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Chapter 1

Introduction

The parity of class numbers has already been studied intensively by various
persons. Recently a paper by David Hayes appeared containing some interesting
new results [2]. The purpose of the current paper is to write out details and
extend some results occuring in the articles of Gras [4] and Hayes [2]. Besides
that, I tried to put the entire story in a more algebraic context.

Class number parity results are found for real number fields which are sub-
fields of cyclotomic fields of prime conductor. The main purpose of this paper is
to give a practical algorithm to find a piece of the two part of the class number
of such a field. Considering the fact that class numbers of cyclotomic fields of
prime conductor greater than 67 are as of yet unknown, it is astonishing that the
methods of Gras and Hayes give within almost no time 2-divisibility properties
of these class numbers up to a million! The resources needed to accomplish this
are basic Class Field Theory, the index formula that relates the class number to
the index of cyclotomic units in the full unit group and a Theorem from Gras
(see [4]).

A brief chronological description follows about the contents of this paper.
Chapter two will deal with basic class field theory to obtain three propositions
regarding unramified extensions. Three natural sign maps are constructed which
will lead later on in a natural way to 2-divisibility properties of the class number.
The theory in this chapter is very general and works for all number fields.

In chapter three, cyclotomic units are defined and some structure theorems
about cyclotomic units are proved. Cyclotomic units are usefull in the sense
that they can be written explicitly without any effort, in contrast to arbitrary
units. The setting of this chapter is not as general as the setting of chapter two;
the fields to work with are abelian number fields which have prime conductor.

In chapter four, a theorem of Gras is stated and proved which relates the sign
maps from chapter two. It can be considered as the most important theorem in
this paper, and several subsequent results rely on it.

Chapter five is about parity questions and relations between the parities of
the normal class number, relative class number, the ’restricted’ class number
and the ray class number of conductor four.
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Chapter six contains 2-divisibility properties of the class number, and finally
chapter seven demonstrates how all the theory gathered so far can be applied.
Chapter seven will give various examples and it is discussed how to implement
the algorithms into a programming language in the most efficient way.

As a final note, I must say something regarding the notation that is used
throughout the paper. In the literature, it is almost a convention that every-
thing associated with the real cyclotomic subfield gets a + in the notation. For
example, if ζ is a p-th root of unity, the class number of the maximum real
subfield of Q(ζ) is denoted by h+

p and the unit group of the same field by E+.
This + must remind one that the object is associated to a real subfield because
it only makes sense for R. However, this paper is concerned with positive ele-
ments, rather than being real. Therefore all + refer to being positive and the
classical meaning does not apply!

This paper can be generalized for prime powers, but because of the additional
complexity of notation I did not do this.

I’d like to thank Bart de Smit for all the sessions we’ve spent reviewing, and
all his helpful remarks and corrections. David Hayes, who kept me up to date
on his own research and gave me some helpful pointers. Hendrik Lenstra (who
also came up with the idea for this thesis), Bas Edixhoven, Fabio Mainardi and
Martin Lübke for being part of the graduation committee. Peter Stevenhagen
for answering some questions and his helpful paper where chapter five is more
or less based on. Martijn Feleus for enabling me to speed up my graduation.
And last but not least my family, for their support.
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Chapter 2

Sign Maps and Unramified

Extensions

Let L be an arbitrary number field. For this chapter, let h be the class number
of L, and O the ring of integers of L.

2.1 Unramified extensions at infinite primes

Definition 2.1. A real infinite prime of L is a field homomorphism L → R.

Let R∞ be the set of real infinite primes of L. If L is Galois over Q and G
its Galois group, a left G-action can be defined on the set of real infinite primes
by requiring for p ∈ R∞ , for all x ∈ L and all σ ∈ G that :

σp(x) := p(σ−1x).

Definition 2.2. Define for L the real sign map from L∗ to F2[R∞] as the map
such that for all x ∈ L∗ :

x 7→
∑

p∈R∞

(sgn(px))p

where sgn is the map R∗ → F2 such that negative elements of R have image 1
and positive elements have image 0.

The map is a Z-linear homomorphism. If L is real and Galois over Q, then
sgn∞ is G-linear with G the Galois group of L, and F2[R∞] is a free F2[G]-
module of rank 1. More algebraically, the archimedean sign map is equal to

sgn∞ : L∗ → (L ⊗R)∗ ⊗ F2 ' F2[R∞].

The last isomorphism follows by the next Lemma.

Lemma 2.3. The image of L∗ under sgn∞ is equal to F2[R∞].
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Proof. The set L∗ is a dense subset of (L⊗R). It is immediate that sgn∞(L∗)
is equal to F2[R∞] because it intersects each connected component of (L⊗R)∗

(the connected components are exactly the open and closed subsets of (L⊗R)∗

having the same sign at the infinite real primes).

Proposition 2.4. Let u ∈ L∗. Then L(
√

u) is unramified at all infinite primes

if and only if u ∈ ker(sgn∞).

Proof. The extension L(
√

u) is unramified at all infinite primes precisely when
for each real infinite prime p the number p(u) is positive. The converse is
obvious.

2.2 Unramified extensions at finite primes

In this section a map will be constructed which is similar to the archimedean
sign map from the previous section. However, instead of considering whether an
element is positive at an infinite prime, consider if such an element is a square
mod 4.

For this entire section make the extra assumption that 2 does not ramify in
L/Q.

Lemma 2.5. Suppose 2 does not ramify in L. Then the order of (O ⊗ F2)
∗ =

(O/2O)∗ is odd. In particular, every element of (O/2O)∗ is a square.

Proof. Suppose 2 =
∏a

i=1 pi is the prime decomposition of 2 in O. The norm of
pi is NL|Q(pi) = 2fi where fi is the residue class degree of pi. Then

#(O/2O)∗ =

a
∏

i=1

(NK|Q(pi) − 1) =

a
∏

i=1

(2fi − 1)

is odd. The group homomorphism x 7→ x2 on (O/2O)∗ is therefore an isomor-
phism, hence every element in (O/2O)∗ is a square.

Lemma 2.6. Suppose 2 does not ramify in L. Define ι : 1+2(O/4O) → O/4O
to be the inclusion map, and π : O/4O −→ O/2O the quotient map. The

following sequence is exact and splits:

1 // 1 + 2(O/4O)
ι

// (O/4O)∗
π

// (O/2O)∗ // 1

Proof. First ι(1 + 2(O/4O)) ⊂ (O/4O)∗. For let x = 1 + 2u ∈ 1 + 2O. Then
x2 = 1 + 4u + 4u2 shows that the image of x in O/4O is a unit with order 2.
Also π((O/4O)∗) = (O/2O)∗. It is obvious that im(ι) = ker(π).

The sequence splits because 1+2(O/4O) is the 2-sylow subgroup of (O/4O)∗

by Lemma 2.5.

Lemma 2.7. Suppose 2 does not ramify in L. Every element of (O/4O)∗ ⊗Z2

is either trivial or has order 2.
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Proof. Tensoring the exact sequence of Z-modules from the Lemma above pre-
serves exactness because Z2 is torsion free and Z is principal, and this implies
that Z2 is a flat module (see [7] page 613). Alternatively, it is exact since the
sequence splits. Thus:

1 −→ (1 + 2(O/4O)) ⊗ Z2 −→ (O/4O)∗ ⊗ Z2 −→ (O/2O)∗ ⊗ Z2 −→ 1.

Note that taking the tensor product with Z2 is nothing else than taking the 2-
part of the module with which Z2 is tensored. Then since the order of (O/2O)∗

is odd, (O/2O)∗ ⊗ Z2 is trivial and 1 + 2(O/4O) ⊗ Z2 equals 1 + 2(O/4O).
Therefore the sequence reduces to

1 −→ 1 + 2(O/4O) −→ (O/4O)∗ ⊗ Z2 −→ 1 −→ 1.

and (O/4O)∗ ⊗ Z2 ' 1 + 2(O/4O). Every element in 1 + 2(O/4O) has order 1
or 2.

The Z-module (O/4O)∗⊗Z2 is an F2-module since tensoring with Z2 cleared
all elements with odd order, and by the above Lemma every element only re-
mains to have order 2. Further, (O/4O)∗ ⊗ Z2 is isomorphic to O/2O be-
cause (O/4O)∗ ⊗ Z2 is isomorphic to 1 + 2(O/4O) and the map that sends
(1 + 2w) ∈ 1 + 2(O/4O) to w ∈ O/2O is an isomorphism.

If L is Galois over Q with Galois group G, then (O/4O)∗ ⊗Z2 is an F2[G]-
module and the isomorphism with O/2O is F2[G]-linear.

Definition 2.8. Denote by O(2) the nonzero elements of O prime to 2.

Definition 2.9. The 2-adic signature map

sgn2 : O(2) → (O/2O)

is the composition of O(2) → (O/4O)∗ ⊗ Z2 with the isomorphism described
above.

Remark that the kernel of sgn2 consists of all the squares mod 4. In [4] the
2-adic signature map is constructed in the same way: Let z ∈ O(2) and let t
be the order of z modulo 2, i.e., zt ≡ 1 (mod 2). The image of z under this
signature map is then β mod 2 with β ∈ O, such that zt = 1 + 2β. One can
check that any multiple of t also suffices and β mod 2 does not depend on t.
Therefore the map is well-defined. The following Proposition shows an explicit
calculation of a 2-adic image which will be used in chapter four.

Proposition 2.10. Let L/Q be an abelian extension unramified at 2 and G the

Galois group of this extension. Then for all z ∈ O(2)

sgn2(z) =
1

2
(1 − z1−2σ1/2),

where σ1/2 is the inverse Frobenius at 2.
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Proof. Let σ2 denote the Frobenius automorphism at 2 of L. Then

σ−1
2 (z)2 ≡ z (mod 2).

Because σ−1
2 (z)2 is a square, it is contained in the kernel of the 2-adic signature

map, and therefore

sgn2(z) = sgn2(z/σ−1
2 (z)2) = sgn2(z

1−2σ1/2).

However, z1−2σ1/2 is of the form 1+2w with w ∈ O. It is obvious that the 2-adic
image of 1+2w is equal to w ∈ O/2O. Therefore sgn2(z) = 1

2 (1−z1−2σ1/2).

Lemma 2.11. Suppose 2 does not ramify in L. The image of O(2) under sgn2

is equal to O/2O.

Proof. The map O(2) → (O/4O)∗ ⊗Z2 is obviously surjective, and the map to
compose with to obtain the 2-adic map is an isomorphism.

The next Lemma can be interpreted as follows: An element z ∈ O being a
square modulo 4 is the Q2-analog of z being totally positive in Q∞ = R.

Proposition 2.12. Suppose 2 does not ramify in L and let E be the unit group

of L. Let u ∈ E. Then L(
√

u) is unramified over L at all finite primes if and

only if u ∈ ker(sgn2).

Proof. The only primes that can ramify are the primes lying above 2 since the
discriminant of the polynomial X2 −u is the principal ideal generated by 4. By
Lemma 2.5 there exists an element v ∈ O such that u ≡ v2 (mod 2) in O. Such
an element v always exists because u is prime with 2, every element in (O/2O)∗

is a square, and such an element can be lifted to a square. Suppose however that
u 6≡ v2 (mod 4). Let y = v

√
u−1 − 1 ∈ L(

√
u) and y = −v

√
u−1 − 1 ∈ L(

√
u).

