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1 Introduction 

TNT B.V. is an international company with over 163,000 employees, whose network 

covers 200 countries. It has three divisions: Mail, Express, and Logistics. The Mail 

Division, which TPG POST is part of, is a very important operator in the world and 

accounts for more than 70% of the total revenue. (See figure 1)  

 

  

Figure 1: Structure of TNT B.V. 

 

Since the Mail Division of TNT B.V. is very important among the three divisions of 

the company, making the Mail Division operate efficiently is significant to TNT. The 

mailing system contains three processes: collection, sorting, and distribution. This 

project is focused on the sorting part. A prediction of mail volume would help the 

planning of workers, and ensures that the sorting to operate more efficiently with 

relatively low cost.  

 

The first chapter of this report contains general information about TPG POST, then in 

the second chapter, the mailing system and sorting process will be introduced. After 

we give an introduction to the project, which includes its goal, data collection, and 

data exploration. Then the methods will be introduced mathematically in the fourth 

chapter. In chapter five the estimations are made and results are shown.  How to 

predict future will be introduced in chapter six and the conclusions are in chapter 

seven. 
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2 Mailing system and sorting process 

2.1 Mailing system and sorting centres 

The mailing system is a system of collection, sorting, and distribution. Every day, tens 

of millions of mail is collected at the mail boxes, post offices, post agencies, service 

points, and business counters. Then the mail is sent to the sorting centres to be sorted. 

After being sorted, the mail is distributed to delivery offices and from there to the 

addresses where they should go. 
 
The sorting is done at sorting centres. There are eight sorting centres in The 

Netherlands totally, two of which deal with international mail and registered mail. 

Since this project concentrates on the national mail, it is enough to focus on the other 

six sorting centres: Amsterdam, Nieuwegein, Rotterdam, s-Hertogenbosch, 

s-Gravenhage, and Zwolle. (See Figure 2.1)  

 
 Figure 2.1: Sorting Centres 

 
 

2.2 Sorting process 

After the mail is collected, it is sent to the “nearest” sorting centre. (Here the word 
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“nearest” is between quotation marks because it doesn’t mean nearest in the sense of 

geography. In fact TPG POST divides The Netherlands into six areas, one sorting 

centre at each area. And all the mail in the area is sent to the sorting centre in the 

charge of this area. ) Then it gets the 1st sort, which means that it is sorted according 

to the first 4 digits of the postal code. The output is called “semi-sorted products”. 

Then all the sorting centres exchange the semi-sorted products between each other, so 

that the mail enters the areas where it should go. At the 2nd sorting centres, the mail 

gets the 2nd sort, this time according to all digits of the postal code, and the output is 

the end-products. Through the two sortings, the mail is sorted for individual 

postmen’s walks. (See Figure 2.2) Since all the mail that goes through the 2nd sorting 

also goes through the 1st, we only need to focus on the 1st sorting. Next paragraph will 

show how the mail is sorted for the 1st time at the sorting centres. 

 

 
Figure 2.2: Sorting process 

 

 

When the mail arrives at sorting centres, it is first put into SOSMA, which puts all the 

mail properly. It means that all the mail is put face-up with all stamps at the right-up 

corners. After the SOSMA, the mail will be distributed to different sorting machines 

according to size and weight. Generally, the SMK is used to sort small mail, SMG for 

big mail, SMB for trays of mail, and SMO for other mail. All the mail that can not be 

sorted by machines will be sorted by hand. The sorting machines can read the postal 

codes on the mail and change the mail into semi-sorted products, which are put into 

containers and exchange with other sorting centres. (See Figure 2.3)  

“nearest” 

Collected Sorting Exchange Sorting 
Mail 

1e 2e

Individual 

post walk 

Centers Centers
Semi-products Final products 
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Figure 2.3: The 1st sorting process at sorting centres 

TPG POST provides two services: 24-hour service and 48-hour service. Figure 2.4 
shows that the 24-hour mail is sorted on the same day as it is collected, while the 
48-hour mail is sorted one day later than the day it is collected. This should be taken 
into account with data-exploration. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: 24-hour service and 48-hour service 

 
SMK 

(small) 

SMG(big)
containers 

mail 
SMB(trays)

Hand 
sorting

SMO(other)

SOSMA 
(semi-prod
ucts) 

Other 
sorting 
centers 

2424--hour sortinghour sorting per daper dayy

48 hour post

Day production Night production

evening night

delivery day 1

Inward

morning

evening

morning

delivery day 2

2nd  
sort

2nd  
sort

1st  
sort

1st  
sort

1st  
sort

2nd  
sort

2nd  
sort

afternoon

afternoon

48 hour

24 hour

 6



3 Introduction to project 

The goal of this project is to make predictions of the mail volume per sorting centre 

per day. 

 

The first question is why do we need to forecast? The reason is that different sorting 

machines require different numbers of workers (Generally speaking, the hand sorting 

needs the most and the SMK needs the least.) So the Department Sorting of TPG 

POST needs an indication of the different mail volumes per day, so that they can plan 

the workers. 

 
3.1 Plan of project 

The project will be focused on mail volumes per day.  The data of SMK(sorting of 

small mail) in  MIS are used for modelling  and predictions.  

 

It starts with data collection and data exploration. Since there are several kinds of data 

available, the most suitable data will be chosen after the data exploration.  Also the 

data exploration will give some main ideas of estimations and predictions. Then 

further analysis will be made on a mathematical basis and estimation methods are 

provided. Lastly the estimation methods will be realized through programming and 

predictions will be made. 

  
3.2 Data collection 

The data mainly come from three sources: MIS, INDOOR, and L.V.R.. 

