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Introduction

When listening to music, we are able to concentrate on one particular instrument. Some-
where between the perceiving of a sound by the ear and our experience of the sound a
selection is made, which component of the sound is interesting, and which is not. Until
now, it has not been achieved to model this phenomenon in a computer in a satisfactory
way. In this thesis we approach this problem by studying a simpler version of it: we create
a filter that filters one particular instrument, a clarinet, from a piece of music.

An instrument filter can be useful for studio purposes. For example, with an instrument
filter it will be possible to change the volume of one of the instruments, or replace it
by another. Also, it can be convenient if one can remove an erroneous note during the
mastering process.

The research of natural sounds has a big resemblance to speech processing. In fact, speech
is a natural sound. Many of the techniques used for natural sound processing are therefore
taken from the field of speech processing. The field of instrument recognition has been
studied by several researchers, see for example [1], [6], [16]. The recognition is done by
measuring different characteristics from an already isolated sound, and applying some
artificial intelligence technique for the recognition. These researches mainly focus on the
possibility to categorise the instruments so that they can be found from a database of
recordings.

The separation of natural sound sources has also been studied, see for example [29], [30].
These studies concentrate on the separation rather than the recognition: they split the
sound into components, but the components are not classified. The recordings used to test
the algorithms where mixes of two or three recordings of single sounds, and to test the
algorithm the results where compared to the original sounds.

An approach to build a filter that filters one instrument from a recording could be the



combination of these two main areas: first split the sound into components and then classify
the components to determine to which category they belong. The filtered signals can then
be synthesised by adding the different components.

In this thesis we describe the results of our research in the period March 2004 - March
2005. We have managed to split a mixture of a clarinet tone and a viola tone by filtering
the harmonics. We have built a phase vocoder and a tracking phase vocoder, which enable
us to time-stretch signals and to decompose a signal into spectral lines. With these spectral
lines the clarinet part can be separated from various pieces of music. A great deal of the
research has been put in developing and studying methods to measure spectral lines.
This master thesis consists of four sections. A mathematical basis for methods that have
been used is given in Chapter 1. In Chapter 2 we describe our experiments and their
results; a method to separate the most pronounced instrument from a recording of music
is developed. Final conclusions and topics for further research are given in Chapter 3. The
MATLAB listings can be found in Chapter 4.

Audible examples are indicated by the term Fragment. They are available at the following

internet address: http://www.bertgreevenbosch.nl/msc.



Chapter 1
A mathematical way to look at

sound

1.1 The representation of sound in a computer

Sound is vibration in air pressure. It can be seen as a traveling longitudinal wave: along the
direction in which the wave travels through the air, there are places where the air pressure
is more than average, and places where it is less than average. In time, the difference
between the air pressure of a certain point and the average air pressure changes, and if we
make a plot of this difference against time we will see a periodic signal. The shape of this

signal determines our experience of the sound.

1.1.1 Sampling

Let z(t) be the function which returns the difference between the air pressure at a certain
point and the average air pressure at time t. In physical reality, the function z takes real
input values, and returns real values as well. Since we will analyse the sound in the digital
domain, we need to discretise the signal. This process is called sampling. First we need
some discrete version of R, which we shall denote by R. For example, if we normalise the

maximum amplitude that our computer can handle to one, and if we want R to consist

M-1 M-—3 M-3 M-1
T M T M ' M ' M

of M elements, we can choose R = } Then we sample z
by creating a vector x = (z[0], z[1], ..., z[N — 1]) € RY, where x[n] contains the value in

R closest to z(nTs), with the time interval between two samples, Ts > 0, constant. The



pressure

I I I I I I I I I
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
time (s)

Figure 1.1.1: Sampling a sine (at a very low quality). The frequency of the sine is
133 Hz, and we sample it with a sampling rate of 1000 Hz. We have chosen R =
{—0.8,—0.4,0.0,0.4,0.8}. The time points at which the sine is sampled are indicated by
the vertical lines. The values of the sine at these time points are indicated by the stars in
the figure. During the sampling process these values are quantised to the nearest values
in R, which are indicated by the circles.

reciprocal of T is called the sample rate and we shall denote it by ¢;.

Both the number of elements in R and the sample rate are factors in the quality of the
digital sound. For example, a compact disk (CD) has a sample rate of 44.1 kHz, and uses
16-bit sampling, which means that R has 2!6 = 65536 elements.

The transition of elements in R to R is called quantising. Although this transition has some
effect on the data, in this thesis we will usually consider R or, if it is mathematically more
convenient, C instead. When we have enough bits and quantise wisely this transition is
not or scarcely audible. Figure 1.1.1 illustrates sampling and quantising. For the clearness
of the picture we have chosen a very low sample rate and an R with an extremely small
number of elements.

In the next section we will see the influence of the sample rate on the quality of the sound.

To do this, we first need to introduce the concept of a phasor.



1.1.2 Phasors and frequency units

Consider a continuous signal z(¢) = cos wt (where ¢ is measured in seconds). We can regard
this signal as a projection of the complex signal y(t) = e* on the real axis. The function
y(t) is called a phasor with a frequency of 5~ Hertz.

In the continuous case time is usually measured in seconds, and frequency in Hertz (Hz).
In the discrete case we prefer to measure time in samples, and frequency in radians per
sample. For example, a discrete signal z[n] = el“" needs %” samples to do one cycle. If we
consider a phasor as a point moving along the unit circle, that means that in %” samples
the point has moved 27 radians along the unit circle. This implies that the point moves

with a frequency of 27/ (%”) = w radians per sample.

1.1.3 Aliasing and the Nyquist frequency

Consider the continuous-time phasor z(t) = e"*®, which has frequency ¢. When we

sample it at a sample rate of ¢,, we retrieve the discretised signal x € CV where

z[n] = el st

Since z[n] = el2mnTs(9+kes) for arbitrary k € Z, we obtain a sampled version of a phasor
with frequency ¢ + k. Thus the signal yy(t) = ei27(9+kés)t and z(t) give the same result
when sampled. They are called aliases of one another.

Converting a discrete time signal back to a continuous time signal is generally done by
a simple interpolation technique, in our case either by the sound driver or hardware of
a computer. This means that if a computer plays the sampled version of any y(t), it
will play w;(¢) with [ such that ¢ 4+ l¢s =: w is the nearest to zero. This implies that
—%q&s <w< %q&s. The frequency %(/)s or 7 rad/sample is called the Nyquist frequency; it
is the highest frequency that a sampled signal can contain.

In Figure 1.1.2 we see an example: the original cosine has a frequency of 3 Hz. It can be
seen as the sum of two phasors: y(t) = % {e_i6“t + eiﬁm}. When we sample this signal at
a rate of 4 Hz, we see that these phasors have alias frequencies of respectively e>™* and
—ei2™  which result in the reconstructed signal cos(27t) of frequency 1 Hz. Notice that

this is the same as cos(—27t) and therefore both cosines are also aliases of one another



— — — Original signal
Reconstructed signal

Figure 1.1.2: The aliasing of a cosine function. The original signal z(¢) = cos 67t (broken
line) is sampled at the time points ¢ = 0,0.25,0.5,0.75,1 (circles), and reconstructed to
its alias y(t) = cos 27t (unbroken line).

(although their frequencies differ by only 2 Hz).

As another example we look at a CD. The range of frequencies that the human ear can
perceive is about 20 Hz to 22 kHz. This means that a CD only needs to be able to record
frequencies up to 22 kHz, thus %qﬁs = 22 kHz, which means that a sample rate of 44 kHz
should be enough. To be sure a little is added and we see why a CD has a sample rate of

44.1 kHz.

1.1.4 The instantaneous frequency

A natural sound is often the result of an event that can be described by some version
of a wave equation. Therefore the resulting signal can be expressed as a summation of
sinusoids with certain frequencies. These sinusoids are called the partials of the signal. We

will use the following model for a sound z(¢):



K

o(t) = ag(t) cos g (t)

k=1

where locally ay(t) and ¢} (t) vary slowly. This implies that

K
z(t) =Y ax(to) cos (¢ (to) + ¢i(to) (t — to))

k=1
locally. The derivative ¢)(t) is called the instantaneous frequency of the partial

ay(t) cos(px(t)) and ¢ (to) its phase at .

1.2 Fourier analysis

Let us consider a sampled signal x € CV. There are two classical ways to analyse its
frequency content: the Discrete Fourier Transform and the Discrete-Time Fourier Trans-

form, which is also called the z-transform.

1.2.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is used to transform a finite time discrete signal
x = (z[0], z[1], ..., z[N—1]) € CV from the time domain into the discrete frequency domain.

In CV we will use the standard Euclidian inner product

N—-1
<x,y >=xy' = z[nlyln],

n=0

where x = (z[0], z[1], ...,z[N — 1]) and y = (y[0], y[1], ..., y[N —1]).

— (1’ ei27r1k/N, ei27r2k/N, . ei27rnk/N’ . ei27r(N71)k:/N)

Lemma 1.2.1 Let ey . The system

Sy = {ek},ivz_o1 forms an orthogonal basis of CN .

Proof

Choose p,q € {0,1,..., N — 1}. If p # ¢ we find:

A, . Nl ei2mN(p—q)/N _ 1
< ep, €q >= Z elQ'}rnp/Nelewnq/N — Z elQ'/rn(pfq)/N — =0.
n=0

i2n(p—q) _
o ei2n(p—q) —_ 1



For p = q we get
< ep,eq >= N.

By a straightforward argument the N orthogonal vectors constitute a basis for C¥. O

The orthogonality of Sy implies that

N-1

1
x = D <xex > e, (1.2.1)
k=0

and the vector x# = (z#[0], z#[1], ..., ¥ [N — 1]), where
7 [k] =< x, e >, (1.2.2)

is called the Discrete Fourier Transform of x. Formula (1.2.1) is called the inverse DF'T.
Notice that if the vector x consists of real entries only, then z#[k] = z#[N — k] for all
k€ {1,2,...,N — 1}. This implies that if we analyse such x in the frequency domain, it is
enough to look at {z#[0],z#[1],...,z#[[ £ ]]} only.

1.2.2 Fast Fourier transform

For the processing of sound which we will encounter in the sequel, it is vital to be able to
compute Fourier transforms as fast as possible. The Fast Fourier Transform is a classical
way to enhance computation speed considerably. The Fast Fourier Transform was first
introduced in 1965 in [2].

Let us have a closer look at Formula (1.2.2). If N > 1 is not a prime number then there

exist a positive integer 1 < p < N such that p|N. We rewrite (1.2.2) as follows:



Z
L

*[k] = Z z[n)e"kn27/N (1.2.3)

n=0
5 lp p—1 3! . N

_ Z Zx[mp + l]e—ik(mp+l)27r/N _ Ze—iklZw/N Z z[mp + l]e—lkm%/;
m=0 [=0 =0 m=0
p—1

= e_iku’r/Nxﬁ) [k] (1.2.4)
1=0

N

where xz&) is the DFT of x(;) = (z( [m])g;ol with z)[m] = z[mp +1].

The Identity (1.2.4) is the key to a recursive algorithm that computes x# faster than by
directly evaluating (1.2.3). To illustrate this, let us consider what happens when N = p¥
where v,p e N, p > 1.

If we calculate x# using (1.2.3), we need N(N — 1) additions and N? multiplications.

If we use (1.2.4), we see that for the calculation of the DFT of a vector of size N, we need
to calculate the DFT of p vectors of size %, and do an additional N(p — 1) additions and
Np multiplications. When the vector has only one element it is equal to its DFT, which
means that no additions or multiplications are needed. The number A(N) of additions

needed to calculate the DFT for a vector of size N equals

pA(Y)+Np-1) if N>1
0 if N=1

A(N) = (1.2.5)

and the number of multiplications M (N) equals

pM(%)-I—Np it N>1
0 i N = 1.

M(N) =
We can solve (1.2.5) by dividing it on both sides by N, and retrieve

A(N) = N(p—1)log, N.

Analogously we find M(N) = Nplog, N. We see that our algorithm is of order N log N,

whilst direct evaluation is of order N2. This significant improvement has become widely



used, and is commonly known as the Fast Fourier Transform (FFT).

When we implement the FFT on a computer, we see that the DFT of x() has only
% elements, whilst we need N elements. This can be solved easily by observing that
the DFT transform of a signal with length % is periodic with period %, and therefore

af [k = oy [k — v4] with v € Z chosen wisely.

1.2.3 The Discrete-Time Fourier Transform and the Continuous-Time

Fourier Transform

The DFT is a powerful tool since it can be calculated swiftly using the FFT. However it
has the disadvantage that it can only properly detect the frequencies {%}2:01 whilst for
all other frequencies spectral smearing occurs: a number of elements 27 [k] around the real
frequency is assigned to a nonzero value. We can reduce the effect of spectral smearing by
increasing N, but the increase of N also decreases the time localisation of a frequency. We
will have a closer look at this phenomenon in Section 1.3.

A tool to analyse the frequency content of a sampled signal x very similar to the Discrete

Fourier Transform (DFT) is the Discrete-Time Fourier Transform (DTFT):

(e}
¥ (w) = Z zn)e”wn,
n=—0oe
which holds (for instance) for an absolute summable sequence x = (z[n]);~ ___. Notice

that z#(w) is periodic with period 27, which agrees with the aliasing phenomenon.

The vector elements z[n] can be retrieved from z# through the integral

oln] = = / " (@)

o -

which is called the inverse formula of the DTFT.
Notice that the DFT of a vector x = (z[0], z[1],...,z[N — 1]) can be seen as a DTFT of

oo
n—

evaluated at the frequencies w = 0, %”, 2%”, vy (N — 1)%”, thus z#[k] = y# (k%ﬂ)

a vector y = (y[n]),—_.,, where y[n] = z[n] for 0 < n < N and y[n] = 0 otherwise,

Finally, if we want to analyse the frequency content of an analogous signal z(t), we can

10



use the (continuous time) Fourier Transform, which is defined as

(w) = / 7 s(t)e et at.

—0o0

It is used to measure how much oscillations of the frequency w there are in z. The following

theorem is classical, and tells us how to restore a function from its frequency content.

Theorem 1.2.1 Let z € L'(R) and # € L'(R). Then

o(t) = = / " B (w)et dw. (1.2.6)

2 J_ o

for almost every t.

Formula (1.2.6) is called the inverse Fourier Transform.
There exist many good introductions to the theory of Fourier Transformations, such as

[20], [27] and [22] (Dutch).

