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Introduction

The problem of measuring distances in digital pictures efficiently has been
studied by many authors from a variety of research angles. Weighted dis-
tance transformations as a solution originally date back to the late 1960’s
(cf. [14]–[16]), but did not come under intensive study until the mid 1980’s,
when they were introduced in a more general form by Borgefors (cf. [2]–[5]).
The advantage of these distance transformations is that they are efficient
and easy to implement. The main disadvantage is their lack of accuracy.

Over the past twenty years different approaches have been used to find
the best weighted distance transformations. (We provide a brief overview
in Section 1.4.) Recently Hajdu, Hajdu and Tijdeman [11] have studied the
problem from a purely theoretical point of view. In this thesis we use their
results to construct uniform classes of weighted distance transformations,
with guaranteed bounds on the inaccuracy. It so happens that every good
weighted distance transformation that has been suggested previously falls
into one of these classes.

A word on the structure of this thesis. Chapter 1 contains a description
of the theory of weighted distance transformations. Concepts, notation and
terminology that will be used in the rest of the thesis are introduced. Much
of this is non-standard, as most previous authors have used their own nota-
tion. When possible we have adopted the terminology of Hajdu, Hajdu and
Tijdeman. Also a measure of quality called the maximum relative error is
defined.

In Chapter 2 a scheme to calculate (a bound on) this maximum relative
error is established.

Five classes of weighted distance transformations are defined in Chap-
ters 3 and 4, and it is shown that the results of Chapter 2 are valid for these
classes.

Finally Chapter 5 contains tables of the best weighted distance transfor-
mations from each class.
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Chapter 1

The theory of weighted
distance transformations

1.1 Distance transformations in two dimensions

In applications of pattern recognition and image analysis, it is often ne-
cessary to measure distances between pixels of digital pictures. Examples
include matching (see [4] for a working algorithm), skeletonising (see [7], [9],
[14] and [18]) and segmentation (see [9]). In this thesis we shall study the
theory of distance measuring and we will not deal with such applications.
The interested reader is referred to the publications mentioned above. An
extensive bibliography of applications, particularly from the medical world,
can be found in [9].

Before a picture is analysed by a computer, it is converted into a digital
binary picture. This is done by placing a grid of pixels on top of the original
picture, and assigning one of two possible values to every pixel in the grid
(hence the name binary picture). The grid is thus partitioned into feature
and non-feature pixels. Non-feature pixels are also referred to as background
pixels. (See Figure 1.1 for an illustration of this process.)

A digital picture is a discretisation of the original, continuous picture.
Taking the size of a pixel1 as a unit of length, we can think of the pixel-grid
as a subset of Z

2. The digital binary picture is then described by assigning
a binary value to every point in that subset.

The next step is to compute for every pixel the distance to the nearest
feature pixel (which is defined to be 0 for the feature pixels themselves). This
information is stored in a new digital object, called the distance map (for
obvious reasons). The operation converting a binary picture to a distance
map is called a distance transformation. In order to get it, we have to be

1We will assume throughout that the pixels are square. While most authors make
this assumption, in some applications it is natural to work with non-square (rectangular)
pixels. See e.g. [7] and [8] for a study of distance transformations on rectangular grids.
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Figure 1.1: An illustration of how a picture is digitised. The original picture (a)
is covered by a pixel-grid, as seen in (b). The corresponding digital binary picture
(c) is now found by assigning (in this case) the value 0 to the feature pixels and 1
to the background pixels.

able to compute the distance between points of Z
2. The relevant distance is

usually the Euclidean distance, dE, given by

dE(~u,~v) =
√

(ux − vx)2 + (uy − vy)2, (1.1)

where ~u = (ux, uy) and ~v = (vx, vy) are vectors in a two-dimensional space.
Obviously, we could use formula (1.1) directly for every pair of points

in our subset of Z
2, and apply this to our binary picture to get a distance

transformation, but in practice this is simply too much work, since it involves
the evaluation of many square roots in real arithmetic. In order to keep the
computational effort low, it is desirable to restrict the calculations to integers
and also to restrict the amount of calculations needed.

An easy solution for the first problem would be to make a simple modi-
fication of the Euclidean distance, in one of the following ways:

(dE(~u,~v))2 = (ux − vx)2 + (uy − vy)
2,

〈dE(~u,~v)〉 = 〈
√

(ux − vx)2 + (uy − vy)2〉,

bdE(~u,~v)c = b
√

(ux − vx)2 + (uy − vy)2c.

(Here, 〈x〉 denotes x rounded off to the nearest integer, with the usual
convention of rounding up odd multiples of 1

2 , and bxc is the largest integer
smaller than or equal to x. For future reference, dxe denotes the smallest
integer larger than or equal to x.)

All three choices yield only integer values when ~u,~v ∈ Z
2. However,

neither one of these is a metric. We recall that a function d : A× A → R is
called a metric if it satisfies the following three conditions for all ~u,~v, ~w ∈ A:

d(~u,~v) = 0 if and only if ~u = ~v (positive definiteness),
d(~u,~v) = d(~v, ~u) (symmetry),

d(~u, ~w) ≤ d(~u,~v) + d(~v, ~w) (triangle inequality).
(1.2)
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Also, we call w : A → R a length function if it satisfies, for all ~u,~v ∈ A:

w(~u) = 0 if and only if ~u = ~0 (positive definiteness),
w(−~u) = w(~u) (symmetry),

w(~u + ~v) ≤ w(~u) + w(~v) (triangle inequality).

(1.3)

(For clarity, we use ~0 to denote the zero vector.) We remark that if d is a
metric, the projection w(~v) := d(~0, ~v) is a length function, and that if w is
a length function, d(~u,~v) := w(~u − ~v) defines a metric.

The modified Euclidean “distances” given above are not metrics, since
they do not always satisfy the triangle inequality. (For 〈dE(~u,~v)〉 and
bdE(~u,~v)c, counter-examples are provided in [16], one of the first articles
on distance transformations.)

Another serious drawback of using formula (1.1) directly, is that in prac-
tice the number of pairs of pixels in the binary picture to be considered is so
large, that it is too costly to perform such a global operation. In this thesis,
we shall deal with a type of solution which is computationally cheaper, and
approximates the Euclidean distance using only local operations, i.e. work-
ing with a small neighbourhood of points. This leads to a class of distance
transformations called weighted distance transformations. (The name cham-
fer distances is also commonly used.) Although the resulting distance map
is inaccurate in comparison with the true Euclidean distance, the approxi-
mation can be made arbitrarily close, at the cost of increasing computational
work. However, a fair approximation often suffices in practice, as there are
flaws and uncertainties in the original picture.

We remark that there exist various ways of working with the exact2

Euclidean distance in Z
2 in integer arithmetic while using only local oper-

ations. (See e.g. [10] and [12].) The algorithms involved are more complex
than those of weighted distance transformations, and have the disadvantage
that they are less efficient.3

1.2 Weighted distance transformations

The idea behind weighted distance transformations is to prescribe lengths of
vectors from Z

2 in some small neighbourhood of the origin, and to use these

2Actually, most implementations of these Euclidean distance transforms are not guar-
anteed to be flawless. If errors do occur, however, they are exceptional and their size is
bounded by a fixed constant (that does not depend on the size of the picture), as opposed
to the errors we find using weighted distance transformations.

3In [12] Leymarie and Levine claim that Euclidean distance transforms can be imple-
mented just as efficiently as weighted distance transformations. They admit that these
(careful) implementations require three times as much computer memory, but argue that
the additional information we can obtain thus is worth the extra cost. Of course this
depends on the application at hand. Weighted distance transformations still appear to be
a good solution for simple tasks.
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Figure 1.2: Examples of commonly used neighbourhoods with p = 1 (a–c) and
p = 2 (d). The values of the visible points are printed in boldface.

local vectors as stepping stones to the other points of Z
2. Thus, the global

distance transformation is found by propagating a locally defined distance
transformation.

Let p ≥ 1 be an integer. The mask of size (2p + 1) × (2p + 1) is defined
as Mp :=

{

(i, j) ∈ Z
2 : |i| ≤ p, |j| ≤ p

}

. We also define M∗
p := Mp\ {(0, 0)}.

A neighbourhood w is defined on Mp by attributing a positive value (a
‘weight’) to every vector of M∗

p . (The origin itself gets the value infinity, if
we want to avoid its use as a valid step.) It is very natural to demand that
the neighbourhood be symmetric, i.e. that w(i, j) = w(i,−j) = w(−i, j) =
w(−i,−j) for every (i, j) ∈ Mp, and also that w(i, j) = w(j, i) for such (i, j).
Under these assumptions, a neighbourhood is completely determined by its
values on the first octant of Mp, where 0 ≤ j ≤ i ≤ p.

Some commonly used distance transformations are given by the neigh-
bourhoods displayed in Figure 1.2. The first two of these are often referred
to as the city block and chessboard distance transformations, respectively.
The third and fourth are due to Borgefors (see [2] and [3]). Notice that in
the last neighbourhood, the values 10 and 14 are actually redundant, since
they are generated by the other values. In general, to define a neighbour-
hood w it is sufficient to prescribe the lengths of the so-called visible points
of Mp, which are the pairs (i, j) such that i and j are coprime. All other
elements of w can be inferred from these.

The notation of Figure 1.2 is slightly misleading, because the elements
of w are not integers, but integer multiples of a common real number 1

s :

w(i, j) =
N(i, j)

s

(

(i, j) ∈ M∗
p

)

. (1.4)

The values displayed in Figure 1.2 are the numerators N(i, j). In these
examples the scaling factor s is always equal to N(1, 0) – so the vector
(1, 0) gets a weight of 1 –, but in general it may be any real number. Of
course, when we interpret the value w(i, j) as an approximation of the true
Euclidean length

√

i2 + j2, the scaling factor has to be divided out before we
make the comparison: e.g. in the examples given in Figure 1.2, the Euclidean
length

√
2 is approximated by (in order of appearance) 2, 1, 4

3 and 7
5 .
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This short-hand notation – which will be used throughout this thesis –
is also useful in practice. Since every element of w gets the same scaling
factor, we can defer the division until the end of the calculation. If the
numerators N(i, j) are all positive integers, this enables us to work with the
distance transformation using integers only, thereby reducing the computa-
tional work-load. No real arithmetic is needed until the final step. In that
case we call N an integer neighbourhood.

Let ~u1, . . . , ~un be vectors in M∗
p . Concatenation of these vectors yields

a path P = [~u1, . . . , ~un] in Z
2. For an integer neighbourhood N defined on

Mp, the length of this path is defined as the sum of all the associated values:

`(P ) =
1

s

n
∑

i=1

N(~ui). (1.5)

The empty path gets length zero: `(∅) = 0.
The function N now induces a distance d on the whole of Z

2, by taking
d(~u,~v) as the minimal length over all possible paths from ~u to ~v composed
solely of steps from Mp. In particular, w = N

s is extended to a length
function w on the whole of Z

2, by taking w(~v) as the minimal length over
all possible paths from the origin to ~v composed of steps from Mp.

A proof of the metricity of d, under the conditions of symmetry we
imposed on w (and thus also on N), was given by Yamashita and Ibaraki in
[24]. (A similar proof was given by Verwer in [21].) We restate their proof
here using a notation that is consistent with the rest of this thesis.

Lemma 1.1 (Yamashita and Ibaraki, Verwer) The distance function
d induced by any neighbourhood w defined on any mask Mp is a metric4.

Proof. We check that the three properties of a metric are satisfied. Posi-
tive definiteness is trivial and symmetry is guaranteed by the conditions of
symmetry we imposed on w. It remains to show that d satisfies the triangle
inequality. Let ~u1, ~u2, ~u3 ∈ Z

2 and let P and Q be shortest paths from ~u1

to ~u2 and from ~u2 to ~u3, respectively. We construct a path R from ~u1 to ~u3

by concatenating P and Q. Then, by definition of d, we have

d(~u1, ~u3) ≤ `(R) = `(P ) + `(Q) = d(~u1, ~u2) + d(~u2, ~u3).

So the triangle inequality is satisfied and d is a metric. �

As an example, Figure 1.3 shows the values near (0, 0) of the length function
induced by the integer neighbourhood with p = 2 given in Figure 1.2(d).
Again, to compare this with the true Euclidean length, we first have to
divide by (in this case) 5. So for instance,

√
42 + 22 =

√
20 ≈ 4.47 is

approximated by 22
5 = 4.4.

4This lemma shows that w induces a metric regardless of the values we attribute to Mp

(provided they are positive). Note however that if we had chosen these values at random,
the resulting metric would not even remotely resemble the Euclidean one.
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Figure 1.3: Example of a length function. The original neighbourhood is enclosed
by the box.

1.3 Computing distance maps

For a given integer neighbourhood N there exist two ways to construct a
distance map D from a digital binary picture B: it can be done by either a
parallel or a sequential algorithm. For the M1-mask these algorithms were
published by Rosenfeld and Pfaltz in [16] (the parallel case) and [15] (the
sequential case). The extension to larger masks is straightforward. A good
description of both algorithms for general masks is given by Borgefors in [3].

In both cases we need to calculate for each pixel in the binary picture B
the length of the shortest path to the nearest feature pixel, where “length”
is defined by equation (1.5). Please note that in the description of the algo-
rithms given below we ignore the scaling factor s, which should be divided
out after the (integer-valued) distance map has been computed.

The parallel algorithm constructs a sequence of distance maps D0, D1,
D2, . . ., in which the local distance transformation described by N is propa-
gated further and further across the pixel-grid. The first map D0 is obtained
by setting

D0(i, j) :=

{

0 if B(i, j) = 0
∞ if B(i, j) = 1

(1.6)

and subsequent distance maps are found by computing for each pixel (i, j)

Dn(i, j) := min

(

Dn−1(i, j), min
(k,l)∈M∗

p

{Dn−1(i + k, j + l) + N(k, l)}
)

.

The algorithm stops when the current iteration yields no changes, i.e. when
Dn = Dn−1. Figure 1.4 shows an illustration of the parallel algorithm.

In the sequential algorithm the mask Mp is split in two parts, called the
forward and backward masks. If we count off all the points in Mp, starting
at (−p, p) – i.e. the upper left-hand corner – and going from left to right and
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(b)
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3 0 3 4 7 ∞∞
4 3 0 3 6 ∞∞
7 4 3 4 6 7 8
6 7 6 4 3 4 7
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(c)

4 3 4 7 8 11∞
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4 3 0 3 6 9 11
7 4 3 4 6 7 8
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3 4 6 3 0 3 6
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(d)

4 3 4 7 8 11 14
3 0 3 4 7 10 13
4 3 0 3 6 9 11
7 4 3 4 6 7 8
6 7 6 4 3 4 7
3 4 6 3 0 3 6
0 3 6 4 3 4 7

(e)

Figure 1.4: An illustration of the parallel algorithm. The distance transformation
of Figure 1.2(c) is applied to the binary picture of Figure 1.1. Figures (a)–(e) show
D0, D1, D2, D3 and finally D4, which is the resulting distance map.

from top to bottom, the forward mask consists of all points up to – but not
including – the origin, and the backward mask consists of all points beyond
the origin:

M forward
p := {(−p, p), (−p + 1, p), . . . , (p, p), (−p, p − 1), . . . , (−1, 0)} ,

Mbackward
p := {(1, 0), (2, 0), . . . , (p, 0), (−p,−1), . . . , (p,−p)} .

Note that the origin does not fall into either half-mask.
The sequential algorithm starts with the map D0 defined by (1.6). Here

only two iterations are needed to find the distance map. In the first iteration
a map D1 is constructed by applying the forward mask to each pixel of D0,
going from left to right and from top to bottom:

D1(i, j) := min

(

D0(i, j), min
(k,l)∈M forward

p

{D1(i + k, j + l) + N(k, l)}
)

.

