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1 Introduction

Many theorems of mathematics assert that given certain data, there exists an object with
some desired properties. It may at first seem surprising, but frequently these theorems,
or indeed their proofs, do not actually tell you how to find said object! Class field theory
is one such area where the theorems aren’t particularly helpful in actually finding the
objects which they predict.

This thesis belongs within he study of explicit class field theory, which seeks to give con-
structions for the Abelian extensions predicted by the main theorems of class field theory.
Surprisingly, the techniques used in this theory are not at all the ones used for proving
the abstract class field theory.

Explicit CFT is by no means a complete theory. Indeed, when the base field is a number
field, not very much is known. The theorem of Kronecker and Weber gives a perfect
description of the class fields of the rational numbers, the simplest number field. For
imaginary quadratic fields we can also do explicit CFT. This is the theory of elliptic curves
with complex multiplication. Beyond these cases there is not much general theory for
number fields.

But the theorems of CFT don’t just work in the context of number fields. There is also
local CFT, where the original theorems do actually provide explicit constructions. The
last situation in which CFT works is that of global function fields. These are the function
fields of curves over finite fields. It is this theory we will be focusing on in this thesis.

What makes these fields interesting is their geometric interpretation. Within algebraic
geometry there is a lot of general theory and machinery that can be applied to the curves
associated to these fields. These methods largely focus on considering the whole curve,
which is a projective variety and therefore very nice to work with.

We do not take this approach. Instead, we break the symmetry of the curve, by throwing
out one of its points. The resulting object, although perhaps not as pretty as the orginal
curve, has a much simpler structure, closer to the setup we encounter in the study of
number fields.

In the late 1930’s, R. Carlitz developed an explicit class field theory for the function field
of the projective line. His theorem resembles the that of Kronecker and Weber for the
rational numbers. The price Carlitz pays for breaking the symmetry is that not all class
fields are obtained using his theorem. In some sense, his theory misses the part that
comes from the point that has been left out.

In the 1970’s, V.G. Drinfeld, a Russian mathematician, developed a theory of what he
called elliptic modules. To some extend they resemble the elliptic curves that we en-
counter in algebraic number theory. Again, his constructions start with a curve with one
point removed. Drinfeld is not directly interested in explicit class field theory. His focus
is on the Langlands conjectures. These are in some sense a very strong theoretical gener-
alisation of class field theory. The Langlands conjectures for number fields are still open
and much work is being done trying to at least understand the rank 2 theory. The rank 1
theory corresponds roughly to class field theory.
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Drinfeld also has a theory of shtukas. These are objects that generalise his elliptic mod-
ules. Moreover, they restore the symmetry of the curve. Indeed there is a very nice way of
formulating part of class field theory geometrically using shtukas. L. Lafforgue has in re-
cent years succeeded in proving the Langlands conjectures for global function fields using
generalisations of Drinfeld’s shtukas and the advanced machinery of modern algebraic
geometry.

What we are concerned with in this thesis is using Drinfeld’s elliptic modules, or Drinfeld
modules as we call them today, to do explicit class field theory for global function fields.
This theory was developed in detail by D. Hayes. Just like Carlitz’ theory, the theory of
Hayes does not produce all the class fields, but misses what happens at the point that
we have taken out of the curve. Hayes’ development of the theory mirrors the theory of
elliptic curves with complex multiplication, however the scope of Hayes’ theory is much
larger. CM-theory works exclusively for imaginary quadratic fields, while Hayes’ theory
applies equally to all global function fields.

We begin by showing the relation between the geometry of curves over finite fields and
their function fields. This theory, collected in chapter two, is not used explicitly within
the next chapters, but it provides the theoretical framework within which we can place
these fields. Chapter three provides more technical prerequisites.

Chapters four and five introduce Drinfeld modules and derive some of the basic ma-
chinery one uses to understand them. In particular we look at their morphisms and sev-
eral invariants associated to a Drinfeld module. We also give an analytical description
of Drinfeld modules over the global function field equivalent of the complex numbers.
Readers with some knowledge of the theory of elliptic curves will be struck by the simi-
larities that exist between that theory and this one.

In the last chapter we apply the theory of Drinfeld modules that we have created in order
to do explicit class field theory. The theorems that come out actually come in two flavours.
What we get from Hayes’ construction isn’t quite what we want for class field theory. The
fields are a little to big as his construction does allow for slighly larger extensions at the
point that we have removed. However, there isn’t much that we can do with this extra bit
of information rather than control it so much that we can remove it, producing a theorem
that is truely an explicit construction of fields predicted by class field theory.

To conclude, a few words on the sources I have used to prepare this text. For chapter two,
I have mostly used R. Hartshorne’s standard work on algebraic geometry and knowledge
gained from lectures by prof. H.W. Lenstra. My exposition of the theory of Drinfeld
modules and doing class field theory with them largely follows Hayes’ overview article
[Hayes1]. I have also found D. Goss’ book on the subject, [Goss], pleasantly accessible
and have used it extensively for chapter three.

Occasionally I have refered to Drinfeld’s original article [Dri] in which he introduced the
notion of elliptic modules. On several occasions I have used two other articles of Hayes,
[Hayes2] and [Hayes3] and an article by Deligne and Husemöller [D-H] to provide an
alternative view on the same material. Mumford’s book on abelian variaties [Mum] and
Silverman’s work on elliptic curves provided me with additional insight into the parallel
world within the theory of number fields. Lastly, the little book of Atiyah and MacDonald
[A-M] is an indespensible reference for all things related to commutative algebra.
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2 Curves

Definition 2.1. Let X be an integral scheme. Then the function field k(X) of X is the
residue field at the generic point ξX of X.

It is easy to see that in fact k(X) is the local ring at ξX.

Let X be an integral scheme, then there is a natural map Spec(k(X))−→X, which is just
the inclusion of the generic point. This means that there are maps φU : Γ(U,OX)−→ k(X)
for all non-empty opens U of X. These maps are compatible with restrictions.

Lemma 2.2. For every non-empty open U of X, the map φU is injective, so we can indentify the
ring Γ(U,OX) with its image inside k(X). Then we have that Γ(U,OX) is

⋂
Spec(A) A, where the

intersection runs over all non-empty affine opens Spec(A) inside U.

Proof. For non-empty affine opens Spec(A) we can easily identify φSpec(A). The generic
point of X is in Spec(A) and corresponds to the ideal (0) there. Thus k(X) = A(0) is the
fraction field Q(A) of A. We conclude that the map is injective for all non-empty affine
opens.

Let f ∈ Γ(U,OX). For every non-empty affine open Spec(A) inside U we see that
f |Spec(A) = φU( f ), so φU( f ) ∈ A. Suppose that φU( f ) = 0 then we see that f |Spec(A) = 0
for every non-empty affine open Spec(A) ⊂ U. But then f = 0. We conclude that φU is
injective and that Γ(U,OX) ⊂ A for all Spec(A) ⊂ U non-empty.

Conversely, let g ∈ k(X) and suppose that g ∈ A for all non-empty affine opens Spec(A)
inside U. Then we have a section on all these Spec(A)’s and these sections are compatible,
so we get a section on their union, which is U.

Corollary 2.3. If X is an integral scheme of finite type over a field k, then k(X) is a finitely
generated field extension of k whose transcendence degree is the dimension of X.

Proof. Take Spec(A) ⊂ X a non-empty affine open. Then A is a finitely generated k-
algebra that is a domain. It follows from dimension theory for such algebras that the
dimension is the transcendence degree of the fraction field.

Definition 2.4. A curve over a field k is a separated integral scheme of dimension 1 that
is of finite type over k.

Proposition 2.5. Let X be a curve. The following are equivalent

1. X is normal;

2. X is regular;

3. for any non-empty affine open subset Spec(A) of X, A is a Dedekind domain.

Proof. Let Spec(A) ⊂ X be a non-empty affine open. Since X is of finite type over a field,
X is Noetherian. So A is a Noetherian domain of dimension 1. The theory of Dedekind
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domains now states that A is Dedekind if and only if it is integrally closed in Q(A). Also
A is Dedekind if and only if all the local rings are discrete valuation rings, that is, regular
local rings of dimension 1. This shows the conditions are indeed equivalent.

Definition 2.6. A curve is called complete if it is proper over k.

Lemma 2.7. Let X be a curve over k. Then there is a map from the set of points of X to the set
of valuation rings of k(X) containing k, sending x ∈ X to Rx = OX,x. If X is regular, this map
is injective and we have Γ(U,OX) =

⋂
x∈U Rx for all nonempty opens U of X. If X is complete,

this map is surjective.

Proof. This is a direct application of the valuatative criteria for separatedness and proper-
ness. The observation about regular functions follows from the fact that for any domain
R with field of fractions K the intersection of all valuation rings of K containing R is the
integral closure of R in K.

Let K and L be fields containing k. Recall that a place over k from K to L is a valuation
ring R of K containing k and a ring homomorphism f : R−→ L such that f (x) = 0 for all
x in the maximal ideal of R.

If X and Y are curves over k and f : Y−→X is a morphism, then we get a place f ∗ from
k(X) to k(Y) by considering the map OX, f (ξY)−→OY,ξY = k(Y). It is a place because it is
a local homomorphism of local rings.

Lemma 2.8. Let X and Y be curves over k and f : Y−→X a morphism, then the following are
equivalent

1. f sends the generic point of Y to the generic point of X;

2. f ∗ is a morphism of fields;

3. f is a dominant morphism, i.e., the image of f is dense in X;

4. f is non-constant.

Proof. It is clear that 1 and 2 are equivalent, by the definition of f ∗ and the fact that the
valuation ring corresponding to f ∗ uniquely determines the point f (ξX).

The generic point of X is dense in X, so 1 implies 3. Suppose that f (ξY) = a is not the
generic point of X. Then f−1(a) is a closed subset of Y containing ξY, so it is all of Y and
f is constant. This shows that 4 implies 1.

If f is dominant and constant, then it must send every point of Y to the generic point
of X. In particular, we see that 1 holds in this case, so 2 holds. So f ∗ is a morphism of
fields. We view k(X) as a subfield of k(Y) via f ∗. Then k(Y) is a finite (hence algebraic)
extension of k(X), as they both have transcendence degree 1 over k and k(Y) is finitely
generated over k. We conclude that the integral closure of k(X) in k(Y) is all of k(Y), but
this is the intersection of all the valuation rings of points that map to ξX, that is, all of Y.
Contradiction, so 3 implies 4.
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Lemma 2.9. Let X and Y be curves over k and let f and g be morphisms from Y to X such that
f ∗ = g∗. Then f = g.

Proof. We begin by showing that f and g induce the same map on the underlying topo-
logical spaces. If f ∗ (and therefore g∗) is not a morphism of fields, then f and g are
constant. The point that they map to is determined by the valuation ring on which f ∗

and g∗ are defined. So f and g are the same in this case.

If j = f ∗ = g∗ is a morphism of fields, then the image of a point y ∈ Y can be determined
from j as follows. j−1Ry is a valuation ring of k(X), so there is at most one point x ∈ X
such that Rx = j−1Ry, or equivalently, such that jRx ⊂ Ry. Since this must in particular
hold for x = f (y) and for x = g(y), we conclude that f and g are the same.

Lastly we observe that the map f #
y : OX, f (y)−→OY,y can be obtained from f ∗ by restric-

tion. This means that these maps are the same for f and g also. It now follows that f and
g are the same as morphisms of schemes.

Lemma 2.10. Let X and Y be curves over k with X complete and Y regular. Let j : k(X)−→ k(Y)
be a morphism of k-algebras. Then there is a unique morphism f : Y−→X such that f ∗ = j.

Proof. From the previous lemma we see that f is unique if it exists. We now consider pairs
(U, fU) where U is an open of Y and fU is a morphism of curves U−→X such that f ∗U = j.
If we have two such pairs (U, fU) and (V, fV), then we also have a pair (U ∪ V, fU∪V).
This is because on the intersection of U and V, fU and fV coincide by the previous lemma.

So we are done if we can find for every y ∈ Y an open neighbourhood where we can
define the map f . Let y ∈ Y and let Ry be the valuation ring corresponding to y. Let
x ∈ X be the point corresponding to the valuation ring j−1Ry. Here we need that X is
complete. Let Spec(A) be an affine open of X such that x ∈ Spec(A). Pick generators
x1, . . . , xt of A as an algebra over k.

Let a ∈ k(Y) nonzero and let Spec(B) ⊂ Y be a non-empty affine open. We can write
a = s/t with s, t in B. Now there are only finitely many prime ideals of B such that t lies
inside that prime ideal. As we can cover Y by finitely many such Spec(B), we see that
there are only finitely many points z of Y such that a /∈ Rz. So the set Ua = {z ∈ Y|a ∈ Rz}
is open and a is in Γ(Ua,OY) by lemma 2.7.

We apply this to j(x1), . . . , j(xt). Let U be the intersection of the finitely many opens we
find. Note that y ∈ U, as all the xi are in j−1Ry. Let Spec(B) be an open affine subset of U
containing y. Then j(x1), . . . , j(xt) are in B, so j maps A into B. We conclude that we have
a morphism fSpec(B) : Spec(B)−→ Spec(A) such that f ∗Spec(B) = j and y ∈ Spec(B).