Then y ≡ y (mod 2). Further let

f := (X − y)(X − y) = X2 + 2X − (u−1v2 − 1)

There exists a prime φ above 2 such that f is Eisenstein at this prime, otherwise
u ≡ v2 (mod 4) against the assumption. So f is the minimum polynomial of y
in the extension L(

√
u)/L. Because f is Eisenstein at this prime, this prime is

ramified over 2. Suppose u ≡ v2 (mod 4) holds, i.e., u is a square modulo 4.
Consider the polynomial

f := (X − y

2
)(X − y

2
) = X2 + X − (u−1v2 − 1)/4.

The element y/2 is integral in this case. Remark that y/2 6≡ y/2 (mod 2),

otherwise this would imply v
√

u−1 ≡ 0 (mod 2). Together with u ≡ v2 (mod 2)
this implies u ≡ v ≡ 0 (mod 2), contradiction. For all primes φ|2 in L the
polynomial f modulo φ has no double roots and therefore the extension is
unramified.
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2.3 Totally unramified extensions

Definition 2.13. The composed sign map is the direct sum of sgn∞ and sgn2:

sgn∞,2 : O(2) → F2[R∞] × (O/2O)

such that for all z ∈ O(2):

sgn∞,2(z) = sgn∞(z) × sgn2(z).

Recall that the archimedean map was defined for all of L∗ and the 2-adic
map only for O(2) in the most general sense, and the composed map can only
be defined on the intersection of these two domains.

The kernel of the composed map is the intersection of the kernels of the
archimedean and 2-adic map, and the following Proposition is a simple corollary.

Proposition 2.14. Let u ∈ E. Then L(
√

u) is totally unramified if and only if

u ∈ ker(sgn∞,2).

Proof. Combine the two previous Propositions 2.4 and 2.12.

2.4 Kummer theory

A Kummer extension is an extension of a number field L for which there is an
integer m such that L contains the group of m-th roots of unity µm, and the ex-
tension is obtained by adjoining m-th roots of elements in L. Let L∗ ⊇ D ⊇ L∗m

and D/L∗m finite and µm ⊂ L∗. Then LD = L(D1/m) is a Kummer extension.
An abelian extension is of exponent m if its Galois group has exponent m.
There is a bijection between finite abelian extensions of exponent m of L and
such subsets D (see [7] page 214). Furthermore, there is a pairing between
GD = Gal(LD/L) and D as follows: If σ ∈ GD and x ∈ LD such that xm ∈ D,
then σx/x is a m-th root of unity which is independent of x. One can see that
GD is orthogonal to L∗m and only the identity in GD is orthogonal to D \L∗m.
Define a pairing by the following map

GD × D/L∗m → µm.

This gives an isomorphism of GD to the dual of D/L∗m and vice versa (see [7]
page 214 for more details).

2.5 Class field 2-divisibility

Let E be the unit group of L. Let m = 2 but do not consider the entire
set L∗2, only the set E2. The map E/E2 −→ L∗/L∗2 is injective because of
E ∩ L∗2 = E2. Define E+ to be the set consisting of all positive elements of E
under all possible embeddings, and E4 the set consisting of all elements that are
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a square modulo 4. Let E+
4 represents their intersection. The set E+

4 is exactly
the kernel of the composed sign map, i.e.,

ker(E
sgn∞,2

// F2[R∞] × O/2O) (2.1)

Choose the set D from the previous section to be E+
4 . The module E+

4 /E2 is
isomorphic to the dual of the Galois group of the associated extension, and in
particular

#(E+
4 /E2) = [L(

√

E+
4 ) : L].

Denote by Cl(L) the class group of L.

Theorem 2.15. The 2-rank of E+
4 /E2 is a lower bound of the 2-rank of Cl(L).

Proof. By Class Field Theory, there exists a field extension of L such that the
Galois group of this extension is isomorphic to the class group of L. This field
over L is called the Hilbert Class Field and is the maximal unramified extension
of L at both finite and infinite primes. Therefore, because of Lemma 2.14, the
module E+

4 /E2 can be seen as a subgroup of the 2-torsion group of the dual of
Cl(L), i.e.,

E+
4 /E2 ⊆ Hom(Cl(L),Z/2Z) =: Cl(L,Z/2Z).
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Chapter 3

Cyclotomic Units

This chapter defines cyclotomic units. The cyclotomic unit group is a very
convenient group to work with: its elements are easy to write down explicitly
and its algebraic structure is simple as will be seen. Another important property
is that the index of the cyclotomic units in the full unit group is finite and equals
the class number.

3.1 Fields of prime conductor p

Let p be an odd prime number, g a primitive root of p and ζ a p-th root of unity.
Let K be the maximal real subfield of the p-th cyclotomic field Kc := Q(ζ). Then

K = Q(ζ + ζ−1)

and K is of degree n := p−1
2 over the rationals. Let G be the Galois group of

K/Q. The group G is isomorphic to (Z/pZ)∗/{±1} and it is generated by an
element σg defined as follows:

σg(ζ + ζ−1) := ζg + ζg−1

.

Let O denote the ring of integers of K, then O = Z[ζ + ζ−1] (see [16] page 16).
Let d be a divisor of n, and denote by K the subfield of K of degree d over Q.

This field is unique because the cyclic group G has a unique subgroup H of index
d, and K is the fixed field of this subgroup. The subgroup H is generated by σd

g .
The Galois group of K over Q is cyclic of order d and denoted by G ' G/H . A
basis for K as a vector space over Q can be obtained by taking Galois invariants
with respect to H as follows. Define for j ∈ {0, . . . , d − 1}

θj :=

(n/d)−1
∑

i=0

(ζgj+id

+ ζg−j−id

) = TrKc/Kζgj

.

The θj are called periods and they are invariant under H and K = Q(θ0).

12



Let O denote the integral closure of Z in K. Then O = Zθ0 ⊕ · · · ⊕ Zθd−1

(the traces form a normal Z-basis for O). The ring of integers O is in general
not generated by powers of θ0, see [16] page 17.

3.2 Structure theorems

Let E denote the multiplicative group of units of O. Since K has n embeddings
into R and no complex embeddings, Dirichlet’s Unit Theorem states:

E ' 〈−1〉 × Zn−1.

Every unit in Kc can be written as a real unit times a root of unity (see [16]
page 3, 40), therefore the unit group in Kc is isomorphic to W ×E , where W is
the set of p-th roots of unity of Kc. The only roots of unity in K are ±1. Let E
be the unit group of K, that is, E = K ∩ E . Then E can be written as:

E ' 〈−1〉 × Zd−1.

Define the cyclotomic units C of K as the multiplicative group generated
over Z by

εa :=
ζa − ζ−a

ζ − ζ−1
, a ∈ F∗

p.

Another set of generators for the cyclotomic units that often arises consists of

εa
′ = ζ(1−a)/2 1 − ζa

1 − ζ
, a ∈ F∗

p.

The translation between these definitions is given by the following rule:

σ2(εa
′) = εa

with σ2 ∈ Gal(K/Q) the Frobenius at 2.
Note that ε1 = 1 and for all a, b ∈ F∗

p it is true that

ε−a = −εa

and
εab = σb(εa)εb.

Lemma 3.1. If a ∈ Z is a square modulo p, then NK|Q(εa) = 1, otherwise

NK|Q(εa) = −1.

Proof. Two different proofs follow. Let i ∈ Z and make use of the following
formula:

ε
1+σg+···+σi−1

g
g =

i−1
∏

t=0

ζgt+1 − ζ−gt+1

ζgt − ζ−gt = εgi

The norm of εgi is equal to εi·N
g with N the norm element of Z[G]. Use that

N(εg) = εgn = ε−1 = −1. So NK|Q(εgi) = (−1)i, which finishes the first proof.
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The other proof is a p-adic one. Write εa = ζa−ζ−a

ζ−ζ−1 . Then εa = ζa−1 +

ζa−3 + · · · + ζ−a+1 by calculation of the power series. Now use that ζ ≡ 1
(mod 1 − ζ). It follows that εa ≡ a (mod 1 − ζ) and since the conjugates are
also equal to a mod 1 − ζ one obtains NK|Q(εa) ≡ a(p−1)/2 (mod 1 − ζ).

As a corollary, NK|Q(εg) = −1.
The groups E and C are Z[G]-modules. Further E/E2 and C/C2 are F2[G]-

modules. They are obviously G-modules, and Z/2Z-modules by

x · ε := εx

for ε ∈ E and x ∈ Z/2Z.

Lemma 3.2. The cyclotomic unit εg generates C as a Z[G]-module.

Proof. The following identity proves the Lemma:

ε
1+σg+···+σi−1

g
g =

i−1
∏

t=0

ζgt+1 − ζ−gt+1

ζgt − ζ−gt = εgi .

Lemma 3.3. Let NG be the norm element of Z[G]. Then

C'Z[G]Z[G]/(2NGZ).

and the Z-module C/{±1} is freely generated by the set

{σ(εg) | σ ∈ G, σ 6= 1}.

Proof. Consider the map expg : Z[G] −→ C given by x 7→ εx
g for x ∈ Z[G]. By

Lemma 3.2 this map is surjective. By Lemma 3.1 the kernel of this map contains
2NGZ. It remains to show that the kernel is contained in 2NGZ.

For this consider the map exp′
g : Z[G] −→ C/{±1}. The kernel contains

Z · NG . The map exp′
g is also surjective, Z[G] is a free Z-module of rank n and

C/{±1} is a free Z-module of rank n− 1 by [16] page 145. Therefore the kernel
of exp′

g must be equal to Z · NG , otherwise C/{±1} would have a lower rank.
The kernel of exp′

g strictly contains the kernel of expg , so the kernel of expg

must be exactly 2NGZ.
The given set in the Lemma is independent by [16] page 145 (the regulator

is non-zero) and εg is contained in the module generated by this set because by

3.1 (use that εNG

g = −1):

εg = −(ε−σg
g ε

−σ2
g

g . . . ε
−σn−1

g
g ).
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Let C be the cyclotomic units of K, that is, C = C ∩K. Cyclotomic units of
a subfield obtained by intersection are called Washington units. One can also
take the norm of the cyclotomic units, those units are called Sinnott units.

Sinnott units are of finite index in the group of Washington units because
the Washington Units are included in E, and the index of the Sinnott units in
E is finite (see the next section). 1

Proposition 3.4. For the field K it is true that the Sinnott units are equal to

the Washington units.

Proof. Let H = Gal(K/K). Then C = C ∩ K = CH . Let NH be the norm
element of Z[H ]. It needs to be shown that (Z[G]/2NGZ)H = NH(Z[G]/2NGZ).
Write z =

∑

σ∈G aσσ ∈ Z[G]. Suppose that for all τ ∈ H there exists a k ∈ Z
such that z − τz = 2NGk. Or,

∑

σ∈G

(aτ−1σ − aσ) · σ = 2k
∑

σ∈G

σ.

The lefthand side is zero, therefore k = 0. In other words, for all τ ∈ H : aτ−1σ =
aσ. This means that z ∈ NH(Z[G]). So z (mod 2NGZ) ∈ NH(Z[G]/2NGZ).

