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Introduction

This thesis is on certain aspects of differential geometry of principal fibre bundles
and vector bundles. Our results are not new (some well known, others only to ex-
perts), but for many of them the proofs are not or not easy to find in the literature.

A first example of this is the following. Let V be a finite dimensional vector
space, P (M,G) a principal fibre bundle with structure group G = Aut(V ) over a
manifold M , and π : E →M a vector bundle with fibre V , associated to P (M,G)
via the standard representation of Aut(V ) on V . Consider a connection A on
P (M,G) with curvature form ΩA and let RA be the curvature of the correspond-
ing connection DA on E. Both ΩA and RA can be viewed as forms with values in
the endomorphism bundle of E, and as such they are equal. We give a proof of
this natural fact, which we (surprisingly) were not able to find elsewhere.
Another (also quite general, but more involved) example is the Chern correspon-
dence, which is the central topic of this thesis. In particular, in Section 3.2 we
discuss an important formula, which is used in [19]. The proof of this formula is
in [19] extremely sketchy; we present here a detailed one, for which we make use
of a great portion of the results of the previous chapters.

In the following we give some comments about the contents of the thesis. For
more details on the contents of the chapters, we refer also to the introductions
heading each of them.

In the first chapter we gather basic definitions and results on vector and prin-
cipal fibre bundles, in particular about reductions, connections and curvature.
Special attention is payed to the relation between principal fibre bundles and vec-
tor bundles associated to them via representations. We try to present the material
in such a way that our text could be used as a basis for an advanced course (MSc-
level), compiling facts otherwise scattered about the literature. However, for the
sake of brevity, where results appear in standard textbooks (mainly [14] and [13]),
we mostly refer to these for proofs. In Chapter 2, besides giving some background
information about complex manifolds and complex reductive Lie groups, we show
how the material of the first chapter should be generalized to complex fibre bun-
dles, and we present some results specific of the complex case. In particular, the
main topics of this chapter are holomorphic and almost holomorphic structures
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on complex principal fibre bundles and the Chern correspondence in the vector
bundle case.

In the following we discuss in some detail the contents of Section 3.1.

Let G be a complex reductive Lie group with a compact real form K and
let P (M,G) be a principal fibre bundle over a complex manifold M , with a K-
reduction Q (M,K). Denote by GP and GQ the groups of gauge transformations
of P (M,G) and Q (M,K) respectively, i.e. the groups of sections of the adjoint
bundles P ×Ad G and Q ×Ad K. Note that GQ can be regarded as a subgroup
of GP . Consider the set C(P ) of almost holomorphic structures on P (M,G) and
the subset C(P ) of integrable ones. We have a natural action of GP on C(P ),

leaving C(P ) invariant, and C(P )/
GP (resp. C(P )/

GP ) is the set of isomorphism
classes of (almost) holomorphic structures on P (M,G). Finally, consider the set
A(Q) of connections on Q (M,K) and the subset A1,1(Q) of integrable ones, i.e.
connections whose curvature is of type (1, 1). We have a natural action of GQ on

A(Q), leaving A1,1(Q) invariant, and A(Q)/
GQ (resp. A1,1(Q)/

GQ) is the set of
gauge equivalence classes of (integrable) connections on Q (M,K).

The main result of Section 3.1 is the following (Chern correspondence).

Theorem 1 There is a natural 1-1 correspondence C(P ) 1-1←→ A(Q), equivariant
with respect to the action of GQ, such that the elements of C(P ) correspond pre-
cisely to the elements of A1,1(Q). In particular, the GQ-action on A(Q) extends
via this correspondence to a GP -action, and we get natural bijections

C(P )/
GP

1-1←→ A(Q)/
GP and C(P )/

GP
1-1←→ A1,1(Q)/

GP .

This result is known, and used for example in [19] and [23], but a rigorous proof
seems not available in the literature. The goal of Section 3.1 is not only to present
a proof of it, but also to show that the correspondence in Theorem 1 is a general-
ization of the classical Chern correspondence in the vector bundle case (as treated
for example in [13]), i.e. the bijection between semiconnections (resp. holomorphic
structures) and (integrable) h-connections for a complex vector bundle π : E →M
(whereM is a complex manifold) with an Hermitian metric h. Having this in mind,
from the beginning the treatment of vector bundles is developed parallel to that
of principal fibre bundles, and very much emphasis is placed throughout the thesis
in the relation between principal fibre bundles and associated vector bundles (see
in particular Example 1.2.10, Example 1.2.17, Proposition 1.4.9, Lemma 1.4.13,
Example 1.4.22, Proposition 2.5.5 and Example 3.1.2). It should be noticed, how-
ever, that the results regarding principal fibre bundles are proved directly, without
using the corresponding facts over vector bundles. The only exception of this is
the proof that under the bijection C(P ) 1-1←→ A(Q) the holomorphic structures
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on P (M,G) correspond precisely to the integrable connections on Q (M,K) (see
Proposition 3.1.5). Here, by reducing to the vector bundle case via a holomorphic
faithful representation of G on Cn, we make use of a deep integrability theorem
which is proved in the classical paper [1] (see Theorem 2.3.10).

Given a fixed holomorphic structure J on P (M,G), we denote by AJ,Q the
extension to P (M,G) of the connection on Q (M,K) corresponding to J under
the Chern correspondence. Note that by Theorem 1 its curvature ΩAJ, Q

is a (1, 1)-
form. One of the main goals in [19] is to show that, if M is compact, under certain
conditions on J and for certain elements C in the center of the Lie algebra of G,
there exists aK-reductionQ (M,K) of P (M,G) for which the Hermite-Einstein
equation

Λg
(
ΩAJ, Q

)
= C

is satisfied, where Λg is the contraction operator associated to a fixed Hermitian
metric g on M , mapping (1, 1)-forms on M to 0-forms. The proof and even the
precise statement of this result go far beyond the scope of this thesis. We will
only be concerned, in Chapter 4, in a necessary condition on C in order to have a
solution of the Hermite-Einstein equation.

Only a general knowledge of differentiable manifolds (including differential
forms) and Lie groups is required to read this thesis. However, we give complete
references for all non-trivial results we use. The treatment of fibre bundles and
the material we need on complex manifolds and Lie groups are developed from
the first principles.

Notation and conventions

Throughout the thesis, ”manifold” stands for ”differential (i.e. C∞) manifold”.
The tangent bundle of a manifold M will be denoted by TM and the tangent
space at a point p by TpM . When a vector X ∈ TpM is regarded as an element
of TM , it is denoted by (p,X). If X is a vector field on M , i.e. a smooth sec-
tion M → TM , then for a point p of M we denote by Xp the element X(p) of
TpM , but we prefer the second notation for vector fields with too many subscripts
(e.g.

(
X̂ h

1

)
A

). We denote the space of differential forms of degree r on M by
Ar(M). Given a smooth map f : N → M , we write f∗ for the differential and
f∗ for the pullback on forms. In this thesis a smooth map f : N → M is called
an embedding if it is an injective immersion; thus, with this definition, the image
f(N) of an embedding is not necessarily a submanifold of M (but this is the case
when f : N → f(N) is a homeomorphism, where f(N) ⊂ M has the relative
topology, see for example [9, Theorem 3.1 of Chapter 1]). Given a cover (i.e. open
cover) {Ui, i ∈ I } of a manifold M , we denote by Uij , for i, j ∈ I, the intersection
Ui ∩ Uj . All vector spaces in this thesis are real or complex finite dimensional
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vector spaces. Given a vector space V and its dual V ∗, we denote by 〈 , 〉 the dual
pairing V × V ∗ → R (resp. C). The wedge product

∧k V ∗ ×∧l V ∗ → ∧k+l V ∗,
(α, β) 7→ α ∧ β is defined for us by

(α∧β) (v1, . . . , vk+l) :=
1

(k + l)!

∑
σ

(−1)σα
(
vσ(1), . . . , vσ(k)

)
β

(
vσ(k+1), . . . , vσ(k+l)

)

for v1, . . . , vk+l ∈ V , where the summation is taken over all permutations σ of
(1, . . . , k+ l); note that the factor 1

(k+l)! does not appear in the definition given by
some textbooks. Finally, we denote by e1, . . . , en the canonical basis of Rn or Cn.

Ik wil mijn afstudeerdocent Dr. M. Lübke van harte bedanken voor de aandacht
waarmee hij mij heeft begeleid en omdat zijn aanmoediging op een moment kwam
dat ik het echt nodig had en mij veel heeft geholpen.
Ik ben mijn vrienden Federica en Sorin ook dankbaar voor hun hulp en steun.
Een speciale dank ben ik tot slot Prof. Dr. H. Geiges verschuldigd.
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Chapter 1

Fibre bundles

Definition 1.0.1 Let F and M be manifolds. A fibre bundle over M with typical
fibre F consists of a manifold E and a smooth map π : E →M (projection) such
that the condition of local triviality is satisfied, i.e. there exist a cover {Ui, i ∈ I }
of M and diffeomorphisms

θi : π−1(Ui)→ Ui × F

(local trivializations) making the following diagram commutative.

π−1(Ui) θi //

π
%%LLLLLLLLLLL
Ui × F

pr1

²²
Ui

E is called the total space of the fibre bundle and M the base space. Usually we
will write π : E → M (or simply E) for a fibre bundle over M with total space
E and projection π : E → M . A section of a fibre bundle π : E → M is a
smooth map σ : M → E such that π ◦ σ = idM , i.e. σ (p) ∈ Ep for all p ∈ M . If
there is a global trivialization θ : E → M ×F , then E is called a trivial bundle.
A homomorphism between two fibre bundles πE : E → M and πF : F → N
consists of two smooth maps f : E → F and f ′ : M → N such that

πF ◦ f = f ′ ◦ πE .

If M = N , f ′ : M → M is the identity and f : E → F is a diffeomorphism,
then f is called an isomorphism between the fibre bundles πE : E → M and
πF : F →M .

The set Ep := π−1 (p) is called the fibre of E over the point p ∈ M . It is
a closed submanifold of E, diffeomorphic to F . In the two special cases of fibre
bundles that we will consider, the fibres will have an additional structure: a linear
structure in the case of vector bundles and the structure of a G-space, where G is
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some Lie group, in the case of principal fibre bundles.

In the first two paragraphs of this chapter we will give an outline of those as-
pects of vector bundles and principal fibre bundles that are needed in the rest
of the thesis. In particular, we will focus on the correspondence between vector
bundles and principal fibre bundles with structure group GL (n,R).

A connection on a vector bundle is a geometric structure which enables us to
differentiate sections in the direction of vector fields of the base manifold. A con-
nection on a principal fibre bundle is a horizontal distribution on the total space
which is invariant by the action of the structure group. In Paragraphs 1.3 and
1.4 we will treat connections on vector bundles and on principal fibre bundles and
we will show that these two concepts coincide when we consider principal fibre
bundles with structure group GL (n,R) and the associated vector bundles.

Standard references for this chapter are for example [14], [11], [27], [28], [29],
[22] (for 1.1. and 1.3), and [13] (for 1.3).

1.1 Vector bundles

Definition 1.1.1 A (real) vector bundle of rank n over a manifold M is a
fibre bundle π : E →M with typical fibre Rn and local trivializations

θi : π−1(Ui)→ Ui × Rn

such that for all i, j ∈ I and for all p ∈ Uij the map

Rn
∼=−→ {p} × Rn θi ◦ θ−1

j |{p}×Rn−−−−−−−−−→ {p} × Rn ∼=−→ Rn (1.1)

is linear, where we identify Rn with {p} × Rn by v 7→ ( p, v ).

Linearity of (1.1) allows us to give to each fibre Ep the structure of a real vector
space. We can do this by requiring the composition

θip : Ep
θi|Ep−−−→ {p} × Rn ∼=−→ Rn

to be an isomorphism of vector spaces for some (and hence for all) i ∈ I with
p ∈ Ui.

Example 1.1.2 The tangent bundle TM of a manifold M is a vector bundle
over M with rank n = dim(M).
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The set of all sections of a vector bundle π : E → M is denoted by Γ(E). It
has a natural structure of a real vector space 1. Note that every vector bundle
π : E → M has a zero section, i.e. the section σ : M → E, p 7→ 0 ∈ Ep. It is the
zero vector of the vector space Γ(E).

Definition 1.1.3 A homomorphism (or vector bundle map) between two
vector bundles πE : E → M and πF : F → M over the same base space M is
a smooth map f : E → F such that f(Ep) ⊆ Fp for all p ∈M and f |Ep : Ep → Fp
is linear. If f : E → F is a diffeomorphism, then f is called a (vector bundle)
isomorphism.

Lemma 1.1.4 Let πE : E → M and πF : F → M be vector bundles and let
f : E → F be a vector bundle map such that f |Ep : Ep → Fp is an isomorphism
for all p ∈M . Then f is a vector bundle isomorphism.

For a proof of this, see [11, Theorem 2.5 of Chapter 3].

Denote by Hom (E,F ) the set of all vector bundle maps E → F . It has the struc-
ture of a real vector space in a natural way.

Let π : E → M be a vector bundle and let { θi : π−1(Ui)→ Ui × Rn , i ∈ I }
be local trivializations with respect to a cover {Ui, i ∈ I } of M . For every p ∈ Uij
we can define a vector space isomorphism θij (p) : Rn → Rn to be the composition
θip ◦ θ −1

jp . The functions { θij : Uij → GL (n,R) } are called the transition
functions of the vector bundle π : E →M with respect to the cover {Ui, i ∈ I }
and the trivializations {θi}. Note that they are smooth and that they satisfy the
cocycle condition 2

θij θjk = θik , (1.2)

where multiplication is inGL (n,R). In particular, from (1.2) it follows that θii = I
and θji = θ −1

ij .

We can use transition functions to construct global objects on vector bundles
by gluing together local definitions given on the domain of the trivializations. In
the next examples we will show how to do this for sections and vector bundle
maps.

Example 1.1.5 Let π : E → M be a vector bundle with local trivializations
{ θi : π−1(Ui)→ Ui × Rn, i ∈ I } with respect to a cover {Ui, i ∈ I } of M . Then
any set of smooth functions {σi : Ui → Rn, i ∈ I } induces a well-defined global
section σ : M → E, provided that θij σj = σi: for p ∈M , choose i ∈ I with p ∈ Ui
and define σ (p) := θ −1

ip (σi(p) ).

1 See [11, Proposition 1.6 of Chapter 3] for more details.
2 Equations of this type are always to be understood as holding on the common domain of

definition.
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Example 1.1.6 Let πE : E → M and πF : F → M be two vector bundles over
the same base space M with trivializations { θEi : π−1

E (Ui) → Ui × Rn, i ∈ I }
and { θ Fi : π−1

F (Ui) → Ui × Rm, i ∈ I } with respect to a cover {Ui, i ∈ I } of
M 3. Then any set of smooth maps { fi : Ui →M(n ×m), i ∈ I } determines a
well-defined vector bundle map f : E → F , provided that θ Fij fj = fi θ

E
ij on Uij: for

v ∈ E, choose i ∈ I with p = πE (v) ∈ Ui and define f(v) :=
(
θ Fip

)−1
(
fi(p) θEip (v)

)
.