Corollary 2.11. If two complete, regular curves over k have isomorphic function fields, they are
isomorphic.

Proof. Apply the previous lemma a few times to the isomorphism, its inverse and the
identity on either side.
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Lemma 2.12. Let X be a complete curve over k and ` a finite extension of k(X). Then there
is a unique complete and regular curve X̃ over k such that the function field of X̃ is `. More-
over, the morphism X̃−→X corresponds to the inclusion k(X) ⊂ ` and is finite. We call X̃ the
normalisation of X in `.

Proof. Let Spec(A) ⊂ X be a non-empty affine open. Put Ã the integral closure of A
in `. Now Spec(Ã) is regular and the map to Spec(A) is finite. Moreover, the maps are
compatible by lemma 2.9. Therefore they glue to a scheme X̃ which has the required
properties.

We consider the category Ck of complete regular curves over k with dominant morphisms.

Theorem 2.13. Let X ∈ Ck and define CX as the category of curves Y ∈ Ck together with a
morphism Y−→X. Let Fk(X) be the category of finitely generated fields ` of transcendence degree
1 over k with a k-algebra morphism k(X)−→ `. Then there is an anti-equivalence of categories
between CX and Fk(X). The functors are taking the function field in one direction and taking the
normalisation of X in the other direction.

Proof. This is now more or less immediate. Taking the function field is a functor from the
curves to the fields and normalising X gives a functor in the other direction.

Corollary 2.14. All maps in Ck are finite. All curves in Ck are projective over k.

Proof. For the first part, let f : Y−→X be such a morphism and apply the previous
theorem to X. We see that Y is isomorphic to the normalisation X̃ of X in k(Y) and that f
corresponds to the natural map from X̃ to X, which is finite. For the second part, note that
all finite maps are projective. Now let α be a transcendental element of k(X). Then there
is a morphism of fields k(α) ⊂ k(X) and k(α) is the function field of the projective line,
which is projective over k. The composition of projective morphisms is again projective,
so X is projective over k.
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3 Endomorphisms of the Additive Group

• Group Schemes

Let ` be a field and S a scheme over `. Then S represents a contravariant functor from
commutative `-algebras to sets, sending an algebra R to the set S(R) of R-points of S.
From the Yoneda lemma and the fact that schemes are everywhere locally affine, the
schemes form a full subcategory of the category of contravariant functors from commu-
tative `-algebras to sets.

A `-rational point p in S(`) gives rise to a compatible choice of a point in S(R) for any
commutative `-algebra R. This means that the pair (S, p) represents a functor to pointed
sets.

We want to have a type of object that represents a functor from commutative `-algebras
to groups. A group, as is well-known, is a set G with a distinguished unit element e,
a multiplication map m : G × G → G and an inverse map i : G → G satisfying a few
conditions. This leads us to the following definition.

Definition 3.1. Let ` be a field. A group scheme over ` consists of a scheme G over `, a
`-rational point e and two maps of `-schemes m : G×` G−→G and i : G−→G, such that
together they represent a functor from commutative `-algebras to groups. A morphism
of group schemes is a morphism of functors.

Example 3.1. The additive group Ga represents the forgetful functor sending a `-algebra
to its underlying additive group. As a scheme, Ga is the affine line over `.

Example 3.2. The multiplicative group Gm represents the functor that sends a `-algebra
to its unit group. As a scheme, Gm is the spectrum of `[x, y]/(xy− 1).

Example 3.3. Let E be an elliptic curve over `. Then the formulas obtained from the
chord-and-tangent process allow us to specify for every commutative `-algebra R a group
structure on E(R). Thus an elliptic curve is a group scheme.

Let G be a group scheme over `. Let `[ε] be the commutative `-algebra `[x]/(x2). Denote
by ρ the map G(`[ε]) → G(`) which corresponds to the `-algebra map `[ε]−→ ` sending
ε to 0.

Definition 3.2. The tangent space at e, TG(e) of G is the set of φ in G(`[ε]) such that ρφ is
the unit element e in G(`).

Note that TG(e) is a `-vector space. A morphism f : G → H of group schemes gives rise
to a `-linear map Tf : TG(e)−→ TH(e). This makes T into a functor.
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Example 3.4. The tangent space of Ga is a one-dimensional `-vector space. The same is
true for Gm.

Note that the set End`(G) of endomorphism of a commutative group scheme G is in a
natural way a ring. Composition of endomorphisms is the multiplication and addition
is done pointwise. The tangent functor we have just seen gives rise to a ring homomor-
phism D : End`(G)−→End`(TG).

Let A be a commutative ring. Then an A-module is an Abelian group M together with a
morphism φ : A−→End(M). This motivates the following definition.

Definition 3.3. Let A be a commutative ring. An A-module scheme over ` is a commutative
group scheme M over ` together with a ring homomorphism φ : A−→End`(M).

Note that such an object represents a functor from commutative `-algebras to A-modules.

Example 3.5. Any commutative group scheme is in a natural way a Z-module scheme.

Example 3.6. If E is an elliptic curve over C with complex multiplication by some order
O in an imaginary quadratic number field, then E is an O-module scheme over C.

Note that an A-module scheme M gives rise to a ring homomorphism Dφ from A to
End`(TM). This makes TM into an A-module in a way that respects the existing `-module
structure.

• Additive Polynomials

Let ` be a field. We consider the additive group scheme Ga over `. As a scheme Ga

is isomorphic to Spec`[x]. The endomorphisms of this scheme are `-algebra morphisms
from `[x] to itself. These are uniquely determined by the image of x and therfore corre-
spond bijectively to the elements of `[x]. Such a polynomial f ∈ `[x] induces for every
commutative `-algebra m an evaluation map Ga(m)−→Ga(m) sending λ to f (λ).

In order for such a map to be an endomorphism of algebraic groups, we must have that
f (λ + µ) = f (λ) + f (µ) for all λ and µ in every commutative `-algebra m. This is equiva-
lent to demanding that f (x + y) = f (x) + f (y) holds in `[x, y]. We call a polynomial that
satisfies this equality an additive polynomial.

Let f be a polynomial in `[x]. Then its formal derivative f ′ is defined as follows. Let `[ε]
be the `-algebra `[y]/(y2). It is an `-vector space of dimension two with basis 1, ε. We
define f ′ to be the unique polynomial in `[x] such that f (x + ε) = f (x) + f ′(x)ε holds in
`[ε][x].

Lemma 3.4. Let f be an additive polynomial in `[x]. Then f ′ constant polynomial.

Proof. If f is additive, then in particular we must have in `[ε][x] that

f (x) + f (ε) = f (x + ε) = f (x) + f ′(x)ε.
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If we write f as ∑n
i=0 aixi with the ai in `, then we see that f (ε) = a0 + a1ε. We conclude

that a0 = 0 and f ′(x) = a1, that is, f ′ is a constant polynomial.

Corollary 3.5. If ` has characteristic 0, the only additive polynomials are the scalar multiplica-
tions: λx with λ in `.

Theorem 3.6. Let ` be a field of characteristic p. Then the ring of additive polynomials is natu-
rally isomorphic to the skew polynomial ring `{τp} generated by ` and τp and satisifying the
relation τpλ = λpτp for all λ in `. The isomorphism identifies τp with the additive polynomial xp.

Proof. Note that the polynomial xp is indeed additive. We identify this polynomial with
τp and λ in ` with the scalar multiplication λx, which is also an additive polynomial.
The required relation is satisfied, so λ{τp} is in a natural way a subring of the additive
polynomials.

What remains to be shown is that all additive polynomials are actually elements of λ{τp}.
That is, they are of the form ∑n

i=0 λixpi
with the λi in `.

The requirement that must be satisfied for a polynomial f to be additive,

f (x + y) = f (x) + f (y)

in `[x, y], is homogeneous. The term of degree n in f gives rise to the terms with total
degree n in the above equation. So it suffices to check which monomials satisfy this
relation. Let n be a positive integer and write n = prm with m non divisible by p. Then
we see that

(x + y)n =
(

xpr
+ ypr

)m
=
(

xpr
)m

+ m
(

xpr
)m−1 (

ypr
)1

+ lower order terms in x

holds in Fp[x, y]. It is therefore nescessary that m = 1 if this monomial is to satisfy the
required relation. We concude that all additive polynomials are indeed in `{τp}.

Let ` be a field that contains Fq. Then we have a natural way to turn Ga over ` into an
Fq-module scheme. We call a polynomial in `[x] an Fq-linear polynomial if it induces an
endomorphism of Ga as an Fq-module scheme.

Lemma 3.7. Let ` be a field containing Fq. The ring of Fq-linear polynomials over ` is the subring
of `{τp} generated by ` and τq = xq. We write `{τq} for this ring.

Proof. An Fq-linear polynomial f satisfies for all ζ in Fq the relation f (ζx) = ζ f (x) in `[x].
Note that f is also an additive polynomial, so that only monomials of degree xpi

occur.
Comparing the monomial of degree pi on either side we conclude that ζai = aiζ

pi
must

hold for all ζ in Fq. So, either ai is 0, or pi is a power of q, which is what we wanted to
prove.
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• Basic Properties of Additive Polynomials

There is another way to characterise the separable polynomials that are additive, using
their roots.

Lemma 3.8. Let f be a non-zero separable polynomial in `[x] and denote by Z the set of roots of
f in some fixed separable closure ¯̀ of `. Then f is additive if and only if Z is an additive subgroup
of ¯̀. If ` contains Fq then f is Fq-linear if and only if Z is a vector space over Fq.

Proof. The implications in one direction are clear. If f is additive (Fq-linear) then Z is a
subgroup (vector space over Fq.)

Let f be a separable polynomial whose zero-set Z is an additive subgroup. Let c be the
leading coefficient of f . Then we know that f = c ∏z∈Z(x− z) holds in ¯̀[x]. Let λ be in ¯̀.
Note that for all µ in Z we have

f (λ + µ) = c ∏
z∈Z

(λ + (µ− z)) = c ∏
z∈Z

(λ− z) = f (λ) = f (λ) + f (µ).

Therefore, the polynomials f (λ + x) and f (λ) + f (x) coincide on Z. Moreover, their
degree is #Z and they have the same leading coefficient, so in fact f (λ + x) = f (λ) + f (x).
We have this for all λ in ¯̀. We conclude that f is additive.

Suppose that Z is also a vector space over Fq. Then for all ζ in Fq we have

f (ζx) = c ∏
z∈Z

(ζx− z) = ζc ∏
z∈Z

(x− ζ−1z) = ζc ∏
z∈Z

(x− z) = ζ f (x).

So f is Fq-linear.

By the degree of an element in `{τq} we mean its degree as a polynomial in τq, not in x.
That is, if we can write our polynomial as ∑n

i=0 λiτ
i
q with λn non-zero, then the degree is

n. The degree of this polynomial in x is qn. Note that the degree satisfies

deg( f g) = deg( f ) + deg(g)

and the inequality
deg( f + g) ≤ max{deg( f ), deg(g)}

for any f and g non-zero, with equality if deg( f ) and deg(g) are not the same.

Lemma 3.9. The ring `{τq} has a right Euclidean algorithm. That is, for any two additive
polynomials f and g with g non-zero there are unique additive polynomials d and r such that
f = dg + r and the degree of r is less than that of g.

Proof. The proof works in exactly the same way as the normal proof of this fact for poly-
nomials. We proceed by induction on the degree of f . If this degree is less than that of g,
we see that the only possibility for d is 0 and thus r = f .

Now suppose deg( f ) = m and the claim holds for all polynomials of degree less than m.
Let n be the degree of g. Let λ and µ be the leading coefficients of f and g respectively.
Then the polynomial

f̃ = f − (λµ−pm−n
τm−n

q )g
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has degree less than m, as λ− λµ−qm−n
µqm−n

= 0. Now let d̃ and r̃ be the unique polyno-
mials such that f̃ = d̃g + r̃. Putting d = λµ−qm−n

τm−n
p + d̃ and r = r̃ we see that f = dg + r.

Comparing leading coefficients, one sees that d and r are in unique.

Corollary 3.10. All left ideals of `{τp} are principal.

There is a natural map i : `−→ `{τp} sending λ to the polynomial λτ0
p . The derivative

of any additive polynomial is constant, which gives us a map D : `{τp} −→ ` in the
opposite direction. Note that Di is the identity on `. The invertible elements of `{τp}
must be polynomials of degree 0, so we have `{τp}× = i(`×).

• Additive Power Series

Definition 3.11. A formal power series e(z) in `[[z]] is called additive if we have e(z + w) =
e(z) + e(w) in `[[z, w]]. It is called Fq-linear if in addition we have e(ζz) = ζe(z) in `[[z]]
for all ζ in Fq.

Most things we said about additive and Fq-linear polynomials carry over to power series
with only the obvious modifications. In fact, the proof of lemma 3.4 and theorem 3.6 are
written in such a way that we can just replace polynomials by power series everywhere
and they still hold.

Proposition 3.12.

• The formal derivative of an additive power series is constant.

• A power series is additive if and only if the only monomials that appear have degree a power
of p. It is Fq-linear if and only if all the monomials that appear have degree a power of q.

• The composition ring of additive (resp. Fq-linear) power series is naturally isomorphic to
the skew power series ring `{{τ}} generated by ` and τ, satisfying the relation τλ = λpτ

(resp. τλ = λqτ) for all λ in `.

