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Chapter 1

Introduction

In this thesis we will study the interplay between flows and C∗-algebras. We
first need some preliminary definitions. Let G be a locally compact group
with a unit element e, and X a compact Hausdorff space. We say that G
acts on X if we have a continuous map G×X → X, such that e ·x = x and
st · x = s · (t · x) for all x ∈ X and s, t ∈ G. The pair (G,X) is a dynamical
system which we will call a transformation group.

Let C(X) be the space of continuous complex-valued functions on X and let
Aut C(X) be the automorphism group of C(X). Then the action of G on
X gives us a homomorphism α from G to Aut C(X) in the following way.
Let s ∈ G, then let αs be the map that sends a function f ∈ C(X) to the
function x → f(s−1 · x)(x ∈ X). This map is an automorphism of C(X).
We define α to be the map that sends s ∈ G to αs. Then it can be shown
that s→ αs(f) is a continuous map from G to C(X) for all f ∈ C(X).

On the other hand, if we start with such a map α : G→ Aut C(X), with G
a locally compact group and X a compact Hausdorff space, we can construct
an action of G on X that makes (G,X) into a transformation group.

C(X) is an example of a (commutative) C∗-algebra. We can now general-
ize the notion of dynamical systems by taking a more general C∗-algebra
A instead of C(X). So we let G be a locally compact group, and α a ho-
momorphism from G to Aut A (the automorphism group of A), such that
s→ αs(a) is a continuous map from G to A for all a ∈ A. Then we call the
triple (A,G, α) a C∗-dynamical system.

To each C∗-dynamical system, we can associate in a natural way a certain
C∗-algebra, called a crossed product C∗-algebra. One of the reasons why this
is useful is that it provides interesting examples of non-commutative C∗-
algebras with certain properties. There is a well developed general theory
on these crossed product C∗-algebras.
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Then we can also look at specific choices of G, like G = Z (discrete dy-
namical systems) or G = R (flows). Of course, we can apply results coming
from the general theory for crossed product C∗-algebras to these dynami-
cal systems, however, in that context the general theory does not provide
the most economic proofs, nor the strongest possible results. Also, by look-
ing at these specific dynamical systems, certain aspects can be studied that
have not been looked at in the general context, or are not meaningful there,
like, for instance, recurrent points and non-wandering sets. Therefore it is
useful to try to develop results on the crossed product C∗-algebras arising
from these specific dynamical systems, in which the dynamics remain visi-
ble. Furthermore, in these cases it becomes interesting to try to establish
equivalences between properties of the dynamical systems and properties of
their associated crossed product C∗-algebras, instead of just using the dy-
namical systems to construct certain C∗-algebras. This interplay has been
extensively studied by Tomiyama and others in the case of discrete dynami-
cal systems. For instance, equivalence between minimality of the dynamical
system and simplicity of the associated crossed product C∗-algebra has been
shown. Incidentally, many results in this setting have not required X to be
metrizable, which is equivalent to C(X) to be separable, unlike the general
theory of crossed product C∗-algebras, where separability of the C∗-algebra
A is often necessary.

Much less is known on the interplay between flows and their associated
crossed product C∗-algebras. In this thesis, we will associate irreducible
representations of the C∗-algebra to periodic points x of the flow and irre-
ducible representations of the isotropy subgroup at x, Rx. This has already
been studied in the case of discrete dynamical systems. We will be able to
show that x, y ∈ X are in the same orbit and the irreducible representations
u, v of Rx and Ry are unitarily equivalent if and only if their associated
irreducible representations of the crossed product C∗-algebra are unitarily
equivalent.

For this we will need quite some background theory. In chapter 2 we will
start with defining the C∗-dynamical systems, and try to convey the idea
of the construction of the crossed product C∗-algebra associated to such a
dynamical system. In chapter 3 we will give (part of) an overview on the
interplay between discrete dynamical systems and C∗-algebras, and look at
the construction of representations associated to periodic points in greater
detail. In chapter 4 we will give an introduction to flows, and give the
idea of how to construct unitary representations of groups coming from
unitary representations of closed subgroups. We will use this to construct
our representations of the crossed product C∗-algebras associated to periodic
points of the flows. We will look at two different cases: points with period
p > 0 and points with period p = 0.

6



In Appendix A we will give a short introduction on the theory of C∗-algebras.
In Appendix B we will give the definition and properties of the Haar measure
on locally compact groups. Both appendices will have no proofs. Finally, in
Appendix C we will prove Schur’s Lemma.
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Chapter 2

Crossed Products

In this chapter we will define a C∗-dynamical system, construct the crossed
product C∗-algebra, and show some relations between these two structures.
We will not, however, give all the technical details of the proofs, since there
are books that can be consulted on this. The goal in this chapter is to give
the ideas behind the construction, and the flavour of the proofs.

2.1 C*-dynamical systems and covariant represen-
tations

Let G be a topological group with unit element e, and X a topological space.
X is a a left G-space, if there is a continuous map

φ : (s, x) → s · x

from G×X → X, such that for every s, t ∈ G, x ∈ X

e · x = x and s · (t · x) = (st) · x.

Proposition 2.1.1. Let X be a left G-space. Then for any s ∈ G the map
on X defined by x→ s · x is continuous.

Proof. Let s ∈ G. Then the function fs from X to G × X, defined by
x → (s, x) is continuous. For let U be an open subset of G, V an open
subset of X, then f−1

s (U × V ) = ∅ if s 6∈ U , and f−1
s (U × V ) = V if s ∈ U .

Since the family {U×V |U ⊂ G open,V ⊂ X open} is a basis for the product
topology, we can conclude that fs is continuous.
Now, φ◦fs sends x to s·x, and it is continuous, since φ and fs are continuous.
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Now it follows that, for every s ∈ G, the map that sends x ∈ X to s · x is a
homeomorphism on X, since it is continuous, and its inverse, the map that
sends x to s−1 · x, is also continuous.
If X is a left G-space, we call (G,X) a transformation group, and we say
(G,X) is locally compact if both G and X are locally compact.

Let (G,X) be a locally compact transformation group. We define the
isotropy subgroup at x ∈ X to be Gx := {g ∈ G|g · x = x}, which is in-
deed a subgroup of G. For each element x ∈ X, we can define the orbit of
x under G as follows: OG(x) := {s · x|s ∈ G}.

Lemma 2.1.2. Let (G,X) be a transformation group, then for every x, y ∈
X, either OG(x) = OG(y) or OG(x)

⋂
OG(y) = ∅.

Proof. Take x, y ∈ X and suppose OG(x)
⋂
OG(y) 6= ∅. Then there are

s, t ∈ G such that s · x = t · y. Then for any r ∈ G we have

r · x = (rs−1) · (s · x) = (rs−1) · (t · y) = (rs−1t) · y.

Hence OG(x) ⊆ OG(y). Analogously we see that OG(y) ⊆ OG(x).

Let (G,X) be a locally compact transformation group and let C0(X) be the
vector space of all continuous complex-valued functions f on X that vanish
at infinity, i.e., with the property that for every ε > 0 there is a compact
set K ⊂ X such that |f(x)| < ε whenever x is outside of K. Then C0(X)
becomes a C∗-algebra with respect to the supremum norm

‖f‖∞ := sup
x∈X

‖f(x)‖ for every f ∈ C0(X),

pointwise multiplication and the involution

f∗(x) := f(x) for all f ∈ C0(X).

We define the following map from G to Aut C0(X) (where Aut C0(X) is the
group of ∗-automorphisms on C0(X)).

αs(f)(x) := f(s−1 · x) for every s ∈ G, x ∈ X, f ∈ C0(X).

Then for every s, t ∈ G, we have

αs(αt(f))(x) = αt(f)(s−1 · x) = f(t−1s−1 · x) = αst(f)(x).

So αs ◦ αt = αst, hence α is a homomorphism of G into Aut C0(X).
For this map the following holds.
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Proposition 2.1.3. Let (G,X) be a locally compact transformation group.
Then for every f ∈ C0(X), t→ αt(f) is a continuous map from G to C0(X).

The proof of this proposition can be found in [21, Lemma 2.5].

This result can also be reversed. From [21, Proposition 2.7] we get that if we
start with a locally compact group G, a locally compact Hausdorff space X
and a homomorphism α : G→ Aut C0(X), such that for every f ∈ C0(X),
t → αt(f) is a continuous map from G to C0(X), then there is a unique
transformation group (G,X), such that

αs(f)(x) = f(s−1 · x) for every s ∈ G, x ∈ X, f ∈ C0(X).

Now, C0(X) is a commutative C∗-algebra, and in fact any commutative C∗-
algebra A is isomorphic to C0(X) with X a locally compact Hausdorff space
(see Appendix A). So instead of looking at a locally compact transformation
group (G,X), we can also start with a homomorphism from a locally com-
pact group G into Aut A, the group of ∗-automorphisms on a commutative
C∗-algebra A, such that for every f ∈ A, t → αt(f) is continuous from
G into A. We can now generalize this notion of transformation groups to
non-commutative C∗-algebras.

Definition 2.1.4. Let A be a C∗-algebra, G a locally compact group, and
α a homomorphism from G into Aut A, such that t → αt(a) is continuous
from G to A for all a ∈ A. We then call the triple (A,G, α) a C∗-dynamical
system.

Now we want to define representations of these C∗-dynamical systems. For
that we first need some preliminary definitions. We denote the group of
unitary operators on a Hilbert space H by U(H).

Definition 2.1.5. A unitary representation (u,H) of a topological group
G, with H a Hilbert space, is a group homomorphism u from G into U(H),

u : s→ us,

which is continuous in the strong topology of B(H), i.e., for every h ∈ H
the function s→ us(h) is norm continuous.

When the Hilbert space H is known from the context, we will write u instead
of (u,H). We can also define representations of C∗-algebras. More on this
subject can be found in Appendix A. Just as in the case of representations of
C∗-algebra’s, we have the following notions of equivalence and irreducibility.
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Definition 2.1.6. Two unitary representations (u,H) and (v,K) of a
topological group G are unitarily equivalent if there is a unitary operator
W ∈ B(H,K) such that

vs = WusW
∗ for all s ∈ G.

(u,H) is irreducible if the only closed subspaces M ⊂ H, such that u(G)M ⊂
M are the trivial ones, i.e., M = {0} or M = H.

The commutant of a set operators D ⊂ B(H), where H is a Hilbert space,
is defined as

D′ := {T ∈ B(H)| TS = ST for all S ∈ D}.

The following theorem will be useful when dealing with irreducible repre-
sentations

Theorem 2.1.7. (Schur’s Lemma) Let H be a Hilbert space and S ⊂ B(H),
such that S∗ = S. Then the following two statements are equivalent.

1. The only closed invariant linear subspaces M ⊂ H for S are the trivial
ones: {0} and H.

2. S′ = CI, with I the identity operator in B(H).

We will give a proof of this theorem in Appendix C.

If u is a unitary representation of G, then for any s ∈ G, us−1 = u−1
s = u∗s.

We shall write u(G) to denote the set {us|s ∈ G}. Then (u(G))∗ = u(G).
Hence we have the following corollary of the above theorem.

Corollary 2.1.8. Let (u,H) be a unitary representation of a topological
group G. Then (u,H) is irreducible if and only if the only operators in
B(H) commuting with u(G) are scalar multiples of the identity.

Definition 2.1.9. A covariant representation of a C∗-dynamical system
(A,G, α) is a triple (π, u,H) where (π,H) is a representation of A, (u,H) is
a unitary representation of G, and

π(αs(a)) = usπ(a)u∗s for all a ∈ A and s ∈ G.

We say that two covariant representations (π, u,H) and (ρ, v,K) are unitarily
equivalent if there is a unitary operator W : H → K such that

ρ(x) = Wπ(x)W ∗ and vs = WusW
∗ for all x ∈ A, s ∈ G.
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We call (π, u,H) irreducible, if the only closed subspaces M ⊂ H, such that
π(A)M ⊂ M and u(G)M ⊂ M , are the trivial ones: {0} and H. We say
(π, u,H) is non-degenerate if π is non-degenerate, i.e., π(A)H is a dense
subset of H.

Again, when the Hilbert space H is known from the context, we write (π, u)
instead of (π, u,H). And since π(A) ∪ u(G) is invariant under taking ad-
joints, we can again apply Theorem 2.1.7 to get the following corollary.

Corollary 2.1.10. Let (π, u,H) be a representation of the C∗-dynamical
system (A,G, α). Then (π, u,H) is irreducible if and only if the only oper-
ators in B(H) commuting with both π(A) and u(G) are scalar multiples of
the identity.

We can easily construct trivial covariant representations of a C∗-dynamical
system (A,G, α). Let (π,H) be a representation of A and let uI be the uni-
tary representation of G that sends every element to IH. Then (π, uI ,H) is a
covariant representation of (A,G, α). Now let (u,H) be a unitary represen-
tation of G and π0 the representation of A that sends every element to the
zero operator 0, then (π0, u,H) is also a covariant representation of (A,G, α).

However, these covariant representations are not very interesting. We can
also construct non-trivial covariant representations of (A,G, α). Let (π,H)
be a representation of A. If we complete the vector space Cc(G,H) with
respect to the norm ‖.‖2 coming from the inner product

〈h, k〉 :=
∫

G
〈h(s), k(s)〉 dµ(s) for all h, k ∈ Cc(G,H),

we get a Hilbert space which we shall denote by L2(G,H). We can also think
of L2(G,H) as the space of (equivalent classes of) certain H-valued functions
on G; the details on this Hilbert space can be found in [21, Appendix I].
Now we define

π̃(a)h(r) := π(α−1
r (a))(h(r)) for all a ∈ A, h ∈ L2(G,H), r ∈ G,

and
ush(r) = h(s−1r) for all s, r ∈ G, h ∈ L2(G,H).

Then it can be shown that (π̃, u, L2(G,H)) is a covariant representation of
(A,G, α) called the regular representation of (A,G, α) induced by (π,H).
Also, π̃ is faithful if π is faithful. And from [21, Lemma 2.17] we get that
(π̃, u, L2(G,H)) is non-degenerate if and only if (π,H) is non-degenerate.
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2.2 Crossed products

We can now use a C∗-dynamical system to build a C∗-algebra, the so-called
crossed product, whose properties are connected to that of the C∗-dynamical
system.

Let (A,G, α) be a C∗-dynamical system. To make our life a little easier,
we will assume G to be unimodular, i.e., its left Haar measure µ is also a
right Haar measure (see Appendix B). The whole theory works fine without
this assumption, but it makes some calculations a bit less technical, and
in the subsequent chapters we will only be looking at abelian (and hence
unimodular) groups anyway.