1.3 Windowing

In general it is impossible to locate both the frequency content of a sound and the time
position where the oscillations occur with arbitrary precision. There always has to be
made a trade-off between time and frequency precision. This property of a periodic sig-
nal is commonly known as the Heisenberg uncertainty principle (see Section 1.5). When
analysing a signal through cutting it in small parts, we should always bear this principle
in mind. We cut the signal into parts by the use of windows: a window is a real function
with finite support. Instead of considering the whole signal we consider only a part of it
by multiplying the signal with a window. In Section 1.3.1 we will illustrate the problems
by an example, and in the subsequent sections we shall have a closer look at the theory

of windowing.

1.3.1 Frequency and time localisation using the DFT

We have seen that the DFT can be used to determine the frequency content of a sound.

As an example we will have a look at what happens when we apply the DFT of size N to

11



the discrete signal

eln®2m/N if g <n < b
z[n] =
0 otherwise,

where a, b are positive integers with a+2 < b < N and ¢ is a positive real number strictly
smaller than N. Notice that for every frequency below the Nyquist frequency we can find
a ¢ in the interval [0, N) that yields a phasor of that frequency. When we apply the DFT
to x we find for k # ¢:

b—1
a:#[k] = <x,ex >= Zefi"(kf‘i’)Q”/N
n=a

b—1
]. B 1 . 1
— —i(n—s5)(k—¢)2n/N _ ,—i(n+35)(k—¢)2n/N

e%i(k—¢)27r/N o e—%i(k—d))Zw/N nz::a {e ¢ }

5 |
2isin((k — ¢)r/N) \°

—i(a—3)(k—=¢)27/N _ ,—i(b— %)(k—¢)27r/N} : (1.3.1)

and if k = ¢ we obtain z#[k] = b — a. Taking absolute values yields:

[2#[K]| =

snilo—_ale g0
sin((k — ¢)w/N)

for k # ¢ and z#[k] = b — a otherwise.

This absolute value depends only on the difference b—a, and not on the particular values of
a and b. This means that if we look at the absolute values of the DFT we cannot determine
where in the part of the signal that is considered the phasor with frequency gb%” begins
or ends to play. Moreover, the larger N, the more time we cover in the discrete signal and
the worse our time localisation becomes. On the other hand, our frequency localisation

improves when we increase N. To see why, we need the following theorem:
Theorem 1.3.1 If |z%[k]| = maxy, |7 [k]| then k = ming(|k — ¢| mod N)

Proof

Consider the function

sin((b—a)(w—¢)7/N) :
flw)= sin((w—@)7/N) if 0sw<Nw#¢ (1.3.2)
b—a if w=d¢.

12



We extend this function periodically by defining f(¢ + vN) = f(¢) for v € Z. It then is

symmetric around w = ¢. Moreover, we have |z#[k]| = f(k) for all k. We observe that

1
1) < o= gy — 4@

for all w # ¢. On (¢ — %N ,¢) the function ¢ increases monotonously, whilst it decreases
monotonously on (¢, ¢ + %N ). The last time that f(w) equals g(w) before w passes ¢ is
located at ¢p— ﬁ =: w1. Analogously is the first time that f(w) equals g(w) after passing
¢ located at ¢ + ﬁ =: wy. This implies that f(w) < f(w;) for all w € [¢ — LN, w;) and
f(w) < f(ws) for all w € (w2, + $N). Since f(t) is symmetric around ¢, f(wi) = f(ws)
and the maximum lies somewhere in the interval [w;,ws]. We shall assert that in fact the
maximum is attained at ¢.

Since f(w) is symmetric around ¢, it is enough to show that f(w) increases monotonously
on (wi,¢) =: J. First we notice that g(w) = sin((b — a)(w — ¢)7/N) < 0, and h(w) =
sin((w — ¢)w/N) < 0 on J. Therefore

_9w)
f(w) - h(w)

is well defined.

The derivative of f is greater than zero, if for allw € J
g (W)h(w) — g(w)h'(w) > 0
which is the case, when
T\ . ™ . T m
(b—a) cos ((b —a)(w— ¢)N) sin ((w — (’b)N) > sin ((b —a)(w— </>)N> cos ((w - ¢)N) .

Notice that on J both cos ((b—a)(w —¢)%) > 0 and cos ((w — ¢)%) > 0. Thus it is

equivalent to show that

(b — a) tan ((w — qb)%) > tan ((b —a)(w— qS)%) (1.3.3)

for each w € J. Both sides of (1.3.3) have a tangent of (b — a)% at ¢. The derivative of

13



the left side is
(b— o)~ (tan? ((w - qs)%) +1), (1.3.4)

whilst the derivative of the right side is

(b—a)% (tan2 ((b—a)(w—q&)%) +1). (1.3.5)

The period of (1.3.4) is greater than the period of (1.3.5). Therefore (1.3.4) is strictly less
than (1.3.5) on J\{¢}, which implies that the left side of (1.3.3) increases slower than its
right side. Because both converge to (b — a) at ¢, this means that on J the left side of
(1.3.3) is greater than the right side of (1.3.3), which is what we wanted to show.

The last remark we have to make is that ws — w1 > 1, which means that there is at least

one k € Z such that k € [wy,ws]. Because on f(k) increases monotonously on (wi, ¢), and

decreases monotonously on (¢, ws) this implies that f(k) is maximal when k is nearest to

9. O

1.3.2 DTFT and windowing

If we take @ = 0 and b = N in (1.3.2), we can also consider z[n] as the result of a

infinite phasor y = {e¥"|n € Z}, componentwise multiplied by a rectangular window

o0

e —oo Of size N:

w = (w[n])

1 fo<n<N
wln] = (1.3.6)
0 otherwise.

If we calculate its DTFT we find

-1
sinzwN .
2 e—l%w(N—l)

1

w# w) = —
Sin 5(4)

and

y# () = 2m6(w — €).

One can verify that the DTFT of two componentwise multiplied signals equals the con-

14
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Figure 1.3.1: The graph of |w# (w)|> with N = 32, where w[n] is the rectangular window
as is given in (1.3.6).

volution product of the DTFTs of both signals, divided by 2x. This implies that if
z[n] = w[n|y[n] then

1

Fw) = st xyF W)
= o[ wtowte-0a

sin(5(w —ON) _tiw-g)(v-1)
sin((w — ¢)) ’

which agrees with (1.3.1), if we take ¢ = g—f and k = g—;’
A window is an important tool for analysing the frequency content of a digital sound: to
measure the frequency content of the sound precisely we need to apply the DTFT to an
infinitely number of samples. Obviously this is not possible in practice and therefore we
need a window w of finite support and multiply this componentwise with the signal y. If
we apply the DTFT to the resulting windowed signal x = (z[n]),,, where z[n] = w[n]y[n],
we find the frequency content of the windowed signal which is z# (w) = %w# * y# (w).

Let us now have a closer look at our rectangular window given in (1.3.6). We have plotted

the square of the modulus of its transform w# (w) in Figure 1.3.1 and observe that |[w# (w)|?
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Figure 1.3.2: The DTFT of a rectangular window w = (w[n]),> __, where w[n] = 1
if —256 < n < 256 and zero otherwise. We have normalised its DTFT w# such that
wt(0) = 3, win] = 1.

is an even function centred around 0. We have already seen that applying this window
to the phasor y[n] = e %" yields |z#(w)|? = |w#(w — €)|?. We can therefore find ¢ by
E

searching for the maximum value of |z# (w)|2. This procedure is called peak detection and

we will have a closer look at this in Section 2.5.5.

1.3.3 Choice of window

There are many possible functions w(t) to choose as a window. It is convenient when w is
a real function which is symmetric around ¢ = 0, since it then has a real Fourier Transform
which is symmetric around w = 0. The most common windows are real and symmetric,
and have a Fourier Transform with a shape similar to Figure 1.3.2. In fact, this figure
contains the DTFT of a symmetric rectangular window, which can be recognised as a
Dirichlet kernel. When we measure the sum of two phasors z[n]| = z1[n] + z2[n] where
z1[n] = 1" and z5[n] = €i€2" using a window w = (w[n]),, with DTFT w#, we see that
in the frequency domain 3% (w) = w# (w — &) + w# (w — &). It is the sum of the DTFT
of w translated by respectively &; and &. It is important that & and & are located far

enough from each other, such that w# (&, — &) is negligible and we can find & and & by
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Name wln] Aw (bins) | A (dB)
Rectangular | 1 1.21 —13
Hamming | 0.54 + 0.46 cos (27 3%) 1.81 —43
Gaussian exp (—18 (%)2> 2.18 —55
Hanning cos(m )2 2.00 —32

Table 1.1: Properties of windows. The number n takes integer values in [—%N , %N ] In

the third column we find the root mean square bandwidth, which is calculated by (1.3.7)

and given in bins, where one bin is NQ—L radians/sample. In the last column the amplitude

of the first side lobe, which is calculated by (1.3.8).

searching for the peaks in y#.
Following [15] we introduce the number Aw, the root-mean square bandwidth Aw of the
-6dB points, defined by the equation

wt (A0 _ 1

whop = 1 (1.3.7)

Recall that the difference in decibel (dB) between two values A; and Ay is equal to

201logq, ‘ﬁ—; .
The number Aw is useful for evaluating a window: if we measure two phasors with the same
amplitude whose frequencies &1 and &5 are more than Aw apart, the Fourier Transform of
the windowed signal at w = £ (£; + &) is smaller than the Fourier Transform at & and &.
It ensures that each frequency has its own peak.

Because we try to measure frequencies by looking at the peaks in the spectrum of the
windowed signal, it is important that the amplitudes of the side lobes are not to large,

lest they are interpreted as peaks. A measure for the amplitude of the side lobes is the

amplitude of the first side lobe, which is located at w = +w( and measured in decibels:

|7~lﬁ‘?&(wo)|2

A =10 loglo W

(1.3.8)

In Table 1.1 we have collected some properties of various windows from [11], and in Figure
1.3.3 we have made a plot of the last three windows and their DTFTs. We have restricted
the support of the windows to [—%N \ %N ] and the values for A and Aw are limits to

which the respective properties converge when N is increased. Notice that Aw is given in
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frequency bins: a frequency bin is one element of the DFT. The width of a frequency bin
is defined by QW”, where N is the number of samples used in the DFT. The frequency bin
x#[k] is said to have a frequency of k%“ rad/sample associated to it. It is useful to express
the bandwidth in terms of frequency bins because the bandwidth is proportional to the

support of the window.

1.4 The Gibbs phenomenon

In the continuous time domain, let us consider a signal f(¢) € L?(R) with Fourier Trans-

form f(w). If f is continuous, then

U
fe(t) = % /gf(w)e“"t do (1.4.1)

converges to f(t) for all ¢ when £ goes to infinity. However, when f has a discontinuity
at ty, Gibbs oscillations occur: these are oscillations that occur in a neighbourhood of ¢,
and have a maximum amplitude that does not vanish when £ goes to infinity, but goes to
a constant instead. Fortunately the time support in which these oscillations occur goes to
zero as well as the energy of the oscillations, implying that || f — f¢||3 goes to zero when &
goes to infinity. This phenomenon was first explained by J.W. Gibbs [10]. For a proof of
the above statements we refer to [15], page 34 ff..

In the discrete time domain, although we cannot speak of continuous or discontinuous
signals, a similar problem arises. To see how it works, let us first consider (1.4.1) as the
result of an ideal low pass filter he(t), which has a Fourier Transform (also called transfer

function)
~ 1 if|w| <€

he(w) =
¢ 0 otherwise,

applied to the signal f.
We can translate this in the discrete domain by creating a discrete filter g =
(9¢[0], g¢[1], ..., g¢[N — 1]) which has a DTFT (which we will also call transfer function)

equal to

1 if jw| < ¢
9¢ () = _ (1.4.2)
0 otherwise.
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Hamming window DTFT of a Hamming window

Gaussian window DTFT of a Gaussian window

Hanning window DTFT of a Hanning window

Figure 1.3.3: Various windows and their DTFTs. We have taken N = 1023 and normalised
the DTFTs w# such that w#(0) = 1.
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If we denote the result of applying this filter to a vector x by y¢, we have in the frequency
domain: yg’b(w) = x#(w)gé#(w), which means that in the time domain we have y¢[n| =
x * g¢[n], where g¢ is the inverse DTFT of g%#, also called the filter’s impluse response. We
see that for nonzero n we have g¢[n] = %, whilst for n = 0 we have g¢[0] = %

If we take £ = m we see that g¢[n] = 0 for n # 0 whilst g¢[0] = 1, and therefore y[n] = z[n],
which makes sense since z[n] can only contain frequencies in [—, 7]. If however we decrease
&, we see that the time support of g¢ is stretched and g¢[n] can become nonzero for nonzero
n as well. This means that y¢[n] becomes dependent on other samples besides z[n]. If x
is slowly varying, this is not much of a problem, since then the convolution x * g¢[n] will
be approximately equal to Cz[n| for all n, where C is a constant. If however x is slowly
varying except for a big jump between z[ng] and z[ng + 1], we see that around ng the
balance is distorted and Gibbs oscillations occur.

If Figure 1.4.1 we illustrate what happens when we apply the filter gz to the signal x

defined as
1 ifn>0

z[n] =
0 ifn<0.

We see that around n = 0 Gibbs oscillations occur.

1.5 The Heisenberg uncertainty principle

Let us consider in the continuous domain a window w(t) with finite support, which has
a Fourier Transform @(w). If we stretch this window by a factor s, we acquire a new
window ¢(t) = %w(%), with Fourier Transform §(w) = /s (ws). We see that the Fourier
Transform is shrunk by the factor s. The energy ||g||3 is equal to ||w|3, and likewise is
the energy ||g]|2 equal to ||@||3. This implies that the energy of the window w is spread

in g over a bigger time support whilst the energy of w is spread over a smaller frequency

support in g, which means that a decrease in time resolution equals an increase in frequency

resolution.
Following [15], let us interpret ‘Tﬁf]ﬂf as a probability density, which has an average
2
"= H—Q/ Hu(t)? dt
w||2 —00
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Figure 1.4.1: An illustration of the Gibbs phenomenon. We apply a discrete ideal low pass
filter gf (as defined in equation (1.4.2)), which has an impulse response gz, to the signal
x, which is constant everywhere except for a jump from 0 to 1 between n = —1 and n = 0.
We see that Gibbs oscillations occur around the jump.

and a variance

=L /oo (t — w2 w(t)|? dt.

[wllz /o

The same quantities can also be computed for

¢ #/w ()2 dw

- 2ffwllf /o

and a variance
o0

S / (€ — ) B(w)[? dw.