For H = Gal(K/K), note that for all x ∈ K:

xNH = NK|K(x).

These two norms will be used and mixed at will.
The following Lemma is a generalization of Lemma 3.2:

Lemma 3.5. The cyclotomic unit NK|K(εg) generates C as a Z[G]-module.

Proof. This follows by Lemma 3.2 and by the fact that the Sinnott units are
equal to the Washington units.

Lemma 3.6. Let NG be the norm element of Z[G]. Then

C'Z[G]Z[G]/(2NGZ).

and the Z-module C/{±1} is freely generated by the set

{NK|K(σi
g(εg)) | i ∈ {1, . . . , d − 1}}.

Specifically, it is a free Z-module of rank d − 1.

Proof. let H = Gal(K/K). Note that Z[G]/2NGZ ' NH(Z[G]/2NGZ). Then
by the previous Lemma’s and Proposition 3.4:

C = CH = Z[G]/2NGZ)H ' NH(Z[G]/2NGZ = Z[G]/2NGZ.

1That the index is finite is true even for Zp-extensions, see [6]. However, in the special
case of this article, the index is equal to one.
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The rest of the Lemma is now also obvious.
An alternative proof of the rest of the Lemma: Since C/{±1} is a free Z-

module and Z is a principal ring, every sub-module of C/{±1} is also free.
Therefore C/{±1} is also free over Z. Since C ⊂ E the rank of C/{±1} is at
most d − 1. For j ∈ {1, . . . , d − 1} let

NK|K(σj
gεg) = ε

σj
g+σj+d

g +···+σ(n/d−1)d+j
g

g .

These elements are independent and each element is fixed by H = Gal(K/K).
Therefore the rank is at least d − 1. It follows that C/{±1} is a free Z-module
of rank d − 1.

Proposition 3.7. The F2[G]-module C/C2 is G-isomorphic to F2[G].

Proof. By the previous Lemma C 'Z[G] Z[G]/2NZ. Then also C2 'Z[G]

2Z[G]/2NGZ and

C/C2 'F2[G] (Z[G]/2NGZ)/(2Z[G]/2NGZ) 'F2[G] Z[G]/2Z[G] 'F2[G] F2[G].

In other words, C/C2 is free of rank 1 over F2[G]. It is unknown if the module
E/E2 is always free over F2[G]. An article of Rene Schoof, [12], contained an
incorrect example showing that for p = 4297, the module E/E2 was not free, see
[13].

3.3 Index equation

Denote by h the class number of K. The reason that I consider fields of prime
conductor p is given by the following Theorem proved by Hasse and Leopoldt.
By the importance of this result it is given its own section.

Theorem 3.8. h = [E : C].

Proof. For a proof see [9] page 88 Theorem 5.3 .

The proof is based on the analytical class number formula. Although this
Theorem implies that the orders of Cl(K) and E/C are equal, it is not true
that in general Cl(K) ' E/C. Hayes gives a counterexample of this in the
introduction of [2]. Also Washington mentions a counterexample on page 146
of [16].
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Chapter 4

A Theorem of Gras

The main result obtained in this chapter is that the archimedean sign map and
the 2-adic map are closely related. More precisely, the archimedean and 2-adic
sign map are anti-G-linear isomorphic on C/C2. This feature will be used for
computations in chapter seven regarding the 2-part of h.

In this and following chapters the maps from chapter one are released on E
and C as subsets of O(2). Also, from now on, the maps sgn∞, sgn2 and sgn∞,2

are understood to be defined modulo squares, since squares are always contained
in the kernels, and square roots of squares are trivial extensions in the sense
of Lemma 2.5 and Lemma 2.13 and therefore give no information at all about
the class number. From now on let sgn∞, sgn2 and sgn∞,2 act on C/C2 and

E/E2. If the domain of such a sign function is C/C2 then write sgnC
∞, sgnC

2

and sgnC
∞,2. Else, if the domain is E/E2 write sgnE

∞, sgnE
2 and sgnE

∞,2.

4.1 Archimedean and 2-adic correspondence

Define px to be the imbedding of Q(ζ) → C given by ζ 7→ −eixπ/p for all
x ∈ F∗

p. Let R∞ be the set of infinite primes belonging to K. Write px|K

for the restriction of px to K. By saying that a map φ : M → N with M, N
Z[G]-modules is anti-G-linear, I mean that for all m ∈ M and g ∈ G : φ(gm) =
g−1φ(m).

Theorem 4.1. There exists a unique anti-G-linear automorphism ρ1 : C/C2 −→
C/C2 such that for all x ∈ F∗

p:

ρ1(NK/K(εx)) = NK/K(ε1/x),

and a unique anti-G-linear isomorphism ρ2 : F2[R∞] −→ O/2O such that for

all x ∈ F∗
p and px|K ∈ R∞:

ρ2(px|K) = TrK/K(ζx + ζ−x),

17



which together make the following diagram commutative:

C/C2
sgnC

∞
//

ρ1

��

F2[R∞]

ρ2

��

C/C2
sgnC

2
// O/2O

(4.1)

The proof of this result is extracted from [4].

4.2 The case K = K
Lemma 4.2. There exists a unique anti-G-linear automorphism ρ1 on C/C2

such that for all a ∈ F∗
p : ρ1(εa) = ε1/a = σ1/aεa.

Proof. The group of cyclotomic units can be described as a group having free
abelian generators ε1, . . . , εp−1 divided by the relations ε1 = 1 and for all x ∈
F∗

p : εx = −ε−x. Therefore the cyclotomic units can be written as 〈εi : i ∈
F∗

p〉/〈ε1 = 1, εi = −ε−i〉. The map ρ1 can be defined on the free abelian group
〈εi : i ∈ F∗

p〉, and it respects the relations 〈ε1 = 1, εi = −ε−i〉 because:

ρ1(ε1) = ε1/1 = 1

and
ρ1(εa) = ε1/a = −ε−1/a = ρ1(−ε−a).

So ρ1 is well defined on the quotient group, i.e., the cyclotomic units, and for
all a, b ∈ F∗

p:
ρ1(εaεb) = ρ1(εa)ρ1(εb)

because this is true on the free group 〈εi : i ∈ F∗
p〉. So ρ1 is really a homomor-

phism and because C is generated by the various εa it is an automorphism.
It remains to prove that ρ1 is anti-G-linear. Using the relation εab = σa(εb)εa

for all a, b ∈ F∗
p gives:

ρ1(σaεb) = ρ1(εabε
−1
a ) = ε1/abε

−1
1/a = σa−1(ε1/b) = σ−1

a ρ1(εb).

The map ρ1 is unique because of the assumption that for all a ∈ F∗
p : ρ1(εa) =

ε1/a = σ1/aεa used together with the fact that C is generated by such elements.

Let R∞ be the set of infinite primes belonging to K. Let ta := ζa + ζ−a ∈
O/2O for a ∈ Fp.

Lemma 4.3. There exists a unique anti-G-linear isomorphism ρ2 : F2[R∞] →
O/2O such that for all x ∈ F∗

p and px|K ∈ R∞:

ρ2(px|K) = ζx + ζ−x.
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Proof. The following equality holds: px|K = p1|Kσx = σx−1p1|K. The prime
p1|K maps to t1, and px|K to tx, so the map ρ2 is indeed anti-G-linear. It is
obviously an isomorphism and uniqueness is clear because of its definition.

Define a parity function δ : F∗
p → F2 by demanding that the following

diagram is commutative:

{1, 2, . . . , p − 1} //

��

Z

��

F∗
p

δ
// Z/2Z

(4.2)

Note that δ is not a homomorphism. Further note the property that for z =
−eiπ/p and all x ∈ F∗

p:

im(zx) > 0 ⇐⇒ δ(x) = 0.

Let F∗
p inherite the natural ordering from {1, 2, . . . , p − 1}. Define for a ∈ F∗

p

the following sets:

Xa := {x ∈ F∗
p | δ(x/a) 6= δ(x)}

Ya := {x ∈ F∗
p | δ(x/a) = δ(x)}

Xa := {x ∈ Xa | x > a}
Ya := {x ∈ Ya | x < a}.

It is immediate that :

Xa ∪ Ya = F∗
p

Xa ∩ Ya = ∅
Xa = −Xa

Ya = −Ya

Lemma 4.4. Let a, x ∈ F∗
p and p1 the embedding that maps ζ to −eπi/p. Then

px(εa) < 0 if and only if x ∈ X1/a.

Proof. Note that px(εa) < 0 if and only if the images of px(ζa) and px(ζ) lie in
two different half spaces of the complex plane seperated by the real line. But
this happens if and only if δ(x) 6= δ(ax). The last inequality happens if and
only if x ∈ X1/a.

Corollary 4.5.

sgnC
∞(εa) =

∑

x∈X1/a,x<p/2

px|K =
∑

x∈F∗
p,x<p/2

(δ(ax) + δ(x))px|K

Proof. Use Lemma 4.4.
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Lemma 4.6. For all a ∈ F∗
p : sgnC

2 (εa) = ta+ta−1+t1
t1ta

.

Proof. First of all, write:

(ζa/2 − ζ−a/2)2

ζa − ζ−a
=

ζa + ζ−a + 2

ζa − ζ−a
= 1 − 2

1 + ζ−a

ζa − ζ−a
.

Then

ε
2σ1/2−1
a =

(ζa/2−ζ−a/2)2

ζa−ζ−a

(ζ1/2−ζ−1/2)2

ζ−ζ−1

=
1 + 2 1+ζ−a

ζa−ζ−a

1 + 2 1+ζ−1

ζ−ζ−1

= (1 + 2
1 + ζ−a

ζa − ζ−a
)

∞
∑

i=0

(−2
1 + ζ−1

ζ − ζ−1
)i ≡ (1 + 2

1 + ζ−a

ζa − ζ−a
)(1 + 2

1 + ζ−1

ζ − ζ−1
)

= (1 + 2
1 + ζ−a

ta
)(1 + 2

1 + ζ−1

t1
) ≡ 1 + 2

ta + ta−1 + t1
t1ta

(mod 4).

The 2-adic image is given by sgnC
2 (εa) = 1/2(1 − ε

2σ1/2−1
a ) and the Lemma

is proved.

Lemma 4.7. For all a ∈ F∗
p for which δ(a) = 1 :

Xa ∪ Ya = {a + x | x ∈ Xa}.

Proof. Note that both sets do not contain 0, because Xa ∪ Ya has elements in
F∗

p, and because if 0 ∈ {a+x | x ∈ Xa} this would imply −a ∈ Xa, but −a ∈ Ya.
Therefore x + a must satisfy p − 1 ≥ x + a > a or 1 ≤ x + a < a. Suppose that
p − 1 ≥ x + a > a. Then:

δ(1/a(x + a)) + δ(x + a) ≡ δ(x/a) + δ(x) (mod 2)

because δ(a + x) = δ(a) + δ(x) since x + a < p and δ(x/a + 1) = δ(x/a) + 1.
This implies that x + a ∈ Xa if and only if x ∈ Xa. A priori x + a cannot be in
Ya: all elements in y ∈ Xa ∪ Ya that satisfy p − 1 ≥ y > a come from Xa.