We will have to look at the theory of integration for functions with values in
C∗-algebras, which can be complicated, but we will simplify things by only
integrating continuous functions with compact support with respect to the
Haar measure µ on the locally compact group G.

So, now we look at the vector space Cc(G,A), consisting of all continuous
functions fromG into A which have compact support. It is actually a normed
vector space:
For any f ∈ Cc(G,A), the function s→ ‖f(s)‖ belongs to Cc(G), and

‖f‖1 :=
∫

G
‖f(s)‖ dµ(s)

satisfies ‖f‖1 ≤ ‖f‖∞µ(supp f) < ∞. Then ‖.‖1 is a norm on Cc(G,A),
which we shall call the L1-norm.

We want to turn Cc(G,A) into a ∗-algebra, i.e., define a multiplication and
involution that satisfies the necessary conditions. For this multiplication we
will need to be able to integrate. After we have shown how to do this, we
will see that we can find a certain C∗-algebra in which Cc(G,A) lies dense;
this will be the crossed product C∗-algebra, associated to our C∗-dynamical
system.

From [21, Lemma 1.91] we get that there exists a unique linear map I :
Cc(G,A) → A, such that for any continuous linear functional ϕ on A, we
have

ϕ(I(f)) =
∫

G
ϕ(f(s)) dµ(s) for all f ∈ Cc(G,A).

Since ϕ is continuous and f ∈ Cc(G,A), the function s → ϕ(f(s)) is in
Cc(G), hence the above integral makes sense. We now define the integral of
a function f ∈ Cc(G,A) over G as this linear map I.∫

G
f(s) dµ(s) := I(f).
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Proposition 2.2.1. The map f →
∫
G f(s) dµ(s) defined above has the fol-

lowing properties.

1. Let (π,H) be a representation of A, then

〈π(
∫

G
f(s) dµ(s))h, k〉 =

∫
G
〈π(f(s))h, k〉 dµ(s) for all h, k ∈ H.

2. Let L : A → B be a bounded linear map into a C∗-algebra B, then
L(

∫
G f(s) dµ(s)) =

∫
G L(f(s)) dµ(s).

3. (
∫
G f(s) dµ(s))∗ =

∫
G f(s)∗ dµ(s).

The proof of these results can be found in [21, Section 1.5].

Let a ∈ A and f ∈ Cc(G,A). Then clearly the map on A sending b to ba is
linear and bounded, hence Proposition 2.2.1 2. implies that∫

G
f(s)a dµ(s) =

∫
G
f(s) dµ(s)a. (2.1)

Likewise we get

∫
G
af(s) dµ(s) = a

∫
G
f(s) dµ(s). (2.2)

We also have the following proposition.

Proposition 2.2.2. Let f ∈ Cc(G,A), then for each r ∈ G we have∫
G
f(sr) dµ(s) =

∫
G
f(s) dµ(s), (2.3)

∫
G
f(rs) dµ(s) =

∫
G
f(s) dµ(s), (2.4)

and ∫
G
f(s−1) dµ(s) =

∫
G
f(s) dµ(s). (2.5)

Proof. Since µ is a unimodular Haar measure of G, we see that for any linear
functional ϕ on A the following holds.∫

G
ϕ(f(s)) dµ(s) =

∫
G
ϕ(f(sr)) dµ(s) =

∫
G
ϕ(f(rs)) dµ(s).
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Hence by definition we get that

ϕ(
∫

G
f(s) dµ(s)) = ϕ(

∫
G
f(sr) dµ(s)) = ϕ(

∫
G
f(rs)) dµ(s).

Hence
∫
G f(sr) dµ(s) =

∫
G f(rs) dµ(s) =

∫
G f(s) dµ(s).

Since we also have∫
G
ϕ(f(s−1)) dµ(s) =

∫
G
ϕ(f(s)) dµ(s),

we get the second statement analogously.

We also want to be able to interchange the order of integration in some
way. With ordinary scalar-valued integrals this can be done using Fubini’s
Theorem. Using this theorem, an analogous result for the vector-valued in-
tegration is proven in [21, Proposition 1.105].

Proposition 2.2.3. Suppose that F ∈ Cc(G×G,A). Then

s→
∫

G
F (s, r) dµ(r) and r →

∫
G
F (s, r) dµ(s),

are in Cc(G,A) and the iterated integrals∫
G

∫
G
F (s, r) dµ(s) dµ(r) and

∫
G

∫
G
F (s, r) dµ(r) dµ(s)

have a common value.

Now we want to construct a multiplication and involution on the normed
vector space Cc(G,A). For this we finally need the map α, coming from
the C∗-dynamical system (A,G, α). Let f, g ∈ Cc(G,A), then (s, r) →
f(r)αr(g(r−1s)) is in Cc(G × G,A), which can be easily shown. Then the
first statement in Proposition 2.2.3 guarantees that

f ∗ g(s) :=
∫

G
f(r)αr(g(r−1s)) dµ(r)

actually defines an element of Cc(G,A), which is the convolution of f and
g. For every f ∈ Cc(G,A), we define

f∗(s) := αs(f(s−1)∗) for every s ∈ G.

Then f∗ is also in Cc(G,A). So we have a map ∗ from Cc(G,A) to Cc(G,A),
sending f to f∗.
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It is easy to show that the convolution is a bilinear map and that ∗ is a
conjugate linear map. Furthermore, the following properties are satisfied.
Let f, g, h ∈ Cc(G,A), then

f ∗ (g ∗ h) = (f ∗ g) ∗ h,

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1,

(f ∗ g)∗ = g∗ ∗ f∗,

(f∗)∗ = f.

This means that Cc(G,A) becomes a normed ∗-algebra, by taking the con-
volution as multiplication, and the map ∗ as involution.

It is not hard to prove the properties above by using the earlier mentioned
properties of vector-valued integration. To give an idea of how to do this,
we shall prove the associativity of the multiplication.

Proposition 2.2.4. Let f, g, h ∈ Cc(G,A), then (f ∗ g) ∗ h = f ∗ (g ∗ h).

Proof.

(f ∗ g) ∗ h(s) =
∫

G
(f ∗ g)(r)αr(h(r−1s)) dµ(r)

=
∫

G

∫
G
f(t)αt(g(t−1r)) dµ(t)αr(h(r−1s)) dµ(r).

Since αr(h(r−1s)) does not depend on t, we can bring it inside the inner
integral, by (2.1), and then we can interchange the integrals by Proposition
2.2.3. So we get∫

G

∫
G
f(t)αt(g(t−1r))αr(h(r−1s)) dµ(r) dµ(t).

Then, by using (2.3), we can replace r by tr inside the inner integral, without
changing its value. This gives us∫

G

∫
G
f(t)αt

(
g(r)αr(h(r−1t−1s))

)
dµ(r) dµ(t).

Since f(t) does not depend on r, we can bring it out of the inner integral,
by (2.2). Also, for every t ∈ G, αt ∈ Aut A, hence αt is a bounded linear
map on A, hence by Proposition 2.2.1 2. we can also bring αt outside the
inner integral. Then we get

∫
G
f(t)αt

∫
G
g(r)αr(h(r−1t−1s)) dµ(r) dµ(t).
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Now, since (g ∗ h)(t−1s) =
∫
G g(r)αr(h(r−1t−1s)) dµ(r), we finally arrive at∫

G
f(t)αt(g ∗ h)(t−1s) dµ(t) = f ∗ (g ∗ h)(s).

Cc(G,A) is not yet a C∗-algebra. In fact, it need not even be complete with
respect to its norm. In order to be able to define an ’enveloping’ C∗-algebra
of Cc(G,A), we will need the notion of representations on Cc(G,A). These
are defined just like representations of C∗-algebras.

Definition 2.2.5. A ∗-representation of Cc(G,A) is a pair (π,H), where
H is a Hilbert space and π : Cc(G,A) → B(H) a ∗-homomorphism. We say
(π,H) is non-degenerate if

{π(f)h|f ∈ Cc(G,A), h ∈ H}

spans a dense subset of H. If ‖π(f)‖ ≤ ‖f‖1 for all f ∈ Cc(G,A), we call
(π,H) L1-norm decreasing.

When H is known from the context, we will write π instead of (π,H). Now
we want to construct ∗-representations of Cc(G,A), coming from covariant
representations of (A,G, α). Let (π, u,H) be a covariant representation, and
f ∈ Cc(G,A). Then for each s ∈ G we get π(f(s))us ∈ B(H), so we get
a function from G to B(H). Now we would want to integrate this function
over G, just like we did before, which should give us an element of B(H).

Then we could define a map from Cc(G,A) to B(H) by sending f to∫
G π(f(s))us dµ(s). The problem is that the theory we introduced above

won’t quite work here, for we would need that the function s → π(f(s))us

is in Cc(G,B(H). Since f ∈ Cc(G,A), and π is a continuous map from A
to B(H), the function s→ π(f(s)) is in Cc(G,B(H)), but we can claim no
such thing for the function s→ us. This function is continuous in the strong
operator topology and it maps into U(H), hence into B(H), but it is not
norm continuous, which is what we want.

We can still make sense of this integral by looking at sesquilinear forms.

Definition 2.2.6. A sesquilinear form [ . , . ] on a Hilbert space H is a
function from H × H to C, sending (h, k) ∈ H × H to [h, k], such that for
all h, k,m ∈ H and λ, µ ∈ C

1. [λh+ µk,m] = λ[h,m] + µ[k,m]

2. [h, λk + µm] = λ̄[h, k] + µ̄[h,m]
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It is bounded if there exists a constant M such that |[h, k]| ≤ M‖h‖‖k‖ for
all h, k ∈ H.

If A ∈ B(H) then it is easy to see that the function defined by [h, k] :=
〈Ah, k〉 is a bounded sesquilinear form on H. The converse is also true.

Theorem 2.2.7. For every bounded sesquilinear form [ . , . ] on H with
bound M , there is a unique operator A ∈ B(H) such that

[h, k] = 〈Ah, k〉 for all h, k ∈ H

and ‖A‖ ≤M .

The proof is not difficult and can be found in [2, Proposition 2.1.1].

Now let (π, u,H) be a covariant representation of (A,G, α) and f ∈ Cc(G,A).
We define

[h, k] =
∫

G
〈π(f(s))ush, k〉 dµ(s) for all h, k ∈ H. (2.6)

Since s→ π(f(s))us is continuous in the strong operator topology, it is also
continuous in the weak operator topology, i.e., the function s→ 〈π(f(s))ush, k〉
is continuous for all h, k ∈ H. It has compact support, because f has com-
pact support, hence it is in Cc(G). Therefore the integral in (2.6) makes
sense.

Lemma 2.2.8. The function [ . , . ] : H×H → C defined above is a bounded
sesquilinear form on H.

Proof. It is easy to verify that [ . , . ] is a sesquilinear form, since both us

and π(f(s)) are linear, and the inner product is linear in the first variable
and conjugate linear in the second variable. We will now show that this
sesquilinear form is bounded. Let h, k ∈ H, then

|
∫

G
〈π(f(s))ush, k〉 dµ(s)| ≤

∫
G
|〈π(f(s))ush, k〉| dµ(s)

≤
∫

G
‖π(f(s))‖‖us‖‖h‖‖k‖ dµ(s),

by the Cauchy-Schwarz inequality. Since us is a unitary operator, ‖us‖ = 1,
and ‖π(f(s))‖ ≤ ‖f(s)‖, hence we have∫

G
‖π(f(s))‖‖us‖‖h‖‖k‖ dµ(s) ≤ ‖h‖‖k‖

∫
G
‖f(s)‖ dµ(s) = ‖h‖‖k‖‖f‖1.
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If we then apply Theorem 2.2.7 to the bounded sesquilinear form defined in
the above lemma, we get that there is a unique operator in B(H), which we
shall denote by π o u(f), such that

[h, k] = 〈π o u(f)h, k〉 =
∫

G
〈π(f(s))ush, k〉 dµ(s).

Now we can make sense of the integral we mentioned before and define∫
G
π(f(s))us dµ(s) := π o u(f).

Then we can define a map π o u from Cc(G,A) to B(H) by sending f to
π o u(f). Now we wish to show that π o u actually is a ∗-representation of
Cc(G,A). First of all it is linear.∫

G
〈π(λf(s)+µg(s)h, k〉 dµ(s) = λ

∫
G
〈π(f(s))ush, k〉 dµ(s)+µ

∫
G
〈π(g(s))ush, k〉 dµ(s),

hence
π o u(λf + µg) = λπ o u(f) + µπ o u(g).

Furthermore we need to show that for every f ∈ Cc(G,A), π o u(f∗) =
(π o u(f))∗. This is true if and only if 〈π o u(f∗)h, k〉 = 〈h, π o u(f)k〉 for
all h, k ∈ H.

〈πou(f∗)h, k〉 =
∫

G
〈π(f∗(s))ush, k〉 dµ(s) =

∫
G
〈π(αs(f(s−1)∗))ush, k〉 dµ(s).

The covariance of (π, u) gives us that π(αs(a))us = usπ(a) for all a ∈ A.
Hence we have∫

G
〈π(αs(f(s−1)∗))ush, k〉 dµ(s) =

∫
G
〈usπ(f(s−1)∗)h, k〉 dµ(s)

=
∫

G
〈π(f(s−1))∗h, u∗sk〉 dµ(s)

=
∫

G
〈h, π(f(s−1))u∗sk〉dµ(s)

=
∫

G
〈h, π(f(s−1))us−1k〉 dµ(s)

Since G is unimodular, we can replace s with s−1 without affecting the
outcome. Then we get∫

G
〈h, π(f(s−1))us−1k〉 dµ(s) =

∫
G
〈h, π(f(s))usk〉dµ(s) = 〈h, π o u(f)k〉,

as we wanted.
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Lemma 2.2.9. Let (π, u,H) be a covariant representation of (A,G, α).
Then π o u(f ∗ g) = π o u(f) ◦ π o u(g) for all f, g ∈ Cc(G,A).

Proof. Let f, g be in Cc(G,A). If we can show that

〈π o u(f ∗ g)h, k〉 = 〈(π o u(f) ◦ π o u(g)h, k〉

for all h, k ∈ H, then we are done (by Theorem 2.2.7). So let h, k be in H.
By definition we get

〈π o u(f ∗ g)h, k〉 =
∫

G
〈π((f ∗ g)(s))ush, k〉 dµ(s)

=
∫

G
〈π(

∫
G
f(t)αt(g(t−1s)) dµ(t))ush, k〉 dµ(s).