2wl /oo

The Heisenberg uncertainty principle states that if w € L?(R) then o202 > %, which
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means that we cannot reach an arbitrary precision in both time resolution and frequency
resolution.

The Heisenberg uncertainty principle originates from quantum mechanics [12]. It was
restated in a statistical setting in [24] and has known many generalisations in operator
theory and Fourier theory since ([9], [14]). For a proof of the above identities we refer to

[15], p. 31.

1.6 The relationship between the DTFT and the Fourier

Transform

The Heisenberg uncertainty principle also applies to the DTFT. To see why, let us study
the relationship between the DTFT and the Fourier Transform. We will do this by two
different approaches: first we consider the DTFT as an approximation of the continuous
time Fourier Transform, and secondly we will have a look at the Whittaker Sampling

Theorem.

Theorem 1.6.1 Let w(t) be a continuous differentiable signal with support [—%, %) We
sample this signal by N samples and normalise, such that Wy[n] = ﬁw (%). Let Wﬁ (w)
the DTFT of Wy, and W(w) the Fourier Transform of w. Using the notation fn ~ f if

limy_o0 | fnv — f| =0, the following estimates hold:

w(t) ~ VNWy[Nt], (1.6.1)
lwllz = [[Wnlln, (1.6.2)
D) = —Z=Wh (), (1.6.3)
lolle = (W, (1.6.4)

w iN-1 " .
where (v = &, [Wwllk = S22 7 WwlnlP, 1813 = [22, 1@(Q)* dC and W3 =
JTAWEQ)? dC.

For the proof of Theorem 1.6.1 we need the following lemma:
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Lemma 1.6.1 Let f(t) be a continuous differentiable function which has a support of

[ 3 2) Then

%f(t)dt—ﬁ > ()] < gl

Proof
1 ) sN—1
n
[Lwa-5 3 1 (F)
2 n:—%N
%N—l % 1
n n
= | 2 {/0 (w+) dt‘ﬁf(ﬁ)}
=—1in
2
FN-1 1 ¢
- n (™ _
IS L [ G o) ey ()
n=—5N
in-1 1
2 Lot rn
_ 1{/0 /Of(ﬁ )dodt}
=—1InN
sN-1 1y
N
< X [T [ 1 dodt = 5l £
n= %N 0
O
Notice that the bound of Lemma, 1.6.1 only is sharp when f equals 0 on [—5, 5) If we allow
f(=5+h)—f(=3)

f(t) to be discontinuous at t = —1 and ¢t = 1 and define f'(—3) = limy,o

2 h ’

the bound is sharp when f(¢) equals a line on [—%, %)

Proof of Theorem 1.6.1
(1.6.1) w(t) ~ VNWy[Nt]: true for t=2, n integer such that —3 < £ < 1. For other ¢

the result follows by the continuity of w.

.6. wl|g =~ ~Nllo: e application of Lemma 1.6.1 to f(¢) = |w(?)|* ylelds:
(1.6.2) [lwllz =~ [Wn|[2: Th lication of L 1.6.1 to f(t) = [w(t)|* yield

1
[Ilwll3 = IWallz] < 7l lloollllo
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1
2

1
1 2 1
2 —iwn N l ny iwel 2 —iwt g, 1 # (@
‘/ w(t)e™ " dt — - w (N) e N | = ‘/_ w(t)e™" dt —\/NWN (N)
n

[0 lloo + |wl[|w]loo
= 2N ’

(1.6.4) ||wl]|, ~ ||W#||2 since both w and Wy have finite support, we can apply the

continuous-time Plancherel formula
1513 = 2a]|w]]3
and the discrete-time Plancherel formula
W11 = 27| W 3

to find
~ 2T
1913 ~ IWEIB| = 27 |1 ~ IWN 1] < 2 o oo oo

Notice that in Theorem 1.6.1 the frequency variable w is in radians, whilst normally

we measure the frequency of discrete signals in radians per sample. Conversion of the

w
N

frequency w to radians per sample is done by dividing w by N, resulting in (y = such
that wﬁ (¢n) = VN (w) when N — oo. This means that an increase of N squeezes the
frequency support of W# , whilst it stretches the (discrete) time support of Wiy

For finite N, we can conclude from Theorem 1.6.1 that around the frequency 0 the DTFT
behaves similar to the Fourier Transform. For higher frequencies however, the theorem
does not give much information about the connection between both transforms. To gain
more insight in what happens at higher frequencies, let us follow [15] and have a look at

the Whittaker Sampling Theorem.
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First we consider the function

oo

fa®) = > f(nT)s(t—nT) = > x[n]é(t —nTy),

n=—oo n=—oo

o

ne—_oo & sampled version of f, such that

where 4(t) is the Dirac function and x = (z[n])
z[n] = f(nTs). Taking the Fourier Transform of f; yields

[ee]
falw) = D alnle™™ " = 2#((),
n=—00
where z# is the DTFT of x and ¢ = wT,. Notice again the difference in units. For example,
when w is measured in radians per second and T is measured in seconds per sample, then

¢ is measured in radians per sample.

Theorem 1.6.2 The Fourier Transform of the discrete signal obtained by sampling f at

intervals T is

=2 3 F(o-

S k=—cc

2km

T, ) . (1.6.5)
We see that z7# (¢) equals f:j (T%> Once again we see the aliasing phenomenon in formula
(1.6.5): the DTFT of x evaluates in ¢ to the sum of the Fourier Transform of f evaluated
in T% and its aliases. Also, we see that if we take the sample rate ¢; = T% such that
the support of fis included in [—m¢s, s, we have all the information of fin z#. This
means that we can recover f from z# completely. This is done by the use of the Whittaker

Sampling Theorem:

Theorem 1.6.3 If the support of fis included in [—Tls, Tls] then

f@#&)= Y f(T)hr,(t —nT),

n=—oo

with
_ sin(mt/Ty)
o, (t) = /T,

For proofs of Theorem 1.6.2 and Theorem 1.6.3 we refer to [15], p. 43 ff.. In this book it is

also proved that it is impossible for f to have both finite support in the frequency domain
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and in the time domain. This means that in practical situations the requirement on the
support of f in Theorem 1.6.3 cannot be met. However there are finite functions whose
Fourier Transforms decrease sufficiently fast such that they become negligible outside a
certain finite interval D, and Theorem 1.6.3 holds approximately. This is the case for most
popular windows, which means if we take N big enough, the DTFTs of these windows
resemble their Fourier Transforms very well.

As an example, let us look at the rectangular window r. For even N we define in the
continuous domain:

1 if —IN-L<t<IN+1

R(t) =
0 otherwise.

We sample this window with a sample rate 75 = 1, such that the continuous frequency
in radians is equal to the discrete frequency in radians per sample. This yields the result

r = (r[n]):° which is given by:

n=—oo’

1 if —IN<n<iIN
r[n] = =2
0 otherwise.

The DTFT of r equals
sin (N + L)w

7‘# (w) = .1
sin 5&)
whilst the Fourier Transform of R equals
<1
~ sin5(N + 1)w
R(w) = —2(1 ) .
Qw

We can estimate the difference between both transforms by

1 1
-1 1
sin 5(4) 5(4)

r#(w) - ﬁ(w)‘ < : (1.6.6)

which takes the biggest value on [—m, 7] when w = +7, and then it equals 1 — % When

we compare this to the value ﬁ(O) = N + 1, we see that it is a very small disturbance.
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As another example, let us have a look at the Hanning window. In the continuous domain:

2( t . 1 1 1 1
W(t) = cos (N—L> 1f—5N—§<t<§N+§
0 otherwise.

Notice that we can rewrite

and therefore
2

1 _i2my L iz 1
W(t) = Ze N+1 R(t) + Ze N+1 R(t) + ER(t)

Since the Fourier Transform of e %'R(t) equals R(w+¢), we see that the Fourier Transform

of W equals

= 1 2T 1 27 1=
W(w) = ZR (w+N+1> +ZR (w_N——H> + - R(w).

For the DTFT we have the same rule: the DTFT of e~ (t) equals 7#(w + ¢). This means
that if we sample W (¢) into w € C*® in the same manner as in the previous example, we

find that the DTFT of w equals
1 2 1 27 1
# — et _ Zt
w” (w) " (w+N+1>+4r (w N+1>+2T (w).

If we write £y = 7757 we can use (1.6.6) to estimate ‘T#(w +én) — R(w + )| and see

that the right side of this estimate is maximal when w = 7, and then equals P g 11+ oy
2 TNF+1
1 ) For the other two terms we have similar estimates, and we see that

(34w

wh(w+ ) — W(w +EN)‘ <

when N — co. Compared to w#(0) = 3(N + 1) this difference is negligible.
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1.7 Wavelets

The result of the DTFT applied to a windowed signal is called the Short-Time Fourier

Transform (STFT). In formula, if x is the signal and w the window,

o0 o0

Sx(m,§) = Z z[n)w[n — m)e €M™ — Z z[n 4+ mw[n]e ¥, (1.7.1)
n=—o00 n=—o00

It can be used to measure the energy of x in a neighbourhood of m in the time domain,

and in a neighbourhood of ¢ in the frequency domain (see Section 2.1). Because w is

chosen independently of frequency, for all frequencies the same trade-off is made between

time resolution and frequency resolution.

One could also choose to make w dependent on £. This could be useful since periodic

signals with low frequencies have a longer period than signals with higher frequencies, and

if we want to measure using a constant number of periods we need a window with more

time support for lower frequencies than we need for higher frequencies.

Notice that we can rewrite (1.7.1) to the infinite inner product
Sx(m, &) =< x, Wp, ¢ >,

where W, e = (Wieln]) -

discrete Fourier atom centred around (m,§).

with Wy, ¢[n] = wln — mle €™, W, ¢ is called a

—0oQ

For analysing sound signals, or more generally, signals where both phase and frequency

are significant, Gabor wavelets are feasible. A Gabor wavelet 1), ¢, is defined by

Yue(t) = VEg (E(t —u)) e ),

where g(t) is a Gaussian window

with o a real constant. We can now define a wavelet transform applied on a continuous
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time signal f by

W f(u,€) =< f,hye >=< f(£), V€ (E(t —u)) >, (1.7.2)

where

Y(t) = g(t)e . (1.7.3)

Formula (1.7.2) is called the continuous wavelet transform with mother wavelet 1. The
value w is called the tramslation parameter and the value % the dilatation parameter.
Formula (1.7.2) is a general formula for all continuous wavelets, whilst the choice (1.7.3)
makes it a Gabor wavelet transform.

Discretising (1.7.2) yields the Discrete Wavelet Transform (DWT):
Wx(m, &) =< x, ¥ ¢ >,

where x is a discrete signal and ¥, ¢[n] = \/€p({(n —m)). We see that the DWT has the
desired properties: it is the STFT with a window that has a support which is proportional
to the wavelength of the frequency &.
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Chapter 2
Splitting sound

In this chapter we describe our experiments and their results. We will develop a method
that follows the most pronounced instrument in a piece of music, and that separates it
from the rest. In our research we have focussed on the clarinet, but the proposed method

can be applied for the extraction of many other melody instruments as well.

2.1 Spectrograms and scalograms

To split a sound signal into two meaningful components (opposed to splitting a sound
signal in one meaningful component and a noise signal), it is important to know what the
sound looks like. A way to do this is by looking at the sound’s frequency content. This
can be done using a variety of tools, of which we shall apply two: the Short-Time Fourier
Transform and a Discrete Wavelet Transform.

Using the STFT, we can visualise the frequency content of a signal x by the use of a

spectrogram: The spectrogram Pgsx is defined by
Psx(m, f) = |5x(m, £)|2

The spectrogram measures the energy of x around the time-frequency neighbourhood
(m, ).

In Figure 2.1.1 there is a graphical representation of the spectrograms of a clarinet, a bass
flute, a piano and a viola. The values of Psx(m,¢) are determined by the colour in the

picture; black indicating a high value and white a low value. Notice that the spectrograms
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Figure 2.1.1: The spectrograms of a D3 note by four instruments, using the STFT with a
Hanning window with a support of 1024 samples. Notice the darker spots in the bass flute
and viola spectra, which are caused by the natural vibrato of the musicians.

of the instruments consist of a number of lines, which are called spectral lines. Most natural
instruments produce sounds that consist of spectral lines. The lowest spectral line is called
the fundamental frequency, whilst the other spectral lines are called harmonics, which have
frequencies that are (approximately) an integer multiple of the fundamental frequency. We
say that a harmonic is the n‘* harmonic if its frequency is approximately equal to n times
the fundamental frequency. Notice that the clarinet lacks the second and fourth harmonic,
which is in agreement with the physical structure of a clarinet.

An approach, which looks much the same as a spectrogram at the first glance, is doing
analysis by wavelets. Instead of looking at the spectrogram, we look at the scalogram Pyx,
which is defined by

Pwx(m, &) = [Wx(m,¢)[”
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Figure 2.1.2: The scalograms of four instruments, using the mother wavelet (t) =
e 10-064¢ g2 (lgrﬁt), which has a support of (—512,512) and is centred around 0 in the
time domain, and around 0.064 in the frequency domain.

As is the case with a spectrogram, a scalogram measures the energy of x in a time-
frequency neighbourhood of (u, £), but uses different trade-offs between time and frequency
resolutions at different frequencies. In Figure 2.1.2 we have made visible the scalograms
of the four instruments. We have chosen the mother wavelet () = e 10-064 cog2 (m%t),
such that the support of the wavelet at the frequency 0.064 radians/sample (which is the
approximate frequency of the third harmonic) is 1024, and the shape of the third harmonic
of in the scalogram resembles the shape of the third harmonic in the spectrogram in Figure
2.1.1. Notice that the spectral lines of the frequencies below 0.064 have a smaller width
than their counterparts in Figure 2.1.1, whilst the width of the spectral lines of higher

frequencies is bigger.
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Figure 2.2.1: The frequency content of a clarinet tone A3. Notice the absence of the lower
even multiples of the fundamental frequency, which is characteristic for instruments which
are closed at one side, such as the clarinet.