Example 1.1.7 Suppose now that the vector bundles E and F of Example 1.1.6
both have rank n and that a set of smooth maps { fi : Ui → GL (n,R), i ∈ I }
is given such that θ Fij fj = fi θ

E
ij on Uij. Then we have also the smooth maps

{ f−1
i : Ui → GL (n,R), i ∈ I } which satisfy θEij f

−1
j = f−1

i θ Fij on Uij. It follows
that we get vector bundle maps f : E → F and f ′ : F → E induced by the { fi,
i ∈ I } and { f−1

i , i ∈ I } respectively. It is easy to see that f and f ′ are inverse
of each other, so in particular E and F are isomorphic vector bundles.

Transition functions can also be used to reconstruct the whole bundle, as explained
in the following proposition.

Proposition 1.1.8 Let M be a manifold and let {Ui, i ∈ I } be a cover of M .
Suppose a set of smooth maps { θij : Uij → GL (n,R) } is given satisfying the
cocycle condition (1.2). Then there is a unique (up to isomorphism) vector bundle
of rank n over M with the {θij} as transition functions with respect to some system
of local trivializations.

Proof Define
E :=

.⋃

i∈I
Ui × Rn /∼ ,

where ( i, p, x ) ∼ ( j, q, y ) by definition if p = q ∈ Uij and x = θij (p) (y) (note
that the cocycle condition implies that this is a well-defined equivalence rela-
tion on the set

⋃ Ui × Rn). Denote by ( i, p, x ) /∼ ∈ E the equivalence class of
( i, p, x ) ∈ ⋃ Ui × Rn.
Define a map π : E → M by ( i, p, x ) /∼ 7→ p and let θi : π−1(Ui) → Ui × Rn
be the bijection ( i, p, x ) /∼ 7→ ( p, x ) for all i ∈ I. We can define a differentiable
structure on E by requiring the θi’s to be diffeomorphisms: this makes sense since
θi can be obtained from a different θj (with Uij 6= ∅) by composing it with the
smooth map Uij × Rn → Uij × Rn, ( p, x ) 7→ (

p, θij(p)x
)
.

Then π : E →M becomes a vector bundle, with the {θij} as transition functions.

Uniqueness follows from the fact that two vector bundles over the same mani-
fold having the same transition functions on a given cover are isomorphic (put
{ fi : Ui → GL (n,R), p 7→ I } in Example 1.1.7). ¤

3 Without loss of generality we can use the same cover {Ui, i ∈ I } of M for the trivializations
of E and F .
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It is possible to prove that every (multi-)linear operation on vector spaces (for
example V 7→ V ∗, (V,W ) 7→ V ⊗W etc) induces in a natural way a corresponding
operation on vector bundles. For a proof of this general principle see [17, §3.4],
[11, §5.6] or [22, §3(f)]. We will just give a few examples of this.

Example 1.1.9 Let π : E → M be a vector bundle with transition functions
{ θij : Uij → GL (n,R) } with respect to a cover {Ui, i ∈ I } of M . Define

θ ∗
ij : Uij → GL (n,R) , p 7→ (

θij(p) t
)−1

.

The {θ ∗
ij } satisfy the cocycle condition (1.2), thus by Proposition 1.1.8 they are

the transition functions of a real vector bundle E∗ over M , called the dual bundle
of E. We have (E∗)p ∼= (Ep)∗ in a canonical way. The isomorphism is defined as
follows. For ( i, p, x ) /∼ ∈ (E∗)p and ( i, p, y ) /∼ ∈ Ep (notation as in the proof of
Proposition 1.1.8) we set

〈 ( i, p, x ) /∼ , ( i, p, y ) /∼ 〉 := xt · y

(note that this is well-defined). Observe that the construction of E∗ does not
depend on the set of transition functions defining E. Indeed, suppose that another
set of transition functions { θ′ij : Uij → GL (n,R) } (without loss of generality we
can assume the cover to be the same as above) determines the same vector bundle
E. Consider the functions { fi : Ui → GL (n,R), p 7→ θip ◦ θ′ip−1, i ∈ I }, where
{ θi : π−1(Ui)→ Ui×Rn , i ∈ I } and { θ′i : π−1(Ui)→ Ui×Rn , i ∈ I } are some
systems of local trivializations for E, inducing the transition functions { θij } and
{ θ′ij } respectively. Then it holds θij fj = fi θ

′
ij and so θ ∗

ij

(
f t
j

)−1 =
(
f t
i

)−1
θ′ij

∗.
By Example 1.1.7, this implies that { θ ∗

ij } and { θ′ij∗ } determine the same vector
bundle E∗ (up to isomorphism). A similar argument can be used to show that if
E and E′ are isomorphic vector bundles, then so are E∗ and E′ ∗.

Example 1.1.10 Let πE : E → M and πF : F → M be vector bundles with
transition functions { θEij : Uij → GL (n,R) } and { θ Fij : Uij → GL(m,R) } with
respect to a common cover {Ui, i ∈ I } of M . Define

θij : Uij → GL(n+m,R ) , p 7→ θEij (p)⊕ θ Fij (p) =
(
θEij (p) 0

0 θ Fij (p)

)
.

The {θij} satisfy the cocycle condition (1.2), thus by Proposition 1.1.8 they are
the transition functions of a real vector bundle E ⊕ F over M , called the direct
(or Whitney) sum of E and F . We have (E ⊕ F )p ∼= Ep ⊕ Fp in a canonical
way. The isomorphism is given by the well-defined map Ep ⊕ Fp → (E ⊕ F )p,

(
( i, p, x ) /∼ , ( i, p, y ) /∼

) 7→ ( i, p,
(
x
y

)
) /∼

14



(notation as in the proof of Proposition 1.1.8). Note that the construction of E⊕F
does not depend on the sets of transition functions defining E and F . Moreover,
if E, E′ and F , F ′ are isomorphic vector bundles, then so are E⊕F and E′⊕F ′.
The proof of this is similar to that in Example 1.1.9.

Example 1.1.11 Let πE : E → M and πF : F → M be vector bundles as in
Example 1.1.10. Define 4

θij : Uij → GL(nm,R) , p 7→ θij (p) = θ Eij (p)⊗ θ Fij (p) .

The {θij} satisfy the cocycle condition (1.2), thus by Proposition 1.1.8 they are
the transition functions of a real vector bundle E ⊗ F over M , called the tensor
product of E and F . We have (E ⊗ F )p ∼= Ep ⊗ Fp in a canonical way. To see
this, apply the universal factorization property of the tensor product to the bilinear
(well-defined) map Ep × Fp → (E ⊗ F )p,

(
( i, p, x ) /∼ , ( i, p, y ) /∼

) 7→ ( i, p, x⊗ y ) /∼

(notation as in the proof of Proposition 1.1.8) 5. Note that the construction of
E ⊗ F does not depend on the sets of transition functions defining E and F .
Moreover, if E, E′ and F , F ′ are isomorphic vector bundles, then so are E ⊗ F
and E′ ⊗ F ′. The proof of this is similar to that in Example 1.1.9.

Example 1.1.12 Let π : E →M be a vector bundle as in Example 1.1.9 and let
r ≤ n be a positive integer. Define 6

∧r θij : Uij → GL
((

n
r

)
,R

)
, p 7→ ∧r (

θij (p)
)
.

The {∧r θij } satisfy the cocycle condition (1.2), thus by Proposition 1.1.8 they
are the transition functions of a real vector bundle

∧r E over M , called the r-th
exterior power of E. We have

( ∧r E
)
p
∼= ∧r Ep in a canonical way. To see

4 Given two matrices A = (aij) ∈ M(n × n,R) and B = (bij) ∈ M(m ×m,R), the matrix
A⊗B ∈M(nm× nm,R) (Kronecker product of A and B) is defined by

A⊗B =

0
B@

A b11 . . . A b1m

...
. . .

...

A bm1 . . . A bmm

1
CA .

We have (A1 ⊗B1)(A2 ⊗B2) = A1A2 ⊗B1B2 (see [20, §43]).
5 Given x = (x1, . . . , xn)t ∈ Rn and y = (y1, . . . ym)t ∈ Rm, x ⊗ y ∈ Rnm is defined to be

(x1y1, . . . , xny1, . . . , x1ym, . . . , xnym)t.
6 Given a matrix A = (aij) ∈M(n×n,R) and a positive integer r ≤ n, the matrix

Vr (A) in

Mą ţ
n
r

ű
×

ţ
n
r

ű
,R

ć
(r-adjugate of A) is defined as follows. Denote by ai1...ir

j1...jr
the r-rowed inner

determinants of A. Then the entries of
Vr (A) are the numbers ai1...ir

j1...jr
in lexicographic order.

We have
Vr (AB) =

Vr (A)
Vr (B) (see [20, §45]).
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this, apply the universal factorization property of the exterior power to the r-linear
alternating (well-defined) map Ep × . . .× Ep →

( ∧r E
)
p
,

(
( i, p, x1 ) /∼, . . . , ( i, p, xr ) /∼

) 7→ ( i, p,
∧r (x1, . . . , xr) ) /∼

(notation as in the proof of Proposition 1.1.8) 7. Note that the construction of∧r E does not depend on the set of transition functions defining E. Moreover, if
E and E′ are isomorphic vector bundles, then so are

∧r E and
∧r E′. The proof

of this is similar to that in Example 1.1.9.

Iterating the constructions of Examples 1.1.9 - 1.1.12, we can get any combination
of direct sum, tensor product and exterior power of two or more vector bundles
over the same manifold M and of their duals.

Example 1.1.13 Given vector bundles πE : E → M and πF : F → M , we can
define the vector bundle E∗ ⊗ F over M . We have

(E∗ ⊗ F )p = (Ep)∗ ⊗ Fp = Hom (Ep, Fp) .

This gives a correspondence between sections of E∗ ⊗ F and vector bundles maps
E → F , and this correspondence is actually a vector space isomorphism

Γ (E∗ ⊗ F ) ∼= Hom(E,F ) . 8

Example 1.1.14 Given a vector bundle π : E → M and an integer r as in
Example 1.1.12, we can define the vector bundle

∧r E∗ (called the bundle of
r-forms of E). We have

( ∧r E∗
)
p

=
∧r (Ep)∗ .

Thus a section of
∧r E∗ gives an r-linear alternating form at each fibre Ep of E,

varying smoothly with p. In particular, Γ (
∧r TM∗ ) = Ar (M).

Example 1.1.15 Given a vector bundle π : E → M , we can define the vector
bundle E∗ ⊗E∗. We have

(E∗ ⊗ E∗)p = (Ep)∗ ⊗ (Ep)∗ = 2−Lin (Ep × Ep,R ).

Thus a section of E∗ ⊗ E∗ gives a bilinear map Ep × Ep → R on each fibre of E,
varying smoothly with p. A Riemannian metric on π : E → M is a section h
of E∗ ⊗ E∗ such that h(p) is an inner product on Ep for all p ∈M . 9

7 Given x1 = (x11, . . . , xn1)
t, . . . , xr = (x1r, . . . , xnr)

t ∈ Rn, the vector
Vr (x1, . . . , xr) is

defined to have as entries the r-rowed inner determinants of the matrix (xij) ∈ M(n × r,R) in
lexicographic order.

8 The notation Hom (E, F ) is often used in the literature to denote the vector bundle E∗⊗F .
In this thesis instead by Hom (E, F ) we will always mean the vector space of vector bundle maps
from E to F .

9 The smoothness condition for a Riemannian metric h can equivalently be formulated as
follows: given two sections σ1, σ2 : M → E, the function M → Rn, p 7→ h(p)

ą
σ1(p), σ2(p)

ć
should be smooth.
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Finally, in the following example we show how to construct the pullback bundle
f∗E of a vector bundle π : E →M , given a smooth map f : N →M .

Example 1.1.16 Let π : E → M be a vector bundle and f a smooth map from
a manifold N to M . Consider the set f∗E := { (p, v) ∈ N × E / f(p) = π(v) }
and the surjective map π′ : f∗E → N , (p, v) 7→ p. Then we have a commutative
diagram

f∗E
f̄ //

π′
²²

E

π

²²
N

f // M

where f̄ : f∗E → E is given by (p, v) 7→ v. Let { θi : π−1(Ui)→ Ui×Rn , i ∈ I } be
a system of local trivializations for π : E →M , with respect to a cover {Ui, i ∈ I }
of M . Consider the cover { f−1(Ui), i ∈ I } of N and let

θ′i : π′ −1(
f−1(Ui)

)→ f−1
(Ui

)× Rn

be the bijection (p, v) 7→ (
p, θi f(p)(v)

)
for all i ∈ I. We can define a differentiable

structure on f∗E by requiring the θ′i’s to be diffeomorphisms: this makes sense
since θ′i can be obtained from a different θ′j (with Uij 6= ∅) by composing it with

the smooth map f−1(Uij)×Rn → f−1(Uij)×Rn, (p, x) 7→
(
p, θij

(
f(p)

)
x

)
. Then

π′ : f∗E → N becomes a vector bundle (the pullback bundle of π : E →M with
respect to the map f : N →M) and f̄ : f∗E → E a vector bundle map. Note that
the transition functions of f∗E with respect to the local trivializations { θ′i, i ∈ I }
are given by θ′ij = f∗ θij.

We conclude this section with a lemma that will be needed in §3.

Lemma 1.1.17 Let πE : E → M and πF : F → M be vector bundles. Then we
have:

Γ (E∗ ⊗ F ) ∼= Hom(E,F ) ∼= {λ : Γ(E)→ Γ(F ) linear over C∞(M) }
∼= Γ(E∗)⊗C∞(M) Γ(F )

where ”∼=” means ”isomorphic as C∞(M)-module”. In particular, Γ (E ⊗ F ) ∼=
Γ(E)⊗C∞(M) Γ(F ).

To prove this we need the following lemma.

Lemma 1.1.18 Let πE : E → M and πF : F → M be vector bundles and let
λ : Γ(E)→ Γ(F ) be a C∞(M)-linear map. Then for all σ ∈ Γ(E) and p ∈M the
value of λ(σ) at p depends only on σ(p).

17



Proof Let p ∈ M . We have to show that if σ, η are sections of E with
σ(p) = η(p) then λ(σ) (p) = λ(η) (p), or equivalently that if σ is a section of E
with σ(p) = 0 then λ(σ) (p) = 0. Observe first that if λ : Γ(E) → Γ(F ) is linear
over C∞(M), then λ is a local operator, i.e. for σ ∈ Γ(E) the value of λ(σ) at p
depends only on the value of σ in a neighborhood of p, i.e. if we have σ, η ∈ Γ(E)
with σ|U = η|U for some U ⊂M with p ∈ U , then λ(σ) (p) = λ(η) (p). To see this,
take a function ψ ∈ C∞(M) with supp (ψ) ⊂ U and ψ(p) = 1; then ψ σ = ψ η and
ψ λ(σ) = λ(ψ σ) = λ(ψ σ) = ψ λ(η), in particular λ(σ) (p) = λ(η) (p). Consider
now a section σ ∈ Γ(E) with σ(p) = 0. Let U ⊂ M be a neighborhood of p
and u1, . . . , un a local frame of E on U . Then σ|U =

∑
σi ui where the σi’s are

functions on U with σi (p) = 0. Take a function ψ ∈ C∞(M) with supp (ψ) ⊂ U
and ψ|V = 1 for some open V ⊂ U with p ∈ V. Let σ′ :=

∑
σ′i u

′
i, where

σ′i |U := ψ σi, σ′i |M \U := 0 and u′i |U := ψ ui, u′i |M \U := 0. Then σ′ |V = σ|V
thus λ(σ) (p) = λ(σ′) (p) = λ

( ∑
σ′i u

′
i

)
(p) =

∑
σ′i(p)u

′
i(p) =

∑
σi(p)ui(p) = 0,

as we wanted. ¤

Proof of Lemma 1.1.17 For Γ (E∗ ⊗ F ) ∼= Hom(E,F ), see Example 1.1.13.