Theorem 3.13. Let σ be an Fq-linear power series, whose derivative s = D(σ) is transcendental
over Fq. Then there is a unique Fq-linear power series eσ such that D(eσ) = 1 and eσs = σeσ.

Proof. Write σ = ∑ siτ
i, so that s = s0. We first show uniqueness. Suppose eσ = ∑ eiτ

i

works. Then comparing the coefficients of τi in the relation eσs = σeσ we see

sqi
ei =

i

∑
j=0

sje
qj

i−j.

This can be rewritten as

(sqi − s)ei =
i

∑
j=1

sje
qj

i−j,

11



which expresses a non-zero (as s is transcendental of Fq) multiple of ei in terms of the ej
with j less than i and the (known) sj. As e0 = 1 is fixed in the requirements for eσ, we see
that the coefficients of e are uniquely determined.

For the existence let eσ = ∑ eiτ
i with the ei given by the relation we have just determined.

This Fq-linear power series works.

Corollary 3.14. Let σ be an Fq-linear power series whose derivative s = D(σ) is transcendental
over Fq and let r be an element of `. Then ρ = eσre−1

σ is the unique Fq-linear power series with
D(ρ) = r that commutes with σ.

12



4 Drinfeld Modules

Let X be a complete, regular curve over Fp, Let Fq be its field of constants, where q = pm,
and let k be its function field. We consider X as a curve over Fq. Fix a closed point ∞ of
X. Now X −∞ is affine, say SpecA. We know that A is a Dedekind domain, with field of
fractions k. Its class group is finite and we have A× = F×q .

• Definition

Definition 4.1. Let ` be any field containing Fq and δ be an Fq-algebra map A−→ `. A
Drinfeld A-module over ` is a ring homomorphism φ : A−→ `{τp} such that Dφ = δ.
We exclude the trivial case φ = iδ. A morphism of Drinfeld modules from φ to ψ is an
additive polynomial f such that f φ(x) = ψ(x) f for all x in A.

As we have seen before, the ring `{τp} is the ring of endomorphisms of the additive
group over `. Giving a ring homomorphism φ : A−→ `{τp} therefore is the same as
giving an A-module scheme structure on Ga over `. In other words, we give an A-module
structure on the additive group of all commutative `-algebras in a functorial manner.

Since A is a commutative ring, the image of φ is a commutative subring. As φ maps A×

into
(
`{τp}

)× = `×, all the elements of Fq map to scalar multiplications and therefore,
as δ is Fq-linear, to themselves. Combining these two facts, we note that φ actually lands
in the subring `{τq} of Fq-linear polynomials. Also, any morphism of Drinfeld modules
must be Fq-linear.

From now on we consider all Drinfeld modules as ring homomorphism to `{τ} = `{τq}
and also consider all morphisms as elements of `{τ}. The degree of an element of `{τ}
is its degree as a polynomial in τ.

Lemma 4.2. Let φ be a Drinfeld module over `. Then φ is injective.

Proof. The ring `{τ} has no zero divisors other than 0 itself, so φA is a domain. Therefore,
the kernel of φ is a prime ideal of A. If it is a maximal prime ideal, then φA is a field. The
largest field contained in `{τ} is `. But this implies that φ = iδ, which we have excluded.
As A is a Dedekind domain, the only non-maximal prime ideal is (0), so φ is injective.

• The Rank and Height of a Drinfeld Module

Let φ be a Drinfeld module over `. Then the map v sending a non-zero element a of A to
−deg(φ(a)) satisfies v(ab) = v(a) + v(b) and v(a + b) ≥ min{v(a), v(b)}. Therefore, v is
a valuation of `. It is non-trivial since φ 6= iδ. Moreover, it is non-positive for all elements
of A. Therefore it corresponds to the point ∞ of X. The theory of valuations now tells us
that there is a non-negative rational number r such that−deg(φ(a)) = r ·deg(∞)ord∞(a)
holds for all a ∈ A non-zero. We call this number the rank of the module φ.

Let L be an algebraically closed field containing `. Any Drinfeld module φ over ` induces
an A module structure on L, which we shall denote by Φ. Note that Φ is divisible as an
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A-module, i.e., the action of every non-zero element of A is surjective. This follows from
lemma 4.2 and the fact that any non-zero polynomial with coefficients in ` has a root in L.

Let c be the kernel of δ. It is a prime ideal of A, possibly (0). Any element a of A that is
not divisible by c acts on Φ by a polynomial whose derivative is a non-zero constant, so
in particular the polynomial is separable. Therefore, φ(a) has qdeg(φ(a)) distinct roots in L.

Let a be a non-zero ideal of A. Then the a-torsion submodule Φ[a] of Φ is the set of
elements λ of L such that aλ = 0 for all a in a. These are precisely the elements of L that
are roots of all the polynomials in the left ideal generated by the φ(a) with a in a. Note
that this ideal is principal and write φ(a) for its monic generator. Then Φ[a] is the zero
set of the polynomial φ(a).

Lemma 4.3. Let p be a prime ideal of A and π a local uniformiser at p. Then there is a positive
integer t, depending only on p and for every positive integer e an isomorphism fe from (A/pe)t

to Φ[pe] such that the diagram

Φ[pe+1] π−→ Φ[pe]x fe+1

x fe

(A/pe+1)t −→ (A/pe)t

commutes.

Proof. We prove these claims by induction on e. For e = 1, note that Φ[p] is a finite torsion
A-module which is annihilated by p. By the structure theory of finitely generated A-
modules there is t such that Φ[p] is isomorphic to (A/p)t. Fix such an isomorphism f1

from (A/p)t to Φ[p] and let f (1)
1 up to f (t)

1 be the the images of the standard generators of
(A/p)t.

Suppose now that the claim holds for a certain e. Now pick elements f (1)
e+1 up to f (t)

e+1 in Φ

such that we have f (i)
e+1 = π f (i)

e for all i. This can be done since Φ is a divisible A-module.

Note that for all i, f (i)
e+1 is in Φ[pe+1] and that we have πe f (i)

e+1 = f (i)
1 . Let fe+1 be the A-

module morphism sending the standard generators of (A/pe+1)t to f (1)
e+1 up to f (t)

e+1. By
construction, this map fits into the commutative diagram from the lemma. Moreover, we
have the following large commutative diagram with exact rows.

0 −→ Φ[pe] −→ Φ[pe+1] πe
−→ Φ[p] −→ 0x fe

x fe+1

x f1

0 −→ (A/pe)t −→
π

(A/pe+1)t −→ (A/p)t −→ 0

Since fe and f1 are isomorphisms, we conclude that fe+1 is also an isomorphism.

Theorem 4.4. Let φ be a Drinfeld module over ` of rank r. Then r is a positive integer and for
any non-zero ideal a of A not divisible by c we have Φ[a] ∼= (A/a)r.

Proof. Let p be a maximal ideal of A different from c. Let t = tp be the positive integer
such that we have Φ[pe] ∼= (A/pe)t for all positive integers e.

14



In particular, if we let h be the class number of A and a a generator of ph then we see that
Φ[a] ∼= (A/a)t. Comparing the number of elements on either side we see that

qdeg(φ(a)) = # ker(φ(a)) = #Φ[a] = (#(A/a))t.

We use here that φ(a) is a separable polynomial, as p is not c. From the product formula
we have that deg(p)ordp(a) = −deg(∞)ord∞(a). From this we see

#(A/a) = qdeg(p)ordp(a) = q−deg(∞)ord∞(a)

We conclude that deg(φ(a)) = −t deg(∞)ord∞(a), so r = t. We conclude that t is inde-
pendant of p and that r is a positive integer.

The fact that we have Φ[a] ∼= (A/a)t for every non-zero ideal now follows from the fact
we know this for all powers of prime ideals, using the Chinese remainder theorem.

Corollary 4.5. Let φ be a Drinfeld module over ` of rank r and let a be a non-zero ideal of A not
divisible by c. Then we have

deg(φ(a)) = −r deg(∞)ord∞(a) = r ∑
p

deg(p)ordp(a),

where the sum runs over the non-zero primes p of A.

Let x be a non-zero element of A. Put j(x) the smallest integer k such that the coefficient of
τk in φ(x) is non-zero. Note that we have j(xy) = j(x)j(y) and j(x + y) ≥ min(j(x), j(y))
for all x and y in A non-zero. We see that j is a valuation on k. If δ is injective, j is the
trivial valuation, otherwise it corresponds to the prime c = ker(δ) of A. In this case there
is a positive rational number h such that j(x) = h deg(c)ordc(x) for all non-zero x in A.
We call this number the height of φ. If δ is injective, we say that φ has height 0.

Lemma 4.6. Let φ be a Drinfeld module over ` and suppose that c = ker(δ) is non-zero. Then
the height h of φ is a positive integer and we have Φ[ce] ∼= (A/ce)r−h for all positive integers e.

Proof. By lemma 4.3 we see that Φ[ce] ∼= (A/ce)t for some positive integer t that does not
depend on e.

When we take e equal to the class number of A, ce is a principal ideal. Let c be a generator
of this ideal. Then Φ[ce] is equal to the set of roots of φ(c) in ¯̀. Therefore we have

#Φ[ce] = qdeg(φ(c))−j(c).

We know already that

deg(φ(c)) = −r deg(∞)ord∞(c) = r deg(c)ordc(c) = re deg(c)

holds. Also, by definition of the height, we have

j(c) = h deg(c)ordc(c) = he deg(c).

Now when we compare the number of elements on either side in Φ[ce] = (A/ce)t, we
conclude that qre deg(c)−he deg(c) = qte deg(c), so r− h = t as required.
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• Morphisms of Drinfeld Modules

Let φ and ψ be two Drinfeld modules over `. Recall that a morphism of from φ to ψ is
an element f of `{τ} such that φ(x) f = f ψ(x) holds for all x in A. Comparing degrees
we see that the only morphism between Drinfeld modules of different ranks is the zero
morphism. The same also holds for Drinfeld modules of different height.

An isomorphism of Drinfeld modules must be an invertible element of `{τ}, so it is a
scalar multiplication by a non-zero element of `.

Lemma 4.7. Let φ and ψ be two Drinfeld modules over `. Then Hom(φ, ψ) is a torsion-free
A-module.

Proof. Note that for all a in A, φ(a) is an endomorphism of φ, as φ(a) commutes with φ(x)
for every x in A. Write [a] for this endomorphism. We know that φ is injective, so [a] is
non-zero for all non-zero a in A.

We define the A-module structure on Hom(φ, ψ) as follows. Let a be in A and f be in
Hom(φ, ψ). The we put a f equal to [a] ◦ f . Suppose that we have a f = 0 for some a in
A and f in Hom(φ, ψ). Then either [a] = 0 or f = 0 must hold, as the ring `{τ} has no
zero-divisors. Note that [a] = 0 implies a = 0. We conclude that Hom(φ, ψ) is a torsion
free A-module.

Definition 4.8. Let p be a prime ideal of A. Then we define the Tate module of φ at p to be
the inverse limit

Tp(φ) = lim
←−

Φ[pe].

Lemma 4.9. Tp is a covariant functor from the category of Drinfeld modules over ` to the category
of free Ap modules. It is injective on Hom’s. If φ is a Drinfeld module of rank r and height h then
Tp(φ) has rank r if p is different from ker(δ) and r− h if p is equal to ker(δ).

Proof. It follows at once from lemma 4.3 that the Tate module is a free Ap module of rank
t. In theorem 4.4 and lemma 4.6, we computed that we have t = r if p is not ker(δ) and
t = r− h if p is ker(δ).

Let f be a morphism from φ to ψ. Then f gives rise to compatible morphisms from Φ[pe]
to Ψ[pe] for every positive integer e. Thus we get a map Tp( f ) from Tp(φ) to Tp(ψ). It is
clear that this construction makes Tp into a covariant functor. Moreover, the map

Tp : Hom(φ, ψ)−→HomAp
(Tp(φ), Tp(ψ))

is a morphism of A-modules. To check it is injective, we note that Tp( f ) = 0 implies f in-
duces the zero map on Φ[pe] for every positive integer e. So the zero set of the polynomial
f contains arbitrarily large sets Φ[pe]. We conclude that f is zero.
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Theorem 4.10. Let p be a prime ideal different from ker(δ). Then the natural map

Hom(φ, ψ)⊗A Ap−→HomAp(Tp(φ), Tp(ψ))

is injective.

Proof. We follow Silverman’s proof in [The Arith. of E.C., III thm 7.4]. Note that we may
assume φ and ψ have the same rank, r. Let M be a finitely generated sub-A-module of
Hom(φ, ψ). We show that

Md = { f ∈ Hom(φ, ψ) : a f ∈ M for some a in A}

is again finitely generated. Note that Md injects naturally into the finite dimensional k-
vector space V = M⊗A k, as Hom(φ, ψ) is torsion-free. Moreover as k is a localisation of
A (at the zero-ideal) all elements of V are pure tensors.

Let N : k−→Q be the map sending x to q−r deg(∞)ord∞(x). Note that it is a non-archimedian
norm on k corresponding to the valuation at ∞. We can extend N to V by putting

N : M⊗A k −→ Q
f ⊗ x 7→ qdeg( f )N(x)

Note that this map is well-defined as we have

qdeg(a f )N(x) = qdeg( f )qdeg(ψ(a))N(x) = qdeg( f )q−r deg(∞)ord∞(a)N(x) = qdeg( f )N(ax).