On the other hand, suppose that 1 ≤ x + a < a. Then:

δ(1/a(a + x)) + δ(a + x) ≡ δ(x/a) + δ(x) + 1 (mod 2)

since δ(a + x) = δ(x) + δ(a) + 1 and again δ(1/a(a + x)) = δ(x/a) + 1. This
implies that x + a ∈ Ya if and only if x ∈ Xa. Again all elements y ∈ Xa ∪ Ya

that satisfy a > y ≥ 1 come from Ya. This proves the Lemma.

Lemma 4.8. Let U be any subset of F∗
p and U− := {x ∈ U,−x /∈ U}. Then

∑

x∈U tx ≡ ∑

x∈U− tx (mod 2).

Proof. Every element x ∈ U \ U− is paired with −x. Use that tx = t−x.
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Proposition 4.9. For all a ∈ F∗
p : sgnC

2 (εa) =
∑

x∈Xa
ζx.

Proof. All ζ should be interpreted as an element of O/2O. Suppose δ(a) = 1.
It suffices to show that

t1ta
∑

x∈Xa

ζx = t1 + ta−1 + ta ∈ O/2O

by Lemma 4.6. Write

ta
∑

x∈Xa

ζx = ta
∑

x∈Xa,x< p
2

tx =
∑

x∈Xa,x< p
2

ta+x + ta−x

=
∑

x∈Xa

ta+x =
∑

r∈Xa∪Ya

tr.

The last equality is due to Lemma 4.7. If a < p/2 then X−
a = {r ∈ Xa | r > −a}.

Because if r ∈ Xa then −r /∈ Xa is equivalent with −r ≤ a since Xa = −Xa.
Note that r = −a cannot occur because a ∈ Ya and also −a ∈ Ya. On the other
hand, Y−

a = Ya. Because if r ∈ Ya then −r /∈ Ya is equivalent with −r ≥ a
since Ya = −Ya. But r < a < −a since a < p/2. From Xa ∪ Ya = F∗

p it follows
that −X−

a ∪ Y−
a = {1, . . . , a − 1}. Applying Lemma 4.8 gives:

ta
∑

x∈Xa

ζx = t1 + · · · + ta−1.

Similarly, if a > p/2 then Xa = X−
a and Y−

a = {r ∈ Ya | −r ≥ a}. The union
−X−

a ∪ Y−
a equals the set {1, . . . , p − a}. Again applying Lemma 4.8 gives:

ta
∑

x∈Xa

ζx = t1 + · · · + tp−a.

Note that {p−a+1, . . . , a−1} is invariant under multiplication by −1. Glueing
this at the end of the last equation gives the same result as for a < p/2:

ta
∑

x∈Xa

ζx = t1 + · · · + ta−1.

Multiplying this equality with t1 telescopes the sum:

t1ta
∑

x∈Xa

ζx =
a−1
∑

r=1

tr+1 + tr−1 = t1 + ta−1 + ta

which concludes the first case.
Now suppose δ(a) = 0, then look at −a because δ(−a) = 1. It is true that

X−a = Ya since
δ(−x/a) + δ(x) = δ(x/a) + δ(x) + 1.

Using that
∑

x∈Fp
ζx = 0 yields

∑

x∈Ya
ζx = 1 +

∑

x∈Xa
ζx. As mentioned

before ε−a = −εa so

ε
2σ1/2−1
−a ≡ −(1 + 2sgnC

2 (εa)) ≡ 1 + 2(1 + sgnC
2 (εa)) (mod 4).

Then sgnC
2 (ε−a) = 1 + sgnC

2 (εa) and finishes the argument.
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proof of Theorem 4.1 for K = K. Follow the diagram to the right and then down.
The first map sends εa to

∑

x∈X1/a,x<p/2 px|K. The second map sends this to
∑

x∈X1/a,x<p/2 ζx + ζ−x. Now take the second route. The map ρ1 sends εa to

ε1/a, which is sent in turn to sgnC
2 (ε1/a) =

∑

x∈X1/a,x<p/2 ζx + ζ−x by proposi-

tion 4.9 . Since the εa generate C/C2 the diagram commutes. This finishes the
proof of the special case K = K.

4.3 The general case

proof of Theorem 4.1. The following equalities hold:

ResK(F2[R∞]) = F2[R∞]

NK/K(C/C2) = C/C2

TrK/K(O/2O) = O/2O.

Here ResK is the restriction map from K to K. The second equality is due
to Proposition 3.4 and the third equality because the prime 2 is unramified in
K/Q. Next, for all x ∈ C/C2:

sgnC
∞(NK/K(x)) = ResK(sgnC

∞(x)),

because by Lemma 4.2 the map ρ1 commutes with the norm NK/K and therefore
the following diagram commutes:

C/C2
sgnC

∞
//

NK/K

��

F2[R∞]

ResK

��

C/C2
sgnC

∞
// F2[R∞]

(4.3)

Similarly, because by Lemma 4.3 the map ρ2 commutes with the trace TrK/K

sgnC
2 (NK/K(x)) = TrK/K(sgnC

2 (x)) = ResK(sgnC
2 (x)).

Now apply the norm or trace to every object occuring in the diagram for the
case K = K and the diagram appears for the general case.

4.4 Different embeddings

To conclude the chapter I will describe the difference between the formulas from
Hayes and Gras (or this paper since this paper is based on Gras’s notation).

Definition 4.10. Define the map ρ3 that sends an element x ∈ O/2O to an
element τ ∈ F2[G] such that x = τTrK|K(ζ + ζ−1).
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Hayes embeds Kc in C by sending ζ to e2πi/p whereas Gras sends it to
−eπi/p. These embeddings are only used in the archimedean sign map as a base
view point to which the other embeddings are related, i.e., it only influences the
indexing of elements in F∗

p that belong to embeddings which sent some element
in K∗ to a negative real number. Note that

σ1/2e
2πi/p ≡ −eπi/p (mod 2).

Besides that, Hayes uses a different set of generators, namely the ε′a as defined in
chapter three. Together with the embedding-independent formula ε′g = σ1/2εg

this yields
ε′g = εg

in R. Because of this the image of ε′g under the archimedean sign map appearing
in the article of Hayes is the same as the image of εg under ρ3ρ2sgn∞. Note
that ρ3ρ2sgn∞ is anti-G-linear just as Hayes’ archimedean sign map is.

In Gras’s article ϕK = sgn2 is used (image in O/2O) for the 2-adic map and
SK for the archimedean map (not the same as sgn∞). According to Gras

ϕK(εg) = SK(σ1/gεg) = SK(ε−1
1/g) = SK(ε1/g),

just like the main theorem (Gras did not state this explicitly but it is not hard
to deduce this for the specific prime case). The last equality is true because an
element is equal to its multiplicative inverse modulo squares.

The 2-adic sign map also occurs in the article of Hayes, it is denoted by v2.
This map is equal to ρ3 ◦ sgn2. Since embeddings don’t play any role in the
2-adic map the equality ε′g = εg under different embeddings does not hold, but
instead ε′g = σ1/2εg. Because sgn2 is G-linear:

sgn2(ε
′
g) = σ1/2 · sgn2(εg).

Hayes states in Theorem 6.1 of [2] the following formula which is the analogue
of the commutative diagram occuring in the main theorem:

v2(ε
′
g) = v∞(σ2/gε

′
g)

Applying sgn2(ε
′
g) = σ1/2sgn2(εg) to this gives the same statement from Gras.

From the nature of the archimedean and 2-adic sign maps, the diagram
occuring in the main Theorem commutes but there must be two anti-G-linear
maps in it. There is a choice of which map should be anti-G-linear: if the
archimedean map is chosen to be anti-G-linear like Hayes did, then ρ2 becomes
linear, otherwise the roles are switched like in the diagram of the main Theorem.
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Chapter 5

Class Number Parity

In this chapter parity criteria are given. Most of the results are based on Class
Field Theory. Some criteria involve the previously constructed sign maps which
yield exactly when the sign maps are injective. There are also relations of
parities of class numbers given.

5.1 Injectivity of sign maps

Define for K the sets

E+ := ker(sgnE
∞)

C+ := C ∩ E+

E4 := ker(sgnE
2 )

E+
4 := E4 ∩ E+

C+
4 := C4 ∩ C+.

Let for all x ∈ R denote dxe the smallest integer greater than or equal to x.

Proposition 5.1. 2d
ord2#C

+
4

/C2

2 e divides h.

Proof. The 2-torsion of (E/C) is isomorphic to

(C ∩ E2)/C2 = (C+
4 ∩ E2)/C2 = (C+ ∩ E2)/C2 = (C4 ∩ E2)/C2.

The isomorphism is given by x 7→ x2 (mod C2) for x ∈ E/C[2]. Using this
gives the following exact sequence:

1 −→ (E/C)[2] −→ C+
4 /C2 −→ E+

4 /E2.

The order of (E/C)[2] divides h and the order of E+
4 /E2 divides h by Theorem

2.15. This implies that C+
4 /C2 divides h2 and proves the Proposition.
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Proposition 5.2. If sgnC
∞ : C/C2 −→ R∞ is injective, then h is odd.

Proof. Follows from

1 −→ (E/C)[2] −→ C+/C2 −→ E+/E2.

The converse of the proposition is not true. If h is odd, it is not necessarily
true that sgnC

∞ is injective. For example, if p = 29, then hmax, the class number
of K, is odd and yet C+/C2 is non-trivial.

Proposition 5.3. If sgnC
2 is injective, then h is odd.

Proof. Follows from

1 −→ (E/C)[2] −→ C4/C2 −→ E4/E2.

Theorem 5.4. The class number h is odd if and only if sgnC
∞,2 is injective.

Proof. If sgnC
∞,2 is injective then h is odd follows from

1 −→ (E/C)[2] −→ C+
4 /C2 −→ E+

4 /E2.

If h is odd, then E+
4 /E2 is trivial by Theorem 2.15. Then because of the

above exact sequence, C+
4 /C2 is trivial too, or in other words, the map sgnC

2 is
injective.

In words: Suppose h is even, then there exists a unit x ∈ E such that x2 ∈ C,
but x /∈ C. Then x2 ∈ C+

4 and sgnC
∞,2 is not injective.

Suppose sgnC
∞,2 is not injective, thus there exists an x ∈ C+

4 and x /∈
C2. Suppose that x /∈ K∗2, then according to Proposition 2.14 the exten-
sion K(x)/K is unramified everywhere and h is even. If x ∈ K∗2, then it is a
square in E, and accordingly [E : C] = h is even, completing the proof.

Corollary 5.5. If dim(C+/C2) > d
2 then h is even.

Proof. By Theorem 4.1 it is true that dim(C+/C2) = dim(C4/C2). Therefore
C+

4 /C2 cannot be trivial because the intersection of C+/C2 and C4/C2 cannot
be empty.

A similar injectivity criterion exists for the 2-adic and archimedean sign
map. However, Class Field Theory is needed for this. Let again L be a general
number field to work with. A cycle or divisor c is a product

c =
∏

v

vm(v)

where the product ranges over normalized absolute values of L. Further m(v) ∈
Z is zero for almost all v and if v is complex then let m(v) = 0 and if v is real,
then m(v) ∈ {0, 1}. Write c0 for the finite part of c, and c∞ for the infinite part.
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Let X be a subset of L. Denote by X(c) all elements of X coprime with c
and denote by Xc all elements α satisfying the following. If p is a prime ideal
associated to an absolute value occuring in the finite part of c, with multiplicity
i ∈ N, then α satifies:

α ≡ 1 (mod p
i).