 

(1) MIS (Management Information System) 

When the mail goes through the sorting machines, the machines count the mail 

volume. This is how the MIS data come out.  

(2) INDOOR 

This is the billing system for customers with groups of mail. For example, a bank 

sends the account balances to its customers every two weeks. Then the bank has a 

long-term contract with TPG POST to send mail regularly. INDOOR contains all 
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the bills sent to the customers for the groups of mail. (So figures of INDOOR are 

about all the groups of mail collected by TPG POST) 

(3) L.V.R. 

This estimates the total mail volume, both hand sorted and machine sorted mail. 

The estimates are partly based on sampling. 

 

In this project, MIS and INDOOR are analysed and MIS SMK (sorting of small mail) 

is used for the modelling. The following (Figure 3.1) are the conditions for making 

queries when doing Data Collection. Notice that only SMK is considered because this 

data is the most reliable and it is one of the biggest mail streams.  

 

 

MIS (SMK ) INDOOR (SMK ) 

 1st sort 

 net-sorted 

 Weight <= 50 g 

 SV = 7 

 Sort depth = 1 or 3 

Figure 3.1: Query conditions when doing data collection 

 

Here are some explanations of Figure 3.1. During the query of MIS, the “1st sort” and 

“net-sorted” are used. The reason that why use “1st sort” has been explained in the 

section “Sorting Process”. The “net-sorted” differentiates itself from “gross-sorted”. 

In fact, every time the mail goes through the sorting machines, some mail is rejected 

by the machines. Then the rejected mail is put into the machines again. Still some 

mail is rejected. The rejected mail now will be sorted by hand. This “rejection” course 

brings the difference between “net-sorted” and “gross-sorted”. This is explained by an 

example. If 100 pieces of mail are put into a sorting machine and 10 are rejected, then 

the 10 pieces are put into the machine again. This time 4 are rejected. Altogether 110 

pieces of mail are put into the machine, and 96 pieces go through successfully. The 

number “110” is called “gross-sorted”, and “96” is “net-sorted”. 

 

The “net-sorted” data is used instead of “gross-sorted” because it is more similar to 

the real number of mail pieces. 

 

As for the query conditions of INDOOR, the “sort depth” is set to “1” or “3”. It is 
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because the companies can sort the mail by themselves before they send the mail to 

TPG POST. Through setting “sort depth”, we can get the mail that is sorted by TPG. 

And through setting “Weight <=50 g”, it ensures that the mail chosen all goes through 

the machines SMK. In the condition “SV=7”, the “SV” means the mail in groups. 

Then all the mail that is delivered at the post offices as a group (from about 100 to 

over 1,000,000) are booked under “SV=7”. 

 

After the Data Collection, the next job is to do Data Exploration. 

 
3.3 Data exploration 

3.3.1 Analysis of INDOOR 

Before starting the work of data exploration, it is necessary to know about the 

composition of mail. Where does the mail come from? What kind of mail accounts for 

the biggest proportion? In fact, the mail comes from two sources: business and 

individual. The business mail is from customers, especially long-term customers of 

TPG POST, and it always arrives regularly or is told to TPG POST in advance. So this 

part of mail is not the focus of our predictions, because the predictions only care the 

unknown of future, that is, the individual mail that come randomly. 

 

Then how to get the individual mail from our data?  The idea is to use MIS minus 

INDOOR. the reason is that “INDOOR” is the bills for customers, so it stands for the 

“business part”, while the “MIS”, as introduced above, is the total mail. So the 

difference between total mail and business mail is just the individual mail, i.e., 

“ ”. INDOORMIS −

 

Exploration of data 2004 

 

In order to see whether it is appropriate to use the idea of MIS-INDOOR, the data of 

MIS and INDOOR for 2004 are firstly explored.  

 

Both the data of MIS and INDOOR reveal a decline in the period August and 

September, because during holidays there is relatively little mail to be sorted. 

December is a very special month, because there are always a lot of greeting cards 
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and other mail during the Christmas period.  This phenomenon will continue to the 

beginning of next January, which is called in TPG POST as “KNJ”-period (Kerstmis 

en Nieuw Jaar, which means “Christmas and New Year”). So December is excluded 

from this analysis, and TPG POST has a special model for it.  

  

If analyse the data of MIS and INDOOR together then something strange happens. 

 

As is known, INDOOR is only mail from companies, so its values should be less than 

the MIS. But the data shows that values of INDOOR is much bigger than MIS at 

some days. While in the weekly data the INDOOR is normally less than the MIS. 

How can this be explained? 

 

The reason is that the INDOOR volume can be for a whole month or week; in fact, the 

mail is sorted and delivered throughout the month or week, not just on the day when it 

is recorded into INDOOR. This is not the case for all records, only for large 

companies that send mail on a regular basis. So now the difficulty is to find out how 

the INDOOR mail is delivered, especially for the big customers. And since TPG 

POST has a lot of customers, it probably is impossible to look at every customer’s 

mail delivery separately. So, this idea about modelling MIS-INDOOR is difficult to be 

realized, and might not give a prediction of the actual daily mail volume. 

 
3.3.2 Analysis of MIS 

According to the data available, the focus is finally put on the “net-sorted” MIS data. 

There are three years of data (2002, 2003, and 2004). The daily mail volumes of the 3 

years show an obvious decline in July and August, which accounts for the summer 

holidays. There are four holidays not on Saturday or Sunday, i.e., Eastern Monday, 

Queen’s Day, Ascension Day, and Pentecost Monday, which have much fewer mail 

volumes than normal days.  