Hom (E,F ) ∼= {λ : Γ(E) → Γ(F ) linear on C∞(M) } can be proved as follows.
Let ϕ ∈ Hom(E,F ) and define λϕ : Γ(E)→ Γ(F ) by σ 7→ ( p 7→ ϕ

(
σ(p)

)
). Then

λϕ is linear over C∞(M) and ϕ 7→ λϕ is a homomorphism of C∞(M)-modules. Con-
versely, let λ : Γ(E)→ Γ(F ) be linear on C∞(M) and define ϕλ ∈ Hom(E,F ) by
ϕλ (v) = λ (σv)

(
π(v)

)
, where σv is a section of E with σv

(
π(v)

)
= v. By Lemma

1.1.18 this is well-defined. Observe that ϕλ is smooth, so ϕλ ∈ Hom(E,F ), and
that λϕλ

= λ and ϕλϕ = ϕ. Thus ϕ 7→ λϕ is an isomorphism of C∞(M)-modules.

Finally, we can prove as follows that {λ : Γ(E) → Γ(F ) linear over C∞(M) }
and Γ(E∗) ⊗C∞(M) Γ(F ) are isomorphic. Let ξ = τ∗ ⊗ η ∈ Γ(E∗) ⊗C∞(M) Γ(F )
and define λξ : Γ(E) → Γ(F ) by σ 7→ (

p 7→ 〈 τ∗(p), σ(p) 〉 η(p) )
. Then λξ is

linear over C∞(M) and ξ 7→ λξ is a homomorphism of C∞(M)-modules. Con-
versely, given a map λ : Γ(E) → Γ(F ) which is linear over C∞(M), we can
define ξλ ∈ Γ(E∗) ⊗C∞(M) Γ(F ) as follows. Let {Ui, i ∈ I } be a cover of
M and for i ∈ I let ui1, . . . , u

i
n be a local frame on Ui. Observe that since

λ : Γ(E) → Γ(F ) is a local operator (see Lemma 1.1.16) it induces a map
λi : Γ(E|Ui) → Γ(F |Ui) (which is linear over C∞(Ui)) for all i ∈ I. Define
ξiλ :=

∑n
α=1(u

i
α)∗ ⊗ λ (uiα) ∈ Γ(E∗|Ui) ⊗C∞(Ui) Γ(F |Ui). Then λξi

λ
= λ|Ui and

ξiλζ
= ζ for all ζ ∈ Γ(E∗|Ui)⊗C∞(Ui)Γ(F |Ui), so ξ 7→ λξ gives an isomomorphism be-

tween {λ : Γ(E|Ui)→ Γ(F |Ui) linear over C∞(Ui) } and Γ(E∗|Ui)⊗C∞(Ui)Γ(F |Ui).
In particular it follows that ξiλ and ξjλ coincide on Uij , so if we piece the { ξiλ, i ∈ I }
together using a partition of unity ofM we get an element ξλ ∈ Γ(E∗)⊗C∞(M)Γ(F )
such that ξλ (p) = ξiλ (p) for all i ∈ I and p ∈ Ui. Thus it holds λξλ = λ for all
λ : Γ(E) → Γ(F ) linear on C∞(M) and ξλξ

= ξ for all ξ ∈ Γ(E∗) ⊗C∞(M) Γ(F ).
This implies that ξ 7→ λξ is an isomomorphism of C∞(M)-modules. ¤
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Remark 1.1.19 Everything what we did in this paragraph for real vector bundles
can also be done for complex vector bundles. All definitions, examples and
results (except Examples 1.1.2 and 1.1.15) carry over to the complex case just
substituting ”R” and ”real” with ”C” and ”complex” throughout (in particular,
C∞(M) becomes C∞(M,C)). Analogues of Examples 1.1.2 and 1.1.15 will be given
in Chapter 2.

1.2 Principal fibre bundles

Definition 1.2.1 Let G be a Lie group. A principal fibre bundle with structure
group G consists of a manifold P and an action of G on P on the right such that:

1. M := P/
G has a manifold structure which makes the canonical projection

π : P →M smooth;

2. the condition of local triviality is satisfied, i.e. there exist an open cover
{Ui, i ∈ I } of M and diffeomorphisms

θi : π−1(Ui)→ Ui ×G , u 7→ (
π(u), ϕi(u)

)

where ϕi : π−1(Ui)→ G satisfies ϕi (ug) = ϕi (u) g for all u ∈ π−1(Ui) and
g ∈ G.

In particular π : P → M is fibre bundle with typical fibre G. We will write
P (M,G, π) or P (M,G) (or simply P ) for a principal fibre bundle π : P → M .
The action P ×G→ P will be denoted by (u, g ) 7→ ug.

Note that from 2. above it follows that the action of G on P is differentiable and
free 10.

For g ∈ G, denote by Rg : P → P the map u 7→ ug. Then we have Re = idP
and Rg1g2 = Rg2 ◦ Rg1 . In particular it follows that Rg : P → P is a diffeomor-
phism for all g ∈ G. Given u ∈ P with π(u) = p, we have π−1(p) = {ug, g ∈ G }
and the map σu : g 7→ ug is a diffeomorphism between G and the fibre of P over
p.

A trivial bundle M × G admits a global section, for example M → M × G,
p 7→ ( p, e ). The converse is also true: if a principal fibre bundle P (M,G) admits
a section σ : M → P , then it is trivial. A global trivialization is given by the
inverse of the smooth map M × G → P , ( p, g ) 7→ σ (p) g, which is also smooth
as can be seen using local trivializations. In particular, condition 2. in Definition
1.2.1 is equivalent to requiring the existence of an open cover {Ui, i ∈ I } of M
and local sections {σi : Ui → P }. This will be used in the next example.

10 I.e., if ug = u for some u ∈ P , then g = e.
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Example 1.2.2 Let πE : E → M be a vector bundle with local trivializations
{ θEi : π−1

E (Ui) → Ui × Rn } with respect to a cover {Ui, i ∈ I } of M . Define
L(E) to be the set of all linear frames 11 on πE : E → M . We will show that
L(E) has the structure of a principal fibre bundle over M with structure group
GL (n,R). Define the projection π : L(E)→M to be the map sending a frame at
p to p. Let GL (n,R) act on L(E) on the right by (u, A ) 7→ u ·A. Then we have
L(E)/

GL (n,R) = M . Define sections σi : Ui → L(E) by

p 7→ u (p) :=
((
θEi

)−1( p, e1) , . . . ,
(
θEi

)−1( p, en)
)
.

The {σi : Ui → P } induce bijections { θi : π−1(Ui)→ Ui ×GL (n,R), i ∈ I } and
we can define a differentiable structure on L(E) by requiring these bijections to be
diffeomorphisms: this makes sense since θi can be obtained from a different θj (with
Uij 6= ∅) by composing it with the smooth map Uij ×GL (n,R)→ Uij ×GL (n,R),
( p,A ) 7→ ( p, θEij (p)A ). Then L(E)

(
M,GL (n,R)

)
becomes a principal fibre bun-

dle over M , called the frame bundle of the vector bundle πE : E → M . Note
that L(E) is trivial if E is.

Definition 1.2.3 A homomorphism of a principal fibre bundle Q (N,H) into
another principal fibre bundle P (M,G) consists of a smooth map f : Q→ P and a
Lie group homomorphism f ′ : H → G such that f (ug) = f(u) f ′(g) for all u ∈ Q
and g ∈ H.

Note that a homomorphism ( f, f ′ ) as in Definition 1.2.3 induces a smooth 12 map
f ′′ : N →M .

Definition 1.2.4 A homomorphism ( f, f ′ ) : Q (N,H) → P (M,G) is an em-
bedding if the induced f ′′ : N → M is an embedding and f ′ : H → G a
monomorphism (then, in particular, f : Q → P is an embedding). Then we
call f(Q)

(
f(N), f(H)

)
a subbundle of P (M,G). If moreover N = M and the

induced f ′′ : M →M is the identity, then (f, f ′ ) : Q (M,H)→ P (M,G) is called
a reduction (relative to f ′ : H → G) of (the structure group of) P (M,G) to H or
an extension (relative to f ′ : H → G) of (the structure group of) Q (M,H) to G.
The bundle Q (M,H) is called a reduced bundle of P (M,G). Given P (M,G)
and a Lie subgroup 13 H of G, we say that P (M,G) is reducible to H if there is a

11 A linear frame on a vector bundle πE : E → M is a point p of M together with a basis of
the fibre Ep.

12 Indeed, locally it is the composition f ′′ = πP ◦ f ◦ θ−1 ◦ s, where θ : π−1
Q (U) → U ×H is

a local trivialization for Q (N, H) and s : U → U ×H is the map p 7→ ( p, e ).
13 A Lie subgroup of a Lie group G consists of a Lie group H and an embedding f : H → G

which is also a group homomorphism. We can (and usually will) identify H with f(H) ≤ G, but
note that the topology of f(H) induced by the identification with H is in general not the relative
topology with respect to G. This is the case if and only if f(H) is closed in G (see [31, 3.21]).
Moreover, if H is a closed subgroup of the Lie group G, then H has a unique manifold structure
making it into a Lie subgroup of G (see [31, 3.42]). Note that the topology of this manifold
structure must then be the relative topology.
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reduced bundle Q (M,H). An isomorphism between two principal fibre bundles
Q (M,G) and P (M,G) is a homomorphism ( f, f ′ ) : Q (M,G) → P (M,G) such
that f ′ and the induced f ′′ are the identity on G and M respectively. In particular,
f : Q → P is a diffeomorphism. An isomorphism P (M,G) → P (M,G) is called
an automorphism of P (M,G).

Denote by Aut(P ) the set of all automorphisms of a principal fibre bundle P (M,G).
It is a group, with respect to composition of maps.

Definition 1.2.5 We say that two reductions ( f1, f
′ ) : Q1 (M,H) → P (M,G)

and ( f2, f
′ ) : Q2 (M,H) → P (M,G) are equivalent if there is an isomorphism

f : Q1 (M,H)→ Q2 (M,H) making the following diagram commutative.

Q1
f1 //

f ÃÃB
BB

BB
BB

B P

Q2

f2

OO

Similarly, we say that two extensions ( f1, f
′ ) : Q (M,H)→ P1 (M,G) and ( f2, f

′ ) :
Q (M,H)→ P2 (M,G) are equivalent if there is an isomorphism f : P1 (M,H)→
P2 (M,H) making the following diagram commutative.

Q
f2 //

f1
²²

P2

P1

f

>>}}}}}}}}

Let P (M,G) be a principal fibre bundle and let { θi : π−1(Ui) → Ui × G,
u 7→ (

π(u), ϕi (u)
) } be local trivializations with respect to a cover {Ui, i ∈ I } of

M . Define maps θij : Uij → G by p 7→ θij (p) := ϕi (u)ϕj (u)−1, where u ∈ π−1(p).
The functions { θij : Uij → G } are called the transition functions of P (M,G)
with respect to the cover {Ui, i ∈ I } and the trivializations {θi}. Note that they
are smooth and that they satisfy the cocycle condition 14

θij θjk = θik , (1.3)

where multiplication is in G. In particular, from (1.3) it follows that θii = e and
θji = θ −1

ij .

Example 1.2.6 Let πE : E →M be a vector bundle and let L(E)
(
M,GL (n,R)

)
be the frame bundle of E. Then it is easy to see that the transition functions
{ θEij : Uij → GL (n,R) } of E with respect to a system of local trivializations { θEi :
π−1
E (Ui) → Ui × Rn , i ∈ I } are equal to the transition functions of L(E) with

respect to the induced local trivializations { θi : π−1(Ui)→ Ui×GL (n,R) , i ∈ I }.
14 See footnote 2.
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As for vector bundles, we can use transition functions to reconstruct a whole
principal fibre bundle, as explained in the following proposition.

Proposition 1.2.7 Let M be a manifold and G a Lie group. Suppose we have
a cover {Ui, i ∈ I } of M and a set of smooth maps { θij : Uij → G } satisfying
the cocycle condition (1.3). Then there is a unique (up to isomorphism) principal
fibre bundle P (M,G) with the {θij} as transition functions with respect to some
system of local trivializations.

Proof Define:
P :=

.⋃

i∈I
Ui ×G /∼

where ( i, p, g1 ) ∼ ( j, q, g2 ) by definition if p = q ∈ Uij and g1 = θij (p) g2 (note
that the cocycle condition implies that this is a well-defined equivalence rela-
tion on the set

⋃ Ui × G). Denote by ( i, p, g ) /∼ ∈ P the equivalence class of
( i, p, x ) ∈ ⋃ Ui ×G.
Define an action of P × G → P by

(
( i, p, g1 ) /∼, g2

) 7→ ( i, p, g1 g2 ) /∼. Then
P/
G = M and the canonical projection π : P → M is given by ( i, p, g ) /∼ 7→ p.

Let θi : π−1(Ui)→ Ui ×G be the bijection ( i, p, g ) /∼ 7→ ( p, g ) for all i ∈ I. We
can define a differentiable structure on P by requiring the θi’s to be diffeomor-
phisms: this makes sense since θi can be obtained from a different θj (with Uij 6= ∅)
by composing it with the smooth map Uij ×G→ Uij ×G, ( p, g ) 7→ ( p, θij (p) g ).
Then P (M,G) becomes a principal fibre bundle, with the {θij} as transition func-
tions.

Uniqueness follows from the fact that if two principal fibre bundles P (M,G) and
Q (M,G) have a system of local trivializations { θ Pi : π−1

P (Ui) → Ui × G } and
{ θQi : π−1

Q (Ui)→ Ui ×G } with respect to the same cover {Ui, i ∈ I } of M such
that the transition functions coincide, then they must be isomorphic. An isomor-
phism f : P → Q is defined as follows: for u ∈ P choose i ∈ I with πP (u) ∈ Ui
and let f(u) :=

(
θQi

)−1 (
θ Pi (u)

)
. ¤

Example 1.2.8 Let P (M,G, π) be a principal fibre bundle, N a manifold and
f : N → M a smooth map. Consider the set f∗P := { (p, u) ∈ N × P / f(p) =
π(u) } and the action f∗P × G → f∗P ,

(
(p, u), g

) 7→ (p, ug). Then f∗P/
G = N

and the canonical projection π′ : f∗P → N is given by (p, u) 7→ p. Thus we have
a commutative diagram

f∗P
f̄ //

π′
²²

P

π

²²
N

f // M

where f̄ : f∗P → P is given by (p, u) 7→ u. Let { θi : π−1(Ui) → Ui × G,
u 7→ (

π(u), ϕi(u)
)
, i ∈ I } be a system of local trivializations for P (M,G), with
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respect to a cover {Ui, i ∈ I } of M . Consider the cover { f−1(Ui), i ∈ I } of N
and let θ′i : π′ −1(f−1(Ui)

)→ f−1
(Ui

)×G be the bijection (p, u) 7→ (
p, ϕi(u)

)
, for

all i ∈ I. We can define a differentiable structure on f∗P by requiring the θ′i’s to
be diffeomorphisms: this makes sense since θ′i can be obtained from a different θ′j
(with Uij 6= ∅) by composing it with the smooth map f−1(Uij)×G→ f−1(Uij)×G,

(p, g) 7→
(
p, θij

(
f(p)

)
g

)
. Then f∗P (N,G) becomes a principal fibre bundle (the

pullback bundle of P (M,G) with respect to the map f : N → M) and (f̄ , id) :
f∗P (N,G) → P (M,G) a homomorphism. Note that the transition functions
of f∗P (N,G) with respect to the local trivializations { θ′i, i ∈ I } are given by
θ′ij = f∗ θij.