If v is a real absolute value occuring in the infinite part of c, then α satifies:

v(α) > 0.

Let I denote the set of fractional ideals and P the set of principal fractional
ideals. Then I(c) is the set of fractional ideals coprime with c, P (c) = I(c) ∩ P
and Pc is the set of principal fractional ideals having a generator in Lc. The ray
class field H(L, c) of L with cycle c is a field such that

Gal(H(L, c)/L) ' I(c)/Pc = Clc(L),

where Clc(L) is the group of c-ideal classes, or the generalized ideal class group
of conductor c.

Using the Chinese Remainder Theorem gives

I(c)/P (c) ' I/P =: Cl(L),

the classgroup of L.
Let h be the class number of L and hc = #Clc(L) . The quotient of hc/h is

[P (c) : Pc].

Definition 5.6. The extended Euler totient function ϕ is the function

ϕ : {cycles} −→ Z

such that for c ∈ {cycles} :

ϕ(c) = ϕ′(c0)2
#(c∞)

where ϕ′ is the normal Euler totient function and #(c∞) is the number of real
infinite primes in c∞.

For the sake of convenience, define

(O/cO)∗ := (O/c0O)∗ ·
∏

p|c∞

〈−1〉.

Then the order of (O/cO)∗ is exactly ϕ(c). Let E be the unit group of L.

Proposition 5.7. The following sequence is exact where the maps are the nat-

ural ones:

1 −→ Ec −→ E −→ (O/cO)∗ −→ Clc(L) −→ Cl(L) −→ 1.

In particular,

hc =
hϕ(c)

[E : Ec]
.
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Proof. Use that P (c)/Pc ' L(c)/(ELc) ' (O/cO)∗/ im E. But P (c)/Pc is
exactly the kernel of Clc(L) −→ Cl(L) and of course Clc(L) −→ Cl(L) is
surjective. The rest of the exactness should be clear.

It remains to show that hc = hϕ(c)
[E:Ec]

. The group (ELc)/Lc is isomorphic to

E/Ec (see [8] page 125-127). The order of L(c)/Lc is easy to compute, it is
equal to ϕ(c). Putting this together gives:

#(P (c)/Pc) =
#(L(c)/Lc)

#((ELc)/Lc)
=

ϕ(c)

#((ELc)/Lc)
=

ϕ(c)

#(E/Ec)
.

For a more detailed survey see [8], page 125-127. Apply this to K for c = 4
and c = ∞ = {set of real infinite primes}. For c = ∞ the group Cl∞(K) is also
known as the restricted class group of K, and can be written as Cl(K)res.

Lemma 5.8. hres = [F2[R∞] : sgnE
∞(E)] · h.

Proof. It must be shown that ϕ(c)/[E : Ec] = [F2[R∞] : sgnE
∞(E)]. But this is

evident by the definition of the extended Euler totient function and the definition
of the sign map.

Theorem 5.9. The map sgnC
∞ is injective if and only if hres is odd.

Proof. By the previous Lemma, this is equivalent to sgnC
∞ is injective if and

only if both F2[R∞] = sgnE
∞(E) (because F2[R∞] has order a power of two)

and h is odd. Suppose sgnC
∞ is injective, then h is odd as previously. Because

#C/C2 = #F2[R∞] the map sgnC
∞ is injective if and only if it is surjective.

Therefore sgnC
∞ is surjective, and because h is odd, this implies the surjectivity

of sgnE
∞.

Conversely, suppose hres is odd, thus h is odd and sgnE
∞ is surjective. Then

[sgnE
∞(E) : sgnC

∞(C)] must be odd, because

[sgnE
∞(E) : sgnC

∞(C)] · [E+ : C+] = [E : C],

and [E : C] is odd. On the other hand, this index must be even or equal to one,
since F2[R∞] is of order a power of two. Therefore sgnC

∞ is surjective, hence
injective.

Lemma 5.10. The 2-part of h4 is equal to the 2-part of h times [(O/2O) :
sgnE

2 (E)].

Proof. Choose c = 4 and tensor the exact sequence with Z2 to obtain:

E ⊗ Z2 −→ (O/4O)∗ ⊗ Z2 −→ Cl4(K) ⊗ Z2 −→ Cl(K) ⊗ Z2 −→ 1.

The first map is exactly the 2-adic signature map on E and the Lemma follows
in the same way as the archimedean case.

Theorem 5.11. The map sgnC
2 is injective if and only if h4 is odd.

Proof. The proof is entirely analogous to the archimedean case.
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5.2 Parity relations between different class num-

bers

This section is about parity relations between different class numbers related in
some way or another to K.

Theorem 5.12. Let F1, F2 arbitrary number fields, and suppose the extension

F1/F2 contains no unramified subextensions. Then the norm map from the ideal

class group of F1 to F2 is onto.

Proof. See [16] prop. 4.10.

The field K has a unique totally complex extension field Kc within Kc of
minimal degree over K. For example, if n

d is odd, then Kc is of degree two over
K.

Corollary 5.13. The class number h divides hc and h divides hmax.

Proof. Apply the above theorem, thus hc = h · hrel. The number hrel is called
the relative class number. Use that p is totally ramified in Kc/Q.

Lemma 5.14. The parities of hc and hc/h are equal.

Proof. If hc is odd, then trivially hc/h is odd.
Let Kc be the CM-field of (Kc)+, i.e., the maximal real subfield of Kc. The

degree is always [Kc : (Kc)+] = 2. Note that (Kc)+ does not have to be equal to
K. The unit groups of (Kc)+ and Kc are equal upto a torsion group, therefore
Cl((Kc)+) −→ Cl(Kc) is injective (see [16], proof of Theorem 4.14, page 40, 41.
Although the setting is not entirely the same as here, by minor adjustments it
works for the case needed here).

Let Ncl : Cl(Kc) −→ Cl((Kc)+) be the norm map of the class groups. This
map respects the equivalence relation for class groups for Galois extensions since
the norm of a principal ideal is principal:

NKc|(Kc)+((x)) = (NKc|(Kc)+(x)) , ∀x ∈ Kc.

Also Ncl is surjective, see [16] page 400.
The norm of an ideal in Kc in the extension Kc/(Kc)+ is the ideal squared.

The square of every ideal in the intersection of Cl((Kc)+) and ker(Ncl) is triv-
ial. This intersection is well-defined because Cl((Kc)+) −→ Cl(Kc) is injec-
tive. Conversely, every ideal in (Kc)+ whose square is principal is contained in
ker(Ncl)∩Cl((Kc)+). Therefore ker(Ncl)∩Cl((Kc)+) is the 2-torsion subgroup
of Cl((Kc)+).

Now suppose hc is even and hc/h is odd. Then also the quotient of hc by
the class number of (Kc)+, which is equal to #(ker(Ncl)) is odd. But then the
class number of (Kc)+ must be even. This means that the 2-torsion subgroup
of Cl((Kc)+) which is equal to ker(Ncl) ∩ Cl((Kc)+) is non-trivial. Therefore
#(ker(Ncl)) must be even, contradiction. To conclude, if hc/h is odd then hc is
odd.
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Lemma 5.15. The parities of hc and hres are equal.

Proof. By class field theory, there exists a unique finite abelian extension of
K, called the restricted Hilbert Class Field Hres(K), such that the restricted
class group of K is isomorphic to the Galois group of the extension Hres(K)/K.
The degree of this extension equals the restricted class number hres of K. This
field Hres(K) has the property that it is maximal unramified at all the finite
primes. The maximum unramified field, also unramified at infinite primes, is
the (normal) Hilbert Class Field, which is contained in Hres(K). Let α be such
that Kc = K(α). Then Hres(K)(α) is non-real, and therefore Hres(K)(α)/Kc is
unramified at both finite and infinite primes. Therefore Hres(K)(α) is contained
in the Hilbert Class Field of Kc and hres must divide hc. It follows that if hres

is even, hc must be even.
Conversely, suppose hc is even. Let F be the subfield of the Hilbert Class

Field H(Kc) such that the degree of F over Kc is the 2-part of hc, i.e., F is
the Hilbert 2-Class Field of Kc. The Hilbert Class Field H(Kc) is Galois over
Q by the following argument. Let Q̄ be an algebraic closure of Q, and σ ∈ Q̄.
Then σ(Kc) = Kc since Kc is Galois over Q. Now σH(Kc) is also the Hilbert
Class Field of Kc, therefore σH(Kc) = H(Kc). Since H(Kc) is a finite abelian
extension of Kc, every subextension is also Galois over Kc. In particular, F is
Galois over Kc. Even stronger, F is Galois over Q: If for σ ∈ Q̄ : σF 6= F , then
σF is another field containing Kc and contained in H(Kc) such [σF : Kc] equals
the 2-part of hc. However F is the unique field with this property, therefore
F = σF . In particular, F is also Galois over K.

Let GF be the Galois group of F/K and I ⊂ GF be the inertia subgroup
associated with the prime ideal P ⊂ K extending p.

The subgroup I is not the entire group GF because F/Kc is unramified.
Because GF is a 2-group there exists a normal subgroup N of index 2 in GF by
the first Sylow theorem such that N contains I (see [1] page 44, 45). The fixed
field of N is a quadratic extension of K unramified at all finite primes since it
is invariant under I, and is therefore contained in the restricted Hilbert Class
Field of K. Accordingly hres is even.

Looking at this result and comparing it with the one for sgnC
∞, and making

use of Gras’s Theorem gives the following Corollary.

Corollary 5.16. The class number h4 is odd if and only if hc is odd.

Proof. Combine Theorem 5.9 and Theorem 5.11 and note that sgnE
2 is surjective

if and only if sgnE
∞ is surjective.

As a final note, it is believed that if n is prime (so K has no non-trivial
subextensions), then hmax is odd. This case is called the Sophie-Germain case,
and p is called a Sophie-Germain prime.

Conjecture 5.17. If n is prime, then hmax is odd.

More generally, would it be true if d is prime, then h is odd?
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Chapter 6

Class Number 2-divisibility

and Jordan Hölder Factors

This chapter introduces Jordan Hölder factors to find 2-divisibility properties of
h. In the first section a basic 2-divisibility property of h will be deduced. Then
Jordan Hölder factors will be used more extensively to enhance this result,
needed to prove the Theorem stated in the first section. Hayes [2] finds the
same 2-divisibility properties, only in a different way.

6.1 2-divisibility results

For a module M over some ring one can consider a chain of submodules ordered
by inclusion. Such a chain is called maximal if it is of finite length, has max-
imal length and contains no repetitions. In a maximal chain each quotient of
the consecutive modules is simple, i.e., it has only two submodules, 0 and the
quotient module itself. Such a simple module is called a Jordan-Hölder factor
of M , from now on JH-factor.

For each prime greater than 2 the JH-factorization of the F2[G]-module
C+

4 /C2 can be easily computed, see chapter seven.

Definition 6.1. Let M be a module of finite length and q ∈ N. Define jq(M)
as

jq(M) = #{JH-factors of M of order q}.
For all x ∈ R the notation dxe means the smallest integer greater than or

equal to x.