We can bring π inside the inner integral by Proposition 2.2.1 2. Since us is
a constant with respect to t, we can bring it inside as well by using (2.1).
So we get ∫

G
〈
∫

G
π(f(t))π(αt(g(t−1s)))us dµ(t)h, k〉 dµ(s).

The map t → π(f(t))π(αt(g(t−1s)))us is in Cc(G,B(H), so we can apply
Proposition 2.2.1 1. to get∫

G

∫
G
〈π(f(t))π(αt(g(t−1s)))ush, k〉 dµ(t) dµ(s).

The map from G × G to B(H) sending (s, t) to π(f(t))π(αt(g(t−1s)))us is
continuous in the strong operator topology. Therefore the map from G×G to
C sending (s, t) to 〈π(f(t))π(αt(g(t−1s)))ush, k〉 is continuous (with compact
support). So we can apply Fubini’s Theorem for scalar valued functions to
interchange the two integrals. Now, in the new inner integral, we can replace
s by ts. This gives us∫

G

∫
G
〈π(f(t))π(αt(g(s)))utush, k〉 dµ(s) dµ(t).

By covariance of (π, u) and applying Fubini’s Theorem a second time, we
arrive at∫

G

∫
G
〈π(f(t))utπ(g(s))ush, k〉 dµ(t) dµ(s) =

∫
G
〈π o u(f)π(g(s))ush, k〉 dµ(s)

=
∫

G
〈π(g(s))ush, (π o u(f))∗k〉 dµ(s)

We can then bring the integral inside the inner product, by using the defi-
nition. This gives us

〈
∫

G
π(g(s))us dµ(s)h, (π o u(f))∗k〉 = 〈π o u(g)h, (π o u(f))∗k〉

= 〈π o u(f) ◦ π o u(g)h, k〉,
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which is what we wanted to show.

π o u is also L1-norm decreasing, since, for every f ∈ Cc(G,A), ‖f‖1 is a
bound for the sesquilinear form [h, k] =

∫
G〈π(f(s))ush, k〉dµ(s), and then

we get from Theorem 2.2.7 that ‖π o u(f)‖ ≤ ‖f‖1. Furthermore, it is
proven in [21, page 52] that π o u is non-degenerate if π is non-degenerate.

So we get the following proposition.

Proposition 2.2.10. Suppose that (π, u,H) is a (possible degenerate) co-
variant representation of (A,G, α). Then

π o u(f) :=
∫

G
π(f(s))us dµ(s)

defines a L1-norm decreasing ∗-representation of Cc(G,A) on H called the
integrated form of (π, u,H). Furthermore, π o u is non-degenerate if π is
non-degenerate.

We will use these ∗-representations of Cc(G,A) to define another norm,
under which the completion of Cc(G,A) becomes a C∗-algebra. This will be
the crossed product that we are after. Let f ∈ Cc(G,A), then we define

‖f‖ := sup{‖π o u(f)‖|(π, u) is a covariant representation of (A,G, α)}.

Since by Proposition 2.2.10 every ∗-representation of the form πou satisfies
‖π o u(f)‖ ≤ ‖f‖1 for all f ∈ Cc(G,A), it can be concluded that ‖f‖ ≤
‖f‖1 <∞ for all f ∈ Cc(G,A).

It is proven in [21, Lemma 2.26] that there exists a covariant representation
(ρ, u) of (A,G, α), such that ρo u is a faithful ∗-representation of Cc(G,A).
Then for every non-zero f ∈ Cc(G,A) we have ‖ρou(f)‖ > 0, hence ‖f‖ > 0.

It is now easy to see that ‖.‖ is actually a norm of Cc(G,A), called the
universal norm. Furthermore, since for every covariant representation (π, u)
of (A,G, α) and every f ∈ Cc(G,A) the following holds.

‖π o u(f∗ ∗ f)‖ = ‖(π o u(f))∗(π o u(f))‖ = ‖π o u(f)‖2,

we have that ‖f∗∗f‖ = ‖f‖2. Hence the completion of Cc(G,A) with respect
to ‖.‖ is a C∗-algebra, which we will call the crossed product of A by G and
denote by Aoα G.

By definition Cc(G,A) is a dense sub-∗-algebra of Aoα G. Let ρ be a
∗-representation of Cc(G,A), such that ‖ρ(f)‖ ≤ ‖f‖ for all f ∈ Cc(G,A),
then ρ extends to a representation of AoαG, which we shall also denote by
ρ. On the other hand, let ρ be a representation of AoαG, then its restriction

22



to Cc(G,A) must be a ∗-representation of Cc(G,A), and ‖ρ(f)‖ ≤ ‖f‖ for
all f ∈ Cc(G,A). So by taking a covariant representation (π, u) of (A,G, α),
we get a ∗-representation π o u of Cc(G,A) and hence a representation of
Aoα G, which we shall also denote by π o u.

Summarizing the theorems above, we get the following theorem.

Theorem 2.2.11. Let (A,G, α) be a C∗-dynamical system. The vector
space Cc(G,A) is a normed ∗-algebra with norm (called L1-norm)

‖f‖1 =
∫

G
‖f(s)‖ dµ(s),

multiplication

f ∗ g(s) =
∫

G
f(r)αr(g(r−1s)) dµ(r),

and involution
f∗(s) = αs(f(s−1)∗).

Let (π, u,H) be a covariant representation of (A,G, α). Then

π o u(f) =
∫

G
π(f(s))us dµ(s)

defines a L1-norm decreasing ∗-representation of Cc(G,A) on H called the
integrated form of (π, u,H). On Cc(G,A) we can define the universal norm.

‖f‖ := sup{‖π o u(f)‖|(π, u) is a covariant representation of (A,G, α)}.

The completion of Cc(G,A) with respect to this norm is a C∗-algebra, the
crossed product of A by G, which we will denote by Aoα G.

2.3 Bijective correspondence between representa-
tions

In the previous section we have seen that we can construct a representation
of the crossed product C∗-algebra from each covariant representation of the
corresponding C∗-dynamical system. The following theorem tells us that we
actually get every representation of the crossed product this way.

Theorem 2.3.1. Let (A,G, α) be a C∗-dynamical system. Then the map
sending a covariant pair (π, u) to its integrated form π o u is a one-to-one
correspondence between non-degenerate covariant representations of (A,G, α)
and non-degenerate representations of A oα G. This correspondence pre-
serves irreducibility and equivalence.
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The complete proof can be found in [21, Proposition 2.40]. In this section
we will try to convey the ideas of the proof.
Except in special cases, the crossed product AoαG does not contain a copy
of either A or G. However, we can find a larger C∗-algebra which contains
Aoα G as an ideal and both A and G. This is the so-called multiplier alge-
bra of A oα G, denoted by M(A oα G). Now, if we have a non-degenerate
representation L of Aoα G, we can uniquely extend it to a non-degenerate
representation L̄ of M(A oα G). Then, by restricting to A and G we get
a representation π of A, and a unitary representation u of G, which to-
gether turn out to be a covariant representation of (A,G, α), and such that
L = π o u.

Remark 2.3.2. Above we used the result that any non-degenerate repre-
sentation of A oα G has a unique extension to M(A oα G). This is more
general true for any non-degenerate representation (π,H) of an ideal I of a
C∗-algebra A. This can be uniquely extended to a representation of A (see
[7, Proposition 5.8.1]).

We will start with a slight detour over the theory of multiplier algebras, in
order to convey the idea of how we can actually embed A and G into the
crossed product. For that we need some preliminary definitions.

Definition 2.3.3. An ideal I of a C∗-algebra A is called essential if I has
non-zero intersection with every other non-zero ideal A.

Definition 2.3.4. A unitization of a C∗-algebra A is a unital C∗-algebra
B and an injective homomorphism i : A→ B such that i(A) is an essential
ideal of B.

It is easy to see that any unitization of a unital C∗-algebra A is A itself. The
multiplier algebra of a C∗-algebra A, called M(A), is the maximal unitiza-
tion of A, in the sense that every other unitization of A can be embedded
into M(A). We can actually construct a multiplier algebra for each C∗-
algebra, and show that it is unique up to isomorphism. There are several
approaches to the construction; we will follow the one given in [16, Section
2.3]. This construction makes use of the theory of Hilbert modules, of which
details can also be found in [16, Section 2.1], but since most of this theory is
not needed to explain the ideas of the construction of the multiplier algebra,
we will not discuss it here.

Definition 2.3.5. Let A be a C∗-algebra. A function T : A→ A is called
adjointable if there is a function T ∗ : A → A such that T (a)∗b = a∗T ∗(b).
We shall write L(A) to denote the set of all adjointable functions on A.
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It is then shown in [16] that every adjointable function on A is bounded
and linear. Then it is straightforward to check that if T ∈ L(A), then T ∗

is unique, T ∗ ∈ L(A) and (T ∗)∗ = T . Furthermore, L(A) is a subalgebra of
the Banach algebra B(A) of bounded linear operators on A, and T → T ∗ is
an involution on L(A). Even better, L(A) is a C∗-algebra with respect to
the operator norm, and it turns out to be a maximal unitization of A.

Let a ∈ A, then we define the following map La(b) := ab for every b ∈ B.
This map is adjointable, with adjoint La∗ , since

La(b)∗c = b∗a∗c = b∗La∗(c).

Hence La ∈ L(A), and the map L : a → La is an injective homomorphism
from A into L(A). To see why L(A) is a maximal unitization of A requires
some work, which we shall not carry out here. Again, see [16] for further
details. So we can then define the multiplier algebra M(A) of a C∗-algebra
A to be L(A). We will call elements of M(A) multipliers. We will call a
multiplier T unitary if it has an inverse and T ∗ = T−1. We denote the
unitary group of M(A) consisting of unitary multipliers by UM(A).

This ends our detour on multiplier algebras, and we return to the crossed
products. Now, if we view Cc(G,A) as a sub-∗-algebra of M(A oα G), a
multiplier T ∈M(Aoα G) need not necessarily map Cc(G,A) into itself.

However, if we actually want to find a multiplier of Aoα G, we could start
with defining a map T from Cc(G,A) to itself, and show that it is bounded
with respect to the universal norm. Then it extends to a map from Aoα G
to itself, which we will also call T . Then T defines a multiplier if we can
find an adjoint T ∗. This is the way we will define our embeddings from A
and G into M(Aoα G) in what follows.

For every a ∈ A, f ∈ Cc(G,A) and s ∈ G we define

iA(a)f(s) = af(s).

Then iA is a map from Cc(G,A) to itself. Let (π, u) be a covariant repre-
sentation of (A,G, α), then

πou(iA(a)f) =
∫

G
π(af(s))us dµ(s) = π(a)◦

∫
G
π(f(s))us dµ(s) = π(a)◦πou(f).

Since π(a) ≤ ‖a‖ for every a ∈ A, we get

‖iA(a)f‖ ≤ ‖a‖‖f‖,

hence iA(a) is bounded with respect to the universal norm, so we can extend
it to a map from AoαG to itself, which we shall also denote by iA(a). Now,
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to find the adjoint we will compute (iA(a)f)∗ ∗ g. First we have

(iA(a)f)∗(r) = (af)∗(r) = αr((af(r−1))∗) = αr(f(r−1)∗a∗) = f∗(r)αr(a∗).

Hence

(iA(a)f)∗ ∗ g(s) =
∫

G
f∗(r)αr(a∗)αr(g(r−1s)) dµ(r)

=
∫

G
f∗(r)αr(a∗g(r−1s)) dµ(r)

= f∗ ∗ iA(a∗)g(s),

for every f, g ∈ Cc(G,A) and r, s ∈ G. So iA(a) has an adjoint iA(a∗).
Hence iA(a) ∈M(Aoα G).

It is easy to check that iA is a homomorphism from A into the C∗-algebra
M(Aoα G).

Now, for every r, s ∈ G and f ∈ Cc(G,A) we define

iG(r)f(s) = αr(f(r−1s)).

In a similar manner we can prove that iG(r) ∈ UM(A oα G). In fact the
following results are proven in [21, Proposition 2.34].

Theorem 2.3.6. Let (A,G, α) be a C∗-dynamical system and let iA and
iG be as defined above. Then iA is a faithful homomorphism from A into
M(A oα G), and iG is an injective unitary valued homomorphism from G
into UM(Aoα G). Furthermore (iA, iG) is covariant in the sense that

iA(αr(a)) = iG(r)iA(a)iG(r)∗.

If (π, u) is a non-degenerate covariant representation of (A,G, α), then the
extension of πou as representation of M(AoαG), denoted by π o u, satisfies

(π o u)(iA(a)) = π(a) and (π o u)(iG(s)) = us.

Now we can complete the outline of the proof of Theorem 2.3.1. Let L be
a (non-degenerate ) representation of A oα G, and L̄ the extension of L to
M(Aoα G), then we can define u and π by putting

us := L̄(iG(s)) and π(a) := L̄(iA(a)) for all s ∈ G, a ∈ A.

It is shown in [21, (Proposition 2.39] , that u is a unitary representation of
G and π a non-degenerate representation of A. We also have for every a ∈ A
and s ∈ G

π(αs(a)) = L̄(iA(αs(a))) = L̄(iG(s)iA(a)iG(s)∗) = usπ(a)u∗s.
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Hence (π, u) is a non-degenerate covariant representation of (A,G, α). Then
it is proven in [21] that L = π o u, by showing that the two coincide on
a dense subset of A oα G. So we get indeed a one-to-one correspondence
between the non-degenerate covariant representations of (A,G, α) and the
non-degenerate representations of A oα G. This correspondence preserves
equivalence and irreducibility.

This correspondence will be very useful. We still don’t know much about
AoαG, but an important tool in studying C∗-algebras is the representation
theory. If we want to find representations of AoαG with certain properties,
we just need to construct covariant representations of (A,G, α) with those
properties, which is in general easier to do, since we understand the
C∗-dynamical system better than its associated crossed product C∗-algebra.

For instance, further on in the thesis we shall consider certain kinds of
C∗-dynamical systems (like topological dynamical systems and flows), and
construct irreducible representations of their crossed product C∗-algebras,
by first constructing them for the dynamical system, which boils down to
finding covariant representations (π, u,H), such that every operator
V ∈ B(H) that commutes with π(a) for every a ∈ A and with us for every
s ∈ G is a scalar multiple of the identity.
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Chapter 3

The interplay between
discrete dynamical systems
and C*-algebras

In this chapter we shall look at a more specific kind of dynamical systems:
the discrete dynamical systems. In this case much is known about the
interplay with C∗-algebras, and we will give an overview of some of the
results on this interplay. We will take a closer look at the periodic points of
the dynamical system, and the representations of the crossed product C∗-
algebra we can associate with these points, for this will be the main topic
in the next chapter about flows.