2.2 An experiment in separating a clarinet and a viola

From the McGill university master samples collection [18]', we have sampled two signals:
one of a clarinet playing the note A3, which we shall denote by ¢ = ([0], ¢[1], ..., ¢[L —1]),
and one of a viola playing A#3 which we shall denote by v = (v[0],v[1], ..., v[L — 1]). Since
the length of the sampled signal is influenced by the duration of the original analogue
version, and original signals did not have the same length, it was necessary to clip the
sampled clarinet signal to reduce its length to L samples. We have created a new signal x
by adding ¢ and v and tried to split it again. The splitting has been done by looking at the
various harmonics: in Figure 2.2.1 we see the average value of the coefficients of a 1024 step
windowed Discrete Fourier Transform of the clarinet tone. We see peaks at the frequencies
0.031, 0.092, 0.160 and 0.221 rad/sample. A way to split the signal x is by selecting the

frequencies that have a high coefficient in the Discrete Fourier Transform of the clarinet

!The McGill university master samples are a universally obtainable set of recordings of all conventional
musical instruments from western musical culture. These serve as a benchmark collection.
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tone, and creating a signal y with only these frequencies, leaving the rest to be y© = x—y.
We expect the clarinet to have high Fourier coefficients at the uneven harmonics only, but
for general purpose we filter all harmonics above the fundamental frequency of the clarinet
into the signal y (Figure 2.2.1 also motivates this choice). To do this, we have created a
MATLAB function harmdat (see Section 4.2.1), which takes three parameters: ¢j.,, Phigh
and N. It creates data for a filter that filters the frequencies that have a distance which is
less than %(‘f’high — Plow) =: 3A¢ to the frequency ¢ = 1 (1w + ¢high) and its harmonics.
More precisely, if we denote the sample rate by ¢, (in Hz), harmdat creates vector w# =
(w#[0], w#[1], ..., w# [N —1]) € {0,1}", where w#[k] =1, if k2 € [gp — 1A¢, g + SAY]
where g > 1 integer, and w#[k] = 0 otherwise.

The vector w# is used in the MATLAB function filterclar, which goes through the
signal with steps of gN samples, calculates at position n the Discrete Fourier Transform of
(z[n],z[n + 1],...,z[n + N — 1]), multiplies this Discrete Fourier Transform componentwise
with w# and applies the inverse DFT resulting in z = (2[0], 2[1], ..., 2[N — 1]). From z it
copies (2[§N], 2[§N +1],...,2[ZN —1]) to (y[n+ §N],y[n + §N +1],...,y[n + IN —1]).
Using only a part of z is necessary to prevent clicks caused by the Gibbs phenomenon: we
have seen in Section 1.4 that for an ideal low pass filter Gibbs oscillations occur at places
where a jump between the values of successive samples occurs. Our filter w can be seen
as a sum of ideal low pass filters as follows: we can describe the transfer function as a sum
of blocks, which have edges &g, &1, ..., Eonr+1 and —&g, —&1, ..., —€apr+1 for a certain integer
M. If we consider a filter that has only the two blocks with edges o, €2m+1 and —&opy,

—&9m+1, We see that its transfer function equals

1 if &om < |w| < &omt1

w#L (w) =
0 otherwise.

which can be rewritten to wi, (w) = ggmH (w) —ggm (w). We see that for the filter w# (w) =

Z%:o w#z(w) we may expect oscillations around time points where the samples vary much.
This is typically the case at the window edges, since we used a rectangular window. The
oscillations can be heard as clicks, and therefore we cannot use the left and the right part
of the vector z.

Fragment 2.2.1 is the mixture of a clarinet and a viola sound. Applying the algorithm to
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this fragment with N = 16384, ¢|,, = 210Hz and ¢high = 230Hz renders Fragments
2.2.2 and 2.2.3. We hear that Fragment 2.2.2 sounds more as a clarinet, whilst Fragment
2.2.3 sounds more as a viola. Thus we have as a first result a splitting of the signal into a

clarinet like signal and a viola like signal. This also works when we focus on the viola and

choose ¢y, = 222H2 and o, = 242Hz (Fragments 2.2.4 and 2.2.5).

2.3 Note recognition

The data that are calculated by the MATLAB function harmdat are specific for one certain
note. This means that when we want to filter an A, we cannot use the same filter as when
we want to filter a B. If we want to filter the sound of a clarinet from the signal, we
need somehow to determine which filter to apply. For this purpose we constructed a note
recognition program.

A straight-forward way to determine the note that is being played is by applying the STFT
and then checking which coefficient has the highest modulus. This is what the MATLAB
function detfreq (see Section 4.3.1) does. It takes as input a piece of N samples of the
signal x, multiplies this by a N-point Hanning Window and calculates the DFT. It then
returns the frequency of the bin that contains the element with the biggest modulus. The
higher N, the better the frequencies are localised in the frequency domain. detfreq returns
0 if the largest coefficient in the DFT is less than 0.001N. Depending on the loudness of
the signal, this minimum value could be altered and is introduced to prevent small noise
to be interpreted as a note.

To determine the different notes of a piece of music, we have created the MATLAB
function notes (see Section 4.3.2). There is a loop variable n that increases with a
step size of An samples, and lets detfreq measure the main frequency £ of the part
(z[n],z[n + 1],...,z[n + N — 1]), where N > 0 constant. We shall denote the result of this
approximation by ¢g. =~ &.

The function notes has the exact frequencies of the notes C3 to C4 in its database,
therefore it needs to normalise the measured frequency to the third octave. This is done
by searching for an ¢ € Z such that 131 < 23*‘1¢f0 < 262. It then takes the note from
the database that has a frequency nearest to the calculated frequency and multiplies its

frequency by 2973 to restore it to its original octave.
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We have applied the function notes to a piece of piano music? (Fragment 2.3.1), using
several parameters. We have taken a step size An = 1024, and several precisions N.
It turns out that when we take N low (4096, Fragment 2.3.2), the rhythm is good but

frequencies are not localised well enough. Low frequencies are not localised at all, since the

smallest frequency that can be localised is % radians per sample, which is 414012040 ~ 43 Hz.
If however we enlarge N to 16384 (Fragment 2.3.3), the frequency localisation becomes
better, but the rhythm becomes distorted. This agrees with what we expect from the

inverse proportionality of time and frequency resolution.

2.4 Splitting a real piece of music

To filter the sound of a clarinet from a real piece of music, we combine the note recognition
algorithm with the clarinet filter algorithm. We have implemented this in the MATLAB
function filterpiece (see Section 4.4.1). It uses a rectangular window of size N, and goes
linearly through the signal x with counter n, which starts at n = 1 and takes steps of gN .
The function creates two signals, y1 and y2, where y1 = (yi[n]),, contains the clarinet
part and y2 = (y2[n]),, the rest.

One step of the iteration process is done as follows: the DFT of
(z[n],z[n+1],...,z[n + N —1]) is calculated, the result of which shall be denoted
by z# = (2#[0],2%[1],...,2# [N — 1]). It then takes the index j that belongs to the item
in z# with biggest absolute value, and considers it as the fundamental frequency of the
clarinet tone. For for each [ € Z it takes the eleven elements with indices centred around
41, and puts them into zf € RY, and the rest into zz# € RV, such that if an element zf’k [k]
of z# is nonzero, then z# [k] = 2#[k], and likewise for nonzero elements in zf.

The inverse DFT is then calculated of zf and zf&, resulting respectively in z; € RV and
z5 € RY. The values {z[m] | m = %N, ey %N — 1} are then copied into the result signals
y1 and y2, such that yi[n + m] = z1[m] and likewise for zs.

We have applied the algorithm to a piece of music® (Fragment 2.4.1). Using a small window

(N = 4096) renders Fragment 2.4.2 as the clarinet part, and Fragment 2.4.3 as the piano

*Fragment 2.3.1 is a fragment of a musical piece called ‘Canto Ostinato’, which is composed by Simeon
ten Holt and performed by Kees Wieringa and Polo de Haas.

3Fragment 2.4.1 is a fragment of the ‘Hillandale Waltzes’ by Victor Babin. The performers are Murray
Khouri (clarinet) and Rosemary Barnes (piano).
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part. Using a bigger window (N = 16384) renders Fragments 2.4.4 and 2.4.5. We hear
that the bigger window renders a less distorted sound, but is to big for the roulades. This

brought us to the idea to slow down the sound, such that the roulades are played less fast.

2.5 Time-stretching

To enhance the analysis of a sound signal further, we stretch the duration of the sound,
without altering its pitch. This procedure is called time-stretching and can be done through
the use of a phase vocoder, which was first introduced in [7]. A tracking phase vocoder is
a special instance of a phase vocoder.

Although the phase vocoder is widely used in audio processing, it is hard to find a good
description of its implementation (see also [4]). We have found a good description in [31],
p- 237 ff., which we shall mainly follow. Our implementation of the tracking phase vocoder
has been inspired by [21].

Fragments 2.5.1 to 2.5.6 demonstrate the application of the phase vocoders.

2.5.1 The phase vocoder

The phase vocoder is a program that goes through the input signal x with counter n,
and steps of size Ang, creating the output signal y on the run, with counter n, and using
steps of size An,. The ratio 2—2;‘: determines the amount of time-stretching.

When the phase vocoder is at position n;, it takes a number of subsequent samples centred
around n, and multiplied componentwise by a window w which is symmetric and real.
Such piece of the signal is called a grain. The phase vocoder then calculates the DFT from
this grain, and stores the amplitude information in A;[k] and the phase information in
¢1[k]. The phase vocoder does the same with a grain centred around n, + An,, resulting
in the amplitudes As[k] and phases ¢2[k], where the phases are unwrapped, an operation

that we will describe in Section 2.5.2.

The phase vocoder can now construct a part of the resulting signal

(ylnyl, ylny + 1], ...y y[ny + Any —1]).
It does this by linear interpolating (or extrapolating) the amplitudes and phases, and
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constructing a cosine with these amplitudes and phases.
_ ¢alk]—1lk _ Aslk]-Ai1lk .y
Thus, let A¢lk] = % and AA[k] = %, A[k] and ¢[k] the phases at position

ny, which are calculated earlier or taken arbitrary initially. The phase vocoder calculates

IN—

Z A[k] + nAA[E]) cos(p[k] + nAg[k])

|

l\DIn—A

y[ny + n]
for n =0,1,...,Any — 1. Now it can calculate A[k] and ¢[k] for the next cycle by A*[k] =
A[k] + AnyAA[K), ¢y[k]* = ¢y[k] + AnyAg[k], and start the next cycle.

2.5.2 Technical details

Window requirements There are three important details to consider for the phase
vocoder. First we want the window w to be real and symmetric around 0. This is important
because then the window w has a DTFT that is also real and symmetric around 0. This
implies that if we apply the window to a phasor y = (ei(5"+§°))zo:_oo, which has a phase
&o at n =0, we have
1 . ™ .

(o)) = grvF (@) = | 8¢ =t =) df = utw—).
If we require that w#(0) = Y, w[n] > 0 (which is true for all popular windows), and if
we take w sufficiently close to ¢, the phase of w# (w — ¢) equals 0 and we can measure the
phase of y[0] by the phase of (yw)# (w).
FFT shifting If we calculate the DFT of a grain g[n] = z[n]w[n]| of size N, where
n= —%N, —%N +1,.., %N — 1, we want it to be

N
¥

g [kl = Y glnje N, (2.5.1)

__N
n=—s5

whilst the DFT is normally implemented as

N-1

g#[k] Zg[n] mk27r/N_
n=>0

This can be solved by considering g as a periodic signal, and rewriting (2.5.1) to
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%_1 N-1 N—=1 .
g#[k] — Z g[n]e—mk27r/N + Z gln — N]e—l(n—N)kQW/N _ Z g[n]e—mkzw/N_

n=0 n=X n=0

On implementation level, this comes down to swapping the left half of the grain and
the right half before applying the DFT. This operation is called FFT shifting and is
implemented in MATLAB by the function fftshift.

Phase unwrapping When we calculate the phase ¢ of a complex number, we get a
value modulo 27. If we require that ¢ € (—x,x], it is called the principal argument of the
phase (notation: princargeg). When we measure the phases ¢; [k] and ¢2[k], we only get the
arguments modulo 27, which means that the exact phase difference between the two is
lost. We can regain this difference by phase unwrapping. An illustration of the phenomenon
is given in Figure 2.5.1.

Let ¢1[k] be the principle argument of ¢;[k], and ¢s[k] be the principle argument of ¢o[k].
We are interested in the precise difference ¢o[k] — ¢1[k]. Assume that ¢1[k] = 1 [k]. Let
1[k] be the expected phase at ¢, in this bin, which is y[k] = ¢1[k] + E2Z (¢, —t1), and let us
assume that [¢[k] — ¢o[k]| < 7. Because we have ¢o[k] = do[k] + 127 for a certain integer

[, we have

pIk] — pa[k] = [k] — po[k] — 127 = princarg(y[k] — $a[k]),

which implies that
12 = (k] — do[k] — princarg(ih[k] — s [k])

and therefore

¢a[k] = (k] — princarg([k] — da[k]).

Notice that since princarg(—6) = —princarg(f) for all @ # # mod 2, this can be rewritten

to

¢o[k] = (k] + princarg(z[k] — y[K)). (2.5.2)

With (2.5.2) we can unwrap the phases ¢;[k| as long as |¢)[k] — ¢o[k]| < 7. If we measure a
phasor with frequency £, we have ¢o[k] = ¢1[k]+ (t2 —t1)€ and require that |(1p — ¢2)[k]| =

(tg—t1)‘k%—f| < 7 or




Figure 2.5.1: Phase unwrapping

to ensure the correct unwrapping of ¢o. We find that this is true for % bins, and the
smaller ¢35 — t; the more phases are unwrapped correctly.
2.5.3 Implementation

In Section 4.5.1 the listing of the MATLAB function pv, which is our implementation of

the phase vocoder, is given. Next to the input signal x it needs the following arguments:

1. N: the window size. A Hanning window is used. A typical value for N is 2048 at a
sampling rate of 44100 Hz.

2. overlap: the overlap variable, which takes values between 0 and 1. This determines
the overlap, and thereby the distance, between two successive grains. The distance

between two successive grains is given by An, = (1 — overlap)N. A typical value
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is 0.75.

3. stretch: the stretch factor. A stretch factor of 2 doubles the length of the signal.

2.5.4 The tracking phase vocoder

The traditional implementation of the phase vocoder does not consider the nature of
the input signal too much. For example, very often adjacent bins have the same phase
difference, because the phase differences are induced by the same partial (which is a result
of spectral smearing). A tracking phase vocoder takes this in account and tries to dissect
the signal in its partials, by matching the DFT bins that belong to the same partial of the
sound.

The tracking phase vocoder goes through the signal, and measures the partials of succes-
sive grains. This is done by applying a peak detection algorithm, which determines the
frequencies, amplitudes and phases of the main partials. Peak detection will be further
explained in Section 2.5.5.