Theorem 6.2. Let q be a power of 2. Then the product
∏

q qd
jq (C

+
4

/C2)

2 e divides

h where the product ranges over all q for which there exists a JH-factor of order

q of C+
4 /C2.

Note that
∏

q qjq(C+
4 /C2) = #C+

4 /C2. To prove the Theorem a couple of
preliminary results are needed.
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Lemma 6.3. Suppose C+
4 /C2 has a JH-factor of order q ∈ N. Then q divides

the class number h.

Proof. The exact sequence

1 −→ (E/C)[2] −→ C+
4 /C2 −→ E+

4 /E2

is an exact sequence of F2[G]-modules, and a JH-factor is simple. The factor
module C+

4 /C2/((E/C)[2]) goes injectively to E+
4 /E2, which shows that each

JH-factor must occur either in (E/C)[2] or in E+
4 /E2. The answer to the first

question is therefore affirmative.

Given two JH-factors of C+
4 /C2 of orders 2q1 and 2q2 , it is not (in general)

true that 2q1+q2 divides h. If this was true, then #C+
4 /C2 would divide h.

6.2 Counting JH-factors

The main Proposition to be proved in this section where Theorem 6.1 depends
on is:

Proposition 6.4. For all q ∈ N the Z2[G]-modules (E/C)⊗Z2 and Cl(K)⊗Z2

both have the same number of JH-factors of order 2q.

Let G be generated by σ ∈ G and let as usual the order of G be denoted by
d. Let l be a divisor of d and let Kl denote the subfield of K of degree l over
Q. Append to every object associated to K a subscript l to indicate it belongs
to Kl.

Lemma 6.5. For all divisors l of d :

#((El/Cl) ⊗ Z2) = #(Cl(Kl) ⊗ Z2).

Proof. Follows from Theorem 3.8 (see chapter three) and tensoring with Z2.

Lemma 6.6. Let Hl = Gal(K/Kl) such that #Hl is odd. Then:

(El/Cl) ⊗ Z2 ' (E/C)Hl ⊗ Z2

Cl(Kl) ⊗ Z2 ' Cl(K)Hl ⊗ Z2

Proof. The unit group El is a subgroup of E and Cl is a subgroup of C, and
El ∩ C = Cl. The map from left to right is the natural map and El/Cl maps
injectively to (E/C)Hl . Tensoring with Z2 preserves this.

The inverse map is given by the induced norm map which is left multiplica-
tion by 1

#Hl

∑

σ∈Hl
σ.

Corollary 6.7. Let Hl be the subgroup of G with odd order. Then

#(Cl(K) ⊗ Z2)
Hl = #((E/C) ⊗ Z2)

Hl
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Proof. Use Lemma 6.5 and 6.6.

Definition 6.8. Let Godd be the subgroup of G consisting of all elements of
G having odd order and Geven the subgroup consisting of elements having even
order.

Let e = #Godd. The ring Z2[G
odd] is isomorphic to the polynomial ring

R := Z2[X ]/(Xe−1) by sending a generator σ ∈ Godd to X mod Xe − 1. Then

Z2[G
odd] '

∏

l|e

Z2[X ]/φl(X) '
∏

l|e

Z2 ⊗ Z[ζl] =
∏

l|e

Z2[ζl],

by [7] page 149. Here φl(X) is the l-th cyclotomic polynomial. Define Rl :=
Z2[ζl] = Z2[X ]/(φl(X)). The ring Rl can be considered as an extension of Z2.
Rl is a complete Z2[G

odd]-algebra with maximal ideals (2, f) where f runs over
the irreducible divisors of φl in Z2[X ]. The residue field or JH-factor belonging
to such a maximal ideal is isomorphic to F2[X ]/(f) and the order of such residue
field is therefore equal to 2deg(f).

Now let M be an arbitrary R-module. Then the above implies that M is a
product of Rl-modules Ml. The Rl-module Ml can be considered an eigenspace
of Rl. Every JH-factor of M comes from exactly one Ml. Furthermore, all
JH-factors occuring in Ml are isomorphic to one of the residue fields F2[X ]/(f),
hence have the same order.

Lemma 6.9. Let H be a subgroup of Godd. Then

MH =
∏

l|[Godd:H]

Ml

Proof. The module M can be decomposed as described earlier. The only Ml

that are invariant under multiplication by a generator of H are the Rl-modules
such that l divides [Godd : H ].

Lemma 6.10. With Godd and H as above:

#Ml =
∏

H⊂Godd,[Godd:H]|l

#(MH)µ([Godd:H])

Proof. Take the orders of the left and right side of the formula appearing in
Lemma 6.8, and apply the möbius inversion function.

proof of Proposition 6.4. Every simple Z2[G]-module is an F2[G]-module with
trivial Geven action. The 2-part of d = #G only determines the multiplicity
of JH-factors. There is a bijection between the simple Z2[G]-modules and the
simple Z2[G

odd]-modules. Therefore the Theorem follows from the special case
G = Godd. Suppose G = Godd. Both E/C⊗Z2 and Cl(K)⊗Z2 are R-modules,
so they can be substituted for M . By Corollary 6.7, for all subgroups H of G:

#(E/C ⊗ Z2)
H = #(Cl(K) ⊗ Z2)

H .
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Then from Lemma 6.10 it follows that for all l dividing d:

#(E/C ⊗ Z2)l = #(Cl(K) ⊗ Z2)l.

The number of JH-factors of order q in Cl(K) ⊗ Z2 is

∑

l

logq(#(Cl(K) ⊗ Z2)l)

where the summation is over all l dividing d such that Rl has residue fields of
order q. The same is true for #(E/C ⊗ Z2).

6.3 Dualizing

With the help of Proposition 6.4 and the following two Lemma’s it can be seen
why the product of the orders of JH-factors in C+

4 /C2 which have different
orders really does divide h.

Lemma 6.11. Any finite F2[G]-module M is isomorphic to its dual module

HomF2[G](M,F2[G]).

Proof. Write R := F2[G] = F2[X ]/(Xd − 1). The module M is isomorphic
to ⊕iF2[X ]/fi as stated in the previous section. It is sufficient to prove the
Lemma for one such F2[X ]/fi since direct sums can be pulled through the
functor Hom. So let M = F2[X ]/fi. The set {x ∈ R : xfi = 0} is a principal

ideal of R generated by the polynomial g = Xd−1
fi

. Now HomR(M, R) ' (g) by

sending φ ∈ HomR(M, R) to φ(1). But (g) is isomorphic to M .

Definition 6.12. If S is a JH-factor of a module M , denote by lS(M) the
number of JH-factors contained in M isomorphic to S.

Lemma 6.13. Let S be a JH-factor of E+
4 /E2 over the ring F2[G]. Then

lS(E+
4 /E2) ≤ lS(Cl(K) ⊗ Z2).

Proof. By Theorem 2.15 E+
4 /E2 is a subgroup of HomF2(Cl(K),F2). Note that

HomF2(Cl(K),F2) ' HomF2[G](Cl(K),F2[G]).

The latter is JH-isomorphic to its dual, which is isomorphic to Cl(K)⊗F2, and
Cl(K) ⊗ Z2 has the same JH-factors as Cl(K) ⊗ F2.

6.4 Putting it together

Now Theorem 6.1 can be proved.

proof of Theorem 6.1. Suppose jq(C
+
4 /C2) JH-factors of order q appear in C+

4 /C2.
Then at least djq(C

+
4 /C2)/2e must occur either in (E/C)[2] or in E+

4 /E2 by
the argument that C+

4 /C2/((E/C)[2]) is sent injectively in E+
4 /E2.
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Note that for a JH-factor S of E/C[2] : lS(E/C[2]) ≤ lS(E/C ⊗ Z2). Then
by Proposition 6.4: jq(Cl(K) ⊗ Z2) = jq(E/C ⊗ Z2).

On the other hand, for a JH-factor S of E+
4 /E2 : lS(E+

4 /E2) ≤ lS(Cl(K) ⊗
Z2) by Lemma 6.13. Apply Proposition 6.4 again as previously. Therefore
taking the product for various q still divides h.

The theory so far made only use of JH-factors with order some power of the
prime two. For a more general context in which JH-factors occur, when divisors
other than two of the class number are to be determined, see [12].
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Chapter 7

Examples and

Computations

This chapter gives some examples regarding the theory so far. At the end of the
paper, in the Appendix, a table is given with results regarding the 2-divisibility
of class numbers of K, which were computed in the same fashion as the examples
in this chapter.

7.1 A slightly different environment

The approach of the entire paper to the problem of finding 2-divisibility prop-
erties of the class number has been algebraic. In order to do computations it is
necessary to be more specific about the signature maps and make a translation
to a setting more natural to implement in computer programming languages.
Let G be the Galois group of K of order d. Identify F2[G] with the cyclic poly-
nomial ring F2[x]/(xd − 1) by sending a generator σg of G to x mod xd − 1 and
extending by linearity. Throughout this chapter the above identification will be
used implicitly for simplicitly without mentioning each time a map.

7.2 Archimedean computations

Definition 7.1. Define the archimedean sign polynomial as

P∞ := gcd(

n−1
∑

t=0

(δ(gt+2) + δ(gt+1)) · xn−1−t mod d, 1 − xd).

Because C is generated by NK|K(εg), it is sufficient to only compute this
polynomial to obtain the entire image under sgn∞.

Proposition 7.2. sgn∞(NK|K(εg)) = P∞ · p1|K

35



Proof.

sgn∞(NK|K(εg)) =
∑

u∈X1/g ,u≤n

pu|K

= gcd(
n−1
∑

t=0

(δ(gt+1) + δ(gt)) · σ−t
g , xd − 1) · p1|K

= gcd(
n−1
∑

t=0

(δ(gt+1) + δ(gt)) · xn−t mod d, xd − 1) · p1|K

= gcd(
n−1
∑

t=0

(δ(gt+2) + δ(gt+1)) · xn−1−t mod d, xd − 1) · p1|K

The first and second equalities are due to Corollary 4.5 and by the proof of the
general case of Theorem 4.1, the third equality is by the identification. The last
equality follows without adjusting the index of the sum because the power of x
is defined modulo n.

In the setting of Coding Theory, P∞ is called the generator polynomial of
the cyclic code C/C+. It is important however to know the kernel of the sign
map, because the kernel gives a criterium about h being odd.

Corollary 7.3. C+/C2 ' F2[x]/(P∞)

Proof. In the ring F2[x]/(xd−1) the annihilator of (P∞) is precisely C+/C2.

Corollary 7.4. If P∞ = 1 then h is odd.

Proof. If P∞ = 1 then C+ = C2 by the previous Corollary. Use Corollary
5.2.

I begin with an example for a small prime such that the calculations can be
followed directly.

Example 7.5. Let p = 3 and g = 2. Then

P∞ = (δ(2) + δ(1)) = 1

which implies that C+/C2 is trivial. Therefore h is odd.

Example 7.6. This example concerns the first prime where P∞ 6= 1 for the
maximal field K. Let p = 29 and g = 2. Then first compute the coefficient of
x13. It equals δ(4)+δ(2) ≡ 0 (mod 2). Move on to the coefficient for x12, which
is also equal to zero modulo 2. Continueing this way to x0, and summing all
subsequent results yields

P∞ = gcd(x10 + x9 + x6 + x4 + x3 + x2 + 1, 1 − x14) = x3 + x2 + 1

which implies that C+/C2 is non-trivial. So hc
max is even but does not tell

whether or not hmax is odd.
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The next example investigates 2-divisibility properties of the subfield of K
for p = 29.