In the second iteration the backward mask is applied to each pixel of D1,
this time starting at the lower right-hand corner of the picture and going
from right to left and from bottom to top:

D2(i, j) := min

(

D1(i, j), min
(k,l)∈Mbackward

p

{D2(i + k, j + l) + N(k, l)}
)

.
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Figure 1.5: An illustration of the sequential algorithm. The distance transforma-
tion of Figure 1.2(c) is applied to the binary picture of Figure 1.1. Figures (a)–(c)
show D0, D1 and D2, which is the resulting distance map.

The resulting map D2 is the desired distance map. Figure 1.5 illustrates the
sequential algorithm.

The number of iterations for the parallel algorithm depends on the size
of the picture, whereas the sequential algorithm always needs only two iter-
ations. Clearly on a single machine the sequential algorithm is usually much
faster. However, the parallel algorithm has the advantage that the work per
iteration can be split up over several machines, which is impossible in the
sequential case.

It was established in [15] that the two algorithms are equivalent. In-
deed we can see in Figures 1.4 and 1.5 that the computed distance maps
for our example are identical. However, Thiel demonstrated in [18] that the
equivalence is not true for all neighbourhoods: unless certain (mild) restric-
tions on the neighbourhood values are satisfied, the sequential algorithm
may produce a map where some values differ from the true distance map.5

1.4 A brief history of optimal weighted distance
transformations

Following the terminology of [11], we will consider three different classes
of neighbourhoods. The superscript B is reserved for the case where we
demand that w(~v) = ‖~v‖ for all ~v = (vx, 0), where ‖.‖ denotes Euclidean
length: ‖~v‖ = dE(~0, ~v). That is to say, all points lying on the horizontal axis
(and by virtue of symmetry also the vertical axis) get a weight equal to the
exact Euclidean distance from the origin.

5Thiel claims that his restrictions are necessary to guarantee that the induced distance
function of a neighbourhood is a metric, but this would contradict Lemma 1.1. In fact he
merely shows that the distance function found by the sequential algorithm is not a metric in
these exceptional cases. The parallel algorithm does produce the correct distance function,
which is still a metric.
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The second class is indicated by D, and consists of neighbourhoods that
always overestimate the Euclidean distance: d(~u,~v) ≥ dE(~u,~v) for all ~u,~v ∈
Z

2. Distance transformations of this type are used in applications where it
is vital that distances are not underestimated, such as collision avoidance in
robotics (see [21]).

We use a superscript C for the most general problem, where no a priori
assumption is made at all on the elements of the neighbourhood.

To compare the approximations to the Euclidean distance of different
weighted distance transformations, we introduce a measure of quality called
the maximum relative error. For a neighbourhood with induced length func-
tion w, this error is defined by

e = lim sup
‖~v‖→∞

∣

∣

∣

∣

w(~v)

‖~v‖ − 1

∣

∣

∣

∣

. (1.7)

For instance, the distance transformation in Figure 1.3 has a maximum
relative error of approximately 0.0198. It is not trivial to calculate e; this
calculation will be the subject of the next chapter.

Maybe contrary to intuition, the maximum relative error is not min-
imised (in the B- and C-cases) by setting each neighbourhood value equal
to the true Euclidean length of the corresponding vector. (This distance
transformation was suggested in [14].) It is therefore a non-trivial problem
to construct optimal weighted distance transformations for a given mask-size
p.

This topic was pioneered by Borgefors in the 1980’s, in [2] and [3] for the
B-case and in [5] for the C-case, but using a different optimisation criterion,
namely to minimise the maximum absolute error :

eabs = sup
j≤M

∣

∣

∣
w ((M, j)) −

√

M2 + j2
∣

∣

∣
, (1.8)

for some large M ∈ Z>0. Borgefors treated mask-sizes p = 1, p = 2 and
p = 3, and also gave good choices of integer neighbourhood for these mask-
sizes.

In his 1991 paper [22] Verwer computed the optimal w for the C-case for
all values of p, with respect to the maximum relative error. Besides he gave
several integer neighbourhoods for p = 1 and p = 2.

In his 1994 PhD thesis [18] Thiel presented numerous examples of integer
neighbourhoods for p = 2, p = 3 and p = 6. Instead of first deriving optimal
neighbourhoods and then using scaling factors to get integer approximations
(which was the approach used by Borgefors and Verwer), Thiel constructed
integer neighbourhoods directly and found the best choices by trying all
scaling factors up to 256. His method works for every p, but is unpractical
for large masks.

Coquin and Bolon extended the theory to pixels on a rectangular lattice
instead of a square one in [8]. All their integer neighbourhoods refer to the

12



square case, with p = 1, p = 2 and p = 3. Their method is an adaptation of
Borgefors’ method, this time with optimisation with respect to the maximum
relative error. They treated both the B- and C-cases.

Butt and Maragos used a geometric approach in their 1998 paper [6] to
find optimal neighbourhoods for the C-case, with integer examples for p = 1
and p = 2. Instead of the maximum relative error they used the following,
closely related measure:

eBM = lim sup
‖~v‖→∞

∣

∣

∣

∣

1 − ‖~v‖
w(~v)

∣

∣

∣

∣

. (1.9)

While this value obviously differs from the maximum relative error in gen-
eral, it is interesting to note that Butt and Maragos’ argument results in
the same optimal value for the error as the one found by Verwer (equation
(1.12) below).6 We give a proof of this fact in Appendix A.1.

In unpublished work [11] Hajdu, Hajdu and Tijdeman have determined
the optimal values of the maximum relative error for all p, for all three cases.
Below we will summarise these results, which are consistent with Verwer’s
and Coquin and Bolon’s.

For p ≥ 1, the following optimal values of the maximum relative error
were derived in [11]:

eB
p =

p2 + 2 − p
√

p2 + 1 − 2

√

p2 + 1 − p
√

p2 + 1

p2
, (1.10)

eD
p =

√

(

√

p2 + 1 − p
)2

+ 1 − 1, (1.11)

eC
p =

eD
p

2 + eD
p

=

√

2p2 + 2 − 2p
√

p2 + 1 − 1
√

2p2 + 2 − 2p
√

p2 + 1 + 1
. (1.12)

Table 1.1 shows rounded values of eB
p , eD

p and eC
p for small values of p.

As may be expected, the unrestricted C-case yields smaller optima than the
B-case, which in turn surpasses the D-case, where we set the most severe
restriction.

Neighbourhoods that achieve the optimal maximum relative error are
also given in [11]. In the B-case, the following neighbourhood has maximum
relative error eB

p :

wB
p (i, j) =







|i| if 1 ≤ |i| ≤ p, j = 0
|j| if 1 ≤ |j| ≤ p, i = 0
(

1 − eB
p

)
√

i2 + j2 for all other vectors in M∗
p

(1.13)

6Butt and Maragos seem to have overlooked this fact themselves, as they write that
their optimal error values “are different from the values obtained by Verwer”.
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Table 1.1: Approximate values of the optimal maximum relative error in the B-,
D- and C-cases, for 1 ≤ p ≤ 10.

p eB
p eD

p eC
p

1 0.05505271 0.08239220 0.03956613
2 0.01869475 0.02748630 0.01355683
3 0.00893928 0.01308146 0.00649823
4 0.00516800 0.00754900 0.00376031
5 0.00335091 0.00489047 0.00243927
6 0.00234378 0.00341897 0.00170657
7 0.00172949 0.00252214 0.00125948
8 0.00132791 0.00193614 0.00096713
9 0.00105127 0.00153258 0.00076570

10 0.00085272 0.00124302 0.00062112

The D-case is minimised by the true Euclidean distance:

wD
p (i, j) =

√

i2 + j2
(

(i, j) ∈ M∗
p

)

(1.14)

has maximum relative error eD
p . Finally, the C-case is optimised similarly

to the B-case; the following neighbourhood has maximum relative error eC
p :

wC
p (i, j) =

(

1 − eC
p

)

√

i2 + j2
(

(i, j) ∈ M∗
p

)

. (1.15)

These neighbourhoods can not be written in terms of integer neighbour-
hoods and therefore have only theoretical value. One of the main purposes
of this thesis is to provide good approximating integer neighbourhoods to
wB

p , wD
p and wC

p .
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Chapter 2

Calculating the maximum
relative error

In this chapter we will derive an easy-to-use expression for the maximum
relative error of an integer neighbourhood satisfying mild restrictions.

2.1 The case p = 1

The case p = 1 differs from the general case at some points, and will therefore
be treated separately. (This decision is also prompted by the simplicity of
the treatment for p = 1, compared to the general case.)

Under the conditions of symmetry stated in Section 1.2, the general form
of an integer neighbourhood N on the 3 × 3-mask M1 is:

N(i, j) =

{

n0 if |i| + |j| = 1
n1 if |i| + |j| = 2

(2.1)

where n0 and n1 are positive integers. This neighbourhood is displayed in
Figure 2.1. A scaling factor s is associated to N .

We recall that any choice of n0 and n1 will lead to a metric on Z
2

(cf. Lemma 1.1). For convenience we shall impose the following mild con-
straint on the elements of N :

n0 ≤ n1 ≤ 2n0. (2.2)

N :
n1

n0

n1

n0

∞
n0

n1

n0

n1

Figure 2.1: General form of an integer neighbourhood on M1.
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If (2.2) were not satisfied, the resulting metric would behave very much
unlike the Euclidean metric: when n1 > 2n0, for instance, the diagonal
elements of N are not used at all, since it is cheaper to use a combination
of a horizontal and a vertical step instead.

The maximum relative error of N was defined by (1.7) and can be written
as follows:

e = max

{

1 − lim inf
‖~v‖→∞

w(~v)

‖~v‖ , lim sup
‖~v‖→∞

w(~v)

‖~v‖ − 1

}

=: max {emin, emax} .

By virtue of symmetry, it suffices to examine the behaviour of the distance
function on the first octant of Z

2. Condition (2.2) clearly implies that a
path of shortest length from the origin to (m,k), with 0 ≤ k ≤ m, consists
of k steps (1, 1) and m − k steps (1, 0). The induced length function w is
thus given by

w(m,k) =
1

s
{kn1 + (m − k)n0} (0 ≤ k ≤ m).

Dividing this expression by the true Euclidean length of (m,k), we find:

w(m,k)√
m2 + k2

=
1

s

k(n1 − n0) + mn0

m

√

1 + (k/m)2
.

This is written as a univariate function by introducing a new variable t = k
m ;

we call this function h:

h(t) :=
1

s

(n1 − n0)t + n0√
1 + t2

(0 ≤ t ≤ 1).

It is obvious that

lim sup
m,k≥0

w(m,k)√
m2 + k2

= max
0≤t≤1

h(t), lim inf
m,k≥0

w(m,k)√
m2 + k2

= min
0≤t≤1

h(t),

and the problem of finding emin and emax has been reduced to an ordinary
optimisation problem.

We find the maximum and minimum of h through basic calculus. First,
we take the derivative:

h′(t) =
1

s

n1 − n0 − n0t

(1 + t2)3/2
.

Clearly, h′(t) = 0 has only one solution: t̄ = n1−n0

n0
. Moreover, we see that

h′(t) > 0 for t < t̄ and h′(t) < 0 for t > t̄, hence h has its maximum at
t̄. We observe also that 0 ≤ t̄ ≤ 1 by condition (2.2). Evaluating h(t̄), we
conclude that

max
0≤t≤1

h(t) =
1

s

√

n2
0 + (n1 − n0)2. (2.3)
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Furthermore, since h′ has no other zeros, the minimum of h must be attained
at one of the boundaries of its domain, i.e.

min
0≤t≤1

h(t) = min {h(0), h(1)} =
1

s
min

{

n0,
1

2
n1

√
2

}

. (2.4)

Interestingly this result for the lim inf is actually due to the following
property, which we put in a lemma for future reference. We will later prove
a more general version of this lemma.

Lemma 2.1 If N is a neighbourhood on M1 of the form (2.1), satisfying
n0 ≤ n1 ≤ 2n0, then its induced length function w has the following property:

lim inf
‖~v‖→∞

w(~v)

‖~v‖ =
1

s
min

~v∈M∗

1

N(~v)

‖~v‖ =
1

s
min

{

n0,
1

2
n1

√
2

}

.

The following result has thus been established:

Theorem 2.2 The maximum relative error of an integer neighbourhood N
on M1 with scaling factor s, satisfying n0 ≤ n1 ≤ 2n0, is given by

e = max

{

1 − 1

s
min

(

n0,
1

2
n1

√
2

)

,
1

s

√

n2
0 + (n1 − n0)2 − 1

}

.

For instance, the neighbourhood displayed in Figure 1.2(c) has n0 = 3,
n1 = 4, s = 3, and therefore has a maximum relative error of

max

{

1 − 2

3

√
2,

1

3

√
10 − 1

}

= 1 − 2

3

√
2 ≈ 0.05719, (2.5)

which can be compared with the optimal error eB
1 ≈ 0.05505. We can use

the same integer neighbourhood in the C-case, but then we have room to
choose an optimal scaling factor. We will return to this in Section 2.3.

2.2 The case p ≥ 2

We first examine reduced neighbourhoods that only permit steps (±p, j). Let
p ≥ 2 and define a neighbourhood N on Mp by

N (i, j) =

{

nj if |i| = p and 0 ≤ |j| ≤ p
∞ elsewhere

(2.6)

where n0 ≤ n1 ≤ . . . ≤ np are positive integers. Figure 2.2 shows the general
form of a reduced neighbourhood. A scaling factor s is associated to N .
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N :

np

...

n1

n0

n1

...

np

∞
...

∞
∞
∞
...

∞

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∞
...

∞
∞
∞
...

∞

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∞
...

∞
∞
∞
...

∞

np

...

n1

n0

n1

...

np

Figure 2.2: General form of a reduced neighbourhood on Mp.

A reduced neighbourhood does not satisfy all the symmetry conditions
we imposed up to now: N (i, j) = N (j, i) does not hold. Moreover, the
induced distance function is not a proper metric, since this “distance” is
undefined for all pairs of points (~u,~v) of Z

2 such that |ux − vx| is not a
multiple of p. This type of neighbourhood does not have a practical use,
but the underlying theory is less complex than for full neighbourhoods, and
will be used to generalise the result of Section 2.1.

Just as for p = 1, we begin by imposing a condition on the values of N :

nj+1 + nj−1 ≥ 2nj (j = 1, . . . , p − 1) . (2.7)

This condition is intuitively reasonable, because if it were not satisfied for
some j, the step (p, j) would hardly be used. Observe also that (2.7) is
satisfied by the true Euclidean length of the corresponding vectors of Mp.

According to the following proposition, condition (2.7) implies that there
exists a shortest path from the origin to any point situated in the cone
spanned by two subsequent vectors (p, r), (p, r + 1) of Mp, that consists of
repetitions of these two vectors only.

Proposition 2.3 Let p ≥ 2, and let N be a neighbourhood defined on Mp by
(2.6). If the outer values of N satisfy nj+1+nj−1 ≥ 2nj (for j = 1, . . . , p−1)
then a shortest path from (0, 0) to (mp,mr + k) (where m, r, k ∈ Z≥0, 0 ≤
r < p, 0 ≤ k < m) consists of k steps (p, r + 1) and m − k steps (p, r).