Clearly, N is a norm on V as a k-vector space. Let U be the open ball U = { f ∈ V :
N( f ) < 1}. Then we see that Md ∩U contains only 0, as any other element of Md is an
f in Hom(φ, ψ) and N( f ) = qdeg( f ) is at least 1. We conclude that Md is a discrete A-
module inside the finite dimensional k-vector space V and therefore is finitely generated.
Moreover, Md is torsion free, so it is a finitely generated projective A-module.

Now suppose f be in Hom(φ, ψ)⊗ Ap maps to 0. Pick M in Hom(φ, ψ) finitely generated
such that f is in M⊗ Ap. By the above, Md is finitely generated projective. So Md ⊗ Ap is
free. Pick f1, . . . , ft in Md such that they are a basis for Md ⊗ Ap. Write f as ∑i αi fi with
the ai in Ap. As the kernel is torsion-free, we may assume that at least one of the ai is
invertible in Ap.

Recall that Cl(A) is finite, say of order h, so that ph is a principal ideal. Let m be a gener-
ator of ph. Pick a1, . . . , at in A such that we have ai ≡ αi modulo m for all i. Put g equal to
∑ ai fi in Md. By construction Tp(g) is 0 modulo m, meaning that Φ[m] is contained in the
kernel of g.

The Fq-linear polynomial g need not be separable. Put V equal to its zero set and let
g0 be the monic separable Fq-linear polynomial with this zero set. Let e be the minimal
exponent for which the coefficient of g at τe is non-zero. Then g has a root of multiplicity
qe at 0. Moreover, as g is additive, all roots of g have the same multiplicity. The Fq-linear
polynomial τeg0 has the same roots as g with the same multiplicities. Thus they differ by
a scalar multiplication.

Note that the zero set W of the separable Fq-linear polynomial φ(m) is contained in V.
They are both finite dimensional Fq-vector spaces. As φ(m) is Fq-linear, we see that φ(m)V
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is an Fq-vector space of dimension dim V − dim W. Let h0 be the separable Fq-linear
polynomial with this set as zero set. Then h0φ(m) has zero set V and degree qdim V . We
conclude that h0φ(m) and g0 differ by a scalar multiplication.

It follows that g can be written as hφ(m) for some Fq-linear polynomial h. For any x in A
we have gφ(x) = ψ(x)g and therefore

hφ(x)φ(m) = hφ(m)φ(x) = gφ(x) = ψ(x)g = φ(x)hφ(m)

holds, so we have hφ(x) = ψ(x)h for all x in A and therefore h is in fact in Hom(φ, φ).

By the definition of the A-action on this Hom-set, we conclude that g is mh for some h in
Hom(φ, ψ). By construction of Md we therefore have h = ∑i bi fi for some bi in A. As the
fi are independent over A, it follows that we have ai = mbi for all i. But the all the ai are
in mA and therefore, all the αi are in mAp. This contradicts the assumption that at least
one of the αi is invertible.

Corollary 4.11. Let φ be a Drinfeld module of rank r. Then the endomorphism ring End(φ) of φ

is a projective A-module of rank at most r2.

Proof. As End(φ) is a torsion-free A-module, it has finite rank over A if and only if
End(φ)⊗A Ap has finite rank over Ap. If this is the case then these ranks are equal. By the
previous theorem, End(φ)⊗A Ap can be embedded into a free Ap module of rank r2. So
End(φ) has finite rank at most r2 and being torsion-free this implies it is projective.

Corollary 4.12. Let φ be a Drinfeld module of rank 1. Then End(φ) is isomorphic to A and
therefore the natural map F×q −→Aut(φ) is an isomorphism.

• Formal Drinfeld Modules

Suppose in this section that δ : A−→ ` is injective. It then extends to an inclusion of fields
δ : k−→ `.

Definition 4.13. A formal Drinfeld module over ` is a ring homomorphism φ : k−→ `{{τ}}
such that Dφ = δ and φ is a non-constant power series for some element of k.

Lemma 4.14. Every Drinfeld module over ` can be extended uniquely to a formal Drinfeld module
over `.

Proof. As Dφ(a) is non-zero for all a in A, the image of A− {0} under φ in `{{τ}} lands
inside the multiplicative group. We can therefore extend φ to a ring homomorphism
k−→ `{{τ}} by putting φ(ba−1) = φ(b)φ(a)−1 for all a and b in A with a non-zero. We
then have Dφ = δ by construction of φ and δ. All non-constant elements of A give rise to
non-constant power series.
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Lemma 4.15. Let φ be a formal Drinfeld module over `. Then there is a unique power series eφ

such that we have D(eφ) = 1 and φ(x) = eφδ(x)e−1
φ holds for all x in k.

Proof. Let x in k be non-constant. Then δ(x) is transcendental over Fq in `. By theorem
3.13 there is a unique power series eφ such that φ(x) = eφδ(x)e−1

φ . Moreover as for every y
in k we have φ(x)φ(y) = φ(y)φ(x), φ(y) is the unique power series with D(φ(y)) = δ(y)
that commutes with φ(x), so we have φ(y) = eφδ(y)e−1

φ .

A morphism of formal Drinfeld modules from φ to ψ is an f in `{{τ}} such that f φ(x) =
ψ(x) f for all x in k. Any morphism of Drinfeld modules is also a morphism between the
formal Drinfeld modules they extend to.

Theorem 4.16. Let φ be a formal Drinfeld module over `. Then D : End(φ)−→ ` is injective.

Proof. Fix a non-constant element x of k. Then by theorem 3.13 and its corollary, a power
series f such that f φ(x) = φ(x) f is uniquely determined by D( f ).

Corollary 4.17. Let δ : A−→ ` be injective. Then for every Drinfeld module φ over `, we have
that End(φ) is commutative.
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5 Constructions with Drinfeld Modules

We continue with the notations for the previous section. In addition, we put K the com-
pletion of k at ∞ and C the completion of an algebraic closure of K at ∞. C is an alge-
braically closed, complete field containing k.

• Action of the Ideals of A

Let a be any non-zero ideal of A. For any a in a and x in A we have that φ(a) and φ(x)
commute. Therefore, right multiplication by φ(x) maps the left ideal generated by the
φ(a) into itself. We conclude that there is a unique φ′(x) such that φ(a)φ(x) = φ′(x)φ(a).

Lemma 5.1. The map φ′ defined above is a Drinfeld module of the same rank and height as φ. We
write a ∗ φ for φ′. The Fq-linear polynomial φ(a) is a non-zero morphism from φ to a ∗ φ.

Proof. We verify that φ′ is a ring homomorphism A−→ `{τ}. First note that φ′(1) = 1.
Let x and y be elements of A. Note that we have

(φ′(x) + φ′(y))φ(a) = φ′(x)φ(a) + φ′(y)φ(a) = φ(a)φ(x) + φ(a)φ(y)
= φ(a)(φ(x) + φ(y)) = φ(a)(φ(x + y))
= φ′(x + y)φ(a)

and
(φ′(x)φ′(y))φ(a) = φ′(x)(φ′(y)φ(a)) = φ′(x)φ(a)φ(y)

= φ(a)φ(x)φ(y) = φ(a)φ(xy)
= φ′(xy)φ(a),

so φ′ is a ring homomorphism as required.

Let j be the smallest positive integer such that the coefficient at τ j of φ(a) is non-zero. Let
λ be this coefficient. Comparing coefficients at τ j in the equation φ′(x)φ(a) = φ(a)φ(x)
gives us

D(φ′(x))λ = D(φ(x))qj
λ.

From lemma 4.6 we see that j = h deg(c)ordc(a), where c = ker(δ). If δ is injective,
we conclude that j = 0, so Dφ′ = δ as required. Otherwise, the image of δ is a field
isomorphic to A/c. This is a finite field of order qdeg(c). As deg(c) is a divisor of j, qj-th
powering is the identity on this field, so D(φ′(x)) = δ(x)qj

= δ(x) holds for all x in A, as
required.

Note that φ(a) is a morphism from φ to φ′ by construction of φ′. It is non-zero, so it
preserves height and rank.

Remark 5.2. If a = (a) is a principal ideal then φ(a) = µ−1φ(a), where µ is the leading
coefficient of φ(a) and we have (a ∗ φ)(x) = µ−1φ(x)µ for all x in A.

Lemma 5.3. For any two non-zero ideals a and b of A we have φ(ab) = (b ∗ φ)(a)φ(b) and
a ∗ b ∗ φ = (ab) ∗ φ.
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Proof. For all a in a, we observe (b ∗ φ)(a)φ(b) = φ(b)φ(a). Note that for any b in b, there
is an x such that φ(b) = xφ(b). We conclude that φ(b)φ(a) = x(b ∗ φ)(a)φ(b) is an element
of (b ∗ φ)(a)φ(b). Since the φ(a)φ(b) generate the left ideal of φ(ab), we conclude that the
left ideal generated by φ(ab) is contained in that generated by (b ∗ φ)(a)φ(b).

Conversely, since the φ(b) with b in b generate the left ideal generated by φ(b) we know
that for every a in a, φ(b)φ(a) is in the left ideal generated by the φ(b)φ(a) with b in
b. Therefore we see that all elements of the form (b ∗ φ(a))φ(b) are in the left ideal of
φ(ab). This proves the other inclusion. Since φ(ab) and (b ∗ φ)(a)φ(b) are now two monic
generators of the same left ideal, they are equal.

The second equality is an immediate consequence of the first.

• The Leading Coefficient Map

Let φ be a Drinfeld module over ` of rank r. We consider in this section the map µ from
A− {0} to `× that sends a non-zero a in A to the leading coefficient of φ(a).

This map satisfies the following multiplicative relation for all x and y in A non-zero:

µ(xy) = µ(x)µ(y)qdeg(φ(x))
= µ(x)µ(y)q−r deg(∞)ord∞(x)

.

Unfortunately, µ does not exhibit good behaviour with respect to the addition in A. Let
x and y be two non-zero elements of A with x + y non-zero. Then we have µ(x + y) =
µ(x) + µ(y) in case the ord∞ of x, y and x + y are all the same. However, if ord∞(x) is
strictly larger than ord∞(y), we have µ(x + y) = µ(x). If x and y have the same ord∞, but
x + y has lower ord∞, all bets are off.

In this section we define an alternative leading coefficient map on a different ring, which
allows us to retain the nice multiplicative behaviour of µ but also exhibits good additive
behaviour. The approach is, regrettably, through formulas. However, the appealing na-
ture of some of the results suggest there may be something more intrinsic behind it. Just
what is not clear to me at present.

Recall that K is the completion of k at ∞. Extend ord∞ to this field. Write O for the ring of
integers of K, which consists of the elements with non-negative ord∞. This ring is local
and its maximal ideal m consists of the elements with positive ord∞. Let FQ be O/m. It is
the residue field at ∞, so Q = qdeg(∞).

Fix an element π such that ord∞(π) is 1, that is, a generator of the maximal ideal m. Then
in fact K is isomorphic to the Laurent series ring FQ((π)), that is, expressions of the form
x = ∑i≥ord∞(x) αiπ

i with all the αi in FQ and αord∞(x) non-zero. The local ring O is the
power series ring FQ[[π]].

Note that K comes with a natural filtration coming from ord∞. We put

Fili(K) = {x ∈ K : ord∞(x) ≥ −i} = m−i.

The graded ring of K is the ring

Gr(K) =
⊕
i∈Z

Fili(K)/Fili−1(K) =
⊕
i∈Z

m−i/m−i+1.
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In addition, we write R(K) for the subring of Gr(K) consisting of the parts of non-
negative degree,

R(K) =
⊕
i≥0

m−i/m−i+1.

For convenience of notation we write

N(x) = q−r deg(∞)ord∞(x)

whenever this makes sense.

There is a natural map ρ from A to R(K) sending 0 to 0 and x in A non-zero to the class
of x in the degree −ord∞(x) part of R(K). This map is well-behaved with respect to
multiplication, but not with respect to addition, as one can readily see. In fact, it has the
same problems as the original µ. Our aim is to define µ on R(K) in such a way that we
recover the original map by composing with ρ.

Lemma 5.4. For every sufficiently large positive integer n, the image of ρ in the degree n part of
R(K) is all of m−n/m−n+1.

Proof. Note that O ∩ k is the valuation ring of k corresponding to ∞. Therefore m−n ∩ k
is the stalk at ∞ of the line bundle OX(n∞) on X. Therefore m−n ∩ A is the set of global
sections of this line bundle.

Now there is an exact sequence of vector spaces over Fq

0−→m−n+1 ∩ A−→m−n ∩ A−→m−n/m−n+1.

From the Riemann Roch theorem, we know that the dimensions of the first two differ
by deg(∞) for n sufficiently large. This is precisely the dimension of m−n/m−n+1 as this
is isomorphic to the residue field FQ of K. We conclude that for n sufficiently large all
elements of m−n/m−n+1 are in the class of some x from m−n ∩ A.

Proposition 5.5. There is a unique additive group homomorphism

µ : R(K)−→ `

satisfying
µ(xy) = µ(x)µ(y)N(x)

for all homogeneous x and y in R(K).

