilpotents just by passing to a
quotient monoid, a necessary condition that we have to satisfy is that pairs
of elements as in the previous remark need to be identified. This turns out
to be enough.

Theorem 2.11. Let M be a finite commutative monoid. Defining on M the
equivalence relation my ~ mo if my and mo have the same eventual powers,
then M/ ~ is a quotient monoid and Z[M/ ~| is the reduction of Z[M].
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Proof First we need to notice that ~ is really an equivalence relation and
that M/ ~ is still a monoid since the equivalence relation is compatible with
the monoid operation. We need to verify that, if m; ~ msy and ms ~ my, then
myms ~ Mmamy; suppose my = my for every n > ny9 and mjs = mj for every
n > T34, then we have that (myms)"™ = (mamy)" for every n > max{mia, T34}

Since M is a finite monoid, we know that for every m € M there must ex-
ist n1, Ny € Z>( such that ny > ny and m™ = m"™2. We note that multiplying
by m™ "2 acts as the identity on the elements m’, for ny < i < ny; therefore,
if we choose n' and k such that n’ = 1+ k(n; —ny) and ny < n’ < ng, we get
that

(mn’)nz — mn2 (mnl—nz)knz — m"2.

We then have that m ~ m™ since multiplication by m™ acts just as multipli-
cation by m on the elements m?, for ny < i < n, and therefore we can take
n = ny. Now, since the criterion given in the previous theorem is satisfied,
we get that Z[M/ ~]| is reduced.

To prove that Z[M/ ~] is actually the reduction of Z[M], it is enough to
prove that the kernel of the quotient map is nilpotent and this comes directly
from the previous remark.

Example 2.12. From what we just proved, we can obtain again that a finite
cyclic monoid M = (z | 2™ = 2"), where 0 < ny < ny, is reduced if and
only if no < 1. If this is not the case, i.e. 2 < no, we can use our last theorem
to compute the reduction of the ring: applying the method described there
we see that we will identify x"2~% with 2™ ~¢, for i = 1, ...,ns — 1. The result
of this will be the monoid (z | "1 = z), whose monoid ring will give us
the reduction of the starting one.

Graphically, what we do is just "rolling up" the tail of the p around its
cycle until the tail has length one.

Example 2.13. Let us consider now the monoid M = (Z/nZ)°. We want
to show that its monoid ring is reduced if and only if n is square-free.

If n = p is prime then (Z/pZ)° = F} is reduced since every element of
the monoid satisfy the condition given in theorem 2.9. Suppose now that
n=pi-.. pg then M = (Z/nZ)° is equal to Hz’:l,...,k [F) and therefore, by
the second part of lemma 2.8, is reduced. If n is not square-free, then the
monoid ring is obviously non reduced. Indeed, let n = d?e with d > 1; then
de is a non trivial nilpotent element.

2.3 Lattices

Proceeding towards the structure theorem for finite commutative reduced
monoids, we need to introduce and discuss the concept of lattice. We will



define it in three different ways and prove that the three definitions are
equivalent. This will be helpful when we want to pass from one context to
another.

Definition 2.14. Let (5, <) be a partially ordered set. The greatest lower
bound of a subset S’ C S is an element 5 € S such that s < s for every
s' € 5" and s < S for every element s € S such that s < s’ for every s’ € 5.

It is a semilattice if for all elements s1, s € S, the greatest lower bound of
the set {s1, s2} exists. The greatest lower bound of the set {s, s2} is called
the meet of s; and s, denoted by s; A so.

A semilattice is bounded if it has a greatest element, which will be called
top.

Definition 2.15. A algebraic semilattice is an algebraic structure (S, A)
consisting of a set S with the binary operation A, called meet, such that for
all members x,y, and z of S, the following identities hold:

e Associativity: z A (y Az) = (x Ay) A z;
e Commutativity: Ay =y A z;
e Idempotency: z A x = x.

An algebraic semilattice (S,A) is bounded if S includes the distinguished
element 1 such that for all z in S, x A 1 = x.

Remark 2.16. Bounded algebraic semilattices are exactly the commutative
monoids in which every element is idempotent.

Example 2.17. To give an example of semilattice that will be used later,
let M be any commutative monoid; we define I(M) to be the submonoid
of M consisting of all its idempotent elements. It is clearly an idempotent
commutative monoid and therefore it can be seen as a bounded algebraic
semilattice.

As one can suspect, the two definitions given above are equivalent.

Proposition 2.18. A semilattice (S, <) gives rise to a binary operation N<
such that (S, \<) is an algebraic semilattice. Conversely, an algebraic semi-
lattice (S, N\) gives rise to a binary relation <, that partially orders S.

Moreover, the relation <, introduced in this way defines a partial ordering
such that A = A<, . Conversely, the order induced by the algebraically defined
semilattice (S, A<) coincides with that induced by <.

9



Proof Let (5, <) be a semilattice; for every sy, s5 € S let s; A< 5 be the
greatest lower bound of s; and s;. We have that:

o 51 A< (82 A< s3) = (51 A< s2) A< s3 for every sy, so and s3 in S, because
both terms are equal to the greatest lower bound of the set {sy, 2, s3};

® 51 A< Sy = Sy A< 51 for every s; and sy in S, because both terms are
equal to the greatest lower bound of the set {s1, s2};

e s A< s = s for every s € S, since the greatest lower bound of the set
{s} is s itself.

This proves that a semilattice gives rise to an algebraic semilattice.
Now let (S, A) be an algebraic semilattice and let us define x <, y <=
x =x Ay. We show that (5, <,) is a semilattice:

e r <, z since x = z A x because of the idempotency of (S, A);

e v <,y and y <, r implies x = y since the meet operation is commu-
tative;

e v <,y and y <, zimplies z <, z since the meet operation is associa-
tive;

e for any pair of elements x,y € S, their greatest lower bound is z A y
since t Ay = (x Ay) Az and x Ay = (z Ay) Ay; moreover, if z € S
is such that z <, x and z <, y we get that z <, (z A y) since we
can deduce z = z A (z Ay) from z = z Ax and z = z A y using the
associativity of the meet operation.

Passing from a semilattice to an algebraic semilattice and from an algebraic
semilattice to a semilattice in the way described above are inverse operations.
In fact, if we start from a semilattice, we have that s; < sy <= s =
51 N\< Sy <= 51 <A_ So; conversely, if we start from an algebraic semilattice
(S, N\), we get that 2 Ay = x A<, y since 2 Ay is the greatest lower bound of
x and y in the partial order <.

Remark 2.19. Obviously, also the boundedness conditions in semilattices
and algebraic semilattices are equivalent. In fact, let (S, <) be a bounded
semilattice with 5 as top; then, for any other element s € S we have that
s <3 = sA<3S=s, proving that (S, A<) is a bounded algebraic semilattice
with 1 =35.

Conversely, let (S, A) be a bounded algebraic semilattice containing an
element 1 such that A1 = z for every x € S; this means exactly that x <, 1
for every x € S, i.e. (S,<,) is a bounded semilattice with 1 as top.

10



At this point we can avoid the use of the adjective algebraic and we will
talk only of semilattice, using without difference one of the two definitions
given above.

To give a description of the category of bounded semilattices, we need
to describe what the morphisms are. Since a bounded semilattice is just an
idempotent commutative monoid, the morphisms are the one of the category
of monoids; this means that a morphism f : S — S’, between two bounded
semilattices (S, A, 1) and (S’, A, 1’), needs to respect the following axioms:

o flxny)=[flx) N f(y);
o f(1)=1".

Now we want to interpret everything we said above about semilattices
in term of categories. Before stating the result, we need to define a new
category.

Definition 2.20. We define BS category to be a small category with set of
objects S such that:

e for every pair of objects s; and sy in S, fHom(sy, s9) < 1;

e if there exist morphisms f € Hom(sy, s2) and g € Hom(sg, s1), then
51 = S2;

e it admits finite coproducts;
e it has an initial object.

Moreover we define the category of B.S categories the category that has as
objects the class of BS categories and for morphisms functors between BS
categories that respect the coproduct and send the initial object to the initial
object.

Proposition 2.21. There is an equivalence of categories between the category
of bounded semilattices and the category of BS' categories.

Proof Given a bounded semilattice (S, <, 1) where < is the partial order
on S with 1 as top, we can interpret it as a BS category taking S as the set
of objects and setting fHom (s, so) = 1 if and only if s5 < s1; the meet of the
semilattice satisfy the property of the coproduct and 1 give rise to an initial
object. The antisymmetry of < assures that there are no other isomorphisms
except the identities.

If we are given a BS category instead, we can order its set of objects by
the relation s; < sy <= fHom(sy,s1) = 1. The meet of two elements will

11



be their coproduct and the top of the semilattice will be the initial object of
the category.

In this setting we see that a morphism of bounded semilattices corre-
spond to a morphism of B.S categories and given a functor between two BS
categories we can naturally get a morphism between the associated bounded
semilattices.

There is almost no need to verify that with these correspondences we have
an equivalence of categories, since we are just calling things in two different
languages and the dictionary that we gave allows us to pass from one to the
other really easily.

Definition 2.22. A [attice is a semilattice (S, <) such that for every pair
of elements s; and sq, the set {s1, so} admits a least upper bound, that will
be called the join of s; and sy and denoted by s; V so. A bounded lattice
is a bounded semilattice that is a lattice and has a bottom, i.e. a smallest
element, that will be denoted by 0.

Example 2.23. e For any set S, the collection of all subsets of S can
be ordered via subset inclusion to obtain a lattice bounded by S' itself
and the null set. Set intersection and union interpret meet and join,
respectively.

e For any group G, the collection of all subgroups of G can be ordered via
inclusion to obtain a lattice bounded by G itself and the trivial group.
In this lattice, the join of two subgroups is the subgroup generated by
their union, and the meet of two subgroups is their intersection.

e Given a topological space, the collection of its open subsets is a bounded
lattice with intersection as meet and union as join, the whole set as top
and the empty set as bottom.

Remark 2.24. We want to observe that the lattice made by open sets of a
topological space is distributive, i.e. x A (yV z) = (x Ay) V (z A 2) for every
x,y and z elements of the lattice.

Not every lattice has this property; for example, if we consider the finite
reduced idempotent commutative monoid (z,y,z | 2° = z,y? = y,2% =
z,xy = xz = yz), that is shown as a lattice in the following diagram, we
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have that t A (yVz) =z #axy=(x Ay)V (z A 2)

A morphism between two lattices is just a morphism of semilattices that
respects the join, too.

Remark 2.25. We need to note that usually the definition of morphism
between two bounded lattices requires also that the 0, i.e. the bottom, is
preserved. We do not do this since we are considering lattices as particular
objects in the category of monoids and so we use the morphisms in this
category.

We saw above that an idempotent commutative monoid is a bounded
semilattice. Now we want to know which conditions the monoid must satisfy
to be a lattice and a bounded lattice.