Proof. First observe that (2.7) can be rewritten in the following ways:

nj+1 − nj ≥ nj − nj−1, (2.8)

nj−1 − nj ≥ nj − nj+1. (2.9)

Suppose there is a shortest path that contains a step (p, r + t), where t > 1.
Since the path leads to (mp,mr + k), it also contains a step (p, r + u), with
u ≤ 0. Combined, these steps add a length of nr+t + nr+u to the path. The
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same distance is covered by a combination of the steps (p, r + t − 1) and
(p, r + u + 1), with total length nr+t−1 + nr+u+1. From (2.8) we see that

nr+t − nr+t−1 ≥ nr+t−1 − nr+t−2 ≥ . . . ≥ nr+1 − nr

and from (2.9) that

nr+u − nr+u+1 ≥ nr+u+1 − nr+u+2 ≥ . . . ≥ nr − nr+1.

But this implies that nr+t + nr+u ≥ nr+t−1 + nr+u+1. So there is a shortest
path that does not contain any step (p, r + t) with t > 1.

Now suppose this particular shortest path contains a step (p, r + t) with
t < 0. The path then also contains a step (p, r + 1). By a similar argument
as before, we find

nr+t − nr+t+1 ≥ . . . ≥ nr − nr+1.

This shows that nr+t + nr+1 ≥ nr+t+1 + nr. Hence, we may replace the
steps (p, r + t) and (p, r + 1) by a combination of (p, r + t + 1) and (p, r).
We conclude that there is a shortest path which consists only of steps (p, r)
and (p, r + 1). �

In order to derive an expression for the maximum relative error of a reduced
neighbourhood N that satisfies (2.7), we impose the following constraint on
the values of N :

(r + 1)nr > rnr+1 (r = 0, . . . , p − 1) . (2.10)

Note that this inequality is satisfied by the Euclidean lengths too.
We denote the induced length function of N by W. The maximum

relative error E of the neighbourhood N is given by

E = max

{

1 − lim inf
‖~v‖→∞

W(~v)

‖~v‖ , lim sup
‖~v‖→∞

W(~v)

‖~v‖ − 1

}

=: max {Emin, Emax}

As usual, we restrict our attention to the first octant of Z
2. For m, l ∈ Z≥0,

l = mr + k (where 0 ≤ r < p, 0 ≤ k < m), Proposition 2.3 states that

W(mp, l) =
1

s
{knr+1 + (m − k)nr} .

Substituting k = l − mr, we find

W(mp, l) =
1

s
[(l − mr)nr+1 + {m(r + 1) − l}nr]

=
1

s
[m {(r + 1)nr − rnr+1} + l (nr+1 − nr)] .
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Comparing this with the true Euclidean length of the vector (mp, l), we see
that

W(mp, l)
√

(mp)2 + l2
=

1

s

m {(r + 1)nr − rnr+1} + l (nr+1 − nr)

mp
√

1 + (l/mp)2

for mr ≤ l ≤ m(r + 1). By introducing a new variable t = l
mp , the previous

expression becomes a univariate function, which we call hr:

hr(t) :=
1

s

1
p {(r + 1)nr − rnr+1} + (nr+1 − nr) t

√
1 + t2

(

r

p
≤ t ≤ r + 1

p

)

for r = 0, 1, . . . , p − 1. It is clear that

lim sup
m,l≥0

W(mp, l)
√

(mp)2 + l2
= max

0≤r<p
max

r
p
≤t≤ r+1

p

hr(t).

By basic calculus (see Appendix A.2) we find that condition (2.10) im-
plies that

max
0≤r<p

max
r
p
≤t≤ r+1

p

hr(t) =
1

s
max

0≤r≤p−1
Hr, (2.11)

where Hr is given by

Hr =



















√

1
p2 {(r + 1)nr − rnr+1}2 + (nr+1 − nr)2 if b p2(nr+1−nr)

(r+1)nr−rnr+1
c = r

nr√
p2+r2

if b p2(nr+1−nr)
(r+1)nr−rnr+1

c < r

nr+1√
p2+(r+1)2

if b p2(nr+1−nr)
(r+1)nr−rnr+1

c > r

We have thus established a simple (if slightly tedious) method for deter-
mining Emax. It turns out that Emin can be found with less work because of
the following lemma. This is an analogue to Lemma 2.1 in the general case.

Lemma 2.4 Let p ≥ 2 and let N be a neighbourhood of the form (2.6),
satisfying nj+1 + nj−1 ≥ 2nj (for j = 1, . . . , p − 1), defined on Mp. The
induced distance function W has the following property:

lim inf
‖~v‖→∞

W(~v)

‖~v‖ =
1

s
min

~v∈M∗

p

N (~v)

‖~v‖ =
1

s
min

0≤k≤p

N (p, k)
√

p2 + k2
.

Proof. The second equality is trivial. We give a proof of the first equality.
Let µ = min

~v∈M∗

p

N (~v)
‖~v‖ = N (p,u)√

p2+u2
for a certain 0 ≤ u ≤ p. It is clear that

lim inf
‖~v‖→∞

W(~v)

‖~v‖ ≤ lim inf
m≥0

W(mp,mu)
√

(mp)2 + (mu)2
=

1

s
lim inf

m≥0

mN (p, u)

m
√

p2 + u2
=

µ

s
.
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On the other hand, suppose that a shortest path from (0, 0) to (mp, l) con-
sists of steps (p, jr) (with r = 1, . . . ,m). Then

W(mp, l)
√

(mp)2 + l2
=

1

s

∑m
r=1 N (p, jr)
√

(mp)2 + l2
.

The sum can be bounded from below by

m
∑

r=1

N (p, jr) =

m
∑

r=1

N (p, jr)
√

p2 + j2
r

√

p2 + j2
r ≥ µ

m
∑

r=1

√

p2 + j2
r .

Thus

lim inf
‖~v‖→∞

W(~v)

‖~v‖ ≥ 1

s
lim inf
m≥0,l≥0

µ
∑m

r=1

√

p2 + j2
r

√

(mp)2 + l2
≥ µ

s
,

since the total Euclidean length of the shortest path can never be smaller
than the Euclidean length of the vector (mp, l). �

The following result has thus been established:

Proposition 2.5 The maximum relative error of a reduced neighbourhood
N of the form (2.6) satisfying nj+1 + nj−1 ≥ 2nj (for j = 1, . . . , p − 1) and
(r + 1)nr > rnr+1 (for r = 0, . . . , p − 1) is

E = max

{

1 − 1

s
min

0≤k≤p

N (p, k)
√

p2 + k2
,

1

s
max

0≤r≤p−1
Hr − 1

}

,

with Hr given by

Hr =



















√

1
p2 {(r + 1)nr − rnr+1}2 + (nr+1 − nr)2 if b p2(nr+1−nr)

(r+1)nr−rnr+1
c = r

nr√
p2+r2

if b p2(nr+1−nr)
(r+1)nr−rnr+1

c < r

nr+1√
p2+(r+1)2

if b p2(nr+1−nr)
(r+1)nr−rnr+1

c > r

Reduced neighbourhoods have no practical use, and Proposition 2.5 can
only be used as a stepping stone for finding the maximum relative error
of a general integer neighbourhood. To achieve this we need the following
proposition.

Proposition 2.6 Let p ≥ 2, let n0 ≤ n1 ≤ . . . ≤ np satisfy nj+1 + nj−1 ≥
2nj (for j = 1, . . . , p − 1) and let N be defined by (2.6), with scaling factor
s. Let N be an integer neighbourhood on Mp with the same scaling factor s,
such that N(±p, j) = N (±p, j) for all |j| ≤ p, and such that moreover

N(i, j)
√

i2 + j2
≥ min

0≤k≤p

N(p, k)
√

p2 + k2

(

(i, j) ∈ M∗
p

)

. (2.12)

If e and E are the maximum relative errors of N and N , respectively, then
e ≤ E.
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Proof. Let w and W be the length functions induced by N and N , respec-
tively. It suffices to prove that both

lim inf
‖~v‖→∞

w(~v)

‖~v‖ ≥ lim inf
‖~v‖→∞

W(~v)

‖~v‖ and lim sup
‖~v‖→∞

w(~v)

‖~v‖ ≤ lim sup
‖~v‖→∞

W(~v)

‖~v‖

hold. We start with the lim inf.
Suppose a shortest path from (0, 0) to (m, l) consists of steps (ir, jr).

From (2.12) we know that

∑

r

N(ir, jr) ≥
(

min
0≤k≤p

N(p, k)
√

p2 + k2

)

∑

r

√

i2r + j2
r .

Using Lemma 2.4, this means that

lim inf
‖~v‖→∞

w(~v)

‖~v‖ ≥ 1

s
lim inf
m,l≥0

(

min
0≤k≤p

N(p, k)
√

p2 + k2

)

∑

r

√

i2r + j2
r√

m2 + l2

≥ 1

s
min

0≤k≤p

N(p, k)
√

p2 + k2
= lim inf

‖~v‖→∞
W(~v)

‖~v‖ .

Now let (mp + u, l) ∈ Z
2, with m > 0 and 0 < u ≤ p. One way – not

necessarily the shortest – to get from (0, 0) to (mp + u, l) is the following:
first take a shortest path from (0, 0) to (mp, l) and then make one step
(u, 0). This implies that w(mp + u, l) ≤ w(mp, l) + 1

sN(u, 0). Obviously,
w(mp, l) ≤ W(mp, l). We find that

lim sup
m,l≥0

w(mp + u, l)

‖(mp + u, l)‖ ≤ lim sup
m,l≥0

W(mp, l) + 1
sN(u, 0)

‖(mp + u, l)‖

≤ lim sup
m,l≥0

W(mp, l) + 1
sN(u, 0)

‖(mp, l)‖ = lim sup
m,l≥0

W(mp, l)

‖(mp, l)‖

since 1
sN(u, 0) is bounded and does not affect the limit. It follows that

lim sup
‖~v‖→∞

w(~v)
‖~v‖ ≤ lim sup

‖~v‖→∞
W(~v)
‖~v‖ . We conclude that e ≤ E . �

Proposition 2.6 states that the maximum relative error of an integer neigh-
bourhood satisfying (2.12) is bounded by the maximum relative error of the
associated reduced neighbourhood that only contains its outer values. The
latter maximum relative error can be evaluated easily using Proposition 2.5
provided the reduced neighbourhood satisfies (2.7) and (2.10). We thus have
obtained the following result.

Theorem 2.7 Let p ≥ 2 and let N be an integer neighbourhood on Mp with
scaling factor s. Write nj = N(p, j) for j = 0, . . . , p. If the inequalities
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(i) n0 ≤ n1 ≤ . . . ≤ np,

(ii) nj+1 + nj−1 ≥ 2nj (for j = 1, . . . , p − 1),

(iii) (r + 1)nr > rnr+1 (for r = 0, . . . , p − 1),

are all satisfied and if moreover

N(i, j)
√

i2 + j2
≥ min

0≤k≤p

nk
√

p2 + k2

holds for all (i, j) ∈ M∗
p , then the maximum relative error satisfies

e ≤ max

{

1 − 1

s
min

0≤k≤p

nk
√

p2 + k2
,

1

s
max

0≤r≤p−1
Hr − 1

}

, (2.13)

where Hr is given by

Hr =



















√

1
p2 {(r + 1)nr − rnr+1}2 + (nr+1 − nr)2 if b p2(nr+1−nr)

(r+1)nr−rnr+1
c = r

nr√
p2+r2

if b p2(nr+1−nr)
(r+1)nr−rnr+1

c < r

nr+1√
p2+(r+1)2

if b p2(nr+1−nr)
(r+1)nr−rnr+1

c > r

A slightly shorter formulation of this result can be obtained by imposing
one additional restriction on the outer elements of N . We have:

Corollary 2.8 Let p ≥ 2 and let N be an integer neighbourhood on Mp with
scaling factor s that satisfies all the inequalities of Theorem 2.7. If it also
holds that

1 +
r

p2 + r2
≤ nr+1

nr
< 1 +

r + 1

p2 + r(r + 1)
(2.14)

for r = 0, 1, . . . , p− 1, then the maximum relative error satisfies (2.13) with

Hr =
√

1
p2 {(r + 1)nr − rnr+1}2 + (nr+1 − nr)2.

Proof. The right-hand inequality in (2.14) is nr+1

nr
< p2+(r+1)2

p2+r(r+1) . This can

be rewritten as nr+1

{

p2 + r(r + 1)
}

< nr

{

p2 + (r + 1)2
}

, which in turn is
equivalent to p2 (nr+1 − nr) < (r + 1) {(r + 1)nr − rnr+1}, i.e.

p2 (nr+1 − nr)

(r + 1)nr − rnr+1
< r + 1.

Similarly, the left-hand inequality in (2.14) is equivalent to

p2 (nr+1 − nr)

(r + 1)nr − rnr+1
≥ r.
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The result now follows from the definition of Hr in Theorem 2.7. �

Theorem 2.7 only provides an upper bound on the maximum relative error.
While it seems unlikely that the maximum relative error of every integer
neighbourhood is determined solely by its outer values, an examination of
the literature shows that equality holds for most previously published neigh-
bourhoods. It should be noted however that virtually all neighbourhoods
considered in the literature are of size p ≤ 3. For larger p the number of in-
ner points in Mp increases rapidly, and it becomes more and more likely that
the maximum relative error of an integer neighbourhood is strictly smaller
than the error of its associated reduced neighbourhood.

Anyone who wants to attempt to proof that equality holds in (2.13)
should also be aware that even for the true Euclidean distance it is not
true that we can always find a shortest path to any point (mp, k) that only
contains steps of the form (p, j). The following counter-example exists for
p = 3: if we use only the outer steps, the shortest path from (0, 0) to (6, 3)
is [(3, 1); (3, 2)] with total Euclidean length

√
10 +

√
13 ≈ 6.77, whereas the

overall shortest path is [(2, 1); (2, 1); (2, 1)] with length 3
√

5 ≈ 6.71.
On the other hand, it is interesting to note that equality does hold in

(2.13) for the optimal neighbourhoods wB
p , wC

p and wD
p given in Section 1.4.1

A proof can be found in Appendix A.3. This suggests that we may at least
hope for equality for all integer neighbourhoods for which the approximation
to the optimal neighbourhood is “good enough”.

2.3 The rôle of the scaling factor

The maximum relative error of an integer neighbourhood can not be deter-
mined without prescribing a scaling factor s. We still have to decide which
scaling factor to use. In the B- and D-cases there is no choice: the restric-
tions require that s = N(1, 0). In the unrestricted C-case, however, it is not
required that any vector of Mp be given the true Euclidean distance, and we
can optimise the scaling factor. The optimal scaling factor was proposed by
Verwer in [22], although the concept was introduced by Vossepoel in [23].

Let p be any positive integer. Suppose we are given an integer neigh-
bourhood N on Mp with a maximum relative error (less than or) equal to
max {emin, emax}. Looking back to Theorem 2.2 and Theorem 2.7, in both
cases the expression for the maximum relative error is of the following form:

emin = 1 − cmin

s
, emax =

cmax

s
− 1.

If we now put

s :=
1

2
(cmax + cmin) (2.15)

1Of course, as it stands we can not use (2.13) for non-integer neighbourhoods such as
wB

p . The reader is referred to Appendix A.3 for details.
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for the scaling factor, this will yield a maximum relative error of

1 − cmin

s
=

cmax

s
− 1 =

cmax − cmin

cmax + cmin
. (2.16)

The maximal deviations from the true Euclidean distance in the positive
(cmax) and negative direction (cmin) are now equal, and this is the lowest
possible maximum relative error for this integer neighbourhood. (The im-
portance of symmetry in cmin and cmax is clear from looking at the D-case,
where the error is intentionally made very unsymmetric by demanding that
cmin = s. As was seen in Table 1.1, the resulting maximum relative errors
are much higher than in the unrestricted case.)

