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Chapter 1

Introduction

In daily life, one is often confronted with the phenomenon of queueing: in the su-
permarket, at the post office or when phoning a company or government institution.
While waiting on the phone, a waiting customers sometime is told how many cus-
tomers are waiting in front of him, or what the mean waiting time is 1. In order to
be able to inform the waiting customers about their mean waiting time, some kind
of analysis of the queueing system has to be performed. This master thesis deals
with a part of evaluation of the performance of queueing systems, and especially
with simulation techniques.

Queueing systems do not only interfere in daily life, but are used in a variety of
applications such as the performance evaluation of computer systems and commu-
nication networks. In the mathematically modelling of queueing systems, an impor-
tant tool is Markov chains. One of the main points of interest is the behaviour of
the queueing system in the long run. For an irreducible, ergodic (i.e. aperiodic and
positive-recurrent) finite-state Markov chain with probability matrix P , this long
run behaviour follows the stationary distribution of the chain given by the unique
probability vector π which satisfies the linear system π = πP . However, it may be
hard to compute this stationary distribution, especially when the finite state space
is huge which is frequent in queueing models. In this case, several approaches have
been proposed to get samples of the long run behaviour of the system.

The most classical methods are indirect. They consists in first computing an
estimation of π and then sample according to this distribution.

Estimating π can be done through efficient numerical iterative methods solving
the linear system π = πP [10]. Even if they converge fast, they do not scale when
the state space (and thus P ) grows. Another approach to estimate π is to use
regenerative simulation [3, 6] based on the fact that on a trajectory of a Markov
chain returning to its original state, the frequency of the visits to each state is
steady state distributed. This technique does not suffer from statistical bias but
is very sensitive to the return time to the regenerative state. This means that the
choice of the initial state is crucial but also that regenerative simulation complexity
increases fast with the state space. This is exponential in the number of queues.

There also exist direct techniques to sample states of Markov chain according to
its stationary distribution. The classical method is Monte Carlo simulation. This

1In Dutch, this comes down to the the phrases everyone is familiar with like ”Er zijn nog twee
wachtenden voor u” (”There are two people waiting in front of you”) and ”De gemiddelde wachttijd
bedraagt 6 minuten” (”The mean waiting time is 6 minutes”). Lazy companies however only put
on some (often annoying) music, and the only information one gets is that ”al onze medewerkers
zijn in gesprek, een momentje geduld alstublieft” (”All employees are occupied, so please hang
on”).
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1. Introduction

method is based on the fact that for an irreducible aperiodic finite-state Markov
chain with initial distribution π(0), the distribution π(n) of the chain at time n
converges to π as n gets very large:

lim
n→∞

π(n) = lim
n→∞

π(0)Pn = π.

After running the Markov chain for a long time, the state of the chain will not
depend on the initial state anymore. However, the important question is how long
is long enough? That is, when is n sufficiently large such that |π(n) − π| 6 ε for
a certain ε > 0? Moreover, the samples generated by this method will always be
biased.

In 1996, Propp and Wilson [7] solved these problems for Markov chain sim-
ulation by proposing an algorithm which returns exact samples of the stationary
distribution very fast. The striking difference between Monte Carlo simulation and
this new algorithm is that Propp and Wilson do not simulate into the future, but go
backwards in time. The main idea is, while going backwards in time, to run several
simulations, starting from all states until the output-state at t = 0 is the same for
all of these. If the output is the same for all runs, we say that the chain has cou-
pled. Because of this coupling property and the backward scheme, this algorithm
has been called Coupling From The Past (from now on: CFTP).

When the coupling from the past technique is applicable, one gets in finite time
one state with steady-state distribution. Then one can use either one long-run
simulation from this state or replicate independently the CFTP algorithm to get a
sample of independent steady-state distributed variables. The replication technique
has been applied successfully in finite capacity queueing networks with blocking and
rejection (very large state-space) [13]. The efficiency of the simulation allows also
the estimation of rare events (blocking probability, rejection rate) [12].

One can apply the CFTP technique to finite capacity queueing networks. The aim
of this master thesis is to study the simulation time needed to get a stationary
sample for finite capacity networks. More precisely, we study the coupling time
τ of a CFTP algorithm (i.e. the number of steps needed to provide one sample).
This coupling time is a random variable and we try to set bounds on the expected
coupling time.

The organisation of this thesis is as follows: In Chapter 2 we will introduce the
simulation method of CFTP. We will linger on the difference between the back-
ward algorithm and the forward equivalent. In Chapter 3 we introduce queueing
networks and explain that CFTP is applicable after uniformization of the system.
Furthermore, we will derive some general bounds on the coupling time.

Chapter 4 is dedicated to the analysis of a single queue with a finite capacity and
a single server (M/M/1/C queue). Of course, one does not need to run simulations
to obtain the stationary distribution of this simple model since they can be easily
computed [9, 11]. However, we will need the results on the coupling time of a simple
queue in order to construct a bound for acyclic networks. For the M/M/1/C queue,
we will derive a recurrence expression for the exact coupling time. Moreover, we
will provide some easily calculable bounds which are quite good with respect to
the exact coupling time. Finally, we will study the coupling time by a generating
function approach, so to set a stochastical bound on the distribution of the coupling
time.

In Chapter 5 we construct a bound on the coupling time of a acyclic queue-
ing network, by using the results of the previous chapter. This bound is tested
in Chapter 6. We ran several runs of the CFTP algorithm for different acyclic
queueing networks. These simulations are carried out with the simulation software
Psi2 which is developed in the ID-IMAG laboratory, Grenoble. Finally, Chapter 7
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1. Introduction

summarises the results of this thesis and points out topics for further research.
This thesis is the result of a six month internship in the ID-IMAG laboratory

in Grenoble, France. In order to make clear for the reader what results are directly
related to the research project in Grenoble and what results have been published in
literature, we mark every result that is taken from the literature with its reference
by [·]. The main outline is that the results of the Chapters 2 and 3 are mainly based
on the literature, whereas the Chapters 4, 5 and 6 provide mainly new material.
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Chapter 2

The coupling from the past
algorithm

The aim of this chapter is introducing a simulation method which is called coupling
from the past. This simulation algorithm was introduced by Propp and Wilson [7].
To do this, we will first define a Markov chain in terms of a transition function
which is driven by events. Then we will take a look at a coupling method into the
future and its restrictions, before turning to coupling from the past in section 2.3.

2.1 Markov chains and simulation

Let {Xn}n∈N
be a discrete time Markov chain with a finite state space S and a

transition matrix P = (pi,j). In order to run simulations of the Markov chain, we
need to specify how to get from Xn to Xn+1. The main ingredients for this are
events and a transition function.

Definition 2.1. [13] An event e is an application defined on S that associates to
each state s ∈ S a new state.

The set of all events is called E , and we suppose that the set E =
{
e0, . . . , eM

}
is

finite. Each event e has a probability p (e) and we suppose that these probabilities
are strictly positive for each event e ∈ E . The events in a Markov chain can be quite
natural. For example, in a random walk on Z, the set E consists of two elements,
e0 and e1. The event e0 is a step from s to s + 1 and the other event e1 is a step
from s to s− 1 for all s ∈ S.

The second ingredient is the transition function

φ : S × E → S,

with P (φ(i, e) = j) = pi,j for every pair of states (i, j) ∈ S and for any e ∈ E . The
function φ could be considered as a construction algorithm and e the innovation
for the chain. Now, the evolution of the Markov chain is described as a stochastic
recursive sequence

Xn+1 = φ (Xn, en+1) , (2.1)

with Xn the state of the chain at time n and {en}n∈N
an independent and identically

distributed sequence of random variables. The sequence of states {Xn}n∈N
defined

by the recurrence (2.1) is called a trajectory.
To run a simulation using (2.1), we need to specify how to generate the events.

A way to generate the events is by using the inverse transformation method [9], p.

4



2.1. Markov chains and simulation

644. Let u be distributed uniformly on [0, 1], and define f : [0, 1]→ E as:

f (u) =





e0 for u ∈
[
0, p

(
e0
))
,

e1 for u ∈
[
p
(
e0
)
, p
(
e0
)

+ p
(
e1
))
,

...
...

ei for u ∈
[∑i−1

j=0 p
(
ej
)
,
∑i

j=0 p
(
ej
))
,

...
...

eM for u ∈
[∑M−1

j=0 p
(
ej
)
, 1
]
.

(2.2)

Now, when we start in state s ∈ S, one can run a simulation of a trajectory of a
Markov chain from 0 to m by performing Algorithm 1.

Algorithm 1 Forward simulation of a trajectory of length m

n=0;
s ← X0 {choice of initial value X0}
repeat

n=n+1;
u ← Random number; {generation of un}
e ← f(u); {determination of en}
s ← φ(s, e); {determination of state at time n}

until n=m
return s

Several Markov chains, each of them being constructed using a different function
φ, all have the same transition matrix P . The next example illustrates this:

Example 2.1. Suppose we have two states. We will construct three Markov chains,
each of them having a transition matrix P with

P =

(
1
2

1
2

1
2

1
2

)
.

1
2

1
2

1
2

10
1
2

Figure 2.1: The transition graph of a Markov chain with transition matrix P of Example
2.1.

1. Markov chain 1
Let the set of events E consists of two events e0 and e1 with p

(
e0
)

= p
(
e1
)

=
1/2 and let the function φ be defined as:

φ
(
s, e0

)
=

{
0 for s = 0,

1 for s = 1,

and

φ
(
s, e1

)
=

{
1 for s = 0,

0 for s = 1.
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2.2. Coupling into the future

This means that if we apply event e0 , the chain stays in its present state, no
matter what its present state is. The event e1 represents a transition to the
other state for both states 0 as 1.

2. Markov chain 2
Let the set of events E again consists of two events e0 and e1 with p

(
e0
)

=

p
(
e1
)

= 1/2 and let the function φ′ be defined as:

φ′
(
s, e0

)
=

{
0 for s = 0,

0 for s = 1,

and

φ′
(
s, e1

)
=

{
1 for s = 0,

1 for s = 1.

Remark that indeed the events are different form the events used for the
previous Markov chain. Now, if the present state is state 0 and we apply
event e0, we stay in state 0 just as in the previous Markov chain. However,
if we apply event e0 if we are in state 1, we make a transition to state 0, and
this is different from the definition of event e0 in the first Markov chain.

3. Markov chain 3
Let the set of events E now consist of four events e0, e1, e2 and e3 with
p
(
ei
)

= 1/4 for i = 0, . . . , 3. Let the function φ′′ be defined as:

φ′′
(
s, e0

)
=

{
0 for s = 0,

0 for s = 1,

and

φ′′
(
s, e1

)
=

{
0 for s = 0,

1 for s = 1,

and

φ′′
(
s, e2

)
=

{
1 for s = 0,

0 for s = 1,

and

φ′′
(
s, e3

)
=

{
1 for s = 0,

1 for s = 1.

Now the three Markov chains all have the same transition matrix P . 4

2.2 Coupling into the future

Let φ(n) : S × En → S denote the function whose output is the state of the chain
after n iterations, starting in state s ∈ S. That is,

φ(n) (s, e1→n) = φ (. . . φ (φ (s, e1) , e2) , . . . , en) . (2.3)

6



2.2. Coupling into the future

This notation can be extended to sets of states. So for a set of states A ⊂ S we
note

φ(n) (A, e1→n) =
{
φ(n) (s, e1→n) , s ∈ A

}
.

Assume we run |S| copies of a Markov chain, and each copy starts in a different
state s ∈ S. Then the number of states that can be attained after n iterations is
equal to

∣∣φ(n) (S, e1→n)
∣∣ . Consider an arbitrary sequence of events {en}n∈N

. Let

af
n =

∣∣φ(n) (S, e1→n)
∣∣ . The index f indicates that we are using the forward scheme.

Lemma 2.1. The sequence of integers {af
n}n∈N is non-increasing.

Proof. The cardinal af
n of the image of φ(n−1) (S, e1→n−1) by φ(., en) is less or equal

than the cardinal af
n−1 of φ(n−1) (S, e1→n−1) . Since

φ(n) (S, e1→n) = φ
(
φ(n−1) (S, e1→n−1) , en

)
,

the sequence
{
af

n

}
n∈N

is non-increasing.

Intuitively this is clear, since the transition function φ maps each pair (s, e) on
exactly one state. Therefore, when starting with m 6 |S| copies, the number of
states one can reach after n iterations cannot exceed m.

Theorem 2.1. Let φ be a transition function on S × E. There exists an integer l∗

such that
lim

n→+∞

∣∣∣φ(n) (S, e1→n)
∣∣∣ = l∗ almost surely.

Proof. This result is based on the previous lemma and the fact that S is finite.
Consider an arbitrary sequence of events {en}n∈N. Lemma 2.1 implies that the
sequence {af

n}n∈N converges to a limit l. Because the sizes of these sets belong to
the finite set {1, · · · , |S|}, there exists a n0 ∈ N such that

af
n0

=
∣∣∣φ(n0) (S, e1→n0

)
∣∣∣ = l.

Consider now l∗ the minimum value of l among all possible sequences of events.
Then there exists a sequence of events {e∗n}n∈N and an integer n∗

0 such that

∣∣∣φ(n) (S, e∗1→n)
∣∣∣ = l∗ for all n > n∗

0.

As a consequence of the Borel-Cantelli Lemma, almost all sequences of events
{en}n∈N include the pattern e∗1→n∗

0
. Consequently, the limit of the cardinality

of φ(n) (S, e1→n) is less than or equal to l∗. The minimality of l∗ completes the
proof.

This means that when starting the |S| copies from the different initial states,
after running enough iterations, the set of attainable states will be of size `∗.

Definition 2.2. The system couples if `∗ = 1 with probability 1.

Note that the coupling property of a system φ depends only on the structure of
φ and that the probability measure on E does not affect the coupling property. The
proof of Theorem 2.1 shows that in order to couple with probability 1, it suffices
to have at least one sequence of events that ensures coupling. Since the existence
of such a sequence depends on the chosen transition function φ, the choice of the
transition function is important. The next example shows this.

7



2.2. Coupling into the future

Example 2.2. Recall that the three Markov chains from Example 2.1, constructed
by the functions φ, φ′ and φ′′ respectively, all have the same transition matrix P .
These three transition functions are shown in Figure 2.2. In this figure, we see for
the three transition functions two intervals [0, 1], for state 0 and 1 respectively, and
the events. The correspondence between the unit interval and the events is obtained
by the method of (2.2). A dashed interval means that the transition function makes
a transition to state 0 and a blank interval means that the transition function makes
a transition to state 1.
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�������������������

�������������������
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11
20

φ (1, e)

φ (0, e)

e0 e1

(a) The transition function φ
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φ′ (1, e)
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e0 e1

(b) The transition function φ′
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11
2

3
4

1
4

φ′′ (1, e)

φ′′ (0, e)

0

e0 e1 e2 e3

(c) The transition function φ′′

Figure 2.2: Three different transition functions all having the same transition matrix.

Now, coupling corresponds to having an interval (a, b) ∈ [0, 1] which has the
same colour for state 0 as for state 1. So it is clear from Figure 2.2.a. that the
system represented by the transition function φ can never couple since the dashed
intervals do not match. However, if we look at Figure 2.2.b. for function φ′, we
see that every iteration step leads to coupling. Finally, function φ′′ only assures
coupling for the events e0 and e3 (Figure 2.2.c). 4

Definition 2.3. The forward coupling time τ f is a random variable defined by

τf = min
{
n ∈ N such that

∣∣∣φ(n) (S, e1→n)
∣∣∣ = 1

}
.

Provided that the system couples, the forward coupling time τ f is almost surely
finite. From time τf on, all trajectories issued from all initial states at time 0 have
collapsed in only one trajectory.

From now on, we suppose the Markov chain {Xn}n∈N is irreducible and aperi-
odic. Then Xn has a unique stationary distribution. However, P (Xτf = s) 6= πs in
general. This means that the distribution of the state where coupling occurs (i,.e
the stochastic variable Xτf ) is not the stationary distribution of the Markov chain.
The next counterexample, obtained from [5], p. 81, shows that forward simulation
does not yield a sample that has the stationary distribution.

Example 2.3 (Counterexample, [5]). Suppose we have a Markov chain with
state space S = {0, 1} and transition matrix

P =

(
1
2

1
2

1 0

)
.