 

Another feature that can be noticed from the data is that it reveals a rule for the 

weekdays, e.g., a weekday is always a relatively busy day and another weekday 

always has a relatively small mail volume. The people of Sorting Department also 

certify this.  
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The analysis of MIS SMK reveals that it is the better data to be used for the 

predictions. The next part is the mathematical introduction of modelling methods. 
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4 Mathematical introduction of methods 

In this part, some estimation methods for the data of net-sorted SMK of MIS will be 

summarized on a mathematical basis. The main idea is to separate the mail volumes 

into two parts, one is a stable generalized linear trend, and the other is the seasonal 

effects, which will describe the decline during summer holidays.   A model with 

these two elements will firstly be introduced, and then estimation methods will be 

presented:  Naïve method, Kernel method, Projection estimators, and Penalized 

least squares. After the mathematical introductions of these methods in this chapter, 

two of them will be implemented and modelled in the next chapter, i.e., Naïve 

method and Kernel estimation. 
 

4.1 The data 

Our data consist of the mail volumes at working days during three years.  Let    

be the mail volume at day ,

jiY ,

~

jit , jni ,...,1= , 1=j , 3. Here,     is  the  number  

of days  at  which  we  observed the  mail volume in year 

jn

j , and  is the 

date, i.e., the day number when we number the days in a year from one to 365.  We 

also keep track of the days in a week using a seven dimensional dummy variable d: 

jit ,

 

d = (1, 0, 0, 0, 0, 0, 0) is Monday, 

d = (0, 1, 0, 0, 0, 0, 0) is Tuesday, 

d = (0, 0, 1, 0, 0, 0, 0) is Wednesday, 

d = (0, 0, 0, 1, 0, 0, 0) is Thursday, 

d = (0, 0, 0, 0, 1, 0, 0) is Friday. 

d = (0, 0, 0, 0, 0, 1, 0) is Saturday. 

d = (0, 0, 0, 0, 0, 0, 0) is Sunday. 

 

Let  denote the value of this dummy on day . jid , jit ,

 
4.2 The general introduction to models 
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The seasonal effects are estimated by taking the average mail volume over the years.  

Next, the average curve can then be further smoothed.  The dependence on 

weekdays can then be estimated by looking at the mail volumes after subtracting the 

seasonal effects.  The rationale behind this approach is that seasonal effects may 

show a periodic character, i.e., the seasonal curve has the same form every year.  

We model this idea as follows. 

 

Let   be the log mail volumes. (One reason to take a ‘log’ is that when 

a seasonal effect m is added to , it is in fact multiplying a exp(m) to . Since 

every weekday has difference levels of mail volumes, it is not reasonable to add the 

seasonal values to them on a same level. Through taking ‘log’ and ‘exp’, we transfer 

the ‘add’ to ‘multiply by a scale’, so that every weekday can get the seasonal effect 

by a scale.) We now assume that 

~

,, log jiji YY =

jiY , jiY ,

~

 

(1)                  jijijijiji tmdjtY ,,,,, )()365( εβα ++++= , 

365,,1L=i , 

L,2,1,0=j  years since 2002, 

 

whereα and  are unknown parameters,  is an 

unknown function, and where   

T),,,,,( 654321 βββββββ = (.)m

ji,ε , jni ,...,1= , 3,2,1=j , are independent errors 

with mean zero and finite variance.  The )365( , jt ji +α  models a linear trend. It is 

expected that this trend is decreasing due to competition and substitution. The 

function m represents the seasonal effects. Note that it is assumed to be the same 

function for the three years.  Moreover, the parameter β  representing the influence 

of the day of the week, is also assumed to be the same for the three years. 

 

The model (1) is called , because it contains a parametric part and a 

nonparametric or infinite dimensional part.  This terminology refers to the 

“dimensionality” of the unknown parameters.  The parameters   

tricsemiparame

T),( 11,0 ααα =
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and β are clearly finite dimensional.  They represent the parametric part.  The 

function  m  is  assumed  to  be  smooth,  but  we  do  not  assume  a  

parametric  form  (a  parameterization  using finitely many parameters) for it.  

Therefore, m represents the nonparametric part.  We remark here that also the 

distribution of the errors is not assumed to be known.  This distribution may not be 

of primary interest to us, in which case we refer to it as an (infinite-dimensional) 

nuisance parameter. 

 

α  and  β are put together  in  the  finite  dimensional  parameter  

.   Moreover,  write ),( TTT βαγ = ),,1( dtx =  with values 

 for year 2002,  ),,1( 2002,2002,2002, iii dtx = ),365,1( 2003,2003,2003, iii dtx +=  for year 

2003, and ),365365,1( 2004,2004,2004, iii dtx ++=  for year 2004.  Our model can now 

be written in the form 

 

jijijiji tmxY ,,,, )( εγ ++= , jni ,...,1= , 2004,2003,2002=j  

 

The intuitive idea is to find the seasonal effects by smoothing the mean mail volume 

over the three years, and then finding weekday effects by subtracting the seasonal 

effects. 

 

The first method we are trying to use is Poisson quasi-likelihood model, which is one 

of the generalized linear models. 
 
 

4.3 Estimation 

4.3.1 Naïve way of estimation 

Let , ,  

be the data of year 2002, 2003, and 2004. Firstly, get the means of , 

which respectively are  and . Then get the 0-mean data by 

subtracting the mean: 

TYYY ),...,( 2002,3652002,12002 =
TYYY ),...,( 2003,3652003,12003 =

TYYY ),...,( 2004,3662004,14 =

200420032002 ,, YYY

),(),( 20032002 YEYE )( 2004YE
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)( 200220022002 YEYY −=∆ , )( 200320032003 YEYY −=∆ , )( 200420042004 YEYY −=∆ . 