As an example for p = 1, consider the neighbourhood displayed in Figure
1.2(c). According to (2.5) we have cmin = 2

√
2 and cmax =

√
10. Expression

(2.15) gives

s =
1

2

(√
10 + 2

√
2
)

≈ 2.99535.

Moreover, it follows from (2.16) that the resulting neighbourhood w = N
s has

a maximum relative error of
√

10−2
√

2√
10+2

√
2
≈ 0.05573. This is an improvement of

the original choice of scaling factor s = 3, which yielded an error of 0.05719.
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Chapter 3

Construction of integer
neighbourhoods: part one

In this chapter and the next one, classes of integer neighbourhoods will be
constructed that approximate the optimal neighbourhoods given by the ex-
pressions (1.13)–(1.15). We will take care to ensure that all the conditions
introduced in the previous chapter are satisfied by these integer neighbour-
hoods, so Theorem 2.2 and Theorem 2.7 can be used to calculate (for p = 1)
or bound (for p ≥ 2) the maximum relative errors.

3.1 The case p = 1

We first construct integer neighbourhoods on M1 that satisfy constraint
(2.2) and that are approximations of the optimal neighbourhoods wB

1 , wC
1

and wD
1 . For this we need the following auxiliary lemma.

Lemma 3.1 Let 1
2

√
2 < c ≤ 1 and let n be a positive integer. The following

choices of n0 and n1 all satisfy n0 ≤ n1 ≤ 2n0:

(i) n0 = n, n1 = 〈nc
√

2〉;

(ii) n0 = 〈nc〉, n1 = 〈nc
√

2〉;

(iii) n0 = n, n1 = dn
√

2e.

Proof. (i): It follows from c > 1
2

√
2 that 〈nc

√
2〉 ≥ 〈n〉 = n, so n0 ≤ n1 is

satisfied. And it follows from c ≤ 1 that 〈nc
√

2〉 ≤ 〈n
√

2〉 ≤ 〈2n〉 = 2n, so
n1 ≤ 2n0 also holds.

(ii): It is obvious that n1 ≥ n0 for every n. First assume that n ≥ 4.
Using that x − 1

2 < 〈x〉 ≤ x + 1
2 , we find that

2〈nc〉 − 〈nc
√

2〉 > nc
(

2 −
√

2
)

− 3

2
> n

(√
2 − 1

)

− 3

2
≥ 4

√
2 − 11

2
> 0,

26



which shows that 2n0 ≥ n1. For n = 3 we have:

n0 = 〈3c〉 =

{

2 if 1
2

√
2 < c < 5

6
3 if 5

6 ≤ c ≤ 1

n1 = 〈3c
√

2〉 =

{

3 if 1
2

√
2 < c < 7

6
√

2

4 if 7
6
√

2
≤ c ≤ 1

and it is easy to see that n1 ≤ 2n0 is always satisfied for these values. The
cases n = 1 and n = 2 can be checked similarly.

(iii): n1 ≥ n0 trivially holds for every n. Moreover, dn
√

2e ≤ d2ne = 2n
shows that n1 ≤ 2n0 also holds for every n. �

Definition 3.2 Let n be a positive integer. The following integer neigh-
bourhoods are defined on M1:

n
NB

1 (i, j) :=

{

n if |i| + |j| = 1

〈n
(

1 − eB
1

)√
2〉 if |i| + |j| = 2

n
NC

1 (i, j) :=

{ 〈n
(

1 − eC
1

)

〉 if |i| + |j| = 1

〈n
(

1 − eC
1

)√
2〉 if |i| + |j| = 2

n
ND

1 (i, j) :=

{

n if |i| + |j| = 1

dn
√

2e if |i| + |j| = 2

with eB
1 = 3 −

√
2 − 2

√

2 −
√

2 and eC
1 =

√
4−2

√
2−1√

4−2
√

2+1
.

Proposition 3.3 For X ∈ {B,C,D}, the maximum relative error of
n
NX

1

is

n
eX
1 = max

{

1 − 1

s
min

(

n0,
1

2
n1

√
2

)

,
1

s

√

n2
0 + (n1 − n0)2 − 1

}

,

with n0 =
n
NX

1 (1, 0), n1 =
n
NX

1 (1, 1).

Proof. The result follows immediately from Lemma 3.1 and Theorem 2.2
by choosing c appropriately. �

As an example, 3N
B
1 takes the values n0 = 3, n1 = 〈4.0091〉 = 4 and the

scaling factor s = n0 = 3. This is in fact the neighbourhood displayed in
Figure 1.2(c), which was originally published by Borgefors.

The neighbourhoods constructed in Definition 3.2 are integer approxi-
mations to the optimal neighbourhoods given in Section 1.4. Moreover, we
have a simple expression for the maximum relative error of these neighbour-
hoods. By varying the choice of n, good integer approximations may now
be found in the case p = 1. The results of these experiments are deferred
until Chapter 5.
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3.2 The case p ≥ 2

Following the structure of the previous chapter, we begin with constructing
reduced neighbourhoods that satisfy (2.7) and (2.10). The other neighbour-
hood values will then be filled in in such a way that condition (2.12) is not
violated. The resulting integer neighbourhoods then satisfy all conditions
of Theorem 2.7.

We begin by proving an auxiliary lemma.

Lemma 3.4 Let a 6= 0. The function

ga(x) :=
√

a2 + (x + 1)2 − 2
√

a2 + x2 +
√

a2 + (x − 1)2

is monotone decreasing to 0 on
[

1
2 ,∞

)

.

Proof. We have

g′a(x) =

(

x + 1
√

a2 + (x + 1)2
− x√

a2 + x2

)

−
(

x√
a2 + x2

− x − 1
√

a2 + (x − 1)2

)

.

Put

ka(y) :=
y + 1

√

a2 + (y + 1)2
− y
√

a2 + y2
.

Then

k′
a(y) =

a2

(a2 + (y + 1)2)3/2
− a2

(a2 + y2)3/2
< 0

(

y > −1

2

)

.

Hence ka(x) < ka(x − 1) for all x ≥ 1
2 , and thus

g′a(x) = ka(x) − ka(x − 1) < 0

(

x ≥ 1

2

)

.

It is clear that lim
x→∞

ga(x) = 0. �

Lemma 3.5 Let p ≥ 2 and p√
p2+1

< c ≤ 1, and let n be a positive integer.

The following choices of n0, . . . , np all satisfy n0 ≤ n1 ≤ . . . ≤ np and
nj+1 + nj−1 ≥ 2nj (for j = 1, . . . , p − 1):

(i) n0 = np, nj = 〈nc
√

p2 + j2〉 (j = 1, . . . , p), for n > 2
cgp(p−1) ;

(ii) nj = 〈nc
√

p2 + j2〉 (j = 0, . . . , p), for n > 2
cgp(p−1) ;

(iii) nj = dn
√

p2 + j2e (j = 0, . . . , p), for n > 2
gp(p−1) .
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Proof. (i): It is clear that n1 ≤ n2 ≤ . . . ≤ np. From c > p√
p2+1

it follows

that n1 = 〈nc
√

p2 + 1〉 ≥ 〈np〉 = n0. It remains to be shown that (2.7)
holds for all j = 1, . . . , p − 1.

First take j > 1. From x − 1
2 < 〈x〉 ≤ x + 1

2 we see that

〈nc
√

p2 + (j + 1)2〉 − 2〈nc
√

p2 + j2〉 + 〈nc
√

p2 + (j − 1)2〉 > ncgp(j) − 2.

By Lemma 3.4 the term gp(j) is positive for all j. Moreover, the smallest
value is achieved for the largest j, i.e. for j = p − 1. So

ncgp(j) ≥ ncgp(p − 1) > 2

by our assumption on n. This shows that (2.7) holds for j > 1.
For j = 1 we have

〈nc
√

p2 + 4〉 − 2〈nc
√

p2 + 1〉 + np > nc
(

√

p2 + 4 − 2
√

p2 + 1
)

+ np − 3

2
.

It follows from c ≤ 1 that

nc
(

√

p2 + 4 − 2
√

p2 + 1
)

+ np ≥ ncgp(1).

By the assumption on n, ncgp(1) is larger than
2gp(1)

gp(p−1) . But we know from

Lemma 3.4 that gp(1) ≥ gp(p− 1), which shows that ncgp(1)− 3
2 is positive,

as required.
(ii): n0 ≤ n1 ≤ . . . ≤ np trivially holds. The remainder of the proof is

completely analogous to (i).
(iii): Again, n0 ≤ n1 ≤ . . . ≤ np holds trivially. The proof of (2.7) is

similar to (i), but this time we use that x ≤ dxe < x + 1. �

Just as we did for p = 1 in Definition 3.2, we would now like to use these three
results to get approximating integer neighbourhoods to wB

p , wC
p and wD

p ,
respectively – albeit only reduced neighbourhoods for now –, by substituting
c = 1 − eB

p in Lemma 3.5(i), c = 1 − eC
p in (ii), and by directly applying

(iii). This construction puts a lower bound on n in all three cases, namely
n > nB

p in the B-case, where

nB
p =

2p2

(

p
√

p2 + 1 + 2

√

p2 + 1 − p
√

p2 + 1 − 2

)

gp(p − 1)

,

and similar expressions for n > nC
p in the C-case and n > nD

p in the D-
case. The lower bound for n in the B-case is shown in the second column of
Table 3.1 for 2 ≤ p ≤ 10.

29



Table 3.1: Theoretical and practical lower bounds on n in Lemma 3.5(i), when
applied to the B-case, for 2 ≤ p ≤ 10. The second column gives the theoretical
bounds, the third column shows all values of n for which choosing n0 = np, nj =

〈n
(

1 − eB
p

)
√

p2 + j2〉 (j = 1, . . . , p) gives a reduced neighbourhood that satisfies
(2.7).

p nB
p OK for

2 5.72 n ≥ 1
3 10.41 n ≥ 2
4 15.59 n ≥ 1
5 20.95 n = 2, 3 and for n ≥ 5
6 26.42 n = 4, 6 and for n ≥ 8
7 31.94 n = 3, 4, 5 and for n ≥ 7
8 37.49 n ≥ 2
9 43.07 n = 2, 5, 6, 7, 8 and for n ≥ 10

10 48.66 n = 4, 5, 6, 9, 10, 11 and for n ≥ 14

For small values of p, it is easy to check whether a given reduced neigh-
bourhood satisfies the p − 1 inequalities (2.7). By doing this for all values
1 ≤ n < nB

p , the lower bound can be sharpened.
The third column of Table 3.1 shows, for 2 ≤ p ≤ 10, the values of n for

which choosing n0 = np, nj = 〈n
(

1 − eB
p

)
√

p2 + j2〉 (j = 1, . . . , p) yields a
reduced neighbourhood that satisfies (2.7). This demonstrates – for small
values of p, anyway – that (2.7) is a mild condition on neighbourhoods of
this form.

We use the same approach in the C- and D-cases; the results are given
in Tables 3.2 and 3.3.

The following proposition summarises this result.

Proposition 3.6 Let 2 ≤ p ≤ 10 and n a positive integer. The following
reduced neighbourhoods on Mp satisfy nj+1 + nj−1 ≥ 2nj (for j = 1, . . . , p−
1):

n
NB

p (i, j) :=







np if |i| = p and j = 0

〈n
(

1 − eB
p

)
√

p2 + j2〉 if |i| = p and 1 ≤ |j| ≤ p

∞ elsewhere

for the values of n displayed in Table 3.1;

n
NC

p (i, j) :=

{

〈n
(

1 − eC
p

)
√

p2 + j2〉 if |i| = p and 0 ≤ |j| ≤ p

∞ elsewhere

for the values of n displayed in Table 3.2;

n
ND

p (i, j) :=

{

dn
√

p2 + j2e if |i| = p and 0 ≤ |j| ≤ p
∞ elsewhere
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Table 3.2: Practical lower bounds on n in Lemma 3.5(ii), when applied to the
C-case, for 2 ≤ p ≤ 10. The values of n are indicated for which choosing nj =

〈n
(

1 − eC
p

)
√

p2 + j2〉 (j = 0, . . . , p) gives a reduced neighbourhood that satisfies
(2.7).

p OK for

2 n ≥ 1
3 n ≥ 2
4 n ≥ 1
5 n = 2, 3 and for n ≥ 5
6 n = 4, 6 and for n ≥ 8
7 n = 3, 4, 5 and for n ≥ 7
8 n ≥ 2
9 n = 2, 5, 6, 7, 8, 10, 11, 12, 13, 15 and for n ≥ 17

10 n = 4, 5, 6, 9, 10, 11 and for n ≥ 13

Table 3.3: Practical lower bounds on n in Lemma 3.5(iii), when applied to the
D-case, for 2 ≤ p ≤ 10. The values of n are indicated for which choosing nj =

dn
√

p2 + j2e (j = 0, . . . , p) yields a reduced neighbourhood that satisfies (2.7).

p OK for

2 n ≥ 2
3 n ≥ 2
4 n ≥ 3
5 n ≥ 3
6 n ≥ 5
7 n ≥ 4
8 n = 6 and for n ≥ 9
9 n = 5 and for n ≥ 8

10 n ≥ 8
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for the values of n displayed in Table 3.3.

Since we want to use Proposition 2.5 to calculate the maximum relative
errors of these neighbourhoods, we must check that condition (2.10) holds.
The following lemma implies that. Maple software was used for certain parts
of the proof.

Lemma 3.7 Let p ≥ 2. For every n ≥ 1 the neighbourhoods
n
NB

p ,
n
NC

p

and
n
ND

p defined in Proposition 3.6 satisfy (r + 1)nr > rnr+1 (for r =
0, . . . , p − 1).

Proof. The proof is given in Appendix A.4. �

This concludes our work on reduced neighbourhoods. We will now extend
the reduced neighbourhoods

n
NB

p ,
n
NC

p and
n
ND

p to proper integer neigh-
bourhoods by filling in the inner values in such a way that they approximate
the corresponding values of wB

p (resp. wC
p , wD

p ) and that (2.12) is not vio-
lated. (Obviously there is a trade-off here and the approximation is not as
good as for the outer values. This is not a problem, because we found in
Proposition 2.6 that the maximum relative error is dominated by the outer
values anyway.) Approximating integer neighbourhoods are thus found with
maximum relative errors that are guaranteed not to exceed a known value.

Definition 3.8 Let 2 ≤ p ≤ 10 and n a positive integer. The following
neighbourhoods are defined on Mp:

n
NB

p (i, j) :=















n|i| if 1 ≤ |i| ≤ p and j = 0
n|j| if 1 ≤ |j| ≤ p and i = 0

〈n
(

1 − eB
p

)
√

p2 + j2〉 if |i| = p and 1 ≤ |j| ≤ p

dµ
√

i2 + j2e for all other vectors in M∗
p

where µ = min
0≤k≤p

n
NB

p (p,k)√
p2+k2

, for the values of n displayed in Table 3.1;

n
NC

p (i, j) :=

{

〈n
(

1 − eC
p

)
√

p2 + j2〉 if |i| = p and 0 ≤ |j| ≤ p

dµ
√

i2 + j2e for all other vectors in M∗
p

where µ = min
0≤k≤p

n
NC

p (p,k)√
p2+k2

, for the values of n displayed in Table 3.2;

n
ND

p (i, j) :=







n|i| if 1 ≤ |i| ≤ p and j = 0
n|j| if 1 ≤ |j| ≤ p and i = 0

dn
√

i2 + j2e for all other vectors in M∗
p

for the values of n displayed in Table 3.3.
The values of eB

p and eC
p are given by (1.10) and (1.12).
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Proposition 3.9 For X ∈ {B,C}, the maximum relative error of
n
NX

p

satisfies

n
eX
p ≤ max

{

1 − 1

s
min

0≤k≤p

n
NX

p (p, k)
√

p2 + k2
,

1

s
max

0≤r≤p−1
Hr − 1

}

where, putting nj =
n
NX

p (p, j),

Hr =



















√

1
p2 {(r + 1)nr − rnr+1}2 + (nr+1 − nr)2 if b p2(nr+1−nr)

(r+1)nr−rnr+1
c = r

nr√
p2+r2

if b p2(nr+1−nr)
(r+1)nr−rnr+1

c < r

nr+1√
p2+(r+1)2

if b p2(nr+1−nr)
(r+1)nr−rnr+1

c > r

The maximum relative error of
n
ND

p satisfies

n
eD
p ≤ 1

s
max

0≤r≤p−1
Hr − 1

with Hr as given above, putting nj =
n
ND

p (p, j).