8



2.3. Coupling from the past

1
2

1

1
2

10

Figure 2.3: The transition graph of the Markov chain of Example 2.3

The stationary distribution π is the solution of π = πP with the normalization
equation π0 + π1 = 1. Solving leads to

π = (π0, π1) =

(
2

3
,
1

3

)
.

Let us run two copies of the chain, one starting in state 0 and the other one in state 1,
and suppose that they couple at time τ f . Now we will show that P (Xτf = 0) 6= π0.
Because of the definition of τ f , at time τf − 1 the two copies cannot be in the same
state. Thus at time τ f − 1, one copy is in state 0 and the other in state 1. Since
p10 = 1, the copy being in state 1 at time τ f − 1, will be in state 0 at time τ f .
Hence, P (Xτf = 0) = 1. and thus coupling always occurs in state 0. This is not in
agreement with the stationary distribution π. 4

Let e∗1→n∗

0
be a sequence of events that ensures coupling. Then the probability

that this sequence occurs equals p (e∗1) · p (e∗2) · · · · · p
(
e∗n0

)
. If τf > k · n∗

0, then the
sequence e∗1→n∗

0
does not appear in the events in the simulation run from time 1 up

to time k · n∗
0. Then the sequence e∗1→n∗

0
does not appear in the events used for the

simulation from time i ·n∗
0 + 1 up to time (i+ 1) ·n∗

0 for i = 0, . . . , k− 1. Since this
are k independent events, it follows that,

P(τf
> k.n∗

0) 6
(
1− p(e∗1).p(e∗2) . . . p(e∗n0

)
)k
. (2.4)

Thus the existence of some pattern e∗1→n∗

0
that ensures coupling, guarantees that

τf is stochastically upper bounded by a geometric distribution.

2.3 Coupling from the past

2.3.1 General coupling from the past

The iteration scheme of (2.3) can be reversed in time as it is usually done in the
analysis of stochastic point processes. To do this, one needs to extend the sequence
of events to negative indexes. The difference between coupling into the future
and coupling from the past is the order of using the events. Using coupling into
the future, a trajectory of length n of a single state s is obtained by choosing a
sequence of events e1→n and applying (2.3). In a simulation run, the first event
used is e1, and the last one is en. While using coupling into the past, a trajectory
of length n of a single state s is obtained by choosing a sequence of events e−n+1→0

and applying:

φ(n)(s, e−n+1→0) = φ (. . . φ (φ (s, e−n+1) , e−n+2) , . . . , e0) .

Thus now the the first event used is e−n+1, and the last one is e0. In other words,
coupling into the past adds events at the beginning of the simulation, whereas
coupling into the future adds events at the end of the simulation.

9



2.3. Coupling from the past

Consider an arbitrary sequence e−n+1→0 of events. Analogous to the definition
of
{
af

n

}
n∈N

of the previous section, we define the sequence
{
ab

n

}
n∈N

with ab
n =∣∣φ(n) (S, e−n+1→0)

∣∣ . Now, ab
n counts the number of possible states at time 0 when

applying the sequence e−n+1→0 in a simulation run. By the same reasoning as
in Lemma 2.1 and Theorem 2.1, one can show that the sequence

{
ab

n

}
n∈N

is non-
increasing and converges to a limit. Consequently, the system couples if the sequence{
ab

n

}
n∈N

converges almost surely to a set with only one element. Provided that the

system couples, there exists a finite time τ b, the backward coupling time almost
surely, defined by

τ b = min
{
n ∈ N; such that

∣∣∣φ(n) (S, e−n+1→0)
∣∣∣ = 1

}
.

A sequence {un}n∈Z
is called stationary if for every n = 1, 2, . . . we have

(u0, . . . , un) = (uk, . . . , uk+n) for all k ∈ Z

in distribution. Every independent and identically distributed sequence is station-
ary.

The main result of the backward scheme is the following theorem [7].

Theorem 2.2. Provided that the system couples, the state when coupling occurs
for the backward scheme, is steady state distributed.

Proof (based on [14]). For all n > τ b and all s ∈ S we can split the backward
scheme in first a trajectory from time −n+ 1 up to time −τ b and then a trajectory
from time −τ b + 1 up to time 0. In doing so, we see that

φ(n) (s, e−n+1→0) = φ(τb)
(
φ(n−τb) (s, e−n+1→−τb) , e−τb+1→0

)
.

By definition of τ b, for all s ∈ S we have φ(τb) (s, e−τb+1→0) = s′ for a certain
s′ ∈ S. Therefore,

φ(τb)
(
φ(n−τb) (s, e−n+1→−τb) , e−τb+1→0

)
= s′,

and thus
φ(n) (s, e−n+1→0) = φ(τb) (s, e−τb+1→0) , (2.5)

for n > τ b and all s ∈ S.
Let Y denote the state generated by the backward scheme and let a be an

arbitrary state. Then

P (Y = a) = P

(
φ(τb) (s, e−τb+1→0) = a

)
,

= P

(
∞⋃

n=0

{
φ(τb) (s, e−τb+1→0) = a, τ b

6 n
})

,

= P

(
∞⋃

n=0

{
φ(n) (s, e−n+1→0) = a, τ b

6 n
})

,

= lim
n→∞

P

(
φ(n) (s, e−n+1→0) = a

)
.

Since the sequence {en}n∈Z
is independent and identically distributed, the sequence

is stationary and therefore

φ(n) (s, e−n+1→0) = φ(n) (s, e1→n)

10



2.3. Coupling from the past

in distribution. Hence,

lim
n→∞

P

(
φ(n) (s, e−n+1→0) = a

)
= lim

n→∞
P

(
φ(n) (s, e1→n) = a

)
.

Since the Markov chain is irreducible and aperiodic, limn→∞ P
(
φ(n) (s, e1→n) = a

)
=

πa. It follows that P (Y = a) = πa and thus the value generated by the backward
scheme is steady state distributed.

The above proof goes wrong for coupling into the future. Due to the different
order of placing the events in a simulation run, the equivalence of (2.5) for coupling

into the future, φ(n) (e1→n) = φ(τf) (s, e1→τf ) , does not hold. We can see this as

follows: by the definition of τ f , for all s ∈ S we have φ(τf) (s, e1→τf ) = s′ for a
certain s′ ∈ S. Then for all n >: τf :

φ(n) (e1→n) = φ(n−τf)
(
φ(τf) (s, e1→τf ) , eτf+1→n

)
= φ(n−τf) (s′, eτf+1→n) .

Since φ(n−τf) (s′, eτf+1→n) 6= s′ in general, it follows that

φ(n) (e1→n) 6= φ(τf) (s, e1→τf )

in general.

From the result of 2.2, a general algorithm (2) sampling the steady state can be
constructed.

Algorithm 2 Backward-coupling simulation (general version)

for all s ∈ S do
y(s) ← s {choice of the initial value of the vector y, n = 0}

end for
repeat

e ← Random event; {generation of e−n+1}
for all s ∈ S do
y(s) ← y(φ(s, e));
{y(s) state at time 0 of the trajectory issued from s at time −n+ 1}

end for
until All y(x) are equal
return y(x)

The working of the algorithm is illustrated in Figure 2.4 for a Markov chain
with state space S = {0, 1, 2, 3}. First, we set n = 1 and we generate an event
e−n+1 = e0 ∈ E . Suppose that






φ (0, e0) = 0,
φ (1, e0) = 2,
φ (2, e0) = 3,
φ (3, e0) = 1.

Since the output is not a single state, we are obliged to do a second run with n = 2.
Suppose that we generate event e−1 and that the sequence e−1→0 = e−1, e0 delivers





φ (0, e−1→0) = 2,
φ (1, e−1→0) = 3,
φ (2, e−1→0) = 1,
φ (3, e−1→0) = 2.

11
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2

1

0

3

2

1

0

3

2

1

0

3

0−1−2−3 Time

0−1−2−3 Time

0−1−2−3 Time

Figure 2.4: The coupling from the past algorithm applied to a Markov chain with four
states. The transitions carried out by the algorithm are in solid lines for every step and
the others are dashed.

Since the chain has not coupled yet, a third iteration is carried out by generating
event e−2. Suppose that the sequence e−2→0 yields






φ (0, e−2→0) = 2,
φ (1, e−2→0) = 2,
φ (2, e−2→0) = 2,
φ (3, e−2→0) = 2.

Now the chain has coupled and the output of the algorithm is state 2.
Note that for the iteration at time −n we re-use the sequence of events from

time −n up to 0. This means that this sequence of events needs to be stored. One
can ask why we cannot take a new sequence of events for every iteration, so as to
avoid the storage of events. However, the following example, taken from [5] p. 82,
shows that by taking a new sequence of events for every iteration, biased samples
are obtained.

Example 2.4. [5] We use again the Markov chain of Example 2.3. We have two

12



2.3. Coupling from the past

events e0 and e1 in the chain and a transition function φ with:

φ
(
s, e0

)
=

{
0 for s = 0,

0 for s = 1,

and

φ
(
s, e1

)
=

{
1 for s = 0,

0 for s = 1.

Now we apply the modified algorithm with a new random sequence of events
for each iteration. Let Y denote the output of this modified algorithm and τ b

is the backward coupling time. From the results of Example 2.3 it follows that
P
(
τ b = 1

)
= 1/2 and that P

(
Y = 0

∣∣τ b = 1
)

= 1. When the coupling time τ b

equals 2, the first iteration has not lead to coupling. This happens with proba-
bility 1/2. From time −2, there are four possible sequences of events. Of these
four sequences, the three sequences consisting of at least once the event e0 lead to
coupling. Therefore, P

(
τ b = 2

)
= 1/2 · 3/4 = 3/8. Of the three coupling sequences

of length two, there are two (namely
{
e0, e0

}
and

{
e1, e0

}
) which lead to coupling

in state 0. Hence, P
(
Y = 0

∣∣τ b = 2
)

= 2/3. Now:

P (Y = 0) =

∞∑

k=0

P
(
τ b = k, Y = 0

)

> P
(
τ b = 1, Y = 0

)
+ P

(
τ b = 2, Y = 0

)

= P
(
τ b = 1

)
P
(
Y = 0

∣∣τ b = 1
)

+ P
(
τ b = 2

)
P
(
Y = 0

∣∣τ b = 2
)

=
1

2
· 1 +

3

8
· 2
3

=
3

4
>

2

3
= π0.

Thus this modified algorithm does not generate samples which are distributed ac-
cording to the stationary distribution. 4

The Algorithm 2.4 picks an event e, computes the update function φ (s, e) and
and adds this step to the trajectory in every loop. This procedure is performed for
all s ∈ S until coupling at time τ b. The cost of the algorithm is the number of calls
to the transition function φ. Therefore, the mean complexity cφ to generate one
sample is

cφ = O
(
E
[
τ b
]
· |S|

)
. (2.6)

2.3.2 Monotone coupling from the past

From (2.6) it follows that the coupling time τ b is of fundamental importance for
the efficiency of the sampling algorithm. To improve its complexity, we could try
to reduce the factor |S| or reduce the coupling time. We will first take a look at
reducing the factor |S|.

Definition 2.4. A relation ≺ on a set S is called a partial order if it satisfies the
following three properties:

(i) reflexivity: a ≺ a for all a ∈ S.

(ii) anti-symmetry: if a ≺ b and b ≺ a for any a, b ∈ S, then a = b

(iii) transitivity: if a ≺ b and b ≺ c for any a, b, c ∈ S, then a ≺ c.

Definition 2.5. A transition function φ : S×E → S is called monotone if for every
e ∈ E and every x, y ∈ S with x ≺ y we have φ (x, e) ≺ φ (y, e).

13



2.3. Coupling from the past

Suppose that the state space S is partially ordered by a partial order ≺ and
denote by MAX and MIN the set of maximal, respectively minimal elements of
S for the partial order ≺. Then for every s ∈ S there exists a s1 ∈ MIN and
a s2 ∈ MAX such that s1 ≺ s ≺ s2. Furthermore, suppose that the transition
function φ is monotone for each event e. Consequently,

φ(s1, e) ≺ φ(s, e) ≺ φ(s2, e),

and
φ(s1, e−n+1→0) ≺ φ(s, e−n+1→0) ≺ φ(s2, e−n+1→0).

Thus it is sufficient to simulate trajectories starting from the maximal and minimal
states. Note that when there is only one minimal and only one maximal element in
the state space S, the monotonicity property reduces the number of starting points
for each iteration from |S| to 2.

Now, suppose that our system is monotone with |MAX | = |MIN | = 1. Then it
suffices to run the two copies starting from MAX and MIN . For each iteration we
need to run the two copies up to time 0 because we cannot test whether coupling
has occurred from the previous iterations. We run the copies until coupling occurs
at time τ b. Then the total number of calls to the transition function φ equals

2 ·
(
1 + 2 + 3 + · · ·+ τ b

)
=
(
τ b
)2

+ τ b, (2.7)

where the 2 in front comes from the fact that we run two copies. This means that

the mean complexity cφ = O
(
E

[(
τ b
)2])

for the monotone case.

Now we will show that by smartly choosing the starting points, we can reduce the
complexity of the monotone case. So let us take the starting points −1,−2,−4, . . . .
Then we run the chain until the smallest integer k with 2k > τ b. By doing so, one
can overshoot the real coupling time. However, this is not a problem since we have
seen that

φ(n) (s, e−n+1→0) = φ(τb) (s, e−n+1→0)

for every n > τ b. Then the number of calls to φ equals

2 ·
(
1 + 2 + 4 + · · ·+ 2k−1 + 2k

)
,

and by induction one can show that

2 ·
(
1 + 2 + 4 + · · ·+ 2k−1 + 2k

)
< 2k+2. (2.8)

Now we will compare the number of iterations of (2.7) with (2.8). By definition
of k, we have 2k−1 6 τ b 6 2k. When applying the monotone algorithm without the

doubling period, it follows from (2.7) that we need to perform at least
(
2k−1

)2
+2k−1

calls to φ. When applying the monotone algorithm with a doubling period, one

performs less then 2k+2 calls. One can easily verify that 2k+2 <
(
2k−1

)2
+ 2k−1 for

k > 4. Thus as soon as k > 4, the doubling period scheme demands less calls than
the one step scheme. This means that as soon as τ b is bigger than 16, the doubling
scheme is more effective in monotonic systems with |MAX | = |MIN | = 1.

The monotone version with doubling period of Algorithm (2) is given by Algo-
rithm (3). In this case, we need to store the sequence of events in order to preserve
the coherence between the trajectories driven from MIN ∪MAX . A realization
of the monotone CFTP algorithm with doubling period on a random walk on five
states is shown in Figure 2.5. The partial order on this random walk is the ordinary
6.
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2.3. Coupling from the past

The equivalent of (2.8) in case of general monotony (that is: there exist MAX
and MIN , but its size is not necessarily equal to 1), is

(|MAX |+ |MIN |)
(
1 + 2 + · · ·+ 2k

)
6 (|MAX |+ |MIN |) · 4 · 2k−1,

6 (|MAX |+ |MIN |) · 4 · E
[
τ b
]
.

Thus this monotone version with doubling period leads to a mean complexity cφ

cφ = O
(
E
[
τ b
]
· (|MIN |+ |MAX |)

)
. (2.9)

Algorithm 3 Backward-coupling simulation (monotone version)

n=1;
R[n]=Random event;{array will R stores the sequence of events }
repeat

n=2.n;
for all s ∈MIN ∪MAX do
y(s) ← s {Initialize all trajectories at time −n}

end for
for i=n downto n/2+1 do

R[i]=Random event; {generates all events from time −n+ 1 to n
2 + 1}

end for
for i=n downto 1 do

for all s ∈MIN ∪MAX do
y(s) ← φ(y(s), R[i])

end for
end for

until All y(s) are equal
return y(s)

15
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Figure 2.5: A run of the coupling from the past algorithm on a random walk on
{0, 1, 2, 3, 4}. The trajectories starting from the maximal state MAX = 4 and the minimal
state MIN = 0 are in solid lines, whereas the trajectories for all other states are dashed.
The output is state 3.
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Chapter 3

The CFTP-algorithm in open
Markovian queueing
networks

In this chapter, we will explain how to apply the CFTP-algorithm on a open net-
work of queues. Furthermore, we will derive some general bounds on the backward
coupling time in a network.

3.1 CFTP in a queueing network

Consider an open network Q consisting of K + 1 queues Q0, . . . , QK . Each queue
Qi has a finite capacity (with the place at the server included), denoted by Ci,
i = 0, . . .K. Thus the state space of a single queue Qi is Si = {0, . . .Ci}. Hence,
the state space S of the network is S = S1 × · · · × SK . The state of the system is
described by a vector s = (s0, . . . , sK) with si the number of customers in queue
Qi. The state space is partially ordered by the component-wise ordering and so
there is a maximal state MAX when all queues are full and a minimal state MIN
when all queues are empty.