 

Calculate the average of the 0-mean data: 

 

3
200420032002 YYY

Y
∆+∆+∆

=∆ . 

 

Smooth Y∆ , then get the seasonal effects . (Refer to Graph 5.2.3) S

 

Subtract the seasonal effects from the , and use a  

model with dummies for weeks to estimate it. 

)(),(),( 200420032002 YEYEYE Poisson

 

The utility of model on this project is based on some statistics theories, 

especially the results of Nelder(1974). 

Poisson

 

In statistics, there are special methods for dealing with discrete events rather than with 

continuously varying quantities. The enumeration of probabilities of configurations in 

cards and dice was a matter of keen interest in the eighteenth century, and from this 

grew methods for dealing with data in the form of counts of events, which is just the 

case of this project. The basic distribution here is Poisson, and it has been widely 

applied to the analysis of such data. 

 

In this project, the mail volume every day can be regarded as following a multinomial 

distribution (The mail volume on day i  arrives with the probability , and 

.); such a distribution, as is well known, can be regarded as a set of 

independent Poisson distributions, subject to the constraint that the total count is fixed. 

A suitable initial (or minimal) log-linear model can be fitted to the data to fix the 

fitted total counts at their given values; additional terms to test the effect of other 

factors on the response factor will then be fitted conditional on those totals being kept 

fixed (Nelder, 1974). 

iy ip

1=∑ ip
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Let the mail volume on day is , i iY
~

ni =×= 3365,...,1 . Suppose that  are 

independent  random variables with means

nYY
~

1

~
,...,

Poisson nµµ ,...,1  . Let  

with  being unknown parameters and   known 

constants.  

]exp[ βµ T
ii x=

T
p ),...,( 1 βββ = T

iii p
xxx ),...,(

1
=

 

Since  has the  distribution, it has the probability function: iY
~

Poisson

 

!
)(

~

i

y
i

ii
y

eyYP
i

i
µµ−== , ,...2,1,0=iy  

 

So  

 

))!log((log)(log
~

iiiiii yyyYP −++−== µµ . 

 

We can neglect the last term because it has nothing to do with estimating the 

parameterµ . 

 

Furthermore,  are independent, so nYY
~

1

~
,...,

 

∑

∑∑ ∑

∑ ∑ ∑∑

=

== =

= = ==

−=

−+−=

−+−===

==

n

i
i

n

i
i

n

i

n

i

T
ii

T
i

n

i

n

i

n

i
i

n

i
iiiii

nn

yl

yxyx

yyyYP

yYPyYP

1

11 1

1 1 1

~

~

11

~

)!log()(

)!log(]exp[

)!log(log)(log

))()...(log(

β

ββ

µµ
1

. 

 

Using Maximum Likelihood Estimation, we can find  which maximizes
^
β )(βl . So, 
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)exp(
^^
βµ T

mm x= . 

^

2002,

^
)( iijji SYEY µ++= + . 

Here S is the seasonal effects, which can be referred to the beginning of this section. 
 

4.3.2 Kernel estimation 

In this part, “Kernel Estimation” will be introduced by two steps.  

 

Step 1: Find the parameter  for the linear part 

 

The first step is to estimate the important parameter γ . When this γ  is found, then 

the linear part is decide. Since the linear part can be obtained, then the seasonal effects 

can be estimated through separating the linear part from the data and smoothing. The 

estimator of γ  can be found through the formula in Lemma 1.  In more detail: 

 

Firstly we describe kernel estimation in regression (see for example see for example 

Nadaraya (1964) and Watson (1964)). Let k be a kernel, i.e., a function with finite 

support, satisfying  

1)( =∫ dzzk , 0)( =∫ zdzzk , ∞<∫ dzzzk 2)( . 

Let h be a bandwidth, also called tuning parameter, and define the weights 

 

)/)((
)/)((),(

,, htsk
htsktsw
jiji −

−
=
Σ

. 

 

If our model would not contain the parametric part γ , the kernel estimation of m 

would be  

 

jiji
ji

Yttwtm ,,
,

0

^
),()( Σ= . 

 

To handle the parametric part, Speckman (1988) proposes the following.  Let  
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∑ −=
ji

jijiji xYttwtm
,

,,,

^
))(,()( γγ . 

 

We now use the least squares estimator  of 
^
γ γ , substituting    for the function 

m, i.e.   minimizes the sum of squares 

γ

^
m

^
γ

 

∑ −−
ji

jijiji tmxY
,

2
,

^

,, |)(| γγ . 

 

Lemma  1:  An explicit expression for    is 
^
γ

 

(4)                         , )()()]()[(
^^

1
^^^

YYXXXXXX TT −−−−= −γ

 

where X  is the matrix with rows    and  jix ,

^
X   is the matrix with rows 

 

∑=
lk

lklkjiji xttwx
,

,,,,

^
),( . 

 

Likewise, Y  is the vector with entries   and  jiY ,

^
Y   is the vector with entries 

 

∑=
lk

lklkjiji YttwY
,

,,,,

^
),( . 

 

Proof. 

 

The right side of (4) can be rewritten as  
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))(())((

))(())((

|))(,(|

^^^^

^^^^

2

, ,
,,,,,

γγ

γγγγ

γγ

XXYYXXYY

XYXYXYXY

xYttwxY

T

T

ji ji
jijijijiji

−−−−−−=

−−−−−−=

−−−∑ ∑

 

Set the derivative with respect to  γ  equal to 0 , 

 

0)())((
^^^

=−−−− XXXXYY Tγ , 

 

Which we can rewrite as, 

 

0)(
^^

=−−− γXXYY , 

⇔
^^

)( YYXX −=− γ , 

⇔ )()()()(
^^^^
YYXXXXXX TT −−=−− γ . 