Remark 2.26. To get a bottom, we need an element m such that m < m
for every m € M; this is equivalent of asking for an element m such that
mm = m, that is a 0 for the monoid.

Therefore if an idempotent commutative monoid M is a lattice, then it
is bounded if and only if it has a 0.

Proposition 2.27. Let M be an idempotent commutative monoid. Then M
is a lattice if and only if the set S(z,y) = {a | z < a,y < a} has a greatest
lower bound for every pair of elements x,y € M.

Proof If a least upper bound of two elements x and y, which we denote
by x V y, exists, then it belongs to the set S(x,y) and it is the greatest lower
bound of S(x,y). In fact x < a and y < a imply that zVy < a and if z < a
for every a € S(x,y) then z < x V y since x Vy € S(z,y).

Conversely, suppose that the greatest lower bound of the set S(z,y),
which we will indicate by A S(x,y), exists for every pair z,y of elements in
M. Then we can define z V y to be A S(z,y); in fact:

e v < qa for every a € S(z,y) implies that x < A S(x,y). The same for
Y;
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e © < zand y < z implies that A S(x,y) < z since z € S(x,y).

Remark 2.28. We just want to show that the above condition for M to be a
lattice does not imply the existence of a greatest lower bound for any subset
S of M. Consider the following partially ordered set. Let M = {x' | i €
N} U{y’ | j € N} with the total order generated by the following relations:

o 1t <1 = i > iy
o Yyt <y = ji <o
e yJ < ' for any i and j.
We can represent this totally ordered set in the following way:
>t >r> >t > >y > >y >yt >

Then every pair of elements has a meet and a join, 2° is the top, y° is the
bottom, but the subset {x’ | i € N} does not have a greatest lower bound.

If we want to translate the concept of lattice into the language of cate-
gories we can just note that, using the dictionary explained above, the axioms
of the join translates into the ones of the product and vice versa and the no-
tion of bottom correspond exactly to the one of terminal object.

If moreover we assume that a semilattice is finite, i.e. its defining set is
finite, then automatically it admits join, top and bottom and therefore it is
in fact a bounded lattice.

Proposition 2.29. Every finite semilattice is a bounded lattice.

Proof Let (S5, <) be a finite semilattice. For every pair x and y of ele-
ments of the semilattice the set S(z,y) is finite and therefore, by induction, it
admits a greatest lower bound; therefore, by proposition 2.27, S is a lattice.
It is bounded since we can take the top and the bottom to be respectively
A S and \/ S.

To conclude this section we need to stress a fact that we will use later.
We show that in the category of finite lattices we have a duality; this is given
by the controvariant functor °? that sends a lattice L to its opposite lattice
L°P and a morphism of lattices f : L; — Lo to the morphism of lattices

fop . Lgp N Lflm

o= Npwy®

Proposition 2.30. The functor °P is an involution.
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The first thing that we need to check is that the functor ° is well defined,
and to do this we need to verify that, if f : L; — Lo is a morphism of lattice,
then the morphism [ : L¥ — Li¥ defined above is a morphism of lattices,
too.

Doing this is equivalent to show that the map f*: Ly — L, defined as
f°P, preserves the join and the bottom. For the latter is enough to notice that
the image of the 0 of Lo is the meet of all the elements of L; and therefore
it is the 0 of L;.

Suppose now that we have two elements y and ' of Ly that maps through
f*respectively tos = A{l e L, | fl>y)tandtot = A{l e L, | f(l > )}
We can easily observe that {{ € L, | f(l > y)} ={l € Ly | | > s} and
similarly for ¥’ and ¢. From this we can deduce the implications

f)>yvy <= f()>yand f(I) >y < [ >sand >t < [ > sVi.

that say that f* preserves the join.

To prove that our functor is an involution, we need to prove that A{y €
Ly | Nla € Ly | f(a) > y} > 2} = f(x). First we notice that f(z) itself
belongs to the set since A{a € Ly | f(a) > f(z)} = z; moreover, there
cannot be an element < f(x) because this would contradict the condition
that defines our set. This proves that applying the functor ¢ two times we
get the identity functor and therefore the functor itself is an involution.

2.4 Structure theorem for finite commutative reduced
monoids

One question that can arise when working with monoids is how to construct
them; one way to do it is to start with easy monoids, for example cyclic ones
or also groups, and enlarge them.

For example, starting with a monoid M, we can add to it a zero, just

considering the new monoid M J {0}, where obviously the operation in M

remains the same and m0 = 0m = 0 for every m € M | {0}.

Similarly, starting with a monoid M, we can add to it a different iden-
tity, considering the new monoid {1} |J M, where the operation is defined
extending the operation of the monoid M with 1m = ml = m for every
m € {1} U M. It is clear that in this way the identity of M is no more the
identity of the new monoid, since it does not stabilize 1.

We can generalize the constructions given above in the following way:
let (M, %) and (M’ ,«") be two monoids and f : M — M’ a morphism of

monoids. We can obtain a new monoid endowing the set M |J M’ with the
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multiplicative operation that coincide with x on M x M, with ¥ on M’ x M’
and is defined by f(m)« m/ for (m,m’') € M x M'.

This construction can be further generalized to lattices of monoids, and
the main result we will obtain in this section is that constructing monoids
in this way starting from finite abelian groups allows us to obtain exactly all
the finite reduced commutative monoids.

In fact, what we will do is to proceed in the opposite direction; given a
finite reduced commutative monoid we will construct a lattice and a family
of abelian groups, indexed by the elements of the lattice, from which we can
reconstruct the original monoid.

Lemma 2.31. Let M be a finite commutative monoid; then I(M) = {e €
M | €? = e}, the set of idempotents of M, is a bounded lattice.

Proof As we said in the previous section, (M) is a bounded semilattice.
Since it is finite, by proposition 2.29, it is also a bounded lattice with 1 as
top and [[.c; € as bottom.

Example 2.32. If M = (z | 2™ = 2"?), where 0 < ny < ny, is a finite cyclic
monoid, then I(M) is equal to {1, 2"}, where k is the multiple of n; — ngy
between ny and n,. The order relation is 2% < 1 since 2% = 1-2*. If n, =0,
then £ = 0 and 1 is the only idempotent.

If M is a reduced monoid we can obtain the submonoid I(M) also as a
quotient monoid.

Definition 2.33. Let M a finite commutative monoid; we define the princi-
pal ideal monoid M to be the set {mM | m € M} with the operation induced
from that of M.

Proposition 2.34. Let M be a finite reduced commutative monoid. Then
the canonical map from I[(M) to M is an isomorphism.

Proof What we have to show is just that every fiber of the canonical
map M — M contains exactly one idempotent e € I(M).

Since M is reduced we know that for every m € M exists an n € Ny,
such that m™ = m; this tells us that m”~! is an idempotent element that
belongs to the same fiber of m.

Suppose now that we have two different idempotents e; and e; in the same
fiber; this means that e; = mjey and ey = mge; for some m; and moy in M.
From this we can deduce that e; = mie; = myes = ejey = maet = mye; = es.

Therefore in every fiber of the canonical map M — M we have exactly one
idempotent and this means that M is isomorphic to the lattice I(M).
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Remark 2.35. One can try to consider M also for a non reduced monoid
M, but it happens that it is not always a lattice.

Consider in fact the monoid M = (z,y,z | 23 = 22, y> = y?, 2% = 2% 22 =
yz); we obtain that both xy and zz = yz are < x and y, but an element < x
and < y that is bigger than both xy and xz = yz does not exist. This means
that we can not define the meet of 2 and y and therefore M can not be a
lattice.

The diagram below depicts the part of the given monoid that describes
the impossibility of defining a greatest lower bound of the set {x,y}

NAY

Y
Yy Tz =yz

The one pointed out above in proposition 2.34 is not the only property
characterizing reduced monoids; if we restrict to them in fact, we also have
that every fiber of the canonical map M — M turns out to be a group.

Proposition 2.36. Let M be a finite reduced commutative monoid, then
every fiber of the map M — M s a group.

Before proving our proposition we need to underline that we cannot ex-
pect the fibers to be groups with the same identity as the monoid. Since the
fibers are disjoint, only one of them, that turns out to be M*, will have the
identity of the monoid as identity. All the other identities will be provided
by the idempotents of M.

Proof We just showed that every fiber can be identified with the only
idempotent it contains; therefore we can choose an idempotent e and show
that its fiber is a group with e as identity.

e Multiplicativity: eM = m;M and eM = myM imply that m;moM =
e?M = eM;

e Identity element: eM = mM implies that m = em; from this it follows
that em = e*m = em = m;

e Inverse: eM = mM implies that e = mm’ and this says that em’ is the
inverse of m.
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For finite reduced commutative monoids, we can define the groups coming
as fibers just by saying that they are the biggest multiplicative closed subsets
that are groups with the idempotents as identity elements; this is done as
follows.

Definition 2.37. Let ¢ € I(M); we define M, = {m € M | m = em}
the biggest multiplicative closed subset of M with e as identity element,
N.={m e M | 3m’ € M such that mm' = e} and G, = M. N N..

Then we have that the fiber of e is equal to G.. To prove this it is
enough to show that m € G, <= mM = eM. If mM = eM, then
m = em = em = e>m = em = m says that m € M, and e = mm/ tells us
that m € N, so m € G.. On the converse, if m € G, then m = em and
e = mm’' mean that mM = eM.

Remark 2.38. We can define G, in the same way for an idempotent e also
for a non reduced monoid. Also in this case G, turns out to be a group and
all the G.’s are still disjoint, but they do not cover all the monoid.

Using the methods that we just described we obtain a way to construct
the reduction of a finite commutative monoid M as a submonoid.

Proposition 2.39. Let M be a finite commutative monoid. Then the sub-
monoid M, consisting of the elements in the groups G., where e € I(M), is
isomorphic to the reduced monoid M/ ~ that gives the reduction of M, via
the canonical morphism M, — M — M/ ~.

Proof We need to prove two things:

e every element of M is equivalent to an element of M, for the relation
~ that defines the reduction of a monoid;

e M. is reduced.

To prove the first, let m € M; since M is finite, there exist n; and no
distinct non-negative integers such that m™ = m”"2; this implies that mF is
idempotent, where n, < k < n; and k = 0 mod n; — ny, and that (m*+1)" =
m™ for every n > k, i.e. m ~ m**!, where clearly m**' € G, .

For the second point, let m € G, ; since G.,, has finite order, then there
exists a positive integer k such that m* = e,,; this implies that m**! = m.

Therefore the criterion given in theorem 2.9 is satisfied and M, is reduced.