The network evolves in time due to exogenous customer arrivals from outside of
the network and to service completions of customers. After finishing his service at
a server, a customer is either directed to another queue by a certain routing policy
or leaves the network. A routing policy determines to which queue a customer will
go, taking into account the global state of the system. Moreover, the routing policy
also decides what happens to a customer if he is directed to a queue the buffer of
which is filled with Ci customers. We assume that customers who enter from outside
the network to a given queue arrive according to a Poisson process. Furthermore,
we suppose that the service times at server i are independent and exponentially
distributed with parameter µi.

An event in this network is characterized by the origin queue, a list of the
destination queues, a routing policy and an enabling condition. A natural enabling
condition for the event end of service is that there must be at least one customer
in the queue. network. As in the preceding chapter, E = {e0, . . . , eM} denotes the
finite collection of events of the network. With each event ei is associated a Poisson
process with parameter λi. If an event occurs that does not satisfy the enabling
condition, the state of the system is unchanged.

Example 3.1. Consider the acyclic queueing network of Figure 3.1 which is char-
acterized by 4 queues and 6 events. These 6 events are characterized by the origin
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3.1. CFTP in a queueing network

of customers, one destination queue (where queue Q−1 represents the exterior), an
enabling condition and the routing policy. In this network, customers who are di-
rected towards a queue which completely filled, are rejected and thus lost for the
system. In this network, the service rates are µ0 = λ1 + λ2, µ1 = λ3, µ2 = λ4 and
µ3 = λ5.

C

C

C

C0

1

2

3
λ

λ

λ

λ

λ
λ

0
1

2

3

4

5

event rate origin destination enabling condition routing policy
e0 λ0 Q−1 Q0 none rejection if Q0 is full
e1 λ1 Q0 Q1 s0 > 0 rejection if Q1 is full
e2 λ2 Q0 Q2 s0 > 0 rejection if Q2 is full
e3 λ3 Q1 Q3 s1 > 0 rejection if Q3 is full
e4 λ4 Q2 Q3 s2 > 0 rejection if Q3 is full
e5 λ5 Q3 Q−1 s3 > 0 none

Figure 3.1: Acyclic queueing network with rejection.

For a transition function φ we get for the event e1:

φ(., e1) : (s0, s1, s2, s3) 7−→





(s0 − 1, s1 + 1, s2, s3) if s0 > 1 and s1 < C1,
(s0 − 1, s1, s2, s3) if s0 > 1 and s1 = C1,
(s0, s1, s2, s3) if s0 = 0.

4

In addition to monotone functions, we will also define monotone events.

Definition 3.1. An event e is monotone if φ(x, e) ≺ φ(y, e) for every x, y ∈ S with
x ≺ y and ≺ a partial order on S.

Let Ni : S → Si with Ni (s0, . . . , sK) = si. So Ni returns the number of cus-
tomers in queue Qi.

Proposition 3.1. A routing event with rejection if all destinations queues are full,
is a monotone event.

Proof. ([13]) The proof is carried out by examining all possibilities. Let (x, y) ∈ S2

such that x 6 y. Let e be a routing event with origin Qi and a list of destinations
Qj1 , Qj2 , . . . , Qjl

. If yi = 0 then also xi is and thus the event does not change the
states x and y. Hence, φ(x, e) = x 6 y = φ(y, e). If yi > 0 and xi > 0, then

Ni (φ (y, e)) = yi − 1 > max {xi − 1, 0} = Ni (φ (x, e)) .

Let Qjk
be the first non saturated queue in state y. If the first non saturated queue

for state x is strictly before Qjk
, then it follows that φ(x, e) 6 φ(y, e). If Qjk

is also
the first non saturated queue for both state x as y then also φ(x, e) 6 φ(y, e). Since
x 6 y, these are the only possibilities and this completes the proof.
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Moreover, also other usual events such as routing with blocking and restart and
routing with a index policy rule (e.g. join the shortest queue) are monotone events
[4, 13].

In order to apply the CFTP algorithm, we construct a discrete-time Markov
chain by the uniformizing the system by a Poisson process with rate Λ =

∑M
i=0 λi.

One can see this Poisson process as a clock which determines when an event tran-
sition takes place. To choose which specific transition actually takes place, the
collection E of events of the network is randomly sampled with

pi = P
(
event ei occurs

)
=
λi

Λ
. for i = 0, . . . ,M.

Proposition 3.2. The uniformized process has the same stationary distribution as
the queueing network, and so does the discrete time Markov chain which is embedded
in the uniformized Markov process.

For a more detailed overview of uniformization and a proof of the above Propo-
sition, see Appendix A. Provided that events are monotone, the CFTP algorithm
can be applied to queueing networks to build steady-state sampling of the network.
One then only needs to simulate the two trajectories starting from the minimal state
MIN and the maximal state MAX . From now on, we consider queueing networks
with only monotone events.

3.2 General remarks on the coupling time

To get a first idea of the behaviour of the coupling time τ b of the CFTP algorithm,
we ran the CFTP algorithm on the network of Example 3.1. So we produced samples
of coupling time. The parameters used for the simulation are the following:

Capacity of the queues: 10 for every queue Qi, i = 0, . . . 3
Event rates: λ1 = 1.4, λ2 = 0.6, λ3 = 0.8, λ4 = 0.5 and λ5 = 0.4.

The global input rate λ0 is varying. The number of samples used to estimate the
mean coupling time is 10,000. The result is displayed in Figure 3.2.

 0
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 100

 150

 200
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 300

 350

 400

 τ

 0  1  2  3  4  λ0

Figure 3.2: Mean coupling time for the acyclic network of Figure 3.1 when the input rate
varies from 0 to 5, with 95% confidence intervals.
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This type of curve is of fundamental importance because the coupling time cor-
responds to the simulation duration and is involved in the simulation strategy (long
run versus replication). These first results can be surprising because they exhibit
a strong dependence on parameters values. The aim of this thesis is now to under-
stand more deeply what are the critical values for the network and to build bounds
on the coupling time that are non-trivial.

As in section 2.3, τ b refers to the backward coupling time of the chain, whereas τ f

refers to the forward coupling time.

Proposition 3.3. The backward coupling time τ b and the forward coupling time
τf have the same probability distribution.

Proof. ([14]). Compute the probability

P(τf > n) = P

(∣∣∣φ(n) (S, e1→n)
∣∣∣ > 1

)
.

Since the process {en}n∈Z is stationary, shifting the process to the left leads to

P

(∣∣∣φ(n) (S, e1→n)
∣∣∣ > 1

)
= P

(∣∣∣φ(n) (S, e−n+1→0)
∣∣∣ > 1

)
= P

(
τ b > n

)
.

Therefore, τf and τ b have the same distribution.

Hence, if we want to make any statement about the probability distribution of
the coupling time τ b of CFTP, we can use the conceptually easier coupling time
τf . By combining Proposition 3.3 with Inequality 2.4 we see that the existence
of a sequence that ensures coupling also guarantees that τ b is stochastically upper
bounded by a geometric distribution.

Definition 3.2. Let τ b
i denote the backward coupling time on coordinate i of the

state space. Thus τ b
i is the smallest n for which

∣∣∣
{
Ni

(
φ(n) (S, e−n+1→0)

)}∣∣∣ = 1.

In the same way, we define τ f
i as the smallest n for which

∣∣∣
{
Ni

(
φ(n) (S, e1→n)

)}∣∣∣ = 1.

Because coordinate si refers to queue Qi, the random variable τ b
i ( τf

i respectively)
represents the coupling time from the past (the coupling time into the future re-
spectively) of queue Qi. Once all queues in the network have coupled, the CFTP
algorithm returns one value and hence the chain has coupled. Thus

τ b = max
16i6K

{τ b
i } 6st

K∑

i=1

τ b
i . (3.1)

By taking expectation and interchanging sum and expectation we obtain:

E
[
τ b
]

= E

[
max

16i6K
{τ b

i }
]

6 E

[
K∑

i=1

τ b
i

]
=

K∑

i=1

E
[
τ b
i

]
. (3.2)

It follows from Proposition 3.3 that τ b and τf have the same distribution. The

same holds for τf
i and τ b

i . Hence E
[
τ b
i

]
= E

[
τf
i

]
and

E
[
τ b
]

6

K∑

i=1

E

[
τf
i

]
. (3.3)
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3.2. General remarks on the coupling time

The bound given in (3.3) is interesting because E

[
τf
i

]
is sometimes amenable

to explicit computations, as will be shown in following chapter. In order to derive
those bounds, one may provide yet other bounds, by making the coupling state
explicit.

Definition 3.3. The hitting time hj→k in a Markov chain Xn is defined as

hj→k = inf
N

{n such that Xn = k|X0 = j} with j, k ∈ S.

The hitting time hj→k with j, k ∈ Si is the hitting time of a single queue Qi of
the network. Thus h0→Ci

represents the number of steps it takes a queue Qi to go
from state 0 to state Ci. Suppose that h0→Ci

= n for the sequence of events e1→n.
Because of monotonicity of φ we have

Ci = Ni

(
φ(n) (MIN, e1→n)

)

6 Ni

(
φ(n) (s, e1→n)

)

6 Ni

(
φ(n) (MAX, e1→n)

)
= Ci,

with s ∈ S, MIN = (0, . . . , 0) ∈ S and MAX = (C0, . . . , CK) ∈ S. Hence, coupling
has occurred in Queue Qi. So h0→Ci

is an upper bound on the forward coupling
time τf of queue Qi. The same argumentation holds for hCi→0. Thus

E

[
τf
i

]
6 E [min{h0→Ci

, hCi→0}] . (3.4)

Hence,

E
[
τ b
]

6

K∑

i=1

E

[
τf
i

]
6

K∑

i=1

E [min{h0→Ci
, hCi→0}] 6

K∑

i=1

min(Eh0→Ci
,EhCi→0).

(3.5)
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Chapter 4

Coupling time in the
M/M/1/C queue

The M/M/1/C queue is wellknown and there is no need to run simulations to get
the stationary distribution since this distribution can quite easily be calculated ([9]
p. 487-489 and [11] p. 191). However, in this chapter we will take a look at the
distribution of the coupling time in the M/M/1/C queue since this will serve as
a building block for establishing bounds on coupling time in acyclic networks. In
section 4.1 we focus on the mean coupling time. By linking the coupling time in
a new way with hitting times we are able to derive the exact coupling time and
easier calculable bounds on the coupling time. In section 4.2, we will explore an-
other approach which is based on formal series to derive bounds on the probability
distribution of the coupling time.

4.1 Mean coupling time

First, we will shortly introduce the M/M/1/C queueing model. The M/M/1/C
queueing model consists of a single queue with one server. Customers arrive at the
queue according to a Poisson process with rate λ and the service time is distributed
according to an exponential distribution with parameter µ. In the system there
is only place for C customers. So the state space S = {0, . . . , C}. If a customer
arrives when there are already C customers in the system, he immediately leaves
without entering the queue. After uniformization, we get a discrete time Markov
chain which is governed by the events ea with probability p = λ

λ+µ and ed with

probability q = 1− p. Event ea represents an arrival and event ed represents end of
service with departure of the customer.

C... p

q

p

λ
µ

0 1 2

p p

q

q

p

qq

Figure 4.1: The M/M/1/C queue and the discrete time Markov chain after uniformiza-
tion
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4.1. Mean coupling time

4.1.1 Exact mean coupling time

The construction of an exact bound on the backward coupling time is based on the
next proposition:

Proposition 4.1. In an M/M/1/C queue we have E
[
τ b
]

= E [min{h0→C , hC→0}]

Proof. When applying forward simulation, the chain only can couple in state 0 or
state C. This follows since for r, s ∈ S with 0 < r < s < C we have

φ (r, ea) = r + 1 < s+ 1 = φ (s, ea) ,

and
φ
(
r, ed

)
= r − 1 < s− 1 = φ

(
s, ed

)
.

So the chain cannot couple in a state s with 0 < s < C. Furthermore we have
φ(C, ea) = C = φ(C − 1, ea) and φ(0, ed) = 0 = φ(1, ed). Hence, forward coupling
can only occur in 0 or C. Combining this result with Equation (3.5) leads to
E
[
τf
]

= min{h0→C , hC→0}. Since the forward and backward coupling time have

the same distribution, it follows that E
[
τ b
]

= E [min{h0→C , hC→0}] .

In order to compute min{h0→C , hC→0} we have to run two copies of the Markov
chain for a M/M/1/C queue simultaneously. One copy starts in state 0 and the
other one starts in state C. We stop when either the chain starting in 0 reaches
state C or when the copy starting in state C reaches state 0.

Therefore, let us rather consider a product Markov chain X(q) with state space
S × S = {(x, y), x = 0, . . . , C, y = 0, . . . , C}. The Markov chain X(q) is also
governed by the two events ea and ed and the transition function ψ is:

ψ ((x, y) , ea) = ((x+ 1) ∧ C, (y + 1) ∧ C) ,

ψ
(
(x, y) , ed

)
= ((x− 1) ∨ 0, (y − 1) ∨ 0) .

Without any loss of generality, we may assume that x 6 y. This system corresponds
with the pyramid Markov chain X(q) displayed in Figure 4.2. Now, running our
two copies corresponds with running the product Markov chain starting in state
(0, C).

The rest of this section is devoted to establishing a formula for the expected
time to reach the base of the pyramid. Although the technique used here (one step
analysis) is rather classical, it is interesting to notice how this is related to random
walks on the line. This relationship also explains the shifted indices associated to
the levels of the pyramid.

Definition 4.1. A state (i, j) of the product Markov chain belongs to level m if
|j − i| = C + 2−m.

Then state (0, C) belongs to level 2 and the states (0, 0) and (C,C) belong to
level C + 2. In Figure 4.2 we see that there are C + 1 levels in total. Because of
monotonicity of ψ, the level index cannot decrease. Hence, starting at an arbitrary
level, the chain will gradually pass all intermediate levels to reach finally level C+2
in state (0, 0) or (C,C). Thus, when starting in state (0, C), the chain will run
through all levels to end up at the level C + 2. This is also clear from Figure 4.2
and is in accordance with Proposition 4.1.

Definition 4.2. Let Hi,j denote the number of steps it takes the product chain
starting in (i, j) to reach either state (0, 0) or state (C,C) with (i, j) ∈ S × S.

23



4.1. Mean coupling time
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ppp
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q q

q
Level 3
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Level 5

Level C+1

Level C+2

Level 2  

pp p p p
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C−1,C−1

0,1

1,1

Figure 4.2: Markov chain X(q) corresponding to Hi,j

Thus Hi,j represents the hitting time of the coupling states (0, 0) and (C,C) (also
called absorption time) in a product Markov chain. By definition,

H0,C = min{h0→C , hC→0}.

Using a one step analysis, we get the following system of equations for E[Hi,j ]:

{
E[Hi,j ] = 1 + pE[H(i+1)∧C,(j+1)∧C ] + qE[H(i−1)∨0,(j−1)∨0] i 6= j,
E[Hi,j ] = 0 i = j.

(4.1)

To determine E[H0,C ] we determine the mean time spent on each level and sum up
over all levels. Let Tm denote time it takes to reach level m + 1, starting in level
m. Then

H0,C =

C+1∑

m=2

Tm. (4.2)

In order to determine Tm, we associate to each level m a random walk Rm on
0, . . . ,m with absorbing barriers at state 0 and state m (see Figure 4.3). In the
random walk, the probability of going up is p and of going down is q = 1− p. We
have the following correspondence between the states of the random walk Rm and
the states of X(q):

State 0 of Rm corresponds with state (0, C −m+ 1) of X(q),
State i of Rm corresponds with state (i− 1, C −m+ 1 + i) of X(q),

0 < i < m,
State m of Rm corresponds with state (m− 1, C) of X(q).

Now the time spent on level m in X(q) is the same as the time spent in a random
walk Rm before absorption. Therefore, in determining Tm, one can use the two
following results on random walks, which are also known as ruin problems (see
Appendix B).
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4.1. Mean coupling time

m−2 m−1

0

2
p

p p p p

q q q q q

1

m

m−3,C−1 m−2,C

0,C−m+1

1,C−m+3
p

p p p p

q q q q

0,C−m+2

m−1,C

q

q p

Level m

Corresponding random walk Rm

Figure 4.3: Relationship between level m and random walk Rm.