So  

)()()]()[(
^^

1
^^^

YYXXXXXX TT −−−−= −γ . 

 

Step 2: Choose bandwidth h 

 

This step is about how to find the best bandwidth h for the smoothing. The method is 

to use “RMSE” (Root Mean Squared Error) to choose the bandwidth. Make 

estimations with a specific bandwidth h, then use the model to make predictions for 

the n days in the future, for example, the predictions are . 

If the real values on these n days are 

),,( )(
,

^
)(

,1

^
)(

^
h

pn
h

p
h

p YYY L=

),,( ,,1 pnpp YYY L= , then the RMSE is calculated 

as: 

 

∑
=

−=
n

i

h
pi

h
pih YY

n
RMSE

1

2)(
,

^
)(

, )(1 . 

 

For every bandwidth h, calculate this RMSE value, then draw a graph whose y-axis is 
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RMSE and x-axis is bandwidth. The best bandwidth is the one with smallest RMSE 

value, i.e. the lowest point in the graph. 
 

4.3.3 Projection estimators 

An alternative method to estimate the unknown parameters γ  and the unknown 

seasonal effect  is the following. It is supposed that the function  is smooth. 
We may write this mathematically as assuming that  can be well approximated by 

a linear combination of given functions 

m m
m

kψψ ,,1 L , say 

 

∑
=

⋅≈⋅
K

k
kkm

1

)()( ψθ . 

 

An example is choosing subintervals ],)1[( uhhuIu −= , ⎡ ⎤ Uhu == 365,,1L , 

where  is the subinterval length, and  h
 

}{1)( 1
, u

v
vu Ittt ∈= −ψ , Vv ,,1L= . 

 
The length(bandwidth)  and the degree V  are again tuning parameters, to be 
chosen. For example, one may decide taking 

h
2=V  and choose h  by leave-one-out 

cross-validation. 
 
Recall our discussion of identifiability, and the restrictions given in (2). One can 

easily incorporate these restrictions by taking the part of the functions kψ  orthogonal 

to . ),1( t

Estimators  and  can now be obtained using the least squares criterion, i.e.,  

and  minimize the sum of squares 

^
γ

^
θ

^
γ

^
θ

 

∑ ∑−−
ji k

jikkjiji txY
,

2
,,, |)(| ψθγ . 

 
The estimator of  becomes m
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4.3.4 Penalized least squares 

In penalized least squares (see e.g. Wahba (1984)), estimators  and of 
^
γ

^
m γ  and 

 are obtained by minimizing the quantity m

 

(**)                                            
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ji
jijiji mJntmxY

,

222
,,, )(|)(| λγ

 

Here  measures the “roughness” of the function : )(mJ m

 

∫=
365

0

22 |)(|)( dttmmJ V . 

 
The degree  is to be chosen. The case V 2=V  gives the cubic spline. 

 

Concept of cubic spline 

A piecewise polynomial function  is obtained by dividing the domain of )(Xf X  

into continuous intervals, and representing  by a separate polynomial in each 

interval. If the function is continuous, and has continuous first and second 

derivatives at the dividing knots, it is known as a  . 

f

cubics spline

 
Furthermore λ  is a tuning parameter. The problem can be reformulated by writing 

 

∑=
k

kkm ψθ  

for suitable function kψ , known as B-splines. The restriction (2) can again be 

incorporated by taking the part orthogonal to . We now have ),1( t
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θθ QmJ T=)(2  

 
is some quadratic form in the parameters θ . 

 

Lemma 2 

 

The penalized least squares estimators are 
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where X  is the matrix with rows , where jix , Ψ  is the matrix with rows 

)( ,, jiji tψψ =  and where Y  is the vector with entries . jiY ,

 

Proof 

 

The (**) can be rewritten as 
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Using the representation (3), the estimator of  becomes . m ∑ kkψθ
^

One may also use finite differences instead of derivatives in the roughness penalty. 
For example, corresponding to the case of order 2=V , one can choose 
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=
−+ +−=

1

1

2
11

2 |)()(2)(|)(
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Here,  is assumed to be an equidistant set of time points containing 

the measured time points . 

},,0:{ Uutu L=

}{ , jit

 
4.3.5 Asymptotic normality 

All three methods above lead, under an appropriate set of conditions, to an estimator 

 of 
^
γ γ  which is asymptotically normally distributed. For the kernel estimator, this 

is shown in Speckman(1988). Mammen and van de Geer(1997) establish asymptotic 

normality of the penalized least squares estimator. Asymptotic normality means in this 

case that  is approximately normally distributed with mean 
^
γ γ  and covariance 

matrix . The parameter  is the variance of the noise 12 −Σσ 2σ ji,ε  (assuming equal 

variance here). The definition of a matrix Σ  for which the approximation hold true is 

rather involved. Roughly speaking, if we have an (infinite) expansion  

for , and if  is the projection of 

∑= k kkm ψθ

m
~
x x  on the space spanned by }{ kψ , and 

 is the part of 
~
xx −=ξ x  orthogonal to this space, then  is a choice for 

which the approximation holds true. 

ξξ T=Σ

 

For the asymptotic normality of , it is not necessary to assume that 
^
γ x  and kψ  are 

independent. It requires some involved theory to indeed show that such an 

independence assumption is not necessary. However, in our case, independence may 

actually hold true. There seems to be little reason to assume that whether or not a day 

is a Monday (say) depends on the time of the year (except perhaps that second Easter 
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day is on a Monday). 