Example 7.7. Again let p = 29 and g = 2, and look at the subfield of K of
degree d. Then for d = 2 the gcd of 1−x2 and x10 +x9 +x6 +x4 +x3 +x2 +1 is
trivial, so h is odd for d = 2. For d = 7 it is non-trivial and equals x3 + x2 + 1.
In this case nothing can be said again whether or not h is odd, only that hc is
even. Note however that for p = 29 all the 2-divisibility that can be calculated
from the methods in this paper occurs already in this subfield.

7.3 2-adic computations

To compute the 2-adic image of the generating element εg, use Gras’s Theorem
from chapter four. Or more explicitly, Proposition 4.9 which gives the image.
For any polynomial f , denote by f its reciprocal polynomial.

Proposition 7.8. sgn∞(NK|K(εg)) = P∞ · σ2 · TrK|K(t1) with σ2 ∈ G.

Proof.

sgn2(NK|K(εg)) = TrK|K(
∑

u∈Xg ,u≤n

tu)

= (
∑

u∈Xg ,u≤n

σu) · TrK|K(t1)

= gcd(

n−1
∑

t=0

(δ(gt−1) + δ(gt)) · xt mod d, 1 − xd) · TrK|K(t1)

= gcd(

n−1
∑

t=0

(δ(gt+1) + δ(gt+2)) · xt+2 mod d, 1 − xd) · TrK|K(t1).

= gcd(

n−1
∑

t=0

(δ(gt+1) + δ(gt+2)) · xt mod d, 1 − xd) · σ2 · TrK|K(t1).

The first equality is due to Proposition 4.9. The polynomial P∞ is equal to

gcd(
n−1
∑

t=0

(δ(gt+2) + δ(gt+1)) · xn−1−t mod d, 1 − xd).

Now note that the reciprocal polynomial of

n−1
∑

t=0

(δ(gt+1) + δ(gt+2)) · xt mod d

is exactly
n−1
∑

t=0

(δ(gt+2) + δ(gt+1)) · xn−1−t mod d.
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Because 1 − xd is its own reciprocal polynomial, taking the gcd of respectively

n−1
∑

t=0

(δ(gt+1) + δ(gt+2)) · xt mod d

and
n−1
∑

t=0

(δ(gt+2) + δ(gt+1)) · xn−1−t mod d

with 1 − xd preserves this property. For every irreducible factor occuring in

n−1
∑

t=0

(δ(gt+1) + δ(gt+2)) · xt mod d

its reciprocal occurs in

n−1
∑

t=0

(δ(gt+2) + δ(gt+1)) · xn−1−t mod d.

If this factor divides 1 − xd, then so does its reciprocal.

The polynomial P∞ will be referred to as the 2-adic polynomial for obvious
reasons. What happened is that by choosing a more convenient basis element,
namely σ2TrK|K(t1), the convenient property arises that the archimedean poly-
nomial and the 2-adic one are each other’s reciprocal. Of course this is just a
reflection of Gras’s Theorem.

Corollary 7.9. C4/C2 ' F2[x]/(P∞)

Proof. Similar to the archimedean case.

Corollary 7.10. If P∞ = 1 then h is odd.

Proof. Similar to the archimedean case.

No examples are worked out for the 2-adic case, since they are the same as
for the archimedean case. Once the 2-adic sign polynomials are known, similar
conclusions can be deduced regarding h4 as were deduced regarding hc for the
archimedean case.

7.4 Combined computations

The combined sign map was defined as the direct product of the archimedean
and 2-adic maps,

sgn∞,2 = sgn∞ × sgn2.
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Definition 7.11. Define the combined sign polynomial as

P2,∞ := gcd(P∞, P∞).

It might seem odd to take the gcd here and not the direct product, but the
next proposition explains this.

Proposition 7.12. C+
4 /C2 ' F2[x]/(P2,∞) .

Proof. When trying to assiociate a polynomial to combined map, remember
that the module of interest is C+

4 /C2, the intersection of C4/C2 and C+/C2.
Therefore the kernels of sgn∞ and sgn2 should be intersected, which means
taking the dual of the gcd of P∞ and P2 in F2[x]/(xd − 1).

Corollary 7.13. The class number h is odd if and only if P2,∞ = 1.

Proof. If P2,∞ = 1 then C+
4 = C2. Now use Theorem 5.4 .

Example 7.14. Reconsider the example where p = 29 and g = 2 with K = K.
The archimedean map alone could not conclude if hmax is odd or not. The recip-
rocal polynomial p of P∞ is x3 + x + 1. Computing the gcd of the archimedean
polynomial yields that the combined polynomial is trivial. Therefore hmax is
odd.

Example 7.15. As it turns out, the first prime number for which P2,∞ is non-
trivial for K = K is 163. For p = 163 the combined polynomial is x2 + x + 1.
Therefore hmax is even.

7.5 Jordan Hölder computations

Factor the polynomial P2,∞ into irreducible polynomials. Each such irreducible
polynomial corresponds exactly to a JH-factor of C+

4 /C2. The degree of the
polynomial factor is the dimension of a JH-factor occuring in C+

4 /C2.

Algorithm 7.16. To compute a lower boundary of the 2-divisibility of a class

number of a field of prime conductor, and to find the parity of the class number,

do the following:

1. Compute the archimedean sign polynomial P∞.

2. Compute the gcd of P∞ and of P∞ to obtain P2,∞.

3. If P2,∞ = 1 then h is odd and the algorithm stops, otherwise it is even.

4. Sort the irreducible factors of degree a together. Let q = 2a. If there are

m such factors the number qdm/2e divides h.

5. Multiply all numbers of the previous with each other. The result divides h.
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In practice the combined sign polynomial turns out to be rather small, and
the computation of the gcd of P∞ and 1−xd is by far the most time-consuming.
The following alternative algorithm uses the knowledge one has about 1 − xd.

Algorithm 7.17 (alternative). To compute a lower boundary of the 2-divisibility

of a class number of a field of prime conductor, and to find the parity of the

class number, do the following:

1. Factor 1−xd =
∏

l|d φl(x) =
∏

l|d(
∏

fl
fl(x)) into irreducible polynomials.

2. Collect the same irreducible polynomials together, and set the multiplicity

of them to ml.

3. Compute the archimedean sign polynomial v = P∞.

4. Divide v by a distinct irreducible polynomial fl.

5. If fl divides v, set v = v/fl. Otherwise go back to the previous step

and choose a new different polynomial and which isn’t a reciprocal of a

polynomial already tried. If there are no more such polynomials goto step

7.

6. If fl = fl then fl corresponds to the JH-factor /FF2[X ]/(fl) of C+
4 /C2.

Go back to step the previous step and repeat at most dml/2−1e times. Else

if fl divides v, set v = v/fl, and both fl and fl correspond to JH-factors

of C+
4 /C2. Go back to the previous step and repeat at most ml times.

If fl doesn’t divide v then go back to step 3 and choose a new different

polynomial which isn’t a reciprocal of a polynomial already tried. If there

are no more such polynomials goto step 7.

7. Sort the JH-factors of the same order a together. Let q = 2a. If there are

m such factors the number qdm/2e divides h.

8. Multiply all numbers of the previous with each other. The result divides h.

The above algorithm can be modified so that it becomes faster but unfortu-
nately an uncertainty slips into it additionally. For large d only the irreducible
polynomials of the first few cyclotomic divisors of 1−xd can be used. Of course
it must be faster because fewer things are calculated, but there might be bigger
JH-factors ’out there’ which are skipped. Therefore, if there are no JH-factors
found, the conclusion that h is odd cannot be made and the algorithm loses its
conclusiveness.

It must be noted however, that from the tables provided by Hayes and my
own computations, only small JH-factors seem to occur, not larger than ones
dividing 1 − x31 for primes up to a million. See [12] for probabilities of the
occurence of big JH-factors.

Example 7.18. Let p = 277. Then P2,∞ = (x2 + x + 1)2. Then hmax is at
least divisible by 22∗2/2 = 4.
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Example 7.19. Let p = 32371. Then P2,∞ = x6 + x4 + x3 + x2 + 1 = (x4 +
x3 + x2 + x + 1)(x2 + x + 1). Then hmax is at least divisible by 24 ∗ 22 = 64.

Example 7.20. Let p = 63337 and g = 5. Then

P2,∞ = (x2 + x1 + 1)3 ∗ (x3 + x1 + 1)2.

Therefore hmax is divisible by 42 ∗ 8 = 128.

Example 7.21. Take the same p and g as in the previous example. Let d = 7,
then

P2,∞ = gcd((x2 + x1 + 1)3 ∗ (x3 + x1 + 1)2, 1− x7) = (x3 + x2 + 1)2.

By this h is divisible by 8.

41



Chapter 8

Appendix

8.1 Example source code

I wrote a program in C++ that calculates the polynomials P2,∞ for K = K and
p in some given range using the alternative algorithm. Before the computation
starts, a list is made of all irreducible polynomials dividing some cyclotomic
polynomials up to a given bound.

#include <cmath>

#include <iostream>

#include <sstream>

#include <vector>

#include <algorithm>

#include <fstream>

#include <string>

#include <pari.h>

#include <errno.h>

using namespace std;

class pol {

public:

vector<int> coeff;

vector<pol> factor;

pol();

~pol();

void clean();

pol gcd(const pol &);

pol operator+(const pol &);

pol &operator=(const pol &);

bool operator==(const pol &);
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int deg() const;

pol shift(int);

pol quotient(const pol &);

bool divides(const pol &);

string print() const;

pol reverse();

int cl2 ();

void add_coeff (int);

private:

};

vector<pol> cyc[200];

vector<long int> cycm[200]; // multiplicity

pol::pol () {}

pol::~pol () {}

void pol::clean() {

coeff.erase(coeff.begin(),coeff.end());

factor.erase(factor.begin(),factor.end());

}

pol pol::reverse () {

int max;

pol r;

max=coeff[coeff.size()-1];

for (int i=coeff.size()-1;i>-1;i--) {

r.coeff.push_back(max-coeff[i]);

}

return r;

}

pol pol::quotient(const pol &f) {

pol a, b, q;

int diff;

vector<int> qcoeff;

if (deg() < f.deg()) { return q; }

a=*this;

b=f;

do {
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diff=a.deg() - b.deg();

qcoeff.push_back(diff);

a=a+b.shift(diff);

} while (a.deg() >= b.deg());

if (a.deg() == -1) {

// q is sorted

for (int i=qcoeff.size()-1;i>-1;i--) {

q.coeff.push_back(qcoeff[i]);

}

return q;

}

q.clean();

return q;

}

bool pol::divides (const pol &f) {

pol a, b, q;

if (deg() < f.deg()) { return 0; }

a=*this;

b=f;

do {

a=a+b.shift(a.deg() - b.deg());

} while (a.deg() >= b.deg());

return (a.deg() && -1);