Lemma 4.1. Let αm
i→0 denote the probability of absorption in state 0 of the random

walk Rm starting in i. Then:

αm
i→0 =






am−ai

am−1 , p 6= 1
2 ,

m−i
m , p = 1

2 ,

(4.3)

where a = q/p.

Lemma 4.2. Let T̃m
i denote the absorption time of a random walk Rm starting in

i. Then:

E[T̃m
i ] =





i−m(1−αm
i→0)

q−p , p 6= 1
2 ,

i(m− i), p = 1
2 .

(4.4)

Let βm
0 (respectively βm

m) denote the probability that absorption occurs in 0 (re-
spectively m) in Rm. Then

βm
0 =

m∑

i=0

αm
i→0P (Rm starts in state i) , 2 6 m 6 C + 1 (4.5)

and βm
m = 1−βm

0 . From the structure of the Markov chain X(q) and the correspon-
dence between X(q) and the random walks, we derive that (see Figure 4.3):

P (enter level m+ 1 at (0, C −m+ 1)) = P (absorption in 0 in Rm ) = βm
0 .

Now one has:

E [Tm] = E[T̃m
1 ]βm−1

0 + E[T̃m
m−1]β

m−1
m−1

= E[T̃m
1 ]βm−1

0 + E[T̃m
m−1]

(
1− βm−1

0

)

= E[T̃m
m−1] +

(
E[T̃m

1 ]− E[T̃m
m−1]

)
βm−1

0 . (4.6)

To complete the calculation, we need to make a distinction between the case with
p = 1/2 and the case when p 6= 1/2. We will first examine the case p = 1/2 .

Case p = 1/2

E[Tm] can be calculated explicitly for p = 1
2 . Since the random walk is symmetric,

we have βm
0 = βm

m = 1
2 . So:
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4.1. Mean coupling time

E [Tm] = E[T̃m
1 ]βm−1

0 + E[T̃m
m−1]β

m−1
m−1 = (m− 1)

1

2
+ (m− 1)

1

2
= m− 1. (4.7)

Hence,

E [H0,C ] =
C+1∑

m=2

E [Tm] =
C+1∑

m=2

(m− 1) =
C2 + C

2
.

Thus we have shown the next result:

Proposition 4.2. Consider an M/M/1/C queue where the arrival rate λ equals

the service rate µ. Then E
[
τ b
]

= C2+C
2 .

Case p 6= 1/2

Since the random walks are not symmetric, we cannot apply the same reasoning as
for the case p = 1

2 to compute βm
0 . Therefore, we will derive a recurrence relation

for βm
0 . Entering the random walk Rm corresponds to entering level m in X(q).

Since we can only enter level m in the states (0, C −m+ 2) and (m− 2, C) this
means we can only start the random walk in state 1 or m − 1. Therefore (4.5)
becomes:

βm
0 =

m∑

i=0

αm
i→0P (Rm starts in state i)

= αm
1→0P (Rm starts in 1) + αm

m−1→0P (Rm starts in m− 1)

= αm
1→0β

m−1
0 + αm

m−1→0

(
1− βm−1

0

)

= αm
m−1→0 +

(
αm

1→0 − αm
m−1→0

)
βm−1

0

=
am − am−1

am − 1
+
am−1 − a
am − 1

βm−1
0 .

One can easily see that β2
0 = q, since the random walk on 0, 1, 2 starts in state 1

and the first step immediately leads to absorption. This gives the recurrence:

{
βm

0 = am−am−1

am−1 + am−1−a
am−1 βm−1

0 m > 2,

β2
0 = q.

(4.8)

Thus we obtain,

Proposition 4.3. For a M/M/1/C queue, using the foregoing notations,

E
[
τ b
]

= E [H0,C ] =

C+1∑

m=2

(
E[T̃m

m−1] +
(

E[T̃m
1 ]− E[T̃m

m−1]
)
βm−1

0

)
, (4.9)

with βm
0 defined by (4.8) and E[T̃m

m−1] and E[T̃m
1 ] defined by (4.4).

Thus now Proposition 4.2 and 4.3 deliver expressions which are amenable to
explicit calculations. The next proposition says that the case with p = q is a worst
case scenario for the coupling time. Intuitively this might be clear, since then one
is not driven to the left or the right side of the pyramid of Figure 4.2.

Proposition 4.4. The coupling time in an M/M/1/C queue is maximal when the
input rate λ and the service rate µ are equal.

Before proving the Proposition, we first proof the following Lemma:
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4.1. Mean coupling time

Lemma 4.3. For 0 6 p < 1/2 and 1 < C ∈ R we have,

(1− p)C − pC

(1− p)C+1 − pC+1
<

2C

C + 1
.

Proof. (Lemma). Let f (p) = (1−p)C−pC

(1−p)C+1−pC+1
. Observe that f(0) = 1 and that

lim
p↑ 1

2

f (p) = lim
p↑ 1

2

(1− p)C

(1− p)C+1
·

1−
(

p
1−p

)C

1−
(

p
1−p

)C+1

= lim
p↑ 1

2

1

1− p ·
1 + · · ·+

(
p

1−p

)C−1

1 + · · ·+
(

p
1−p

)C

=
2C

C + 1
.

It suffices to show that f has no maximum is the interval (0, 1/2). Therefore, we
take a look at the derivative of f :

f ′ (p) =
(1− p)2C − p2C + C (1− p)C

pC
(

p
1−p −

1−p
p

)

(
(1− p)C+1 − pC+1

)2

=
(1− p)2C − p2C + C (2p− 1) (1− p)C−1

pC−1

(
(1− p)C+1 − pC+1

)2 .

If there is a maximum in [0, 1/2), then f ′(p) = 0 for some p ∈ (0, 1/2). Therefore,
take a look at the numerator. If f ′ = 0, then the numerator must be 0 as well. Call
the numerator n(p) = (1− p)2C − p2C + (2p− 1)C (1− p)C−1 pC−1, and note that
n(0) = 1 and n(1/2) = 0. Now,

n′(p) = −2C (1− p)2C−1 − 2Cp2C−1 − C (C − 1) (1− p)C−2
pC−1 (2p− 1)

+C (C − 1) (1− p)C−1 pC−2 (2p− 1) + 2C (1− p)C−1 pC−1.

Observe that for 0 < p < 1/2,

−2C (1− p)2C−1 + 2C (1− p)C−1 pC−1 = 2C (1− p)C−1
(
− (1− p)C + pC−1

)
< 0,

and that also

−C (C − 1) (1− p)C−2
pC−1 (2p− 1) + C (C − 1) (1− p)C−1

pC−2 (2p− 1) =

(2p− 1)C (C − 1) (1− p)C−2
pC−2 ((1− p)− p) < 0

Since also −2Cp2C−1 < 0, it follows that n′ (p) < 0 for 0 < p < 1/2. Thus n is
decreasing on (0, 1/2) and thus n has no roots in the interval (0, 1/2). Hence, f has
no maximum in (0, 1/2) and thus f(x) < 2C/(C + 1) for x ∈ [0, 1/2).

Proof. (Proposition 4.4). By definition, λ = µ corresponds to p = q = 1/2. The
proof holds by induction on C. The result is obviously true when C = 0, because
whatever q, E [H0,C ] = 0.

For C + 1, let q be an arbitrary probability with q > 1/2 (the case q < 1/2
is symmetric). We will compare the expected time for absorption of three Markov
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q = 1/2

X = X(1/2)

q = 1/2

(0, 0) (C, C)

(0, C)

q = 1/2

X ′′

q > 1/2

(0, 0) (C, C)

(C − 1, 0)

Level 2

Level C

Level C+1

Level C+2

(0, C)

q > 1/2

X ′ = X(q)

q > 1/2

(0, 0) (C, C)

(0, 1) (C − 1, 0)

(0, C)

(C − 1, 0)(0, 1) (0, 1)

Figure 4.4: The three different Markov chains X, X ′ and X ′′.

chains. The first one is the Markov chain X := X(1/2) displayed in Figure 4.2,
with q = p = 1/2. The second one is the Markov chain X ′ = X(q) displayed in
Figure 4.2 and the last one X ′′ is a mixture between the two previous chains: The
first C levels are the same as in X while the last level (C + 1) is the same as in X ′.

The expected absorption time for the first C levels is the same for X and for
X ′′:

C∑

m=2

ETm =
C∑

m=2

ET ′′
m.

By induction, this is larger than for X ′: we have

C∑

m=2

ETm =
C∑

m=2

ET ′′
m >

C∑

m=2

ET ′
m.

Therefore, we just need to compare the exit times out of the last level, namely
ETC+1,ET

′
C+1 and ET ′′

C+1, to finish the proof.
We first compare ETC+1 and ET ′′

C+1. In both cases, the Markov chain enters
level C + 1 in state (0, 1) with probability 1/2.

Equation (4.7) says that ETC+1 = C and Equation (4.4) gives after straightfor-
ward computations,

ET ′′
C+1 = 1/2

1− (C + 1)(1− αC+1
1→0)

q − p + 1/2
C − (C + 1)(1− αC+1

C→0)

q − p (4.10)

=
C + 1

2(q − p)
(aC − 1)(a− 1)

aC+1 − 1
=
C + 1

2

qC − pC

qC+1 − pC+1
. (4.11)

It follows from Lemma 4.3 that ET ′′
C+1 <

C+1
2 · 2C

C+1 = C = ETC+1. In order to
compare ET ′

C+1 and ET ′′
C+1, let us first show that βm

0 is at least 1/2, for all m > 2.

This is done by an immediate induction on Equation (4.8). If βm−1
0 > 1/2, then

βm
0 >

2am − am−1 − a
2(am − 1)

.

Now,

2am − am−1 − a
2(am − 1)

> 1/2 if 2am − am−1 − a > am − 1,

i.e. after recombining the terms, (a − 1)(am−1 − 1) > 0. This is true as soon as
a > 1, i.e. as soon as q > 1/2.

To end the proof, it is enough to notice that for the chain X ′, the expected time
to absorption starting in 1, ET̃m′

1 is smaller than or equal to the expected time to
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4.1. Mean coupling time

absorption starting in m− 1, ET̃m′

m−1 for all m. The difference ET̃m′

m−1 − ET̃m′

1 is

ET̃m′

m−1 − ET̃m′

1 =
m− 1−m

(
1− αm

m−1→0

)

q − p − 1−m (1− αm
1→0)

q − p (4.12)

=
m− 2 +mam−am−1

am−1 −mam−a
am−1

p (a− 1)
(4.13)

=
am − 1

am − 1
·
m− 2 +mam−am−1

am−1 −mam−a
am−1

p (a− 1)
(4.14)

=
mam −mam−1 +ma−m+ 2am + 2

p (am − 1) (a− 1)
(4.15)

=
2m(a− 1)

(
am−1+1

2 − 1+a+···+am−1

m

)

p (am − 1) (a− 1)
. (4.16)

(4.17)

By convexity of x 7→ ax, we obtain

ET̃m′

m−1 − ET̃m′

1 > 0. (4.18)

Thus by setting m = C + 1 we have ET̃C+1′

C > ET̃C+1′

1 . Furthermore, note that
the random walks associated with level C + 1 in X ′ and X ′′ are the same. Thus
ET̃C+1′

C = ET̃C+1′′

C and ET̃C+1′

1 = ET̃C+1′′

1 Combining these observations with
(4.6) finally yields:

ET ′
C+1 = ET̃C+1′

C +
(

ET̃C+1′

1 − ET̃C+1′

C

)
βC

0 (4.19)

6 ET̃C+1′

C (4.20)

6
1

2
ET̃C+1′

C +
1

2
ET̃C+1′

1 (4.21)

=
1

2
ET̃C+1′′

C +
1

2
ET̃C+1′′

1 (4.22)

= ET
′′

C+1. (4.23)

Thus we have shown that ET
′

C+1 6 ET
′′

C+1 6 ETC+1.

4.1.2 Explicit bounds

Equation (4.9) provides a quick way to compute the expected backward coupling
time E

[
τ b
]

using recurrence equation (4.8). However, it may also be interesting to

get a simple closed form for an upper bound for E
[
τ b
]
. This can be done using the

last inequality in Equation (3.5) that gives an upper bound for E
[
τ b
]

amenable to
direct computations:

E
[
τ b
]

= E [min {h0→C , hC→0}] 6 min {E [h0→C ] ,E [hC→0]} . (4.24)

Let Ti denote the time to go from state i to i+ 1. Then

E [h0→C ] =

C−1∑

i=0

E [Ti] . (4.25)

To get an expression for E [Ti], we condition on the first event. Therefore let E [Ti|e]
denote the conditional expectation of Ti knowing that the next event is e. Since
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E[Ti | ea] = 1 and E[Ti | ed] = 1 + E [Ti−1] + E [Ti], conditioning delivers the
following recurrent expression for the E [Ti]:

E [Ti] = E[Ti | ed]P
(
ed
)

+ E[Ti | ea]P (ea)

= (1 + E [Ti−1] + E [Ti]) q + p.

(4.26)

Solving for E [Ti] yields

E [Ti] =





1
p + q

pE [Ti−1] for 0 < i < C,

1
p for i = 0.

(4.27)

By induction one can show that E [Ti] = 1
p

∑i
k=0

(
q
p

)k

. Again, we need to distin-

guish the case p 6= q from the case p = q.

Case p 6= q

Then E [Ti] = 1
p

∑i
k=0

(
q
p

)k

=
1−( q

p )
i+1

p−q and from (4.25) it follows that

E [h0→C ] =

C−1∑

i=0

1−
(

q
p

)i+1

p− q =
C

p− q −
q

(
1−

(
q
p

)C
)

(p− q)2
. (4.28)

By reasons of symmetry, we have

E [hC→0] =
C

q − p −
p

(
1−

(
p
q

)C
)

(q − p)2
. (4.29)

Case p = q

Now E [Ti] = 1
p

∑i
k=0

(
q
p

)k

= 2(i+ 1), and from (4.25) it follows that

E [h0→C ] =

C−1∑

i=0

2(i+ 1) = C2 + C. (4.30)

By symmetry, also E [hC→0] = C2 + C.

If p > q, then E [h0→C ] < E [hC→0] and because of symmetry, if p < q then
E [h0→C ] > E [hC→0]. Since

(
C2 + C

)
/2 is an upper bound corresponding to the

critical case p = q on the mean coupling time E
[
τ b
]
, as shown in Proposition 4.4,

one can state:

Proposition 4.5. The mean coupling time E
[
τ b
]
of a M/M/1/C queue with arrival

rate λ and service rate µ is bounded using p = λ/(λ+ µ) and q = 1− p.
Critical bound:

for every p ∈ [0, 1], E
[
τ b
]

6
C2 + C

2
.

Heavy traffic Bound:

if p >
1

2
, E

[
τ b
]

6
C

p− q −
q

(
1−

(
q
p

)C
)

(p− q)2
.
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4.1. Mean coupling time

Light traffic bound:

if p <
1

2
, E

[
τ b
]

6
C

q − p −
p

(
1−

(
p
q

)C
)

(q − p)2
.
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Figure 4.5: Expected coupling time in an M/M/1/10 and an M/M/1/50 queue when p
varies from 0 to 1 and the three explicit bounds given in Proposition 4.5

Figure 4.5 displays both the exact expected coupling time as given by Equation
(4.9) as well as the three explicit bounds given in Proposition 4.5 for a queue with
capacity 10 and a queue with capacity 50. Note that the bounds for the M/M/1/10
queue are very accurate under light or heavy traffic (q < 0.4 and q > 0.6). Then,
the ratio is never larger than 1.2. For the M/M/1/50, we see that the discrepancy
between the bounds and the real coupling time is even smaller.