Corollary 2.40. Let M be aim‘te commutative monoid; then, if we consider
the canonical map f: M — M, we can recover the reduction Myeq of M just
by taking the inverse image through f of the idempotents of M.
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Proof It is enough to notice that an element of M is idempotent if and
only if its fiber under the map M — M contains an idempotent. Indeed
if e € I(M), then (eM)?> = ¢*M = eM is idempotent and, conversely, if
(mM)? = m>M = mM, for m € M, then m*M = mM for every positive
integer k. If we choose k to be the multiple of n; — ny, where m"™ = m"2,
between n; and ny, then m* is an idempotent in the same fiber of M.

Therefore the inverse image of the idempotents of M is exactly the sub-
monoid of M made by the groups G, for e € I(M).

Corollary 2.41. The monoid M, described above is the submonoid of M
made by the elements m € M such that m*M = mM.

Proof We just proved that M, = ]_[eel(M) G.. We saw also that G, =
{m € M | mM = eM} and therefore M, is made by the elements m € M
such that mM = eM for some idempotent e € M; this is equivalent to say
m?M = mM: indeed, if mM = eM, then m?>M = e>M = eM = mM; on
the other hand, if m?M = mM, then m"M = mM for every positive n, and
we know that some power of m is idempotent since M is finite.

Example 2.42. Let M = (z | 2™ = 2"), where 0 < ny < ny, be a finite
cyclic monoid. If ny = 0 then 1 is the only idempotent and M is already a
group. If ny > 0, then there are two idempotents, 1 and z*, where k is the
multiple of n; — ny between ny and ny; then Gy = {1} and G, is the cyclic
group {z" | ny <n < n;} generated by z**+.

The union of the two groups is the whole M if and only if ny < 2.

Remark 2.43. Let M be a finite commutative monoid and e, e’ € [(M).
First we note that ¢ € M, <= e € Ng. In fact ¢ € M, implies that
¢’e = €' and this means that e € N.; on the contrary, if e € N/, then there
exists an m € M such that em = €/, and this implies, using the idempotency
of e, that ¢ = em = e*m = ee, that is €/ € M,.

These equivalent conditions are also equivalent to say that ¢/ < e in the
order given considering (M) as a partial ordered set.

According to proposition 2.21, we can interpret this also in the category
theory language: € < e means that we have a unique morphism from e to €.
With this map we associate a group homomorphism |, : G, — G, defined
by multiplication by ¢’

We can summarize what we did above in the following theorem. Before
stating this, it is better to give a further definition.

Definition 2.44. A lattice of abelian groups is a pair (L, F') where L is a
lattice and F'is a functor from L, thought as a category, to abelian groups.
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A morphism between two lattices of abelian groups (L, F') — (L', F') is
a pair (G,«a) where G : L — L' is a morphism of lattices and « is a natural
transformation between the functors F' and F'G.

Theorem 2.45. The category of finite reduced commutative monoid is equiv-
alent to the category of finite lattices of finite abelian groups.

Proof If we are given a finite reduced monoid we can associate to it the
lattice of abelian groups (/(M),G), where G is the functor from the finite
lattice I(M) to finite abelian groups that sends e € I(M) to the abelian
group G, and a morphism ¢’ < e to the morphism -|. : G, — G defined by
multiplication by e’

If we have a finite lattice of finite abelian groups (L, F'), where F' is a
functor that to every element i € L associates a finite abelian group F'(7)
and to a morphism ¢ < j a morphism -|; : F/(j) — F(i), we can construct the
following finite reduced monoid: let M = [[.., F (i) and for m € F(i) and
m' € F(j) we can define their product to be mm’ = m|;x;m’|;n; where the
product is computed in F'(iAj); then M is a monoid with identity the identity
of the group corresponding to the initial object of L. It is clearly finite and
it is reduced since for every element m € F(i) we have that mF®O+1 = m
and therefore the criterion of theorem 2.9 is satisfied.

These two maps are one the inverse of the other. Indeed, if we are given a
finite lattice of finite abelian groups (L, F') where F' is a functor that to every
element ¢ € L associates a finite abelian group F'(i) and to a morphism i < j
a morphism -|; : F(j) — F(i), we have that the lattice of the idempotents
of the corresponding monoid M = [],., F (i) is equal to L and the functor
from L to finite abelian groups that we obtain in the way described above is
just the starting one.

If we start from a monoid M, we need to check that the operation defined
on the monoid HeeI(M) G, is the same given on M. Let m € G, and m’' € G;
then m = em and m' = ¢/’m’ and their product is mm’ = e¢/mm’; we have
that the map -|oner : Ge — Geper is just multiplication by €’ and the map
“lener 1 Ger — Geper is given by multiplication by e. Therefore

Mepe™|eper = e€'mm’ = mm’.

To show that there is an equivalence of categories we must show that the
behavior is good also at the level of morphisms.

If f: M; — M, is a morphism of finite reduced commutative monoids
then we can obtain a morphism of lattices f : I(M;) — I(M,) just by
restricting to I(M;), and f also induces morphisms f. : G. — Gy by
restricting to G, giving the data of the required natural transformation.
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On the converse, let (Ly, F}), where F} is a functor from the finite bounded
lattice L, to finite abelian groups sending i € Ly to Fj(i) and a morphism
i < j to a morphism -|; : F1(j) — Fi(i), and (Lg, Fy), where F is a functor
from the finite bounded lattice L, to finite abelian groups sending i € Ly to
F5(i) and a morphism ¢ < j to a morphism -|; : F3(j) — Fy(i), two finite
lattices of finite abelian groups. Consider now a morphism of lattices of
abelian groups (g, «) where g : L1 — Ly is a morphism of lattices and « is
a natural transformation between F; and Fhg that gives maps «; : Fi(i) —
F5(g(i)); we have to show that the map that sends m € F(i) to a;(m) is
a multiplicative map from [[,., Fi(i) to [[,c;, F2(7). Let m € Fi(i) and
m’ € Fi(j); what is to prove is that

aing(mlingm/|ing) = ai(m)]g(ing()s (M) g(iyrg(s)-

This is true since o;,; is multiplicative and the commutativity a;a;(m|ir;) =
(M) 44y ng() 18 given by the definition of natural transformation.

To conclude the proof we want to see that also at level of morphism the
composition of the two given functors is the identity.

Let f : M; — My a morphism of finite reduced commutative monoids.
The composition of the two functors will give the map

(My L M) = (fe : Ge = G )eeran) H G. — H G.)

The last map will map an element m € M belonging to the group G, to the
element f.(m), where f. is the restriction of f to G..

Conversely, if we start with a morphism of lattices of abelian groups as
above, and we compose with our two functors, we will get the starting mor-
phism since what we do is just taking the restrictions to the groups Fj(7)
after combining them to construct the monoid structure.

The structure theorem for finite reduced commutative monoids gives us
also a nice description of the monoid ring of such a monoid.

Proposition 2.46. Let M be a finite reduced commutative monoid associ-
ated to the lattice of abelian groups (L, F). Then the monoid ring Z[M)| is
isomorphic to the product of group rings [[,., Z[F(1)).

Proof To prove this theorem we want to show that the map

¢ ZIM] = [l ZIF ()]

a = (a;)

)
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where a € F(7) and a; = al; if i <7, and 0 otherwise, is an isomorphism of
rings.

First we want to prove that ¢ is an homomorphism of rings. Let a € F'(7)
with image v(a) = (a;);er, with a; = a|; if i <7 and 0 otherwise, and b € F(3)
with image ¢(b) = (b;);cr defined in the same way. We have to show that
(a;)(b;) = ((ab);) = p(ab), where it is clear that ab € Gzp;. We have to prove
the equality only in the case ¢+ <7 A 7, since otherwise both terms are equal
to zero. So we are left to show that al|;b|; = (ab)|; for i <7 A 7.

Our situation is described by the following diagram

F()

we have that
(ab)|; = CL|1/\§ ib|i/\j i

where the first equality is true since -|; is an morphism of groups and the
second because the triangles of the diagram above commute. This shows
that ¢ is an homomorphism of rings.

Now we need to prove that ¢ is an isomorphism. If we refine the order of
the lattice L to a total order, we can represent ¢ via a matrix of the form

Id 0
* Id
This is a lower triangular matrix that has all 1 on the diagonal; this means

that the map ¢ is invertible and therefore an isomorphism.

Corollary 2.47. Let M a finite reduced commutative monoid associated to
the lattice of abelian groups (L, F'). Then the absolute value of the discrimi-
nant of the monoid ring Z[M) over Z is equal to [[,., (F(i))*'®.

Proof The proof is made by two not so difficult observations:

e the discriminant of a product is the product of the discriminants ([22],
pag.621);
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e the absolute value of the discriminant of an integral group ring Z[G],
where G is a finite group of order n, is equal to n™ [4].

2.5 Duality of monoids

In this section we explain how we can extend the usual notion of duality of
finite abelian groups to monoids and how to use this notion to give a criterion
for being reduced and a way to compute the reduction.

Definition 2.48. Let M be a monoid. A character of M is a map of monoids
from M to C°.

The collection of the characters of M form a monoid, called the dual
monoid of M and denoted by MY = Hom(M,C°), with as identity the
trivial morphism that sends M to 1 and multiplication defined by f fo(m) =

Ji(m) fa(m).
Remark 2.49. We note that if M is a group, then MV is its dual group.

Remark 2.50. If M is a finite monoid every element of the dual monoid
MY maps M to the submonoid of C given by {0} U pis,, where with p,, we
denote the set of all roots of unity, since every element m € M satisfies an
equation of the form m™ = m”"?, where n; and ny are distinct non-negative
integers.

Lemma 2.51. If M is a finite commutative monoid, then its dual MV is
reduced.

Proof If we take f € MV, it sends every element m € M either to 0 or to

a root of unity, say of order n,,; let n be the least common multiple of all the
nm. Then we have that f"*1(m) = f(m) for every m € M and so f"! = f.
This implies that the monoid ring Z[M "] is reduced, thanks to theorem 2.9.

There is a natural homomorphism from M to its double dual MYV =
Hom{M",C°} defined by

M N MVV
m — m"VW: MY — C°

foo= flm)

By the previous lemma we have that M"Y is also reduced and so the map
M — MYV factors through the reduction M,.q of M.
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It is well-known that on the category of finite abelian groups the map
described above gives a canonical isomorphism between a group and its dou-
ble dual. What we want to do now is to show that this is true also on the
category of finite reduced monoids.

To do this we will prove that if a finite reduced monoid M is associated
to the lattice of abelian groups (L, F') then its dual MY corresponds to the
lattice of abelian groups (L°,Y oF'), where the last ¥ denotes duality in finite
abelian groups. Since both duality in finite abelian groups and taking the
opposite lattice are involution, we will get that also in reduced monoids it is
SO.

Before proving this we need three useful lemmas.

Lemma 2.52. A monoid character of a finite reduced commutative monoid
M is, restricted to any group G, for e € I(M), either the 0 morphism or a
group character.