 
4.3.6 Bootstrap 

To estimate  we propose 2σ
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Here,  is some estimate of the degrees of freedom. For the asymptotic theory, the 

choice  is fine. In practice, 

df

0=df 0=df  may be too optimistic. Other methods to 

estimate  are also possible. 2σ

 

To estimate the asymptotic covariance matrix, we propose a wild bootstrap. This 

works as follows. 

 

• Generate   . }{ *
, jiε ... dii ),0(

2^
σN

• Calculate 

 
*
,,

^^

,
*
, )( jijijiji tmxY εγ ++= . 

 

• Calculate the new estimates  and  using the bootstrap data . 
*^

γ
*^

m }{ *
, jiY

• Do this  times, with  large (for instance N N 10000=N ). 

• The distribution of  can now be approximated by the empirical 

distribution of . 

γγ −
^

^*^
γγ −

•  

The wild bootstrap gives one confidence intervals for γ . 

 

For the estimator of  it is not so easy to give confidence intervals. If the estimator 

is not under-smoothed, there will be an unknown bias which is not asymptotically 

m
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negligible when compared to the variance. 
4.3.7 Quasi-likelihood estimation 

The above three methods have their obvious extensions to quasi-likelihood estimation. 

For example, one may also use a Poisson model for  with intensity jiY ,

~

 

)](exp[ ,,, jijiji tmx += γµ . 

 

The computations then become more difficult, because even for fixed tuning 

parameters, the estimators will not be linear in (some given function of) . Since 

the mail volumes on each day are rather large, we believe that a normal approximation 

s sufficiently accurate and have therefore only treated the least squares method in 

detail. 

jiY ,

~
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5 Programming and results 

This chapter mainly contains the programming and results of the two estimation 

methods introduced in Chapter 4, that is, the Naïve method and the Kernel estimation. 

After this, the analyses of results are provided. 
 

5.1 Further data analysis 

If the data is looked into more carefully, the following features can be noticed: 
 

(1) December. This month is a very unusual month. The rules in normal weekdays 

don’t apply to this month.  

A Sunday in December can have a big volume, and almost all the days have a 

relatively larger mail volume than usual. The graph of December shows that there 

still exist some regular characteristics of this month and they can be modelled. 

Since TPG POST has a special model for it, this project will remove it from the 

data.  

 

 

(2) Holidays. By referring to the original data, we can find the holidays have several 

kinds. 

 

The data of holidays reveal that the New Year is different with other holidays. All 

the other holidays have a stable mail volume except for 9-5-2002, which we 

don’t know why. And the New Year seems very unpredictable.  

 

From the analysis, it seems that the holidays should be differentiated into two 

kinds: New Years and others. This can make the estimations for holidays more 

reliable. 

 

(3) The days after some holidays. Referring to data, the day after New Year, the day 

after Eastern Monday, and the day after Pentecost Monday has abnormal mail 

volumes. Specially, the day after New Year always has less mail volume then 

other corresponding weekdays. For example, 2-1-2003 is Wednesday, yet it has 

about 4,000,000 less mail than other Wednesdays. So it will be better if set a 
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dummy for January 2nd. 

 

As for the “Eastern Tuesdays” and “Pentecost Tuesdays”, the people of Sorting 

Department say that they are always treated as Mondays. By looking up the data, 

it can be shown that they conform to the Monday mail volumes very well. So 

they can be dealt with as Mondays in the estimation. 

 

After the further analysis of data, the following steps will be taken accordingly: 

 

(1) Remove the Decembers. 
(2) Set three dummies for holidays:  for normal holidays,  for New Year’s Day, 

and  for the day after New Year’s Day. 

1h 2h

3h

(3) Treat the “Eastern Tuesdays” and “Pentecost Tuesdays” as Mondays. This can be 

done by setting the values of these days in the dummies for Mondays as 1. 
 

5.2 Modeling with Naïve method and Kernel estimation 

5.2.1 Detailed modeling process of Kernel method 

This section gives a detailed description of the Kernel method. The following steps 

are used: 

 

(1) Read data of X and Y.  

  Firstly read data: the dummies of weekdays 

 for the 3 years, and holiday dummies . Here the 

 are log of the mail volumes , i.e., 

. And   

, . 

,,,,,, 200420032002200420032002 tttYYY

6,5,4,3,2,1 dddddd 3,2,1 hhh

200420032002 ,, YYY
~
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~

20042004

~

20032003

~

20022002 log,log,log YYYYYY === Tt )334,,1(2002 K=

36520022003 += tt 36520032004 += tt

 

Then , TYYYY ),,( 200420032002= )3,2,1,6,5,4,3,2,1,( hhhddddddtX = , in which  

Ttttt ),,( 200420032002= , 
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Tdddd )1,1,1(1 200420032002= , 

Tdddd )2,2,2(2 200420032002= , 

M  
Tdddd )6,6,6(6 200420032002= , 

Thhhh )1,1,1(1 200420032002=  

Thhhh )2,2,2(2 200420032002=  

Thhhh )3,3,3(3 200420032002= . 

 

So X  is a matrix with 8 columns, and each column includes 3 years of data. 

 

Now X and Y are both ready, next step is to calculate the parameters. 

 

(2) Calculate  according to the formula in Lemma 1 of Section 4.4.2. 
^
γ

In order to use this formula, we need . Here X and Y have been obtained in 

Step (1), so we only need to calculate 

^^
,,, YXYX

^
X  and 

^
Y .  
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Graph 5.1: Gaussian kernel graph at the 180th day every year 
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Graph 5.1 is the kernel graph at the 180th day of year 2002, 2003, and 2004. In the program 

we do the smooth for the average of three years, i.e., 
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Since we get , the estimator for the parametric part of the data is: 
^
γ

 

(3) Calculate the estimators for linear part and seadonal part. 

Since the parameter  has been obtained in step (3), the estimator for the linear part 

is . 