}

int pol::cl2 () {

vector<pol> tmp;

bool skip;

int mul, q, h=1;

for (unsigned int i=0;i<factor.size();i++) {

skip=0;

mul=1;

q=1;

for (unsigned int j=0;j<tmp.size();j++) {

if ( tmp[j].deg() == factor[i].deg() ) { skip=1;break; }

}

if (skip) { continue; }

for (unsigned int j=i+1;j<factor.size();j++) {

if (factor[j].deg() == factor[i].deg()) { mul++; }
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}

for (int k=0;k<factor[i].deg();k++) {

q=2*q;

}

for (int k=0;k<(mul+1)/2;k++) {

h=q*h;

}

tmp.push_back(factor[i]);

}

return h;

}

string pol::print () const {

if (!coeff.size()) { return "0"; }

string res;

ostringstream ostr;

for (int i=coeff.size()-1;i>-1;i--) {

ostr.str("");

ostr.clear();

if (i==0) {

if (!coeff[0]) {

res+="1";

} else {

ostr << coeff[i];

res+="x^" + ostr.str();

}

} else {

ostr << coeff[i];

res+="x^" + ostr.str() + "+";

}

}

return res;

}

int pol::deg () const {

if (!coeff.size()) { return -1; }

//pol is sorted

return coeff[coeff.size()-1];

}

bool pol::operator==(const pol &f) {

if (this == &f) { return 1; }
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if (this->coeff.size() != f.coeff.size()) { return 0; }

for (unsigned int i=0;i<this->coeff.size();i++) {

if (this->coeff[i] != f.coeff[i]) { return 0; }

}

return 1;

}

pol& pol::operator=(const pol &f) {

if (this != &f) {

clean();

coeff=f.coeff;

factor=f.factor;

}

return *this;

}

void pol::add_coeff (int i) {

pol n;

n.coeff.push_back(i);

// inefficient

*this=*this+n;

}

pol pol::operator+(const pol &f) {

int imax,jmax;

imax=coeff.size();

jmax=f.coeff.size();

if (!imax) {

return f;

} else if (!jmax) {

return *this;

}

int i=0,j=0;

pol sum;

while (j < jmax && i < imax) {

if (coeff[i] < f.coeff[j]) {

sum.coeff.push_back(coeff[i]);

i++;

} else if (coeff[i] > f.coeff[j]) {
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sum.coeff.push_back(f.coeff[j]);

j++;

} else {

i++;

j++;

}

}

if (i==imax) {

for (i=j;i<jmax;i++) {

sum.coeff.push_back(f.coeff[i]);

}

} else if (j==jmax) {

for (j=i;j<imax;j++) {

sum.coeff.push_back(coeff[j]);

}

}

return sum;

}

pol pol::shift(int t) {

pol r;

for (unsigned int i=0;i<coeff.size();i++) {

r.coeff.push_back(coeff[i]+t);

}

return r;

}

pol pol::gcd (const pol &f) {

pol a,b,r,q;

int diff;

int count=0;

if (deg() > f.deg()) {

a=*this;

b=f;

} else {

a=f;

b=*this;

}

do {

r=a;

do {
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a=r;

diff=a.deg() - b.deg();

r=a+b.shift(diff);

} while (r.deg() >= b.deg());

a=b;

b=r;

count++;

} while (r.deg() > -1);

return a;

}

int findmaxm(int n, int acc, pol f)

{

int m=0;

for (int i=0;i< acc && i<n;i++) {

if ( n % (i+1) ) continue;

for (unsigned int j=0;j<cyc[i].size();j++) {

if ( f == cyc[i][j] ) { m++; }

}

}

return m;

}

void calculate (int p, int acc) {

int a, g1, g2, g;

pol r_pol, v, q;

vector<pol> skippol;

int h;

bool skip;

int maxmul;

g=itos(lift(gener(stoi(long(p)))));

int n=(p-1)/2;

for (int i=0;i<n;i++) {

g1=g2=1;

for (a=1;a<=(n-1-i)+1;a++) {g1=(g1*g) % p;}

for (a=1;a<=(n-1-i)+2;a++) {g2=(g2*g) % p;}

if ((g1+g2) % 2) { v.coeff.push_back(i); }

}

pol vtmp=v, testpol;

for (int i=0;i<acc && i < n;i++) {

if ( n % (i+1) ) { continue; }

for (unsigned int j=0;j<(cyc[i]).size();j++) { //cyc[i][j] are distinct

skip=0;

for (unsigned int k=0;!skip && k<skippol.size();k++) {
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if ( skippol[k] == cyc[i][j] || skippol[k] == cyc[i][j].reverse()) { skip = 1; }

}

if (skip) { continue; }

testpol=vtmp.quotient(cyc[i][j]);

maxmul = findmaxm(n, acc, cyc[i][j]);

// loop for multiplicity, check for maximum multiplicity occuring in 1-x^n

for (int k=0;k < maxmul && testpol.deg() != -1;k++) {

vtmp=testpol;

if (cyc[i][j] == cyc[i][j].reverse()) {

v.factor.push_back(cyc[i][j]);

testpol=vtmp.quotient(cyc[i][j]);

} else {

testpol=vtmp.quotient(cyc[i][j].reverse());

if (testpol.deg() != -1) {

v.factor.push_back(cyc[i][j]);

v.factor.push_back(cyc[i][j].reverse());

vtmp=testpol;

testpol=vtmp.quotient(cyc[i][j]);

}

}

}

skippol.push_back(cyc[i][j]);

skippol.push_back((cyc[i][j]).reverse());

}

} //for

if (v.factor.size() > 0) {

cout << "\x1b[31m" << p << "\x1b[0m " << flush;

ofstream ff("data",ios::app);

if (!ff) {

perror("error opening file");

exit(1);

}

ff << p << " " ;

for (unsigned int j=0;j<v.factor.size();j++) {

ff << "(" << v.factor[j].print() << ")";

if (j != v.factor.size()-1) {

ff << "*";

}

}

h = v.cl2();

ff << " " << h << endl;

ff.close();

} else {

cout << p << " " << flush;
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}

}

//compute list of cyclotomic polynomials

void generate_cyc_vec(int n) {

pol f;

GEN g, gf, gfl;

for (int i=1;i<=n;i++) {

g=cyclo(i,-1);

gf=factmod(g,stoi(long(2)));

GEN primes = (GEN)gf[1];

GEN exponents=(GEN)gf[2];

//all primes are necessarily different by pari

for (long j=1;j<lg(primes);j++) {

f.clean();

gfl = lift((GEN) primes[j]);

for (int k=0;k<=degree(g);k++) {

if (itos(polcoeff0(gfl,k,-1)) % 2) { f.coeff.push_back(k); }

}

(cyc[i-1]).push_back(f);

(cycm[i-1]).push_back(itos((GEN)exponents[j]));

}

}

}

int main (int argc, char *argv[]) {

int p, maxp;

string acc_string;

int acc;

if (argc != 4) {

cout << "usage: cl2 <startprime> <endprime> <cyclotomic accuracy>" << endl;

return 1;

}

pari_init(1000000, 100000);

istringstream istrp(argv[1]);

istrp >> p;

istrp.clear();

istrp.str(argv[2]);

istrp >> maxp;
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istrp.clear();

istrp.str(argv[3]);

istrp >> acc;

maxp=itos(precprime(stoi(maxp)));

p=itos(nextprime(stoi(p)));

generate_cyc_vec(acc);

cout << "calculating 2-divisibility of primes, writing to file ./data" << endl;

while (p <= maxp) {

calculate(p,acc);

p=itos(nextprime(stoi(p+1)));

}

return 0;

}
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8.2 Some 2-divisibility data

Only the first few computated results are given, and only for the maximum field
K. There exists a bigger list on my homepage:

http://www.math.leidenuniv.nl/~hverhoek/cl2data

The results are computed by the algorithm given by Algorithm 7.17. Note that
a polynomial f corresponding to Jordan-Hölder factor is not f but F2[x]/(f).

prime polynomials corresponding to Jordan-Hölder factors 2-part

163 (x2 + x1 + 1) 4
277 (x2 + x1 + 1)(x2 + x1 + 1) 4
349 (x2 + x1 + 1)(x2 + x1 + 1) 4
397 (x2 + x1 + 1)(x2 + x1 + 1) 4
491 (x3 + x1 + 1)(x3 + x2 + 1) 8
547 (x2 + x1 + 1) 4
607 (x2 + x1 + 1) 4
709 (x2 + x1 + 1)(x2 + x1 + 1) 4
827 (x3 + x1 + 1)(x3 + x2 + 1) 8
853 (x2 + x1 + 1) 4
937 (x2 + x1 + 1) 4
941 (x4 + x3 + x2 + x1 + 1)(x4 + x3 + x2 + x1 + 1) 16

1009 (x2 + x1 + 1) 4
1399 (x2 + x1 + 1) 4
1699 (x2 + x1 + 1) 4
1777 (x2 + x1 + 1)(x2 + x1 + 1) 4
1789 (x2 + x1 + 1)(x2 + x1 + 1) 4
1879 (x2 + x1 + 1) 4
1951 (x2 + x1 + 1) 4
2131 (x2 + x1 + 1) 4
2161 (x4 + x3 + x2 + x1 + 1) 16
2311 (x2 + x1 + 1) 4
2689 (x2 + x1 + 1) 4
2797 (x2 + x1 + 1)(x2 + x1 + 1) 4
2803 (x2 + x1 + 1) 4
2927 (x3 + x1 + 1)(x3 + x2 + 1) 8
3037 (x2 + x1 + 1)(x2 + x1 + 1) 4
3271 (x2 + x1 + 1) 4
3301 (x4 + x3 + x2 + x1 + 1) 16
3517 (x2 + x1 + 1) 4
3727 (x2 + x1 + 1) 4
3931 (x4 + x3 + x2 + x1 + 1) 16
4099 (x2 + x1 + 1) 4
4219 (x2 + x1 + 1) 4
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Ann. Inst. Fourier, Grenoble 25, 1975, 37-45

[5] Gras, G., Class Field Theory, From Theory to Practice, Springer-Verlag,
2003

[6] Kucera, R., Nekovar, J., Cyclotomic Units in Zp-extensions,
http://www.math.jussieu.fr/~nekovar/pu/unit.ps

[7] Lang, S., Algebra Revised Third Edition, Springer-Verlag, 2002

[8] Lang, S., Algebraic Number Theory 2nd. Edition, Springer-Verlag, 1994

[9] Lang, S., Cyclotomic Numbers, Springer-Verlag, 1978

[10] Lang, S., Cyclotomic Numbers 2, Springer-Verlag, 1980

[11] Ribenboim, P., Classical Theory of Algebraic Numbers, Springer-Verlag,
2001

[12] Schoof, R., Class Numbers of Real Cyclotomic Fields of Prime Conductor,
Math. Comp., 72 (2003) 913 937

[13] Schoof, R., Errata of Class Numbers of Real Cyclotomic Fields of Prime

Conductor, http://www.mat.uniroma2.it/~schoof/errcycl.txt

[14] Serre, J.-P., Linear Representations of Finite Groups, Springer-Verlag, 1977

[15] Stevenhagen, P., Class number parity for the pth cyclotomic field, Math.
Comp., 63 (1994) 773-784

[16] Washington, L., Introduction to Cyclotomic Fields 2nd. Edition, Springer-
Verlag, 1997

53