Proof. We give the proof for
n
NB

p . Condition (2.12) is satisfied, because
by definition

n
NB

p (i, j) = dµ
√

i2 + j2e ≥ µ
√

i2 + j2

holds for every (i, j) ∈ M∗
p with i 6= 0 and j 6= 0, and

min
0≤k≤p

n
NB

p (p, k)
√

p2 + k2
≤ n

NB
p (p, 0)

p
= n

shows that (2.12) is also true for every (0, j) and (i, 0). The result now
follows from Proposition 3.6, Lemma 3.7 and Theorem 2.7.

The proofs for
n
NC

p and
n
ND

p are analogous. The term involving the

minimum may be dropped for
n
eD
p because

1

s
min

0≤k≤p

n
ND

p (p, k)
√

p2 + k2
=

n

s
= 1,

where we use that s = n in the D-case. �

As an example, we construct the neighbourhood 5N
B
2 by calculating its

values on the first octant. To improve readability, we drop all the indices
here and just write N . Since we are in the B-case, we have N(1, 0) = 5
and N(2, 0) = 10. The other outer values are N(2, 1) = 〈10.9713〉 = 11 and
N(2, 2) = 〈13.8778〉 = 14. The only remaining value to calculate is N(1, 1),
but for this we need to know µ. We have

µ = min

{

10

2
,

11√
5
,

14√
8

}

=
11√
5
≈ 4.9193,
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and thus find that N(1, 1) = d6.9570e = 7. Finally the scaling factor s =
N(1, 0) = 5, because we are in the B-case. As it happens, 5N

B
2 is the

neighbourhood displayed in Figure 1.2(d), which was originally published
by Borgefors.
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Chapter 4

Construction of integer
neighbourhoods: part two

In this chapter we introduce two additional classes of integer neighbour-
hoods, one for the B-case and one for the C-case.1 The idea behind these
neighbourhoods is a remark first made (in a slightly different setting) by
Verwer in [22], that for the optimal neighbourhoods the maximum relative
error is dominated by the error in the cone spanned by the vectors (p, 0) and
(p, 1). Although this need not be true for a general approximating integer
neighbourhood, it is typically so if the approximation is good.

In the terminology of Chapter 2: the maximum in equation (2.11) is
usually attained by H0. This means that we have some freedom in choosing
the lengths we attribute to the vectors (p, r), where 2 ≤ r ≤ p, without
affecting the value of Emax. Recalling Lemma 2.4, it seems advantageous to
slightly overestimate these lengths, since this will yield a better Emin, and
thus also a possibly smaller E .

This intuitive argument is merely intended as a motivation for the con-
struction described below. Obviously the argument does not apply when
p = 1, but we will construct neighbourhoods for that case too. Ultimately,
the introduction of the new classes of integer neighbourhoods will be justified
by the experimental results given in Chapter 5.

4.1 The case p = 1

The construction given here closely resembles the construction described in
Section 3.1. We need the following auxiliary lemma.

Lemma 4.1 Let 1
2

√
2 < c ≤ 1 and let n be a positive integer. The following

choices of n0 and n1 satisfy n0 ≤ n1 ≤ 2n0:

1In the D-case the construction below coincides with the construction in Chapter 3.
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(i) n0 = n, n1 = dnc
√

2e;

(ii) n0 = 〈nc〉, n1 = dnc
√

2e, unless both n = 2 and c < 3
4 .

Proof. (i): It follows from c > 1
2

√
2 that dnc

√
2e ≥ dne = n, so n0 ≤ n1 is

satisfied. And it follows from c ≤ 1 that dnc
√

2e ≤ dn
√

2e ≤ d2ne = 2n, so
n1 ≤ 2n0 also holds.

(ii): It is obvious that n0 ≤ n1. First assume that n ≥ 5. Using both
that x − 1

2 < 〈x〉 ≤ x + 1
2 and x ≤ dxe < x + 1, we have

2〈nc〉 − dnc
√

2e > nc
(

2 −
√

2
)

− 2 > n
(√

2 − 1
)

− 2 ≥ 5
√

2 − 7 > 0,

which shows that 2n0 ≥ n1. For n = 4 we have:

n0 = 〈4c〉 =

{

3 if 1
2

√
2 < c < 7

8
4 if 7

8 ≤ c ≤ 1

n1 = d4c
√

2e =

{

5 if 1
2

√
2 < c ≤ 5

4
√

2

6 if 5
4
√

2
< c ≤ 1

and it is clear that n1 ≤ 2n0 is always satisfied for these values. A similar
argument can be used to verify the inequality for n = 1 and n = 3. For
n = 2 however, we have:

n0 = 〈2c〉 =

{

1 if 1
2

√
2 < c < 3

4
2 if 3

4 ≤ c ≤ 1

while n1 = 3 for every 1
2

√
2 < c ≤ 1. Clearly then, n1 > 2n0 if c < 3

4 . �

We remark that Lemma 3.1(iii) now follows as a special case of Lemma 4.1(i),
by taking c = 1.

Definition 4.2 Let n be a positive integer. The following integer neigh-
bourhoods are defined on M1:

∗
n
NB

1 (i, j) :=

{

n if |i| + |j| = 1

dn
(

1 − eB
1

)√
2e if |i| + |j| = 2

∗
n
NC

1 (i, j) :=

{ 〈n
(

1 − eC
1

)

〉 if |i| + |j| = 1

dn
(

1 − eC
1

)√
2e if |i| + |j| = 2

with eB
1 = 3 −

√
2 − 2

√

2 −
√

2 and eC
1 =

√
4−2

√
2−1√

4−2
√

2+1
.
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Proposition 4.3 For X ∈ {B,C}, the maximum relative error of ∗
n
NX

1 is

∗
n
eX
1 = max

{

1 − 1

s
min

(

n0,
1

2
n1

√
2

)

,
1

s

√

n2
0 + (n1 − n0)2 − 1

}

,

with n0 = ∗
n
NX

1 (1, 0), n1 = ∗
n
NX

1 (1, 1).

Proof. The result follows immediately from Lemma 4.1 and Theorem 2.2
by choosing c appropriately. �

4.2 The case p ≥ 2

Just as ∗
n
NB

1 and ∗
n
NC

1 were introduced by a similar method as
n
NB

1 and

n
NC

1 , the construction given here resembles the construction described in
Section 3.2. We begin by proving the following lemma on reduced neigh-
bourhoods. It uses the function ga(x) defined in Lemma 3.4.

Lemma 4.4 Let p ≥ 2 and p√
p2+1

< c ≤ 1, and let n be a positive integer

such that n > 5
2cgp(p−1) . The following choices of n0, . . . , np satisfy n0 ≤

n1 ≤ . . . ≤ np and nj+1 + nj−1 ≥ 2nj (for j = 1, . . . , p − 1):

(i) n0 = np, n1 = 〈nc
√

p2 + 1〉, nj = dnc
√

p2 + j2e (j = 2, . . . , p);

(ii) nj = 〈nc
√

p2 + j2〉 (j = 0, 1), nj = dnc
√

p2 + j2e (j = 2, . . . , p).

Proof. (i): It is clear that n1 ≤ . . . ≤ np, and n0 ≤ n1 follows from
c > p√

p2+1
. We have to show that nj+1 + nj−1 ≥ 2nj holds for every

j = 1, . . . , p − 1.
First take j ≥ 3. By x ≤ dxe < x + 1 we have

dnc
√

p2 + (j + 1)2e − 2dnc
√

p2 + j2e + dnc
√

p2 + (j − 1)2e > ncgp(j) − 2.

According to Lemma 3.4 the function gp(j) is monotone decreasing, so we
have

ncgp(j) − 2 ≥ ncgp(p − 1) − 2 > 0,

by the assumption on n. The statement follows for j ≥ 3.
Now take j = 2. By x − 1

2 < 〈x〉 ≤ x + 1
2 and x ≤ dxe < x + 1,

dnc
√

p2 + 9e − 2dnc
√

p2 + 4e + 〈nc
√

p2 + 1〉 > ncgp(2) −
5

2
> 0,

where we use again that gp(j) is monotone decreasing.
Finally, for j = 1 we find that

dnc
√

p2 + 4e − 2〈nc
√

p2 + 1〉 + np > nc
(

√

p2 + 4 − 2
√

p2 + 1
)

+ np − 1.
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Table 4.1: Practical lower bounds on n in Lemma 4.4(i), when applied to the
B-case, for 2 ≤ p ≤ 10. The values of n are indicated for which choosing n0 =
np, n1 = 〈n(1 − eB

p )
√

p2 + 1〉, nj = dn(1 − eB
p )
√

p2 + j2e (j = 2, . . . , p) gives a
reduced neighbourhood that satisfies (2.7).

p OK for

2 n ≥ 1
3 n = 1 and for n ≥ 3
4 n = 2 and for n ≥ 4
5 n = 2, 4 and for n ≥ 7
6 n = 2, 5, 6 and for n ≥ 8
7 n = 2, 6, 7, 9 and for n ≥ 11
8 n = 6, 7, 8, 11, 12 and for n ≥ 14
9 n = 3, 7, 8, 9 and for n ≥ 11

10 n = 3, 8, 10 and for n ≥ 12

By c ≤ 1 this is larger than or equal to ncgp(1) − 1, which is positive.
(ii): It is easy to see that n0 ≤ n1 ≤ . . . ≤ np. Moreover, the proof of

nj+1 + nj−1 ≥ 2nj for j = 1, . . . , p− 1 is analogous to the proof given under
(i). (In fact, the proof for j ≥ 2 can be used verbatim.) �

The next proposition is an analogue to Proposition 3.6. Lemma 4.4 provides
a lower bound on n, which can be sharpened by systematically testing all
smaller values of n. The results of this exercise are displayed in Tables 4.1
and 4.2.

Proposition 4.5 Let 2 ≤ p ≤ 10 and n a positive integer. The following
reduced neighbourhoods on Mp satisfy nj+1 + nj−1 ≥ 2nj (for j = 1, . . . , p−
1):

∗
n
NB

p (i, j) :=















np if |i| = p and j = 0

〈n
(

1 − eB
p

)
√

p2 + 1〉 if |i| = p and |j| = 1

dn
(

1 − eB
p

)
√

p2 + j2e if |i| = p and 2 ≤ |j| ≤ p

∞ elsewhere

for the values of n displayed in Table 4.1;

∗
n
NC

p (i, j) :=







〈n
(

1 − eC
p

)
√

p2 + j2〉 if |i| = p and |j| ≤ 1

dn
(

1 − eC
p

)
√

p2 + j2e if |i| = p and 2 ≤ |j| ≤ p

∞ elsewhere

for the values of n displayed in Table 4.2.
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Table 4.2: Practical lower bounds on n in Lemma 4.4(ii), when applied to the
C-case, for 2 ≤ p ≤ 10. The values of n are indicated for which choosing nj =

〈n(1 − eC
p )
√

p2 + j2〉 (j = 0, 1), nj = dn(1 − eC
p )
√

p2 + j2e (j = 2, . . . , p) gives a
reduced neighbourhood that satisfies (2.7).

p OK for

2 n ≥ 1
3 n = 1 and for n ≥ 3
4 n = 2 and for n ≥ 4
5 n = 2, 4 and for n ≥ 6
6 n = 2 and for n ≥ 5
7 n = 2, 6, 7, 9 and for n ≥ 11
8 n = 6, 7, 8, 10, 11, 12 and for n ≥ 14
9 n = 3, 8, 9 and for n ≥ 11

10 n = 3, 8, 9, 10 and for n ≥ 12

In order to use Proposition 2.5 to calculate the maximum relative errors of
these reduced neighbourhoods, we must check that condition (2.10) holds.
Maple software was used for parts of the proof of the following lemma.

Lemma 4.6 Let p ≥ 2. For every n ≥ 1 the neighbourhoods ∗
n
NB

p and ∗
n
NC

p

defined in Proposition 4.5 satisfy (r + 1)nr > rnr+1 (for r = 0, . . . , p − 1).

Proof. The proof is given in Appendix A.5. �

We now extend these reduced neighbourhoods to full integer neighbourhoods
in the same way as before.

Definition 4.7 Let 2 ≤ p ≤ 10 and n a positive integer. The following
neighbourhoods are defined on Mp:

∗
n
NB

p (i, j) :=



















np if |i| = p and j = 0

〈n
(

1 − eB
p

)
√

p2 + 1〉 if |i| = p and |j| = 1

dn
(

1 − eB
p

)
√

p2 + j2e if |i| = p and 2 ≤ |j| ≤ p

dµ
√

i2 + j2e for all other vectors in M∗
p

where µ = min
0≤k≤p

∗
n

NB
p (p,k)√
p2+k2

, for the values of n displayed in Table 4.1;

∗
n
NC

p (i, j) :=











〈n
(

1 − eC
p

)
√

p2 + j2〉 if |i| = p and |j| ≤ 1

dn
(

1 − eC
p

)
√

p2 + j2e if |i| = p and 2 ≤ |j| ≤ p

dµ
√

i2 + j2e for all other vectors in M∗
p
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where µ = min
0≤k≤p

∗
n

NC
p (p,k)√
p2+k2

, for the values of n displayed in Table 4.2.

The values of eB
p and eC

p are given by (1.10) and (1.12).

Proposition 4.8 For X ∈ {B,C}, the maximum relative error of ∗
n
NX

p

satisfies

∗
n
eX
p ≤ max

{

1 − 1

s
min

0≤k≤p

∗
n
NX

p (p, k)
√

p2 + k2
,

1

s
max

0≤r≤p−1
Hr − 1

}

where, putting nj = ∗
n
NX

p (p, j),

Hr =



















√

1
p2 {(r + 1)nr − rnr+1}2 + (nr+1 − nr)2 if b p2(nr+1−nr)

(r+1)nr−rnr+1
c = r

nr√
p2+r2

if b p2(nr+1−nr)
(r+1)nr−rnr+1

c < r

nr+1√
p2+(r+1)2

if b p2(nr+1−nr)
(r+1)nr−rnr+1

c > r

Proof. Completely analogous to the proof of Proposition 3.9. �

40



Chapter 5

Results

In the previous chapters five classes of integer neighbourhoods were defined:

n
NB

p , ∗
n
NB

p ,
n
NC

p , ∗
n
NC

p and
n
ND

p . These neighbourhoods yield distance

transformations that approximate the optimal distance transformations wB
p ,

wC
p and wD

p given in Section 1.4. We also worked out a strategy for deter-
mining the maximum relative errors of these neighbourhoods.

For a fixed p the neighbourhoods in each of the classes mentioned above
are completely determined by one parameter, viz. n. (In the C-case the dis-
tance transformation also depends on the choice of scaling factor s. However
we always take the optimal s, defined in expression (2.15), which is indirectly
determined by n.) Broadly speaking, distance transformations with larger
values of n will have a maximum relative error closer to the optimal value,
since the elements of the optimal neighbourhood are approximated better
by fractions with higher denominators. But certain values of n yield better
results than other values of the same magnitude, and simply increasing the
denominator does not guarantee us that the maximum relative error will be
reduced. As an example, for p = 2, 5N

B
2 corresponds to Figure 1.2(d). It

outperforms every neighbourhood from this class up to 31N
B
2 .