Proof. Suppose x and y are different representatives in A of the same class in m−n/m−n+1.
Then ord∞(x) = ord∞(y) is equal to n and ord∞(x− y) is less than n. Therefore the degree
of φ(x − y) is less than that of φ(x), so µ(x) and µ(y) are the same. We conclude that we
can extend µ to m−n/m−n+1 for n sufficiently large and that it still satisifies the relation
above.

Now let x be in mk/mk+1 and let y be in m−n/m−n+1 for n sufficiently large. Then µ(xy)
and µ(y) are both defined. Now we define µ(x) by requiring

µ(xy) = µ(x)µ(y)N(x).
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We must check that this is independent of y. Let z be an element of m−n′/m−n′+1 with n′

sufficiently large. Then we know that

µ(y)µ(z)N(y) = µ(yz) = µ(z)µ(y)N(z)

and
µ(xz)µ(y)N(xz) = µ(xyz) = µ(xy)µ(z)N(xy).

Combining these we see that(
µ(y)
µ(z)

)N(x)

=

(
µ(y)N(z)

µ(z)N(y)

)N(x)

=
µ(y)N(xz)

µ(z)N(xy) =
µ(xy)
µ(xz)

and so
µ(xy)µ(y)−N(x) = µ(xz)µ(z)−N(x).

In other words, the two possible definitions of µ(x) coincide.

We have now defined µ on m−n/m−n+1 for all non-negative n. For n sufficiently large, it
is clear that µ(x + y) = µ(x) + µ(y) holds, as x and y are both represented by elements of
A. From the way we extended µ to all m−n/m−n+1 it is clear that µ(x + y) = µ(x) + µ(y)
still holds for all x and y in these sets. We can now extend µ additively to the entire direct
sum.

Lemma 5.6. The restriction ιφ of µφ to FQ = m0/m1, the residue field at ∞, depends only on the
isomorphism class of φ.

Proof. Recall that all isomorphisms of Drinfeld modules are elements of `×. Let λ be an
element of `× and put ψ = λφλ−1. For every x in A, we have

µψ(x) = λ1−N(x)µφ(x).

From the construction of the leading coefficient map it follows that this relation holds for
all x. In particular, if x is in m0, then N(x) = 1, so µψ(x) = µφ(x).

Remark 5.7. If ` is perfect, then we can also take q-th roots in `, in a unique way. In this
case, we can extend µ uniquely to all of Gr(K). Moreover, we then get a map µ : K×−→ `×

satisfying µ(xy) = µ(x)µ(y)N(x) for all x and y.

• Drinfeld Modules over C

We begin this section with some results concerning analysis in C. Recall that C is an
algebraically closed, complete field. Let v be a non-trivial valuation on C, O for the
valuation ring, p for its maximal ideal and κ the residue class field.

Definition 5.8. An entire function on C is a formal power series e = ∑i≥0 eizi in C[[z]]
which is everywhere convergent, i.e. for all λ in C, the sum ∑i≥0 eiλ

i converges.

Lemma 5.9. Let e = ∑i≥0 eizi be a formal power series in C[[z]]. For any π in p put

eπ = ∑
i≥0,v(ei)<v(π)

eizi

Then the following are equivalent:
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1. e is entire;

2. limn→∞ v(en)/n = ∞;

3. For any π in p, eπ is a polynomial and moreover limt→∞ deg(eπt)/t = 0.

Proof. We begin by showing 1 and 2 are equivalent. Recall that v is a non-archimedian
valuation. Therefore an infinite sum converges if and only if the terms go to zero. Let λ

be in C. Then the n-th term of e(λ) is enλn, which has valuation v(en) + v(λ)n. We see
that if v(en)/n does not eventually become arbitrarily large, we can pick a λ such that the
terms eventually get negative valuation, so they become big, rather than going to 0.

Next, we show that 2 implies 3. Clearly, if v(en) tends to infinity, only a finite number
of terms have valuation less than a given bound. So all the eπ are polynomials. Let π in
C have positive valuation and let λ > 0. We must show that for all t sufficiently large,
deg(eπt) < λt. Note that deg(eπt) = n if and only if v(en) < v(π)t and v(em) ≥ v(π)t for
all m larger than n.

Suppose now that n = deg(eπt) is larger than λt. Then we have

v(en) < v(π)t =
v(π)

λ
λt <

v(π)
λ

n,

which cannot happen for infinitely many n, as we know that v(en) tends to infinity faster
than any multiple of n. Hence 2 implies 3.

To show that 3 implies 2 we have to be a little more careful. Again we fix a π in C with
positive valuation. Let λ be positive and let ε be strictly between 0 and λ. Suppose that
v(en) is less than (λ− ε)n for infinitely many n. We rewrite this as

v(en) < v(π)
(

λn
v(π)

− εn
v(π)

)
.

Note that for all n sufficiently large, εn
v(π) is at least 1, so if we put t the largest integer

below λn
v(p) , we have v(en) < v(π)t and t < λn

v(π) . From this we conclude that we have

deg(eπt) > n > v(π)
λ t infinitely often. Assuming 3 this cannot happen, so we must have

for every ε and every λ that v(en) > (λ − ε)n for all n sufficiently large, which implies
2.

Next we prove a version of Hensel’s lemma for entire functions.

Lemma 5.10. Let f be an entire function that lies in O[[z]] such that the constant term of f is in
O×. Suppose that ḡ and h̄ are coprime polynomials in κ[z] such that f̄ , the reduction of f to κ[z]
factors as ḡh̄. Then there is a polynomial g in O[z] of degree deg(ḡ) and an entire function h in
O[[z]] such that g reduces to ḡ, h reduces to h̄ and f factors as gh.

Proof. Note that the only non-zero coefficients of f̄ are at those places were f has a co-
efficient of valuation 0. As the remaining coefficients have valuations that eventually
become large, there is a minimal positive value for a valuation of a coefficient of f . Let π

in C be an element with valuation positive valuation less that this minimum.
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For all n ≥ 0 we let fn be the polynomial in O[z] of the smallest degree, such that f − fn

is in π2nO[[z]].

We will prove by induction that there are polynomials an, bn, gn and hn in O[z] such that
the relations

fn ≡ gnhn mod π2nO[z]
angn + bnhn ≡ 1 mod π2nO[z]

hold and we have deg(gn) = deg(g0) and deg(hn) = deg( fn)− deg(gn).

For n = 0, note that there are polynomials a and b in κ[z] such that aḡ + bh̄ = 1 holds in
κ[z]. Now we just pick any lifts of the appropriate degree of ḡ, h̄, a and b and use them
for g0, h0, a0 and b0.

Suppose now that we have gn, hn, an and bn satisfying the required conditions. Write fn+1

as gnhn + π2n
rn, where rn is a polynomial in O[z] of degree at most deg( fn+1). Let un be

the unique polynomial in O[z] of degree at most deg(gn) that satisfies

un ≡ bnrn mod gnO[z].

Note that we now have

unhn ≡ rn mod gnO[z] + π2nO[z],

so there is a polynomial vn of degree at most deg(rn)− deg(gn) such that we have

unhn ≡ rn − vngn mod π2nO[z].

Now we put gn+1 and hn+1 equal to gn + unπ2n
and hn + vnπ2n

respectively. Note that we
have

gn+1hn+1 = gnhn + (unhn + vngn)π2n
+ π2n+1

unvn

≡ gnhn + rnπ2n
mod π2n+1O[z]

≡ fn+1 mod π2n+1O[z].

Moreover, by construction deg(gn+1) is the same as deg(gn) and deg(hn+1) is bounded
above by deg(rn)− deg(gn) ≤ deg( fn+1)− deg(gn+1). As we have

gn+1hn+1 ≡ f mod π2n+1O[[z]],

we see that the degree of hn+1 is also at least deg( fn+1) − deg(gn+1). So the required
degree relations hold.

We also need to produce the new auxillary polynomials an+1 and bn+1. Let tn in O[z]
satisfy

angn+1 + bnhn+1 = 1 + tnπ2n
mod π2n+1

and put an+1 = (1− tnπ2n
)an and bn+1 = (1− tnπ2n

)bn. Now we compute that

an+1gn+1 + bn+1hn+1 = (1− tnπ2n
)(angn+1 + bnhn+1)

≡ (1− tnπ2n
)(1 + tnπ2n

) mod π2n+1O[z]
≡ 1 mod π2n+1O[z]

holds, as required. This concludes the induction step.
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Note that for all n ≥ 0, the differences gn − gn+1 and hn − hn+1 are both in π2nO[z]. It
follows that both the gn and the hn converge coefficient-wise. In the case of the gn, the
degree is bounded, so the limit g is again a polynomial of degree deg(ḡ). The hn converge
to a power series h in C[[z]]. By construction, it is clear that we will have f = gh, so we
are done if we can show that h is entire.

To see this, we note that, using the notation from the previous lemma, we have deg( fn) is
deg( f

π2t ) and deg(hn) is deg(hπ2n ). Since f is entire, it therefore satisifies limn→∞
deg( fn)

2n =
0 and as deg( fn) and deg(hn) differ only by a constant, the same holds for the hn, so h is
also entire.

Corollary 5.11. Any non-constant entire function on C is onto.

Proof. Let e be a non-constant entire function. It suffices to show that we can find a zero of
e. If the constant term of e is 0, we are done, as then 0 is a zero of e. Multiplying with the
inverse of the constant term, we may now assume that e has constant term 1. By applying
a substitution z 7→ λz, we can make sure that all the coefficients of e are in O and that all
of them except two (the constant term and one other) are in p. The resulting power series
in O[[z]] reduces to a polynomial ē of positive degree in κ[z]. The lemma then show that
we can lift this to a polynomial factor of the entire function. As C is algebraically closed,
this polynomial factor has roots.

Next we give a way of constructing entire functions using their roots.

Lemma 5.12. Let {λi}i≥1 be a sequence in C× such that {v(λi)}i≥1 is a non-decreasing sequence
that tends to ∞. Then the infinite product

e(z) = ∏
i≥1

(1− zλi)

converges to an entire function. The zeroes of e, with counted multiplicities are given by the
sequence {λ−1

i }i≥0.

Proof. Any finite number of factors will not affect the convergence of the product. As the
v(λi) are positive for all i except possibly a finite number, we may just throw out this
finite number of λ’s and assume that all the v(λi) are positive.

If we expand the infinite product formally, we obtain the following infinite sum for the
coefficient en of zn in this expansion:

en = (−1)n ∑
1≤i1<···<in

λi1 · · · λin

In order to show that the infinite product converges to an entire function we must show
that all these en exist and that v(en) goes to ∞ faster than any constant multiple of n as n
gets large.
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Note that v(λi1 · · · λin) is equal to v(λi1) + · · ·+ v(λin), which will tend to infinity as any
one of the i’s gets large. Therefore, the sum defining en converges. Moreover, this valua-
tion is non-decreasing in each of the i’s, so we can estimate

v(en) ≥ inf
1≤i1<···<in

v(λi1 · · · λin) ≥ v(λ1 · · · λn).

Let r > 0 and let N be such that for all i ≥ N we have v(λi) ≥ r + 1. Then for all
n > (r + 1)N we have

v(en) ≥ (v(λ1) + · · ·+ v(λN)) + (v(λN+1) + · · ·+ v(λn))
≥ (n− N)v(λN+1)
≥ (n− N)(r + 1) = nr + n− N(r + 1) > nr

and therefore, e is an entire function.

Remark 5.13. In fact, an entire function is determined up to scalar multiplication by its
set of roots with counted multiplicities. We do not prove this result here, but it follows
with a bit more work from the things we have shown.

Lemma 5.14. Let φ be a Drinfeld module over C. Let eφ be the formal power series associated to
φ as per lemma 4.15. Then eφ is entire.

Proof. Write eφ as ∑i≥0 eizqi
. We must show that v(ei) goes to ∞ faster than any fixed

multiple of qi. It therefore suffices to show that there is a δ > 0 and a real number c such
that v(en) > δ(n − c)qn holds for all n. Note that given δ we can always choose c such
that this relation holds for all n below any given n0.

Let y be in A be non-constant and write φ(y) as ∑d
i=0 siτ

i. Put e−1 up to e−d equal to 0.
Then we know from the construction of theorem 3.13 that we have the relation

(sqn

0 − s0)en = s1eq
n−1 + · · ·+ sdeqd

n−d.

Note the s0 = y has a negative valuation, so v(sqn

0 ) is smaller than v(s0) and therefore
v(sqn

0 − s0) = v(sqn

0 ) = qnv(s0). Considering the valuation on either side of the equation
defining en we get

qnv(s0) + v(en) ≥ min(v(s1) + qv(en−1), . . . , v(sd) + qdv(en−d))
≥ min(v1, . . . , vd) + min(qv(en−1), . . . , qdv(en−d)).

Suppose that for all m < n we have v(em) > δ(m − c)qm. Then we derive from the
previous estimate that

v(en) ≥ −qnv(s0) + min(v1, . . . , vd) + min(δ(n− (c + 1))qn, . . . , δ(n− (c + d))qn)
≥ −qnv(s0) + min(v1, . . . , vd) + δ(n− (c + d))qn

= δ(n− c)qn + (−v(s0)− δd)qn + min(v1, . . . , vd).