The old partials are kept in memory, and the new partials are matched to the old ones.
To match a new partial to an old one, the following algorithm is applied: for each newly
found partial an old partial is searched. The old partial that has a frequency that is
(within certain boundaries) nearest to the frequency of the new partial is assigned to the
new partial. When the old partial has already been assigned to another new partial, it
becomes assigned to the one that has a frequency nearest to it, whilst no other old partial
is assigned to the other new partial.

The assignment between an old partial and a new one is called a match. When a partial
is not matched, it is matched virtually to a partial that has the same frequency but zero
amplitude. The reconstruction is done by interpolation of the amplitudes and phases. The
phases are interpolated linearly, as is the case by the phase vocoder. For the amplitudes
however we apply a slightly different interpolation method: when we reconstruct a partial
between time points n, and ng, with respective amplitudes A; and Ao, we calculate for

n1 < n < ng:
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This to prevent discontinuities of the derivative of A(n) in A; and As, which can be heard

as artifacts.

2.5.5 Peak detection

In the windowing section we have seen that the peaks in the frequency spectrum of a
windowed signal correspond to the frequencies and amplitudes of the phasors that make
up the signal. This means that we can find these properties by looking for the peaks in the
DTFT. This procedure is called peak detection, and we have implemented two versions of
it.

In both versions we have applied zero-padding: we append Z zeros to a grain x of size
N, resulting in a grain xz of size N + Z. To maintain window symmetry, %Z Z€ros are

inserted in front of x and %Z zeros are appended at the end of x. We see that the DFT of

N+Z
the FFT algorithm to compute the DTFT at N + Z different frequency points instead of

+Z-1
xz equals the DTFT of x calculated at frequency points { 2k }k . Thus we can use

only N frequency points.

Zero-padding allows us to consider the spectrum more precise. Notice that it does not
increase the frequency resolution, since the size of the window and therefore its bandwidth
is not changed. However, if we have a peak at frequency &, we can expect to locate it better,
since we have a bigger chance of having calculated the DTFT of a frequency nearer to £.
To make sure that this is true for all possibilities of &, we should take Z = vN with v
integer, because then z#[k] = a:Z[( 1)k] for k=0,1,..., N — 1.

Let us denote a phasor in x by Ael€"1%0)_ To find A, ¢ and &, we look for a k such that

|J:Z (k]| > |z§[kz+ 1]| and |wZ (k]| > |zZ [k—1]|. Because we use a real and symmetrlc window

we can measure & by the phase of xz[ N +z of
& and refine this estimate in the same way as by the phase vocoder: let y? be the DFT
of the previous zero-padded grain. We compute the phase difference between z7, [k:] and
y? [k] and divide by the number of samples between the grains, resulting in a new estimate
€. If we choose Z big enough we can approximate the amplitude A by |:105‘2’E [£]]. In Section
4.6.3 we see our MATLAB implementation trpeak of this algorithm.

Another way to refine the estimate Z =: (; is by the use of a second estimate (5. We choose

G2 = /ﬁNQ—fZ, with k equal to either kK —1 or k + 1, such that |x§[/§]| maximal. This ensures
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that ¢ is between ¢; and (. We measure &, by the phase of z#((;). If we denote the DTFT
of the window that we use by w#, we acquire the following system of equations for A and
&

[z#(C)] = Aw#(¢1-¢)

(2.5.3)
2% (G)] = Aw#(( —€).

We use a Hanning window

2 (nw) 1 1
cos? (&™) if —=N+1<n<sN-1
w[n] — (N) 2 — — 2
0 otherwise,

which has a DTFT equal to w# (w) = 1r# (w — 22) + Lr# (w + 27) + 1r% (w), where

o1
sin 5 (N — 1)w
() = S 21

sin 5w
(see also Section 1.6.1). Because the root mean square bandwidth of a Hanning window is

two bins, both z#((;) and z#((3) are unequal to zero. We can therefore simplify (2.5.3)

to

|27 (¢1) [w# (G2 — &) — |27 (¢2) lw™ (G — €) =0.

This equation can be solved numerically, which we have done in the MATLAB function
trbisectpeak (see Section 4.7.2).

Fragment 2.5.2 and Fragment 2.5.3 are results of the application of the tracking phase
vocoder to Fragment 2.4.1, with respectively the phase unwrapping peak detection algo-
rithm and the bisection peak detection algorithm. Similarly, Fragment 2.5.5 and 2.5.6 are
results of applying the tracking phase vocoder to Fragment* 2.5.4.

2.5.6 Guides

Now that the signal is split into partials at each time point, and matched to the partials
at the previous time point, we can follow the partials over time. This approach was first
introduced in [17] and is done by maintaining guides that contain the evolution of the

partials’ frequencies and amplitudes over time. For a non-matched new partial a guide

4Fragment 2.5.4 is a fragment of W.A. Mozart’s Requiem, performed by the Slovak Philharmonic Or-
chestra and Chorus, directed by Zdenék Kosler.
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is created, whilst matched partials are assigned to the guide belonging to the old partial
that the new partial was matched with. When a guide is not matched, it is finished and

its contents are written to the output signal y.

2.5.7 Technical details

The partials from the current measurement and the one before are maintained in a matrix
tracks, which has %N + 1 rows and seven columns. When the current time pointer is t3,
the previous one to and the one before that t;, the structure of one row in the matrix

tracks is as follows:

Column | Contents

1 frequency between t; and to
amplitude at 1o
phase at 1o

frequency between to and t3

phase at 13

2
3
4
5 amplitude at t3
6
7

matched bin

A separate matrix 1ines that has %N + 1 rows is maintained to track the partials in time.

Each row contains the following columns:

Column | Contents

1 start point in the time domain

number of partials

finished flag

phase of partial 1

frequency between partial 0 and partial 1
amplitude of partial 1

frequency between partial 1 and partial 2

amplitude of partial 2

O 00 N S Ot ks W N

frequency between partial 2 and partial 3

—_
o

amplitude of partial 3
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The start point in samples can be found by multiplying column one by An,. A row in
lines is available when column two has value zero. To make the connection between the
matches in tracks and the spectral lines in lines a vector xlat with %N + 1 elements
is maintained that links the row number in the tracks matrix to the row number in the

lines matrix.

2.6 Splitting using the phase vocoders

We have modified the tracking phase vocoder to meet our purpose: the splitting of a real
piece of music into a clarinet part and the rest. In these sections we will describe how.

Fragments 2.6.1 to 2.6.11 demonstrate the application of the techniques.

2.6.1 A modification of the tracking phase vocoder

As a first approach, we modify the tracking phase vocoder without the guides to create two
output signals yi1, y2, where y1 contains the principle tones, and y2 the rest. A selection
is made in the reconstruction phase, where the principal partial and its harmonics are
reconstructed into y1, whilst the other partials are reconstructed into yo.

Fragment 2.6.1 (y1) and Fragment 2.6.2 (y2) are results of the application of the modified
tracking phase vocoder to Fragment 2.4.1. We hear that y; mainly follows the clarinet
line, whilst y2 contains the rest. However, we also notice that y; has disturbances when
the piano attacks, which can be explained by the fact that during a piano attack the piano
is louder than the clarinet for a short while, and therefore the principal tone is a piano

tone instead of a clarinet tone.

2.6.2 Following the guides

To reduce the effect of the disturbances created by the piano attacks, we change the
selection process of the partials. First we insert a column in the 1ines matrix that contains
a clarinet counter. We create this column at position 4 and shift the rest of the columns one
position to the right. For every grain we still make a selection which partial is considered
as a clarinet tone, and which is not, but instead of directly writing the partial to either y;

or y2, we increase the clarinet counter if the partial is considered to be the principal partial
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or one of its harmonics. When a guide ends the spectral line it contains is reconstructed
either into y; if the clarinet counter is more than a (user defined) fraction of the line’s
length, and in y2 otherwise.

Fragments® 2.6.3 to 2.6.11 demonstrate the modified tracking phase vocoder with a clarinet
counter. We hear that the disturbances of y; by the piano are reduced and that it mostly

follows the clarinet line of the piece of music.

SFragment 2.6.7 is a piece of the ‘Jamaican Rumba’ by Arthur Benjamin. It is performed by Murray
Khouri (clarinet) and Rosemary Barnes (piano).
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Chapter 3
Conclusions and topics for further

research

In this small concluding chapter we will have a critical look at our modification of the
tracking phase vocoder with guides. We denote this modified phase vocoder by ‘the pro-

posed method’, and restate it in the following section:

3.1 The proposed method

In the Chapter 2 we have seen how during our research a method to separate musical

signals arose. We can now state this method as follows:

The proposed method

Input:
x: input signal

An: step size in the time domain
Output:

y1: clarinet signal

y2: non-clarinet signal
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for k=0, 1, 2, ... do
measure amplitudes, frequencies and phases at time point n;y = kAn
determine the fundamental frequency € of the clarinet tone
mark the partials with frequencies that are (approximately) an integer multiple of ¢
as clarinet partials
match the partials with the guides
if a guide G is finished then
if more than a fraction p of the partials in G are marked as clarinet partials then
synthesise the content of G into the clarinet output signal yy
else
synthesise the content of G into the non-clarinet output signal y2
end if
remove G from memory
end if
end for

synthesise the content of the remaining guides into the output signals

We see that the algorithm is composed of four components:

e the measurement of the parameters of the partials that make up the signal;
e the identification of which partials are clarinet partials;
e the book-keeping of the guides;

e the reconstruction of the content of the guides.

With this algorithm we have been able to separate the clarinet line from real pieces of
music as can be heard in Fragments 2.6.3 to 2.6.11. We think that our algorithm is a step

in the right direction, and it can be refined by further research.

3.2 Spectral lines

The proposed method is based on the measurements of spectral lines. As long as the

spectral lines are situated far enough in the frequency domain, they can be separated and
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the method can be expected to work. In pieces where the frequencies of the spectral lines
are too close to each other, large windows are needed which means too much decrease
in time resolution. This happens mostly in pieces where many musical instruments are
playing. On the other hand, applying the tracking phase vocoder to a record of an orchestra
gives an acceptable result, although artifacts can be heard. This means that the tracking
phase vocoder is still able to distinguish most spectral lines, the rest resulting in the
artifacts.

A problem arises when the harmonics of different tones coincide. Our method will not be
able to distinguish between these frequencies and therefore is bound to take away parts of
other instruments. This problem will often occur, since tones with coinciding harmonics

sound very well, and therefore many compositions contain tones that have such a relation.

3.3 Wavelets

During our research, we have often modified our programs such that they use the Discrete
Wavelet Transform instead of the Short-Time Fourier Transform. However, these exper-
iments rarely improved the methods. When the wavelet implementation resulted in an
improvement, often the same improvement could be accomplished by a slight modification
in the STF'T version of the program.

A clue to the reason that wavelets have not shown to be useful for our methods can be
seen in the scalograms in Section 2.1. The widths of the spectral lines of the different
harmonics are different, and for high frequencies too much interference occurs and the
harmonics become invisible. This has not to be a problem in all cases; for example a note
recognition algorithm that implements a harmonic sieve (see [13]) with Gabor wavelets

can exploit the bigger bandwidth at the higher frequencies.

3.4 Topics for further research

It would be convenient when the selection of the main instrument in the proposed method
was enhanced: our method considers the spectral line with highest amplitude as the fun-
damental frequency of the main instrument, which is often the case, but not always. There

even exist instruments that lack a fundamental frequency.
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Also, selecting the spectral lines means that we only look at the harmonic component
of a sound: a sound generally consists of a harmonic component, which can be seen as
the spectral lines, and a transient component, which occurs mostly during the attack of
the instrument. We expect that Fourier analysis will not be useful for the analysis of the
transient component, because such a signal consists for a greater part of (structured) noise.
Wavelets could be useful, in particular when they do not have a direct connection to an
STFT of some sort.

The proposed method can be enhanced by applying a more intelligent instrument recog-
nition algorithm. We think of measuring different properties of a tone, such as whether
it falls within a certain frequency range, its attack time and the amount of energy in the
harmonics. There are known instrument recognition algorithms that are based on pattern
recognition in different characteristics of a sound that work with high accuracy. We expect
that a similar algorithm can be implemented in the proposed method.

The transient component can also be used to determine which instrument is playing. When
the transient component is used to determine the instrument, it should also be used in
the construction of the output signals, by adding it either to the filtered signal, or to the

residue.

3.5 Conclusion

In this thesis we propose a method to separate the clarinet line from a recording of music.
We have seen how the method was developed and how it works. The method is a step into
the direction of the solution of the problem to extract one particular instrument from a
recording of multiple instruments. As we have pointed out, there are various possibilities to
enhance our algorithm, both to obtain a better note recognition algorithm and to improve

the quality of the separation. Suggestions for further research have been given.
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Chapter 4
Listings

4.1 Spectrograms and Scalograms

4

%
%

.1.1 spectrogram.m

function spectrogram(x, N, T, zpad, maxfreq)

% creates a spectrogram plot of signal x using Fourier analysis and

%
%
%
%
%
%

% maxfreq : maximal frequency to show (rad/sample)

%
%

a Hanning window.

x : input signal

N : windowsize (must be even)

T : amount of time points

zpad : zero—padding argument: number of zeros to pad

copyright (C) 2005 Bert Greevenbosch

function spectrogram(x, N, T, zpad, maxfreq)

x=torow(x);

w=sin((0:N—1).xpi/N)."2; % hanning window
ds=(length(x)—N—-1)/T;

s=N/2+1;
mf=ceil((N+zpad)+maxfreq/(2xpi));
im=zeros(N/2+1, mf+1);

for q=1:T
t=round(s);
f=fFt ([x(t—N/2:t+N/2—1).xw, zeros(1, zpad)]);
f=f(1:mf41)’;
f=f.xconj(f);
y (5 a)=F
s=s-+ds;
end

setigpal

imagesc([0,length(x)],[0, mf«2xpi/(N+zpad)],y);
axis(’xy’);

xlabel(’time_(sample)’);
ylabel(’frequency._(rad/sample)’);
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4.1.2 scalogram.m

% function scalogram(x, nu, minfreq, maxfreq, norows, nocols)

%

% plots the scalogram of the signal x, using wavelets based on the hanning
% window.