3.1 Discrete topological dynamical systems in com-
pact Hausdorff spaces

Definition 3.1.1. A discrete dynamical system is a pair Σ = (X,σ), such
that X is a compact Hausdorff space, and σ a homeomorphism on X.

Let (X,σ) be a topological dynamical system. We define the following func-
tion.

φ : Z×X → X, (n, x) → n · x = σn(x).

We will show that this function is continuous, hence X becomes a left Z-
space, where Z is endowed with the discrete topology.
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Lemma 3.1.2. φ is a continuous map from Z×X to X.

Proof. Let U be an open subset of X. Then

φ−1(U) = {(n, x) ∈ Z×X|σn(x) ∈ U} =
⋃
n∈Z

{n} × σ−n(U).

Since every subset of Z is open, and σ−n(U) is open in X by continuity of
σn, φ−1(U) is a union of open sets, hence open. So φ is continuous.

Since Z is locally compact, and X compact, the transformation group (Z, X)
is locally compact. Hence, as we have seen in section 2.1.1, we get a C∗-
dynamical system (C(X),Z, α), where α is the function from Z into Aut
C(X) defined by

αnf(x) := f(−n · x) = f(σ−n(x)).

Note that C0(X) = C(X), since X is compact.

For the orbit of an element x ∈ X we shall write Oσ(x) instead of OZ(x).

The period of an element x ∈ X is the smallest n ∈ N such that σn(x) = x,
if such n exists. If there is no such n, then we define the period to be ∞.
Notice that the period of x is equal to the number of elements in the orbit
of x.
If the period of x is less than infinity, we call x a periodic point. A periodic
orbit is an orbit with finitely many elements. If x is not a periodic point, we
call it an aperiodic point, and an aperiodic orbit is an orbit with infinitely
many elements.

For the unit circle in C we shall write T := {z ∈ C|‖z‖ = 1}.

Example 3.1.3. On the compact Hausdorff space T, we can define a home-
omorphism

σθ : e2πix → e2πi(x+θ),

depending on parameter θ ∈ R. If θ ∈ Q, every point in T is periodic, and if
θ 6∈ Q, every point is aperiodic, and every orbit is in fact dense in that case.

From the C∗-dynamical system (C(X),Z, α) we can construct the crossed
product C(X) oα Z, which we will denote by A(Σ).

Since Z is a discrete group, the Haar measure µ on Z is simply the counting
measure, i.e., for a subset H of Z, µ(H) is the number of elements in H.
Then the ∗-algebra Cc(Z, C(X)) consists of all C(X)-valued functions f on
Z with compact, hence finite, support. And in this case, unlike the general
case, both C(X) and Z are contained within Cc(Z, C(X)) and hence within
A(Σ). This embedding can be realized as follows.
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For each f ∈ C(X) we define f̃ to be the function from Z to C(X) that
maps 0 to f and the rest to zero. And for each s ∈ Z we define δs to be the
function from Z to C(X) that maps s to 1 and the rest to zero.
It is easy to check that Cc(Z, C(X)), hence A(Σ), is unital, with unit δ0.
Thus we see that the existence of an embedding of A and G into A(Σ) is
also a consequence of Theorem 2.3.6, since M(A(Σ)) = A(Σ).

3.2 Overview of some results

In this section we will give an overview of some results in the interplay
between topological dynamical systems and C∗-algebras. We will give def-
initions where necessary, but we will omit all the proofs. The idea is that
properties of the topological dynamical system are translated to properties
of the associated crossed product C∗-algebra. All these results can be found
in [18], [19] and [20].

To every periodic point x in Σ = (X,σ) and every irreducible unitary repre-
sentation ux of Zx (the isotropy subgroup at x), we can associate irreducible
representations of A(Σ), such that the representations associated to two
points x, y ∈ X and two irreducible representations ux, uy are equivalent if
and only if x and y are in the same orbit and u = v. We will see that those
representations are finite dimensional, and that every finite dimensional ir-
reducible representation of A(Σ) is unitarily equivalent to a representation
associated to a periodic point x and an irreducible representation on Zx .
We will give more details on these results in the next section.

A C∗-algebra A is simple if it contains no non-trivial closed ideals.
A topological dynamical system Σ = (X,σ) is called minimal if there is no
proper closed set A in X such that σ(A) ⊆ A.

Then we have the following result.

Theorem 3.2.1. Let Σ = (X,σ) be a topological dynamical system. The
C∗-algebra A(Σ) is simple if and only if Σ is minimal, provided that X has
an infinite number of points.

This theorem has first been proven by Power ([15]). More recent proofs can
be found in [19, Theorem 5.3] or [5, Theorem VIII.3.9]. We call Σ topo-
logically free if the aperiodic points of X are dense in X. Then we get the
following theorem ([19, Theorem 5.4]).

Theorem 3.2.2. Let Σ = (X,σ) be a topological dynamical system. The
following three assertions are equivalent.
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1. Σ is topologically free.

2. For any closed ideal I of A(Σ), I ∩C(X) 6= {0} if and only if I 6= {0}.

3. C(X) is a maximal abelian C∗-subalgebra of A(Σ).

We also have ([20, Theorem 12.4])

Theorem 3.2.3. Let Σ = (X,σ) be a topological dynamical system. Then
Σ is topologically free if and only if the infinite dimensional irreducible rep-
resentations of A(Σ) separate its elements.

We can state something about all the irreducible representations, once we
know there are only periodic points ([20, Theorem 4.5]).

Theorem 3.2.4.

1. Every irreducible representation of A(Σ) is finite dimensional if and
only if the system Σ = (X,σ) consists of periodic points.

2. The finite dimensional representations of A(Σ) separate the points of
X if and only if the periodic points are dense in X.

The proof of this theorem uses induced representations arising from periodic
points. In the next section we will define these induced representations and
show some properties of them.

3.3 Periodic orbits and finite dimensional repre-
sentations

We first look, more generally, at induced representations arising from isotropy
subgroups of discrete groups, instead of Z. Let G be a discrete group, i.e.
a group with the discrete topology, and X a compact Hausdorff space and
a left G-space. Then, as discussed in section 2.1.1, we get a C∗-dynamical
system (C(X), G, α), and thus a C∗-algebra C(X) oα G.

We write the left coset spaceG/Gx = {sβGx} for representatives S = {sβ} ⊂
G, where s0 = e (unit of G). Now, let (u,Hu) be a unitary representation
of Gx. Let {eβ} be a fixed orthonormal basis of some Hilbert space H0 with
cardinality equal to that of G/Gx. Now let H = H0 ⊗ Hu. We can then
expand every vector ξ ∈ H as

∑
β eβ ⊗ ξβ, where the sum is ranging over a

countable set of indices β for which ξβ 6= 0.
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We define the unitary representation LS
u of G on H induced by u in the

following way.
LS

u(s)(eβ ⊗ ξ) = eγ ⊗ ut(ξ),

where s ∈ G, t ∈ Gx and γ are such that ssβ = sγt. Also, we define the
representation πS

x of C(X) on H by

πS
x (f)(eβ ⊗ ξ) = f(sβ · x)eβ ⊗ ξ.

Then (πS
x , L

S
u ,H) becomes a covariant representation of (C(X), G, α), which

gives rise to a representation of C(X) oα G,

π̃S
x,u = πS

x o LS
u .

From [18, Lemma 4.1.1] we get that the representation π̃S
x,u does not depend

on the choice of the representatives S = {sβ} of the left coset space G/Gx,
within unitary equivalence. This means that the covariant representation
(πS

x , L
S
u) also does not depend on S, within unitarily equivalence. Therefore,

we shall write π̃x,u = πx o Lu instead of π̃S
x,u. On these representations we

have the following results ([18, Proposition 4.1.2, Theorem 4.1.3]).

Theorem 3.3.1.

1. Two representations π̃x,u and π̃y,v are unitarily equivalent if and only
if OG(x) = OG(y) and, putting x = sβ0y, the representations of Gx:
t→ ut and t→ vs−1

β0
tsβ0

are unitarily equivalent.

2. The representation π̃x,u is irreducible if and only if the representation
u of Gx is irreducible.

If we now take G = Z, things get a lot easier. We also only look at periodic
points in X. Now let x ∈ X a periodic point, with period p. Then Zx = pZ.

Lemma 3.3.2. Let G be an abelian group and (u,H) an irreducible unitary
representation. Then H is one dimensional, hence equal to C.

Proof. Since u is irreducible, the only operators in B(H) that commute with
u(G) are scalar multiples of the identity. Since G is abelian, all operators
in u(G) commute with each other, hence they are scalar multiples of the
identity. Now, we fix a point x ∈ H. LetK = {λx|λ ∈ C}, then u(G)K ⊂ K,
hence K = H, by irreducibility of u. So H is one dimensional, hence equal
to C.

Proposition 3.3.3. All irreducible representations of pZ with p ∈ N are of
the form

np→ zn with n ∈ Z,
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where z ∈ T.

Proof. Let u be a irreducible unitary representation of pZ. Then, since pZ
is abelian, the previous lemma tells us that the associated Hilbert space
of u is C, hence all operators u(pZ) are multiplications by a scalar. So
u(p) = z for some z ∈ C. Hence u(np) = zn for all n ∈ Z. Also, since
u(−p) = (u(p))∗ = z̄, and zz̄ = u(1)u(−1) = u(0) = 1, ‖z‖ = 1, hence
z ∈ T.

The associated Hilbert space Hu, with u an irreducible unitary represen-
tation on pZ, is equal to C, hence H = H0 ⊗ C = H0, hence H is the
p-dimensional Hilbert space. Let {ei}p−1

i=0 be an orthonormal basis for H.
We can then, obviously, write each ξ ∈ H as ξ =

∑p−1
i=0 λiei, with λi ∈ C.

Since according to the previous theorem the choice of representatives for
Z/pZ does not matter, we will choose them as follows.

S = {0, 1, 2, .., p− 1}.

We will write Lz to denote Lu, where u is the representation on Zx sending
np to zn. Then we get, for s ∈ Z and i ∈ S,

Ls
z(ei) = znej ,

where n ∈ Z, j ∈ S are such that s+ i = j + np.

And for f ∈ C(X) we have

πx(f)(ei) = f(i · x)ei.

Since Z is abelian, 3.3.1.1 implies that π̃x,u and π̃y,v are unitarily equivalent
if and only if Oσ(x) = Oσ(y) and u and v are unitarily equivalent. And it
is easy to see that u : np → zn

1 and v : np → zn
2 are unitarily equivalent if

and only if z1 = z2, hence if and only if u and v are the same.

So now we have associated to each periodic point x with period p and each
z ∈ T, an irreducible representation of A(Σ) with dimension p.

Now, let x ∈ X be a periodic point, and consider the linear functional
µx on C(X) that sends a function f to f(x). Then µx is positive, since
µx(f∗f) = f(x)f(x) = |f(x)|2 ≥ 0. Furthermore ‖µx‖ = 1, hence µx is a
state of C(X) (see Appendix A). It can be shown that the state on A(Σ)
defined by

ϕx,u(a) := 〈π̃x,u(a)e0, e0〉
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is a pure state extension of µx. Then it is proven in [19, Proposition 4.3]
that the converse is also true. Let ϕ be a pure state extension of µx, and
{Hϕ, πϕ, ξ} the GNS-representation of ϕ. Then πϕ is unitarily equivalent to
an induced representation π̃x,u.

But this is not all; in fact we have the following.

Theorem 3.3.4. Every p-dimensional irreducible representation of A(Σ) is
unitarily equivalent to an induced representation π̃x,v arising from a periodic
point x with period p and an irreducible representation v of pZ.

Proof. Let π̃ = πo u be a representation of A(Σ) on a Hilbert space H and
let Iπ be the kernel of π. Since the image π(C(X)) is a unital commutative
C∗-algebra, it is isometrically isomorphic to C(X ′

π), where X ′
π is a compact

space. Also, Iπ is a closed invariant ideal of C(X), hence we can write
Iπ = k(Xπ) for a closed invariant subset of Xπ, where k(Xπ) means the set
of all functions in C(X) vanishing on Xπ. Then we have

π(C(X) = C(X ′
π) ∼= C(X)/Iπ = C(Xπ). (3.1)

Hence we can identify X ′
π with Xπ, together with the action σπ := σ|Xπ on

Xπ and the action on X ′
π induced from the action of u = π̃(δ) on C(X ′

π).
With this identification, π(f) on X ′

π corresponds to the restriction of f
onXπ and ‖π(f)‖ = ‖f |Xπ‖. We denote this dynamical system by Σπ =
(Xπ, σπ). It is then shown in [19] (Proposition 4.4) that if π̃ is irreducible,
the system Σπ is topologically transitive, i.e., for nonempty open sets U
and V there exists an integer n such that σnU ∩ V 6= ∅. Now, let π̃ =
π o u be a p-dimensional irreducible representation of A(Σ) on a Hilbert
space H. Then we get an irreducible covariant representation (π, u,H) of
(C(X), G, α). Since π(C(X)) is finite dimensional, its spectrum Xπ must
consist of finitely many isolated points, and moreover the system Σπ is
topologically transitive. Therefore there exists a periodic point x ∈ Xπ,
with period n, such that Oα(x) = Xπ, so

Xπ = {x, σx, ..., σn−1x}.

Now let pi ∈ C(Xπ) be the characteristic function at the point σix. Then
C(Xπ), hence π(C(X)), is spanned by the set {p0, p1, .., pn−1}. Now by (3.1)
there is an fi ∈ C(X), such that π(fi) = fi|Xπ = pi. Hence fi(σjx) = 1 if
and only j = i. Then αj(f0(σkx)) = fi(σk−jx) = 1 if and only if k − j = 0,
so k = j mod n. Then π(αj(f0)) = pj . So

uip0(ui)∗ = uiπ(f0)(ui)∗ = π(αi(f0)) = pi.

Also unp0(un)∗ = p0. Now we define Hi = piH = π(fi)H. Then the
following holds.

Hi = {ξ ∈ H|π(f)ξ = f(σix)ξ for all f ∈ C(X)}.
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To see this, we first take an element in Hi: π(fi)ξ for some ξ ∈ H. Then it
is clear that ffi(σi(x)) = f(σi(x)) and ffi(σj(x)) = 0 if j 6= i. Hence for
all f ∈ C(X) we have that

π(f)π(fi)ξ = π(ffi)ξ = π(f(σix)fi)ξ = f(σix)π(fi)ξ.

Now the other direction: Take ξ ∈ H, such that π(f)ξ = f(σix)ξ for all
f ∈ C(X), then π(fi)ξ = fi(σix)ξ = ξ, hence ξ ∈ Hi. Now suppose that
ξ ∈ Hi ∩ Hj , for i 6= j, then for all f ∈ C(X) π(f)ξ = f(σix)ξ = f(σjx)ξ.
Then, necessarily, ξ = 0.