Remark 4.1. Note that also the recurrence relation:

E [hi→0] = 1 + pE
[
h(i+1)∧C→0

]
+ qE

[
h(i−1)∨0→0

]
. (4.31)

holds for E [hi→0]. Setting i = C and solving leads to the light traffic bound.
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4.2. Formal series approach

4.2 Formal series approach

Another approach to gain understanding of the coupling time of a single queue is
a formal series approach. Consider both an M/M/1 queue with infinite capacity
and an M/M/1/C queue with finite capacity equal to C. Both queues have the
same arrival rate λ and service rate µ and suppose for reasons of stability that
λ < µ. Denote the underlying uniformized discrete Markov chain of the infinite
capacity queue by {Xn}n∈N

and the underlying chain of the finite capacity queue

by
{
XC

n

}
n∈N

. Let p = λ
λ+µ denote the probability of an arrival, and q = 1 − p

denote the probability of a departure. Define the hitting time of state 0 as

hC
0 = inf

N

{
n : XC

n = 0
}

for XC
n and as

h0 = inf
N

{n : Xn = 0}

for Xn. Since the finite capacity queue does not accept arrivals when there are
already C customers in the queue, we have XC

n 6st Xn. This implies that hC
0 is

stochastically bounded by h0. In section 4.1.2 we have seen that conditioned on
starting in C, E

[
hC

0

]
is a rather good bound on the backward coupling time. In

this section, we will focus on the conditional distribution of h0.
Define the formal series of the conditional distribution of the hitting time h0 as:

G(z, x) =
∞∑

k=0

∞∑

i=0

zkxi
Pi (h0 = k)

with Pi (h0 = k) = P (h0 = k|X0 = i).
Our main goal is to obtain a closed expression for G, which can be used for de-

termining the moments of h0. First we will investigate the structure of Pi (h0 = k),
since we will use Pi (h0 = k) in the computations to deduce a closed form for G.
We distinguish five distinctive cases:

1. Case i = 0 and k > 0
By definition, if there are 0 customers at time 0, the hitting time h0 is equal
to 0. Hence,

Pi (h0 = k) = 0.

2. Case k < i
When there are i customers, the fastest way to reach the state with 0 cus-
tomers is by i consecutive departures. But we are only allowed to make k < i
steps. Hence,

Pi (h0 = k) = 0.

3. Case i = k
In order to reach state 0, there must be k = i consecutive departures. Since
the probability of a departure equals q, it follows that

Pi (h0 = k) = qk.

4. Case i < k and k − i uneven
In order to reach state 0, there must be for sure i departures. Then there
rest k − i steps to take. These k − i events must consist of exactly the same
number of arrivals as departures. But since k− i is uneven, this is impossible.
Therefore:

Pi (h0 = k) = 0.
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4.2. Formal series approach

5. Case i < k and k − i even
The same reasoning as in case 4 applies. Since k− i is even this time, we have:

Pi (h0 = k) = qiq
k−i
2 p

k−i
2 W (i, k) ,

with W (i, k) the number of walks starting at i with h0 = k. We will call such
a walk an admissible walk. In Figure 4.6 we see all the admissible walks for
i = 1 and k = 7. Remark that all the walks in Figure 4.6 end by a departure.
Every admissible walk ends with a departure. Since if it does not, then it ends
with an arrival and thus Xk−1 = 0. Then the hitting time is smaller than k
which is in contradiction with the definition of k.

i
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1

0 1 2 3 4 5 6 7 k
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2

1
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i
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4

2

1

0 1 2 3 4 5 6 7 k

Figure 4.6: All admissible walks for i = 1 and k = 7.

Now we will derive an explicit formula for W (1, k). Since the last step is fixed,
we can neglect it in counting all possible walksW (1, k). So, to each admissible
walk of length k corresponds a walk of length k − 1 by leaving the last step
away (see Figure 4.7). This corresponding walk of length k − 1 is known to
be a Dyck path.

Since k − 1 is even, there exists an n ∈ N such that k − 1 = 2n. Let Dn

be the number of Dyck paths of length 2n = k − 1. By conditioning on the
first return to 0, we can derive a recurrence for the Dn. The first return can
happen in 2i for 1 6 i 6 n. Then the Dyck path is split into two shorter
paths, the first of length 2i and the other of length 2(n − i). Note that the
first path, before the return to 0, is composed of a step up, a Dyck path of
length 2i− 2 and a step down. Thus the number of Dyck paths Dn with the
first return in 2i is Di−1Dn−i. Since the returns can occur in every 2i with
1 6 i 6 n, we obtain

Dn =

n∑

i=1

Di−1Dn−i =

n−1∑

i=0

DiDn−i−1, (4.32)

with initial condition D0 = 1. This reccurence is exactly the recurrence of the
Catalan numbers. Hence, the number of Dyck paths of length k − 1 is the
k− 1th Catalan number denoted by Ck−1 ([8], p. 357-358). Consequently we
have:

W (1, k) = Ck−1 =

(
k − 1

(k − 1)/2

)
1

k−1
2 + 1

. (4.33)
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(a) Admissible walk
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(b) Corresponding Dyke
path

Figure 4.7: To an admissible walk corresponds a Dyck path.

Thus we can state:

Pi (h0 = k) =





q
k+i
2 p

k−i
2

(
k−1

(k−1)/2

)
1

k−1

2
+1

if i = 1, k > 1 and k − 1 even,

q
k+i
2 p

k−i
2 W (i, k) if 1 < i < k and k − i even,

qk if i = k,

0 otherwise.
(4.34)

Now we will develop the formal series G (z, x) to obtain a closed form. First note
that we can split the summation and rewrite the series as:

G (z, x) =

∞∑

k=1

∞∑

i=1

zkxi
Pi (h0 = k) +

∞∑

k=0

zk
P0 (h0 = k) +

∞∑

i=1

xi
Pi (h0 = 0) .

From (4.34) we derive that

∞∑

k=0

zk
P0 (h0 = k) = 1 and

∞∑

i=1

xi
Pi (h0 = 0) = 0.

It follows that

G (z, x) = 1 +

∞∑

k=1

∞∑

i=1

zkxi
Pi (h0 = k) .

By conditioning on whether the next event is an arrival or a departure we get:

G (z, x) = 1 +

∞∑

k=1

∞∑

i=1

zkxiqPi−1 (h0 = k − 1) +

∞∑

k=1

∞∑

i=1

zkxipPi+1 (h0 = k − 1)

= 1 + qxz

∞∑

k=1

∞∑

i=1

zk−1xi−1
Pi−1 (h0 = k − 1)

+
pz

x

∞∑

k=1

∞∑

i=1

zk−1xi+1
Pi+1 (h0 = k − 1)

= 1 + qxzG (z, x) +
pz

x

∞∑

k=1

∞∑

i=1

zk−1xi+1
Pi+1 (h0 = k − 1)

= 1 + qxzG (z, x) +
pz

x

∞∑

k=0

∞∑

i=2

zkxi
Pi (h0 = k) . (4.35)
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4.2. Formal series approach

We observe that

∞∑

k=0

∞∑

i=2

zkxi
Pi (h0 = k) = G (z, x)−

∞∑

k=0

zk
P0 (h0 = k)−

∞∑

k=0

zkxP1 (h0 = k) .

Combining this with the results of (4.34) yields:

∞∑

k=0

∞∑

i=2

zkxi
Pi (h0 = k) = G (z, x)− 1− x

∞∑

k=0

zk
P1 (h0 = k) . (4.36)

It follows from (4.34) that P1 (h0 = k) is zero for all even k. Therefore, in order
to obtain

∑∞
k=0 z

kxP1 (h0 = k), we set k = 2m+ 1 and sum over all m:

∞∑

k=0

zk
P1 (h0 = k) =

∞∑

m=0

z2m+1
P1 (h0 = 2m+ 1) (4.37)

=

∞∑

m=0

z2m+1qm+1pm

(
2m

m

)
1

m+ 1

= qz
∞∑

m=0

(
z2pq

)m
(

2m

m

)
1

m+ 1
.

Since the generating function
∑∞

k=0 Ckz
k of the Catalan numbers equals (See Ap-

pendix B):
∞∑

k=0

Ckz
k =

1−
√

1− 4z

2z
,

we obtain:

∞∑

k=0

zk
P1 (h0 = k) = qz

∞∑

m=0

(
z2pq

)2
(

2m

m

)
1

m+ 1
(4.38)

= qz
1−

√
1− 4pqz2

2pqz2
(4.39)

=
1−

√
1− 4pqz2

2pz
. (4.40)

Using this result together with (4.35) and (4.36) yields:

G (z, x) = 1 + qxzG (z, x) +
pz

x

(
G (z, x)− 1− x1−

√
1− 4pqz2

2pz

)
.

Solving this last equation for G (z, x) finally returns the closed form:

G (z, x) =
x− 2pz + x

√
1− 4pqz2

2x− 2qx2z − 2pz
. (4.41)

Remark 4.2. The method used above is not the only method to obtain G (z, x).
Another approach is the following. The hitting time h0, knowing that we start in
X0 = i, can be vizualized as a walk starting in state i until we reach state 0. This
walk is a concatination of i independently and identically distributed walks Wj with
Wj the walk in the M/M/1/∞ queue, starting in state j until state j− 1 is reached
(see Figure 4.8).
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. . .

...

1

i− 2

i− 1

i

Time
0

. . .

Wi Wi−1 W1

Figure 4.8: The trajectory from i to 0 in a M/M/1/∞ queue is a concatination of i
walks.

Let the random variable Yj denote the duration of a walk Wj , i.e. the number
of steps it takes to reach state j − 1 starting from j. Observe that

Pi (h0 = k) = P




i∑

j=1

Yj = k


 ,

and thus

G(z, x) =

∞∑

k=0

∞∑

i=0

zkxi
Pi (h0 = k) , (4.42)

=

∞∑

k=0

∞∑

i=0

zkxi
P




i∑

j=1

Yj = k


 (4.43)

=

∞∑

i=0

xi
E

[
z

P

i
j=1

Yj

]
. (4.44)

The random variables Yj are independently and identically distributed and therefore
we can write:

E

[
z

Pi
j=1

Yj

]
= E

[
zYj
]i

= GYj
(z)

i
, (4.45)

with GYj
(z) the generating function of Yj . Now, combining (4.44) with (4.45)

yields:

G(z, x) =

∞∑

i=0

xiGYj
(z)

i
=

1

1− x GYj
(z)

. (4.46)

Note that

GYj
(z) =

∞∑

k=0

zk
P (Yj = k) =

1−
√

1− 4pqz2

2pz
, (4.47)

where the last equality follows from (4.38) and (4.40). Combining (4.46) with the
closed form for GYj

(z) of (4.47) delivers:

G(z, x) =
2pz

2pz − x+ x
√

1− 4pqz2
. (4.48)

At first sight, this might be surprising, since we already obtained the closed form
of (4.41) for G(z, x) . However, it is easy algebra to show that

2pz

2pz − x+ x
√

1− 4pqz2
− x− 2pz + x

√
1− 4pqz2

2x− 2qx2z − 2pz
= 0.
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One can use the function G (z, x) to calculate the mean, the variance and the
moments of Pi (h0 = k). We will illustrate how to obtain the mean and the variance.

The mean

By taking the partial derivative of G with respect to z and then setting z = 1 we
obtain with the help of Maple software:

∞∑

i=0

xi
Ei (h0) =

∂G

∂z

∣∣∣∣
z=1

=
x

(1− x)2 (q − p)
,

with Ei (h0) = E (h0|X0 = i). Since

1

(1− x)2
=

∞∑

i=0

(i+ 1)xi, (4.49)

we get for the Taylor series of x/
(
(1− x)2 (q − p)

)
around x = 0:

x

(1− x)2 (q − p)
=

1

q − p

(
∞∑

i=0

(i+ 1)xi+1

)
,

=

∞∑

i=0

i

q − px
i.

Hence, in a stable M/M/1 queue, we obtain

Ei [h0] =
i

q − p. (4.50)

By setting C = i, we note that this result harmonizes with the bounds of (4.28)
and (4.29), since in these bounds the term C

q−p appears.

The variance

In order to obtain the variance of the hitting time h0, we use the identity

Vari [h0] = Ei

[
h2

0

]
− Ei [h0]

2
. (4.51)

It follows from Equation 4.50 that

(Ei [h0])
2 =

(
i

q − p

)2

.

Moreover,
Ei

[
h2

0

]
= Ei

[
h2

0 − h0

]
+ Ei [h0] . (4.52)

Taking the second partial derivative of G with respect to z and setting z = 1
delivers:

∂2G

∂z2

∣∣∣∣
z=1

=

∞∑

k=2

∞∑

i=0

k (k − 1)xi
Pi (h0 = k)

=

∞∑

i=0

xi
∞∑

k=0

k (k − 1) Pi (h0 = k)

=

∞∑

i=0

Ei [h0 (h0 − 1)]xi.

37



4.2. Formal series approach

Thus the i-th coefficient in the Taylor expansion of ∂2G
∂z2

∣∣∣
z=1

equals Ei

[
h2

0 − h0

]
.

The next step is to expand ∂2G
∂z2

∣∣∣
z=1

as a Taylor series around x = 0. With the help

of Maple software we obtain:

∂2G

∂z2

∣∣∣∣
z=1

=
2
(
4p2x2 − 4p2x− 5px2 + 3px+ x2

)

(q − p)3 (1− x)3
,

=
2

(q − p)3

(
(
4p2 − 5p+ 1

) x2

(1− x)3
+
(
3p− 4p2

) x

(1− x)3

)
.

In developing the series expansion of ∂2G
∂z2

∣∣∣
z=1

we use the identity

1

(1− x)3
=

∞∑

i=0

i2 + 3i+ 2

2
xi.

This delivers:

∂2G

∂z2

∣∣∣∣
z=1

=
2

(q − p)3

(
(
4p2 − 5p+ 1

) ∞∑

i=0

i2 − i
2

xi +
(
3p− 4p2

) ∞∑

i=0

i2 + i

2
xi,

)

=

∞∑

i=0

−8p2i− 2pi2 + 8pi+ i2 − i
(q − p)3

xi. (4.53)

By combining (4.52) with (4.50) and (4.53) we get:

∞∑

i=0

Ei

[
h2

0

]
xi =

∞∑

i=0

−8p2i− 2pi2 + 8pi+ i2 − i
(q − p)3

xi +
∞∑

i=0

i

q − px
i,

=

∞∑

i=0

.
−4p2i− 2pi2 + 4pi+ i2

(q − p)3
xi.

This result combined with (4.51) finally yields:

Vari [h0] =
−4p2i− 2pi2 + 4pi+ i2

(q − p)3
−
(

i

1− 2p

)2

,

=
−4p2i+ 4pi

(q − p)3
,

=
4p (1− p) i
(q − p)3

.

It follows that the generating function of the conditional variance Vari [h0] equals

∞∑

i=0

4p (1− p)
(q − p)3

ixi

in terms of power series. Since we know the generating function of the conditional
variance in terms of power series, we are able to determine a closed form for the
generating function of the conditional variance. From (4.49), it follows that

x

(1− x)2
=

∞∑

i=0

ixi.

Hence, the generating function of the conditional variance becomes

4pi (1− p)
(q − p)3

· x

(1− x)2
.
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Chapter 5

Coupling time in acyclic
queueing networks

This chapter is dedicated to the effective computation of a bound of the coupling
time in acyclic networks. Acyclicity means that the network does not contain any
cycles, i.e. a customer cannot return to a queue he already has visited.

Recall that in Chapter 3 we ran the CFTP algorithm on the acyclic network
given in Figure 3.1 on page 18. One may see in Figure 3.2 that the coupling time
has a peak when λ0 = 0.4. This corresponds to the case when the input rate and
service rate in queue Q3 are equal. This should not be surprising regarding the
result for a single queue, which says that the coupling time is maximal when the
rates are equal. Then a second peak occurs around λ0 = 1.4 when coupling in queue
Q0 is maximal. The rest of the curve shows a linear increase of the coupling time
which may suggest an asymptotic linear dependence in λ0. In this part, an explicit
bound on the coupling time which exhibits these two features will be derived.

The result of Section 5.1 concerns an extension of inequality (3.5) to distribu-
tions. Then the next section shows how the results for a single M/M/1/C queue
can be used for an effective computation of bounds for acyclic networks of queues.

Throughout this chapter, we will illustrate the construction of the bound with
a tandem network. The first queue Q0 has a capacity of 6 and the second queue Q1

has a capacity of 3 (see Figure 5.1). This network is driven by three events:

event e1: an arrival at queue Q0.

event e2: an end of service at queue Q0 and routing to queue Q1 (provided that
the number of customers in Q0 is strictly positive).

event e3: an end of service at queue Q1 and departure from the system (provided
that the number of customers in Q1 is strictly positive).

Due to monotonicity, the CFTP-algorithm only needs to be applied to stateMIN =
(0, 0) and state MAX = (6, 3).

C1 = 3C0 = 6

Figure 5.1: Tandem queueing system.
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5.1. Distribution of the coupling time

5.1 Distribution of the coupling time

In the following, the queues Q0, . . .QK are numbered according to the topological
order of the network. Thus, no event occurring in queue Qj has any influence on
the state of queue Qi as long as i < j.