Recall that v(s0) is negative, so if we take δ a sufficiently small positive number, −v(s0)−
δd will be positive. We then pick n0 be such that (−v(s0) − δd)qn0 > −min(v1, . . . , vd).
Lastly, we fix c such that v(em) > δ(m− c)qm holds for all m ≤ n0. Then the inequality we
have just derived shows that we will have v(en) ≥ δ(n− c)qm for all n, as required.
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Definition 5.15. An lattice Λ in C is a discrete sub-A-module of C such that KΛ is a finite
dimensional K-vector space.

Noet that a lattice Λ is a discrete A-module inside a finite dimensional K-vector space
and is therefore finitely generated and torsion free, so it is projective.

Lemma 5.16. Let M be a finitely generated A-submodule of K. Then M is discrete if and only if
M is of rank 1.

Proof. Clearly, if M has rank 1, then M is discrete. To prove the other implication, suppose
that a and b are two A-linearly independent elements of M.

Let π be a generator of the maximal ideal of K. Recall that K is isomorphic to the Laurent
series ring FQ((π)). So we can write a as ∑i≥−na

αiπ
i and b as ∑i≥−nb

βiπ
i. Moreover, by

lemma 5.4 we know that there is a positive integer N such that for all n greater than N,
we have elements of A whose ord∞ is −n with any leading coefficient. So let x be any
non-zero of A, then, through what is essentially long division, we can find a y in A such
that xa− yb has ord∞ at least −N. But this gives us infinitely many points in M inside a
finite ball. So M is not discrete.

Corollary 5.17. A finitely generated projective A-submodule Λ of C is a lattice if and only if the
rank of Λ is the same as the K-dimension of KΛ.

Definition 5.18. Let Λ and Λ′ be two lattices. If they do not have the same rank, there
is only one morphism between them, the zero morphism. If the rank of Λ is the same as
that of Λ′, then a morphism from Λ to Λ′ is an element α of C such that αΛ is contained
in Λ′.

Lemma 5.19. Let Λ be a lattice. Then the exponential function eΛ given by

eΛ(z) = z ∏
0 6=λ∈Λ

(1− zλ−1).

is an Fq-linear entire function.

Proof. Let V be the K-span of Λ. It is a finite-dimensional K-vector space. Note that Λ is
a discrete subset of V. It follows that for every real r the ball {x ∈ C|v(x) ≤ r} contains
at most a finite number of points of Λ. This implies that the λ−1 form a sequence that
satsifies the conditions of lemma 5.12. We see that eΛ is entire.

For positive integer n the set

Λn = {λ ∈ Λ : v(λ) > −n}

is finite. By the non-archimedian triangle equality, it is an additive subgroup of Λ and as
all elements of F×q have valuation 0, it is even an Fq-vector space.

If we put
en(z) = z ∏

0 6=λ∈Λn

(1− zλ)
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then clearly eΛ is the limit of the en. Each of the en is additive by lemma 3.8. So eΛ is an
additive power series.

Lemma 5.20. Let Λ be a projective A-module of rank r. Then Λ/aΛ is isomorphic to (A/aA)r

for all a in A.

Proof. If Λ is a free A-module of rank r, this is obvious. For projective Λ we know by the
structure theory for modules over Dedekind domains that Λ is the direct sum of a free
module of rank r− 1 and an ideal I of A.

We are therefore reduced to showing that I/aI is isomorphic to A/aA. We do this by
localisation. Write a = ∏i p

ei
i and consider the localisation of A/aA at pi. We see that the

factors corresponding to pj’s with j 6= i all vanish and what we are left with is (A/aA)pi =
A/p

ei
i A. Similarly, (I/aI)pi is equal to I/p

ei
i I, which is the same as Ipi /p

ei
i Ipi . But now, Ipi

is a free Ap module of rank 1, so equality clearly holds.

Theorem 5.21. Let Λ be a lattice. Then there is a unique Drinfeld module φΛ over C such that
we have a short exact sequence

0−→Λ−→C eΛ−→Φ−→ 0

of A-modules, where Φ is the A-module on the additive group of C given by φΛ. The rank of φΛ

is the same as the rank of Λ.

Proof. First of all, it is clear that eΛ has kernel Λ and is onto (as it is a non-constant entire
function). The tricky bit is showing that the A-action induced on C via eΛ comes from a
Drinfeld module.

Let a be a non-zero element of A. Note that the lattice Λ is of finite index in the lattice
a−1Λ. Moreover, we have that an x in C is in a−1Λ if and only if ax is in Λ, so ea−1Λ(z)
and eΛ(az) are separable entire functions with the same set of roots and therefore differ
by a scalar multiplication. Comparing the derivatives we see that we have

aea−1Λ(z) = eΛ(az)

in C[[z]].

The set Wa = eΛ(a−1Λ is a finite Fq-vector space isomorphic to (a−1Λ)/Λ. Let φ(a) be the
unique separable Fq-linear polynomial whose set of roots is Wa and whose derivative is
a. Then [φ(a)](eΛ(z) is a separable entire function whose set of roots is a−1Λ. Looking at
the derivatives we conclude that

[φ(a)](eΛ(z)) = aea−1Λ(z) = eΛ(az)

holds. Transporting this equality to C{{τ}} we conclude that we have

φ(a)eΛ = eΛa

for all a in A nonzero. Note that if a is in Fq, then a−1Λ is the same as Λ so that we find
φ(a) = a in C{τ}.

From corollary 3.14 we conclude that the relation we have just derived defines the φ(a)
uniquely for all non-constant a in A. From this we conclude that the map φ is a ring
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homomorphism from A to C{{τ}}. By construction we have D(φ(a)) = a for all a in A.
Note that a−1Λ/Λ is isomorphic to Λ/aΛ, so by the previous lemma, the zero set of φ(a)
is equal to (A/aA)r, as required.

Theorem 5.22. There is an equivalence of categories between the lattices in C and the Drinfeld
modules over C. The rank r lattices correspond to the rank r Drinfeld modules.

Proof. Let φ be a Drinfeld module over C of rank r. Write e for the exponential function of
the Drinfeld module. We write Λ for its set of roots. We want to show that Λ is a lattice.
Note that Λ is discrete in C as it is the set of roots of an entire function.

As e is an additive function, Λ is an additive subgroup of C. To show that Λ is an A-
module, note that for any a in A we have

e(az) = [φ(a)](e(z))

for all z in Z, so that if z is in Λ, az is also in Λ.

Lastly we must show that KΛ has finite dimension. Suppose that λ1, . . . , λs in Λ are K-
linearly independent. Write E for the K-span of these vectors. Then Λ′ = Λ ∩ E is a
discrete A-submodule of a finite-dimensional K-vector space, whose K-span is the entire
space. We conclude that Λ′ is finitely generated projective of rank s.

From lemma 5.20 we conclude that Λ′/aΛ′ is isomorphic to (A/a)s for all a in A. Note
that Λ′ ∩ aΛ is just aΛ′, so that Λ′/aΛ′ is a submodule of Λ/aΛ. We know that Λ/aΛ is
isomorphic to the a-torsion submodule of φ and therefore to (A/a)r, where r is the rank
of φ. We conclude that s < r, which shows that KΛ is finite dimensional.

From the constructions it is clear that the maps from Drinfeld modules to lattices and the
other way are eachothers inverse. So we are done if we can show that morphisms on the
one side correspond to morphisms on the other side.

Suppose that αΛ is of finite index in Λ′. Note that the elements of αΛ are precisely the
roots of eΛα−1 so that the set [eΛα−1](Λ′) is a finite Fq-vector space. Let f be the separable
Fq-linear polynomial with precisely this set of roots whose derivative is α. Then we see
that eΛ′ and f eΛα−1 are separable entire functions with the same roots and the same
derivative, so they are equal. Note that for every x in A we have

φΛ′(x) f = eΛ′xe−1
Λ′ f = f eΛα−1xαe−1

Λ f−1 f = f eΛxe−1
Λ = f φΛ(x),

so f is a morphism of Drinfeld modules from φΛ to φΛ′ .

Conversely, suppose that f is a morphism of Drinfeld modules from φ to φ′. Let α be
the derivative of f . Then the computation above shows that we have e′φ = f eφα−1, from
which we conclude that αΛφ is a sublattice of finite index in Λφ′ .

Corollary 5.23. The set of isomorphism classes of rank 1 lattices in C is isomorphic as a set with
Cl(A)-action to the set of rank 1 Drinfeld modules over C. The former is clearly a torsor for
Cl(A), so the latter is as well.
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Proof. A non-zero ideal a of A acts on the lattices in C by sending a lattice Λ to a−1Λ. Note
that Λ is a sublattice of finite index in a−1Λ. As in the proof of the previous theorem, it
follows that there is a monic, separable Fq-linear polynomial f such that ea−1Λ = f eΛ. One
readily computes that f is equal to φΛ(a) and therefore that φa−1Λ = a ∗ φΛ. This shows
that the actions of the ideals on either side are compatible. The result now follows.

• Fields of Definition

Let φ be a Drinfeld module over C. We say that φ is defined over a subfield L of C
containing k, if φ(x) has coefficients in L for all x in A.

We say that φ can be defined over a subfield L of C containing k, if φ is isomorphic over
C to some ψ which is defined over L. In this case we call L a field of definition for φ.

Lemma 5.24. Let φ be a Drinfeld module over C of rank 1. Then φ can be defined over K, the
completion of k at ∞.

Proof. By the uniformiation theorem, φ is isomorphic to φa for some ideal a of A viewed
as a one-dimensional lattice inside C. Note that the construction of φa can then be carried
out inside K, as all the elements of the lattice are in K and the coefficients that come up in
the construction are infinite sums of these lattice elements.

Lemma 5.25. Let φ be a Drinfeld module over C. Let x be a non-constant element of A. Then the
subfield L of C generated by k and the coefficients of φ(x) is independent of the chosen x. It is the
smallest field over which φ is defined.

Proof. Let e be the exponential function of the Drinfeld module φ, following lemma 4.15.
From the proof of theorem 3.13 we note that the coefficients of e are in L.

Lemma 5.26. Let φ be a Drinfeld module over C and a an ideal of A. If φ is defined over L, then
a ∗ φ is also defined over L.

Proof. Note that φ(a) has coefficients in L. It follows that a ∗ φ has coefficients in L.

Theorem 5.27. Let φ be a Drinfeld module over C. Then there is a minimal field of definition Lφ

which is contained in every field of definition of φ.

Proof. Let a be a non-constant element of A. By lemma 5.25 a Drinfeld module φ′ over C
is definied over a field L if and only if the coefficients of φ′(a) are in L.

Let ξ be any element of C× and let φ′ = ξφξ−1. Write φ(a) as ∑s
i=1 λiτ

ni with all the λi
non-zero. Then φ′(a) is equal to ∑s

i=1 λ′iτ
ni , with λ′i = ξ1−qni λi for all i.
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Let g be the greatest common divisor of the qni − 1 and pick integers ei such that g can
be written as ∑s

i=1 ei(qni − 1). Now let ζ and ζ ′ be solutions in C of ζg = ∏s
i=1 λei

i and
(ζ ′)g = ∏s

i=1 λ′i
ei respectively. Note that we have

(ζ ′)g =
s

∏
i=1

(λ′i)
ei = ξ∑s

i=1 ei(1−qni )
s

∏
i=1

λei
i = (ξ−1ζ)g.

As all the 1− qni are multiples of g, we have (ζ ′)1−qni = (ξ−1ζ)1−qni for all i. This implies
that the elements µi = ζ1−qni λi and µ′i = (ζ ′)1−qni λ′i are equal and therefore depend only
on the isomorphism class of φ.

Thus the subfield Lφ of C generated by k and the elements µ1 up to µs is contained in
every field of definition for φ. Moreover, the Drinfeld module φmin = ζφζ−1 has φmin(a)
equal to ∑s

i=1 µiτ
ni and therefore is defined over Lφ.

• Sign functions and Normalisation

Recall that K is the completion of k at ∞.
Definition 5.28. A sign function ε on K is a group homomorphism

ε : K×−→ F×Q

which is the identity on F×Q ⊂ K.

Lemma 5.29. Let O be the ring of integers of the local field K and p its maximal ideal. Let ε be a
sign function. Then ε(x) = 1 for all x in O congruent to 1 modulo p.

Proof. Suppose that α in O is congruent to 1 mod p. Then the equation xQ−1 − α in O[x]
reduces to xQ−1 − 1 in FQ[x], the residue field. This is a separable polynomial and 1 is
one of its roots, so by Hensel’s lemma there is a β in O with β ≡ 1 mod p that is a root
of xQ−1 − α. This implies that

ε(α) = ε(βQ−1) = ε(β)Q−1 = 1

as F×Q is annihilated by Q− 1.

Lemma 5.30. The set of all sign functions is a torsor for F×Q.