Let P (M,G) be a principal fibre bundle and let F be a manifold on which G
act differentiably on the left. There is a standard construction that associates with
P (M,G) a fibre bundle over M with fibre F ; this fibre bundle will be denoted by
E = P ×G F and its construction goes as follows (see [14] for more details).

Consider the following action of G on P × F :

(P × F )×G→ P × F ,
(
(u, f ), g

) 7→ (ug, g−1f ).

Define E := P ×G F := (P × F )/
G, and denote by (u, f ) /∼ the equivalence class

of (u, f ) ∈ P×F in E. Define πE : E →M to be the map (u, f ) /∼ 7→ π(u), where
π is the projection P → M . Let { θi : π−1(Ui) → Ui × G, u 7→ (

π(u), ϕi (u)
) }

be local trivializations of P (M,G) with respect to a cover {Ui, i ∈ I } of M and
define for all i ∈ I a bijection

θEi : π−1
E (Ui)→ Ui × F , (u, f ) /∼ 7→ (π(u), ϕi (u) f ). (1.4)

We can define a differentiable structure on E by requiring the θEi ’s to be dif-
feomorphisms: this makes sense since θEi can be obtained from a different θEj
(with Uij 6= ∅) by composing it with the smooth map Uij × F → Uij × F ,
( p, f ) 7→ ( p, θij (p) f ). Then E = P ×G F becomes a fibre bundle over M
with fibre F .

Lemma 1.2.9 Let P (M,G) be a principal fibre bundle, F a manifold with a left
G-action and P ×G F the associated fibre bundle. We say that a map φ : P → F
is G-equivariant if φ(ug) = g−1 φ(u) for all u ∈ P and g ∈ G. Then we have a
correspondence:

{ sections of P ×G F } 1-1←→ {G-equivariant smooth maps P → F }.

Proof Given a section σ : M → P ×G F , define a map σ̂ : P → F by the
relation σ

(
π(u)

)
=

(
u, σ̂(u)

)
/∼ for u ∈ P . Then σ̂ is G-equivariant and smooth.

Smoothness can be seen as follows. Observe first that if { θi : π−1(Ui)→ Ui ×G,
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i ∈ I } are local trivializations of P (M,G) with respect to a cover {Ui, i ∈ I }
of M , then for p ∈ Ui we can write σ(p) =

(
θ−1
i ( p, e ), fi(p)

)
/∼ for some map

fi : Ui → F which is smooth because it is the composition θEi ◦ σ, where θEi
is given by (1.4). Since σ̂ is locally the composition of the map Ui × G → F ,
( p, g ) 7→ g−1fi(p) with the trivialization θi, it follows that it is smooth.
Conversely, given a smooth G-equivariant map φ : P → F , the map

φ0 : M → P ×G F , p 7→ (
u, φ(u)

)
/∼

is well-defined and smooth, thus it is a section of P ×G F .
Clearly, φ̂0 = φ for all G-equivariant maps P → F and (σ̂)0 = σ for all section σ
of P ×G F . ¤

Example 1.2.10 Suppose we have a representation of the structure group G of a
principal fibre bundle P (M,G) on a vector space V , i.e. a Lie group homomor-
phism % : G → Aut(V ). We can consider the action of G on V on the left given
by ( g, v ) 7→ % (g) (v). Then E = P ×G V is a vector bundle over M . To see this,
it is enough to show that the maps

V
∼=−→ { p } × V θE

i ◦ ( θE
j )−1|{ p }×V−−−−−−−−−−−−−→ { p } × V ∼=−→ V

are linear for all p ∈ Uij. But these maps are given by v 7→ %
(
θij(p)

)
(v), where

{ θij : Uij → G } are the transition functions of P (M,G) with respect to an open
cover {Ui, i ∈ I } of M , i.e. they are the linear maps %

(
θij(p)

) ∈ Aut(V ).
Note that to give E a vector bundle structure in the form required in Definition
1.1.1, we still have to choose a basis (v1, . . . , vn) of V , thus a bijection αv : V → Rn
(which will also induce an isomorphism α′v : Aut(V )→ GL (n,R)). If we do that,
then the local trivializations of E induced by (1.4) are:

θEi : π−1
E (Ui)→ Ui × Rn , (u,w ) /∼ 7→

(
π(u) , α′v

(
%
(
ϕi (u)

))
αv(w)

)

where as usual ϕi = pr2 ◦ θi : π−1(Ui)→ G, with { θi, i ∈ I } local trivializations of
P (M,G). In particular, it follows that the vector space structure on each fibre Ep
is given by λ1 (u,w1 ) /∼ + λ2 (u,w2 ) /∼ = (u, λ1w1 + λ2w2 ) /∼, for λ1, λ2 ∈ R,
thus for every u ∈ π−1(p) the map V → Ep, w 7→ (u,w ) /∼ is a vector space
isomorphism. Note that E = P ×G F is trivial if P is. If { θij : Uij → G } are
the transition functions of P (M,G) with respect to the trivializations { θi, i ∈ I },
then the transition functions { θEij : Uij → GL (n,R) } of E with respect to the

trivializations { θEi , i ∈ I } are given by θEij(p) = α′v
(
%
(
θij(p)

))
for p ∈ Uij.

We will now construct a homomorphism from P (M,G) to the frame bundle L(E)
of E = P ×G V and show that if the representation % : G → Aut(V ) is faithful
(i.e. injective), then this homomorphism gives a reduction of L(E) to G. Note
first that for u ∈ P with π(u) = p, the vectors (u, v1 ) /∼, . . ., (u, vn ) /∼ form a
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basis of the fibre Ep, since they are sent by θEip to the vectors α′v
(
%
(
ϕi (u)

))
e1,

. . ., α′v
(
%
(
ϕi (u)

))
en, which are a basis of Rn. Thus we can consider the map

fv : P → L(E) , u 7→ (
(u, v1 ) /∼, . . . , (u, vn ) /∼

)
.

Locally fv is the composition of local trivializations of P and L(E) with the map
Ui × G → Ui × GL (n,R), ( p, g ) 7→ (

p, α′v
(
%(g)

) )
, so it is smooth. An easy

calculation shows that
fv(ug) = fv(u)α′v

(
%(g)

)

so fv induces a homomorphism ( fv, f ′v ) : P (M,G)→ L(E)
(
M,GL (n,R)

)
, where

f ′v : G→ GL (n,R) , g 7→ α′v
(
%(g)

)
.

If % : G→ Aut(V ) is injective, then f ′v : G ↪→ GL (n,R) is a Lie group monomor-
phism; since f ′′v : M → M is the identity, we get that in this case P (M,G) is a
reduced bundle of L(E).

Example 1.2.11 As a particular case of Example 1.2.10, consider a principal
fibre bundle P

(
M,GL (n,R)

)
with structure group GL (n,R). We can identify P

with the frame bundle L(E) of the associated vector bundle E = P ×GL (n,R)Rn by
the isomorphism:

f : P → L(E) , u 7→ (
(u, e1 ) /∼, . . . , (u, en ) /∼

)
.

Under this identification, we can consider an element u ∈ P as a basis of the fibre
Ep (where p = π(u)), and an element (u, x ) /∼ ∈ Ep can be interpreted as the
vector of the fibre Ep which has coordinates x ∈ Rn with respect to the basis u.
Similarly, given a vector bundle πE : E → M and its frame bundle L(E), we can
identify E with the associated vector bundle L(E)×GL (n,R)Rn by the vector bundle
isomorphism:

L(E)×GL (n,R) Rn → E , (u, x ) /∼ 7→ u · x.
Combining what was said in Example 1.2.2 and in Example 1.2.10, we see that
a vector bundle is trivial if and only if its frame bundle is, or equivalently if and
only if its frame bundle has a section. In particular it follows that we can identify
local trivializations of a vector bundle with local sections of its frame bundle.

In the next two examples we will need the following facts about Lie groups.
Let G be a Lie group with Lie algebra g. Every element g ∈ G induces an
automorphism c(g) of G, defined by c(g) (g′) = g g′g−1. Denote the differential of
c(g) by Ad(g) ∈ Aut(g); then the map Ad : G → Aut(g) is a representation of G
on g (see [31, 3.45]), called the adjoint representation.
Denote by exp the exponential map of the Lie algebra of a Lie group to the Lie
group. Then for any Lie group homomorphism f : G→ H we have

f
(
exp(B)

)
= exp

(
f∗(B)

)
(1.5)
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for all B ∈ g (see [31, 3.32]). In particular, we can apply this to the homomorphism
c(g) : G→ G and get

c(g)
(
exp(B)

)
= exp

(
Ad(g) (B)

)
(1.6)

for all g ∈ G and B ∈ g.

Lemma 1.2.12 Let f : G → H be a Lie group homomorphism. Then for g ∈ G
and B ∈ g it holds:

f∗
(
Ad(g) (B)

)
= Ad

(
f(g)

) (
f∗(B)

)
.

Proof We have, using (1.5) and (1.6):

f∗
(
Ad(g) (B)

)
=

d

dt


t=0

f
(
g exp (tB) g−1

)
=

d

dt


t=0

f(g) f
(
exp (tB)

)
f
(
g−1

)

=
d

dt


t=0

c
(
f(g)

) (
f
(
exp (tB)

))

(1.5)
=

d

dt


t=0

c
(
f(g)

) (
exp

(
f∗(tB)

))

(1.6)
=

d

dt


t=0

exp
(
Ad

(
f(g)

) (
f∗(tB)

))

=
d

dt


t=0

exp
(
t Ad

(
f(g)

) (
f∗(B)

))
= Ad

(
f(g)

) (
f∗(B)

)
.

¤

Consider the Lie group Aut(V ), where V is a vector space. Its Lie algebra is
End(V ) (see [31, 3.10]) and the adjoint representation Ad : Aut(V )→ Aut

(
End(V )

)
is given by:

Ad(A)(X) = AXA−1 (1.7)

for A ∈ Aut(V ) and X ∈ End(V ), where the operation on the right hand side is
composition of maps (see [31, 3.46]).

Example 1.2.13 Let P (M,G) be a principal fibre bundle and let g be the Lie
algebra of G. Denote by P ×Ad g the associated fibre bundle obtained by letting
G work on g via the adjoint representation Ad : G → Aut(g). By what was said
in Example 1.2.10, P ×Ad g is a vector bundle over M . It is called the adjoint
bundle of P (M,G).
Suppose that there is a representation % : G → Aut(V ) of G on a vector space V
and let E = P ×G V be the associated vector bundle. Then we can construct a
vector bundle map φ : P ×Ad g → E∗ ⊗ E as follows.
Observe first that the differential of % gives a representation of g on V , i.e. a Lie
algebra homomorphism %∗ : g → End(V ).
Let (u,B ) /∼ ∈ (P ×Ad g)p and define φ

(
(u,B ) /∼

) ∈ (E∗ ⊗E)p = Hom(Ep, Ep)
by φ

(
(u,B ) /∼

) (
(u, v ) /∼

)
=

(
u, %∗(B) (v)

)
/∼ (use (1.7) and Lemma 1.2.12
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to see that this is well-defined). We have to check that φ is smooth. By Lemma
1.1.17, it is enough to show that, given s ∈ Γ(P ×Ad g), the map M → E∗ ⊗ E,
p 7→ φ

(
s(p)

)
is a section of E∗ ⊗ E, i.e. a vector bundle map E → E. For

this, again by Lemma 1.1.17, it is enough to show that, given σ ∈ Γ(E), the map
M → E, p 7→ φ

(
s(p)

) (
σ(p)

)
is smooth, thus a section of E. Locally on some open

U ⊂ M we can write s(p) = (u(p), B(p) ) /∼ and σ(p) = (u(p), v(p) ) /∼, where u
is a local section of P and consequently B : U → g and v : U → V are smooth
maps. Then for p ∈ U we have φ

(
s(p)

) (
σ(p)

)
=

(
u(p), %∗

(
B(p)

)
v(p)

)
/∼, thus

it follows that the map p 7→ φ
(
s(p)

) (
σ(p)

)
is smooth, as we wanted to show. So

φ : P ×Ad g → E∗ ⊗E is a vector bundle homomorphism.
Consider now the frame bundle L(E)

(
M,GL (n,R)

)
of a vector bundle π : E →M

and let L(E)×Ad gl (n,R) be the adjoint bundle. Then we have

L(E)×Ad gl (n,R) ∼= E∗ ⊗ E.

To see this, define φ : L(E)×Ad gl (n,R) → E∗ ⊗ E as above and observe that it
induces a vector space isomorphism on each fibre. Conclude using Lemma 1.1.4.

Example 1.2.14 Let P (M,G) be a principal fibre bundle and consider the action
of G on G on the left given by ( g1, g2 ) 7→ c (g1) (g2). Denote by P ×Ad G the
associated fibre bundle. It is a fibre bundle over M with fibre G.
We will show that we can identify the set of sections of P ×Ad G with the set of
automorphisms of P . Given a section σ ∈ Γ(P ×Ad G), define fσ : P → P by
fσ (u) := ug, where g ∈ G is determined by σ

(
π(u)

)
= (u, g ) /∼. Then we have

fσ (ug′) = fσ (u) g′, thus fσ ∈ Aut(P ). Conversely, given f ∈ Aut(P ), define a
section σf of P ×Ad G by σf (p) := (u, g ) /∼, where u ∈ π−1(p) and g ∈ G is
determined by f(u) = ug. Use local trivializations of the various bundles to see
that fσ and σf are smooth if σ and f are. Since fσf

= f for all f ∈ Aut(P ) and
σfσ = σ for all σ ∈ Γ(P ×Ad G), it follows that we have a bijection

Γ(P ×Ad G) 1-1←→ Aut(P ).