Proposition 5.1. The coupling time for an acyclic network is bounded in the
stochastic sense by the sum of the forward coupling time of all queues:

τ b
6st τ

f
K + · · ·+ τf

0 .

Proof. The proof is based on the following idea: construct a trajectory of a back-
ward simulation over which the comparison holds. This will imply the stochastic
comparison using Strassen’s Theorem.

Consider a backward simulation of the network starting at time 0 until coupling
occurs for the last queue, at time −τ b

K . From time −τ b
K , run a backward simulation

until queue QK−1 couples. From time −τ b
K − τ b

K−1, run the backward simulation
again until queue QK−2 couples. Continue this construction until the first queue
has coupled at time −(τ b

K + · · ·+ τ b
0 ) (see Figure 5.2). Now, on this trajectory, the

state in queue Q0 has coupled between times −(τ b
K + · · ·+ τ b

0 ) and −(τ b
K + · · ·+ τ b

1 ).
From this time on, Q0 will remain coupled since no event in other queues may alter
its state. The same property holds for queue Qi between times −(τ b

K + · · · + τ b
i )

and −(τ b
K + · · ·+ τ b

i+1), and at time 0, all queues have coupled by acyclicity of the
network. Finally, note that the intervals of this simulation are independent of each
other so that

∑
i τ

b
i =

∑
i τ

f
i in distribution and one gets τ b 6st τ

f
K + · · ·+ τf

0 .

0−τ bK−
(
τ bK + τ bK−1

)

τ bKτ bK−1

Time

−
∑K

i=0 τ bi −
∑K

i=1 τ bi

· · ·

τ b0

Figure 5.2: The construction of the proof of Proposition 5.1.

Note, note that acyclicity is essential in the proof above. For networks with cy-
cles, one would need some kind of association properties of the states of the queues
to assess something about the comparison of the distribution of τ b and the τf

i ’s.

Example 5.1 (Tandem queue). Consider the tandem queueing network. We
illustrate the construction of Proposition 5.1 with Figure 5.3. On the vertical axe is
set the number of customers in one queue. The solid line represents the evolution
of queue Q0, whereas the dashed line represents the evolution of queue Q1. Since
Q0 has a capacity equal to 6, the solid line does not exceed the value of 6. For the
same reason, the dashed one does not exceed the value of 3. For each queue, two
itineraries are depicted: one starting at state 0 and one starting in state Ci. The
two trajectories starting in state 0 (one for Q0 and one for Q1) form together the
evolution of MIN = (0, 0), and the two trajectories starting in state 3 and 6 (for
Q0 and Q1 respectively) form together the evolution of MAX = (6, 3).

Figure 5.3.a shows a coupling run for Q0, and Figure 5.3.b shows a coupling
itinerary for queue Q1. Note that τ b

0 = 12 and that τ b
1 = 6. In Figure 5.3.c, one

trajectory is constructed from both coupling ensuring itineraries. This composite
trajectory leads to coupling.
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Time

0

X0
0 = 55

4

2

1

3 = C1

6 = C0

0

−τ b
0

(a) The simulation of the tandem queue up to coupling of
Q0.

0

Time

−τ b
1

1

0

2

4

5

6 = C0

3 = C1

(b) The simulation of the tan-
dem network with up to coupling
of Q1.

5

4

2

1

3 = C1

6 = C0

0

0

Time

−τ b
1−τ b

0 − τ b
1

(c) The composition of the two previous simulations assures global coupling of the network.

Figure 5.3: The construction of a bound on the coupling time in a tandem network with
C0 = 6 and C1 = 3.
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5.2. Upper bound on the coupling time

5.2 Upper bound on the coupling time

Here, an acyclic network of M/M/1/C queues with Bernoulli routings is considered.
The events here are of only two types:

type 1: Exogenous arrivals. These are Poisson with rate γi in queue i.

type 2: Routing of one customer from queue i to queue j after service completion
in queue i. These are exponential with rate µij .

Queue K+1 is a dummy queue representing exits: routing a customer to queue
K + 1 means that the customer exits the network forever. In case of overflow, the
new customer trying to enter the full queue is lost. The service rate at queue i is
also denoted µi =

∑K+1
j=0 µij .

For the construction of the bound, we will compare the acyclic network with
two other models. But first, let us introduce new random variables. The random
variable τ b(sj = x) is the backward coupling time of the network, over the set of
all initial states with the j-th coordinate equal to x. Namely,

τ b(sj = x) = min
{
n s.t.

∣∣∣
{
φ(n) (S ∩ {sj = x}, e−n+1, . . . , e0)

} ∣∣∣ = 1
}
.

Let τ b
i (sj = x) be the backward coupling time on coordinate i given sj = x:

τ b
i (sj = x) = min

{
n s.t.

∣∣∣
{
Ni

(
φ(n) (S ∩ {sj = x}, e−n+1, . . . , e0)

)} ∣∣∣ = 1
}
,

with Ni as defined in Chapter 3.
Since

|{S ∩ {sj = x}}| < |S| ,
we have τ b(sj = x) 6st τ

b and for all i, τ b
i (sj = x) 6st τ

b
i .

We also have the same notions for forward coupling times:

τf (sj = x) = min
{
n ∈ N; s.t.

∣∣∣φ(n) (S ∩ {sj = x}, e1→n)
∣∣∣ = 1

}
,

τf
i (sj = x) being defined in the same manner, and for hitting times:

hCi→0(sj = x) = min
{
n ∈ N; s. t. φ(n) (S ∩ {si = Ci, sj = x}, e1→n) ∈ S∩{si = 0}

}
.

Now one can construct a sequence of K + 1 backward simulations that ensures
coupling in the following way. Let X i

j denote the state of coupling of queue i after
j + 1 simulations. First simulate the queueing system from the past up to coupling
of queue 0. The number of steps is by definition τ b

0 . Queue Q0 has coupled in a
random state X0

0 . Then, run a second backward simulation up to coupling of queue
Q1 given s0 = X0

0 . This simulation takes τ b
1 (s0 = X0

0 ) steps and the state at time
t = 0 is X1

1 for Q1 and X1
0 for Q0.

This construction goes on up to the backward simulation up to coupling of queue
QK given

s0 = XK−1
0 , s1 = XK−1

1 , . . . , sK−1 = XK−1
K−1 .

The last simulation takes

τ b
K

(
s0 = XK−1

0 , s1 = XK−1
1 , . . . , sK−1 = XK−1

K−1

)

steps and the coupling state of QK is XK
K .
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5.2. Upper bound on the coupling time

Lemma 5.1. Using the previous construction,

τ b
6st

K∑

i=0

τ b
i (s0 = X i−1

0 , . . . , si−1 = X i−1
i−1 ),

and for all i, (X i
0, . . . , X

i
i ) is steady state distributed for Q0, . . . , Qi. Furthermore,

for all i,

τ b
6st

K∑

i=0

hCi→0(s0 = X i−1
0 , . . . , si−1 = X i−1

i−1 ).

Proof. From the previous sequence of backward simulations one can construct a
single simulation by appending them in the reverse order (see Figure 5.4): the
backward simulation for queue QK preceded by the simulation of QK−1, and so
forth up to the simulation of Q0. This is a backward simulation of the system (the
last state is (XK

0 , . . . , X
K
K )).

A straightforward consequence, using acyclicity, is that (X i
0, . . . , X

i
i ) is steady

state distributed for Q0, . . . , Qi for all i.
Furthermore, one gets in distribution

τ b
6st

K∑

i=0

τ b
i (s0 = X i−1

0 , . . . , si−1 = X i−1
i−1 )

=

K∑

i=0

τf
i (s0 = X i−1

0 , . . . , si−1 = X i−1
i−1 )

6st

K∑

i=0

hCi→0(s0 = X i−1
0 , . . . , si−1 = X i−1

i−1 ),

by independence of the variables given the initial states X i−1.

· · ·
Time

Starting point

τ b0 τ b1
(
s0 = X0

0

)

0

Q0 couples in X0
0 Q1 couples in X1

1 QK−1 couples in XK−1
K−1

s0 = XK−1
0...

s0 = X1
0

sK−2 = XK−1
K−2

s0 = XK
0...

sK−2 = XK
K−2

sK−1 = XK
K−1

τ bK−1

(
s0 = XK−2

0 , . . . , sK−2
K−2

)

τ bK
(
s0 = XK−1

0 , . . . , sK−1
K−1

)

QK couples in XK
K

Figure 5.4: The construction of the proof of Lemma 5.1.

Example 5.2 (Tandem queue revisited). We will illustrate the construction
used in the proof of Lemma 5.1 with the tandem queue example. We use the same
events as in Example 5.1. Then the simulation up to coupling of queue Q0 does
not differ from the trajectory leading to coupling of queue Q0 in Figure 5.3.a. Note
that coupling occurs in state 5.

Then we start a second simulation, given that s0 = 5, up to coupling of queue
Q1. The trajectory of this simulation is represented in Figure 5.5.a. Note that
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5.2. Upper bound on the coupling time

there is only solid line to represent the evolution of Q0 since this queue has already
coupled. The system finally couples in state (3, 2) and τ b

1 (s0 = 5) = 5. Recall
from Example 5.1 that τ b

1 for this sequence of events was equal to 6. So indeed,
τ b
1 (s0 = 5) 6 τ b

1 .
The composition of both simulations of queue Q0 (from Figure 5.3.a) and of

queue Q1 (Figure 5.5.a) into a single simulation is shown in Figure 5.5.b. This
construction yields a series of events which assures coupling of the system. 4

4

3 = C1

1

0

−τ b
1 (s0 = 2) 0

Time

X1
1 = 2

X1
0 = 3

5 = X0
0

6

2

(a) The simulation of the
tandem network with up to
coupling of Q1, given that
X0

0
= 5.

5

4

2

1

3 = C1

6 = C0

0

−τ b
0 − τ b

1 (s0 = 5)

X0
0 = 5

τ b
1 (s0 = 5) 0

Time

X1
0 = 3

X1
1 = 2

(b) The composition of the two previous simulations assures global coupling of
the network.

Figure 5.5: The construction of a bound on the coupling time in a tandem network with
C0 = 6 and C1 = 3.

Model 1: ∞-model

Let us now consider the first new model. This model has one difference from the
original one: all queues are replaced by infinite queues, except for queue Qi which
stays the same. In the following, all the notations related to this new network will
be expressed by appending the ∞ symbol to all variables corresponding to this new
circuit.

Once this model achieves the steady state, the input stream in queue i is Poisson,
by using Burke’s Theorem (see Appendix A). The rate of the input stream in queue
i consists of the exogenous input stream in queue i and of the proportion of the
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5.2. Upper bound on the coupling time

rate at which customers are directed to queue i from others queues. Thus the rate
of the input stream in queue i is given by `i, the solution of the flow equations:

`i =
∑

j<i

`j
µji

µj
+ γi.

The network is said to be stable for queue i as soon as `i < µi. We assume stability
for all i in the sequel. Remark that strictly speaking, queue i is stable, since it has
a finite capacity. However,we use in the following our definition for the concept of
stability.

One can construct a sequence of backward simulations for the new network in
the same way as for the original network. This provides the quantities

∞X i−1
j , ∞τ b

i (s0 = ∞X i−1
0 , . . . , si−1 = ∞X i−1

i−1 ),

∞τf
i (s0 = ∞X i−1

0 , . . . , si−1 = ∞X i−1
i−1 ),

and
∞hCi→0(s0 = ∞X i−1

0 , . . . , si−1 = ∞X i−1
i−1 ).

The monotony property given above implies that X j
i 6st

∞Xj
i and

hCi→0(s0 = X i−1
0 , . . . , si−1 = X i−1

i−1 ) 6st
∞hCi→0(s0 = ∞X i−1

0 , . . . , si−1 = ∞X i−1
i−1 ).

Model 2: Isolated queue with null events

The next step is to build yet another model. This model is made of a single
M/M/1/Ci queue with three types of events

type 1: Arrivals of customers with rate `i (provided that the number of customers
is smaller than Ci).

type 2: Departures with rate µi (provided that the number of customers is posi-
tive).

type 3: Null events (with no effect on the queue) with rate Λ− `i−µi, where Λ is
the sum of all rates of the original network, i.e Λ =

∑
i∈S γi +

∑
i∈S µi.

For this isolated model, let us introduce the uniformizing probabilities

pi =
`i

`i + µi
,

qi = 1− pi,

di =
Λ− `i − µi

Λ
.

Let Fk be the time to go from state k to state 0 in the isolated system. A one step
analysis gives

E[Fk] = 1 + diE[Fk] +
`i
Λ

E[F(k+1)∧Ci
] +

µi

Λ
E[F(k−1)∨0]

=
1

1− di

(
1 +

`i
Λ

E[F(k+1)∧Ci
] +

µi

Λ
E[F(k−1)∨0]

)

=
1

1− di
+ piE[F(k+1)∧Ci

] + qiE[F(k−1)∨0].
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5.2. Upper bound on the coupling time

We get the same equation as (4.31) except for the additional constant which is
now 1

1−di
instead of 1, so that the solution is the same as before up to a multiplicative

factor of 1
1−di

= Λ
`i+µi

. Using Equation (4.29), one gets

E[FCi
] =

Λ

`i + µi




Ci

qi − pi
−
pi

(
1−

(
pi

qi

)Ci

)

(qi − pi)2


 . (5.1)

Lemma 5.2. Under the foregoing notations and assumptions,

∞hCi→0(s0 = ∞X i−1
0 , . . . , si−1 = ∞X i−1

i−1 ) = FCi
,

in distribution.

Proof. First, using Lemma 5.1 for the new network with infinite queues (except
for Qi), the state (∞X i−1

0 , . . . ,∞X i−1
i−1 ) is steady state distributed. Using Burke’s

Theorem, this implies that the input stream in queue Qi is Poisson with rate `i,
when one runs a simulation starting in any state in S∩{si = Ci, sj = ∞X i−1

j , j < i}.
Now, during this simulation, one can couple the addition, subtraction and null

events for queue Qi in isolation and for Qi in the complete network of infinite
queues, all of them having the same laws. This implies that the state of queue Qi

in both systems is the same under that coupling. Hence, they reach 0 at the same
time: ∞hCi→0(s0 = ∞X i−1

0 , . . . , si−1 = ∞X i−1
i−1 ) = FCi

in distribution.

Derivation of the bound

We are ready to put everything together in expectation:

Eτ b
6st

∑

i

E[hCi→0(s0 = X i−1
0 , . . . , si−1 = X i−1

i−1 )] (5.2)

6
∑

i

E[∞hCi→0(s0 = ∞X i−1
0 , . . . , si−1 = ∞X i−1

i−1 )] (5.3)

=
∑

i

E[FCi
]. (5.4)

The sequence of inequalities may not hold in distribution because the variables
X i and thus hCi→0(s0 = X i−1

0 , . . . , si−1 = X i−1
i−1 ) are not independent.

Using (5.1),

Eτ b
6
∑

i

Λ

`i + µi




Ci

qi − pi
−
pi

(
1−

(
pi

qi

)Ci

)

(qi − pi)2


 .

In subsection 4.1.2 we have seen that



 Ci

qi−pi
−

pi

„

1−
“

pi
qi

”Ci

«

(qi−pi)2



 6 Ci + C2
i for

pi 6 qi. We summarize the results of this part in the following theorem.

Theorem 5.1. In an acyclic stable network of K + 1 M/M/1/Ci queues with
Bernoulli routing and losses in case of overflow, the coupling time from the past
satisfies in expectation,

E[τ b] 6

K∑

i=0

Λ

`i + µi




Ci

qi − pi
−
pi(1−

(
pi

qi

)Ci

)

(qi − pi)2


 6

K∑

i=0

Λ

`i + µi
(Ci + C2

i ). (5.5)
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Remark 5.1. Observe that in case Qi has only exogenous arrivals, the arrivals at
Qi occur according to a Poisson process. Then we have

E [FCi
] = E [∞hCi→0] = E [hCi→0] .

Therefore, we can bound the coupling time on this queue in the network by consider-
ing it as a single M/M/1/C queue, except for the additionally factor of Λ/ (`i + µi).
Thus, we have:

E [hCi→0] > min

{
E [hCi→0] ,E [h0→Ci

] ,
Λ

`i + µi
· C

2
i + Ci

2

}
,

> Eτ b
i .

with

E [hCi→0] =
Λ

`i + µi




Ci

qi − pi
−
pi

(
1−

(
pi

qi

))Ci

(qi − pi)2




and

E [h0→Ci
] =

Λ

`i + µi




Ci

qi − pi
−
pi

(
1−

(
pi

qi

))Ci

(qi − pi)2


 .