Proof The only difference between a monoid character and a group char-
acter is that the first can assume also 0 as a value. Since G, is finite, for
any g € G, there exists a positive integer n such that ¢" = e; therefore, if
an element g € G, is not mapped to 0, then also the identity of G. is not
mapped to zero. Moreover, since any element g € G is invertible, it must be
sent to an element that divides the image of the identity of G.; therefore the
value 0 can not be assumed.

Lemma 2.53. Let M be a finite reduced commutative monoid. If a monoid
character f: M — C° does not map to zero the groups Ge, and G,, then it
does not map to zero also Gee,.

Proof If m; € G, and my € G,, are elements of M such that f(mq) #
0 # f(mgy), then myms is an element in G.,., that is not mapped to 0.

These two lemmas imply that for any character f € M" there is a smallest
idempotent ey such that f restricted to G, is a group character of the group

Ge,.
f
We will denote the restriction of a character f to the group G., simply

by the symbol f|

Lemma 2.54. A monoid morphism f from a finite reduced commutative
monoid is determined by its restriction f| to the group G,.

Proof By definition of ef every element in a group G, where €’ is not
> e, is mapped to 0. Since f|is a group morphism, e; must be mapped
to 1 by f|; given any other element m € G., for ¢ > e, we have that

f(m) = f(m)f(ef) = f(meg) = fl(mey).
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Theorem 2.55. Let M be a finite reduced commutative monoid associated to
the lattice of abelian groups (L, F'), where F sends a morphism i < j to the
morphism -|; : F(j) — F(i); then the dual MY of M is the finite reduced com-
mutative monoid associated to the lattice of abelian groups (L°P,Y oF'), where
the last ¥ denotes duality of finite abelian groups, that sends the morphism
j < to the morphism -|; : F(i)¥ — F(5)Y, dual of -|;.

Proof As a consequence of the above lemmas, we can define the map

x: MY — N
fo= flea

where N is the monoid associated to the lattice of abelian groups (L%, oF).
Lemma 2.54 tells us that this map is injective.

For the surjectivity we have that, if f € N is an element of G/, then we
can define the following element of M"Y

M — Ce
flem) if mM D eM
m .
0 otherwise

that coincide with f on G..
We are left to prove that y is a morphism of monoids:

e it sends the trivial character to the trivial character of the group Ge,
where € is the bottom in the lattice (M), that is the identity in the
monoid V;

e for the multiplicativity, consider two characters g, h € M"; we have to
show that x(gh)(m) = (x(g)x(h))(m) for any m € G, , = Ge,ve,- By
definition we have that

x(gh)(m) = (gh)|(m) = g(m)h(m)

egh

and
(x(9)x(h))(m) = (g|h])(m).

By how the product acts in N we have that

(glhD)(m) = (gD)Ic,(m)(R[)I¢, (m)
= gl(egm)hl(enm)
= glegm)h(exm) = g(m)h(m)

since the idempotents are mapped to 1.
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Corollary 2.56. If M is a finite reduced commutative monoid, then the map
M — MYV described above is an isomorphism.

Proof It is enough to notice that taking the dual is an involution both
on lattices and on abelian groups and to use the structure theorem for finite
reduced commutative monoids.

Now that we know more about how duality works on finite reduced
monoids, we can proceed by explaining the role of MYV in the reduction
of a finite commutative monoid M.

Proposition 2.57. If M be a finite commutative monoid, then MYV = M,..q.

Proof What we prove in fact is that the dual map M, — M" of the
canonical map M — M,.4 is an isomorphism; then, dualizing this map, we
will get an isomorphism MYV — MY = M,.q.

Now, let f € M ,; if f # 1, there is an element in M,.; that is not
mapped to 1 by f. Since M — M,.q is surjective, there exists an m’ € M
that is mapped to m and therefore is not mapped to 1 by the image of f in
MY; this means that M), , — M" is injective.

To prove the surjectivity, we need to show that every character of M
factors through M,..4. This is true because two elements of M that have the
same image in M,.; have the same eventual powers and therefore they must

have the same image in C°.

As a consequence of this proposition, we have another criterion to decide
whether a monoid is reduced or not.

Corollary 2.58. Let M be a finite commutative monoid. Then M is reduced
if and only if tM = $MY.

Proof First we have to notice that M"Y = M"Y, since this is true at the
level of abelian groups and MY is a reduced monoid.

If M is reduced, as we said above, the map that sends m € M to m"" €
MYV is an isomorphism.

If M is not reduced than we saw than §M,.; < M, since M, .q is a quo-
tient monoid of M different from M.

To conclude the section we want to give some examples.

Example 2.59. Let M = (z | 2™ = 2"2) be a finite cyclic monoid; suppose
also that 0 < ny < ny to avoid the case where M is the cyclic group of order
ni.
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To define a character on M we have only to decide where to send z; the
choice must be done inside the set of the complex numbers z that satisfies
the defining equation for x, i.e. 2™ — 2" = 2"?(2™ ™" — 1) = 0. Therefore
all the possible characters are the following:

g:x—20

) i

fi F T Gp—ny

fori =0,...,ny —ny — 1, where (,, _,, is a primitive (n; —ns)-th root of unity.
Moreover we have g - f; = g and f; - fj = fitj mod n1—n,. Therefore we can

represent the monoid MY with the lattice of abelian groups
Cnl—nz — Cl

where (), indicates the cyclic group of order n.
By dualizing this diagram, we get that M"Y is associated to the lattice
of abelian groups

C'1 - Cnl—ng

that is clearly the monoid M = (z | 2™ "2t! = g).

We have also
W MY — C°

fo= f=1
where f is any element in MY, and
()W MY — C°
g = g@)=0
fi = fz(l’]) = C:z]1—n2
Clearly 1VV(27)¥Y = (27)VV and (291)VV (272)VV = (pf1tiz modm—n2 )W aking

in this way explicit the isomorphism between M, .4 and M"YV,

Example 2.60. We want to compute the dual of the monoid M = (Z/4Z)° =
{0,1,2, —1} that is not reduced.

The reduction is easily seen to be M,.q; = {0,1,—1} where the quotient
map identifies 0 and 2, since 2—0 is nilpotent in the monoid ring Z[(Z/4Z)°].
Its associated lattice of abelian groups is clearly

C,——
and therefore, dualizing the groups and the lattice, we obtain that MV is

C, —
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which is the cyclic monoid (z | z = 23).
To make the things explicit, the non trivial characters of M are

x: M — C°

0,2 — 0

1 - 1

-1 - -1

and

2: M — C°

0,2 — 0

1,-1 — 1
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3 The monoid (Z/nZ)°

We want to dedicate a whole chapter to this special class of monoids to
emphasize their role and to use them as a bridge between the preceding and
the following chapter.

We already know from the first chapter, example 2.13, that a monoid of
the form (Z/nZ)° is reduced if and only if n is square-free. Here we want to
apply the theory developed above to explicitly describe what the reduction
of (Z/nZ)° is, what its associate lattice I((Z/nZ)°) is and what the groups
G, are, for e € I((Z/nZ)°).

Moreover, we point out another particularity of the monoids (Z/nZ)°: in
the decomposition of C[(Z/nZ)°] as a direct product of local rings, we obtain

only rings of the form Clzy, ..., z;]/ (2}, ..., z}").

3.1 Reduction of the monoid ring (Z/nZ)°

First we observe that the fibers of the map (Z/nZ)° — (Z/nZ)° can be
identified via an easy criterion.

Lemma 3.1. Let M = (Z/nZ)°. Then miM = moM < ged(my,n) =
ged(ma, n).

Proof We just need to recall that the ring Z/nZ is a principal ideal ring
and the greatest common divisor of m € Z/nZ with n is the smallest element
of the ideal mM = (m,n) if we choose {1, ...,n} as representatives for Z/nZ
and we order them in the usual way.

To make things easier, we notice that the monoid (Z/nZ)°, where n =
Pyt - ... pg¥ is the product of the monoids (Z/p;*Z)°. Indeed the map

f: (Z/nZ)° — Hi:l .....

m — (m mod p;")

is multiplicative and it is a ring isomorphism by the Chinese remainder the-
orem.

This allows us to deal first with n a prime power, and then deduce results
for a general n.

Now we want to give a criterion to describe the idempotents of M =
(Z/nZ)°. Before doing this we need a definition.

Definition 3.2. A divisor d of an integer n is called unitary if d is coprime
with n/d.
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Proposition 3.3. Let M = (Z/nZ)°; then the idempotents of M are the
elements that are congruent either to 0 or to 1 with respect to every unitary
divisor of n that 1s a prime power.

Proof If n = p” is a prime power then the only idempotents of M are 0

and 1 since these two are the only solutions of the congruence m? = m mod
12

Y.
For a general n, we have just to take the product of all the (Z/dZ)°, for
d unitary divisor of n, and use the Chinese remainder theorem.
Moreover, we can notice that the Euclidean algorithm gives us an explicit
way to find the solutions of the set of congruences and therefore all the
idempotents of (Z/nZ)°.

Remark 3.4. From this proposition we get also that the lattice I(M) of
idempotents for a monoid M = (Z/nZ)° is exactly the lattice of unitary
divisors of n. This lattice is clearly the k-th hypercube, where k is the
number of primes dividing n.

The next step to describe the structure of M = (Z/nZ)° is to give a
description of the abelian groups G, for e € I(M).

First we can make a general remark about the cardinality of a fiber of
the map M — M.

Remark 3.5. We saw above that miM = myM < ged(my, n) = ged(ma, n);
this implies that the cardinality of the fiber determined by a divisor d of n
is equal to the number of elements in M that have greatest common divisor
with n equal to d.

This number is clearly equal to ¢(n/d) since there is a bijection from
(Z/(n/d)Z)* to our fiber given by multiplication by d.

This bijection is not always a morphism of monoids, but, when d is a
unitary divisor, we can modify it to be so.

Proposition 3.6. Let M = (Z/nZ)° and e € I(M) an idempotent of M.
Then the group G. is isomorphic to the group (Z/(n/gced(n,e))Z)*.

Proof We know that an idempotent e € I(M) is in the class of a unitary
divisor d = ged(n, e).

If we modify the map from (Z/(n/d)Z)* to G, in the previous remark
substituting multiplication by d by multiplication by e we still obtain a bi-
jection, but, since e is idempotent, in this case it is also a morphism of groups.

To conclude with the description of G, for e € I(M), we can recall that
(Z/nZ)* is cyclic if and ounly if n = 1,2,4,p",2p” for p an odd prime and
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v > 0, while for n = 2%, with k > 2, (Z/nZ)* = Cy ® Cyr-2; for the other n’s
it is enough to use the Chinese remainder theorem to deduce the structure
of (Z/nZ)*.