Define a group structure on Γ(P ×Ad G) as follows. For σ1, σ2 ∈ Γ(P ×Ad G)
with σ1 (p) = (u, g1 ) /∼ and σ2 (p) = (u, g2 ) /∼, define σ1 σ2 ∈ Γ(P ×Ad G) by

σ1 σ2 (p) = (u, g1 g2 ) /∼. Then the bijection Γ(P ×Ad G) 1-1←→ Aut(P ) defined
above gives a group isomorphism Γ(P ×Ad G) ∼= Aut(P ). The group Γ(P ×Ad G)
(usually denoted by G) is called the gauge group of P (M,G).
Note that we have also a third description of the gauge group as the group of G-
equivariant maps P → G, i.e. maps φ : P → G such that φ (ug) = g−1 φ (u) g (cf.
Lemma 1.2.9). The group structure is given by φ1 · φ2 (u) := φ1 (u) · φ2 (u), where
the operation on the right hand side is multiplication in G.
The natural isomorphisms of this group with Aut(P ) and Γ(P ×Ad G) are given
by φ 7→ fφ where fφ (u) = uφ (u), and φ 7→ σφ where σφ (p) = (u, φ (u) ) /∼ for
u ∈ π−1(p).
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Example 1.2.15 Let Q (M,H) be a principal fibre bundle and α : H → G a Lie
group monomorphism. We will construct an extension of Q to G relative to α,
i.e. a principal fibre bundle P (M,G) and a homomorphism (f, α) : Q (M,H) →
P (M,G). Define P := Q×H G, where the action of H on G on the left is given
by (h, g ) 7→ α(h) g. P is a fibre bundle over M with fibre G. Define an action
P × G → P by

(
(u, g1 ) /∼, g2

) 7→ (u, g1 g2 ) /∼. Then P/
G = M and the local

trivializations (1.4) of P given by the general construction of the associated fibre
bundle are in the form required in Definition 1.2.1. Thus P (M,G) is a principal
fibre bundle. The map f : Q → P , u 7→ (u, e ) /∼ induces a homomorphism
(f, α) : Q (M,H)→ P (M,G), thus makes P (M,G) an extension of Q (M,H) to
G relative to α.
Any other extension (f ′, α) : Q (M,H) → P ′ (M,G) is equivalent to P (M,G).
Indeed, the map ψ : P = Q ×H G → P ′ defined by (u, g ) /∼ 7→ f ′(u) g is an
isomorphism P (M,G) ∼= P ′ (M,G) and makes the diagram

Q
f ′ //

f

²²

P ′

P

ψ

>>~~~~~~~~

commutative. Observe that, using Proposition 1.2.7, we can also define an exten-
sion of Q (M,H) to G relative to α to be the principal fibre bundle over M with
structure group G and transition functions {α ◦ θij : Uij → G } with respect to the
cover {Ui, i ∈ I } of M , where { θij : Uij → H } are the transition functions of
Q (M,H) with respect to {Ui, i ∈ I }.

Let P (M,G) be a principal fibre bundle and let H be a closed subgroup of G.
From classical results about closed subgroups of a Lie group 15, we know (see for
example [31, 3.58 and 3.63]):

1. the set G
/
H = { gH, g ∈ G } has a unique manifold structure such that the

natural projection G → G/
H , g 7→ gH is smooth and such that there exist

local smooth sections of G
/
H in G;

2. the action G×G/
H → G/

H , ( g1, g2H ) 7→ g1 g2H is smooth.

In particular, we can construct the fibre bundle E = P×G G
/
H . It is a fibre bundle

over M with fibre G
/
H and it can be identified with the set P

/
H = {uH, u ∈ P }

by the bijection

P ×G G/
H → P/

H , (u, gH ) /∼ 7→ ugH.

15 See also footnote 13.
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Proposition 1.2.16 The structure group G of a principal fibre bundle P (M,G)
is reducible to a closed subgroup H of G if and only if the associated fibre bundle
E = P ×G G/

H has a section. In fact, we have a bijection:

{ sections of E = P ×G G/
H ≡ P

/
H }

1-1←→ { reductions of P (M,G) to H }/∼
where ”∼” is the equivalence relation of Definition 1.2.5.

Proof (sketch) Given a section σ : M → E ≡ P/
H , let P ′ = {u ∈ P / uH =

σ
(
π(u)

) }. Then P ′ (M,H) is a reduced bundle of P (M,G) (a proof of this uses
the existence of local smooth sections of G

/
H in G, see 1. above).

Conversely, suppose a reduced bundle P ′ (M,H) of P (M,G) is given, i.e. a
principal fibre bundle P ′ (M,H) and a smooth map f : P → P ′ such that
f (u′h) = f(u′)h for u′ ∈ P ′ and h ∈ H and such that the induced map M → M

is the identity. Then we can define a section σ : M → E = P ×G G/
H ≡ P

/
H by

σ(p) := f(u′)H, where u′ is some element in the fibre of P ′ at p (the proof that σ
is smooth uses the fact that the map G→ G/

H , g 7→ gH is smooth, see 1. above).
See [14, Proposition 5.6 of Chapter I] for more details. ¤

Example 1.2.17 Let L(E)
(
M,GL (n,R)

)
be the frame bundle of a vector bundle

πE : E → M and consider the closed subgroup O(n) of GL (n,R). We will show
that there is a correspondence:

{Riemannian metrics on E } 1-1←→ { reductions of L(E) to O(n) }/∼ (1.8)

where ”∼” is the equivalence relation of Definition 1.2.5. From Proposition 1.2.16,
it will follow that there is also a correspondence:

{Riemannian metrics on E } 1-1←→ { sections of L(E)/
O(n) }.

The correspondence (1.8) is constructed as follows.
Let h be a Riemannian metric on E and define Oh(E) ⊂ L(E) to be the set of
h-orthonormal linear frames on π : E → M . Then O(n) works on Oh(E) on
the right and Oh(E)/

O(n) = M . Let πQ be the restriction of π : L(E) → M

to Oh(E). Consider sections {σi : Ui → L(E), i ∈ I }, where {Ui, i ∈ I } is
a cover of M . For i ∈ I and for all p ∈ Ui apply the Gram-Schmidt process to
σi (p) and h(p) to obtain an h-orthonormal basis ui (p) of the fibre Ep. The new
sections {ui : Ui → L(E), i ∈ I } are still smooth, so they induce trivializations
π−1(Ui)→ Ui×GL (n,R) and these trivializations send π−1

Q (Ui) to Ui×O(n) and
so induce a differentiable structure on Oh(E) making it a reduced bundle of L(E).
Conversely, suppose we have a reduction of L(E) to O(n), i.e. a principal fibre
bundle Q

(
M,O(n)

)
with a smooth map f : Q→ L(E) such that f(uA) = f(u)A

for all A ∈ O(n) and u ∈ Q and such that the induced map M → M is the
identity. For all p ∈ M , let h(p) be the metric on Ep which has matrix I with
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respect to a basis f(u) of Ep, where u is some element of the fibre of Q over
p. Note that the definition of h(p) does not depend on the choice of u and that
an element of the fibre of L(E) over p is an h-orthonormal basis of Ep if and
only if it is the image of some element of Q. To conclude that p 7→ h(p) gives
a Riemannian metric on E, we have to prove that it is smooth, i.e. that if σ1

and σ2 are two smooth sections M → E, then the function h (σ1, σ2) : M → R,
p 7→ h(p)

(
σ1 (p), σ2 (p)

)
is smooth. But if we write σ1 (p) = ( f(u), x1 (p) ) /∼

and σ2 (p) = ( f(u), x2 (p) ) /∼ (where we identify E with L(E)×GL (n,R) Rn), then
h(σ1, σ2 ) is the map p 7→ x1 (p)t · x2 (p), which is smooth.

Fibre bundles associated with a principal fibre bundle P (M,G) do not change
under reduction or extension of the structure group of P (M,G). This is explained
in the following proposition.

Proposition 1.2.18 Let Q (M,H) be a reduction of the principal fibre bundle
P (M,G) relative to a monomorphism α : H → G. Suppose F is a manifold on
which G acts on the left and let H act on F on the left by (h, a) 7→ α(h) a. Then
the associated fibre bundles E = P ×G F and E′ = Q×H F are isomorphic.

Proof Let f : Q → P be the map inducing the reduction and define a map λ
between the total spaces of P ×G F and Q×H F by (u, a ) /∼ 7→ ( f(u), a ) /∼. It
is easy to see that λ is well-defined and bijective. Let { θQi : π−1

Q (Ui) → Ui ×H,
i ∈ I } be local trivializations of Q (M,H) with respect to a cover {Ui, i ∈ I } of
M and let {σi : Ui → π−1

Q (Ui), i ∈ I } be the associated local sections of Q, i.e.

σi : p 7→ ( θQi )−1 ( p, e). Then { f ◦ σi : Ui → π−1
P (Ui), i ∈ I } are local sections of

P (M,G) and they induce local trivializations { θPi : π−1
P (Ui) → Ui × G, i ∈ I }

of P (M,G) such that θPi
(
f ◦ σi (p)

)
= ( p, e ). Let { θEi : π−1

E (Ui) → Ui × F ,
i ∈ I } and { θE′i : π−1

E′ (Ui)→ Ui×F , i ∈ I } be the induced local trivializations of
E = P×GF and E′ = Q×HF respectively. Then locally λ = ( θPi )−1◦ id| Ui×F ◦ θQi ,
thus in particular λ gives a diffeomorphism between the total spaces of P ×G F
and Q ×H F and so, since the induced map on the base spaces is the identity, a
fibre bundle homomorphism. ¤

We have proved in Example 1.2.15 that extensions of principal fibre bundles
always exist and are unique up to equivalence. This is not the case for reductions:
they do not always exist and, if they do, they are in general not unique. For
example, a reduction of the frame bundle L(M) of the tangent bundle of a manifold
M to GL (n,R)+ gives an orientation of M (and vice versa), but not all manifold
are orientable and, if they do, there are two possible choices of an orientation, i.e.
two different reductions of L(M) to GL (n,R)+.
The following lemma gives a description of reductions of a principal fibre bundle
in terms of transition functions.
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Lemma 1.2.19 Let P (M,G) be a principal fibre bundle and let H be a Lie sub-
group of G. Then P (M,G) is reducible to H if and only if there is a cover of M
with a set of transition functions for P (M,G) which take their values in H.

For a proof of this, see [14, Proposition 5.3 of Chapter I].

In the following proposition we summarize all facts that were proved or men-
tioned in this section about reductions of a principal fibre bundle P (M,G) to a
closed Lie subgroup H ≤ G (cf. Definition 1.2.4, Proposition 1.2.16, Lemma 1.2.9
and Lemma 1.2.19).

Proposition 1.2.20 Let P (M,G) be a principal fibre bundle and let H be a closed
Lie subgroup of G. Then a reduction of P (M,G) to H can be described equivalently
as:

1. a principal fibre bundle Q (M,H) with an embedding ( f, ι ) : Q (M,H) →
P (M,G) inducing the identity on M , where ι is the inclusion H ↪→ G;

2. a system of local trivializations of P (M,G) such that the transition functions
have values in H;

3. a section of P ×G G/
H ;

4. a G-equivariant map P → G/
H .

We conclude the section with a concept that plays an important role in the
theory of connections on principal fibre bundles. Let P (M,G) be a principal fibre
bundle and let g be the Lie algebra of G. We can assign to each B ∈ g a vector
field B∗ ∈ Γ(TP ) (called the fundamental vector field corresponding to B) as
follows (see [14] for more details). For u ∈ P , let σu : G→ P be the map g 7→ ug

and define (B∗)u := (σu)∗ (B) ∈ TuP . In other words, (B∗)u = d
dt


t=0

u exp (tB).

The map g → Γ(TP ), B 7→ B∗ is a Lie algebra homomorphism and, since the
action of G is free, B∗ never vanish on P if B 6= 0 (see [14, Proposition 4.1 of
Chapter I]). Since the action of G sends each fibre of P into itself, we have that
(B∗)u is tangent to the fibre through u for every u ∈ P . The map g → TuP ,
B 7→ (B∗)u is a linear monomorphism; since the dimension of each fibre is equal
to the dimension of G, it follows that B 7→ (B∗)u is a linear isomorphism of g into
the tangent space at u of the fibre through u.

Lemma 1.2.21 Let P (M,G) be a principal fibre bundle and let B∗ ∈ Γ(TP )
be the fundamental vector field corresponding to B ∈ g. Then for each g ∈ G,
(Rg)∗B∗ is the fundamental vector field corresponding to Ad (g−1) (B).

For a proof of this, see [14, Proposition 5.1 of Chapter I].
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1.3 Connections on vector bundles

Let π : E →M be a vector bundle and r a positive integer. Define

Ar(E) := Γ(E)⊗C∞(M) Ar(M) = Γ (E ⊗∧r T ∗M)

(cf. Lemma 1.1.17). In particular, A0(E) = Γ(E). Elements of Ar(E) are called
(smooth) r-forms on M with values in E; they can equivalently be defined as
C∞(M)-multilinear alternating maps

Γ(TM)× . . .× Γ(TM)→ Γ(E). 16

Definition 1.3.1 A connection on a vector bundle π : E → M is an R-linear
map D : A0(E) → A1(E) which satisfies the Leibnitz rule, i.e. for f ∈ C∞(M)
and σ ∈ Γ(E) it must hold

D (fσ) = σ ⊗ df + f D(σ). (1.9)

Connections exist on every vector bundle, as can be proved using a partition of
unity on the base space (see [22, Lemma 2 of Appendix C]).
Given a connection D0 on π : E → M , every other one is of the form D0 + ξ,
where ξ ∈ A1(E∗ ⊗ E). This is explained in the next proposition.

Proposition 1.3.2 Let π : E →M be a vector bundle and denote by DE the set
of connections on it. Then DE is an affine space modeled on A1(E∗ ⊗E), i.e.:

DE = D0 +A1(E∗ ⊗ E)

where D0 is a fixed connection on π : E →M .

Proof Let D1 and D2 be connections on π : E → M . For X ∈ Γ(TM) and
σ ∈ Γ(E), (D1−D2)(X) (σ) := D1(σ) (X)−D2(σ) (X) is an element of Γ(E). The
map (D1−D2)(X) : Γ(E)→ Γ(E) is linear over C∞(M), thus by Lemma 1.1.17 we
have (D1−D2)(X) ∈ Γ(E∗⊗E). The mapD1−D2 : Γ(TM)→ Γ (E∗⊗E) is linear
over C∞(M), thus D1−D2 ∈ A1(E∗⊗E). In particular, DE ⊂ D0 +A1(E∗⊗E).
Conversely, let ξ ∈ A1(E∗ ⊗ E). We have to prove that D0 + ξ ∈ DE . But
since ξ is a C∞(M)-linear map A0(E) → A1(E), it follows that D0 + ξ is a map
A0(E)→ A1(E) which satisfies the Leibnitz rule, thus D0 + ξ ∈ DE . ¤

A connection D : A0(E) → A1(E) on a vector bundle π : E → M is a
local operator, i.e. if two sections σ1 and σ2 ∈ A0(E) coincide on some open
U ⊂ M , then D(σ1) and D(σ2) ∈ A1(E) also coincide on U . To see this, let
p ∈ U and take a function f ∈ C∞(M) with f(p) = 1 and supp (f) ⊂ U . Then
fσ1 = fσ2, so D (fσ1) = D (fσ2). Applying (1.9) and evaluating at p gives

16 A proof of this is similar to the second part of the proof of Lemma 1.1.17. See [31, 2.18] for
the proof of an analogous statement for real differential forms.
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D(σ1) (p) = D(σ2) (p). Thus a connection D : A0(E)→ A1(E) induces a connec-
tion D|U : A0(E|U )→ A1(E|U ) on each open U ⊂M , in such a way that it holds
D|U (σ|U ) =

(
D(σ)

)|U for σ ∈ A0(E). The induced connection D|U will be also
denoted by D.

Let u = (u1, . . . , un) be a local frame of a vector bundle π : E → M (i.e. a
local section of the frame bundle L(E)) over an open U ⊂ M and let D be a
connection on E. Then we can write D(u) = u⊗ ωu, i.e.

D (uα) =
n∑

β=1

uβ ⊗ (ωu)β α (1.10)

where ωu =
(
(ωu)αβ

)
is a matrix of 1-forms on U called the connection form

of D with respect to the local frame u. If σ =
∑n

α=1 vα uα is a section of E over
U (where vα ∈ C∞(U)), then from (1.9) and (1.10) we get:

D(σ) =
n∑

α=1

uα ⊗
(
dvα +

n∑

β=1

(ωu)αβ vβ
)
. (1.11)

To simplify notation we can identify E with L(E) ×GL (n,R) Rn and consider u
as a local section of L(E) over U . Then we can write σ = (u, v ) /∼, where
v = (v1, . . . , vn) t, and (1.11) becomes (by abuse of notation):

D(σ) = (u, dv + ωu v ) /∼.