%

% input:

%

% x : input signal

% nu : number of waves in one wavelet

% minfreq : lowest frequency to show

% maxfreq : highest frequency to show

% norows : number of frequencies to show

% nocols : number of time points to do the measurements on
%

% copyright (C) 2005 Bert Greevenbosch

function scalogram(x, nu, minfreq, maxfreq, norows, nocols)

x=tocolumn(x);

im=zeros(norows, nocols);
gbanks=minfreq+(1:norows)*(maxfreq—minfreq) /norows;
Q=Qmatrix(gbanks, nu);

sz=size(Q);

N=sz(2);

step=(length(x)—N)/nocols;

left =—round(N/2);

right =N—1-+left;

k=1;

for n=—Ileft+1:step:length(x)—right
ni=round(n);
xw=QxfFtshift(x(ni+left:ni+right));
im (:, k)=xw.xconj(xw);
last =n;
disp(sprintf(’%1.5f", n/(length(x)—right)));
end

hold off

setigpal

imagesc([—left+1, last],[minfreq, maxfreq], im);
axis(’xy’);

xlabel(’time_(sample)’);
ylabel(’frequency.(rad/sample)’);

size(Q)

4.1.3 setigpal.m

% function setigpal

%

% creates a gray scale colourmap.

%

% copyright (C) 2005 Bert Greevenbosch

function setigpal
x=1:—1/255:0;
x=[x;x;x];

x=transpose(x);
colormap(x);
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4.1.4 Qmatrix.m

% function Q=Qmatrix(gbanks, nu)

%

% gbanks : frequencies

% nu : number of waves
%

% each row k in Q contains a windowed Fourier atom, with a frequency

% gbanks[k], and a window with a size such that nu waves are considered:
% size nu*2xpi/qbanks[k].

0

% copyright (C) 2005 Bert Greevenbosch

SEN SO

function Q=Qmatrix(gbanks, nu)

minfreq=min(gbanks);
norows=length(gbanks);
nocols=round(2xnuxpi/minfreq);

Q=zeros(norows, nocols);

disp(sprintf(’Creating_%d.x.%d_Q.matrix’, norows, nocols));

totmx=0;

for k=1:norows
f=gbanks(k);
mx=round(nuxpi/f);
Q(k, 1:mx)=exp(ixfx(0:mx—1)).xcos((0:mx—1)*pi/(2xmx))."2/sqrt(2+mx);
Q(k, nocols—mx+1:nocols)=exp(i*f*(—mx:—1)).xcos((—mx:—1)xpi/(2xmx))."2/sqrt(2+mx);
disp(sprintf(’%1.5f", k/norows));
totmx=totmx+mx;

end

totmx=totmxx2;

disp(sprintf(’Average_length:_%d’, round(totmx/norows)));

Q=sparse(Q);
4.2 A simple clarinet filter

4.2.1 harmdat.m

% function w=harmdat(lfreq, hfreq, N)
%

% creates a filter on the basis of harmonics.
%

% input:

%

% lfreq : lower base frequency

% hfreq : higher base frequency

% N : size of the filter

%

% output:

%

% w . filter

%

% copyright (C) 2005 Bert Greevenbosch

function w=harmdat(Ifreq, hfreq, N)
w=zeros(1, N);
clfreq =lfreqxN/44100;

chfreq=hfreq+N /44100;
fq=(clfreq+chfreq)/2
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dfreq=ceil((chfreq—clfreq)/2)
k=1;
while fgxk<N/2+1
fl =floor(fqxk)—dfreq+1;
fh=ceil(fq*k)+dfreq+1;
if (fh>N/2)
end
if(fl<1)
fl=1;
end
for f=fl:fth
if(f<N/2+41)
w(f)=1;
w(N—f+1)=1;
end
end
k=k+1;
end

4.2.2 filterclar.m

% function [y1, y2]= filterclar (x, w)
%

% clarinet filter

%

% input:

%

% x : input signal

% w : filter

%

% output:

%

% y1 : clarinet part

% y2 : non—clarinet part

%

% copyright (C) 2005 Bert Greevenbosch

function [y1, y2]=filterclar (x, w)

N=length(w);

lw=N/8;

hg=Txlw;

yl=zeros(l, length(x));

if mod(length(x), N)™=0
t=mod(length(x), N);
x=[x, zeros(1, N—t)];
end

for n=1:hg—Iw:length(x)—N+1
z=fft(x(nin+N—1));
al=z.xw;
xl=real(ifft(al));
y1(n+lw:n+hg—1)=x1(Iw+1:hg);
disp(sprintf(’%1.5f, n/length(x)));
end

y2=x—yl;
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4.3 Note recognition

4

%
%

.3.1 detfreq.m

function f=detfreq(x)

% determines the main frequency f of the signal x

% returns frequency in Hz (when x sampled at a rate of 44100 Hz)

%

% copyright (C) 2005 Bert Greevenbosch

function f=detfreq(x);

4

%
%
%
%
%
%
%

N=length(x);

window=sin((0:N—1)xpi/N)’."2;

y=abs(fft(x(1:N).xwindow));

y(1)=0;
[mx, idx]=max(y);
if (mx>.001%N)
f=44100% (idx—1)/N;
else
f=0;
end

.3.2 notes.m

function y=notes(x, N, dn)

calculates notes using the discrete Fourier transform (DFT)

input:

x : input signal

% N : size of DFT

% dn : stepsize between succesive measurements
%

% output:

%

% y : notes played as sines

%

%

copyright (C) 2005 Bert Greevenbosch

function y=notes(x, N, dn)

names=["c__’; ’'cis’; 'd_-’;
freq =[ 131, 139, 147,
y=zeros(1, length(x));
maxdif=0;

phi0=0;

for n=1:dn:length(x)—N
fc=detfreq(x(n:n+N—1));
if fc™=0
ofc=fc;
0=3;
while fc<131
fc=fcx2;
0=0—1;
end

156,

165,

175,

’diS’; ’e__’; ’f__’; !ﬁsz;

185,

95

g5

’.

196,

gis’;

).

208,

220,

233,

7a__!; ’ais’; !b__’;

247,

’C__!]

262]



while fc>262
fce=fc/2;
0=0++1;
end
mn=abs(fc—freq(1));
nt=1;
for j=2:13
if (abs(fc—freq(j)) <mn)
mn=abs(fc—freq(j));
nt=j;
end
end
if nt==13
0=0-+1;
nt=1;
end
fcalc =freq(nt);
1=o0;
while 1>3
fcalc =fcalcx2;
1=1— 1;
end
while 1<3
fcalc =fcalc/2;
end
if (abs(ofc—fcalc) >maxdif)
maxdif=abs(ofc—fcalc);
end
y(n:n+dn—1)=sin(phi0+2xpix[0:dn—1]«fcalc/44100)/3;
phi0=phi0+2xpixdnxfcalc/44100;
phi0=mod(phi0, 2*pi);
disp(sprintf(’%s%d’, names(nt, :), 0));
else
y(n:n+dn—1)=sin(phi0)/3;
disp(’rest’ );
end
end

maxdif

4.4 Filtering a clarinet from a real piece of music

4.4.1 filterpiece.m

% function [yl, y2]= filterpiece (x, N)
%

% filters clarinet from x into y1 and rest into y2
%

% input:

%

% x : orignal signal

% N : windowsize

%

% output:

%

% y1 : clarinet signal

% y2 : non—clarinet signal

%

% copyright (C) 2005 Bert Greevenbosch
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function [y1, y2]=filterpiece (x, N)
x=tocolumn(x);

lw=N/8;
hg="Txlw;

yl=zeros(1, length(x));
y2=yl;

for n=1:hg—Iw:length(x)—-N+1
z=fft(x(n:in+N—1));
q=abs(z);
q(1)=0;
[mx, idx]=max(q);
if (idx>N/2)
idx=N+2—idx;
end
ener=zeros(1, N);
al=zeros(1, N);
a2=z;
1=1;
while(lxidx<N/2+1)
j1=Ix(idx—1)—10+1;
if(j1<2)
J1=2;
end
j2=1x(idx—1)+10+1;
if(j2>N/2+1)
j2=N/2+1;
end
for j=j1:j2
al(j)=x(j);
a2(j)=0;
al(N+2—j)=2(N+2—j);
a2(N+2—j)=0;
end
1=141;
end
disp(sprintf(’%1.4f’, n/length(x)));
x1=real(ifft(al));
x2=real(ifft(a2));
yl(n+lwin+hg—1)=x1(lw+1:hg);
y2(n+1lwmn+hg—1)=x2(lw+1:hg);
end

4.5 The phase vocoder

4.5.1 pv.m

% function y=pv(x, N, overlap, stretch)

%

% an implementation of the phase vocoder
%

% x : input signal

% N : window size

% overlap : overlap factor between two successive windows (for example .75)
% stretch : amount of time stretching

%

% copyright (C) 2005 Bert Greevenbosch
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function y=pv(x, N, overlap, stretch)

x=torow(x);
window=sin((0:N—1)xpi/N)."2;
dx=round(Nx(1—overlap));
dy=round(dxxstretch);
stretch =dy/dx;
disp(sprintf(’Real_stretching._factor:-%1.5f’, stretch ));
y=zeros(round(length(x)=stretch), 1);
nx=N/2+1;
ny=round(nxxstretch);
grain=x(nx—N/2:nx+N/2—1).xwindow;
f=fFt(fitshift (grain ));
f=f(1:N/2+1);
phil=angle(f);
Al=abs(f);
A=Al;
nx=nx-+dx;
dpsi=(0:N/2)*dx*2xpi/N;
phi=phil;
while(nx<length(x)—N/2)
phil=princarg(phil);
grain=x(nx—N/2:nx+N/2—1).xwindow;
f=fft(fftshift (grain));
f=f(1:N/2+1);
phi2=princarg(angle(f));
A2=abs(f);
psi=phil-+dpsi;
phi2=psi+princarg(phi2—psi);
dphi=(phi2—phil)/dx;
dA=(A2—A1)/dy;
for k=0:dy—1
y(ny)=Axcos(phi)’;
A=A+dA;
phi=phi+dphi;
ny=ny-+1;
end
phil=phi2;
nx=nx-+dx;
disp(sprintf(’%1.5f, nx/length(x)));
end
y=y*max(abs(x))/max(abs(y));

4.5.2 princarg.m

% function phase=princarg(phase_in)

%

% calculates the principal argument of phase_in

%

% taken from Udo Zolzer’s book 'DAFX — Digital Audio Effects’;
% more detailed information can be found in the bibliography.

function phase=princarg(phase_in)

phase=mod(phase_in+pi,—2xpi)+pi;
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4.6 The tracking phase vocoder

4.6.1 trvoc.m

% y=trvoc(x, N, Z, overlap, stretch)

%

% input:

%

% x : input signal

% N : window size

% Z : number of zeros for zero padding

% overlap : overlap factor
% stretch : time—stretch factor

% output:

%y : time—stretched signal

X

% copyright (C) 2005 Bert Greevenbosch
function y=trvoc(x, N, Z, overlap, stretch)

global fadein;
global fadeout;
global tracks;

x=torow(x);
window=sin((0:N—1)*pi/N)."2;
dnx=round((1—overlap)*N);
nx=N/2+1+dnx;
dny=round(dnxxstretch);
ny=dny;
dpsi=(0:(N+2Z)/2)*dnx*2xpi/(N+Z);
[A, phil]=calcAphi(x(1:N).*window, Z);
tracks=zeros(N/2+1, 6);
y=zeros(1, length(x)xstretch);
fadein=—.5xcos((0:dny—1)*pi/dny)+.5;
fadeout=.5xcos((0:dny—1)*pi/dny)+.5;
while(nx<length(x)—N/2—dnx)
[ampl2, dphi, phi2, phases]|=trpeak(x(nx—N/2:nx+N/2—1).xwindow, phil, dpsi, dnx, Z);
trmatch(dphi, ampl2, phases, N);
y(ny—dny+1:ny)=trreconstruct(N);
nx=nx+dnx;
ny=ny-+dny;
phil=princarg(phi2);
disp(sprintf(’%1.5f;_%d_lines’, nx/length(x), length(phases)));
end;

y=yx*max(abs(x))/max(abs(y));

4.6.2 calcAphi.m

% function [A, phi]=calcAphi(x, Z)

%

% calculates amplitudes A and frequencies phi of x,
% such that (dft(x))[k+1] = A[k+1] exp(i phik+1])
% where the signal x is zero—padded with Z zeros
% Z should be even

%

% copyright (C) 2005 Bert Greevenbosch
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function [A, phi]=calcAphi(x, Z)

4

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

N=length(x);

y=fTt(fftshift ([zeros(1, Zh), x, zeros(1, Zh))]));
y=y(L:(N+Z)/2+1);

A=abs(y);

phi=princarg(angle(y));

.6.3 trpeak.m

function [ampl2, dphi, phi2, phases]=trpeak(x, phil, dpsi, dn, Z);

applies peak detection to the signal x, by looking at the phase

difference

input:

x : input signal

phil : phases of previous measurements

dpsi : frequency between previous measurements and current measurement
dn : number of samples between successive measurements

Z : number of zeros for zero—padding

output:

ampl2 : measured amplitudes belonging to the peaks

dphi : measured frequency between the peaks of the current measurement
and the previous measurement

phi2 : phases of all frequency bins

phases : phases belongint to the peaks

copyright (C) 2005 Bert Greevenbosch

function [ampl2, dphi, phi2, phases]=trpeak(x, phil, dpsi, dn, Z);

N=length(x);

[A, phi2]=calcAphi(x, Z);

psi=phil+dpsi;

phi2=psi+princarg(phi2—psi);

dfreq=(phi2—phil)/dn;

m=1;

ampl2=0;

phases=0;

for k=2:(N+Z)/2

if A(k—1)<A(k) & A(k+1)<=A(k) & A(k)>1
ampl2(m)=A(k);
dphi(m)=dfreq(k);
phases(m)=phil(k);
m=m-+1;
end

end

m=m-—1;

ampl2=ampl2(1:m);

dphi=dphi(1l:m);

phases=phases(1:m);

60



4.6.4 trmatch.m

% function trmatch(dphi, ampl2, phases, N)

%

% matches new partials to old partials

%

% global:

%

% tracks : data structure that contains the old and new partials
%

% input:

%

% dphi : phase difference between current and last measurement
% ampl2 : amplitudes of current measurement