Remark 3.7. We can observe that all the monoids (Z/p”Z)°, for p an odd
prime, are co-cyclic, with this meaning that their dual is cyclic. Indeed the
lattice of abelian group associated to (Z/pZ)° is

Ow(p”) — O
and therefore its dual is
¢ — Cso(p”)

that is associated to the cyclic monoid (z | 29" = g#®")+1),

3.2 Decomposition in local rings of C[(Z/nZ)°]

The ring C[(Z/nZ)°] is an artinian ring since it is a finite dimensional vector
space over a field. We recall that every artinian ring is uniquely, up to
isomorphism, a direct product of local artinian rings; for more details we
refer to [1].

Lemma 3.8. The monoid ring C[(Z/nZ)°], where n = pi*-...-p*, is isomor-
phic to the tensor product of the monoid rings C[(Z/p]"Z)°], for i =1, ..., k.

Proof Extending by linearity on each component the inverse of the map
f described in the beginning of the previous section, we can construct a
multilinear map

[Tioi, xCUZ/p7Z)] — CllIioy,. x(Z/p]Z)°] = C(Z/nZ)]
(a:) = F (@) iz, k)

that induces an isomorphism between @),_, ~, C[(Z/p;"Z)°] and C[(Z/nZ)"].

Therefore we can restrict to the case where n is a power of a prime p.

Proposition 3.9. Every local artinian ring in the decomposition of the monoid
ring C{(Z/p"Z)°] is of the form Clz]/(z*) for some positive integer k depend-
ing on the component.

Proof First thing to notice is that we have a surjective monoid morphism
Cy x (Z/p"Z)* — (Z/p"Z)°
(x*,b) — p°b

31



where C, is the cyclic monoid (z | 1t = z). If we consider the monoid
ring over the complex numbers of the left-hand side, we see that

ClC, x (2/p"2)"] = C|C,| @ C[(Z/p"Z)"].
The two factors of the right-hand side are
ClC,] = C x C[z]/(x")

and
Cl(Zz/p"Z)* | =Cx..xC

since a group ring is reduced.

Taking the tensor product of these two, we get that C[C, x (Z/p"Z)*] is
the product of components of the form C[x]/(z*) for some positive integer k
depending on the component. The surjection that we pointed out first tells
us that C[(Z/p"Z)°] is just a quotient of C[C, x (Z/p"Z)*] and, since every
quotient of C[z]/(z") has the same form, our starting monoid ring must be
a product of local rings of this form, too.

Going back to a general n, just taking the tensor product of the com-
plex rings C[(Z/p¥Z)°] for p” unitary divisor of n, we get that every local
artinian ring in the decomposition of the monoid ring C[(Z/nZ)°] is of the
form Clzy, ..., z;)/ (%, ..., ).

This implies that the ring C[M] is a complete intersection ring. For this
definition of commutative algebra, and the ones that will follow, we refer to
8]

To see that this is really a restrictive condition on M, we give an example
of a monoid whose monoid ring over C is not a complete intersection.

Example 3.10. Let M = {1,0,x,y} with the relations 2? = y? = zy = 0.
Some computations give that the decomposition in local rings of C[M] is

C[M] = C x Clz,y]/(=,y)*

The second component of the right hand side is not a complete intersection
since it is a zero dimensional local ring that is not Gorenstein; indeed being
Gorenstein is equivalent to having a simple socle, where the latter is the
annihilator of the maximal ideal, and the annihilator of the maximal ideal
(z,y) is the ideal (z,y) itself, that is not simple.

Remark 3.11. We need to observe that what we proved for C is no more
true if we consider Z or a finite field. For example, if we consider the monoid
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(Z/AZ)° and we take its monoid ring over the field Fy of two elements, we
obtain that the map

Fol(Z/42)°] — Fa x Falz, y]/(x,y)*
0 — (1,0)
1 — (1,1)
-1 — (1,y+1)
2 — (1,x)

is an isomorphism. By a reasoning similar to the one in the previous example
we have that the second component of the right-hand side is not Gorenstein
and therefore Fy[(Z/47Z)°] is not a complete intersection ring.

This implies that also Z[(Z/47Z)°] is not a complete intersection ring; if
it was, in fact, it would be enough to consider everything modulo 2 to prove
that also Fy[(Z/47Z)°] is complete intersection.
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4 Units in group rings

In this last chapter we want to study units in a group ring Z[A], where A is
a finite abelian group.

First we will describe the structure of the group of units of Z[A] as an
abelian group, identifying its torsion part and computing the rank of the
torsion free one. A big goal would be to find a basis for the torsion free part.
As it is in cyclotomic fields, this turns out to be really hard and so what one
does is try to give a basis of a subgroup of full rank, possibly with a small
index in the full group: as in cyclotomic fields there are cyclotomic units, we
will deal with constructible units.

Continuing in the parallel between cyclotomic fields and group rings, as
cyclotomic units have a structure of (Z/nZ)*-module, passing to group rings
we get more structure, since we get an action on constructible units of the
full monoid (Z/nZ)° that gives them a cyclic module structure if A is cyclic
and H is cyclic, where H is the quotient of the group of automorphisms of
A by the involution x :  — z~ 1.

Inside a group ring, we can define a more natural generalization of cyclo-
tomic units, considering just units that map to cyclotomic units under every
character, obtaining the group of the so-called circular units. The last sec-
tion of this chapter will deal with the difference between constructible units
and circular ones in the case of an abelian p-group, showing the role that the
regularity of p plays.

4.1 Units as a Z-module

Definition 4.1. Let A be a finite abelian group. We will denote the group
of units of Z[A] by U(A).

The first thing that we want to do is to describe U(A) as an abelian
group, giving its torsion part and the rank of its free part.

Definition 4.2. Consider the ring involution x : Z[A] — Z[A] which is
induced by mapping each element of A to its inverse; a unit u € U(A) will
be called symmetric if it is stable under this involution, anti-symmetric if
u* = u~!. The subgroups of symmetric and anti-symmetric units will be

labeled by UT(A) and U~ (A), respectively.

At this point we need to remind that, according to Maschke theorem, a
group ring over a field is semisimple if and only if the characteristic of the
field does not divide the order of the group. Therefore a finite roup ring over
Q or C is always semisimple.
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Moreover, by the Artin-Wedderburn theorem, a semisimple ring is iso-
morphic to a product of n; by n; matrix rings over division rings D;, for
some integers n;, where both n; and D; are uniquely determined up to per-
mutation of the index i. We will call the factors of the product Wedderburn
components.

Lemma 4.3. The torsion subgroup of U(A) is U~ (A), that is also equal to
(—1) x A.

Proof The torsion subgroup of U(A) is contained in U~ (A), because in
each Wedderburn component of Q[A], the elements of finite multiplicative
order must satisfy the condition |w| = ww = 1.

On the other hand we have that U~ (A) = ker[v — vv*] C (—1) x A;
indeed, ifv =3 _, a.z € Z[A], the coefficient of identity in vo*is > a? # 1,
unless v is equal to z or —z for some z € A.

Since it is clear that (—1) x A is contained in the torsion part of U(A),
all the inclusion must be equalities and therefore the lemma is proved.

Now we can decompose U(A) into its torsion subgroup U~ (A) and a free
Z-module.

Definition 4.4. Let A(A) be the augmentation ideal, that is the kernel of
the augmentation map Z[A] — Z that sends every element of A to 1. Define
Ui(A) = U(A) N (1 + A(A)"), for i = 1,2, the set of units of A that are
congruent to 1 modulo the i-th power of the augmentation ideal.

Lemma 4.5. 1. U(A) = (—1) x U;(A).

2. The map

eq: E CZZHHZCZ

z€A z€A

from the additive group of Z[A] to the multiplicative group A C U,(A),
is multiplicative on Uy(A) and yields a split exact sequence

1 — Uy(A) = U(A) B A— 1.

3. Moreover Uy(A) C UT(A).
Proof

1. Trivial, since every unit has augmentation 1 or -1.
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2. First we claim that e satisfies the congruence es(6) = 1 4 § mod
A(A)?, for 6 € A(A). Tt is enough to prove it for § = z — 1, since if §
contains more terms, we can split it in pairs of them and note that

ealr+y—v—2z) = eslx—v)esly —2)
(1+z—v)(1+y—2z) mod A(A)?
l+2+y—v—2zmodA(A)?

We have now that eq(z —1) = z = 1+ (2 — 1) and therefore the claim
is true.

In particular we can deduce that e4(§) = 1 <= § € A(A)?% the
implication from left to right comes directly from the above, the other
one from the observation that in the expansion of an element of A(A)?
each term of A appear as many times with sign + and -. This tells us
that our sequence is exact.

The multiplicativity of e4 on U;(A) is established by the fact that
(14 01)(1+ d3) = (1 + 01 + 09 + 0102) is mapped to es(d; + d2) =
6A(51)€A(52)-

Eventually, the sequence is split since the identity on A is a right inverse
of €4.

3. Note first that u € U(A) = v = % € U; (A) = A by lemma 4.3. If
u € Uy(A), also v € Us(A); since, by point 2, ANUy(A) = {1}, we have
v=1=u=u"

We can conclude the description of the units of an integral group ring of
a finite abelian group A by saying that

U(A) = (1) x A x Uy(A),

Ur(A) = A x Up(A),
U (A) = Az x Up(A),

where A, is the subgroup of A generated by the elements of order 2. This
tells us that Ut (A) = Uy(A) for every group A of odd order.

Remark 4.6. Given a commutative group G, one has a short exact sequence
1_>Gtor_)G_)G/Gtor_>1

where (G, denotes the torsion part of G.
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The previous lemma says is that if we consider G = U(A) or U;(A), this
exact sequence splits.

Therefore, unlike, for example, in cyclotomic units, to consider the torsion
part we just need to restrict to the component Us(A).

Now we restrict to a cyclic group C. This is a reasonable thing to do
mainly because of two reasons:

1. if A is a finite abelian group and we denote by U(A) the group of units
of Z[A] modulo torsion, we have that the natural homomorphism

a:[JUC) - U4

where the product is direct and C' runs over all cyclic subgroups # 1
of A, is of finite index [2| and, if A is an elementary abelian p-group,
for a regular prime p, then & is an isomorphism [21].

2. Let C' = C, = () be the cyclic group of order n. We have

0lc] = T,
dln

where ( = (, is a primitive complex n-th root of unity. Under the
above identification, we have the embedding

Z[O] C HZ[Cd] = MC'>
dl

where M is the maximal order of the product of number fields Q[C].

In this way we establish a relation between our cyclic group ring and
cyclotomic fields; therefore we can both make use of the theory for
the latter and try to deduce something about them starting from the
analysis of cyclic group rings.

Remark 4.7. The previous embedding of Z[C] into M allows us to com-
pute the rank of U(C'), that is the r such that U(C) = Z". In fact, denoting
by M the group of invertible elements in M, by theorem 8.3 in [26] we

" rkUC) =rk M5 =Y (@— )

2<d|n
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4.2 Constructible units

At this point we want to construct a subgroup of the full unit group that
consists of units given by an explicit formula. To do this let us start fixing
a cyclic group C of order n; we have Z[C| = Z[z]/(z™ — 1) and we will call
G = Aut(C) = (Z/nZ)* the group of automorphisms of C.