Consider a system of local trivializations { θi : π−1(Ui) → Ui × Rn , i ∈ I } of E
with respect to a cover {Ui, i ∈ I } of M and let {ui, i ∈ I } be the corresponding
local frames, i.e. uiα (p) = θ−1

i ( p, eα ) for p ∈ Ui. For every i ∈ I let ωi be the
connection form of D with respect to the local frame ui, i.e. D(ui) = ui ⊗ ωi.
Then on Uij it holds:

ωj = θji ωi θij + θji dθij (1.12)

where { θij : Uij → GL (n,R) } are the transition functions of the trivializations
{ θi, i ∈ I }. This can be checked using (1.9), (1.10) and the relation uj = ui θij .
Conversely, we have the following lemma.

Lemma 1.3.3 Let π : E → M be a vector bundle with local trivializations { θi :
π−1(Ui) → Ui × Rn , i ∈ I } with respect to a cover {Ui, i ∈ I } of M . Suppose
we are given for each i ∈ I an n × n matrix ωi of 1-forms on Ui in such a way
that (1.12) is satisfied on each Uij 6= ∅. Then there is a unique connection D on
E with the {ωi, i ∈ I } as connection forms with respect to the local frames

{ui = (ui1, . . . , u
i
n) : p 7→ (

θ−1
i ( p, e1 ), . . . , θ−1

i ( p, en )
)
, i ∈ I }

induced by the trivializations { θi, i ∈ I }.
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Proof Let σ ∈ Γ(E). On Ui we have σ|Ui =
∑n

α=1 σ
i
α u

i
α for some σiα ∈ C∞(U)

and by (1.11) we must define

D (σ|Ui) =
n∑

α=1

uiα ⊗
(
dσiα +

n∑

β=1

(ωi)αβ σiβ
)
.

A long but straightforward calculation is needed to see that D (σ|Ui) and D (σ|Uj )
coincide on Uij . So the local definitions of D(σ) glue together to give a well defined
element of A1(E). It is easy to see that the Leibnitz rule is satisfied. ¤

Given a connectionD : A0(E)→ A1(E) on a vector bundle π : E →M , we can
extend it for every positive integer r to a R-linear operator D : Ar(E)→ Ar+1(E)
by forcing the Leibnitz rule

D (σ ⊗ ω) = σ ⊗ dω +D(σ) ∧ ω (1.13)

for σ ∈ Γ(E) and ω ∈ Ar(M) and by linear extension 17. The exterior product
As(E) × Ar(M) → Ar+s(E) on the right hand side is defined as follows: for
ξ = σ ⊗ ω ∈ As(E) and ω′ ∈ Ar(M), ξ ∧ ω′ := σ ⊗ (ω ∧ ω′).

Definition 1.3.4 Given a connection D : A0(E) → A1(E) on a vector bundle
π : E →M , the curvature of D is the operator R = D ◦D : A0(E)→ A2(E).

It is easy to check that R : A0(E) → A2(E) is linear over C∞(M); then by
Lemma 1.1.17 it follows that R is a vector bundle map E → E ⊗ ∧2 T ∗M i.e.
R ∈ Γ

(
E∗ ⊗ E ⊗∧2 T ∗M

)
= A2(E∗ ⊗ E). We can also consider R = D ◦ D as

a map Ar(E)→ Ar+2(E), for every integer r ≥ 0. Then it is easy to check that

R (σ ⊗ ω) = R (σ) ∧ ω (1.14)

for σ ∈ A0(E) and ω ∈ Ar(M).
In general, given vector bundles πE : E → M and πF : F → M , we can consider
every form in Ar(E∗ ⊗ F ) as a map As(E)→ Ar+s(F ) by defining

(ϕ⊗ ω1) (σ ⊗ ω2) := ϕ(σ)⊗ (ω1 ∧ ω2) (1.15)

for ϕ ∈ A0(E∗ ⊗ F ), σ ∈ A0(E) and ω1, ω2 ∈ A(M), and linear extension. Be-
cause of (1.14), for R ∈ A2(E∗⊗E) this is consistent with the definition R = D◦D.

Let u = (u1, . . . , un) be a local frame of a vector bundle π : E → M over an
open U ⊂ M and let D be a connection on E with curvature R. Then we can
write R(u) = u⊗ Ωu, i.e.

R (uα) =
n∑

β=1

uβ ⊗ (Ωu)β α (1.16)

17 Note that this is well-defined, since for f ∈ C∞(M) we have D
ą
(fσ)⊗ ω

ć
= D

ą
σ ⊗ (fω)

ć
.

34



where Ωu =
(
(Ωu)αβ

)
is a matrix of 2-forms on U called the curvature form of

D with respect to the local frame u. If σ =
∑n

α=1 vα uα is a section of E over U
(where vα ∈ C∞(U)), then from (1.13) and (1.16) we get:

R(σ) =
n∑

α=1

uα ⊗
( n∑

β=1

(Ωu)αβ vβ
)
. (1.17)

If we identify E with L(E) ×GL (n,R) Rn and write σ = (u, v ) /∼ as above, then
(1.17) becomes (by abuse of notation):

R(σ) = (u, Ωu v ) /∼.

Let { θi : π−1(Ui)→ Ui ×Rn , i ∈ I } be local trivializations of E with respect to
a cover {Ui, i ∈ I } of M and let {ui, i ∈ I } be the corresponding local frames.
For every i ∈ I let Ωi be the connection form of D with respect to the local frame
ui, i.e. R(ui) = ui ⊗ Ωi. Then on Uij it holds:

Ωj = θji Ωi θij (1.18)

where { θij : Uij → GL (n,R) } are the transition functions of the trivializations
{ θi, i ∈ I }. This can be checked using (1.13), (1.16) and the relation uj = ui θij .

The connection and curvature forms ωu and Ωu of a connection D on a vector
bundle E with respect to a local frame u over U ⊂M are related by the structure
equation

Ωu = dωu + ωu ∧ ωu (1.19)

i.e

( Ωu )αβ = d (ωu )αβ +
n∑

k=1

(ωu )αk ∧ (ωu )kβ.

This can be proved using (1.16), (1.10) and (1.13) (see also [13]).
Exterior differentiation of (1.19) gives the Bianchi identity:

dΩu = Ωu ∧ ωu − ωu ∧ Ωu. (1.20)

Given connections on two vector bundles πE : E → M and πF : F → M , one
can define induced connections on the bundles E∗, E ⊕ F , E ⊗ F and

∧r E in a
natural way (and get then also connections on the bundles obtained by iterating
these operations). In the next examples we will describe how to do it for dual and
tensor bundles. See [13, §5 of Chapter 1] for more details and for the other cases.

Example 1.3.5 Let D be a connection on a vector bundle π : E →M . Define a
connection D∗ on the dual bundle E∗ by:

〈D∗(η∗), σ 〉 := d 〈 η∗, σ 〉 − 〈 η∗, D(σ) 〉 (1.21)
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for η∗ ∈ A0(E∗) and σ ∈ A0(E). It is easy to see that the Leibnitz rule is satisfied.
Let u = (u1, . . . , un) be a local frame of E over some open U ⊂M and take the dual
frame u∗ = (u∗1, . . . , u

∗
n) of E∗ over U . Then the connection and curvature forms

of D∗ with respect to u∗ are given by
(
ω∗

)
u∗ = − (ωu)t and

(
Ω∗

)
u∗ = − (Ωu)t.

Example 1.3.6 Let DE and DF be connections respectively on the vector bundles
πE : E → M and πF : F → M . Define a connection DE⊗F on the tensor bundle
E ⊗ F by:

DE⊗F (σ ⊗ η) := DE(σ)⊗ η + σ ⊗DF (η) (1.22)

for σ ∈ A0(E) and η ∈ A0(F ) and linear extension 18. It is easy to see that the
Leibnitz rule is satisfied. Let uE = (uE1 , . . . , u

E
n ) and uF = (uF1 , . . . , u

F
m) be local

frames of E and F over some open U ⊂M and consider the frame

uE ⊗ uF = {uEi ⊗ uFj , i = 1, . . . , n , j = 1, . . . ,m }

of E⊗F over U , where the {uEi ⊗uFj } are ordered lexicographically. Let ωE, ωF ,
ωE⊗F and ΩE, ΩF , ΩE⊗F be the connection and curvature forms of DE, DF and
DE⊗F with respect to the frames uE, uF and uE⊗F respectively. Then we have:

ωE⊗F = ωE ⊗ Im + In ⊗ ωF
and

ΩE⊗F = ΩE ⊗ Im + In ⊗ ΩF .
19

Example 1.3.7 Let DE and DF be connections respectively on the vector bundles
πE : E →M and πF : F →M . Define a connection DE∗⊗F on the bundle E∗⊗F
by

DE∗⊗F (ϕ) := DF ◦ ϕ− ϕ ◦DE (1.23)

i.e.
DE∗⊗F (ϕ)(X) (σ) := DF

(
ϕ(σ)

)
(X)− ϕ (

DE(σ)(X)
)

for ϕ ∈ A0(E∗ ⊗ F ), X ∈ Γ(TM) and σ ∈ A0(E), where ϕ and DE∗⊗F (ϕ)(X)
are regarded as C∞(M)-liner maps A0(E) → A0(F ) (see Lemma 1.1.17). This
definition coincides with the one that is obtained by combining (1.22) and (1.21),
as one can see by checking it for elements ϕ ∈ A0(E∗⊗F ) of the form ϕ = τ∗⊗η,
where τ∗ ∈ A0(E∗) and η ∈ A0(F ).
For the extended operator DE∗⊗F : Ar(E∗ ⊗ F )→ Ar+1(E∗ ⊗ F ) it holds

DE∗⊗F (ξ) = DF ◦ ξ + (−1)r+1 ξ ◦DE (1.24)

i.e.
DE∗⊗F (ξ) (σ) = DF

(
ξ(σ)

)
+ (−1)r+1 ξ

(
DE(σ)

)

18 Note that this is well defined since DE⊗F

ą
(fσ)⊗ η

ć
= DE⊗F

ą
σ ⊗ f(η)

ć
.

19 See footnote 4.
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for ξ ∈ Ar(E∗⊗F ) and σ ∈ A0(E), where the second term on the right hand side
is defined by (1.15). Formula (1.24) can be proved by checking it for elements of
the form ξ = ϕ⊗ ω and using (1.13).
In particular, let π : E → M be a vector bundle and let R ∈ A2(E∗ ⊗ E) be the
curvature of a connection D on E. Then

DE∗⊗E (R) = D ◦R−R ◦D = D ◦D ◦D −D ◦D ◦D = 0

(see the remark following (1.15)). We can interpret this in local coordinates as
follows. Consider a local frame u = (u1, . . . , un) of E over some open U ⊂ M
and let ωu and Ωu be the connection and curvature forms of D with respect to u.
Then on U we can write R =

∑n
α,β=1 (u∗β ⊗ uα) ⊗ (

Ωu

)
αβ

and a straightforward
calculation gives

DE∗⊗E (R) =
n∑

α,β=1

(u∗β ⊗ uα) ⊗
(
dΩu + ωu ∧ Ωu − Ωu ∧ ωu

)
αβ
.

So we see that the formula DE∗⊗E (R) = 0 obtained above is a global version of
the Bianchi identity (1.20).

Example 1.3.8 Let D be a connection on a vector bundle π : E →M . Combining
(1.23) and (1.21), we get a connection DE∗⊗E∗ on the bundle E∗ ⊗ E∗, which
can be expressed as follows. Observe first that we can consider an element h of
A0(E∗ ⊗ E∗) either as a C∞(M)-linear map A0(E) → A0(E∗) or as a C∞(M)-
bilinear map A0(E) × A0(E) → C∞(M); these two interpretations are related by
the formula h (σ1, σ2) = 〈h(σ1), σ2 〉 for σ1, σ2 ∈ A0(E). We have

DE∗⊗E∗(h) (σ1, σ2) = 〈DE∗⊗E∗(h) (σ1), σ2 〉 = 〈D∗(h(σ1)
)− h(D(σ1)

)
, σ2 〉

= 〈D∗(h(σ1)
)
, σ2 〉 − 〈h

(
D(σ1)

)
, σ2 〉

= d 〈h(σ1), σ2 〉 − 〈h(σ1), D(σ2) 〉 − 〈h
(
D(σ1)

)
, σ2 〉

= d h(σ1, σ2)− h
(
σ1, D(σ2)

)− h (
D(σ1), σ2

)
. (1.25)

Definition 1.3.9 Let h be a Riemannian metric on a vector bundle π : E →M .
A connection D on E is said to be compatible with h (or to be an h-connection)
if DE∗⊗E∗(h) = 0, i.e. if for all σ1, σ2 ∈ A0(E) it holds:

d h(σ1, σ2) = h
(
σ1, D(σ2)

)
+ h

(
D(σ1), σ2

)
. (1.26)

Let D be an h-connection on a vector bundle π : E → M with a Riemannian
metric h. Then the connection form ωu of D with respect to an h-orthonormal
local frame u = (u1, . . . , un) is skew-symmetric. This can be seen by applying
(1.26) to the local sections ui, uj for i, j ∈ I. In particular, ωu (X) ∈ o(n) for all
p in the domain of the local frame and X ∈ TpM . Using the structure equation
(1.19), we see that the curvature form Ωu is also skew-symmetric. Conversely, let
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D be a connection on E and suppose that each p ∈ M has an open neighbor-
hood with a local h-orthonormal frame u = (u1, . . . , un) such that the connection
form of D with respect to u is skew-symmetric. Then D is an h-connection, as can
be seen by writing σ1 =

∑n
i=1 σ

i
1 ui and σ2 =

∑n
i=1 σ

i
2 ui in (1.26) and using (1.11).

Finally, in the next example we describe how a connection on a vector bundle
π : E → M induces a connection on the pullback bundle f∗E, given a smooth
map f : N →M .

Example 1.3.10 Let π : E → M be a vector bundle and let f : N → M be a
smooth map. Observe first that every section σ of E induces a section f∗σ of
f∗E, which is defined by f∗σ (p) :=

(
f̄ |(f∗E)p

)−1
(
σ
(
f(p)

))
for p ∈ N , where

f̄ : f∗E → E is the homomorphism defined in Example 1.1.16. Consider a system
{ θi : π−1(Ui) → Ui × Rn , i ∈ I } of local trivialization of E over a cover
{Ui, i ∈ I } of M and let {ui : Ui → L(E), i ∈ I } be the corresponding local
frames. Suppose D is a connection on E with connection forms {ωi, i ∈ I } with
respect to the {ui, i ∈ I }. Then we can define f∗D to be the connection on
f∗E with connection forms { f∗ωi, i ∈ I } with respect to the local frames { f∗ui,
i ∈ I }. This makes sense, since the { f∗ωi, i ∈ I } and the transition functions
{ θij◦f : f−1(Uij)→ GL (n,R) } corresponding to the frames { f∗ui, i ∈ I } satisfy
(1.12). Note that the diagram

A0(E)
f∗ //

D
²²

A0(f∗E)

f∗D
²²

A1(E)
f∗ // A1(f∗E)

commutes, where the map f∗ : A1(E) → A1(f∗E) is defined by f∗(σ ⊗ ω) :=
f∗(σ)⊗ f∗(ω) for σ ∈ A0(E) and ω ∈ A1(M).