Let N be an integer neighbourhood from one of the five classes defined
above, and let its parameter value be k. We call N a best neighbourhood
if the associated maximum relative error minimises the maximum relative
error of all neighbourhoods with the same superscript (i.e. either B, C or
D) with 1 ≤ n ≤ k. This is the type of neighbourhood we are interested in.

In the following sections the best choices of n will be derived for each
case, for 1 ≤ p ≤ 10 and n ≤ 1000.

5.1 The B-case

Appendices B.1 and B.2 contain programs that can be used to calculate
the elements of neighbourhoods of the form

n
NB

p and ∗
n
NB

p , respectively.
The program given in Appendix B.6 implements the theory of Chapter 2 to

41



calculate the maximum relative errors of these neighbourhoods (or rather,
to calculate the upper bound on the maximum relative error derived in
Propositions 3.9 and 4.8). These programs were used to generate a list of
all best neighbourhoods, for a given p ≥ 2, with parameter value n ≤ 1000.
The same result was obtained for p = 1, using similar programs.

Not every best neighbourhood is particularly interesting or useful. Es-
pecially for higher values of p, many best neighbourhoods occur that barely
improve on the previous best maximum relative error, and such neighbour-
hoods have been omitted.1 We will therefore introduce a measure of quality
for best neighbourhoods.

For a given neighbourhood
n
NB

p with maximum relative error
n
eB
p , we

denote by δ(n, p) the distance to the optimal error eB
p :

δ(n, p) :=
n
eB
p − eB

p . (5.1)

We make the same definition for neighbourhoods of the form ∗
n
NB

p .
Obviously, a neighbourhood will be particularly of interest if both n and

δ(n, p) are relatively small. In that case, the product δ(n, p) ·nc, where c ≥ 1
is some constant, will also be relatively small. For convenience we take the
negative logarithm of this expression as a measure of quality:

q(n, p) := −10 log δ(n, p) − c · 10 log n. (5.2)

Note that the interesting neighbourhoods will have high values of q(n, p).
The constant c is chosen such that a priori q(n, p) is not biased towards a
particular value of n. In the B-case we used the value c = 1.9.

We list all best neighbourhoods here that satisfy the criterion:

q(n, p) ≥ Q, (5.3)

where Q = 0.9 in this case. Since both c and Q are chosen to suit the
experimental data, there is no rigour behind this criterion, and there is no
reason to apply it rigourously. Accordingly, we will allow for exceptions:

• For each p small values of n are discarded if the maximum relative
errors do not improve on the theoretical optima of smaller masks.

• On the other hand, the first value of n that does improve on the
previous best theoretical optimum is listed, regardless of its q(n, p)-
value.

• For each p the best neighbourhood with the lowest maximum relative
error (i.e. the last best neighbourhood found with n ≤ 1000) is always
printed.

1A complete list for each case is provided online, however, at:
http://www.math.leidenuniv.nl/~scholtus/chamfer.htm.
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Table 5.1: A selection of best integer neighbourhoods for the B-case. Plain values
of n refer to the class

n
NB

p and starred values refer to ∗

n
NB

p .

n max.rel.err. q(n, p) n max.rel.err. q(n, p)

p = 1 eB
1 ≈ 0.05505271 ∗415 0.00335198 1.00

1 0.29289322 0.62 ∗476 0.00335099 2.01

3 0.05719096 1.76 p = 6 eB
6 ≈ 0.00234378

110 0.05505474 1.81 ∗25 0.00319490 0.41

993 0.05505468 0.01 ∗43 0.00243079 0.96

p = 2 eB
2

≈ 0.01869475 ∗44 0.00239705 1.15

4 0.03077641 0.77 ∗58 0.00237530 1.15

5 0.01980390 1.63 ∗73 0.00234587 2.14

∗31 0.01901534 0.66 ∗321 0.00234583 0.93

36 0.01872893 1.51 ∗686 0.00234428 0.91

139 0.01870398 0.96 ∗759 0.00234414 0.97

175 0.01869865 1.15 ∗832 0.00234404 1.04

314 0.01869518 1.62 ∗905 0.00234395 1.15

p = 3 eB
3 ≈ 0.00893928 ∗978 0.00234387 1.36

8 0.01178823 0.83 p = 7 eB
7 ≈ 0.00172949

∗15 0.00915300 1.44 18 0.00219376 0.95

∗37 0.00908944 0.84 ∗33 0.00183486 1.09

52 0.00901997 0.83 ∗51 0.00173160 2.43

∗67 0.00898172 0.90 p = 8 eB
8 ≈ 0.00132791

∗82 0.00895750 1.10 ∗37 0.00145985 0.90

97 0.00894079 2.05 ∗58 0.00133680 1.70

∗791 0.00893978 0.79 ∗97 0.00132858 2.40

∗888 0.00893933 1.70 ∗640 0.00132846 0.93

p = 4 eB
4

≈ 0.00516800 ∗737 0.00132835 0.91

9 0.00619201 1.18 ∗931 0.00132820 0.90

19 0.00552490 1.02 p = 9 eB
9

≈ 0.00105127
∗29 0.00533653 0.99 ∗60 0.00126463 0.29

∗39 0.00524594 1.09 ∗65 0.00106452 1.43

49 0.00519268 1.40 ∗87 0.00105638 1.61

∗108 0.00517352 1.39 ∗109 0.00105155 2.68

167 0.00516824 2.40 p = 10 eB
10 ≈ 0.00085272

p = 5 eB
5

≈ 0.00335091 ∗67 0.00100195 0.36

13 0.00460478 0.79 ∗73 0.00087362 1.14

∗24 0.00360461 0.97 ∗97 0.00085956 1.39

∗37 0.00351802 0.80 ∗121 0.00085340 2.21

∗49 0.00340984 1.02 ∗460 0.00085287 1.76

∗61 0.00335369 2.16 ∗581 0.00085282 1.75
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• Neighbourhoods with q(n, p) smaller than Q may be printed, if we feel
this is useful.

Table 5.1 shows a selection of best neighbourhoods we found in the B-
case, for 1 ≤ p ≤ 10 and n ≤ 1000.

Some of these integer neighbourhoods have been published previously.
The traditional chessboard distance transformation (Figure 1.2(b)) is given
by 1N

B
1 . Borgefors suggested three neighbourhoods in [3] that correspond to

3N
B
1 , 5N

B
2 and 12N

B
3 . The first two of these are very good neighbourhoods

(in the sense that their q(n, p)-values are uncommonly high: 1.76 and 1.63,
respectively), but the third one is surpassed in maximum relative error by

8N
B
3 . Coquin and Bolon suggested ∗

67N
B
3 in [8]. This neighbourhood is also

listed in Table 5.1.
Integer neighbourhoods have also been published that do not fall within

one of the classes
n
NB

p and ∗
n
NB

p . However, we did not find examples in
the literature that achieve a better maximum relative error than the values
given in Table 5.1.

5.2 The D-case

Appendix B.5 contains a program which calculates the elements of neigh-
bourhoods of the form

n
ND

p . Just as in the B-case, we calculate the maxi-
mum relative errors to find the best neighbourhoods of this class.

Again we need a criterion to decide which of the best neighbourhoods are
listed here. For a given neighbourhood

n
ND

p with maximum relative error

n
eD
p , the distance to the optimal maximum relative error eD

p is denoted by
δ(n, p); that is to say, we take definition (5.1) and replace the superscript B
by D. As a measure of quality we take q(n, p) as defined in (5.2), this time
with c = 1.8. A neighbourhood is listed if q(n, p) ≥ Q, where Q = 0.6 in
this case. (The same reservations hold as in the B-case.)

Table 5.2 lists some best neighbourhoods we found in the D-case, for
1 ≤ p ≤ 10 and n ≤ 1000.

We did not find any previously published integer neighbourhoods for the
D-case, other than the classical city block distance transformation (Figure
1.2(a)), which corresponds to 1N

D
1 (listed in Table 5.2).

5.3 The C-case

Appendices B.3 and B.4 contain programs that can be used to calculate the
elements of a neighbourhood from the classes

n
NC

p and ∗
n
NC

p . As before
we compute the maximum relative errors for n ≤ 1000, but this time the
scaling factor s has to be calculated also, from

s =
1

2
(cmax + cmin) .
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Table 5.2: A selection of best integer neighbourhoods from the class
n
ND

p .

n max.rel.err. q(n, p) n max.rel.err. q(n, p)

p = 1 eD
1

≈ 0.08239220 313 0.00489264 1.17

1 0.41421356 0.48 414 0.00489188 1.14

2 0.11803399 0.91 515 0.00489142 1.14

7 0.08796759 0.73 616 0.00489111 1.17

12 0.08333333 1.08 717 0.00489089 1.24

41 0.08255322 0.89 818 0.00489072 1.36

70 0.08241981 1.24 919 0.00489059 1.59

239 0.08239694 1.04 p = 6 eD
6 ≈ 0.00341897

408 0.08239301 1.39 33 0.00469513 0.16

p = 2 eD
2 ≈ 0.02748630 46 0.00377360 0.46

3 0.06718737 0.54 157 0.00342227 1.53

8 0.03077641 0.86 302 0.00342053 1.34

21 0.02795396 0.95 447 0.00341992 1.25

38 0.02766443 0.91 592 0.00341961 1.20

55 0.02755427 1.04 737 0.00341942 1.19

72 0.02749621 1.66 882 0.00341930 1.18

377 0.02748774 1.20 p = 7 eD
7

≈ 0.00252214
682 0.02748685 1.16 42 0.00295736 0.44

987 0.02748651 1.29 139 0.00258452 0.35

p = 3 eD
3

≈ 0.01308146 182 0.00254777 0.52

6 0.02439383 0.55 239 0.00252653 1.08

11 0.01639454 0.61 408 0.00252289 1.43

18 0.01379376 0.89 605 0.00252260 1.33

43 0.01316376 1.14 802 0.00252246 1.27

80 0.01311710 1.02 999 0.00252237 1.24

117 0.01309997 1.01 p = 8 eD
8

≈ 0.00193614
154 0.01309107 1.08 60 0.00236050 0.17

191 0.01308562 1.28 64 0.00207305 0.61

228 0.01308194 2.07 272 0.00195122 0.44

p = 4 eD
4

≈ 0.00754900 337 0.00193967 0.90

14 0.01157207 0.33 530 0.00193654 1.49

40 0.00778222 0.75 787 0.00193639 1.39

73 0.00757126 1.30 p = 9 eD
9

≈ 0.00153258
138 0.00755912 1.14 53 0.00191660 0.31

203 0.00755476 1.09 90 0.00162496 0.52

268 0.00755251 1.08 378 0.00154202 0.39

333 0.00755114 1.13 469 0.00153546 0.73

398 0.00755022 1.23 668 0.00153281 1.55

463 0.00754956 1.45 993 0.00153272 1.46

528 0.00754906 2.32 p = 10 eD
10

≈ 0.00124302
p = 5 eD

5 ≈ 0.00480947 110 0.00152776 -0.13

27 0.00751633 0.00 120 0.00129916 0.51

70 0.00498756 0.69 520 0.00124922 0.32

111 0.00489832 1.42 621 0.00124520 0.63

212 0.00489413 1.25 822 0.00124315 1.64
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In Table 5.3 best neighbourhoods for the C-case are listed for 1 ≤ p ≤ 10
and n ≤ 1000. Just as before, the less interesting values of n have been
filtered out by applying the criterion q(n, p) ≥ Q. This time we put c = 2
for p ∈ {1, 2} and c = 2.1 for p ≥ 3, and Q = 0.8.

Some of these neighbourhoods have been published before. In [22] Verwer
suggested 2N

C
1 , 5N

C
1 , ∗

12N
C
1 and 5N

C
2 , all of which are listed in Table 5.3. He

also suggested ∗
4N

C
2 and ∗

9N
C
2 , but a lower maximum relative error is achieved

by 4N
C
2 and ∗

8N
C
2 , respectively. Finally, he suggested a neighbourhood with

s = 17.2174 that does not correspond to either 17N
C
2 or ∗

17N
C
2 , but ∗

13N
C
2

already yields a lower maximum relative error.
Coquin and Bolon suggested 25N

C
1 in [8], but ∗

12N
C
1 achieves the same

maximum relative error. In [6] Butt and Maragos suggested 73N
C
1 (listed in

Table 5.3), but with a different (non-optimal) scaling factor. Finally in [18]
Thiel suggested 73N

C
2 , which is listed in Table 5.3.

Just as for the B-case, integer neighbourhoods have also been published
that do not fall within one of the classes derived here.2 However, we did not
find any examples in the literature that achieve a better maximum relative
error than the values given in Table 5.3.

5.4 Concluding remarks

The tables given in the previous sections make it possible to select mask size
p and parameter n to guarantee that the approximation of the Euclidean
distance does not exceed a prescribed maximum relative error. In each case
the tables run down to an error of about 0.1%.

Of course, the use of a neighbourhood with a larger value of n requires
more computer memory. The following argument3 makes this more precise.
Suppose N is an integer neighbourhood on Mp from one of the classes from
Chapters 3 and 4, with parameter value n. If we want to use N to get
a distance transformation of a digitised picture of size D × D, the largest
possible distance to be approximated is the length of the diagonal from
the lower left-hand corner to the upper right-hand corner. This distance is
approximated (before the scaling factor is divided out) by

D

p
N(p, p) ≈ D

p
np

√
2 = nD

√
2.

Observe that this is independent of the mask-size p. If we are using i bits
to code this distance, it should clearly hold that

2i > nD
√

2. (5.4)

2For instance, Vossepoel (cf. [23]) and Borgefors (cf. [5]) give many examples for the
C-case. Since they optimised the maximum absolute error (equation (1.8)), their scaling
factors are not optimal from our point of view.