.

Remark 5.2. Suppose we have a queue Qi with arrival rate `i and a service rate
µi such that `i > µj , i.e the queue is instable. Let Qj be a queue which is directly
fed by the departures of Qi, thus µij > 0. Coupling in queue Qi occurs in state
X i

i <∞. In the ∞- network, we have,

∞hCj→0

(
si = X i

i

)
6

∞hCj→0 (si =∞) .

By supposing that Qi has an infinite number of customers, the departure process
of Qi is a Poisson process with rate min{`i, µi}. Since µi < `i, we can model the
departure rate of Qi by µi. Since our bound is based on the time to get from state
Cj to state 0, this improves the bound for Qj .
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Chapter 6

Numerical experiments

In the previous chapter, we derived a bound on the coupling time in acyclic networks.
In this chapter we will compare this bound with experimental values of the coupling
time. Before presenting the experiments, we can already indicate three factors which
may be responsible for the inaccuracy of the bound given by Theorem 5.1.

• The first factor is the replacement of the max by the sum. We believe that it
may be a hard task to get rid of this first approximation because of the in-
tricate dependencies between the queues. Furthermore, experiments reported
below show that this may not even be possible in many cases (see Figure 6.3).

• Another factor which may increase the inaccuracy of our bounds is the fact
that most events change the states of several queues at the same time, while
the bound given here disregards this. This may add a factor 2 between the
true coupling time and the bound given in Theorem 5.1.

• The most important factor which jeopardizes the quality of the bound is
the stability issue. If one of the queues is unstable, the bound provided by
Equation (5.5), also called the light traffic bound in Proposition 4.5, is very
bad (as seen in Figure 4.5). The reason for this is that an unstable queue,
tends to couple in state C, while the bound is based upon coupling in state 0.

Nevertheless, under certain conditions we are able to allow instable queues
and derive a bound which is not too bad. This is based on combining Remark
5.1 and 5.2. For a queue Q0 with only exogenous arrivals, we can bound the
coupling time of this queue by using the bound introduced by Remark 5.1.
In case the queues which are directly nourished by this queue are stable with
respect to the service rate of Q0, we obtain a rather good bound. This will be
further investigated in 6.1.2. So far we have not been able to come up with a
better bound for unstable queues, unless for this particular case.

However, when all queues are stable (and even more so when the load is
smaller than 2/3), the bound tends to be more accurate. One should however
note that, on a practical point of view, most actual networks which require
stationary performance evaluations are indeed stable.

In the experiments, we focus on the stability issue in section 6.1 and on the
dependencies between queues that block the replacement of max by sum in section
6.2. For each experiment, the number of simulation runs equals 10,000. In the
construction of a bound, we use the result of Theorem 5.1 that

E[τ b] 6

K∑

i=0

Bi,
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with

Bi =
Λ

`i + µi




Ci

qi − pi
−
p

(
1−

(
pi

qi

)Ci

)

(qi − pi)2


 .

6.1 Stability

For the first series of experiments, we re-use the network introduced in Chapter 3.
The flow chart of this model is depicted in Figure 6.1.

C

C

C

C0

1

2

3
λ

λ

λ

λ

λ
λ

0
1

2

3

4

5

Figure 6.1: Flow chart of our model

6.1.1 Stability of last queue

We run three simulations, and the following parameters are fixed: The input rate
is λ0 = 0.4 and the rates of the other events are λ1 = 1.4, λ2 = 0.6, λ3 = 0.8 and
λ4 = 0.5. To investigate the stability issue, we set a different value for λ5 in each
simulation. Recall that `i is the solution of

`i =
∑

j<i

`j
µji

µj
+ γi,

with γi the exogenous arrival rate at queue i and that pi = `i/ (`i + µi). Now we
can determine `i, µi and pi for i = 0, 1, 2, 3:

i input stream `i service rate µi probability of arrival pi

0 0.40 2.0 1/6
1 0.28 0.8 7/27
2 0.12 0.5 6/31
3 0.4 λ5 0.4/(0.4+λ5)

The number of simulation runs is 10,000. The capacity Ci is the same for all
the four queues and we let it vary from 1 to 20.

In the first model, we set λ5 = 0.2 such that the last queue Q3 is instable. For
the second model, we set λ5 = 0.6 such that Q3 is stable and in the third model we
set λ5 = 0.4 such that the last queue is barely instable.

Model 1: Q3 is instable

In this model, λ5 = 0.2 so that queue Q3 is unstable. Now Λ = 3.9, µ3 = 0.2 and
p3 = 2/3.
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Using the expression for the Bi’s, we obtain:

B0 =
3.9

2.4

(
3

2
C − 3

8
+

3

8

(
1

5

)C
)

=
39

16

(
C

4
− 1 +

(
1

5

)C
)
.

In a similar way we obtain Bi for the three remaining queues:

B1 =
15

2
C − 105

26
+

105

26

(
7

20

)C

,

B2 =
195

19
C − 1170

361
+

1170

361

(
6

25

)C

,

B3 = −39

2
C − 39 + 39 · 2C .

Now the bound on the backward coupling time becomes
∑K

i=0Bi with the Bi’s
as above. Note that the bounds B0, B1 and B2 get lineair in C as C increases.
However, the bound B3 is exponentially increasing as C get large and therefore
makes that our bound explodes. This is shown in Figure 6.2 which displays the
bound as well as the mean coupling time computed over the 10,000 simulation
runs. A ratio larger than 10 with respect to the true coupling time is reached when
C = 5. It should also be noticed that the bound is convex in C while the coupling
time is not.

C
 0

 500

 1000

 1500

 2000

 0  5  10  15  20

Figure 6.2: This figure displays the coupling time (dots) with 95% confidence intervals,
and the bound given by Equation (5.5) when queue Q3 is unstable (λ5 = 2/10), while the
capacity C varies from 1 to 20.

Model 2: Q3 is stable

In the model, λ5 equals 0.6, and all queues are stable with a load smaller that 2/3.
Now Λ = 4.3. For queue 3 we get µ3 = 0.6 and p3 = 2/5. We obtain the bound∑3

i=0Bi with:
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B0 =
43

16
C − 43

64
+

43

64

(
1

5

)C

,

B1 =
215

26
C − 1505

338
+

1505

338

(
7

20

)C

,

B2 =
215

19
C − 1290

361
+

1290

361

(
6

25

)C

,

B3 =
43

2
C − 43 + 43

(
2

3

)C

.

Figure 6.3 shows this bound and the mean coupling time computed by simulation
runs. Both curves appear to be almost linear in C (this is true for the bound: when
qi/pi is small, EFCi

is almost linear in Ci) and the ratio is smaller than 1.3.
The third curve in Figure 6.3 is maxi∈{0,...3} Bi. Notice that

max
i∈{0,...3}

Bi < E
[
τ b
]

and thus we cannot replace the sum by the max. This is to be related with the first
item in the comments above.

C

Upper bound

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  5  10  15  20

∑3
i=0 Bi

maxi Bi

Figure 6.3: Here are the bound given by Equation (5.5), the mean coupling time (dots)
with 95% confidence intervals and the maximum over Equations (5.5) for all queues, when
queue Q3 is stable (λ5 = 6/10), while the capacity C varies from 1 to 20.

Model 3: Q3 is barely instable

This time, we set λ0 = 0.4, so that `3 = µ3 and thus Q3 is barely unstable. This
would correspond to the maximal coupling time for Q3 if it was alone. Furthermore,
we have Λ = 4.1 and p3 = 1/2. For the B′

is we obtain:

B0 =
41

16
C − 41

64
+

41

64

(
1

5

)C

,

B1 =
205

26
C − 1435

338
+

1435

338

(
7

20

)C

,

B2 =
205

19
C − 1230

361
+

1230

361

(
6

25

)C

,

B3 =
43

8

(
C2 + C

)
.
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and then Eτ b 6
∑3

i=0 Bi.
Note that for queue Q3, we use a bound in C+C2 which is a bad approximation

because of the loss of the factor 2 when compared with the bound for isolated
queues.

Figure 6.4 displays the backward coupling time and the bound. Note that the
total gap has a ratio which is almost 2. In that case both the coupling time and
the bound exhibit a convex behaviour with respect to C. A ratio smaller than 2
is indeed interesting because efficient perfect simulation algorithm use a doubling
window technique to reduce the complexity and their running time (see Equation
(2.9)) so that our bound gives a good estimation of the mean running time of the
algorithms.

C 0

 500

 1000

 1500

 2000

 0  5  10  15  20

Figure 6.4: Display of the coupling time (dots) with 95% confidence interval and the
bound given by Equation (5.5) when queue Q3 is barely unstable (λ5 = 4/10) while the
capacity C varies from 1 to 20.

6.1.2 Stability of first queue

In this model, we use the same flow chart as in the three preceding examples,
but with different parameters. We let λ1 = 0.5, λ2 = 0.5, λ3 = 1.0, λ4 = 0.8
and λ5 = 1.2. For all four queues, we take again the capacity equal to 10. The
exogenous input rate λ0 is varying from 0 to 10. Again we run 10,000 simulation
runs.

Observe that as soon as λ0 > 1, the first queue becomes instable. From Remark
5.1 it follows that the instability of Q0 is not a problem, since we can treat this
queue as a isolated M/M/1/C queue, except for the additional factor of Λ/ (`i + µi).

However, stability is an issue for queues that are fed by departures of other
queues. Since we determine the bound on these queues by the time it takes to get
from C to 0, the queue need to be stable in order to obtain an acceptable bound.
From Remark 5.1 it follows that we can model the departure rate of queue Q0

with rate by min {λ0, µ0}. Thus as soon as the input rate exceeds 1, we take the
departure process of Q0 with rate 1. We can also apply this reasoning for the other
queues. Then we find the following values for `i:

λ0 < 1 λ0 > 1
`0 λ0 λ0

`1 0.5 · λ0 0.5
`2 0.5 · λ0 0.5
`3 1.0 · λ0 1.0

Note that the queues Q1, Q2 and Q3 are stable for all input rates λ0. Now, we will
construct the bound on the coupling time. Since we can treat Q0 as an isolated
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simple queue, we calculate the three bounds form Theorem 4.5 with the additional
factor.:

B0 = Λ
1+λ0

(
10

q0−p0
−

p0

“

1−
“

p0
q0

””10

(q0−p0)2

)
Light Traffic bound

B′
0 = Λ

1+λ0
· 102+10

2 Critical bound

B′′
0 = Λ

1+λ0

(
10

q0−p0
−

p0

“

1−
“

p0
q0

””

10

(q0−p0)2

)
High Traffic bound

In establishing the Bi for i = 1, 2, 3 we need to distinguish between the case
with λ0 < 1 and with λ0 > 1.

For λ0 < 1 we get:

B1 = Λ
1+0.5λ0

(
10

q1−p1
−

p1

“

1−
“

p1
q1

””

10

(q1−p1)2

)
with p1 = 0.5λ0

0.5λ0+1 ,

B2 = Λ
0.8+0.5λ0

(
10

q2−p2
−

p2

“

1−
“

p2
q2

””

10

(q2−p2)2

)
with p2 = 0.5λ0

0.5λ0+0.8 ,

B3 = Λ
1.2+0.5λ0

(
10

q3−p3
−

p3

“

1−
“

p3
q3

””10

(q3−p3)2

)
with p3 = 0.5λ0

0.5λ0+1.2 ,

and for λ0 > 1 we get:

B′
1 = Λ

1+0.5

(
10

q1−p1
−

p1

“

1−
“

p1
q1

””

10

(q1−p1)2

)
with p1 = 0.5

0.5+1 ,

B′
2 = Λ

0.8+0.5

(
10

q2−p2
−

p2

“

1−
“

p2
q2

””10

(q2−p2)2

)
with p2 = 0.5

0.5+0.8 ,

B′
3 = Λ

1.2+0.5

(
10

q3−p3
−

p3

“

1−
“

p3
q3

””

10

(q3−p3)2

)
with p3 = 0.5

0.5+1.2 .

Now we can construct the following bounds on the mean coupling time of the
network:

Bound 1 = B0 +B1 +B2 +B3,
Bound 2 = B′

0 +B1 +B2 +B3,
Bound 3 = B′

0 +B′
1 +B′

2 +B′
3,

Bound 4 = B′′
0 +B′

1 +B′
2 +B′

3.

Note that Bound 1 is the bound we obtain without using Remark 5.2 and Remark
5.1. Bound 2 is obtained by using Remark 5.1 and for Bound 2 and Bound 4 both
Remarks are used. These four bounds with the mean coupling time issued from the
simulations is shown in Figure 6.5. Remark that modelling the departure rate of Q0

by its service rate as soon as λ0 depasses 1, highly improves the bound. Futhermore,
remark that the bound has a similar form as the coupling time.

6.2 Dependencies between queues

In the introduction we pointed out that the replacement of the max by the sum
makes our bound in some cases not appropriate. In Figure 6.3 we already saw that
sometimes the max is lower than the real coupling time obtained in simulation runs.
In this section, we show that the dependencies between the queues in the network
can play a role in the mean coupling time. To show this, we compare two queueing
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Figure 6.5: The four bounds and the mean coupling time (dots) with 95% confidence
intervals.

systems. Both systems consist of three queues in series, each of capacity 10 (Figure
6.6). In both queues, we set the arrival rate λ0 = 1. In the first queueing system,
we set the service rates in an increasing rate: µ0 = 2, µ1 = 4 and µ2 = 8. In the
second queue we set the service rates in a decreasing order: µ0 = 8, µ1 = 4 and
µ2 = 2. Applying the method to construct a bound, we obtain the same bound for
both systems, and one can show that

Eτ b
6

2∑

i=0

Λ

`i + µi




Ci

qi − pi
−
pi

(
1−

(
pi

qi

)Ci

)

(qi − pi)2


 < 205.

λ0

µ0 µ1 µ2

Figure 6.6: The flow chart of the three queues in series

By running 10,000 simulation runs for each model, we obtain a mean coupling
time of 148.2 for the network with increasing service rates and a mean coupling time
of 193.4 for the model with decreasing service rates (see Table 6.1). Note that in
the decreasing service rate model, the mean coupling time is relatively close to our
bound. What can explain the difference between these means? From Table 6.2 we
see that in the increasing model, the coupling time is in more than half of the time
determined by the time it takes the first queue to couple. For the decreasing model,
in almost all cases, it is the last queue that couples the last and thus determine the
coupling time of the system.

The explanation for this behaviour is the following. In the increasing service rate
model, the ratio between the arrival rate and the service rate is equal. However,
due to uniformization, most of the events affect Q2 and the least events affect Q0.
Therefore, Q2 tends to couple faster then Q0.

For the decreasing service rate model, the system is not in the stationary mode
from the beginning. Therefore, note that at the beginning Q1 and Q2 are instable.
Only queue Q0 is stable (even exteremly stable) and thus will couple very fast. Then
after coupling, Q0 is stationary and thus the arrival rate at Q1 is 1. Hence, Q1 will
couple and Q2 is the last queue to couple. We see from Table 6.2 that in almost all
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mean coupling time
global system Q0 Q1 Q2

series with increasing rates 148.2 133.2 85.4 55.1
series with decreasing rates 193.4 20.1 66.5 193.4

Table 6.1: Mean coupling time of the queueing systems with increasing and decreasing
rates, and the mean coupling time per queue.

Frequency
Q0 Q1 Q2

series with increasing rates 0.5298 0.2936 0.1766
series with decreasing rates 0.0000 0.0008 0.9992

Table 6.2: Frequency of queue with longest coupling time.

simulation runs, indeed the last queue is responsible for the mean coupling time.
Thus this system couples exactly in the order we used to construct the bound.

We see that the intricate dependencies of the queues play a strong role in the
coupling time. We also showed that in some networks, the queues indeed couple
almost queue by queue, as is supposed in our construction on the bound. Hence, it
is hard to replace the sum. It might be subject for further research to investigate
the dependencies between the queues in the network in order to find a better bound.
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Chapter 7

Conclusion

The aim of this thesis was to study the coupling time of the coupling from the past
algorithm in queueing networks. Now we will shortly summarise the main result,
state a recommendation for effectively using the CFTP algorithm and point out
topics for further research.