% phases : phases of current measurement

% N : grain size

%

% copyright (C) 2005 Bert Greevenbosch

function trmatch(dphi, ampl2, phases, N);

global tracks;
binsz=2xpi/N;
tracks (:, 4:7)=zeros(N/2+1, 4);
for n=1:length(dphi)
k=floor(abs(dphi(n)/binsz))+1;
if (k<=N/2+1)
tracks (k, 4)=dphi(n);
tracks (k, 5)=ampl2(n);
tracks(k, 6)=phases(n);
end
end
for k=2:N/2
if (tracks(k, 4)7=0)
dm=abs(tracks(k, 4)—tracks(k—1, 1));
d0=abs(tracks(k, 4)—tracks(k, 1));
dp=abs(tracks(k, 4)—tracks(k+1, 1));
if dm < d0 & dm < dp
tracks (k, 7)=k—1;
if tracks(k—1, 7)==k—1
if abs(tracks(k—1, 4)—tracks(k—1, 1))>abs(tracks(k, 4)—tracks(k—1, 1))
tracks(k—1, 7)=0;
else
tracks(k, 7)=0;
end
end
if k>2
if tracks(k—2, 7)==k—1
if abs(tracks(k—2, 4)—tracks(k—1, 1))>abs(tracks(k, 4)—tracks(k—1, 4))
tracks(k—2, 7)=0;
else
tracks(k, 7)=0;
end
end
end
end
if d0 <=dm & d0 <= dp
tracks (k, 7)=k;
if tracks(k—1, 7)==k
if abs(tracks(k—1, 4)—tracks(k, 1))>abs(tracks(k, 4)—tracks(k, 1))
tracks(k—1, 7)=0;
else
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4

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

tracks(k, 7)=0;
end
end
end
if dp < dm & dp < dO
tracks (k, 7)=k+1;
end
end
end
for k=1:N/2
if tracks(k, 7)"=0 & tracks(k, 4)"=0 % matched?
bin=tracks(k, 7);
if tracks(bin, 1)==0 | tracks(bin, 2)==0 % matched to zero?
tracks(k, 7)=0; % not matched

end

end
end
.6.5 trreconstruct.m
function y=trreconstruct(N)
reconstructs the current partials
global: tracks, fadein, fadeout
input:
N : grain size
output:
y : reconstructed grain

copyright (C) 2005 Bert Greevenbosch

function y=trreconstruct(N)

global tracks;
global fadein;
global fadeout;
dny=length(fadein);
y=zeros(1, dny);
phases=zeros(N/2+1, 1);
for k=1:N/2+1
bin=tracks(k, 7);
if bin"=0
if tracks(k, 5)"=0 | tracks(bin, 2)"=0
AO=tracks(bin, 2);
Al=tracks(k, 5);
phi=(0:dny—1)*tracks(k, 4)+tracks(bin, 3);
y=y+(AO*fadeout+Alxfadein).xcos(phi);
tracks(bin, 2)=0; % this bin is done
end
phases(k)=dnyxtracks(k, 4)+tracks(bin, 3);
else
if tracks(k, 5)"=0 % fade in
Al=tracks(k, 5);
phi=(—dny:—1)«tracks(k, 4)+tracks(k, 6);
y=y-+Alxfadein.xcos(phi);
phases(k)=tracks(k, 6); % keep this phase
end
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end
end
for k=1:N/2+1
if tracks(k, 2)"=0 % frequency not done yet; fade out
AO0=tracks(k, 2);
phi=(0:dny—1)«tracks(k, 1)+tracks(k, 3);
y=y+AOxfadeout.xcos(phi);
end
end
tracks (:, 1:2)=tracks (:, 4:5);
tracks (:, 3)=princarg(phases);
for k=1:N/2+1
if tracks(k, 5)==0
tracks (k, 1:3)=zeros(1, 3);
end
end

4.7 The tracking phase vocoder using the bisection method

4.7.1 trbisect.m

% y=trbisect(x, N, Z, overlap, stretch)

%

% implementation of the tracking vocoder using the bisection method
%

% input:

%

% x : input signal

% N : window size

% Z : number of zeros for zero padding

% overlap : overlap factor
% stretch : time—stretch factor

% output:

%y : time—stretched signal

X

% copyright (C) 2005 Bert Greevenbosch
function y=trbisect(x, N, Z, overlap, stretch)

global fadein;
global fadeout;
global tracks;

x=torow(x);
window=cos((—N/2:N/2—1)*pi/N)."2;
dnx=round((1—overlap)*N);
nx=N/2+1+dnx;
dny=round(dnxxstretch);
ny=dny;
tracks=zeros(N/2+1, 6);
y=zeros(1, length(x)*stretch);
fadein=—.5xcos((0:dny—1)xpi/dny)+.5;
fadeout=.5xcos((0:dny—1)xpi/dny)+.5;
while(nx<length(x)—N/2—dnx)
[ampl2, dphi, phases]=trbisectpeak (x(nx—N/2:nx+N/2—1).xwindow, Z);
trmatch(dphi, ampl2, phases, N);
y(ny—dny+1:ny)=trreconstruct(N);
nx=nx+dnx;
ny=ny+dny;
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

disp(sprintf(’%1.5f;_%d_lines’, nx/length(x), length(phases)));
end;

y=y*max(abs(x))/max(abs(y));

.7.2 trbisectpeak.m

function [ampl2, dphi, phases]=trbisectpeak(x, Z);

applies peak detection to the signal x.

uses the bisection method

input:

X : input signal

Z : number of zeros for zero—padding

output:

ampl2 : measured amplitudes belonging to the peaks

dphi : measured frequency between the peaks of the current measurement
and the previous measurement
phases : phases belongint to the peaks

copyright (C) 2005 Bert Greevenbosch

function [ampl2, dphi, phases|=trbisectpeak(x, Z);

x=torow(x);
N=length(x);
z=fTt(fitshift ([zeros(1, 0.5%Z), x, zeros(1, 0.5xZ)]));
y=abs(z);
phi2=princarg(angle(z));
k=2;

n=0;

ampl2=0;

phases=0;

dphi=0;

for k=2:(N+Z)/2

if y(k—1)<y(k) & y(k+1)<=y(k) & y(k)>1
if y(k—1)>y(k+1)
zetal=k—1;
zeta2=k;
else
zetal=k;
zeta2=k+1;
end
yl=abs(y(zetal))
y2=abs(y(zeta2))
zetal=(zetal—1)*2xpi/(N+2Z);
zeta2=(zeta2—1)x2xpi/(N+2Z);

)
)

omegal=zetal;
omega2=zeta2;

sg=sign(yl+ws(zeta2—omegal, N)—y2sws(zetal —omegal, N));
for m=1:10
xi=(omegal+omega2)/2;

res=ylxws(zeta2—xi, N)—y2*ws(zetal —xi, N);
if res==0
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break;
end
if resxsg>0
omegal=xi;
else
omega2=xi;
end

end
xi=(omegal+omega2)/2;
A = yl/ws(zetal—xi, N);

n=n+1;
ampl2(n)=A;
dphi(n)=xi;
phases(n)=phi2(k);

end
k=k+1;
end

4.7.3 rs.m

% function f=rs(omega, N);

%

% calculates the DTFT in omega of the rectangular window
%

% r[n]=1 if -N/2 <n <N/2

% 0 otherwise

%

% copyright (C) 2005 Bert Greevenbosch

function f=rs(omega, N)

if (omega==0)
f=(N-1);
else
f=sin((N—1)xomega/2)/sin(omega/2);
end

4.7.4 ws.m

% function f=ws(omega, N);

ZZ calculates the DTFT in omega of the N point Hanning window, defined by
Zz w[n] = cos([-N/2+41:—N/2—1]xpi/N])."2

ZZ copyright (C) 2005 Bert Greevenbosch

function f=ws(omega, N);

f=.25%rs(omega—2%pi/N, N)+.25+rs(omega+2+pi/N, N)+.5xrs(omega, N);
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4.8 The tracking phase vocoder with guides

4.8.1 trguides.m

% y=trguides(x, N, Z, overlap, stretch)

%

% Applies the tracking phase vocoder with guides to the signal x
%

% input:

%

% x : input signal

% N : window size

% Z : number of zeros to append for zero—padding

% overlap : amount of overlap between succesive measurements
% stretch : time—stretch factor

%

% output:

%

%y : time—stretched signal

%

% copyright (C) 2005 Bert Greevenbosch

function y=trguides(x, N, Z, overlap, stretch)

global fadein;
global fadeout;
global lines;
global tracks;
global xlat;
global y;

x=torow(x);
window=sin((0:N—1)xpi/N)."2;
dnx=round((1—overlap)*N);
dny=round(dnxxstretch);
nx=N/2+1+dnx;
dpsi=(0:(N+Z)/2)*dnx*2xpi/(N+Z);
[A, phil]=calcAphi(x(1:N).xwindow, Z);
tracks=zeros(N/2+1, 6);
lines =zeros(N/2+1, 3);
xlat=zeros(N/2+1, 1);
y=zeros(1, ceil(length(x)/dnx)*dny+dny+1);
c=1;
fadein=—.5xcos((0:dny—1)*pi/dny)+.5;
fadeout=.5xcos((0:dny—1)xpi/dny)+.5;
while(nx<=length(x)—N/2+1)
[ampl2, dphi, phi2, phases|=trpeak(x(nx—N/2:nx+N/2—1).xwindow, phil, dpsi, dnx, Z);
trmatch(dphi, ampl2, phases, N);
trguidesmatch(c, dny, N);
trguidesreconstruct (N);
nx=nx+dnx;
c=c+1;
phil=princarg(phi2);
disp(sprintf(’%1.5f;_%d_lines’, nx/length(x), length(phases)));
end;
trguidesreconstructlast (N);

y=yx*max(abs(x))/max(abs(y));
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4.8.2 trguidesmatch.m

% function trguidesmatch(c, n, N)

%

% matches the partials to the guides

%

% global: tracks, lines, xlat

%

% input:

%

% ¢ = number of the grain (first grain : 0, second grain : 1, ...)
% n = number of samples between successive grains in the reconstruction
% N = grain size of the measurements

%

% copyright (C) 2005 Bert Greevenbosch

function trguidesmatch(c, n, N)

global tracks;
global lines;
global xlat;

xlatnew=zeros(N/2+1, 1);
phases=zeros(N/2+1, 1);
oldlen=lines (:, 2);
for k=1:N/2+1
bin=tracks(k, 7);
if bin"=0 % matched
addr=xlat(bin);
1=lines(addr, 2)+1;
lines (addr, 2)=l; % length
lines (addr, 3)=0; % sleep counter;
lines (addr, 1x2+3)=tracks(k, 4); % frequency
lines (addr, 1%2+4)=tracks(k, 5); % amplitude
tracks(bin, 2)=0; % this bin is done
xlatnew (k)=addr;
phases(k)=tracks(bin, 3)+nxtracks(k, 4);
else
if tracks(k, 5)"=0 % fadein, birth of track
addr=trguidesgetline(k);
xlatnew(k)=addr;
lines (addr, 1)=c;

lines (addr, 2)=1;
lines (addr, 3)=0;
lines (addr, 4)=tracks(k , 6); % phase
lines (addr, 5)=tracks(k , 4); % frequency
lines (addr, 6)=tracks(k, 5); % amplitude
phases(k)=tracks(k, 6);
end
end
end

tracks (:, 1:2)=tracks (:, 4:5);

tracks (:, 3)=princarg(phases);

dlen=lines(:, 2)—oldlen;

for addr=1:N/2+1
if dlen(addr)==0 & lines(addr, 2)"=0 % no match and length nonzero

lines (addr, 3)=1; % line done

end

end

xlat =xlatnew;

for k=1:N/2+1
if tracks(k, 5)==0
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tracks(k, 1:3)=zeros(1, 3);
end
end

4.8.3 trguidesreconstruct.m

% function trguidesreconstruct(N)

%

% reconstructs finished lines into the target signals
%

% global: fadein, fadeout, y, lines, xlat, tracks
%

% input:

%

% N : size of the grain used for the measurements
%

% copyright (C) 2005 Bert Greevenbosch

function trguidesreconstruct(N)

global fadein;
global fadeout;
global y;
global lines;
global xlat;
global tracks;

dny=length(fadein);
for k=1:N/2+1
if lines (k, 3) & lines (k, 2)>0
x=0;
phase=lines(k, 4);
dphase=lines(k, 5);
totfreq =dphase;
Al=lines(k, 6);
x(1:dny)=(fadeinxA1).xcos(phase+(—dny:—1)xdphase);
for m=1:lines(k, 2)—1
A0=lines(k, m*2+4);
Al=lines(k, m*2+46);
dphase=lines(k, m*2+5);
totfreq =totfreq+dphase;
x(m*dny+1:(m+1)*dny)=(fadeout*A0+fadein*Al).xcos(phase+(0:dny—1)*dphase);
phase=phase+dnyx*dphase;
end
m=lines(k, 2);
AO0=lines(k, mx2+4);
dphase=lines(k, m*2+3);
totfreq =totfreq+dphase;
totfreq =totfreq/(lines (k, 2)+1);
x(m*dny+1:(m+1)*dny)=(fadeout*A0).*cos(phase+(0:dny—1)xdphase);
disp(sprintf(’line_ended:_start_%d;_length._%d;_address:_-%d;_average_frequency:.%1.5f, ...
lines (k, 1), lines(k, 2), k, totfreq));
y((lines (k, 1)—1)*dny+1:lines(k, 1)*dny+m=dny)=y((lines(k, 1)—1)*dny+1:lines(k, 1)*dny+ms*dny)-+x;
lines (k, 1:3)=zeros(1, 3);
end
end
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4.8.4 trguidesreconstructlast.m

% function trguidesreconstructlast (N)

%

% reconstructs the unfinished guides at the end of the process
%

% global: lines

%

% input:

%

% N = grain size used for measurements
%

% copyright (C) 2005 Bert Greevenbosch
function trguidesreconstructlast(N)

global lines;
for k=1:N/2+1
if lines (k, 2)"=0
lines (k, 3)=1;
end
end
trguidesreconstruct (N);

4.8.5 trguidesgetline.m

% function addr=trguidesgetline(k);
%

% finds free space in lines structure
%

% global: lines

%

% input:

%

% k  : frequency bin

%

% output:

%

% addr : index of free space in lines
%

% copyright (C) 2005 Bert Greevenbosch

function addr=trguidesgetline(k);

global lines;
sz=size(lines );
N=sz(1);
addr=k;
nu=0;
while lines(addr, 2)"=0 & nu™=2
addr=addr+1;
if addr>N/2+1
addr=1;
nu=nu+1;
end
end
if nu==2
disp(’[ERROR]_expansion_of_lines._neccessary’);
addr=N/2+2;
end
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4.9 The tracking phase vocoder used as a clarinet filter

4.9.1 trclar.m

% function [y1, y2]=trclar(x, N, Z, overlap)

%

% input:

%

% x : input signal

% N : window size

% Z : number of zeros for zero—padding
% overlap : overlap factor

%

% output:

%

% y1 : clarinet signal

% y2 : non—clarinet signal
%

% copyright (C) 2005 Bert Greevenbosch
function [y1, y2]=trvoc(x, N, Z, overlap)

global fadein;
global fadeout;
global tracks;

x=torow(x);
window=sin((0:N—1)*pi/N)."2;
dn=round((1—overlap)*N);
nx=N/2+1+dn;
ny=dn;
dpsi=(0:(N+Z)/2)*dn*2xpi/(N+Z);
[A, phil]=calcAphi(x(1:N).*window, Z);
tracks=zeros(N/2+1, 6);
yl=zeros(1, length(x));
y2=y1;
fadein=—.5%cos((0:dn—1)*pi/dn)+.5;
fadeout=.5xcos((0:dn—1)*pi/dn)+.5;
while(nx<length(x)—N/2—dn)
[ampl2, dphi, phi2, phases]|=trpeak(x(nx—N/2:nx+N/2—1).xwindow, phil, dpsi, dn, Z);
trmatch(dphi, ampl2, phases, N);
clar=trdetclar(N);
[yl(ny—dn+1:ny), y2(ny—dn+1:ny)]=trclarreconstruct(clar, N);
nx=nx+dn;
ny=ny-+dn;
phil=princarg(phi2);
disp(sprintf(’%1.5f;_%d_lines’, nx/length(x), length(phases)));
end;

mul=max(abs(x))/max(abs(yl+y2));
yl=ylsmul;
y2=y2*mul;

4.9.2 trdetclar.m

% function clar=trdetclar(N)

%

% marks partials that are part of a clarinet tone
%

% global: tracks

%
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% input:

%

% N : grain size

%

% output:

%

% clar : vector of zeros and ones; clar (k)==1 if the bin k is part of a
% clarinet tone.