3This is based on a similar argument used by Coquin and Bolon in [8].
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Table 5.3: A selection of best integer neighbourhoods for the C-case. Plain values
of n refer to the class

n
NC

p and starred values refer to ∗

n
NC

p .

n s max.rel.err. q(n, p) n s max.rel.err. q(n, p)

p = 1 e1 ≈ 0.03956613 152 151.969025 0.00244295 0.85

1 0.85355339 0.17157288 0.88 ∗162 161.994921 0.00243974 1.69

2 2.11803399 0.05572809 1.19 ∗820 820.000304 0.00243939 0.80

5 5.16745614 0.04213072 1.19 ∗901 900.997841 0.00243934 0.95

∗12 12.5000000 0.04000000 1.20 ∗982 981.995378 0.00243930 1.24

30 30.1880438 0.03964039 1.18 p = 6 e6 ≈ 0.00170657
73 72.8846935 0.03957887 1.17 ∗24 24.0415991 0.00211365 0.49

176 175.961001 0.03956831 1.17 62 61.9245898 0.00178557 0.34

425 424.808175 0.03956650 1.18 73 72.9566837 0.00175354 0.42

p = 2 e2 ≈ 0.01355683 157 156.935885 0.00171547 0.44

∗3 3.10078106 0.03250183 0.77 351 350.932451 0.00170722 0.84

5 5.00918453 0.01793405 0.96 ∗460 459.951384 0.00170673 1.20

∗8 8.12310563 0.01515500 0.99 932 931.923860 0.00170671 0.62

∗13 13.1554292 0.01415650 0.99 p = 7 e7 ≈ 0.00125948
26 25.8437744 0.01364350 1.23 ∗44 44.0287673 0.00166679 -0.06

∗47 47.1416827 0.01361179 0.92 71 70.9478166 0.00134912 0.16

73 72.9898635 0.01356166 1.59 99 98.9805381 0.00128318 0.43

∗309 309.191412 0.01355710 1.59 ∗225 224.998732 0.00126421 0.39

∗846 845.968804 0.01355701 0.89 296 295.943568 0.00126015 0.98

p = 3 e3 ≈ 0.00649823 ∗310 309.961759 0.00125954 1.99

∗6 6.07318149 0.01204994 0.62 p = 8 e8 ≈ 0.00096713
13 13.0582854 0.00724912 0.79 ∗52 52.0300425 0.00122570 -0.02

31 30.8691343 0.00655890 1.09 81 80.9500295 0.00098064 0.86

∗62 62.0683152 0.00650736 1.28 97 96.9658782 0.00097715 0.83

∗217 217.077453 0.00649900 1.21 ∗256 256.000000 0.00097656 -0.03

242 241.905114 0.00649847 1.61 ∗386 385.997554 0.00096779 0.75

701 700.887913 0.00649830 1.18 ∗402 402.013404 0.00096746 1.01

p = 4 e4 ≈ 0.00376031 ∗611 610.965832 0.00096716 1.67

9 8.99982852 0.00617307 0.61 p = 9 e9 ≈ 0.00076570
17 17.0439028 0.00430301 0.68 82 81.9651408 0.00093030 -0.24

49 48.9320625 0.00379670 0.89 90 89.9658728 0.00085570 -0.06

∗57 56.9650442 0.00377502 1.15 109 108.967607 0.00079347 0.28

106 105.898965 0.00376741 0.90 127 126.983824 0.00077176 0.80

∗212 212.046069 0.00376295 0.69 524 523.956829 0.00076585 1.11

261 260.980010 0.00376205 0.68 p = 10 e10 ≈ 0.00062112
367 366.879879 0.00376112 0.71 ∗66 66.0206535 0.00075261 0.06

∗530 529.992951 0.00376033 1.98 100 99.9644855 0.00066583 0.15

p = 5 e5 ≈ 0.00243927 ∗161 160.998136 0.00062499 0.78

∗20 20.0574267 0.00334964 0.31 581 580.961900 0.00062293 -0.06

∗31 31.0580500 0.00279390 0.32 742 741.961277 0.00062170 0.21

70 69.9750244 0.00250233 0.33 ∗943 942.985501 0.00062120 0.85

∗101 101.047409 0.00244844 0.83 ∗963 962.998117 0.00062113 1.73
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In particular, this shows that for i = 32 all neighbourhoods with n ≤ 1000
can be used for distance transformations with pictures of sizes up to D =

232

1000
√

2
≈ 3 × 106.
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Appendix A

Mathematical bits and pieces

A.1 Butt and Maragos revisited

In this section we give a proof of the fact mentioned in Section 1.4, that the
optimal error found by Butt and Maragos in [6] is equal to the one found by
Verwer in [22], although their definitions of error are different (expressions
(1.7) and (1.9)). We are talking about the C-case here, as that is the only
case treated by Butt and Maragos (and Verwer). We will use the notation
used by Butt and Maragos in their paper, and introduce without proof the
more peripheral steps of their approach. The reader is referred to [6] for full
details.

To make the analysis easier, the weighted distance function is extended
to the real plane. (This corresponds to taking the limit in (1.9).) For r > 0,
the chamfer polygon1 of size r consists of all points on the plane for which
the weighted distance to the origin is at most equal to r. As usual we can
restrict the analysis to the first octant. A point on the edge of the chamfer
polygon has weighted distance r, and its Euclidean distance is given by a
function L(θ), where θ is the angle between the horizontal axis and the
vector describing the point. The error at this point is defined as

E(θ) :=
r − L(θ)

r
, (A.1)

and the overall error of the weighted distance is the maximum of |E(θ)|. In
our own notation, this is eBM as defined in (1.9).

Consider a neighbourhood w defined on Mp, with p ≥ 1. Assuming
that the neighbourhood values are reasonably well behaved (and in the op-
timal case, they will be), the error of the weighted distance is dominated by
the error on the first sector of the chamfer polygon. This sector (OAZ in

1This term is used by Butt and Maragos. We recall that weighted distance transfor-
mations are sometimes referred to as chamfer distances.
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O A

Z

α
θ1

Figure A.1: The first sector of the chamfer polygon. The distance OA equals r.

Figure A.1) consists of all points for which 0 ≤ θ ≤ α, where

α := arctan

(

1

p

)

. (A.2)

Furthermore in this sector L(θ) depends only on the values a := w(1, 0) and
z := w(p, 1). More precisely, Butt and Maragos have established that the
Euclidean distance in this first sector is

L(θ) :=
r sin(θ1)

a sin(θ1 + θ)
(0 ≤ θ ≤ α) , (A.3)

where

θ1 := arctan

(

a

z − pa

)

.

They also argue that in the optimal case we must have z = a
√

p2 + 1, so θ1

reduces to

θ1 = arctan

(

1
√

p2 + 1 − p

)

. (A.4)

It is clear from (A.1) that E(θ) achieves its maximum when L(θ) achieves
its minimum. It is easy to see that this happens for θ̄ = 90◦ − θ1, with
L(θ̄) = r sin(θ1)

a . The optimal value of a can now be obtained by solving

E(θ̄) = −E(0) = −E(α). (A.5)

We will use the following properties, the first of which is trivial.

Property A.1 sin
(

arctan y
x

)

= y√
x2+y2

.

Property A.2 α = 2θ̄.

Proof. In the big triangle shown in Figure A.2 we have α = 180◦ − θ1 −
(θ̄ + β). But this triangle is isosceles, so θ̄ + β = θ1, which in turn gives
α = 2 (90◦ − θ1) = 2θ̄. �
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1θ

β

θ

α

Figure A.2: An isosceles triangle used in the proof of Property A.2.

It follows easily from Property A.2 that E(0) = E(α), for we have (using
that θ̄ = 90◦ − θ1):

L(α) =
r sin(θ1)

a sin(θ1 + 2θ̄)
=

r sin(θ1)

a sin(90◦ + θ̄)
=

r sin(θ1)

a sin(90◦ − θ̄)
=

r

a
= L(0).

Thus it is sufficient to solve E(θ̄) = −E(0), that is:

1 − sin(θ1)

a
=

1

a
− 1.

The solution is

a =
1 + sin(θ1)

2
,

and the resulting value of E(θ̄) (and thus of max
θ

|E(θ)|) is:

E(θ̄) = 1 − 2 sin(θ1)

1 + sin(θ1)
= 1 − 2

1
sin(θ1) + 1

.

Using Property A.1 with (A.4), this becomes:

E(θ̄) = 1 − 2
√

(

√

p2 + 1 − p
)2

+ 1 + 1

=

√

2p2 + 2 − 2p
√

p2 + 1 − 1
√

2p2 + 2 − 2p
√

p2 + 1 + 1
.

Comparing with (1.12), we see that this is exactly eC
p .

A.2 Derivation of equation (2.11)

The function hr is defined, for r = 0, 1, . . . , p − 1, as

hr(t) =
1

s

1
p {(r + 1)nr − rnr+1} + (nr+1 − nr) t

√
1 + t2

(

r

p
≤ t ≤ r + 1

p

)

.
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Our objective is to determine

max
0≤r<p

max
r
p
≤t≤ r+1

p

hr(t).

We begin by finding the maximum of hr on the whole of R. The deriva-
tive of hr is

h′
r(t) =

1

s

nr+1 − nr − 1
p {(r + 1)nr − rnr+1} t

(1 + t2)3/2
.

The equation h′
r(t) = 0 has only one solution, t̄ = p(nr+1−nr)

(r+1)nr−rnr+1
, and it

follows from (r + 1)nr > rnr+1 that hr(t̄) is indeed the maximum of hr.
If t̄ happens to satisfy r

p ≤ t̄ ≤ r+1
p , then hr attains its maximum on

[

r
p , r+1

p

]

at t̄. If t̄ < r
p , then the maximum on

[

r
p , r+1

p

]

is attained at r
p , and

if t̄ > r+1
p , the maximum on

[

r
p , r+1

p

]

is attained at r+1
p .

The resulting values of hr(t) are

hr (t̄) =
1

s

√

1

p2
{(r + 1)nr − rnr+1}2 + (nr+1 − nr)2

and

hr

(

r

p

)

=
1

s

nr
√

p2 + r2
, hr

(

r + 1

p

)

=
1

s

nr+1
√

p2 + (r + 1)2
,

respectively. Writing 1
sHr = max

r
p
≤t≤ r+1

p

hr(t), we conclude that

Hr =



















√

1
p2 {(r + 1)nr − rnr+1}2 + (nr+1 − nr)2 if b p2(nr+1−nr)

(r+1)nr−rnr+1
c = r

nr√
p2+r2

if b p2(nr+1−nr)
(r+1)nr−rnr+1

c < r

nr+1√
p2+(r+1)2

if b p2(nr+1−nr)
(r+1)nr−rnr+1

c > r

Equation (2.11) now follows.

A.3 The maximum relative error of optimal neigh-
bourhoods

In this section we use Theorem 2.2 and Theorem 2.7 to bound the maximum
relative error of the optimal neighbourhoods wB

p , wC
p and wD

p . The resulting

values turn out to be the optimal errors eB
p , eC

p and eD
p , respectively. There-

fore our expressions for the maximum relative error are consistent with the
theoretical results of Hajdu, Hajdu and Tijdeman in [11]. In particular, this
establishes that equality holds in (2.13) for the optimal neighbourhoods.
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We begin with the case p = 1. Theorem 2.2 is formulated to suit integer
neighbourhoods, but as we did not use the fact that the elements of N are
integers anywhere in our derivation, it is clear that the theorem may be
adapted to general neighbourhoods as follows:

Theorem A.3 Let w be a neighbourhood on M1 with w(1, 0) = w0 and
w(1, 1) = w1, where w0 ≤ w1 ≤ 2w0. The maximum relative error of w is
given by

e = max

{

1 − min

(

w0,
1

2
w1

√
2

)

,
√

w2
1 − 2w0w1 + 2w2

0 − 1

}

.

The optimal neighbourhood wB
1 is defined in (1.13) and has wB

1 (1, 0) = 1,
wB

1 (1, 1) = (1 − eB
1 )

√
2. By (1.10) the optimal error eB

1 equals 3 −
√

2 −
2
√

2 −
√

2. It follows immediately that

1 − min

(

wB
1 (1, 0),

1

2
wB

1 (1, 1)
√

2

)

= eB
1 .

It is not difficult (but it takes some time) to verify the identity

2(1 − eB
1 )2 − 2(1 − eB

1 )
√

2 + 2 = (1 + eB
1 )2,

from which it follows that
√

(

wB
1 (1, 1)

)2 − 2
(

wB
1 (1, 0)

) (

wB
1 (1, 1)

)

+ 2
(

wB
1 (1, 0)

)2 − 1 = eB
1 .

Thus by Theorem A.3 the maximum relative error of wB
1 is indeed eB

1 .
Similar arguments can be used to verify that Theorem A.3 yields eC

1 as
the maximum relative error of wC

1 , and eD
1 for wD

1 . Of course this comes as
no surprise: it would have been a serious problem if Theorem A.3 yielded
different values.

It is a different matter for p ≥ 2 however, for in this case we only have an
upper bound on the maximum relative error. We have the following adapted
version of Theorem 2.7 (using the formulation of Corollary 2.8):

Theorem A.4 Let p ≥ 2 and let w be a neighbourhood on Mp. Write
wj = w(p, j) for j = 0, . . . , p. If the inequalities

(i) w0 ≤ w1 ≤ . . . ≤ wp,

(ii) wj+1 + wj−1 ≥ 2wj (for j = 1, . . . , p − 1),

(iii) (r + 1)wr > rwr+1 (for r = 0, . . . , p − 1),

(iv) 1 + r
p2+r2 ≤ wr+1

wr
< 1 + r+1

p2+r(r+1)
(for r = 0, 1, . . . , p − 1),
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(v) w(i,j)√
i2+j2

≥ min
0≤k≤p

wk√
p2+k2

(for all (i, j) ∈ M∗
p )

all hold, then the maximum relative error of w satisfies

e ≤ max

{

1 − min
0≤k≤p

wk
√

p2 + k2
, max

0≤r≤p−1
Hr − 1

}

,

where Hr =
√

1
p2 {(r + 1)wr − rwr+1}2 + (wr+1 − wr)2.

The optimal neighbourhoods wB
p , wD

p and wC
p are defined by the expressions

(1.13)–(1.15). Using arguments similar to the ones used in Chapters 3 and
4 one can verify that these neighbourhoods satisfy inequalities (i), (ii) and
(iii) of Theorem A.4. Moreover it is clear from the definitions that they
satisfy inequality (v). It remains to check that inequality (iv) also holds for
the optimal neighbourhoods, and then we may apply Theorem A.4 to them.
The following lemma shows just that.

Lemma A.5 Let p ≥ 2 and write w̃X
j = wX

p (p, j) for j = 0, 1, . . . , p, with
X ∈ {B,C,D}. Then it holds for r = 0, 1, . . . , p − 1 that

1 +
r

p2 + r2
≤ w̃X

r+1

w̃X
r

< 1 +
r + 1

p2 + r(r + 1)
.

Proof. We first prove the statement for every possible situation, except
r = 0 in the B-case. Apart from that exception, we always have

w̃X
r+1

w̃X
r

=

√

p2 + (r + 1)2
√

p2 + r2
.

Now the left-hand inequality follows by

√

p2 + (r + 1)2
√

p2 + r2
=

√

p4 + p2(r2 + (r + 1)2) + r2(r + 1)2

p2 + r2

>

√

p4 + 2p2r(r + 1) + r2(r + 1)2

p2 + r2
=

p2 + r(r + 1)

p2 + r2
,

and the right-hand inequality follows by

√

p2 + (r + 1)2
√

p2 + r2
=

p2 + (r + 1)2
√

p4 + p2(r2 + (r + 1)2) + r2(r + 1)2
<

p2 + (r + 1)2

p2 + r(r + 1)
.

For the remaining case (r = 0 and X = B) the statement reduces to

1 ≤
(1 − eB

p )
√

p2 + 1

p
<

p2 + 1

p2
.
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The right-hand inequality is true, because

(1 − eB
p )
√

p2 + 1

p
<

√

p2 + 1

p2
<

p2 + 1

p2
.

The left-hand inequality is just w̃B
0 ≤ w̃B

1 , which should of course be true.
Substituting expression (1.10) for eB

p , it suffices to show that

(

p
√

p2 + 1 + 2

√

p2 + 1 − p
√

p2 + 1 − 2

)

√

p2 + 1 ≥ p3. (A.6)

For p ≥ 2 it is always true that

√

p2 + 1 − p
√

p2 + 1 ≥ 1
2

√
2, so the left-

hand-side of (A.6) is greater than or equal to

p3 + p − (2 −
√

2)
√

p2 + 1.

Now (2 −
√

2)
√

p2 + 1 < (2 −
√

2)(p + 1) < p if p >
√

2. In particular, it
follows that (A.6) is true for p ≥ 2. �

We may thus use Theorem A.4 to get an upper bound on the maximum
relative error of wB

p , wC
p and wD

p . It is immediately clear that (in the notation
of Lemma A.5)

1 − min
0≤k≤p

w̃B
k√

p2+k2
= eB

p ,

1 − min
0≤k≤p

w̃C
k√

p2+k2
= eC

p ,

1 − min
0≤k≤p

w̃D
k√

p2+k2
= 0.