1.4 Connections on principal fibre bundles

Let P (M,G) be a principal fibre bundle. For each u ∈ P we will denote by
T v
u P ⊂ TuP the tangent space at u of the fibre of P through u. T v

u P is the
kernel of the linear map π∗ : TuP → Tπ(u)M (where π is the projection P → M)
and is called the vertical subspace of TuP . A vector X ∈ TuP is called vertical if
X ∈ T v

u P . The map u 7→ T v
u P is a smooth distribution on P , spanned by the

fundamental vector fields corresponding to a basis of the Lie algebra of G.

Definition 1.4.1 A connection A on a principal fibre bundle P (M,G) is a
smooth distribution u 7→ (

T h
u P

)
A

on P such that:

1. TuP = T v
u P ⊕

(
T h
u P

)
A

for all u ∈ P ;
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2.
(
T h
ugP

)
A

= (Rg) ∗
(
T h
u P

)
A

for all u ∈ P and g ∈ G.
(
T h
u P

)
A

is called the horizontal subspace of TuP with respect to the connection
A. A vector X ∈ TuP is called horizontal (with respect to the connection A) if
X ∈ (

T h
u P

)
A
.

Connections exist on every principal fibre bundle, as can be proved using a parti-
tion of unity on the base space (see [14, Theorem 2.1 of Chapter II]).

By property 1. in Definition 1.4.1, every vector field X ∈ Γ(TP ) can be writ-
ten uniquely in the form X =

(
Xv

)
A

+
(
Xh

)
A
, where

(
Xv

)
A

(u) ∈ T v
u P and(

Xh
)
A

(u) ∈ (
T h
u P

)
A

for all u ∈ P ;
(
Xv

)
A

and
(
Xh

)
A

are called the vertical
and horizontal components of X with respect to the connection A. Note that
the smoothness condition for the distribution u 7→ (

T h
u P

)
A

is equivalent to re-
quiring that

(
Xv

)
A

and
(
Xh

)
A

are smooth vector fields of P for every X ∈ Γ(TP ).

For each u ∈ P , the map π∗ : TuP → Tπ(u)M has kernel T v
u P . Thus, since

TuP = T v
u P⊕

(
T h
u P

)
A
, it follows that π∗ gives an isomorphism between

(
T h
u P

)
A

and Tπ(u)M . For Y ∈ Tπ(u)M we will denote the corresponding vector of
(
T h
u P

)
A

by
(
Ŷ h
u

)
A

and we will call it the horizontal lift of Y at u. Given a vector field
Y ∈ Γ(TM), there exists a unique horizontal vector field

(
Ŷ h

)
A
∈ Γ(TP ) (called

the horizontal lift of X) such that π∗
(
Ŷ h

)
A

= Y . To see this, we have to check

that the only possible definition of
(
Ŷ h

)
A
, i.e.

(
Ŷ h

)
A

(u) :=
(( ˆYπ(u)

)h
u

)
A

for u ∈ P
indeed gives a smooth vector field on P . Since smoothness is a local question, we
can assume that P (M,G) is trivial and take a vector field X ∈ Γ(TP ) such that
π∗X = Y . But then it follows that

(
Ŷ h

)
A

=
(
Xh

)
A

is smooth. Notice that
(
Ŷ h

)
A

is invariant by Rg for all g ∈ G (this follows from property 2. of Definition 1.4.1).
Conversely, every horizontal vector field X on P which is invariant by Rg for all
g ∈ G is the horizontal lift of a vector field Y ∈ Γ(TM). Just define Yp := π∗Xu

for some u ∈ π−1(p).

Lemma 1.4.2 Let A be a connection on a principal fibre bundle P (M,G). Then
for Y , Y1 and Y2 ∈ Γ(TM) and f ∈ C∞(M) it holds:

1.
(
Ŷ1 + Y2

h
)
A

=
(
Ŷ1
h )

A
+

(
Ŷ2
h )

A
;

2.
(
f̂ Y h

)
A

= (f ◦ π)
(
Ŷ h

)
A
;

3.
( ̂[Y1, Y2] h

)
A

=
( [ (

Ŷ1
h )

A
,
(
Ŷ2
h )

A

]h )
A
.

Proof 1. and 2. are clear. For 3., observe that since
(
Ŷ1
h )

A
, Y1 and

(
Ŷ2
h )

A
,

Y2 are π-related, then so are
[(
Ŷ1
h )

A
,
(
Ŷ2
h )

A

]
and [Y1, Y2]. 20 ¤

20 Given manifolds M and N and a map f : N → M , two vector field X ∈ Γ(TN) and
Y ∈ Γ(TM) are called f-related if Y

ą
f(p)

ć
= f∗

ą
X(p)

ć
for all p ∈ N . If Xi ∈ Γ(TN) and
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Let A be a connection on a principal fibre bundle P (M,G). We can define a
1-form ωA on P with values in the Lie algebra g of G as follows 21 . For u ∈ P ,
let θu : T v

u P → g be the inverse of the isomorphism g → T v
u P , B 7→ (B∗)u and

define
ωA (X) := θu

(
(Xv)A

)

for X ∈ TuP . Since TuP = T v
u P ⊕

(
T h
u P

)
A
, it follows that

(
T h
u P

)
A

is the kernel
of ωA at u. The 1-form ωA is called the connection form of the connection A.

Lemma 1.4.3 Let ωA be the connection form of a connection A on a principal
fibre bundle P (M,G). Then ωA is smooth and

1. ωA
(
(B∗)u

)
= B for all u ∈ P and B ∈ g;

2. R ∗
g ωA = Ad (g−1) ωA for all g ∈ G.

Conversely, given a smooth g-valued 1-form ω on P satisfying 1. and 2., there is
a unique connection Aω on P (M,G) whose connection form is ω.
Thus we have a 1-1 correspondence between the set of connections on P (M,G)
and the set of g-valued 1-forms on P satisfying 1. and 2. (such forms are called
connections form on P ).

Proof 1. follows directly from the definition of ωA.

To prove 2., let g ∈ G, u ∈ P and X ∈ TuP ; set ωA (X) = B, for some B ∈ g.
Then we have:

((
Rg

)
∗X

)v
A

=
(
Rg

)
∗
((
Xv

)
A

)
=

(
Rg

)
∗
((
B∗

)
u

)
=

(
Ad (g−1) (B)

)∗
ug

where the first equality follows from 2. of definition 1.4.1 and the last from Lemma
1.2.21. Thus ωA

((
Rg

)
∗X

)
= Ad (g−1)

(
ωA(X)

)
.

Yi ∈ Γ(TM) are f -related for i = 1, 2, then so are [X1, X2] and [Y1, Y2] (see [31, 1.55]).
21 A (smooth) r-form on a manifold M with values in a vector space V is defined to be a

smooth r-form on M with values in the trivial vector bundle M × V or equivalently a C∞(M)-
multilinear alternating map Γ(TM)× . . .×Γ(TM) → C∞(M, V ). If we choose a basis v1, . . . , vn

of V , then any ω ∈ Ar(M × V ) can be written uniquely in the form ω =
Pn

i=1 ωi vi, where
ωi ∈ Ar(M). We can define an exterior derivative d : Ar(M × V ) → Ar+1(M × V ) by

ω =

nX
i=1

ωi vi 7→ dω =

nX
i=1

dωi vi.

Note that this definition does not depend on the choice of the basis of V .
If λ : V → W is a linear map and ω ∈ Ar(M × V ), then we will denote by λ (ω) ∈ Ar(M ×W )
the W -valued r-form on M defined by

λ (ω) (X1, . . . , Xr) := λ
ą
ω(X1, . . . , Xr)

ć

for X1, . . . , Xr ∈ Γ(TM).
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Smoothness of ωA will follow if we prove that for every vector field X ∈ Γ(TP )
the function ωA (X) : P → g is smooth. Since ωA (X) is the composition

u 7→ Xu 7→
(
X v
u

)
A
7→ θu

((
X v
u

)
A

)

and the map P → T vP , u 7→ (
X v
u

)
A

is smooth, it is enough to prove that
T vP → g, (u,X) 7→ θu (X) is smooth. Since P (M,G) is locally trivial, we just
have to show this for the bundle U ×G, for some open U ⊂M .
Let u = (p, g) ∈ U × G and X ∈ T v

u (U × G) = TgG. Then by Lemma 1.2.21 we
have

θu (X) = Ad (g−1)
(
(Rg−1)∗ (X)

)

since θ(p,e) : T v
(p,e)(U × G) ∼= TeG ∼= g → g is the identity. So it is enough to

prove that the map TG → g, (g,X) 7→ Ad (g−1)
(
(Rg−1)∗ (X)

)
is smooth, or

equivalently that so is the map TG→ g, (g,X) 7→ (Rg−1)∗ (X). But this last map
is the composition

TG
πG× id−−−−→ G× TG ι× id−−−→ G× TG σ× id−−−→ TG× TG η∗−→ TG

where πG : TG → G is the canonical projection (g,X) 7→ g, ι : G → G is the
map g 7→ g−1, σ : G → TG is the section g 7→ (g, 0) and η∗ : TG × TG → TG,(
(g1, X1), (g2, X2)

) 7→ (
g1 g2, (Rg2)∗(X1) + (Lg1)∗(X2)

)
is the differential of the

map η : G×G→ G, (g1, g2) 7→ g1 g2. 22

Suppose now that ω is a smooth g-valued 1-form on P satisfying 1. and 2. and
define a connection Aω on P (M,G) by

(
T h
u P

)
Aω

:= {X ∈ TuP / ω(X) = 0 }
(note that this is the only possible definition if we want ωAω = ω). The map
u 7→ (

T h
u P

)
Aω

defines a smooth distribution because it is the kernel of a smooth
1-form (see [27, Proposition 5.1 of Chapter 2]) and it is easy to see that properties
1. and 2. of Definition 1.4.1 are satisfied. ¤

22 Here for all (g1, g2) ∈ G×G we identify T(g1,g2) G×G with Tg1G×Tg2G via the isomorphism
X 7→ ą

pr1∗X, pr2∗X
ć
, where pr1 : G × G → G and pr2 : G × G → G are the projections

respectively on the first and second argument.
Note that for X = (X1, X2) ∈ T(g1,g2) G×G ∼= Tg1G× Tg2G and f ∈ C∞ (G×G) we have

(X1, X2) (f) = X1 (f ◦ i1) + X2 (f ◦ i2)

where i1 : G → G×G and i2 : G → G×G are respectively the maps g 7→ (g, g2) and g 7→ (g1, g).
In particular, we can apply this to calculate the differential at (g1, g2) of the map η : G×G → G,
(g, g′) 7→ g g′. Let (X1, X2) ∈ T(g1,g2) G×G and ϕ ∈ C∞(G), then

η∗(X1, X2) (ϕ) = (X1, X2) (ϕ ◦ η) = X1 (ϕ ◦ η ◦ i1) + X2 (ϕ ◦ η ◦ i2)

= (Rg2)∗(X1) (ϕ) + (Lg1)∗(X2) (ϕ)

thus
η∗ (X1, X2) = (Rg2)∗(X1) + (Lg1)∗(X2).
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Consider a principal fibre bundle P (M,G) with a system of local trivializations
{ θi : π−1(Ui) → Ui × G , i ∈ I } with respect to a cover {Ui, i ∈ I } of M . In
the next proposition we will show that every connection form ω on P (M,G) can
be expressed as a family of local 1-forms {ωi ∈ A1(Ui × g) , i ∈ I } on M . Two
different ωi and ωj will be related by a transformation formula that involves the
Maurer-Cartan form on G, i.e. the smooth left-invariant g-valued 1-form ωG on
G defined by ωG(X) := (Lg−1)∗(X) for g ∈ G and X ∈ TgG (see also [27, §1 of
Chapter 3]). We will need the following lemma.

Lemma 1.4.4 Let P (M,G) be a principal fibre bundle with local trivializations
{ θi : π−1(Ui) → Ui × G , i ∈ I } with respect to a cover {Ui, i ∈ I } of M . Let
ωG ∈ A1(G × g) be the Maurer-Cartan form on G and for i, j ∈ I with Uij 6= ∅
define

(ωG )ij := θ ∗
ij ωG

where the { θij : Uij → G } are the transition functions of the trivializations
{θi , i ∈ I }. Then we have:

(ωG )ji = −Ad (θij)
(
(ωG )ij

)
.

Proof Let p ∈ Uij and Y ∈ TpM . Then:

(ωG )ji (Y ) = ωG
(
θji∗(Y )

) (∗)
= ωG

(
− (Lθji(p))∗

(
(Rθji(p))∗

(
(θij)∗(Y )

) ))

= − (Rθji(p))∗
(
(θij)∗(Y )

)
= −Ad

(
θij(p)

) (
ωG

(
(θij)∗(Y )

) )

= −Ad
(
θij(p)

) (
(ωG )ij (Y )

)
.

The equality (∗) follows from the fact that θji : Uij → G is the composition
ι ◦ θij , where ι : G → G is the map g 7→ g−1 whose differential is given by
ι∗ (X) = −Lg−1∗

(
Rg−1∗(X)

)
for g ∈ G and X ∈ TgG. 23 ¤

Proposition 1.4.5 Let P (M,G) be a principal fibre bundle with local trivializa-
tions { θi : π−1(Ui) → Ui ×G , i ∈ I } with respect to a cover {Ui, i ∈ I } of M .
Let ω ∈ A1(P × g) be a connection form on P (M,G) and for all i ∈ I define a
form ωi ∈ A1(Ui × g) by

ωi := (ui)∗ ω
23 Recall that the differential of the map η : G×G → G, (g, g′) 7→ g g′ is given by

η∗ (X1, X2) = (Rg2)∗(X1) + (Lg1)∗(X2)

for g1, g2 ∈ G and X1 ∈ Tg1G, X2 ∈ Tg2G. From this we can derive the differential of the map

ι : G → G, g 7→ g−1 as follow. Observe that the composition G
id× ι−−−→ G×G

η−→ G is the constant
map g 7→ e, so for g ∈ G and X ∈ TgG we have

0 =
ą
(id × ι) ◦ η

ć
∗(X) = η∗(X, ι∗X) = (Rg−1)∗(X) + (Lg)∗

ą
ι∗(X)

ć
.

Thus we get ι∗ (X) = − (Lg−1)∗
ą
(Rg−1)∗(X)

ć
.
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where ui : Ui → P is the local section p 7→ θ−1
i ( p, e ). Then on Uij it holds:

ωj = Ad (θji) (ωi) + (ωG )ij , (1.27)

where the { θij : Uij → G } are the transition functions for the trivializations
{ θi , i ∈ I } and where (ωG )ij = θ ∗

ij ωG.
Conversely, suppose we have a family of 1-forms {ωi ∈ A1(Ui × g) , i ∈ I } such
that (1.27) is satisfied on all Uij 6= ∅. Then there exists a unique connection form
ω on P (M,G) such that ωi = u ∗i ω for all i ∈ I.