Proof. Let ε be a sign function and ζ in F×Q. Then the map

(ζε) : K× −→ F×Q
x 7→ ε(x)ζord∞(x)

is again a sign function, as it is obviously a group homomorphism and ord∞(x) = 0 for
all x in F×Q. It is clear that this gives an action of F×Q on the set of sign functions. If ε and
ε′ are two sign functions, then the function x 7→ ε(x)/ε′(x) is a group homomorphism
from K× to F×Q which is 1 on all of O×. Therefore, it factors via ord∞ : K×−→Z. So there
is a unique ζ in F×Q such that ε(x)/ε′(x) = ζord∞(x) for all x in K×.
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Let φ be a Drinfeld module over C of rank 1. As C is perfect, we can extend the leading
coefficient map µ of φ to a map µ : K×−→C×. Suppose that the image of this map lands
inside F×Q. Then it is a group homomorphism, as we then have

µ(xy) = µ(x)µ(y)q−deg(∞)ord∞(x)
= µ(x)µ(y)Q−ord∞(x)

= µ(x)µ(y).

As before, write ι for the restriction of µ to F×Q. Note that the map ι−1 ◦ µ is a sign function.
It is clearly a group homomorphism and composition with ι−1 makes it the identity on
F×Q. If ι−1 ◦ µ is equal to ε, then we say that φ is ε-normalised.

Lemma 5.31. Let φ be a Drinfeld module over C of rank 1 and ε a sign function. Then the set of
ε normalised Drinfeld modules isomorphic to φ is a torsor for F×Q/F×q .

Proof. We begin by showing that the set is non-empty. Let π be a generator of m, the
maximal ideal of O, such that ε(π) = 1.Fix a (Q− 1)-th root ξ of 1/µφ(π−1) in C. Let φ′

be the Drinfeld module ξφξ−1. Then µφ′(π−1) is 1. Let x in K be non-zero. Then we can
write x as π−nx′(1−πu) for some non-negative integer n, some x′ in F×Q and some u inO.
We see that ε(x) = ε(x′) = x′ as the other factors have sign 1. Also µφ′(x) = µ′φ(π−nx′)
as the other term has a smaller ord∞. It follows that

µφ′(x) = µφ′(π−nx′) = µφ′(x′) = ι(x′) = ι(ε(x))

holds for all x in K, so φ′ is ε-normalised.

Suppose that ψ is a ε-normalised Drinfeld module. Suppose that ξ is an element of C×

such that ψ′ = ξψξ−1 is also ε-normalised. Then we have

1 = µψ′(π−1) = ξ1−Qµψ(π−1) = ξ1−Q,

so ξ is in F×Q. Conversely, if φ is ε-normalised, then for every ξ in F×Q the module ξψξ−1 is
as well. Lastly, recall that the automorphisms of ψ are the elements of F×q , so the result of
the lemma follows.

Theorem 5.32. Let ε be a sign function. Then the set X of ε-normalised Drinfeld modules is a
torsor for the group Cl+(A), the quotient of the ideal group of A by the principal ideals (a) with
ε(a) = 1.

Proof. Let φ be a ε-normalised Drinfeld module. For every non-zero ideal a of A and
every x in A we have

(a ∗ φ)(x)φ(a) = φ(a)φ(x),

by the definition of a ∗ φ. Comparing the leading coefficients, we conclude that µa∗φ(x) =
µφ(x)qdeg(φ(a))

holds for all x in A. From corollary 4.5 we know that the degree of φ(a) is
divisible by deg(∞). As µφ lands in F×Q, we conclude that µa∗φ(x) = µφ(x) holds for all x
in A. It follows that a ∗ φ is also ε-normalised.

It remains to show that an ideal a acts trivially if and only if it has a principal generator a
with ε(a) = 1. From corollary 5.23 we know that an ideal fixes the isomorphism class of
the Drinfeld module if and only if it is principal. Remark 5.2 states that (a) acts on φ via
conjugation with µφ(a)−1. If φ is ε-normalised, µφ(a) is ι(ε(a)), so (a) acts trivially if and
only if ε(a) = 1.
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6 Abelian Extensions

In this chapter we use the ε-normalised Drinfeld modules, which we have constructed in
the previous chapter, to explicitily write down certain class fields of the field k.

• The normalising field

Proposition 6.1. Let φ be an ε-normalised Drinfeld module. Then the smallest field over which
φ is defined is independent of φ. We call this field the normalising field for ε-normalised Drinfeld
modules and we write H+

A for it.

Proof. We already know that this field is generated over k by the coefficients of φ(a) for
one such Drinfeld module φ and some a in A non-constant. By lemma 5.26 and the fact
that the action of the ideals is transitive, this field is independent of the choice of φ.

Lemma 6.2. Let σ in Gal(C/k) and φ a Drinfeld module over C. Then (σφ)(x) = σ(φ(x)) is
also a Drinfeld module over C. If φ is ε-normalised, so is σφ. The action of Gal(C/k) on X, the
set of ε-normalised Drinfeld modules, is compatible with the action of Cl+(A).

Proof. It is clear that σφ is again a Drinfeld module over C. Moreover, we see µσφ = σµφ

and therefore we also have ισφ = σιφ. If φ is ε-normalised, we conclude that

µσφ = σµφ = σιφε = ισφε

holds and therefore σφ is also ε-normalised. To check that the action is compatible with
that of the ideals, one simply looks at the formulas.

Corollary 6.3. The extension H+
A /k is Abelian with Galois group isomorphic to a subgroup of

Cl+(A).

Proof. It follows from the previous lemma that H+
A is finite and normal over k. Let φ be

an ε-normalised Drinfeld module. Note that H+
A contains the minimal field of definition

Lφ of φ. This field is contained in K and finite, so it is algebraic and therefore separable
over k. Pick ξ in C such that φ′ = ξφξ−1 is defined over Lφ. Let x be a non-constant
element of A with ε(x) = 1. Then we have

µφ′(x) = ξ1−qdeg(∞)ord∞(x)
µ(x) = ξ1−qn

for some positive integer n. As µφ′(x) is in Lφ, this implies that Lφ(ξ) is a separable
extension of Lφ. Since H+

A is contained in Lφ(ξ) it is also separable over Lφ and therefore
over k.

As the action of the Galois group Gal(H+
A /k) on X commutes with the action of Cl+(A)

—for which this set is a torsor— we obtain an injective group homomorphism

Gal(H+
A /k)−→Cl+(A).

It follows that the extension is Abelian.
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• Reduction of Drinfeld Modules

Let L be a subfield of C which contains k and fix a non-zero prime ideal of the integral
closure of A in L. Let O be the corresponding valuation ring of L and p its maximal ideal.
Write κ for the residue fieldO/p. Let ρ be the reduction mapO−→ κ. Note that it induces
a reduction map O{τ} −→ κ{τ} by reducing coefficient-wise, which we shall again call
ρ. Let δr be the composed map A ⊂ O−→ κ and Dr be the derivative map κ{τ} −→ κ.

Suppose that φ is a Drinfeld module defined over L. Then we say that φ has coefficients
in O if for all x in A, φ(x) is a polynomial whose coefficients lie in O. In this case, we put
φr equal to ρ ◦ φ, the reduction of φ at p. Note that for all f in O{τ} we have Dr(ρ( f )) =
ρ(D( f )). We conclude that Dφr = δr holds. In general, φr need not be a Drinfeld module,
as φr(x) could be a constant polynomial for all x.

Definition 6.4. Let φ be a Drinfeld module defined over L. Then we say φ has stable
reduction at p if there is a φ′ isomorphic to φ over L which has coefficients in O, such that
φ′r is a Drinfeld module.

Lemma 6.5. Let φ be a Drinfeld module with stable reduction at p. Then the reduced module is
unique up to isomorphism.

Proof. Suppose φ′ and φ′′ are both isomorphic to φ, that they both have coefficients in O
and that both φ′r and φ′′r are Drinfeld modules. As φ′ and φ′′ are isomorphic, there is a
λ in L× such that we have φ′′ = λφ′λ−1. Our aim is to show that λ is in O×, so that it
reduces to an isomorphism ρ(λ) between φ′r and φ′′r .

As φ′r is a Drinfeld module, there is an x in A such that φ′(x) is a polynomial ∑i x′iτ
i with

x′j in O× for some j > 0. Note that

φ′′(x) = λφ′(x)λ−1 = ∑
i

λ1−qi
x′iτ

i

is in O{τ}, so λ1−qj
x′j is in O and therefore λ1−qj

is in O. We conclude λ−1 is a root of

the polynomial xqj−1 − λ1−qj
with coefficients in O, so λ−1 is integral over O. Being a

valuation ring, O is integrally closed, so λ−1 is in O

The same holds if we reverse the roles of φ′ and φ′′, in this case the isomorphism is λ−1,
so λ is also in O and therefore in O×.

Lemma 6.6. Every Drinfeld module φ defined over L has potentially stable reduction at p, that is,
there is a finite extension M of L and a prime q that lies above p, such that φ has stable reduction
at q.

Proof. Let M be a finite extension of L, q a prime that lies above p andOM the correspond-
ing valuation ring of L. Let v be the normalised valuation on M corresponding to q, so
that OM consists of the x in M with v(x) ≥ 0 and q consists of the x in M with v(x) > 0.

Let φ be a Drinfeld module defined over L and let λ be a non-zero element of M×. Write
φ′ for the Drinfeld module λφλ−1, which is defined over M. Write φ′n(x) for the coefficient

35



at τn of φ′(x). We have to find an M, a q and a λ such that v(φ′n(x)) is non-negative for
all n ≥ 0 and x in A and v(φ′n(x)) = 0 for some x in A and some n ≥ 1.

Let e be the ramification index of q over p. Note that for all x in A and all n ≥ 0 we have

v(φ′n(x)) = v(λ1−qn
φn(x)) = evp(φn(x))− v(λ)(qn − 1),

where vp is the normalised valuation of L at p and φn(x) is the coefficient of φ(x) at τn.

Recall that A is a finitely generated Fq-algebra. Let x1, . . . , xs be a set of generators of A
as an Fq-algebra. It suffices to show that we can pick M, p and λ such that v(φ′n(xi)) ≥ 0
for all i = 1, . . . s and all n ≥ 0 and v(φ′n(xi)) = 0 for some 1 ≤ i ≤ s and n ≥ 1.

Let j ≥ 1 and 1 ≤ m ≤ s be such that

w =
vp(φj(xm))

qm − 1

is minimal. Pick M and q in such a way that e is a multiple of the denominator of w and
pick λ in M such that v(λ) = ew. For all n ≥ 1 and 1 ≤ i ≤ s we now have

v(φ′n(xi)) = evp(φn(xi))− v(λ)(qn − 1) = e(vp(φn(xi))− w(qn − 1))

and
vp(φn(xi))

qn − 1
≥ w

so v(φ′n(x)) is non-negative. Moreover, we have equality for i = j and n = m, so
v(φ′m(xj) = 0.

Definition 6.7. Let φ be a Drinfeld module defined over L. Then we say that φ has good
reduction at p if it has stable reduction at p and the rank of the reduced module is the
same as that of φ.

Note that for Drinfeld modules of rank 1, stable and good reduction are the same thing,
as the rank of the reduced module is clearly at most the rank of the original module and
every Drinfeld module has positive rank.

Lemma 6.8. Let φ be a rank 1 Drinfeld module defined over L and suppose that there is a non-zero
x in A such that µφ(x) is in O×. Then φ has coefficients in O and the reduction is good.

Proof. From lemma 6.6 we know that there is a finite extension M of L and a prime q

above p such that φ has good reduction at q. So there is a λ in M such that φ′ = λφλ−1

has coefficients in OM. Moreover, as φ′r also has rank 1, the leading coefficient µ′φ(x) is
in O×M. As we have µ′φ(x) = λ1−N(x)µφ(x) we see that λ1−N(x) is in O×M. It follows that λ

itself is also in O×M, as OM is integrally closed.

Now we have for all y in A that φ(a) = λ−1φ′(a)λ has coefficients in OM. But it also has
coefficients in L, so it has coefficients in O = OM ∩ L. Moreover, µ′φ(y) is in O×M for all y
(as the reduction of φ′ is good), so µφ(y) = λN(y)−1µ′φ(y) is in O×M. It is also in L, so it is in
O× = O×M ∩ L. This is what we wanted to show.
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Corollary 6.9. Let φ be an ε-normalised Drinfeld module. Then, for all x in A, φ(x) has coeffi-
cients in B and the leading coefficient of φ(x) is in B×.

Proof. Recall that B, the integral closure of A in H+
A , is the intersection of all the valuation

rings of H+
A at primes that lie above a prime of A. The result now follows at once from

the previous lemma.

Lemma 6.10. Let φ and ψ be two ε-normalised Drinfeld modules and let q be a non-zero prime
of B. Let φr and ψr be the reductions of φ and ψ at q. Then φr is equal to ψr if and only if φ is
equal to ψ.

Proof. Let p be the prime ideal of A that lies below q. By theorem 5.32, there is an ideal a

of A such that ψ is a ∗ φ. We show that we can choose a such that it is coprime to p.

Let x be an element of k such that x is congruent to 1 mod ∞ and vp(x) = −vp(a). Then
the ideal xa is a fractional ideal of A coprime to p. So there are ideals d and n, coprime to
p, such that xa = nd−1. In Cl+(A) we have (x) = 1, so

a = xa = nd−1 = nd#X−1

holds and we may assume that a is coprime to p.

By definition of φ(a) we have that ψ(x)φ(a) = φ(a)φ(x) holds for all x in A. Reducing
this equation mod q, we see that

φr(x)φ(a) ≡ φ(a)φr(x) mod q.

As φr has rank 1, we know that End(φr) is isomorphic to A, so there is an y in A such that

φ(a) ≡ φ(y) mod q.