^
γ

^
γX

And the seasonal part  is: 
^
m
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,

^

,,,

^
))(,()(^ γγ . 

Again we take average across 3 years, and then apply the Gaussian kernel. 

 

(4) Get the estimation for mail volumes. 

Now we have estimated both the linear part and the seasonal part (i.e., seasonal 

effects), then the estimator for Y  is obtained by adding the seasonal part to the 

parametric part: 

 
^^^
mXY += γ . 

 

The estimator for original data is:  . )exp(
^

^
~

YY = )exp(
^^
mX += γ
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(5) Predict the future. 

 

When predicting the future, the only thing to do is just set the matrix  

properly, and the prediction is: 

predictX

 

Prediction  =  exp ( linear part  + seasonal part) 

=  exp (  + seasonal part) . 
^
γpredictX

Here . 

Again the  are the dummies 

of weekdays and holidays. While  is the continue of . For example, 

in the prediction of the first three months of 2005, . 

(Notice that 2004 has 366 days). 

),6,5,4,3,2,1,( predictpredictpredictpredictpredictpredictpredictpredictpredict hddddddtX =

predictpredictpredictpredictpredictpredictpredict hdddddd ,6,5,4,3,2,1

predictt 040302 ,, ttt

13365)90,,2,1( +×+= T
predictt K

 
5.2.2 Seasonal effects of Naïve method 

As stated in 4.4.1, a very important procedure is to smooth the seasonal effects. The 

graphs of smoothed seasonal effects with different bandwidths are given, then choose 

the one which is both smooth enough and at the same time able to describe the 

seasonal effects clearly enough. The black points in the following graphs are the data 

need to be smoothed, and the red lines are the smoothed results. (Note: The scales of 

the graphs have been changed in order to keep the business confidentiality.) 
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Graph 5.2: Smoothed seasonal effects with bandwidth=20 

(Naïve method) 

 
5.2.3 Seasonal effects of Kernel method 

The Step 2 of Section 4.4.2 gives a method to choose bandwidth. Draw a graph of 

“Error versus bandwidth” , and the smallest error is at bandwidth=2. The Graph 5.2.5 

is the graph of smoothed seasonal effects when bandwidth is 2. Notice that Graph 

5.2.5 shows some monthly bumps, which probably has something to do with 

companies sending out bills at the end of the month, or salary statements or other 

reasons. When discussing mail volumes at TPG no indication was given that there 

might be a monthly effect. Consequently, we did not include such an effect in our 

model. The fact that the optimal bandwidth is chosen very small reflects that the 

model is not able to properly accommodate the effect. 
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Graph 5.3: Smoothed seasonal effects with bandwidth=2 

(Kernel method) 

 
5.2.4 Coefficients of Naïve method and Kernel estimation 

Except for the smoothing seasonal effects, another important part is the linear part, 

and this part is decided by the coefficients. The coefficients for Naïve method are 

obtained through fitting Poisson model, and the coefficients for Kernel method are 

obtained through a mathematical formula. Both of them describe the generalized 

linear trend of the mail volumes. Due to the competition and substitution, the 

coefficients of time are minus values, which stand for a slowing declining trend. 

 
5.3 Results and analysis 

5.3.1 Graphs of estimations 

The estimation graphs for year 2002, 2003, and 2004 can be drawn now. From the 

graphs, the following features can be seen: 
 

(1) The estimation can follow the data trend. The seasonal decline in summer 

holidays is described clearly by the model. 

(2) The different levels of trends between weekdays are revealed. The low mail 

volumes on Sundays and the relatively high volumes on Thursdays, etc., are 

shown clearly. It is due to the use of dummies for weekdays. 
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There are still some big differences between estimated data and real data. This will be 

analyzed in the next Section. 

 
5.3.2 Analysis of differences between estimation and real data 

This section concentrates on analyzing the residuals and difference percentages 

between estimation and real data. They are calculated as: 

 

=ε residual YY−=
^

 

 

difference percentage
Y

YY−
=

^

. 

 

The following are the graphs of residuals and difference percentage. Firstly the graphs 

of the residuals and difference percentages are shown, and then the lists of data whose 

difference percentages are beyond [-0.3,0.3] are analysed. 
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Graph 5.4: Residual of Naïve method 
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Graph 5.5: Residual of Kernel method 
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Graph 5.6: Residual of Naïve method (weekly) 
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Graph 5.7: Residual of Kernel method (weekly) 

 

The graphs above show the residuals and difference percentages for the two methods, 

daily and weekly. If analyse the results a little further, calculate and compare the 

means of residuals and difference percentages, it show that the Kernel method is better 

than the Naïve method because it has smaller residual values and difference 

percentages, both daily and weekly.  On the other hand, if seen from the perspective 

of daily analysis and weekly analysis, the weekly estimation is better because it has 

smaller residual values and difference percentages. Yet the difference between daily 

and weekly are not very much, which is only improved by about 0.8%. 

 

The below Graph 5.8 and 5.9 give the graphs of difference percentages, which show 

that there exist some big values. 
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Graph 5.8: Difference percentage of Naïve method 
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Graph 5.9: Difference percentage of Kernel estimation 
 

If analyze the difference percentages carefully, it can be shown that most of the big 

difference percentages come from Sundays and holidays. Since the mail volumes on 

Sundays and holidays are very small, it is difficult to get a low difference percentage 

for them.  

 

Other big differences happen when the mail volumes themselves on these days reveal 

big differences compared to the mean values, the big differences between these 

estimators and real data can be understood. 
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This is the analysis for the difference percentages. With this analysis now it is clear 

why the big differences happen. The next section will focus on the predictions for 

2005. 