%

% copyright (C) 2005 Bert Greevenbosch

function clar=trdetclar(N);
global tracks;

clar=zeros(N/2+1, 1);
[maxamp, idx]=max(tracks(:, 5));
basefreq=tracks(idx, 4);
if (basefreq>0)
freq=basefreq;
while freq<pi
bin=floor(Nxfreq/(2xpi));
if(bin>1)
clar(bin—1)=1;
end
if (bin>0)
clar(bin )=1;
end
if (bin<N/2+1)
clar (bin+1)=1;
end
freq=freq+basefreq;
end
end

4.9.3 trclarreconstruct.m

% function [y1, y2]=trclarreconstruct(clar, N)

%

% reconstructs the current partials into either the clarinet signal or the
% non—clarinet signal

%

% global: tracks, fadein, fadeout

%

% input:

%

% clar : vector containing information about which bins are clarinet bins
% N : grain size

%

% output:

%

% yl : clarinet grain

% y2 : non—clarinet grain

%

% copyright (C) 2005 Bert Greevenbosch

function [y1, y2]=trclarreconstruct(clar , N)
global tracks;

global fadein;
global fadeout;
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dny=length(fadein);
yl=zeros(1, dny);
y2=yl;
phases=zeros(N/2+1, 1);
for k=1:N/2+1
z=zeros(1, dny);
bin=tracks(k, 7);
if bin"=0
if tracks(k, 5)"=0 | tracks(bin, 2)"=0
AO0=tracks(bin, 2);
Al=tracks(k, 5);
phi=(0:dny —1)xtracks(k, 4)+tracks(bin, 3);
z=(AOxfadeout+Alxfadein).xcos(phi);
tracks(bin, 2)=0; % this bin is done
end
phases(k)=dnyx=tracks(k, 4)+tracks(bin, 3);
else
if tracks(k, 5)"=0 % fade in
Al=tracks(k, 5);
phi=(—dny:—1)xtracks(k, 4)+tracks(k, 6);
z=Alxfadein.xcos(phi);
phases(k)=tracks(k, 6); % keep this phase
end
end
if clar(k)==1
yl=yl+tz;
else
y2=y2+z;
end
end
for k=1:N/2+1
if tracks(k, 2)"=0 % frequency not done yet; fade out
AO0=tracks(k, 2);
phi=(0:dny—1)xtracks(k, 1)+tracks(k, 3);
z=A0xfadeout.xcos(phi);
if clar (k)==1
yl=yl+z;
else
y2=y2+z;
end
end
end
tracks (:, 1:2)=tracks (:, 4:5);
tracks (:, 3)=princarg(phases);
for k=1:N/2+1
if tracks(k, 5)==0
tracks (k, 1:3)=zeros(1, 3);
end
end
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4.10 The tracking phase vocoder with guides used as a clar-
inet filter

4.10.1 trclarguides.m

% [y1, y2]=trclarguides(x, N, Z, overlap, frac)

0

% Modification of the tracking phase vocoder with guides to extract the
% clarinet from a signal x

%

% input:

%

% x : input signal

% N : window size

% Z : number of zeros to append for zero—padding

% overlap : amount of overlap between succesive measurements
% frac : required amount of partials marked as clarinet for a line to be
% marked as clarinet

%

% output:

%

% y1 : clarinet signal

% y2 : non—clarinet signal

%

% copyright (C) 2005 Bert Greevenbosch
function [y1, y2]=trclarguides(x, N, Z, overlap, frac)

global fadein;
global fadeout;
global lines;
global tracks;
global xlat;
global y1;
global y2;

x=torow(x);
window=sin((0:N—1)*pi/N)."2;
dn=round((1—overlap)*N);
nx=N/2+1+dn;
dpsi=(0:(N+Z)/2)*dn*2*pi/(N+7Z);
[A, phil]=calcAphi(x(1:N).*window, Z);
tracks=zeros(N/2+1, 6);
lines =zeros(N/2+1, 3);
xlat=zeros(N/2+1, 1);
yl=zeros(1, length(x)+dn+1);
y2=yl;
c=1;
fadein=—.5%cos((0:dn—1)*pi/dn)+.5;
fadeout=.5+cos((0:dn—1)*pi/dn)+.5;
while(nx<=length(x)—N/2+1)
[ampl2, dphi, phi2, phases|=trpeak(x(nx—N/2:nx+N/2—1).xwindow, phil, dpsi, dn, Z);
trmatch(dphi, ampl2, phases, N);
clar =trdetclar(N);
trclarguidesmatch(c, dn, N, clar );
trclarguidesreconstruct (N, frac );
nx=nx+dn;
c=c+1;
phil=princarg(phi2);
disp(sprintf(’%1.5f;_%d_lines’, nx/length(x), length(phases)));
end;
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trclarguidesreconstructlast (N, frac);
mul=max(abs(x))/(max(abs(yl+y2)));
yl=ylsmul;

y2=y2*mul;

4.10.2 trclarguidesmatch.m

% function trclarguidesmatch(c, n, N, clar)

%

% matches the partials to the guides

%

% global: tracks, lines, xlat

%

% input:

%

% ¢ : number of the grain ( first grain: 0, second grain : 1, ...)

% n  : number of samples between successive grains in the reconstruction
% N : grain size of the measurements

% clar : vector containing data about which partials are part of a clarinet
% tone.

X

% copyright (C) 2005 Bert Greevenbosch
function trclarguidesmatch(c, n, N, clar)

global tracks;
global lines;
global xlat;

xlatnew=zeros(N/2+1, 1);
phases=zeros(N/2+1, 1);
oldlen=lines (:, 2);
for k=1:N/2+1
bin=tracks(k, 7);
if bin"=0 % matched
addr=xlat(bin);
1=lines(addr, 2)+1;
lines (addr, 2)=l; % length
lines (addr, 3)=0; % sleep counter;
lines (addr, 1x2+4)=tracks(k, 4); % frequency
lines (addr, 1x2+5)=tracks(k, 5); % amplitude
tracks(bin, 2)=0; % this bin is done
xlatnew(k)=addr;
phases(k)=tracks(bin, 3)+nxtracks(k, 4);
lines (addr, 4)=lines(addr, 4)+clar(k);
else
if tracks(k, 5)7=0 % fadein, birth of track
addr=trguidesgetline(k);
xlatnew(k)=addr;
lines (addr, 1)=c;

lines (addr, 2)=1;

lines (addr, 3)=0;

lines (addr, 5)=tracks(k , 6); % phase
lines (addr, 6)=tracks(k , 4); % frequency
lines (addr, 7)=tracks(k, 5); % amplitude

phases(k)=tracks(k, 6);
lines (addr, 4)=lines (addr, 4)+clar(k);
end
end
end
tracks (:, 1:2)=tracks (:, 4:5);
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tracks (:, 3)=princarg(phases);
dlen=lines(:, 2)—oldlen;
for addr=1:N/2+1
if dlen(addr)==0 & lines(addr, 2)"=0 % no match and length nonzero
lines (addr, 3)=1; % line done
end
end
xlat=xlatnew;
for k=1:N/2+1
if tracks(k, 5)==0
tracks(k, 1:3)=zeros(1, 3);
end
end

4.10.3 trclarguidesreconstruct.m

% function trclarguidesreconstruct (N, frac)

%

% reconstructs finished lines into the target signals

%

% global: fadein, fadeout, y1, y2, lines, xlat, tracks

%

% input:

%

% N : size of the grain used for the measurements

% frac : minimum fraction of partials that should be considered to be a
% part of a clarinet tone to consider the guide to contain a
% clarinet tone

%

% copyright (C) 2005 Bert Greevenbosch
function trclarguidesreconstruct(N, frac)

global fadein;
global fadeout;
global y1;
global y2;
global lines;
global xlat;
global tracks;

dny=length(fadein);
for k=1:N/2+1
if lines (k, 3) & lines (k, 2)>0

x=0;

phase=lines(k, 5);

dphase=lines(k, 6);

totfreq =dphase;

Al=lines(k, 7);

x(1:dny)=(fadeinxAl).xcos(phase+(—dny:—1)+dphase);

for m=1:lines(k, 2)—1
A0=lines(k, m*2+45);
Al=lines(k, m*2+47);
dphase=lines(k, m*2+6);
totfreq =totfreq+dphase;
x(mxdny+1:(m+1)+dny)=(fadeout* AO+fadein*A1).xcos(phase+(0:dny—1)*dphase);
phase=phase+dnyx*dphase;

end

m=lines(k, 2);

A0=lines(k, m%2+75);

dphase=lines(k, mx2+4);

totfreq =totfreq+dphase;
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totfreq =totfreq/(lines (k, 2)+1);
x(mxdny+1:(m+1)*dny)=(fadeout*A0).xcos(phase+(0:dny—1)+dphase);
if (lines (k, 4)>=mxfrac) % enough marked as clarinet
disp(sprintf(’line _ended:_start_%d;_length.%d;_address: -%d;_average_frequency:_%1.5f_(clarinet)’, ...
lines (k, 1), lines(k, 2), k, totfreq));
y1((lines (k, 1)—1)xdny+1:lines(k, 1)*dny+m=xdny)=y1((lines(k, 1)—1)+dny+1:lines(k, 1)*dny+m=dny)+x;
else
disp(sprintf(’line_ended:_start_%d;_length_%d;_address:-%d;_average_frequency:_-%1.5f, ...
lines (k, 1), lines(k, 2), k, totfreq));
v2((lines (k, 1)—1)xdny+1:lines(k, 1)*dny+m=xdny)=y2((lines(k, 1)—1)*dny+1:lines(k, 1)*dny+m=dny)+x;
end
lines (k, 1:4)=zeros(1, 4);
end
end

4.10.4 trclarguidesreconstructlast.m

% function trlinesreconstructlast (N, frac)

%

% reconstructs the unfinished guides at the end of the process

%

% global: lines

%

% input:

%

% N : grain size used for measurements

% frac : minimum fraction of partials that should be considered to be a
% part of a clarinet tone to consider the guide to contain a
% clarinet tone

%

% copyright (C) 2005 Bert Greevenbosch
function trlinesreconstructlast (N, frac)

global lines;
for k=1:N/2+1
if lines (k, 2)"=0
lines (k, 3)=1;
end
end
trclarguidesreconstruct (N, frac);
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4.11 Auxiliary functions

4.11.1 play.m

% function play(x)

%

% plays the signal x at 44100 Hz

%

% copyright (C) 2005 Bert Greevenbosch

function play(x)
sound(x, 44100);

4.11.2 tocolumn.m

% function y=tocolumn(x)

%

% converges a vector x to a column vector y
%

% copyright (C) 2005 Bert Greevenbosch

function y=tocolumn(x)

sz=size(x);

if sz(1)>s2(2)
Y=x;

else
y=x’;

end

4.11.3 torow.m

% function y=torow(x)

%

% converts the vector x to a column vector y
%

% copyright (C) 2005 Bert Greevenbosch

function y=torow(x)

sz=size(x);

if sz(1)<sz(2)
Y=x;

else
y=x’

end
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aliasing, 5
bin, see frequency bin

clarinet tone, frequency content, 33
continuous wavelet transform, 29

decibel, 17

DFT, see Discrete Fourier Transform

dilatation parameter, 29

Discrete Fourier Transform, 7, 8

Discrete Wavelet Transform, 29, 30

Discrete-Time Fourier Transform, 7, 10

DTFT, see Discrete-Time Fourier Trans-
form

DWT, see Discrete Wavelet Transform

Fast Fourier Transform, 8

FFT, see Fast Fourier Transform
FFT shifting, 38, 39

Fourier atom, discrete, 28
Fourier Transform, 11

fragment, 2

frequency bin, 18

frequency unit, 5

fundamental frequency, 31

Gabor wavelet, 28

Gibbs oscillations, 18
Gibbs phenomenon, 18, 34
grain, 37

guide, 43

harmonic component, 50
harmonics, 31
Heisenberg uncertainty principle, 11, 20

impulse response, 20
instantaneous frequency, 7
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inverse DFT, 8
inverse DTFT, 10
inverse Fourier Transform, 11

low pass filter, ideal, 18

match, 41
mother wavelet, 29

note recognition, 35
Nyquist frequency, 5

partial, 6, 7

peak detection, 16, 41, 42
phase, 7

phase unwrapping, 39
phase vocoder, 37
phasor, 5

Plancherel formula, 24
principal argument, 39

quantising, 4

radians per sample, 5
rectangular window, 14

sample rate, 4

sampling, 3

scalogram, 31

Short-Time Fourier Transform, 28, 30
spectral lines, 31

spectral smearing, 10

spectrogram, 30

STFT, see Short-Time Fourier Transform

time localisation, 12
time-stretching, 37

tracking phase vocoder, 37, 41
transfer function, 18



transient component, 50
translation parameter, 29

wavelet, 28

website, 2

Whittaker Sampling Theorem, 25
window, 11

z-transform, see Discrete-Time Fourier
Transform
zero-padding, 42
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