Furthermore we have Hi = piH = uip0(ui)∗H = uip0H = uiH0 with 0 ≤
i ≤ n − 1), and H0 = unH0. We now define a unitary representation v of
Zx on H0, by sending kn ∈ Zx to the operator ukn restricted to H0, which
makes sense, since unH0 = H0.
We want to prove that v is irreducible. Let K be a subspace of H0,invariant
under v. Then the closed linear span [π̃(A(Σ))K] is an invariant (under π̃)
subspace of H. Hence, by irreducibility of π̃, H = [π̃(A(Σ))K].
We can write, for every g ∈ Cc(Z, C(X)), π̃(g) =

∑
s∈Z π(g(s))us. The only

parts of this sum that send g into H0 are at s = kn with k ∈ Z. However
we have for every f ∈ C(X) that π(f)uknK = π(f)vknK ⊂ π(f)K ⊂ K,
since for every ξ ∈ H0, π(f)ξ = f(x)ξ ∈ H0. Since we want to get all of H,
we need to get all of H0, hence K = H0. This implies that v is irreducible,
hence H0 is one-dimensional. Then H is p-dimensional, and p = n.
Furthermore, the Hilbert spaces H0, ...,Hp−1 are orthogonal: Let ξ ∈ Hi

and η ∈ Hj , with 0 ≤ i < j ≤ p − 1. Now we can find an f ∈ C(X) such
that f(σix) = 1 and f(σjx) = 0. Then

〈ξ, η〉 = 〈π(f)ξ, η〉 = 〈ξ, π(f̄)η〉 = 〈ξ, f(σjx)η〉 = 0.

Therefore, if we let ei ∈ Hi, with ‖ei‖ = 1, then {ei}p−1
i=0 is an orthonormal

basis for H. Then it is easy to see that π̃ is unitarily equivalent to the
induced representation π̃x,v.
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Chapter 4

The interplay between flows
and C*-algebras

In this chapter we will first give a definition and some results of flows in
Hausdorff spaces. Then we will introduce induced representations of sub-
groups, and use these to construct representations of the crossed product
C∗-algebra, associated to periodic orbits of the flow, and finally we will show
some properties of these representations.

4.1 Flows in compact Hausdorff spaces

Here we will give the definition of a flow on a space X, and show some basic
results of such flows. Though we use compactness of the space X in the rest
of this chapter, it is actually not needed in this section.

Therefore, we letX be Hausdorff and a left R-space. So we have a continuous
map φ from R×X → X that sends

(s, x) → s · x,

such that for every s, t ∈ R, x ∈ X

0 · x = x and s · (t · x) = (s+ t) · x.

Then we call (X,φ) a continuous flow, or simply flow.

For the orbit of x ∈ X we shall write Oφ(x) instead of OR(x). A point x ∈ X
is said to be a fixed point if Oφ(x) = x. The set of all fixed points is denoted
by F (φ).
Recall that for x ∈ X, the isotropy subgroup at x is Rx := {t ∈ R|t ·x = x},
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consisting of all elements in R that fix x.
The following proposition comes from [3, Theorem 1.9].

Proposition 4.1.1. Let (X,φ) be a flow, then for every x ∈ X exactly one
of the following occurs.

1. Rx = R, i.e., x ∈ F (φ),

2. there exists a least positive number p such that p · x = x, and then
Rx = {np|n ∈ Z},

3. Rx = {0}, and the function t→ t · x is injective.

Proof. X is Hausdorff, hence {x} is closed in X. Furthermore, the function
t → t · x is continuous, because φ is continuous. So the inverse of {x} is
closed under this map, and this inverse is exactly the set Rx. Hence Rx is
closed.
Now, let R+

x := {t > 0|t · x = x}. Suppose R+
x is not empty, but has no

smallest element and let s = inf R+
x . Then by assumption s /∈ R+

x . Then
there is a decreasing sequence of elements {rn} in R+

x such that rn ∈ [s, s+ 1
n ].

Now,
(rn − rn+1) · x = rn(−rn+1 · x) = x,

hence rn− rn+1 ∈ R+
x and rn− rn+1 ≤ 1

n . From this we see that s has to be
zero, since infn(rn − rn+1) = 0. So, actually rn ∈ [0, 1

n ]. Consequently the
set {mrn,m ∈ Z, n ∈ N} is a dense subset of R, and since it is also a subset
of Rx, and Rx is closed, we see that Rx = R, i.e., 1) is true.
Suppose on the other hand that R+

x is empty, then Rx = {0}. Then if

s · x = t · x,

we have
(s− t) · x = x,

hence
s− t ∈ Rx = {0},

thus t → t · x is injective, hence 3) is true. If neither of the above is true,
then only one case remains: R+

x is not empty, and has a smallest element p.
Then for every n ∈ Z, np ·x = x, so np ∈ Rx. Now suppose that Rx contains
an element q that is not of the form np for some n ∈ Z. Then there is an
n ∈ Z, such that 0 < q− np < p. But (q− np) · x = q · (−np · x) = q · x = x,
hence q−np ∈ Rx. But this contradicts the assumption that p is the smallest
element of Rx. So Rx = {np|n ∈ Z}, hence 2) is true.

Now we can define the period, i.e., the function Pφ from X into [0,∞], such
that, for every x ∈ X,
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Pφ(x) = 0 if x satisfies condition 4.1.1.1,
Pφ(x) = p if x satisfies condition 4.1.1.2,
Pφ(x) = ∞ if x satisfies condition 4.1.1.3.

So Pφ(x) = inf R+
x , where we take inf R+

x to be ∞ if R+
x is empty.

Then Pφ(x) is constant on orbits.

We call Oφ(x) periodic if Pφ(x) < ∞, and x a periodic point if Oφ(x) is
periodic. If Pφ(x) = ∞, we call Oφ(x) aperiodic and x an aperiodic point.

Example 4.1.2. Let R act on the compact Hausdorff space T by rotation:

r · x = eirx, where r ∈ R, x ∈ X.

Then clearly T consists of exactly one orbit, and all elements x ∈ T are
periodic, with period 2π.

Proposition 4.1.3. Let (X,φ) be a flow, and x a periodic point with period
p > 0. Then Oφ(x) is closed in X.

Proof. It is an standard result in topology that a compact subset of a Haus-
dorff space is closed. Now, [0, p] is a compact subset of R, and the function
r → r ·x is continuous by Lemma 2.1.1, hence Oφ(x) = [0, p] ·x is a compact
subset of X. Hence Oφ(x) is closed in X.

If x ∈ X is an aperiodic point, then the orbit of x need not necessarily be
closed. We will give two examples to illustrate this.

Example 4.1.4. We let R̄ := R∪{−∞,∞}, the extended real line. Consider
the topology on R̄ generated by the open sets in R and the sets {r ∈ R|r >
k} ∪ {∞} and {r ∈ R|r < m} ∪ {−∞}, where k,m ∈ R. Then we define the
following map Φ from R · R̄ → R̄.

r · s = r + s, with r, s ∈ R,

r · ∞ = ∞,

and
r · −∞ = −∞.

It is easy to check that this action defines a transformation group (R, R̄).
Then for any x ∈ R ⊂ R̄, we have Oφ(x) = R, but R is not closed. The
closure of R is R̄.
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Example 4.1.5. Let X be the 2-torus: X = T2. Then X is a compact
Hausdorff space. We let R act on X in the following way.

r · (e2πix, e2πiy) → (e2πi(x+ra), e2πi(y+rb)),

for some a, b ∈ R. Then we have two cases:

1. a
b ∈ Q. This implies that every orbit is periodic.

2. a
b 6∈ Q. This implies that every orbit is aperiodic and it can be shown
that every orbit is dense in X.

In the second case, the orbit is not the whole space; we can easily find points
in X that are not on this orbit. But the closure of the orbit is the whole
space.

Proposition 4.1.6. Let (X,φ) be a flow, and x a periodic point with period
p > 0. Then Oφ(x) is homeomorphic to R/pZ, hence to T.

Proof. We define f : R/pZ → Oφ(x) by

r̄ → r · x.

Then f is well-defined, for if r̄ = s̄, then r = s+ np, for some n ∈ Z, hence

r · x = (s+ np) · x = s · (np · x) = s · x.

This function is continuous, because of the continuity of φ.
It is injective, for if

f(r̄) = f(s̄),

then
r · x0 = s · x, thus (r − s) · x0 = x0,

so r − s ∈ Rx, hence r − s = np for some n ∈ Z. So r̄ = s̄.
It is easy to see that f is also surjective. Now by a standard theorem in
topology every continuous function from a compact space into a Hausdorff
space which is surjective and injective is actually a homeomorphism. Since
R/pZ is indeed compact, and Oφ(x), as a subspace of a Hausdorff space, is
Hausdorff, we are done.

4.2 Induced representations of subgroups

Now, just like the discrete case, we want to associate to each periodic point
x ∈ X, and each irreducible unitary representation u of pZ an irreducible
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representation π̃x,u of C(X) oα R, such that π̃x,u and π̃y,v are unitarily
equivalent if and only if Oφ(x) = Oφ(y) and u is unitarily equivalent to v
(then u = v). To do this, we will first delve into the theory of induced
representations of groups.

The idea of induced representations of a group G is that we use a unitary
representation of a subgroup H of G to build a unitary representation of G
itself. We will leave out proofs in this section; a detailed account on such
induced representations can be found in [11],[8] and [10].

Let G be a locally compact group and H a closed subgroup of G. We will
consider the space G/H, with the quotient map

π : x→ π(x) = xH = x.

If we endow G/H with the quotient topology (the strongest topology that
makes the quotient map continuous), it becomes a locally compact Haus-
dorff space. However, it does not necessarily become a topological group. If
H is normal in G, then G/H becomes a locally compact group by letting
x̄ȳ = xy for all x, y ∈ G/H.

For B ⊂ G/H and x ∈ G we let xB := {xy|y ∈ G/H}. Then a Borel
measure µ on G/H is said to be invariant if

µ(B) = µ(xB) for all x ∈ G and Borel sets B of G/H.

For instance, ifH is normal in G, G/H is a locally compact group, and hence
there exists a left Haar measure on G/H (see Appendix B for more on Haar
measures). Since x̄ȳ = xy for all x, y ∈ G, this left Haar measure is invariant.

Remark 4.2.1. Such an invariant measure does not necessarily exist on
every G/H. However, there always are measures on every G/H that sat-
isfy a weaker condition, the quasi-invariant measures, and these are in fact
profitable to work with. However, we shall restrict ourselves to groups G
and subgroups H such that G/H does have an invariant measure µ, which
is then unique up to a constant, since this makes the notations less tedious,
and we will apply this theory in the following section to R/Rx,with x a pe-
riodic point, which has such a measure, since Rx is a normal subgroup of R.

Now let u be a unitary representation of H on a separable Hilbert space H.
We consider the linear space Ku(G,H) consisting of all continuous functions
f : G→ H that satisfy

f(xh) = u(h−1)f(x) for all x ∈ G, h ∈ H, (4.1)
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and whose support is contained in KH := {kh|k ∈ K,h ∈ H}, for some
compact set K ⊂ G.

Lemma 4.2.2. Let f1, f2 ∈ Ku(G,H), then

〈f1(x), f2(x)〉H = 〈f1(y), f2(y)〉H if x̄ = ȳ.

Proof. If x̄ = ȳ, then there exists an h ∈ H, such that x = yh, and then

〈f1(x), f2(x)〉H = 〈f1(yh), f2(yh)〉H = 〈u(h−1)f1(y), u(h−1)f2(y)〉H,

and since u(h−1) is a unitary operator,

〈u(h−1)f1(y), u(h−1)f2(y)〉H = 〈f1(y), f2(y)〉H.

Now, since the support of f1 is in K1H, for some compact subset K1 in G,
the support of 〈f1(x), f2(x)〉H is also contained in K1H, for if f1(x) = 0,
then 〈f1(x), f2(x)〉 = 0. So now we can view x̄ → 〈f1(x), f2(x)〉H as a
continuous function on G/H with support contained in π(K1H) = π(K1),
hence compact. Now we shall define for f1, f2 ∈ Ku(G,H),

〈f1, f2〉′ :=
∫

G/H
〈f1(x), f2(x)〉H dµ(x̄).

The integral at the right hand side is well-defined, in view of the previous
paragraph. Then 〈 . , . 〉′ becomes an inner product on Ku(G,H). One might
ask whether there are any non-trivial functions that satisfy (4.1), and the
answer is affirmative ([10, Corollary 4.6]).

Theorem 4.2.3. If dimH 6= 0 then dimKu(G,H) 6= 0.

Now we consider the linear space Bu(G,H) which consists of all H-valued
functions on G which satisfy (4.1) and which are weakly Haar measurable,
i.e., for every h ∈ H the function x → 〈f(x), h〉H is a Borel measurable
function on G. Note that Ku(G,H) ⊂ Bu(G,H).

Let f1 and f2 be in Bu(G,H). It can be shown, using the separability of
H, that x̄→ 〈f1(x), f2(x)〉H is a well-defined Borel measurable function on
G/H. Hence for f ∈ Bu(G,H) the definition

(‖f‖′)2 :=
∫

G/H
〈f(x), f(x)〉H dµ(x̄)
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makes sense, and 0 ≤ ‖f‖′ ≤ ∞.

Now we let L2
u(G,H) be the linear space consisting of f ∈ Bu(G,H) such

that ‖f‖′ < ∞, where, as usual, we identify two functions f1 and f2 if and
only if ‖f1 − f2‖′ = 0. Then Ku(G,H) ⊂ L2

u(G,H). Furthermore, we have
the following theorems, coming from [10, Proposition 4.7, Proposition 4.10].

Theorem 4.2.4. L2
u(G,H) is a Hilbert space.

Theorem 4.2.5. Ku(G,H) is dense in L2
u(G,H).

Our induced representation will be on the Hilbert space L2
u(G,H); we shall

first define it on Ku(G,H). For each f ∈ Ku(G,H) and y ∈ G, we define
the H-valued function û(y)f by

(û(y)f)(x) := f(y−1x).

Then this function again satisfies (4.1) and we have, for f ∈ Ku(G,H) and
y, z ∈ G

û(yz)f = û(y)(û(z)f),

û(e)f = f.

Also, the inner product we defined on Ku(G,H) is ū-invariant.