As φ(a) is monic, we conclude that µ(y) is 1 mod q and as µ(y) is also in F×Q, we know
that in fact µ(y) = 1, so ε(y) = 1. Therefore, we are done if we can show that a = (y).

We do this by comparing the torsion modules of φr. Put b = a + (y). Note that φr(a) =
φr(y) = φr(b). Choose an algebraic closure of B/q and let Φr be the A-module structure
on this algebraic closure induced by φr. As a, b and y are coprime to p and φr has rank
1, we have Φr[a] ∼= A/a, Φr[b] ∼= A/b and Φr[y] ∼= A/(y). But Φr[a], Φr[b] and Φr[y] are
all equal to the kernel of φr(y), so a, b and (y) all have the same norm, so a = b = (y), as
required.

Theorem 6.11. The normalising field H+
A is unramified at every non-zero prime of A. For a

non-zero ideal a of A denote by σa the image of a in Gal(H+
A /k) under the Artin map. Let φ

be an ε-normalised Drinfeld module. Then we have σaφ = a ∗ φ for all non-zero ideals a of A.
Therefore, Gal(H+

A /k) is naturally isomorphic with Cl+(A).
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Proof. Let p be a non-zero prime of A. Let σ be in the inertia group of p. Let q be a prime
of B that lies above p. Then, by definition, σ induces the identity mod q. So for any
ε-normalised Drinfeld module φ, we have

σφ ≡ φ mod q

and therefore σφ = φ, by the previous lemma. But H+
A is generated by the coefficients

of any φ(y) with y in A non-constant, so this implies that σ is the identity on H+
A . We

conclude that the inertia group of p is trivial, that is, p is unramified.

To check that σaφ = a ∗ φ for every non-zero ideal a of A, it suffices to check this for non-
zero prime ideals, by lemma 5.3. So let p be a non-zero prime ideal of A and q a prime of
B that lies above p. By the previous lemma, it is enough to check that

σpφ ≡ p ∗ φ mod q.

Note that modulo q, σp is just the Frobenius-endomorphism, i.e. the qdeg(p)-th powering
map.

Write φr for the reduction of φ at q. Note that the kernel of the map A−→ B/q is p and
that φr must have non-zero height. Since φ has rank 1, the height must be 1. So φr(p) is a
monic polynomial in τ of degree

v(p) = −r deg(∞)ord∞(p) = deg(p)ordp(p) = deg(p)

and the lowest degree of a non-zero term is

j(p) = h deg(p)ordp(p) = deg(p).

We conclude that φr(p) = τdeg(p). It follows that

(p ∗ φr)(x)τdeg(p) = τdeg(p)φr(x)

holds for all x in A. But we know that pulling τdeg(p) through a polynomial results in all
the coefficients being raised to the qdeg(p)-th power. So we have

σpφ ≡ p ∗ φ mod q.

as required.

From corollary 6.3 we know that there is an injective map Gal(H+
A /k)−→Cl+(A). The

result we have just derived implies that this map is also onto.
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• The Hilbert Class Field

In this section we derive a variant of the main theorem we proved in the previous section.
This variant is more natural from the point of view of class field theory.

Let φ be an ε-normalised Drinfeld module. Let L be the minimal field of definition of φ.
Following the proof of theorem 5.27 we let ζ in C be such that φmin = ζφζ−1 is defined
over L. The greatest common divisor g from that proof must be q− 1, as any g-th root of
unity in C will be an automorphism of φ and Aut(φ) is isomorphic to F×q . We conclude
that ζg is in H+

A , the smallest field over which φ is defined. Moreover, we see that H+
A is

equal to L(ζg), as, for every y in A, the coefficients of φ(y) can be expressed in terms of
those of φmin and powers of ζg. Let π ∈ A have ord∞(π) = −1 and ε(π) = 1. Then we
have

1 = µφ(π) = ζ1−q−deg(∞)ord∞(π)
µφmin(π) = ζ1−Qµφmin(π)

and therefore, ζQ−1 is in L. We conclude that [H+
A : L] is at most (Q− 1)/(q− 1).

By lemma 5.31, the group F×Q/F×q acts on the set X of ε-normalised Drinfeld modules
and the orbits consists precisely of all the ε-normalise Drinfeld modules in a single class.
From theorem 5.32 and corollary 5.23 we conclude that there is a short exact sequence of
Abelian groups

0−→ F×Q/F×q −→Cl+(A)−→Cl(A)−→ 0.

Moreover, we know from theorem 6.11 that Cl+(A) is isomorphic to Gal(H+
A /k).

Let y be a non-constant element of A. An element λ of F×Q will map an ε-normalised
Drinfeld module φ to an isomorphic module φ′ = λφλ−1. This element gives an element
σλ of the Galois group by saying that it sends the coefficients of φ(y), which generate
H+

A , to the coefficients of φ′(y). From the proof of theorem 5.27 we see that this implies
that σλ fixes the generators of the minimal field of definition of φ. We conclude that the
minimal field of defintion of φ is fixed by the subgroup F×Q/F×q of Gal(H+

A /k). By the
degree estimate we made earlier, it cannot be fixed by any larger subgroup.

We see that there is a single minimal field of definition for all rank 1 Drinfeld modules
over C. We call this field HA. It is an Abelian extension of k and Gal(HA/k) is isomorphic
to Cl(A). As HA is a subfield of H+

A it is unramified at all non-zero primes of A. As it
is a subfield of K as per lemma 5.24, HA is completely split at ∞. By class field theory,
we therefore know that HA is the maximal Abelian extension of k with these properties,
which we call the Hilbert class field of A.

The extension H+
A /HA is generated by the element ζq−1 from before. Recall that ζQ−1 is

in HA and that the degree of the extension is (Q− 1)/(q− 1). As FQ is contained HA, the
(Q− 1)/(q− 1)-th roots of unity are in HA. We see that H+

A /HA is a Kummer extension.
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• Ramified extensions

Let m be a non-zero proper ideal of A. In this section we describe how to obtain class
fields with conductor m using Drinfeld modules over C. Again we first fix a sign function
ε and work with ε-normalised modules. Afterwards we ‘fix’ the behaviour at ∞.

Let Im be the group of ideals of A that are coprime to m. Let Pm be the subgroup of
principal ideals (x) with x ≡ 1 mod m and P+

m the subgroup of Pm of those principal
ideals (x) that have ε(x) = 1. We call the quotient Clm(A) = Im/Pm the ray class group
modulo m and Cl+m(A) = Im/P+

m the narrow ray class group modulo m relative to ε.

Let φ be an ε-normalised Drinfeld module. As before, we write Φ[m] for the set of m-
torsion points of φ in C. Note that Φ[m] is a cyclic A-module, isomorphic to A/m. This
module has #(A/m)× elements that generate it as an A-module. Let Xm be the set of pairs
(φ, λ) where φ is an ε-normalised Drinfeld module and λ is a generator of Φ[m] in C.

Lemma 6.12. Let an ideal a of A coprime to m, an ε-normalised Drinfeld module φ and a gener-
ator λ of the m-torsion of φ be given. Then [φ(a)](λ) is a generator of the m-torsion of a ∗ φ.

Proof. Let b be an ideal coprime to m such that ab is a principal ideal generated by x,
where x ∈ A is congruent to 1 modulo m and has ε(x) = 1. Write ψ for the ε-normalised
Drinfeld module a ∗ φ. Note that b ∗ ψ is φ.

It is clear that φ(a) induces a map from the m-torsion of φ to that of ψ. Also, ψ(b) induces
a map from the m-torsion of ψ to that of φ. The compositions satisify

ψ(b)φ(a) = (a ∗ φ)(b)φ(a) = φ(ab) = µφ(x)−1φ(x) = φ(x)

and
φ(a)ψ(b) = (b ∗ ψ)(a)ψ(b) = ψ(ab) = µψ(x)−1ψ(x) = ψ(x)

and are therefore both the identity. We conclude that φ(a) is an isomorphism from the
m-torsion of φ to that of ψ and therefore maps a generator of the one to a generator of the
other.

Theorem 6.13. Let a be an ideal of A coprime to m and (φ, λ) in Xm. Then we define a ∗ (φ, λ)
as (a ∗ φ, [φ(a)](λ)). This operation induces an action of Cl+m(A) on Xm. Under this action, Xm

is a torsor for Cl+m(A).

Proof. We first identify precisely when an ideal a of A acts trivially on Xm. From theorem
5.32 we know that a fixes an ε-normalised Drinfeld module φ if and only if a is a principal
ideal with a generator x such that ε(x) = 1. On the m-torsion, such an x acts, by definition,
through multiplication by x. The only way for x to leave a generator λ of this torsion
module fixed, is if x is congruent to 1 modulo m.

We conclude that the operation decends to an action of Cl+m(A) on Xm which is faithful,
as we have precisely divided out the ideals that do nothing. To show that it is in fact a
torsor, we count elements on either side. The number of elements of Xm is the number of
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ε-normalised Drinfeld modules times the number of generators for the m-torsion of one
such module, Similarly, we see that there is an exact sequence

0−→(A/m)×−→Cl+m(A)−→Cl+(A)−→ 0

so the number of elements of Cl+m(A) is the number of elements of Cl+(A) times the
number of invertible elements in A/m. We conclude that the two sets have the same
size.

Proposition 6.14. Let φ be an ε-normalised Drinfeld module. Then the field K+
m = H+

A (Φ[m])
is independent of the choice of φ. It is finite Galois over k and the Galois group is a subgroup of
Cl+m(A) and therefore Abelian.

Proof. Let a be an ideal of A coprime to m. Then we know from lemma 6.12 that φ(a) is
an isomorphism from the m-torsion of φ to that of a ∗ φ. As φ(a) is a polynomial with
coefficients in H+

A , we see that the field generated by the m-torsion points of a ∗ φ is
contained in H+

A (Φ[m]). By the transitivity of the action of Cl+m(A) it follows that the field
does not depend on the chosen φ.

Note that K+
m is obtained by adjoining all the roots of the polynomial φ(m) with coef-

ficients in H+
A to H+

A and is therefore finite Galois over H+
A . As this field is itself finite

Galois over k, we conclude that the K+
m is finite Galois over k.

Let (φ, λ) be in Xm and σ in Gal(K+
m/k). Then σφ is again an ε-normalised Drinfeld

module. Moreover σ sends the m-torsion of φ to that of σφ, so it sends λ to a generator of
the m-torsion of σφ. We conclude that σ(φ, λ) := (σφ, σ(λ)) gives an action of Gal(K+

m/k)
on Xm. From the defining formulas we see that this action commutes with the action of
Cl+m(A). Therefore there is an injective map from Gal(K+

m/k) as required.

Lemma 6.15. Let O be the integral closure of A in K+
m , let φ be an ε-normalised Drinfeld module

and let p be a non-zero prime ideal of O that does not divide m. Then the m-torsion of φ is
contained in O and the reduction map to the m-torsion of the reduction of φ at p is bijective.

Proof. Recall that B is the integral closure of A in H+
A . The coefficients of φ(x) are in B for

every x in A. Therefore, the coefficients of φ(m) are in B. Moreover, φ(m) is monic, so the
roots of φ(m) are integral over B and therefore over A. These roots lie in K+

m , so they are
in O.

Write φp for the reduction of φ modulo p. The polynomial φ(m), which is separable,
factors into distinct linear factors in O. So φp(m) also factors into linear factors mod p,
however, they need no longer be distinct. However, as m is coprime to p, we know that
φp(m) is a separable polynomial, so there are no double factors. We conclude that the
reduction map is bijective as required.
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Theorem 6.16. The field K+
m is unramified at all the non-zero primes of A that are coprime to m.

For every ideal a of A coprime to m and every (φ, λ) in Xm we have

σa(φ, λ) = a ∗ (φ, λ),

where σa is the image of a in Gal(K+
m/k) under the Artin map. It follows that Gal(K+

m/k) is
isomorphic to Cl+m(A).

Proof. Let p be a non-zero prime of A that is coprime to m. Let q be an extension prime of
p in O. Suppose that σ is in the inertia group of p. Let (φ, λ) be in X. Write φr and λr for
the reductions of φ and λ modulo q.

By assumption σ acts as the identity modulo q, so we have σφr = φr and σ(λr) = λr. The
former implies, by lemma 6.10 that σφ = φ and then the latter implies that σ(λ) = λ by
the previous lemma. We conclude that σ acts trivially on X and is therefore 1. Thus the
inertia group at p is trivial, i.e., K+

m is unramified at p.

From the proof of theorem 6.11, we know that φr(p) acts as σp modulo p, so we see that
the required relation holds for prime ideals coprime to m. This implies that it is true for
all ideals of A that are coprime to m.

Just as in the case of unramified extensions we have a natural copy of F×Q/F×q inside
Gal(K+

m/k) and Cl+m(A). In fact, cf. [Hayes2], this subgroup is both the decomposition
and inertia group at ∞. It follows that Km, the fixed field, is unramified at all the primes
of A coprime to m and totally split at ∞. Its Galois group is isomorphic to Clm(A) under
the Artin map. The field Km is the maximal Abelian extension of k which is completely
split at ∞, unramified outside m and such that a prime splits completely if and only if it
is congruent to 1 modulo m, i.e., it is a ray class field of A.
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