Let £ be the image of x in the quotient ring Z[¢] = Z[z]/(14+z+...+a™ ).
We can observe that £ is not simply a primitive n-th root of 1, but it can
specialize to a d-th root for any 1 # d|n. In fact Q[¢] is the direct sum of
QI[C4), for all 1 # d|n and (; denoting a primitive d-th root of 1; this means
that Q[¢] is essentially Q[C] without the component corresponding to the
trivial character.

Note that we have a fiber product

Z[C) — Z

|

7] = Z./nZ.
where € maps & to 1 and all the other maps are the natural ones. This is a pull-
back diagram since, given a € Z and Y, a;&" € Z[¢] such that Y, a; = a+kn,
we can construct the unique ancestral element Y, a;a' —k(1+z+...+2" 1) €

zZ[C)].

For any x generator of C, whereas x — 1 is a zero divisor in Q[C], its
image £ — 1 is a unit in Q[¢]. Hence it makes sense to write (£ — 1)7~! for
any o € (3, and more generally (¢ — 1)° for any § € A(G). Since

-1

o 1 o—1 —
-1t =]
where ¢ > 0 is prime to n and o : z — 2°, these elements actually lie in Z[¢].
Moreover they are units, because (£ — 1)177 = (¢° — 1)""! with 7 = o™,

In this way we obtain a natural G-homomorphism

u: AG) — U
0 = (é- - 1>67

where U(§) denotes the unit group of Z[¢].

=1+&+. €7

Lemma 4.8. The G-map u yields a morphism of short exact sequences

1 — A(G)? — A(G) —=~a 1

|

1 ——Ui(C) — U(€) — (Z/nZ)* — 1
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where the third vertical line is the identity of G = (Z/nZ)*.

Proof During the proof of the second point of lemma 4.5 we saw that
A(G)? equals the kernel of the surjection A(G) — G. By the pull-back
property of the previous diagram, an element of U;(C') is uniquely determined
by the pair 1 € Z and v = Y, q;§" € Z[{] such that Y, a; = 1 mod n, that is
v € ker(e). This proves exactness.

The commutativity of the left hand square is clear. For the right hand
square it is enough to check on a typical generator 6 = 0 — 1 € A(G): if
17 = z¢ with ¢ > 0, we have u(§) = 14+&+...+£°1; this goes to ¢ € (Z/nZ)*
under ¢, which is the same as e(c — 1) =0 € G.

What we are interested in is the image of the restricted map u : A(G)? —
Uy (C). However, to avoid torsion, we shall still have to compose it with the
canonical projection €' : U;(C') — Uy(C') coming from the splitting U;(C) =
C x Uy(C') given by lemma 4.5.

Before proving the next theorem we need the following lemma; it contains
a lot of analytic number theory that we will just use without any further
explanation.

Lemma 4.9. The map u: (1+*)A(G) — U(§) is injective.

Proof Let § = ) _a,0 € A(G) be such that a, = a,, for all c € G. We
need to prove that u(d) = 1 implies § = 0

For any system {b, | 7 € G} of complex numbers, and any character
X : G — C* we have

D acx(0) D bx () =D x(07) D aoby

with p, o and 7 ranging over G. Put b, = log|(? — 1|, where ¢ # 1 is an n-th
root of 1 yet to be chosen. Then u(8) = 1 implies [, (¢ —1)% = (£-1)° =1
where we specialize £ to be (”. Hence, applying logarithm, the right hand
side of the previous identity is zero for any choice of (.

If § # 0, however, there must be a x # 1 such that ) _a,x(c) # 0
and y(x) = 1. But by choosing ¢ so as to be primitive with respect to the
conductor f,, we also get >~ (77 1)log|¢™ — 1| # 0. Indeed this expression
equals —f, L(1, x)/7(x), involving L-functions and Gauss sums in the usual
notation of analytic number theory (cf. book [26], theorem 4.9).

Theorem 4.10. The composite map

!

A(G)* 5 UL(C) = Uy(0)
induces an injection w : A(H)?* — Uy(C), where H = G/{x).
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Proof To prove that €’ o u factors over the canonical map h : A(G)? —
A(H)? induced by taking G modulo (x), we must show that « maps ker(h) =
(x — 1)A(G) into ker(e’) = C. This follows from the trivial calculation

et
£

by which u maps (x — 1) to a torsion element.

Injectivity of w follows from lemma 4.9, which grants this property to the
restriction of u to the H-module A,(G) = (x + 1)A(G) C A(G), consisting
of all 0 € A(G) such that 6 = %6.

The canonical homomorphism h clearly bijects A,(G) onto 2A(H) C
A(H).

If an element o € A(H)? lies in the kernel of w, then so does 2a, which
corresponds to h(d) for suitable § € A,(G). Since w o h = €' o u, it follows
that €'(u(d)) = 1 and therefore u(d) € ker(e’) = C. This implies nd = 0
because u is injective on A,(G), whence § = 0 and finally 2a = h(J) = 0. So
a = 0, proving that w is injective, as claimed.

€~ 1y =

As next step, we want to give explicit formulas for v and w in terms of
the sums s;(t) = 1+t + ... + ¢! defined for any 7 > 0. Without risk of
confusion, we use the same notation for elements in G' and their counterparts
in H.

Proposition 4.11. For every o,7 € G, let « = (0 — 1)(7 — 1) be a typical
generator of A(G)? with o : x — z¢, and let b,k be positive integers with
bc =1+ kn. Then

u(@) (@) = sp(27)sc(27) = ksn(2)

and
w(a)(z) =z~ VED 2y (0)(z).

Proof As given above, u(«)(zx) satisfies u(a)(1) = 1 and u(«)(§) =
(€ — 1), since @ = (67! — 1)o + (0 — 1)7. To project this into the torsion
free component Us(C'), we must divide it by ec(u(a)(x)). Applying ec to
se(x7)sp(x7) = D2, ;27T we get [, ;2/™H, with 0 <i < band 0 < j <,
which yields x raised to the power 7bc(c — 1)/2 + obe(b— 1)/2. The element
2(¢=1/2 i always well-defined, since, if ¢ is odd, there is no problem dividing
the even number ¢ — 1 by 2, and if ¢ is even, n must be odd, and therefore
we can take the square root of any element of C'. Therefore the exponent of
x amounts to 7(c — 1)/2 + o(b— 1)/2, because bc = 1 + kn can be dropped.
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To complete our computation we have to take into account the term
—ks,(x); we get
n(n—1)
ec(—ksn(z)) = 2 F5
Considering that using H we can identify n — 1 and 1 and remembering that
bc — kn = 1, we get the desired result.

Remark 4.12. All this could be simplified in case #C is odd. Then x'/?
makes sense, and we could replace u by the map v : A(G) — U™t (§) which
takes 6 € A(G) directly into the x-symmetric unit (/2 — £71/2)%. As in the
lemma 4.8, we would get a morphism of short exact sequences

1 — A(G)? — A(G) =~ @ -1

ok

1 — U (C) — U*(¢) — (Z/nZ)* — 1

by the same reasoning, because £ o v = € o u. For every § € A(G) we would
have v(0)(€) = £€792u(5)(€) by definition, and w would be obtainable from
v by simple restriction to A(G)?. There would be no need to mention the
projection e’ : Uy (C') — Uy(C'), which would be identity on U;" anyway.

For a = (6 — 1)(1 — 1) € A(G)?, and b, ¢, k as in proposition 4.11, we
would have the simpler formula

w(a)(z) = vp(z%)ve(x7) — ksp(z) with v.(z) = ZE%SC(ZB).

This fails for even n because (¢ —1)/2 is known only modulo n/2 if ¢ is given
modulo n.

Definition 4.13. The image W (C) := w(A(H)?) will be referred to as the
group of well formed units belonging to C'.

For any finite abelian group A, let Y/(A) denote the product [[, W(C) C
Uy(A), with C' C A ranging over all cyclic subgroups of order > 2; it will be
called the group of constructible units of A.

Now we want to prove that the product of the W (C) is direct and that
has finite index in Uy(A). Before doing that we need to prove the following
lemma.

Lemma 4.14. Let A a finite abelian group. We denote by U1 (M 4) the units
of augmentation 1 of the mazimal order M 4 of the ring Q[A]. Then there is
an injection of the direct sum

D A.(Ge) = Ui(Ma),

ccA
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where C' C A runs over all nontrivial cyclic subgroups, and the components
A (Ge) — Uy(Mg) C U (My) are defined sending & to ((x) — 1)°, with

Y C'— C* running over the nontrivial characters of C'.

Proof For every C of order > 2, the rank of A,(G¢) is 38G¢ — 1, which
equals the free rank of the units in the ring of the §C-th roots of unity. By
Dirichlet’s unit theorem, the left hand term has the same rank as the right
hand term taken modulo torsion. Hence the lemma is equivalent to saying
that the map in the statement has an image of finite index.

By a theorem of Bass and Milnor [2] the product of the inclusions U, (C') —
Ui(A), as C' C A runs over all cyclic subgroups, does have finite index. Hence
so does the corresponding product of inclusions Uy (M¢) — Ui (M y). Com-
bining this with Bass’s independence theorem |2, that proves the case A = C
of this lemma, yields the stated result.

Theorem 4.15. For any finite abelian group A, the product

Y(4) =[] w©)

CCA

is direct and has finite index in Us(A).
Any homomorphism A — A’ of abelian groups maps Y (A) into Y (A") by
surjecting each W (C') onto W (C"), where C' denotes the image of C.

Proof The explicit formula shows that w(a)(z)? = w(a)(z)w(a)(z™1) =
u(a)(z)u(a)(x™!) = u(a+*a)(z). Therefore the square of any constructible
unit y = [[, we is in the image of the injection shown in the previous lemma,
and y = 1 implies we = 1 for all C.

The finiteness of the index follows by the same rank computation as was
used in the proof of the previous lemma.

For the second statement, let ' € C’ be the image of the generator z
of C. Every automorphism ¢ : =z — z¢ of C induces an automorphism
o 2 — (2/)¢ of €', and in that sense every a € A(H)? produces an
o' € A(H")2. Since the correspondence o — o is surjective, and since every
w(a)(z) maps to w(a’)(z'), the surjectivity W (C) — W(C") follows.

We can say more about the group Y (A), if H happens to be cyclic. This
is the case, for example, if 1C' = p” or §C' = 2p”. The following proposition
comes from the fact that the ideals A(H) and A(H)? are principal if H is
cyclic; in fact, if b is a generator of H then A(H) = (h'—1|i=1,..,tH) =
(h—1) and A(H)? = ((h' = 1)(W = 1) | 1 < i, j < gH) = ((h = 1)?).
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Proposition 4.16. Suppose that H s cyclic and let o be a generator of the
ideal A(H)?. ThenY (A) is generated over Z by the H-set {w(a)(z) | z € A},
which can be reduced to a Z-basis of Y (A) by omitting one element from each
of its H-orbits.