(A.7)

The real work lies in the evaluation of max0≤r≤p−1 Hr − 1.
We first write Hr in a slightly different form:

Hr(wr, wr+1) =

√

p2 + (r + 1)2

p2
w2

r − p2 + r(r + 1)

p2
2wrwr+1 +

p2 + r2

p2
w2

r+1.

(A.8)
It is a straightforward – albeit slightly tedious – task to work out the value of
Hr for r = 0, . . . , p−1 in all three cases. Just as in the proof of Lemma A.5,
we can use the same approach in almost every situation, the only exception
being (again) r = 0 in the B-case.

To save some space we define a function qp(x) as follows:

qp(x) :=
(

p2 + x2
) (

p2 + (x + 1)2
)

−
(

p2 + x(x + 1)
)
√

(p2 + x2) (p2 + (x + 1)2).
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Then we obtain the following expressions:

Hr(w̃
B
r , w̃B

r+1) =
√

2(1−eB
p )2qp(r)

p2 (r = 1, . . . , p − 1),

Hr(w̃
C
r , w̃C

r+1) =
√

2(1−eC
p )2qp(r)

p2 (r = 0, . . . , p − 1),

Hr(w̃
D
r , w̃D

r+1) =
√

2qp(r)
p2 (r = 0, . . . , p − 1).

For every p 6= 0 the function qp(x) is monotone decreasing on
[

−1
2 ,∞

)

.
Therefore:

max
0≤r≤p−1

Hr(w̃
B
r , w̃B

r+1) = max
{

H0(w̃
B
0 , w̃B

1 ), H1(w̃
B
1 , w̃B

2 )
}

,

max
0≤r≤p−1

Hr(w̃
C
r , w̃C

r+1) = H0(w̃
C
0 , w̃C

1 ),

max
0≤r≤p−1

Hr(w̃
D
r , w̃D

r+1) = H0(w̃
D
0 , w̃D

1 ).

(A.9)

Using the fact that qp(0) = p2
(

p2 + 1 − p
√

p2 + 1
)

, we have

H0(w̃
C
0 , w̃C

1 ) = (1 − eC
p )

√

2
(

p2 + 1 − p
√

p2 + 1
)

=
2

√

2p2 + 2 − 2p
√

p2 + 1
√

2p2 + 2 − 2p
√

p2 + 1 + 1
= 1 + eC

p

and

H0(w̃
D
0 , w̃D

1 ) =

√

2
(

p2 + 1 − p
√

p2 + 1
)

= 1 + eD
p .

It follows by (A.9) and Theorem A.4 that wC
p and wD

p have maximum relative

errors less than or equal to eC
p and eD

p , respectively. But we know from [11]
that these are the actual values of the maximum relative error. Therefore
the upper bound on the maximum relative error provided by Theorem A.4
is exact for the optimal neighbourhoods wC

p and wD
p .

It remains to proof the same result for wB
p . We need to show two things:

H0(w̃
B
0 , w̃B

1 ) = 1+eB
p and H0(w̃

B
0 , w̃B

1 ) ≥ H1(w̃
B
1 , w̃B

2 ). For the first part we
have no option but to verify by brute force that (using (1.13) and (A.8))

p2 + 1 − 2(1 − eB
p )p
√

p2 + 1 + (1 − eB
p )2(p2 + 1) = (1 + eB

p )2.

Having established this, the second part can be proved as follows. We know
that

(

H0(w̃
B
0 , w̃B

1 )
)2

=
{

1 + (1 − eB
p )2
}

(p2 + 1) − 2(1 − eB
p )p
√

p2 + 1.

Because 1 + (1 − eB
p )2 > 2(1 − eB

p ), this means that

(

H0(w̃
B
0 , w̃B

1 )
)2

> 2(1 − eB
p )
(

p2 + 1 − p
√

p2 + 1
)

> 2(1 − eB
p )2

(

p2 + 1 − p
√

p2 + 1
)
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Therefore H0(w̃
B
0 , w̃B

1 ) >
√

2(1−eB
p )2qp(0)

p2 >
√

2(1−eB
p )2qp(1)

p2 = H1(w̃
B
1 , w̃B

2 ).
And it follows that the upper bound on the maximum relative error provided
by Theorem A.4 is also exact for the optimal neighbourhood wB

p .

A.4 Proof of Lemma 3.7

Lemma 3.7 Let p ≥ 2. For every n ≥ 1 the neighbourhoods
n
NB

p ,
n
NC

p

and
n
ND

p defined in Proposition 3.6 satisfy (r + 1)nr > rnr+1 (for r =
0, . . . , p − 1).

Proof. For r = 0 the condition trivially holds in all cases, so we take r ≥ 1.
For

n
NB

p we have n0 = np, nj = 〈n
(

1 − eB
p

)
√

p2 + j2〉 (j = 1, . . . , p). We
must check that

(r + 1)〈n
(

1 − eB
p

)

√

p2 + r2〉 − r〈n
(

1 − eB
p

)
√

p2 + (r + 1)2〉 > 0.

Since x − 1
2 < 〈x〉 ≤ x + 1

2 it suffices that

n
(

1 − eB
p

)

{

(r + 1)
√

p2 + r2 − r
√

p2 + (r + 1)2
}

> 1.

For every p ≥ 2 the function

f1(x) := (x + 1)
√

p2 + x2 − x
√

p2 + (x + 1)2

is monotone decreasing to 0 on
[

−1
2 ,∞

)

. Thus it is sufficient to prove that
the condition holds for r = p − 1, i.e.

n
(

1 − eB
p

)

{

p
√

p2 + (p − 1)2 − p(p − 1)
√

2
}

> 1.

Inserting expression (1.10) for eB
p , we must check that

1

p

{

2

√

p2 + 1 − p
√

p2 + 1 + p
√

p2 + 1 − 2

}

{

√

p2 + (p − 1)2 − (p − 1)
√

2
}

>
1

n

The function

f2(x) :=
1

x

�
2�x2 + 1 − x�x2 + 1 + x�x2 + 1 − 2� ��x2 + (x − 1)2 − (x − 1)

√
2�

is monotone increasing for x ≥ 2. Since f2(2) ≈ 1.61, we find that f2(p) ≥
f2(2) > 1

n for every p ≥ 2 and every n ≥ 1. Thus (2.10) indeed holds.

For
n
NC

p we have nj = 〈n
(

1 − eC
p

)
√

p2 + j2〉 (j = 1, . . . , p). Using the
same argument as above, it suffices to check that

n
(

1 − eC
p

)

{

p
√

p2 + (p − 1)2 − p(p − 1)
√

2
}

> 1.
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Inserting expression (1.12) for eC
p , this becomes

2
{

p
√

p2 + (p − 1)2 − p(p − 1)
√

2
}

√

2p2 + 2 − 2p
√

p2 + 1 + 1
>

1

n
.

The function

f3(x) :=
x
√

x2 + (x − 1)2 − x(x − 1)
√

2
√

2x2 + 2 − 2x
√

x2 + 1 + 1

is monotone increasing for x ≥ 2. Since f3(2) ≈ 0.81 > 1
2n , the result follows

for every p ≥ 2 and n ≥ 1.
Finally, for

n
ND

p we have nj = dn
√

p2 + j2e (j = 1, . . . , p) and we must
verify that

(r + 1)dn
√

p2 + r2e − rdn
√

p2 + (r + 1)2e > 0.

By x ≤ dxe < x + 1, it suffices to check that

n
{

(r + 1)
√

p2 + r2 − r
√

p2 + (r + 1)2
}

> 1.

Again using the fact that f1 is monotone decreasing, we can restrict our
attention to the case r = p − 1, i.e. check that

{

p
√

p2 + (p − 1)2 − p(p − 1)
√

2
}

>
1

n
.

The function
f4(x) := x

√

x2 + (x − 1)2 − x(x − 1)
√

2

is monotone increasing for x ≥ 2. Since f4(2) ≈ 1.64 > 1
n , we are done for

every p ≥ 2 and n ≥ 1. �

A.5 Proof of Lemma 4.6

Lemma 4.6 Let p ≥ 2. For every n ≥ 1 the neighbourhoods ∗
n
NB

p and ∗
n
NC

p

defined in Proposition 4.5 satisfy (r + 1)nr > rnr+1 (for r = 0, . . . , p − 1).

Proof. For r = 0 the condition trivially holds in both cases. For ∗
n
NB

p we

have n0 = np, n1 = 〈n
(

1 − eB
p

)
√

p2 + 1〉 and nj = dn
(

1 − eB
p

)
√

p2 + j2e
(j = 2, . . . , p). First take r = 1. We have to show that

2〈n
(

1 − eB
p

)

√

p2 + 1〉 − dn
(

1 − eB
p

)

√

p2 + 4e > 0.

Since x− 1
2 < 〈x〉 ≤ x + 1

2 and x ≤ dxe < x + 1, it is sufficient to show that

n
(

1 − eB
p

)

(

2
√

p2 + 1 −
√

p2 + 4
)

> 2.
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Substituting expression (1.10) for eB
p , we must check that

2

√

p2 + 1 − p
√

p2 + 1 + p
√

p2 + 1 − 2

p2

(

2
√

p2 + 1 −
√

p2 + 4
)

>
2

n

The function

f5(x) :=
2
√

x2 + 1 − x
√

x2 + 1 + x
√

x2 + 1 − 2

x2

(

2
√

x2 + 1 −
√

x2 + 4
)

is monotone increasing for x ≥ 2. Note that f5(2) ≈ 1.61 and f5(3) ≈ 2.69.
For p ≥ 3 the statement now follows since f5(p) ≥ f5(3) > 2

n for every n ≥ 1.
For p = 2 we have f5(2) > 2

n for every n ≥ 2, and the reader may verify
that the statement also holds for the special case p = 2, n = 1.

Now take r ≥ 2. We have to check that

(r + 1)dn
(

1 − eB
p

)

√

p2 + r2e − rdn
(

1 − eB
p

)
√

p2 + (r + 1)2e > 0.

Following the argument used in the D-case in the proof of Lemma 3.7, it is
sufficient to show that

(

1 − eB
p

)

{

p
√

p2 + (p − 1)2 − p(p − 1)
√

2
}

>
1

n
.

We already verified this in the proof of Lemma 3.7.
For ∗

n
NC

p we have nj = 〈n
(

1 − eC
p

)
√

p2 + j2〉 (j = 0, 1) and nj =

dn
(

1 − eC
p

)
√

p2 + j2e (j = 2, . . . , p). First take r = 1. We have to check
that

2〈n
(

1 − eC
p

)

√

p2 + 1〉 − dn
(

1 − eC
p

)

√

p2 + 4e > 0.

Since x− 1
2 < 〈x〉 ≤ x + 1

2 and x ≤ dxe < x + 1, it is sufficient to show that

n
(

1 − eC
p

)

(

2
√

p2 + 1 −
√

p2 + 4
)

> 2.

Substituting expression (1.12) for eC
p , we must check that

2
√

p2 + 1 −
√

p2 + 4
√

2p2 + 2 − 2p
√

p2 + 1 + 1
>

1

n
.

The function

f6(x) :=
2
√

x2 + 1 −
√

x2 + 4
√

2x2 + 2 − 2x
√

x2 + 1 + 1

is monotone increasing for x ≥ 2. In particular f6(2) ≈ 0.81 and f6(3) ≈
1.35. The statement now follows for p ≥ 3 since f6(p) ≥ f6(3) > 1

n for every
n ≥ 1. For p = 2 we have f6(2) > 1

n for every n ≥ 2, and the reader may
easily verify that the statement also holds for the special case p = 2, n = 1.
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For r ≥ 2 we have to check that

(r + 1)dn
(

1 − eC
p

)

√

p2 + r2e − rdn
(

1 − eC
p

)
√

p2 + (r + 1)2e > 0.

As before it is sufficient to show that

(

1 − eC
p

)

{

p
√

p2 + (p − 1)2 − p(p − 1)
√

2
}

>
1

n
,

and we already verified this in the proof of Lemma 3.7. �
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Appendix B

Programs

This appendix contains pseudocodes that may be used to calculate the re-
sults of Chapter 5. We restrict ourselves to the case p ≥ 2, since the imple-
mentation of the theory for p = 1 is straightforward.

B.1 A program that constructs nN
B
p

for i = 1, 2, . . . , p

N(±i, 0) := n ∗ i =: N(0,±i);

end

µ := n;

for j = 1, 2, . . . , p

N(±p,±j) := round(n ∗ (1 − eB
p ) ∗ sqrt(p2 + j2));

a := N(p, j)/sqrt(p2 + j2);

if a < µ

µ := a;

end

end

for all other (i, j) ∈ M∗

p

N(i, j) := ceil(µ ∗ sqrt(i2 + j2));

end

B.2 A program that constructs ∗
nN

B
p

for i = 1, 2, . . . , p

N(±i, 0) := n ∗ i =: N(0,±i);

end

µ := n;

for j = 1, . . . , p

if j = 1

N(±p,±j) := round(n ∗ (1 − eB
p ) ∗ sqrt(p2 + j2));
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else

N(±p,±j) := ceil(n ∗ (1 − eB
p ) ∗ sqrt(p2 + j2));

end

a := N(p, j)/sqrt(p2 + j2);

if a < µ

µ := a;

end

end

for all other (i, j) ∈ M∗

p

N(i, j) := ceil(µ ∗ sqrt(i2 + j2));

end

B.3 A program that constructs nN
C
p

µ := n;

for j = 0, 1, . . . , p

N(±p,±j) := round(n ∗ (1 − eC
p ) ∗ sqrt(p2 + j2));

a := N(p, j)/sqrt(p2 + j2);

if a < µ

µ := a;

end

end

for all other (i, j) ∈ M∗

p

N(i, j) := ceil(µ ∗ sqrt(i2 + j2));

end

B.4 A program that constructs ∗
nN

C
p

µ := n;

for j = 0, 1, . . . , p

if j = 0, 1

N(±p,±j) := round(n ∗ (1 − eC
p ) ∗ sqrt(p2 + j2));

else

N(±p,±j) := ceil(n ∗ (1 − eC
p ) ∗ sqrt(p2 + j2));

end

a := N(p, j)/sqrt(p2 + j2);

if a < µ

µ := a;

end

end

for all other (i, j) ∈ M∗

p

N(i, j) := ceil(µ ∗ sqrt(i2 + j2));

end
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B.5 A program that constructs nN
D
p

for i = 1, 2, . . . , p

N(±i, 0) := n ∗ i =: N(0,±i);

end

for all other (i, j) ∈ M∗

p

N(i, j) := ceil(n ∗ sqrt(i2 + j2));

end

B.6 A program that computes the maximum rel-
ative error

for r = 0, 1, . . . , p − 1

t := floor((p2 ∗ (N(p, r + 1) − N(p, r))/((r + 1) ∗ N(p, r) − r ∗ N(p, r + 1)));

if t < r

H(r) := N(p, r)/sqrt(p2 + r2);

elseif t = r

H(r) := sqrt((1/p2) ∗ ((r + 1) ∗ N(p, r) − r ∗ N(p, r + 1))2

+(N(p, r + 1) − N(p, r))2);

elseif t > r

H(r) := N(p, r + 1)/sqrt(p2 + (r + 1)2);

end

end

c(1) := max(H(0), . . . , H(p − 1));

c(2) := N(p, 0)/p;

for k = 1, 2, . . . , p

a := N(p, k)/sqrt(p2 + k2);

if a < c(2)

c(2) := a;

end

end

s := n;

e := max(1 − c(2)/s, c(1)/s − 1);

In the C-case, the last two lines of this program are replaced by:
s := (1/2) ∗ (c(1) + c(2));

e := (c(1) − c(2))/(c(1) + c(2));

In the D-case, the for-loop that computes c(2) may be dropped since it
yields no change.
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