〈û(y)f1, û(y)f2〉′ =
∫
G/H〈f1(y−1x), f2(y−1x)〉H dµ(x̄)

=
∫
G/H〈f1(x), f2(x)〉H dµ(x̄)

= 〈f1, f2〉′,

because of the invariance of µ.

Furthermore, it is shown in [10, Lemma 4.1] that û is weakly continuous,
i.e., the function x → 〈û(x)f1, f2〉′ : G → C is continuous for all f1, f2 ∈
Ku(G,H). Now, for each x ∈ G, the operator û(x) has a unique extension
to a unitary operator on L2

u(G,H). So we obtain a function from G to
U(L2

u(G,H)), which we also denote by û. The homomorphism property and
the weak continuity of û are preserved under this extension. From this it
follows that for every f ∈ L2

u(G,H) the function x → û(x)f is continuous
in the norm topology of H, hence û is a unitary representation of G on
L2

u(G,H). We will call û the representation on G induced by u.

The disadvantage of this induced representation is that the Hilbert space
depends on the unitary representation u. We will now discuss a different
model of this representation for which the Hilbert space is independent of u.
For this model we need G to be second countable. We consider the Hilbert
space of H-valued functions on G/H that are weakly Haar measurable and
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square integrable with respect to µ, and denote it by L2(G/H,H, µ).

Definition 4.2.6. A Borel cross-section is a Borel function s : G/H → G,
such that π ◦ s = idG/H .

A fundamental lemma by Mackey tells us that if G is a locally compact
second countable group and H a closed subgroup of G, then there always
exists a Borel cross-section s : G/H → G. Now, let s be a Borel cross-
section. Then, for each f ∈ Bu(G,H) we define a function gf on G/H
by

gf (x̄) := f(s(x̄)) for all x̄ ∈ G/H.

Then gf is weakly Borel on G/H, and we have the following theorem.

Theorem 4.2.7. The map W : f → gf is an isometric isomorphism from
L2

u(G,H) onto L2(G/H,H, µ), and the inverse is given by

W−1g(x) := u(x−1s(x̄))g(x̄).

Hence W is a unitary operator from L2
u(G,H) onto L2(G/H,H, µ). Thus we

can transport every unitary representation v of G on L2
u(G,H) to a (neces-

sarily unitarily equivalent) unitary representation ṽ of G on L2(G/H,H, µ),
by putting

ṽ = WvW−1.

When we transport our induced representation û, we get the following rep-
resentation.

(ũ(y)g)(x̄) = u(s(x̄)−1ys(y−1x̄))g(y−1x̄), (4.2)

where y ∈ G, g ∈ L2(G/H,H, µ) and x̄ ∈ G/H.

So we can also look at ũ as the representation induced from u, and now the
associated Hilbert space is independent of u.

Remark 4.2.8. We will now look back on section 3.3 and show that the
induced unitary representation we got there coincides with the definition
for ũ we have here. Since Z/pZ is a group that consists of p points with
the discrete topology, the Haar measure µ is the counting measure. Thus
L2(Z/pZ, µ) is a p-dimensional Hilbert space. It has as orthonormal basis
the functions fi (i = 0, 1, .., p − 1) that send ī to 1 and the rest to zero. In
section 3.3 we looked at how the induced unitary representation acted on ei
for {ei}p−1

i=0 an orthonormal basis of the Hilbert space. Here this ei translates
to the function fi ∈ L2(Z/pZ) that sends ī to 1 and the rest to zero.
Let u be the unitary representation on pZ that sends np to zn. Now, if we
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take as Borel cross-section s : ī→ i, such that 0 ≤ i < p, we get from (4.2)
that for t ∈ Z, i ∈ {0, 1, .., p− 1}, and x̄ ∈ Z/pZ

ũ(t)(fi)(x̄) = znfi(x− t),

where
np = −s(x̄) + t+ s(x− t).

Now since fi(x− t) = 1 if and only if x− t = ī, we get that x̄ → fi(x− t)
equals the function fj , where j is such that j − t = i. Hence

ũ(t)(fi)(x̄) = znfj(x̄),

which is only non-zero if x̄ = j̄. In that case

np = −s(j̄) + t+ s(j − t) = −s(j̄) + t+ s(̄i),

hence
t+ i = j + np,

which is the same as what we had in section 3.3.

4.3 Representations associated to periodic orbits

We let (X,Φ) be a flow. We will now use the representations defined in
the previous section to define representations of C(X) oα R associated to
periodic points x, just like in the discrete case. We will do this by taking
an irreducible representation of the isotropy subgroup at x and use this to
construct a unitary representation u of R and a representation π of C(X),
and show that the pair (π, u) is covariant. We will then establish some nice
properties of these representations, e.g., that they are irreducible. We will
have to consider two different cases: x has period p > 0, in which case the
isotropy subgroup is Rx = pZ, or x has period p = 0, which makes x a fixed
point, and where Rx = R.

4.3.1 Case I: period p > 0

Let x ∈ X be periodic, with period p > 0. Then we can look at Rx, which
is a subgroup of R, and we can induce every unitary representation of Rx to
a unitary representation of R.

Motivated by the discrete case, we will only look at irreducible unitary
representations of Rx. Since Rx = pZ, it follows from Lemma 3.3.2 that all
such representations are of the form

ux,z : np→ zn,
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where z ∈ T. We use this notation since u depends both on (the period of)
x and on z.

So in this case the induced representations are on the Hilbert space L2
ux,z

(R,C),
which we shall denote by L2

x,z(R), where ux,z is the representation sending
np to zn.

Now we can make (4.1) specific.

g(r + np) = z−ng(r) for all r ∈ R, n ∈ Z. (4.3)

Let K := [0, p], a compact set in R, then KRx = R, since every r ∈ R can
be written as np+ t for some n ∈ Z, t ∈ [0, p]. So Kux,z(R,C) consists of all
continuous functions from R to C that satisfy (4.3).
Also, note that weakly Haar measurable C-valued functions are Borel mea-
surable functions. So Bux,z(R,C) consists of all Borel measurable functions
from R to C that satisfy (4.3).
We shall write Kx,z(R) and Bx,z(R) for these two spaces.

We will denote the induced unitary representation of R coming from ux,z by
ûx,z. Then we get

(ûx,z(t)g)(r) = g(−t+ r) for all g ∈ L2
x,z(R), t, r ∈ R.

We now want to construct a representation of C(X) on L2
x,z(R).

Let f ∈ C(X), then we consider the function

r → f(r · x) for all r ∈ R

Since r → r ·x is by definition continuous, this function is again continuous,
hence Borel measurable.

We define for each f ∈ C(X) and g ∈ L2
x,z(R) the following function from

R to C.
(πx,z(f)g)(r) := f(r · x)g(r). (4.4)

This function is measurable and it again satisfies (4.3).

(πx,z(f)g)(r + np) = f((r + np) · x)g(r + np)
= f(r · (np · x))z−ng(r)
= z−nf(r)g(r)
= z−n(πx,z(f)g)(r).

Also since f is bounded, πx,z(f)g is again in L2
x,z(R). It is easily verified

that πx,z(f) is a linear operator on L2
x,z(R). It is also bounded, since for
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every g ∈ L2
x,z(R)

(‖πx,z(f)g‖′)2 =
∫

R/pZ ‖f(r · x)g(r)‖2 dµ(r̄)
≤ ‖f‖2

∞
∫

R/pZ ‖g(r)‖
2 dµ(r̄)

= ‖f‖2
∞(‖g‖′)2,

So πx,z is a function from C(X) into B(L2
x,z(R)). To show π is actually a

representation, we need to verify that it preserves sums, scalar products,
multiplications and adjoints. So, let g ∈ L2

x,z(R) and r ∈ R, then for all
f1, f2 ∈ C(X) and all λ, µ ∈ C we have

(πx,z(λf1 + µf2)g)(r) = (λf1 + µf2)(r · x)g(r)
= λf1(r · x)g(r) + µf2(r · x)g(r)
= λ(πx,z(f1)g)(r) + µ(πx,z(f2)g)(r).

Also
(π(f1f2)g)(r) = (f1f2)(r · x)g(r)

= f1(r · x)f2(r · x)g(r)
= (πx,z(f1) ◦ πx,z(f2)g)(r).

Now we want to find the adjoint of πx,z(f) with f ∈ C(X). Let g1, g2 ∈
L2

x,z(R), then

〈πx,z(f)g1, g2〉′ =
∫

R/pZ f(r · x)g1(r)g2(r) dµ(r̄)

=
∫

R/pZ g1(r)f(r · x)g2(r) dµ(r̄)
= 〈g1, π∗x,z(f)g2〉′

Hence
(π∗x,z(f)g)(r) = f(r · x)g(r) = (πx,z(f)g)(r).

So (πx,z, L
2
x,z(R)) is a representation of C(X).

Proposition 4.3.1. (πx,z, ûx,z) is a covariant representation of the C∗-
dynamical system (C(X),R, α).

Proof. We have to show that for all f ∈ C(X) and t ∈ R the following holds.

πx,z(αt(f)) = ûx,z(t)π(f)û∗x,z(t),

or equivalently
πx,z(αt(f))ûx,z(t) = ûx,z(t)πx,z(f).

Let g ∈ L2
x,z(R), then

(ûx,z(t)g)(r) = g(−t+ r),
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hence

(πx,z(αt(f))ûx,z(t)g)(r) = (αtf)(r · x)(ûx,z(t)g)(r)
= (αtf)(r · x)g(−t+ r)
= f((−t+ r) · x)g(−t+ r),

while

(ûx,z(t)πx,z(f)g)(r) = (πx,z(f)g)(−t+ r) = f((−t+ r) · x)g(−t+ r).

By Theorem 2.3.1 the covariant representation (πx,z, ûx,z) gives rise to a
representation πx,z o ûx,z of C(X) oα R, which we will denote by π̂x,z.

To summarize our results: We can associate to each periodic point x in X
and each irreducible unitary representation ux,z of pZ, where p is the period
of x, a representation (π̂x,z, L

2
x,z(R)) on C(X) oα R.

Lemma 4.3.2. Let x be a periodic point of the flow (X,φ) with period p,
z ∈ T. If x and y have the same orbit, then π̂x,z is unitarily equivalent to
π̂y,z.

Proof. The representation π̂x,z is unitarily equivalent to π̂y,z if and only if
their corresponding covariant representations (πx,z, ûx,z) and (πy,z, ûy,z) are
unitarily equivalent. Note that the unitary representations ûx,z and ûy,z are
the same, since they only depend on the period of x and y, and those are
equal. Likewise, L2

x,z(R) = L2
y,z(R) for the same reason. Now we need to

show that there is a unitary operator W ∈ B(L2
x,z(R)), such that

Wπx,z(f) = πy,z(f)W for all f ∈ C(X), (4.5)

and
Wûx,z(t) = ûy,z(t)W for all t ∈ R. (4.6)

Let r ∈ [0, p) such that r · x = y. We then define W = ûx,z(−r). Then by
covariance of (πx,z, ûx,z)

Wπx,z(f) = ûx,z(−r)πx,z(f)
= πx,z(α−r(f))ûx,z(−r).

And for g ∈ L2
x,z(R) and t ∈ R, we have

(πx,z(α−r(f))g)(t) = (α−r(f))(t · x)g(t)
= f((t+ r) · x)g(t)
= f(t · y)g(t)
= (πy,z(f)g)(t).
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So
πx,z(α−r(f)) = πy,z(f),

And hence
Wπx,z(f) = πy,z(f)ûx,z(−r) = πy,z(f)W.

Also,
Wûx,z(t) = ûx,z(r)ûx,z(t) = ûx,z(r + t)

= ûx,z(t)ûx,z(r) = ûx,z(t)W = ûy,z(t)W,

so W satisfies both (4.5) and (4.6). Hence π̂x,z and π̂y,z are unitarily equiv-
alent.

Lemma 4.3.3. Let x and y be periodic points of the flow (X,Φ), such that
x and y do not have the same orbit, and let z1 and z2 be in T. Then π̂x,z1

is not unitarily equivalent to π̂y,z2.

Proof. Urysohn’s Lemma ([9, 4.15]) states that for any closed disjoint sub-
sets A and B of X there exists an f ∈ C(X) such that f = 0 on A and
f = 1 on B.

Now, since Oφ(x) and Oφ(y) are closed disjoint subsets of X, there is an
f ∈ C(X) such that f = 0 when restricted to Oφ(x), and f = 1 when
restricted to Oφ(y).

Suppose that π̂x,z1 is unitarily equivalent to π̂y,z2 . Then πx,z1(f) is the zero
operator on L2

x,z1
, while πy,z2(f) is the identity on L2

y,z2
, hence πx,z1 and

πy,z2 cannot be unitarily equivalent.

It will also be useful, just like in the discrete case, to look at the second
model of induced representations. We define the map s from R/pZ to R by

s : r̄ → r,

where 0 ≤ r < p. Then π ◦ s(r̄) = r̄ for all r̄ ∈ R/pZ, where π is the
projection map from R onto R/pZ. It is clear that s is a Borel function,
hence it is a Borel cross-section.

Now, we consider the map W we introduced in the previous section. It sends
a function f ∈ Bx,z(R) to the function gf on R/pZ, defined by

gf (r̄) = f(s(r̄)) = f(r), where r ∈ [0, p).

Then, as stated earlier,W becomes an unitary operator inB(L2
x,z(R), L2((R/pZ),C, µ)),

where µ is the Haar measure on R/pZ. For convenience we will write
L2(R/pZ) instead of L2(R/pZ,C, µ).
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When we work out (4.2), with u = ux,z, we get the following unitary repre-
sentation of R.

(ũx,z(t)g)(r̄) = zk(r̄,t)g(r − t),

where g ∈ L2(R/pZ), t ∈ R, r̄ ∈ R/pZ and

k(r̄, t) =
1
p
(−s(r̄) + t+ s(r − t)) ∈ Z.

Then ũ is unitarily equivalent to û by construction.

In the second model we get a representation ψx,z of C(X) on L2(R/pZ) by
putting

ψx,z(f)g = Wπx,z(f)W ∗(g) with f ∈ C(X) and g ∈ L2(R/pZ),

so

(ψx,z(f)g)(r̄) = f(r · x)g(r̄) for all r̄ ∈ R/pZ, f ∈ C(X), g ∈ L2(R/pZ).

Actually, since both ψx,z and its associated Hilbert space no longer depend
on z, we can simply write ψx for this representation. Then
(ψx, ũx,z, L

2(R/pZ)) is a covariant representation of (C(X),R, α) that is
unitarily equivalent to (πx,z, ûx,z, L

2
x,z(R)). Hence the representation π̃x,z :=

ψx o ũx,z of C(X) oα R is unitarily equivalent to π̂x,z.