Proof If h is a generator of H, multiplication by h — 1 induces isomor-
phisms
ZIH|/S(H) = A(H) and A(H) = A(H)?,

where 3(H) denotes the ideal generated by the sum over all the elements of
H. Mapping 1 to w(a)(x), we therefore have an H-isomorphism of Z[H]/%(H)
with W(C') by theorem 4.10. Hence the product over the H-orbit {w(«)(z) |
(z) = C} is trivial, and a basis of W(C') is obtained from this orbit by
throwing out any one of its elements.

By theorem 4.15, the corresponding element w(«)(z) can similarly serve
to generate W (C'), where C' = (z) for any z € A. Since every z € A occurs
exactly once as a generator of one of the cyclic subgroups C' C A, we thus
obtain each of the components of the direct product Y(A) = [[, W (C).

is the cyclic group of order 6, generated by 2 and H = {1,2,4} is the
cyclic group of order 3. The element 2 is a generator of H and therefore
A(H)?=(2-1)>%

Let @ = (2 — 1)2. Now we can compute w(«a)(x) with the formula given
in remark 4.12. Weset c =7=2,c=2,b="5and k = 1. We get

w=w(a)(r) = vs(zH)ve(2?) — s9()
= o1+ vt + a2 (1 +2%) - (T e+ 4 af)
= —l4+z—2"+2°+2%—2"+2°

= g3 24 14— 22+ 28

Then we know, by the proof of the previous proposition, that Z[H]/X(H) =
W(C'), mapping 1 to w(«)(x). Therefore

Wt - w2 .

(w - w? - wh)?

W(C) =

Moreover we notice that w(a)(23) = 1 and this, according to the previous
proposition, tells us that W (C?3) = 1 and therefore

Y(C)=W(C) x W(C?) = W(O).
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The element w - w? - w? that we needed to quotient out to obtain W (C)
above, is just the norm of w; in fact we obtain it taking the product of the
conjugate elements of w.

As it is clear from previous proposition, we are sure that this condition is
the only one that we need for W (C'), since we have to omit only one element
from every H-orbit.

Obviously every element of Y (A) must satisfy a norm condition, which is
given by the product of all its conjugates in H. In fact these conditions are
the only ones that we need.

Theorem 4.18. Let C' be a cyclic group of order n such that H is cyclic.
Then Y (C) is a cyclic submodule of U(C') over the monoid ring Z|(Z/nZ)°]
and its annihilator is given just by the norm conditions.

Proof By the previous proposition we know that Y (C') is generated over
Z by the set {w(a)(z") | 1 < i < n}, where z is a generator of C' and « is
a generator of A(H); this set is equal to w(a)(x)*/")" since every element
2 of the group is in z2/"®°, This means that Y (C) is a cyclic monoid over
the ring Z[(Z/nZ)°] generated by the element w(«a)(x).

Moreover we know that Y (C) = [[., W(C"), where C’ runs over the cyclic
subgroups of C. Since C' is cyclic, then every C” is generated by a power of
x, and we can obtain all cyclic subgroups considering the elements z?, where
d runs over all the divisors of n.

From the proof of the previous proposition we see also that W (C') =
Z[H]/¥(H). This implies that

[Z/”Z ]

(45 | dln)

where k; = (n)/@(n/d). This is true since by acting with the d’s we reach
all the others components W (C"); for the norm conditions, ¥(H) is obvi-
ously the one of the component W (C'). For another component C’, the norm
condition is given by the sum over all the elements of (Z/nZ)°/(x) corre-
sponding to the elements of C’; realizing that there is a surjection from G
to G’ = Aut(C’), where C’ is generated by z¢, such that all the fibers have
the same cardinality kg4, we can conclude that the norm condition for C’ is

d(S(H))/ka.

Y (C) =

Since we will need it later, we want to explicit the relation between W (C)
and W (CP) in the case C' is a cyclic p-group.

Corollary 4.19. If C is a cyclic group of order p*, then W(CP?) = W(C)™,
where w 1s the endomorphism of C' that sends x to xP.
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Proof It is enough to notice that, if C'is generated by x, C? is generated
by P, that is reached by the morphism 7 : x +— zP.

Example 4.20. Let C be the cyclic group of order 15. Then G = Aut(C) =
We can compute w(a)(x) according to the formula on remark 4.12. We
can choose c =7=2,c=2,b=8and k = 1.

w=w(a)(r) = vs(zH)vy(2?) — s15(x)
B+ ot +ab a2 2 e (1 2?) +
—(14+x+.. +2')

R Vb ST R

= 004 gm — 3+

+x4 — 2 + 28

Mapping 1 to w we obtain an isomorphism of W (C') with Z[H]/3(H). Thanks
to our last theorem we can give to Y (C) a cyclic module structure over the
ring Z[(Z/157)°] as follows
Z[(Z/<15>Z)°]
Y (C) M _
a S(H)? S(H)S
(07 E(H)v T2 T)
0Z +17Z + 27 + 32 + 42 + 52 4 6Z 4 TZ
(0,1+2+447,34+6,5)

12

12

It is just a matter of computation to verify that w is annihilated by (0,1 +
2+4+7,3+6,5)

4.3 Constructible and circular units

In this section we restrict to abelian p-groups, since in this setting we can go
on with our analysis and say much more about units in groups rings. What
we want to do is to define a more natural generalization of cyclotomic units
in a group ring, looking at the units that map to cyclotomic units under
every character, and try to understand what is the difference between this
group and the one made by constructible units.

It will turn out that the index between the two groups is always a power
of p and in a lot of cases the two groups are equal; we will see that this
equality depends on the regularity of the prime p.

What we present here is a summary of what is available in the papers
by Hoechsmann [10], [19], [14]. We will use a lot of references to them and
to other papers because we want to present the result without proving every
single detail.

Let us start with a lemma.
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Lemma 4.21. Let C' a cyclic group such that §C' = n = p” > 2 be a prime
power, and ¢ denote a primitive n-th root of unity. Consider the maps ¢ :
E—Cand:x— C of U(E) and U(C), respectively, into Z[C]*. Then

1. @ yields an injection of the group (€)(1 — &)™) into Z[C]*;
2. for 6 € A(GQ), we have (1 —¢)° € Y(U1(0)) <= 6§ € A(G)%

Proof For each p=1,...,v let ¢, : C — C* be the p"~#-th power of 1,
and F), be the v,-image of Q[C]. It is well-known that 1, (x) and 1 — ¢, (x)
are the F,/F),-norms of ¢ and 1 — ¢, respectively |19]. Hence all Wedderburn
components of any element of the form £(1 — £)° are determined by its
Y-image (%(1 — ¢)°. This is enough for the first point.

For the second one, suppose that we have (1 — ¢)° € ¥(U,(C)). By the
first point, it has in U(§) exactly one pre-image, namely (1 —&)°, which must
therefore be liftable to an element of U;(C'). This does not mean that we
know 4 itself, but it does mean that ((1 — &)%) = 1, by lemma 4.8. Hence
it follows that eq(d) = 1 and therefore § € A(G)?. The other implication is
also clear from the diagram of lemma 4.8.

Definition 4.22. For any n > 2, and any n-th root of unity ¢ # 1, the
cyclotomic units of Q(¢)™ are

U(Q) = ()1 = ¥ nR™.

These are the only elements of Z[(] which have a hope of turning up as
Wedderburn components of constructible units.

If A is abelian of exponent n, i.e. A™ = {1}, we write U®(A) for the
group of all the units in U(A) which are mapped into the appropriate U®({)
by every character Z[A] — Z[(]. Such units are called circular.

It is just a remark to note that all constructible units are automatically
circular, i.e. Y(A) C U%(A).

Now we want to explain the special role played by W (C'), which turns
out to be, modulo the subgroup C5 C C generated by elements of order 2,
the maximal subgroup of U;(C) that injects in U¥((). First a useful lemma:

Lemma 4.23. Ifn = 4C =p*, withv > 2, let s; = 1 + 1+ ...+ 777" € Z[G)]
with 7 : x — 2P, Then w(CP) = w((,)* for any w(z) € Cy - W(O).

Proof It is well-known that (¢, —1)** = (¢¥—1) and that {3* = +(?, with
the minus sign occurring only for p = 2 [19]. It follows that v((,)* = v((?)
for any v(¢,) = ¢4(¢, — 1)?, with @ € Z and 8 € A(G), as long as a is even
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when p = 2. For 3 = (0 — 1)(7 — 1) € A(G)?, it turns out that v((,) is real
if and only if 2a = (1 — ¢)(1 — d) mod n, where ¢ :  — z¢ and 7 : x — 2%

If p = 2, this makes 2a divisible by 4.

Proposition 4.24. If n = $C is a prime power and ( is a primitive n-th
root of unity, the map v : x — ¢ induces a bijection

Cy - W(C) = 9(Ui(C) NUZ(C).

Proof For w(z) € Cy - W(C') suppose that w(¢,) = 1. Then w(¢?) =1
as well, either because all of W(CP) is trivial or because w(¢?) = w((,)* =1
by the previous lemma. By induction, w({;) = 1 for all d|n, whence the
injectivity.

For the surjectivity, consider a ¢t € U;(C) such that ¢ (t) € U®(¢). Then,
by the same reasoning as above, all Wedderburn components of ¢ are real,
and hence ¢t € U;7(C). The condition ¢ € U;(C) implies that t/2* € U, (C)
for any integer k; we can choose the value of k such that ¥(t/2z*) = (1 —()°.
This, by the second point of lemma 4.21, implies that § € A(G)?; therefore
t € C-u(A(G)?). Eventually t € U (C)NC - u(A(G)?) = Cy - W(O).

According to the last proposition, W (C) is shown to be, in some sense,
maximal; to conclude this section we want to prove a theorem which claims a
similar kind of maximality for Y'(A) is case A is a p-group for odd regular p.
To do this we must go through a series of lemmas and intermediate results.
We start from cyclic groups C' and then we deduce the result for the p-group
A.

First we want to improve theorem 4.15 in the case of a cyclic group.
Proposition 4.25. The index [UF(C) : Y(C)] is a power of p.
Proof By theorem 4.15 know that the map

A ﬁW(Cp”) — UP(C)

v=0

is an injection with finite cokernel. We just have to refine the proof to show
that the index is a p-power.

By proposition 4.24, the surjection ¢ : U (C') — (U (C))NUE(C) splits:
UZ(C) = Cy-W(C) x kerp. Let w be a Z[G]-generator of W (C). The proof
will be by induction, with nothing to do if m = 1.