In the analysis of the coupling time, we first focussed on single finite capacities
queues. We derived a recurrent expression for the exact coupling time and showed
that the mean coupling time in a single finite capacity queue is maximal when the
input rate and output rate are equal. Moreover, we derived three easy calculable
upper bounds on the coupling time that are based on hitting times: a light traf-
fic, high traffic and critical bound (page 30). Using formal series, we derived a
stochastical bound on the moments of the coupling time in a single finite capacity
queue.

The light traffic bound served to build a bound on the mean coupling time
in queueing networks. Experiments showed that the mean coupling time shows
a asymptotic lineair dependence with respect to the exogenous arrival rate. The
bound we established features this linear dependence.

7.1 Recommendation for using the algorithm

In chapter 3 we explained how one can apply the CFTP algorithm after uniformiza-
tion of a queueing system. We explained that if one picks an event whose enabling
condition is not met, the systems stays unchanged. However, choosing such an
event does indeed increase the coupling time. When one uses the CFTP algorithm
in order to obtain a steady state distributed sample, one would like to avoid that
one picks events that do not change the system at all. Therefore, one can determine
for each state the set of admissible events and pick an event out of this set for every
state. However, to do this, one needs to check in what state one is and this testing
increases the complexity. Therefore, one should avoid to test on every state, but
more likely to test for some specific events that might occur very often. The effect
of picking events that cannot be carried out, increases when there is an event that
dominates the uniformized Markov chain. Therefore, one should test only whether
a dominating event is admissible. This means that one only tests on the coordinates
of the queues that are involved with this particular event. For example, if the input
rate at Queue Qi is very large compared to its service rate, one only needs to check
whether the number of customers in Qi equals Ci. In testing this way, one only
needs to test one coordinate of the state s ∈ S.

This effect explains the linear behaviour of the coupling time with respect to the
input rate at the topological first queue at the system: a very large input rate with
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respect to the service rate, makes that a lot of customers arrive and immediately
leave the system. But it does increase the coupling time.

7.2 Topics for further research

The topics for further research are strongly related to the three factors we indicated
in Chapter 6 that may be responsible for the inaccuracy of the bound.

• One might study the intricate dependencies between the queues. Our bound
does not take into account the structure between the queues. However, in
section 6.2 we have shown that the structure of the chain does play a role in
the mean coupling time.

• In the establishment of our bound, we studied acyclic networks with Bernoulli
routings. One can extend the analysis to cyclic networks, or networks with
other routing policies.

• The bound we derived is based on the time it takes each queue of the network
to reach state 0 (light traffic bound of 4.5). Therefore, the bound is terribly
bad in case the network contains unstable queues. We have partly overcome
this, since we can obtain acceptable bounds when only queues with only ex-
ogenous arrivals are unstable. While we have only been able to show that the
light traffic bound holds for each queue, we conjecture that the heavy traffic
bound and the critical bound should also hold. This would yield an overall
quadratic bound:

E[τ b] 6

K∑

i=0

Λ

`i + µi
O(C2

i ),

for any monotone Markovian network of queues with a finite state space.
Furthermore under light or heavy traffic in all queues, the bound should rather
be linear:

E[τ b] 6

K∑

i=0

Λ

`i + µi
O(Ci).

To illustrate this conjecture, we have run simulations for the network displayed
in Figure 3.1 with the following parameters. The rates are λ0 = 0.4, λ1 = 1.4,
λ2 = 0.6, λ3 = 0.8, λ4 = 0.5. The capacity is fixed to 10 in all queues and we
let λ5 (the service rate in Q3) vary from 0 to 4. As long as λ5 < 0.4, Q3 is
unstable and our proven bound (B1) is poor. As soon as λ5 is large enough
our bound becomes acceptable. In Figure 7.1, note that both the bound and
the mean coupling time τ b have a linear asymptotic growth in λ5. The Figure
also displays the heavy traffic bound B2 and the critical bound B3. Should
these two bounds hold, the minimum of B1, B2, B3 (in bold in the figure)
would provide a remarkable bound on the coupling time, up to an additional
constant, since these bounds scale very well with the number of queues. This
explains why perfect simulation of monotone queueing networks is so fast,
especially when dealing with large scale networks as in [12] where systems
with up to 32 queues of capacity 30 (the state space is of size 3132 ≈ 1047) are
sampled over a classical desktop computer is less than 20 milli-seconds. This
is good enough to estimate rare event probabilities.
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Figure 7.1: This figure displays the actual coupling time Eτ b together with the proven
light traffic bound B1, the conjectured heavy traffic bound B2, the conjectured critical bound
B3 and the minimum of the three bounds.
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Appendix A

Markov chain theory

This appendix summarises some results on discrete time and continuous time Markov
chains. For a more detailed exposition, the reader is referred to handbooks on
Markov chain theory like [1, 5, 9, 11].

Discrete time Markov chain

A Markov chain {Xn}n∈N
is a stochastic process in discrete time on a state space

S with the property that

P
(
Xn+1 = sn+1 | X0 = s0, . . . , Xn = sn

)
= P

(
Xn+1 = sn+1 | Xn = sn

)
,

for every possible value of s0, . . . sn+1 ∈ S. A Markov chain is called time-homogeneous
if

pij = P
(
Xn+1 = j | Xn = i

)
for every i, j ∈ S. and for every n ∈ N.

The probabilities pij are the one-step transition probabilities. These one step prob-
abilities satisfy

pij > 0 for i, j ∈ S and
∑

j∈S

pij = 1.

Let the matrix P = (pij) denote the matrix whose entries are the one step proba-
bilities. From now one, we suppose that the Markov chains are time-homogeneous.
The n-step probabilities pn

ij are defined as

pn
ij = P

(
Xn = j | X0 = i

)
,

and denote the probability of going from state i to state j in exactly n steps.
A state i is accessible from state j if there exists an integer n such that pn

ij > 0.
State i and j communicate with each other if j is accessible from state i and i is
accessible from j. Two states that communicate with each other are said to be in
the same class. A Markov chain consisting of only one class is irreducible.

Let fn
ij denote the first passage probability of state j, provided we start in state

i. That is

fn
ij = P (Xn = j, Xm 6= j for 1 6 m 6 n− 1 | X0 = i) .

Now

fij =

∞∑

n=1

fn
ij = P (there exists an n ∈ N : Xn = j | X0 = i) .
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A. Markov chain theory

A state is called recurrent if fii = 1 and a state is transient if fii < 1. Thus, if
a state recurrent, the Markov chain will visit state i infinitely often and when the
state is transient, the state will be visited only a finite number of times. One can
show that if

∑∞
n=0 p

n
ii =∞, then state i is recurrent and that if

∑∞
n=0 p

n
ii <∞, the

state i is transient. Recurrence and transience are class properties.
A recurrent state i is called positive recurrent if

∞∑

n=1

nfn
ii <∞.

Thus for a recurrent state the expected time to return to state i is finite. Positive
recurrence is also class property.

A state i has period d if pn
ii = 0 whenever n is not divisible by d, and d is the

largest integer with this property. A state with period 1 is said to be aperiodic.
Periodicity is a class property.

In an irreducible Markov chain with finite state space S, all states are positive
recurrent.

A probability distribution (πj , j ∈ S) is called the stationary distribution of a
Markov chain if

πj =
∑

i∈S

πipij , j ∈ S.

This stationary distribution πj of a state j can be interpreted as the long run
proportion of time that the process is in state j. Thus πj = limn→∞ pn

ij .
One of the main results for finite-state Markov chains is the following:

Theorem A.1. Let {Xn}n∈N
be a aperiodic and irreducible Markov chain on a

finite state space. Then there exists a unique stationary distribution.

Continuous time Markov processes

A stochastic process {X (t) , t > 0} is a continuous time Markov process if

(i) The amount of time spent in a state i ∈ S before a transition to an other state
j ∈ S is exponentially distributed with parameter νi.

(ii) When the process leaves state i, it enters state j with some probability pij :
{

pii = 0, for all i ∈ S
∑

j 6=i pij = 1 for all i ∈ S
(A.1)

We suppose that the parameters νi are bounded and that the set S of all states is
finite. The discrete time Markov chain {Xn}n∈N

with transition matrix P = (pij)
is called the embedded chain. The transient probabilities

pij (t) = P (X (t+ s) = j |X (s) = i)

denote the probability that a process currently in state i will be in state j at t time
units later.

Let qij = νi pij for i 6= j denote the rate at which a process makes a transition
from state i to state j. This rate is called the infinitesimal transition rate.

A probability distribution (pj , j ∈ S) is called the stationary distribution of a
continuous time Markov chain if

νjpj =
∑

k 6=j

qkjpk, j ∈ S.

This stationary distribution pj of a state j can be interpreted as the long run
proportion of time that the process is in state j. The main result is:
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Theorem A.2. Let {X(t), t > 0} be a continuous time Markov process on a finite
state space. Let the embedded Markov chain be irreducible and aperiodic. Then X(t)
has a stationary distribution pj.

A continuous time Markov process is time reversible if

pi qij = pj qji for all i, j ∈ S.

This means that the rate at which the process goes directly from state i to state j
is equal to the rate at which it goes directly from j to i.

Theorem A.3 (Burke’s Theorem). Consider an M/M/1 queue in steady state
with arrival rate λ and service rate µ and λ < µ. Then the departure process is a
Poisson process with parameter λ.

Proof. ([9], p. 378) In any interval of length t, the number of transitions from state
i to i+1 must equal within one the number of transitions from i+1 to i. By letting
t → ∞, the number of transitions goes to infinity and the rate of transitions from
i to i + 1 equals the rate of transitions from i + 1 to i. Thus the M/M/1 queue
is time reversible. Let N (t) count the number of customers in the M/M/1 queue.
By going forward in time, the points where N (t) increase by one, correspond with
the arrivals of customers and thus is a Poisson process with parameter λ. Since the
process is time reversible, the points at which the reversed process increases by one
must also represent a Poisson process with parameter λ. These latter points are
exactly the points when customers depart in the reversed process (see Figure A).
Hence, the departure process is Poisson with parameter λ.

1

2

3

0
t

N(t)

x x x x x

Figure A.1: Realization of N(t). The time points at which arrivals occur in the reversed
process are indicated by x.

Uniformization

The aim of uniformization is to construct for a given continuous time Markov chain
a stochastic process such that the distribution of the sojourn time in a state is
independent of the specific state one is in. Therefore, take a finite number ν such
that ν > νi.

We define
{
Xn

}
n∈N

a discrete time Markov chain whose transition matrix P =(
pij

)
is given by

pij =

{
νi

ν pij i 6= j;

1− ν1

ν i = j.

Note that the discrete time Markov chain Xn does allow transitions from a state
to itself, whereas the the embedded chain Xn does not. Let {N (t) , t > 0} be
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a Poisson process with parameter ν. Now define the continuous time stochastic
process

{
X (t) , t > 0

}
by

X (t) = XN(t), t > 0. (A.2)

In other words, this stochastic process X (t) is driven by a Poisson process with
parameter ν to determine when a transition takes place and a discrete time Markov
chain Xn to determine which transition takes place. In fact, the transitions out of
state i are delayed by a factor ν/νi while the time it takes until the next transition is
condensed by a factor νi/ν. This explains that the continuous time Markov process
X (t) is probabilistically identical to the new constructed process X (t).

The uniformized model is thus driven by a single Poisson process and a discrete
time Markov chain Xn. The stationary distribution of the uniformized process is
therefore determined by the stationary distribution of the discrete Markov chain
Xn. Because the model before uniformization and after uniformization are proba-
bilistically identical, this means that the stationary distribution of the continuous
time Markov process {X (t) , t > 0} is also determined by the stationary distribution
of the discrete time Markov chain Xn.
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Appendix B

Useful theorems and results

This appendix consists of theorems and other results that are used in this thesis.

Strassen’s Theorem

Let X,Y be random variables. We say that X is stochastically smaller than Y if
P (X > t) 6 P (Y > t) for every t. We note X 6st Y . Let D (Rn) denote the set of
probabilities on R

n.

Theorem B.1 (Strassen’s Theorem). ([2], p. 377-378) Let F and G be two
cumulative distribution functions in D (Rn). Now F 6st G if and only if there
exist two R

n random variables X and Y defined on the same probability space with
probability distribution F and G respectively and such that X 6 Y almost surely.

Proof. For dimension one, the proof is obtained from the following construction: Let
U be the random variable uniformly distributed on [0, 1]. LetX = F−1 (U) and Y =
G−1 (U) with the inverse of F defined byF−1 (u) = inf {x such that F (x) > u}. It
follows from the assumption F 6st G that X = F−1 (U) 6 G−1 (U) = Y .

On the other hand, if X 6 Y almost surely, then P (X 6 x) = F (x) > G (x) =
P (Y 6 x) for all x > 0, and this is equivalent to F 6st G.

Random Walks

A random walk with absorbing barriers is a walk on 0, . . . ,m with p the probability
of going up and q = 1 − p the probability of going down. Let Pi denote the
probability that absorption occurs in state m when starting in i and let Qi = 1−Pi

denote the probability that absorption occurs in 0.

Proposition B.1. In a random walk on 0, . . .m, we have

Pi =

{
1−ai

1−am if p 6= 1
2 ,

i
m if p = 1

2 ,

with a = q/p.

Proof. ([1] p. 65-66) Conditioning delivers the following recurrent relation for Pi:

Pi = pPi+1 + qPi−1 for i = 1, . . . ,m− 1,

with the boundary conditions P0 = 0 and Pm = 1. The characteristic polynomial
is px2 − x+ q = 0.
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In case p 6= q, the roots of the caracteristic polynomial are r1 = 1 and r2 =
q/p = a. The general solution becomes:

Pi = Ari
1 +Bri

2 = A+Bai, (B.1)

with A,B ∈ R constants. These constants can be determined using the boundary
conditions. We obtain that A = −B = 1/ (1− am) such that

Pi =
1− ai

1− am
for p 6= q.

In case p = q, there is only one root, namely r = 1. The general solution therefore
is

Pi = Ari
1 +Biri

1 = A+Bi. (B.2)

Again, we use the boundary conditions to determine A and B. We find that A = 0
and B = 1/m.

Thus:

Pi =
i

m
for p = q.

By setting 1− Pi we obtain the next result:

Corollary B.1. In a random walk on 0, . . . ,m, we have

Qi =

{
am1−ai

am−1 if p 6= 1
2 ,

m−i
m if p = 1

2 ,

with a = q/p.

Let Ti denote the absorption time of a random walk on 0, . . . ,m starting in i,
and let α0 denote the probability of absorption in 0.

Lemma B.1.

E[Ti] =






1
q−p − m

q−p
1−ai

1−am , p 6= 1
2 ,

i(m− i), p = 1
2 .

(B.3)

Proof. By a one step analysis, we get

E[Ti] = 1 + pE[Ti+1] + qE[Ti−1], for 1 6 i 6 m− 1, (B.4)

with the boundary conditions E[T0] = E[Tm] = 0. The general solution equals (B.1)
for p 6= q and (B.2) for p = q, but this time we also need to find a particular solution
since the factor +1 appears in the recurrence.

In case p 6= q, we try the particular solution Ci+D. Using (B.4), we find that
C = 1/ (q − p) and D = 0. Thus the solution becomes:

A+Bai +
i

q − p .

By sing the boundary conditions we get:

E [Ti] =
1

q − p −
m

q − p
1− ai

1− am
.

In case p = q, we try the particular solution Ci2 +Di+E. Using (B.4), we find
that C = −1 and D = E = 0. Then the solution becomes:

A+Bi− i2.
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By using the boundary conditions, we obtain:

E [Ti] = i (m− 1) .

Catalan Numbers

The Catalan numbers are given by the recurrence

Cn =

n−1∑

k=0

CkCn−1−k,

with the initial values C0 = C1 = 1.
Let C(x) be the generating function of the Catalan numbers. Then

xC (x)2 = x
(
C0 + C1x+ C2x

2 + . . .
) (
C0 + C1x+ C2x

2 + . . .
)

= C2
0 + (C0C1 + C1C0)x

2 + (C0C2 + C1C1 + C2C0)x
3 + . . .

= C (x)− 1.

Solving for C(x) yields:

C(x) =
1−
√

1− 4x

2x
.

Note that we choose the minus sign, since when choosing for the plus sign, then
limx→0 C(x) =∞. A direct expression for Cn is

(
2n
n

)
1

n+1 . Hence,

C (x) =

∞∑

n=0

(
2n

n

)
xn

n+ 1
.
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