What we want to do now is prove the following theorem.

Theorem 4.3.4. Let x be a periodic point in X with period p > 0 and let
z1, z2 be in T. Then π̃x,z1 is unitarily equivalent to π̃x,z2 if and only z1 = z2.
Moreover, π̃x,z is an irreducible representation for all z ∈ T.

Before we prove this, we first need some ingredients, coming from Arveson
[1].

Let Y be a metric space. We define B(Y ) to be the set of bounded com-
plex valued Borel functions on Y . Then B(Y ) becomes a commutative C∗-
algebra with pointwise sum and multiplication and norm ‖h‖ = supy |h(y)|,
containing C(Y ) as a C∗-subalgebra. Let ν be a finite Borel measure on Y ,
then each function h ∈ B(Y ) gives rise to a multiplication operator Lh on
L2(Y, ν), by

Lhg(y) = h(y)g(y), where g ∈ L2(Y, ν) and y ∈ Y.

Then the map h → Lh is a representation of B(Y ) on L2(Y, ν). We will
denote the restriction of this map to C(Y ) by πν ; this then becomes a rep-
resentation of C(Y ) on L2(Y, ν). Let Z denote the set of all multiplications
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Lh, h ∈ B(Y ), then clearly Z is a commutative ∗-algebra. Recall that the
commutant of a set operators D ⊂ B(H), where H is a Hilbert space, is
defined as

D′ := {T ∈ B(H)|TS = ST for all S ∈ D}.

Then in [1, Theorem 2.2.1] the following theorem is proven.

Theorem 4.3.5. With the above notation, the sets Z, Z ′ and the strong
closure of πν(C(Y )) are identical.

Also, we need the following lemma.

Lemma 4.3.6. Let H be a Hilbert space, A a subset of B(H), and Ā the
strong closure of A. Then A′=(Ā)′.

Proof. Since A ⊂ Ā, it is clear that (Ā)′ ⊂ A′. To prove the converse, we
let V ∈ A′, and W ∈ Ā, and need to show that VW = WV . Since W ∈ Ā,
there is a net {Wi}i∈I ⊂ A, such limiWi = W in the strong topology, hence
for every h ∈ H, limiWih = Wh. Since V ∈ B(H), it is continuous, hence
limi V (Wih) = V (limiWih). So for every h ∈ H, we have

W (V h) = lim
i
Wi(V h) = lim

i
V (Wih) = V (lim

i
Wih) = V (Wh).

So V commutes with all W ∈ Ā, hence V ∈ (Ā)′.

We will use this lemma and the previous theorem to prove the following
lemma.

Lemma 4.3.7. Let x be a periodic point in X, with period p > 0. Let V be
an operator in B(L2(R/pZ)) such that

V ψx(f) = ψx(f)V for all f ∈ C(X),

then V = Lh for some h ∈ B(R/pZ).

Proof. First of all, Y := R/pZ is a metric space, since it is homeomorphic
to T. And L2(R/pZ) = L2(R/pZ, µ), where µ is a Haar measure (hence a
finite Borel measure).
Claim: πµ(C(Y )) = ψx(C(X)).
Proof of claim:
Both of the spaces consist of multiplication operators on L2(R/pZ, µ). The
space πµ(C(Y )) consists of operators that multiply with functions in C(Y ),
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whereas operators in ψx(C(X)) multiply with functions of the form r̄ →
f(r ·x), where f ∈ C(X). Now, if f ∈ C(X), then r̄ → f(r ·x) is continuous,
for it is a composition of the map η : R/pZ → Oφ(x) that sends r̄ to r · x,
which is a homeomorphism by Proposition 4.1.6, and the map f |Oφ(x), which
is continuous by continuity of f .

Now let g ∈ C(Y ). Then, by composing with the continuous map η−1, we
get a continuous map g ◦η−1 ∈ C(Oφ(x)). We now use the Tietze Extension
theorem ([9, 4.16]), which tells us that for any A ⊂ X closed, and f ∈ C(A),
there exists an F ∈ C(X) such that F |A = f .
So, since Oφ(x) is closed in X, we know that there exists a f ∈ C(X), such
that f |Oφ(x) = g ◦ η−1, so that πµ(g) = ψx(f). Hence g = f |Oφ(x) ◦ η sends
r̄ → f(r · x).

So ψx(C(X)) = πµ(C(Y )).

Now, by assumption V commutes with ψx(C(X)). So V ∈ ψx(C(X))′ =
πµ(C(Y ))′. From Lemma 4.3.6 we see that V is in the commutant of the
strong closure of πµ(C(Y )), which we will denote by πµ(C(Y )).

Just like before, we let Z denote the set of all multiplications Lh, h ∈
B(Y ). Then by Theorem 4.3.5 we get that Z = Z ′ = πµ(C(Y )). So
V ∈ πµ(C(Y ))

′
= Z ′ = Z. Hence V = Lh for some h ∈ B(Y ).

Now we can finally prove Theorem 4.3.4.

Proof. (of Theorem 4.3.4) When z1 = z2, then π̂x,z1 = π̂x,z2 , hence they are
unitarily equivalent. Suppose that there is an operator V ∈ B(L2(R/pZ)),
such that

V ψx(f) = ψx(f)V for all f ∈ C(X),

and
V ũx,z1(t) = ũx,z2(t)V for all t ∈ R.

We will show that such an operator cannot be unitary if z1 6= z2, which
implies that π̃x,z1 is not unitarily equivalent to π̃x,z2 .

Lemma 4.3.7 implies that V = Lh for a h ∈ B(R/pZ). Then for g ∈
L2(R/pZ) and r̄ ∈ R/pZ) we have

V (ũx,z1(t)g)(r̄) = h(r̄)zk(r̄,t)
1 g(r − t),

and
ũx,z2(t)(V (g))(r̄) = z

k(r̄,t)
2 h(r − t)g(r − t).

Recall that
k(r̄, t) =

1
p
(−s(r̄) + t+ s(r − t)).
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So by assumption we have

h(r̄)zk(r̄,t)
1 g(r − t) = z

k(r̄,t)
2 h(r − t)g(r − t). (4.7)

Now, we take t = p. Then

k(r̄, t) = k(r̄, p) =
1
p
(−s(r̄) + p+ s(r − p)) =

1
p
(−s(r̄) + p+ s(r̄)) = 1.

If we put this into equation (4.7) a we get

h(r̄)z1g(r̄) = z2h(r̄)g(r̄).

These two must, for all g ∈ L2(R/pZ), be equal, thus also for the identity 1
in L2(R/pZ).

Then we get that h(r̄)z1 = z2h(r̄) for almost every r̄ ∈ L2(R/pZ). If z1 6= z2,
then this is only true if h(r̄) = 0 for almost every r̄ ∈ L2(R/pZ). But then
Lh is not unitary.

So π̃x,z1 and π̃x,z2 are not unitarily equivalent if and only if z1 6= z2.

Now it remains to show that π̂x,z1 is irreducible. This is the case if and
only if the only operators that commute with both ũx,z1 and ψx are scalar
multiples of the identity (by Corollary 2.1.10). Let V be such an operator,
then we have, again, that (4.7) has to be true, with z2 = z1. If we again take
g = 1 and fix t ∈ R, then we get h(r̄) = h(r − t) for almost every r̄ ∈ R/pZ.
Hence h is constant almost everywhere, hence V = Lh is a scalar multiple
of the identity

So indeed we can conclude that π̂x,z1 is irreducible.

We summarize the results in this section in the following theorem.

Theorem 4.3.8. Let x, y be periodic points of the flow (X,Φ) and let z1, z2
be in T. Then π̂x,z1 is unitarily equivalent to π̂y,z2 if and only if x and y have
the same orbit and z1 = z2. Moreover, π̂x,z is an irreducible representation
for all z ∈ T.

4.3.2 Case II: period p = 0

Now, suppose x is a fixed point of the flow (X,Φ). Then Rx = R. We can
now try to go through the same construction as before. First, let (u,H) be
an irreducible unitary representation of Rx. Then, since Rx = R is abelian,
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Lemma 3.3.2 tells us that H = C and then B(C) = C. So u is a continuous
homomorphism from R to C. Then there is a λ ∈ R, such that

u(r) = eiλr, with r ∈ R.

The proof of this can be found in [8, Theorem 4.5 a]

Since u depends only on λ, we will write uλ to denote this representation.

The space R/Rx = {0̄} consists of one point. So every complex-valued
function on {0̄} is of the form f : 0̄ → z, for some z ∈ C. So the space
L2(R/Rx, µ), where µ is the Haar measure on the space {0̄}, is simply C
itself.

We get a representation πx of C(X) on L2(R/Rx, µ) in the same way as
before.

πx(f)g(0̄) = f(0 · x)g(0̄), with f ∈ C(X), g ∈ L2(R/Rx, µ), 0̄ ∈ R/Rx.

And we can write this simply as

πx(f) = f(x), where f ∈ C(X).

Then (πx, uλ) is a covariant representation: Let r ∈ R, f ∈ C(X), then

uλ(r)πx(f)uλ(−r) = eiλrf(x)e−iλr = f(x) = f(−r · x) = πx(αrf).

Therefore we get a representation π̂x,λ := πx o uλ of C(X) oα R; this rep-
resentation is automatically irreducible, since its associated Hilbert space is
C. Also we get similar results as in case I, though these do not require as
much work.

Theorem 4.3.9. Let x, y ∈ X be fixed points and λ1, λ2 ∈ R. Then π̂x,λ1 is
unitarily equivalent to π̂x,λ2 if and only if x = y and λ1 = λ2.

Proof. Suppose that π̂x,λ1 is unitarily equivalent to π̂x,λ2 . Then there is a
unitary operator W ∈ B(C) (so W = z ∈ T), such that for every f ∈ C(X)
and r ∈ R

Wπx(f) = πy(f)W,

and
Wuλ1(r) = uλ2(r)W.

So we get
zf(x) = f(y)z
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and
zeiλ1r = eiλ2rz.

Since z 6= 0, it follows that for every f ∈ C(X) and r ∈ R f(x) = f(y) and
eiλ1r = eiλ2r. Then clearly λ1 = λ2 and x = y.

Moreover, it is also true that every one-dimensional irreducible representa-
tion of C(X) oα R is unitarily equivalent to an induced representation π̃x,λ

for some fixed point x ∈ X and λ ∈ R.

Theorem 4.3.10. Let π̄ = π o u be an irreducible representation of
C(X) oα R on the Hilbert space C. Then π̄ = π̃x,λ, with x ∈ X a fixed point
and λ ∈ R.

Proof. Since u is a one-dimensional unitary representation of R, it is nec-
essarily irreducible and of the form r → eiλr for some λ ∈ R. And π is a
non-zero ∗-homomorphism of C(X) into C, hence π ∈ Ĉ(X). Then there is
an x ∈ X, such that π(f) = f(x) for all f ∈ C(X), which follows from [2,
Theorem 1.10.4]. And then for all r ∈ R we have

f(−r · x) = π(αrf) = u(r)π(f)u(−r) = eiλrf(x)e−iλr = f(x).

Hence −r · x = x for all r ∈ R, hence x is a fixed point. Now we have that
π̂ = π̃x,λ.
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Chapter 5

Topics for further research

Of course, this is not all that we can tell about the interplay between flows
and C∗-algebras. In fact, it is just a beginning. Here are some suggestions
for further research. The results on discrete dynamical systems and their
associated C∗-algebras serve as motivation.

• In the case of discrete dynamical systems, the induced representations
arising from a periodic point with period p and an irreducible repre-
sentation of the isotropy subgroup of that point, are p-dimensional,
and in fact any irreducible p-dimensional representation of the crossed
product C∗-algebra are unitarily equivalent to such an associated rep-
resentation.
In the case of flows, can we also find some characterization of the
structure of the induced representations?

• In the discrete case, the GNS-representations of pure state exten-
sions on the crossed product C∗-algebra, coming from certain states
on C(X), are unitarily equivalent to induced representations arising
from a periodic point and an irreducible representation of the isotropy
subgroup of that point. Can something similar be shown in the case
of flows? Then C(X) can no longer be embedded in C(X) oα R, so
we have to work with the multiplier algebra of the crossed product
C∗-algebra.

• In the discrete case, the dynamical system is minimal if and only if its
associated C∗-algebra is simple. Is this also true in the case of flows?
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Appendix A

Very short course on
C*-algebras

In this appendix we will give a short introduction on Banach algebras and
C*-algebras. The basic definitions and some basic results will be stated,
mostly without proof. There are numerous introductory books on this sub-
ject, which cover the basic theory of C*-algebras far better than such a short
appendix, and we refer those who have not yet been immersed in the won-
drous world of C*-algebras and wish to learn more, to books such as [12] by
Murphy, [5] by Davidson or [1] by Arveson.

Throughout this appendix the ground field for all vector spaces and algebras
is the complex field C.

A.1 Basic definitions and examples

In this section we will give the basic definitions and discuss some relevant
examples.

Definition A.1.1. A Banach algebra is a Banach space A together with a
map (multiplication)

A×A→ A, (a, b) → ab,

such that
(λa+ µb)c = λac+ µbc,

a(λb+ µc) = λab+ µac,

a(bc) = (ab)c,
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and
‖ab‖ ≤ ‖a‖‖b‖

for all a, b, c ∈ A, λ, µ ∈ C.

The last condition will ensure that multiplication is norm-continuous.

A Banach algebra is called unital if it has a unit element, i.e., an element 1,
such that 1a = a1 = a for all a ∈ A .

Definition A.1.2. A Banach ∗-algebra A is a Banach algebra endowed
with an involution, i.e., a map ∗ : A→ A, sending a to a∗ ∈ A, such that

(λa+ µb)∗ = λ̄a∗ + µ̄b∗,

(a∗)∗ = a,

and
(ab)∗ = b∗a∗

for all a, b ∈ A, λ, µ ∈ C. An element a ∈ A is called self-adjoint if a = a∗,
normal if aa∗ = a∗a and, if A is unital, unitary if a∗a = aa∗ = 1.

Finally we arrive at the C∗-algebra itself.

Definition A.1.3. A C∗-algebra A is a Banach ∗-algebra, with the follow-
ing property.

‖a∗a‖ = ‖a‖2 for all a ∈ A.
We will call this property the C∗-property.

Before delving into the theory of C∗-algebras, we will give some important
examples.

Example A.1.4. Let X be a locally compact Hausdorff space, and C0(X)
the space of continuous complex-valued functions f on X that vanish at
infinity, i.e., with the property that for every ε > 0 there is a compact set
K ⊂ X such that |f(x)| < ε whenever x is outside of K. C0(X) is a Banach
space with respect to the supremum norm.