By lemma 4.23 we have that the kernel of ¢ contains the elements of the
form w™ =™ " for v = 1,...,m — 1; therefore we shall be done if we can
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prove that the elements w 1, for v =1,...,m—1, generate over Z|G]| a
submodule of p-power index in keryp. For this purpose we introduce the map

m—2

K:W(C)x W) x---W(C)™ ~ — kerp,

whose components are (7 — s1), ..., (T — $;,_1), where s, = 1+ 7, + ... + 7271
with 7, € G of order p”.

At this point we need to refer to the fundamental pull-back diagram of
ring maps

Z[C] — Z[(]

l l
z(Cv) L %[C”]

where p denotes the reduction of the coefficients modulo p [23].
This shows that 7 induces an isomorphism kerp — kerp. We can produce
a commutative square

m—2

W(C) x - x W(C)"

K
— kerp
s s

Ug(CP) i kerp

whose right vertical arrow is an isomorphism, thus shifting the problem to
showing the clockwise composite 7k is of p-power index. The commutativity
of the diagram is due to the fact that s,m = pm, for v = 1,...,m — 1. This
allows us to consider the counter-clockwise composite 7(7m — p) instead. To
prove that 7 : UP(C) — UZ(CP) and m — p : U (C) — kerp have p-power
index we will also proceed by induction.

Since W(C?) = W(C)™, the induction hypothesis on A implies that
[UP(CP) : W(C)™ M) where M = (Z/p*Z)°, is a p-power. For the bot-
tom arrow, let u € U?(C) with p(u) = 1. By induction assumption, there
exists a v; € UZ(CP) such that «™" = o] * for suitable k. Since 7 has
p-power index, there exists a v € U7(C) such that v™ = vfl for suitable [.
Hence w?" '™ = vfl(ﬂ_p) = o™™P) and (u?"oPm)T = 1.

Therefore

k+l _ k+1+1 —
(u" PP = P PP 7r)7

i.e. a certain p-power of u is in U (C)™ P,
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Remark 4.26. It is a classical fact (|26], theorem 8.2) that [U;(¢,) : UF ()] =
hf, the class number of Q(¢, + ¢ ). Putting h*(m) = bt -+ - hjm, it is clear
that U;(C)"" (™ C UP(C). Hence [UF(C) : UP(C)] is finite and involves
only prime divisors occurring in h*(m). If A is not divisible by p, the prime
p is called semi-regular. In that case h*(m) and hence [U;"(C) : UP(C)] is
also prime to p. Vandiver’s conjecture (|26], remark at page 159), says that
this would be true for any prime p. So far it has been verified for p less than
12 million.

Definition 4.27. A prime number p is said to be regular if it doesn’t divide
the class number of the full cyclotomic field Q((,), where ¢, is a p-th primitive
root of unity.

For a prime number p to be regular is definitely a restrictive condition; the
first irregular primes are 37, 59, 67, 101, 103, 131, 149. It is relatively easy
to show that there are infinitely many irregular primes, but the infinitude of
regular primes is still just a conjecture.

Proposition 4.28. If p is a regular prime, Y (C) = UP(C).

Proof The main reason for this is a generalization of Kummer’s lemma
[12|, which for regular p says that u — u™ P yields an isomorphism

U (C) = kerp,

the map p now referring to the reduction modulo p on all of U;F(C). Shifting
our attention from U (C) to U, (C) is not difficult because, by previous
remark, for regular primes, the index [U;F(C) : UZ(C)] is prime to p.

For any Z-module X, let X = X ® Z,. Then we have UZ(C) = Ui (C).
Since Z, is flat over Z, the hat functor is exact. Thus it preserves the iso-
morphism Ujt (C) = kerp, as well as ker¢) = kerp. We can now read through
the proof of proposition 4.25, putting hats on everything and replacing the
words 'p-power index’ by ’index 1°. This proves that )\ is an isomorphism,
hence that the index of A is prime to p.

Proposition 4.29. If m > 2 and Y (C) = U (C), then p is reqular.

Proof We have the direct decomposition U (C) = Cy - W(C') X kerp and
Y(C) = W(C) x imk, where k is defined in the proof of proposition 4.25.
Hence U%(C)/Y (C) is isomorphic to kerp/imk. A glance at the second
diagram in the proof of proposition 4.25 shows that 7 induces a surjection
of kerp/im k onto kerp/U(CP)™P. Hence Y (C) = U (C) implies kerp =
Ug(cr)ymr.
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Now we have both maps into kerp in the diagram referred above being
isomorphisms. Hence the surjectivity of x implies that of

T W(C) x -+ x VV(C)WW2 — UP(CP),

ie. UP(CP) =Y (CP).
By recursively applying this fact, we may assume that m = 2. Then C?
has order p, and the result on kerp yields an exact sequence

1 — UP(CP)P — UP(CP) 5 Uy (CP),

i.e. the image p(Uy”(CP)) has dimension (p —3)/2 in the F,-module U;F(Cp),
where the bar denotes the reduction modulo p. This is precisely equivalent
to the non-vanishing of the Bernoulli numbers By, By, ..., B,_3 [23], i.e. to
the regularity of p ([3], chapter V, §6.3).

Finally we can deal with a general abelian p-group A of exponent g = p”.
Let M4 be the maximal order in the rational group algebra Q[A]. We re-
call that UP(A) and U?(M,) are the symmetric units of augmentation 1
of, respectively, Z[A] and My, such that every Wedderburn component ap-
pears as a cyclotomic unit. Between them lies the group U'(M,) of those
circular units which are congruent to 1 modulo the ideal A(A)M 4; its Wed-
derburn components U'(¢,) C Uy(C,) consist of units which are congruent
to 1 modulo the prime ideal above p in Z[(,].

Now we want to prove that the cokernel of the natural map

ar: [[UNQ[C)) — UM(Q[A)),
C

as C runs over all cyclic subgroups of A, is a finite p-group. This is true
provided that the functor U satisfies the following condition: for every p-
subgroup I' € G = Aut(A), the I'-fixed submodule U*(Q[¢])F is the isomor-
phic image of U'(Q[¢*']) under the natural inclusion [15]. We check this in
the following lemma.

Lemma 4.30. Let I' C G be a p-group and put n = ¢*'. Then u € UY(() is
fized under T if and only if u € U'(n).

Proof The prime ideal above p in Z[n] is the I-fixed part of the analogous
ideal in Z[¢]. Hence the lemma is just saying that U (n) = UZ(¢) N Q[n),
that is a well-known fact [19].
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Lemma 4.31. The cokernel of

ar: [JUR(C) = UP(A),
C

as C ranges over all cyclic subgroups in A, is a finite p-group, which is trivial
if p is reqular.

Proof The multiplicative group E,(A) = 1+ A,(A), where A,(A) de-
notes the kernel of the p-adic augmentation Z,[A] — Z,, is of finite in-
dex in Ep(My) = 1+ Ap(Ma), where Ay(My) = Ay(A) My is the direct
sum of the appropriate prime ideals in the Wedderburn components. Since
E,(My) is a Z,module (|27],I1.3, proposition 9), this index is a p-power.
For UY (M) = UP(Ma) N E,(My), this implies that U (M) /U (A) is a
finite p-group. In fact for every u € U'(M,) a suitable p-power v lies in
E,(A). Thus v has rational coefficients that are integral with respect to p.
On the other hand (§A)v € Z[A] because v € My (|24], theorem 41.1) and
therefore v € Z[A]NUP (M) = UP(A).

Now look at the commutative square

[[vE©) — Uf(4)
C

}
[[V'Me) — U (Ma)
C

We have just seen that [U'(Mg) : UP(C)] is a p-power for every cyclic
subgroup C'. Thanks to the previous lemma, we can conclude that also the
bottom horizontal arrow has p-power index.

Since the cokernel in question is a p-group, it is also the cokernel of the
map

6 [I0F(€) - TF(4),
c
where the hat denotes p-adic completion as before. Now, if p is regular,

remark 4.26 shows us that UP(A) = U;"(A), so that &, shows up as the
higher horizontal arrow in the diagram

[[ui©) —ufw
C

|
[T 05 C) — Ui(A).
C
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where U} (A) is the group of symmetric units in the p-adic group ring Z,[A]
with augmentation 1 and G-norm 1. The lower horizontal arrow of this
diagram is surjective [13]. The proofis finished by remarking that, for regular
p, the vertical arrows are bijective [20].

Corollary 4.32. The natural map

M [[we) — UA),
C

with the product direct and C' ranging over all cyclic subgroups of A, is an
injection of p-power indez; it 1s bijective if p is reqular.

Proof We already proved this for cyclic A. Thus, for every uc € U (C)
a certain p-power is constructible, i.e. in Y/(C'). By previous lemma, for every
u € UP(A) a certain p-power is a product of such uc, hence a possibly higher
p-power will be constructible. These p-powers are trivial in the regular case.

Remark 4.33. We defined the group of constructible units Y (A) to be
imAq = [[o W(C). In particular, if B C A, it follows that

Y(A) =Y(B)x [ w(C).
C'¢B

This implies that the notion of constructibility does not depend on the am-
bient group. In other words, a unit u € U{(B) can not be made con-
structible by going to a larger group, i.e. Y (A)NUP(B) = Y(B). In fact,
if u e Y(A) NUP(B), a certain power v lies in Y(B). Now, if we factor
u=wv-v withv € Y(B) and v' € HC,gB W(C"), the N-th power of v" would
be trivial; but there is no torsion, hence v = 1.

We can summarize what we said in the following theorem.

Theorem 4.34. Let A be an abelian p-group of order > p. Then UP(A)
contains Y (A) as a subgroup of p-power index c(A) and c¢(A) = 1 if and only
iof p 1s reqular.

Proof Almost everything follows immediately from what we said above.
It remains to be shown that Y (A) # U?(A) if p is non regular and A is non
cyclic, elementary abelian. For this we refer to [17] and [19] and we will just
give an example.

Example 4.35. We want to show a non constructible unit, as provided by
Hoechsmann in [16]. If A is an abelian group of order p?, where p is an
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irregular prime there is a procedure that gives non constructible units . We
do this in the easiest case, choosing p = 37 the first irregular prime, and A
to be elementary abelian of order p2.

A non constructible unit in this case is

L (42”4 .+ 2?7 e’ + a7 2% + 275 — 1),
el

where (z) = A, I = {1,2,3,4,5,8,9,10, 15} and

c1 = +1826391438413288649 ¢y = —1021466795253062642
cs = +162246643879408744 ¢4 = +706070271863032512
cs = —1501545774926023726 cg = +878425477417643782
cog = —280909292629400144  ¢19 = —328201689410415248
c15 = +106002969513013355

For the theory about non constructible units we refer to |11] and |16].

To conclude, we want to say briefly what is known more than what we
exposed about the index ¢(A). Hoechsmann himself studied it for cyclic
groups of order pq, for p and ¢ distinct primes, in [10] and [18]. One of his
students, R. A. Ferguson, devoted his PhD thesis to the study the index c¢(A)
for cyclic group rings for order p"¢® and was able to find an inductive method
to compute it [9].
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