 
5.4 Prediction for half year of 2005 

The prediction for the first half year of 2005 shows that it can describe the data’s trend. 

If see the difference percentage that are beyond [-0.3, 0.3], they are almost for 

Sundays or Holidays or the first beginning days of January, which are the same case 

as the analysis for estimations above.  

 

Here shows the RMSE values for the two estimations. “RMSE” means “Root Mean 

Squared Error”, which is one of the most commonly used measures to judge how 

close a prediction is to its target. In more detail: use the models to make predictions, 

for example for the first half year of 2005. And then find out what is the “difference” 

between the predicted values and the real values. This “difference” can be calculated 

with the method “RMSE”. So it is a very important value, because by comparing the 

RMSE values, it shows which method is relatively better. The smaller RMSE, the 

better. 

 

In this project, the RMSE for the first half year of 2005 is calculated as below: 

 

∑
=

−=
202

1

2
2005,

^

2005, )(
202
1

i
ii YYRMSE . 

Here there are 202 values for the half year of 2005. 

 

Though calculating, the RMSE value of Kernel method is less than Naive method, so 

it is better  
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6 Conclusions and recommendations 

In this project we considered the problem of forecasting mail volumes. At the 

suggestion of TPG post we focused on a year effect (with mail volumes dropping in 

the summer), and a daily effect (with mail volumes depending on the day of the week). 

Also we included a linear trend to account for the loss of mail volume due to 

competition and substitution. Finally, we accounted for unusual volumes on holidays 

(New Year, Easter, Queen's day, Ascension and Pentecost Monday) and on the days 

that immediately follow them. We did not include December, because the mail 

volumes during that month behave very differently from the other months.  

 

We started with a naive look at the data taking various simple averages. We refer to 

the results of this explorative work as the "naive method".  

 

Next, in section 4.2, we formulated a semi parametric model. We estimated the 

parameters of this model by a combination of least squares and a kernel smoother. We 

refer to this method as the "kernel method". We determined the optimal bandwidth of 

the kernel by cross validation using data from 2005 which were not used for fitting. In 

terms of the root mean squared error, the principled kernel method outperforms the ad 

hoc naive method. 

 

Firstly, the general information about sorting process and sorting centres are provided, 

including the six sorting centres, the different kinds of sorting machines, the 24-hour 

service and 48-hour service, etc.  

 

Then is the exploration for data. The INDOOR and MIS are both focused on. The 

graphs of data give two general impressions. One is the obvious yearly decline during 

summer holidays; the other is the wiggly pattern which reveals the characteristics for 

different weekdays.  According to these two features, the main idea comes out, i.e., 

separate the seasonal effects from the data and use dummies for different weekdays. 

 

Since the main idea is decided, the mathematics ground is studied. There are more 

than one method to separate the seasonal effects from the data, and Chapter 4 
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introduces two of them: the Naïve method and the Kernel method. 

 

Next step is to realize the mathematical models. Before doing the programming, look  

further into the data, and find that the following details should be noticed: one is the 

December is a very special period so its graph is not so regular as others; the other is 

that the holidays have many kinds so should not be treated the same. After this 

analysis, the December is excluded from our model, and two more dummies for 

different holidays are added. 

 

Doing the estimations with these two methods and all of the analysis above, then get 

the estimation data. By analyzing the difference between estimation and real data, we 

can see that the models can describe the data set. If use the model to predict the first 

half year of 2005, the conclusion is that it can estimate the data. It is impossible that a 

model can describe every point precisely, since it can show the trend of data and is 

close to every weekday, we can say that it is doing its work satisfactorily. 

 

Notice that the beginning few days of January are still influenced by the “KNJ” period, 

so the estimations around are probably not good enough. Also how long this model 

can be used is also in question. This model is composed of the linear trend and the 

seasonal effects. As we see, the linear part is a slowly declining trend due to the 

substitution and competition. We are not sure that after 5 year or 8 years, the trend is 

still stable. So how long this model can be used should be tested in practice.  

 

If compare the results of the two methods, the Kernel method is better than the Naïve 

method. In practice, the Kernel method can give more precise estimations, so it is 

recommended to be used. The Naïve method comes from our intuitive ideas and lacks 

a solid mathematical background, so it is not recommended to be used for estimations.  

 

The reason that why this project only focuses on these two methods is the following: 

 

Our model is: =jiY , parametric part + non-parametric part + noise.  

It is only focused on estimating the parametric and non-parametric part. Other 

methods, e.g., Box-Jenkins, or the ARIMA time series model, has to do with the noise 

term. If the noise is correlated, then the current value of  can be used to predict a jiY ,
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future value. Our prediction, however, is essentially based on the assumption that the 

noise is uncorrelated. This seems 

reasonable, especially since we typically want to predict more than a few days into the 

future. 

Also there are three years of data available. For a time-series model, three years of 

data is not enough in order to make a good prediction. Combining all the above, it 

gives the reasons that why our project concentrates on these two methods. 

 

If someone wants to improve this present model, the attention can be put on the 

monthly effects. As the graph of seasonal effects shows, there must exist some 

monthly effects. If the monthly effects can be modelled, then the results will be 

improved. Some ideas about dealing with the monthly effects are shown below: 

 

Draw graphs for every month, and then see what happens. When doing so, the 

monthly effects are just like the seasonal effects that are discussed in this project, so 

similar method can be used on it. In more detail, firstly remove the day-of-week effect, 

and then draw a graph of the average month (think about how to deal with the 

different number of days 28,30, and 31). Then use dummies 1, … ,30 to encode the 

day of the month and include it in the present model. This is one of the possible 

solutions. Yet it needs more careful study and probe.  
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