‖f‖∞ = sup
x∈X

‖f(x)‖ for every f ∈ C0(X).

We can define multiplication by pointwise multiplication.

(fg)(x) = f(x)g(x) for all f, g ∈ C0(X), x ∈ X,

and then it is easy to check it satisfies the conditions necessary for a Banach
algebra. We can define an involution on C0(X) in a natural way.

f∗(x) = f(x) for all f ∈ C0(X).
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Then C0(X) satisfies all the requiring properties, including the C∗-property.
This makes C0(X) a commutative C∗-algebra. Observe that C0(X) contains
the identity function, sending everything to 1, if and only if X is compact,
and then C0(X) = C(X).

Example A.1.5. Let H be a Hilbert space and B(H) the space of bounded
linear operators on H. B(H) is then also a Banach space, having the oper-
ator norm

‖S‖ = sup
‖x‖≤1

‖S(x)‖ for every S ∈ B(H)

We can define multiplication on B(H) by composition.

(ST )(x) := S(T (x)) for all S, T ∈ B(H), x ∈ H.

This multiplication satisfies the conditions necessary for a Banach algebra.
We can also look at the adjoint of an operator A ∈ B(H), i.e., the (unique)
operator A∗ such that 〈Ax, y〉 = 〈x,A∗y〉 for every x, y ∈ H. This involution
has the required properties, and it satisfies the C∗-property, which means
that B(H) is a C∗-algebra. It is non-commutative unless H is one dimen-
sional or zero dimensional.

Definition A.1.6. A ∗-homomorphism between two Banach ∗-algebras is
a map that preserves sum, scalar multiplication, product and adjoint. A
∗-isomorphism is a bijective ∗-homomorphism.

When we talk about homomorphisms and isomorphisms between Banach
∗-algebras we will mean ∗-homomorphisms and ∗-isomorphisms.

A.2 Into the wondrous world of C*-algebras

The C∗-property may seem like just a simple equation, one small condition
added to a long list of conditions necessary for a Banach ∗-algebra, but it
is an extremely powerful and important condition. It ensures that all ho-
momorphisms between C∗-algebras must be norm decreasing. Any injective
homomorphism is then automatically isometric. Furthermore, the norm on
a C∗-algebra is unique, in the sense that there can be no other norm which
still makes it a C∗-algebra. The two examples we gave before are very im-
portant classes of C∗-algebras.
A very fascinating fact is that the only commutative C∗-algebras are of the
form C0(X), by which we mean that for any commutative C∗-algebra A
there is an isomorphism that maps A onto C0(X) for some locally compact
Hausdorff space X. And this isomorphism can be realized in a very concrete
way, as we will now explain.
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Definition A.2.1. The spectrum Â of a commutative C∗-algebra A is the
set of non-zero homomorphisms of A into C.

Under the weak∗-topology, Â becomes a locally compact Hausdorff space,
and Â is compact if and only if A is unital.

Definition A.2.2. For each a in a commutative C∗-algebra A, we define
a function â on Â by

â(ω) = ω(a) for all ω ∈ Â.

The Gelfand transform on a commutative C∗-algebra A is then the map
that sends x ∈ A to x̂.

Theorem A.2.3. (Gelfand-Naimark) The Gelfand transform on a commu-
tative C∗-algebra A is an isomorphism between A and C0(Â).

We also have the following theorem.

Theorem A.2.4. Let X,Y be compact Hausdorff spaces. Then X is home-
omorphic to Y if and only if C(X) is isomorphic to C(Y ).

An important tool for C∗-algebras is representation theory.

Definition A.2.5. A representation of a C∗-algebra A is a pair (π,H) con-
sisting of a Hilbert space H and a homomorphism π of A into the C∗-algebra
B(H). An injective representation is also called faithful. A representation
(π,H) of A is called non-degenerate if π(A)H is a dense subset of H. Unless
mentioned otherwise, we will assume a representation to be non-degenerate.

When the Hilbert space H is known from the context, we will write π in-
stead of (π,H). Since a representation of a C∗-algebra is a homomorphism
between C∗-algebras, it is necessarily norm-decreasing.

Definition A.2.6. A representation (π,H) of a C∗-algebra A is called
irreducible if there is no proper closed subspace M of H, such that π(A)M ⊂
M . Two representations (π,H) and (ψ,K) of A are unitarily equivalent if
there is a unitary operator u : H → K such that ψ(a) = uπ(a)u∗ for all
a ∈ A.
A representation (π,H) of A is called cyclic if there is an h ∈ H such that
the set π(A)h is dense in H. Then h is called a cyclic vector for π. We
say that a cyclic representation (π,H) of A with cyclic vector h is unitarily
equivalent to a cyclic representation (ψ,K) with cyclic vector k if there is
a unitary operator u : H → K such that ψ(a) = uπ(a)u∗ for all a ∈ A and
u(h) = k.
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Then, for general C∗-algebras, we have the following theorem.

Theorem A.2.7. (Gelfand-Naimark) Let A be a C∗-algebra. Then A has
a faithful representation.

This is a very strong result. It means that A is isomorphic to π(A) ⊂ B(H),
hence any C∗-algebra is isomorphic to a self-adjoint, closed subalgebra of
B(H) for some Hilbert space H. In the proof of this theorem, the following
linear functionals play an important part.

Definition A.2.8. A linear functional φ : A → C is called positive if
φ(a∗a) ≥ 0 for every a ∈ A. A state on A is a positive linear functional of
norm one.

The states form a convex set of linear functionals on A. An extreme point of
this set is called a pure state. Hence a state φ is a pure state if and only if for
any two states φ1, φ2 and every t ∈ (0, 1), the condition φ = tφ1 + (1− t)φ2

implies φ1 = φ2 = φ.

Example A.2.9. If (π,H) is a representation of A and h ∈ H then

φ(a) := 〈π(a)h, h〉 for all a ∈ A

is a positive linear functional on A. Furthermore, this is a state if and only
if ‖h‖ = 1.

Conversely, states can be used to construct representations. This procedure
is called the GNS construction, named after Gelfand, Naimark and Segal,
and is a vital ingredient for the proof of Theorem A.2.7.

Theorem A.2.10. Let A be a C∗-algebra.

1. To any state φ on A there corresponds a cyclic representation (πφ,H)
of A with cyclic unit vector hφ such that

φ(a) = 〈πφ(a)hφ, hφ〉 for all a ∈ A.

This correspondence is a bijection between the states on A and the
unitary equivalence classes of cyclic representations of A with a given
cyclic unit vector.

2. With this bijection, the pure states correspond with the unitary equiv-
alence classes of irreducible cyclic representations with a given cyclic
unit vector.
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Appendix B

Haar measure and
integration

The goal of this appendix is to give an overview of Haar measures and
integration. We will not give any proofs in this section. The proofs, and
further details, can be found in [9], [8] and [21], among others.

First we will give some preliminary definitions.
A topological group G is both a group, and a topological Hausdorff space
such that
a) the map (s, r) → sr is continuous, and
b) the map s→ s−1 is continuous.

A locally compact group is a topological group G, for which the underlying
topology is locally compact, i.e., every element of G has a compact neigh-
bourhood.

A Borel measure on a locally compact group G is a measure µ on the Borel
σ-algebra on G, i.e., the σ-algebra generated by the family of open sets in
G. If furthermore we have that for every open V ⊂ G,

µ(V ) = sup{µ(C)|C ⊂ V and C compact},

for every measurable A ⊂ G,

µ(A) = inf{µ(V )|A ⊂ V and V open},

and for every compact C ⊂ G

µ(C) <∞,

then we call µ a Radon measure. We say that µ is left-invariant if

µ(sA) = µ(A) for all s ∈ G and A measurable.
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If µ(As) = µ(A) we say that µ is right-invariant.

Definition B.1. A left Haar measure on a locally compact group G is a
left-invariant Radon measure on that group. A right-invariant Radon mea-
sure is called a right Haar measure. We will use the term Haar measure
to denote left-invariant Haar measure. If the Haar measure is also right-
invariant, then we call it bi-invariant.

Remark B.2. We can easily construct right Haar measures from left Haar
measures, and vice versa: if µ is a left Haar measure, then ν(A) := µ(A−1)
is a right Haar measure.

Then we have the following fundamental result.

Theorem B.3. Every locally compact group G has a Haar measure which
is unique up to a strictly positive scalar.

Example B.4. If G is discrete, i.e., every subset of G is open, then the
counting measure is a Haar measure of G. So if G = Z, and f a complex-
valued function on G with finite support, then∫

Z
f(n) dµ(n) =

∑
n∈Z

f(n).

Example B.5. If G = Rn, then the Lebesgue measure restricted to the
Borel σ-algebra is a Haar measure.

If µ is a Haar measure onG then for every non-empty open V ⊂ G, µ(V ) > 0.

These properties give us that ‖f‖1 :=
∫
G ‖f(s)‖ dµ(s) defines a norm on

Cc(G), the continuous complex valued functions on G. We will denote L1(G)
for the completion of Cc(G) with respect to this norm. The left-invariance
of µ then gives us that for every f ∈ L1(G)∫

G
f(rs) dµ(s) =

∫
G
f(s) dµ(s).

A left Haar measure need not be a right Haar measure. The following the-
orem relates them.

Theorem B.6. Let µ be a Haar measure on a locally compact group G
and R+ the multiplicative group of positive real numbers. Then there is a
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continuous homomorphism ∆ : G→ R+ such that

∆(r)
∫

G
f(sr) dµ(s) =

∫
G
f(s) dµ(s)

for all f ∈ L1(G). The function ∆ is independent of choice of Haar measure
and is called the modular function on G.

From this theorem we see that a Haar measure µ on a group G is bi-invariant
if and only if ∆ ≡ 1; such groups are called unimodular. It is clear that every
abelian group is unimodular. Every compact group G is also unimodular:
∆ is a continuous homomorphism from G to R+, hence ∆(G) is a compact
subgroup of R+. The only compact subgroup of R+ is {1}, so ∆(G) = {1},
hence G is unimodular.
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Appendix C

Schur’s Lemma

In this appendix we will prove a theorem that we did not want to prove
in the main chapters of the thesis, in order to not flood the reader with
unnecessary details. However, we do feel the proof is somewhat relevant to
this thesis, hence this appendix.

Definition C.1. Let H be a Hilbert space and S ⊂ B(H). Then we call a
subspace M ⊂ H invariant for S if SM ⊂M .

Definition C.2. The commutant of a set operators D ⊂ B(H), where H
is a Hilbert space, is defined as

D′ := {T ∈ B(H)| TS = ST for all S ∈ D}.

Our goal in this appendix is to prove the following theorem.

Theorem C.3. (Schur’s Lemma) Let H be a Hilbert space and S ⊂ B(H),
such that S∗ = S. Then the following two statements are equivalent.

1. The only closed invariant linear subspaces M ⊂ H for S are the trivial
ones: {0} and H.

2. S′ = CI, with I the identity operator in B(H).

We first need the following lemma.

Lemma C.4. Let S ⊂ B(H), such that S = S∗. Then a closed linear
subspace M ⊂ H is invariant for S if and only if M⊥ is invariant for S.

Proof. First we assume that M is invariant for S. Let m⊥ ∈M⊥ and T ∈ S,
then we need to show that T (m⊥) ∈ M⊥. Since S = S∗, T ∗ is also in S,
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hence T ∗(m) ∈M for all m ∈M . So we have

〈m,T (m⊥)〉 = 〈T ∗(m),m⊥〉 = 0 for all m ∈M.

Hence T (m⊥) ∈ M⊥. This is true for all T ∈ S and m⊥ ∈ M⊥, hence
SM⊥ ⊂M⊥.
Now assume that M⊥ is invariant for S. Then, by the above, (M⊥)⊥ is
invariant for S, and since M is a closed linear subspace of H, (M⊥)⊥ = M ,
hence M is invariant for S.

We also need a consequence of the Spectral Theorem, which can be found
in [17, 12.23-12.24]. We will not further go into the Spectral Theorem itself,
since details can be found in [17]. We will merely state the consequences we
need.

Theorem C.5. Let T be a normal operator in B(H) for some Hilbert space
H, then T is the limit in the operator norm of linear combinations of finitely
many orthogonal projections which commute with every V ∈ B(H) that com-
mutes with T (hence these projections are in T ′′).

Proof. (of Theorem C.3.) First we assume C.3.1, so let S ⊂ B(H), such
that S = S∗, and let S′ = CI. Assume that there is a closed invariant
subspace M ⊂ H for S. Then, by Lemma C.4, M⊥ is also invariant for S.
Let PM ∈ B(H) be the orthogonal projection on M .
Let h ∈ H, then h = m+m⊥, with m ∈M and m⊥ ∈M⊥. Then we have,
for any T ∈ S, that T (m) ∈M and T (m⊥) ∈M⊥. Hence for any T ∈ S

TPM (h) = TPM (m+m⊥) = T (m),

and
PMT (h) = PM (T (m) + T (m⊥)) = T (m).

Hence PM commutes with T for any T ∈ S. So PM ∈ S′ = CI, hence
PM = λI for some λ ∈ C. Since PM is a projection, λ = 0 or λ = 1. In
the first case M = {0} and in the second case M = H. So the only closed
invariant subspaces for S are the trivial ones.

Now we assume C.3.2, so let S ⊂ B(H), such that S = S∗, and such that the
only closed invariant subspaces for S are the trivial ones. Now let T ∈ S′.
We can decompose T as

T =
T + T ∗

2
+ i

T − T∗
2i

.

Now, both Re T := T+T ∗

2 and Im T := T−T∗
2i are self-adjoint, hence normal.

And since T ∈ S′ and S∗ = S, T ∗ is also in S′, hence Re T ∈ S′ and
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Im T ∈ S′. By Theorem C.5, Re T and Im T are the limits in the norm
topology of finitely many linear combinations of orthogonal projections that
are in
( Re T )′′ and (Im T )′′. Since Re T ∈ S′, ( Re T )′′ ⊂ S′′′ = S′. Likewise,
(Im T )′′ ⊂ S′. Now let P be an orthogonal projection in S′. Then the image
of P , which we will denote by M , is a closed linear subspace. Hence for any
m ∈M , and R ∈ S, we have

Rm = RP (m) = P (R(m)) ⊂ Q.

Hence M is invariant for S. So, by assumption, M = {0} or M = H. So
P = 0 of P = I.

Hence linear combination of orthogonal projections in S′ are of the form λI
for some λ ∈ C. So both Re T and Im T are limits in the operator norm
of elements of CI, hence both Re T and Im T are in CI. Then T is also in
CI.
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