Proof Let ω be a connection form on P (M,G). We have to show that for
p ∈ Uij and Y ∈ TpM it holds:

ωj (Y ) = Ad
(
θji(p)

) (
ωi (Y )

)
+ (ωG )ij (Y )

i.e.
ω

(
uj∗ (Y )

)
= Ad

(
θji(p)

) (
ω (ui∗ (Y ))

)
+ ωG

(
(θij) ∗ (Y )

)
. (1.28)

On Uij the map uj is the composition Uij ui× θij−−−−→ π−1(Uij)×G η−→ π−1(Uij), where
η : π−1(Uij) × G → π−1(Uij) is the map (u, g) 7→ ug. Using the Leibnitz rule 24

we have

uj∗ (Y ) = η∗
(
ui∗ (Y ), (θij)∗(Y )

)

= (Rθij(p))∗
(
ui∗ (Y )

)
+

(
(Lθji(p))∗

(
(θij) ∗ (Y )

))∗
uj(p)

. (1.29)

Equation (1.28) follows from (1.29), applying ω to both sides and using properties
1. and 2. in Lemma 1.4.3.

Conversely, let {ωi ∈ A1(Ui × g) , i ∈ I } be a family of 1-forms satisfying (1.27).
Suppose there is a connection form ω on P (M,G) with ωi = u ∗i ω for all i ∈ I.
Then for p ∈ Ui and X ∈ Tui(p)P we have

ω (X) = ωi
(
π∗(X)

)
+ θui(p)

(
X − ui∗

(
π∗(X)

))

24 Recall the Leibnitz rule for the differential of a map ϕ : N1×N2 → M . For (p, q) ∈ N1×N2

identify T(p,q)(N1 × N2) with TpN1 × TqN2 via the isomorphism Z 7→ ( pr1∗Z, pr2∗Z ) where
pr1 : N1 ×N2 → N1 and pr2 : N1 ×N2 → N2 are the projections respectively on the first and on
the second argument. Then the differential of ϕ at (p, q) is given by

ϕ∗(X, Y ) = (ϕ ◦ i1)∗(X) + (ϕ ◦ i2)∗(Y )

where i1 : N1 → N1 × N2 and i2 : N2 → N1 × N2 are the maps x 7→ (x, q) and y 7→ (p, y)
respectively (see [14, Proposition 1.4 of Chapter I]). Notice that footnote 22 describes a particular
case of it.
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since X = ui∗
(
π∗(X)

)
+

(
X −ui∗

(
π∗(X)

))
, with X −ui∗

(
π∗(X)

) ∈ T v
ui(p)

P . Let

now u = ui(p) g for some g ∈ G and X ∈ TuP . Then we have:

ω (X) = ω
(

(Rg)∗
(
(Rg−1)∗(X)

))
= Ad (g−1)

(
ω

(
(Rg−1)∗(X)

) )

= Ad (g−1)

(
ωi

(
π∗

(
(Rg−1)∗(X)

) )

+ θui(p)

(
(Rg−1)∗(X)− ui∗

(
π∗

(
(Rg−1)∗(X)

))) )

= Ad (g−1)
(
ωi

(
π∗(X)

)

+ θui(p)

(
(Rg−1)∗(X)− ui∗

(
π∗(X)

) ))
. (1.30)

This proves the uniqueness part. To prove existence, define ω ∈ A1(P × g) by
(1.30). We have only to check that this is well-defined. Then by construction it
will follow that ω is a connection form and that ωi = u ∗i ω for all i ∈ I. Let
p ∈ Uij , u = ui(p) g = uj(p) θji(p) g and X ∈ TuP . We have to show that

Ad
(
g−1 θij(p)

) (
ωj

(
π∗(X)

)
+ θuj(p)

(
(Rg−1 θij(p))∗(X)− uj∗

(
π∗(X)

) ))

= Ad (g−1)
(
ωi

(
π∗(X)

)
+ θui(p)

(
(Rg−1)∗(X)− ui∗

(
π∗(X)

) ))

thus that

Ad
(
θij(p)

) (
ωj

(
π∗(X)

)
+ θuj(p)

(
(Rg−1 θij(p))∗(X)− uj∗

(
π∗(X)

) ))

= ωi
(
π∗(X)

)
+ θui(p)

(
(Rg−1)∗(X)− ui∗

(
π∗(X)

) )
.

But this follows from (1.27), (1.29) and Lemma 1.4.4. ¤

We will show later that there is a correspondence between connections on a vector
bundle π : E →M and connections on its frame bundle L(E)

(
M,GL (n,R)

)
. We

will then see that the forms {ωi ∈ A1(Ui × gl (n,R)) , i ∈ I } associated with a
connection and a system of local trivializations on L(E) are just the connection
forms of the corresponding connection on E, with respect to the local frames
induced by the local trivializations of L(E). Formula (1.27) will then appear to
be a generalization of formula (1.12).

Definition 1.4.6 Let P (M,G) be a principal fibre bundle and suppose we have
a representation % : G → Aut(V ) of G on a vector space V . A V -valued r-form
ω on P is called G-equivariant if R ∗

g ω = % (g−1)ω for all g ∈ G. It is called
horizontal if for u ∈ P and X1, . . . , Xr ∈ TuP , ω (X1, . . . , Xr) = 0 when at least
one of the Xi’s is vertical.
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Lemma 1.4.7 Let P (M,G) be a principal fibre bundle and suppose we have a
representation % : G → Aut(V ) of G on a vector space V . Let P ×G V be the
associated vector bundle. We have a 1-1 correspondence

Ar(P ×G V ) 1-1←→ { horizontal G-equivariant V -valued r-forms on P }.
In particular, for every principal fibre bundle P (M,G) we have a 1-1 correspon-
dence

Ar(P ×Ad g) 1-1←→ { horizontal G-equivariant g-valued r-forms on P }
where P ×Ad g is the adjoint bundle of P (M,G) (see Example 1.2.13).

Proof Given ξ ∈ Ar(P ×G V ), define a V -valued r-form ξ̂ on P by the relation

ξ
(
π∗(X1), . . . , π∗(Xr)

)
=

(
u, ξ̂ (X1, . . . , Xr)

)
/∼

for u ∈ P and X1, . . . , Xr ∈ TuP . Then ξ̂ is horizontal and G-equivariant, the last
since

ξ
(
π∗

(
Rg∗(X1)

)
, . . . , π∗

(
Rg∗(Xr)

))
= ξ

(
π∗(X1), . . . , π∗(Xr)

)

=
(
u, ξ̂ (X1, . . . , Xr)

)
/∼ =

(
ug, % (g−1) ξ̂ (X1, . . . , Xr)

)
/∼ ;

thus ξ̂
(
Rg∗(X1), . . . , Rg∗(Xr)

)
= % (g−1) ξ̂ (X1, . . . , Xr).

Conversely, let ω be a horizontal G-equivariant V -valued r-form on P and define
ω0 ∈ Ar(P ×G V ) by

ω0 (Y1, . . . , Yr) :=
(
u, ω

(
(Ŷ1)u, . . . , (Ŷr)u

) )
/∼

for p ∈M and Y1, . . . , Yr ∈ TpM , where u is some element in the fibre of P over p
and (Ŷ1)u, . . . , (Ŷ1)u are vectors in TuP such that π∗

(
(Ŷi)u

)
= Xi for i = 1, . . . , r.

Since ω is horizontal and G-equivariant, the definition of ω0 does not depend on
the choice of the vectors (Ŷ1)u, . . . , (Ŷr)u ∈ TuP and of the element u in the fibre
over p.
Clearly, ω̂0 = ω for all horizontal G-equivariant V -valued forms ω on P and
(ξ̂)0 = ξ for all ξ ∈ Ar(P ×G V ). ¤

We will need Lemma 1.4.7 to prove the next proposition, which is an analogue of
Proposition 1.3.2 and which will appear to be a generalization of it.

Proposition 1.4.8 Let P (M,G) be a principal fibre bundle and denote by AP
the set of connections on it. Then AP is an affine space modeled on A1(P ×Ad g),
i.e.

AP = A0 +A1(P ×Ad g),

where A0 is a fixed connection on P (M,G) and where we identify connections with
the corresponding connection forms and elements of A1(P ×Ad g) with the cor-
responding G-equivariant horizontal forms on P in the way described in Lemmas
1.4.3 and 1.4.7.
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Proof Let A1 and A2 be connections on P (M,G) with connection forms ω1 and
ω2 respectively. Then ω1 and ω2 are G-equivariant g-valued 1-forms on P that take
the same values on vertical vectors. Thus ω1 − ω2 is a G-equivariant horizontal
g-valued 1-forms on P , so by Lemma 1.4.7 we have ω1 − ω2 ∈ A1(P ×Ad g). In
particular, AP ⊂ A0 +A1(P ×Ad g).
Conversely, let ξ ∈ A1(P ×Ad g). We have to prove that ω0 + ξ is a connection
form on P , where ω0 is the connection form of A0. But this follows from the fact
that, by Lemma 1.4.7, ξ is a G-equivariant horizontal g-valued 1-forms on P . ¤

Proposition 1.4.9 Let P (M,G) be a principal fibre bundle and suppose we have
a representation % : G → Aut(V ) of G on a vector space V . Let E = P ×G V
be the associated vector bundle. Then every connection A on P (M,G) induces a
connection DA on E, which is defined as follows. Let Y ∈ Γ(TM) and σ ∈ A0(E).
Denote by σ̂ : P → V the G-equivariant map corresponding to σ in the sense of
Lemma 1.2.9. Then DA(σ) (Y ) ∈ A0(E) is defined by

DA(σ) (Y ) (p) :=
(
u,

(
Ŷ h

)
A
(u) (σ̂)

)
/∼

(1.31)

for p ∈M , where u is some element of the fibre of P over p.

Proof Observe first that the map M → E, p 7→
(
u,

(
Ŷ h

)
A
(u) (σ̂)

)
/∼

is well-

defined, since

(
Ŷ h

)
A

(ug) (σ̂) = Rg∗
((
Ŷ h

)
A

(u)
)

(σ̂) =
(
Ŷ h

)
A

(u)
(
σ̂ ◦Rg

)

=
(
Ŷ h

)
A

(u)
(
% (g−1) ◦ σ̂)

= % (g−1)
((
Ŷ h

)
A

(u) (σ̂)
)
,

where the last equality follows from the fact that % (g−1) : V → V is linear.
The map DA(σ) : Γ(TM) → A0(E) is C∞(M)-linear, thus DA(σ) ∈ A1(E). To
conclude that DA : A0(E) → A1(E) is a connection, we have to check that the
Leibnitz rule is satisfied. For this, let σ ∈ A0(E), f ∈ C∞(M), Y ∈ Γ(TM) and
p ∈M . Then

DA (f σ) (Y ) (p) =
(
u,

(
Ŷ h

)
A
(u)

(
(f ◦ π) σ̂

) )
/∼

=
(
u, σ̂(u)

(
Ŷ h

)
A
(u) (f ◦ π) + f(p)

(
Ŷ h

)
A
(u) (σ̂)

)
/∼

=
(
u, σ̂(u) π∗

( (
Ŷ h

)
A
(u)

)
(f) + f(p)

(
Ŷ h

)
A
(u) (σ̂)

)
/∼

=
(
u, σ̂(u)Yp (f)

)
/∼

+ f(p)DA(σ) (Y ) (p)

= σ(p)Yp (f) + f(p)DA(σ) (Y ) (p),

i.e. DA (fσ) = σ ⊗ df + f DA(σ). ¤
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Proposition 1.4.10 Let A be a connection on a principal fibre bundle P (M,G).
Suppose we have a representation % : G→ Aut(V ) of G on a vector space V and
let E = P ×G V be the associated vector bundle. Let DA be the connection on
E induced by A, as described in Proposition 1.4.9. Then the extended operator
Ar(E) → Ar+1(E) works as follows. Let Y1, . . . , Yr ∈ Γ(TM) and ξ ∈ Ar(E).
Denote by ξ̂ the horizontal, G-equivariant V -valued r-form on P corresponding to
ξ in the sense of Lemma 1.4.7. Then DA(ξ) (Y1, . . . , Yr) ∈ A0(E) is given by

DA(ξ)
(
Y1, . . . , Yr

)
(p) =

(
u, dξ̂

((
Ŷ h

1

)
A
(u) . . . ,

(
Ŷ h
r

)
A
(u)

))

/∼
(1.32)

for p ∈M , where u is some element of the fibre of P over p.

Proof It is enough to consider an element ξ of the form ξ = σ ⊗ ω, where
σ ∈ A0(E) and ω ∈ Ar(M). We have

DA(ξ) = σ ⊗ dω +DA(σ) ∧ ω

thus
DA(ξ)

(
Y1, . . . , Yr+1

)
(p) = dω

(
Y1, . . . , Yr+1

)
(p) σ(p)

+
1

(r + 1)!

∑
τ

(−1)τDA(σ)(Yτ(1)) (p) ω
(
Yτ(2), . . . , Yτ(r+1)

)

=
(
u, dω

(
Y1, . . . , Yr+1

)
(p) σ̂(u)

+
1

(r + 1)!

∑
τ

(−1)τ
(
Ŷ h
τ(1)

)
A
(u) (σ̂) ω

(
Yτ(2), . . . , Yτ(r+1)

))

/∼
.

So we have to show that

dξ̂
((
Ŷ h

1

)
A
(u) . . . ,

(
Ŷ h
r

)
A
(u)

)
= dω

(
Y1, . . . , Yr+1

)
(p) σ̂(u)

+ 1
(r+1)!

∑
τ (−1)τ

(
Ŷ h
τ(1)

)
A
(u) (σ̂) ω

(
Yτ(2), . . . , Yτ(r+1)

)
.

But this follows from the fact that ξ̂ = σ̂ π∗ω, so

dξ̂ = dσ̂ ∧ π∗ω + σ̂ d (π∗ω) = dσ̂ ∧ π∗ω + σ̂ π∗dω.

¤

The following lemma will be proved in the Appendix.

Lemma 1.4.11 Let P (M,G) be a principal fibre bundle and suppose we have a
representation % : G → Aut(V ) of G on a vector space V . Let E = P ×G V
be the associated vector bundle. Consider a local section σ : U → P of P over
some open U ⊂ M and the induced local frame u = fv ◦ σ : U → L(E) of E
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over U , where fv : P → L(E) is the map defined in Example 1.2.10, relative to
a basis v of V . Let A be a connection on P (M,G) with connection form ωA and
let DA be the connection on E induced by A, as described in Proposition 1.4.9.
Then the connection form ωu of DA with respect to the local frame u is given by
ωu = (α′v)∗

(
%∗ (σ∗ ωA )

)
25, where (α′v)∗ is the isomorphism End(V ) → gl (n,R)

induced by the choice of the basis v of V .

We are now in a position to prove the correspondence between connections on
a vector bundle and connections on its frame bundle.

Theorem 1.4.12 Let π : E →M be a vector bundle and let L(E)
(
M,GL (n,R)

)
be its frame bundle. Then we have a 1-1 correspondence between the spaces AL(E)

and DE.

Proof Identify E with L(E) ×GL (n,R) Rn. Then every connection A on L(E)
induces a connection DA on E, as described in Proposition 1.4.9.
Let { θi : π−1(Ui)→ Ui×GL (n,R), i ∈ I } be local trivializations of L(E) and let
{ui, i ∈ I } be the associated local frames of E, i.e. ui (p) = θ−1

i ( p, I ) for p ∈ Ui.
Then by Lemma 1.4.11 it follows that for all i ∈ I the connection form of DA with
respect to the local frame ui is (ωA )i = (ui )∗ (ωA ), where ωA is the connection
form of A.

Suppose now that we have a connection D on E and let {ωi, i ∈ I } be the
connection forms of D with respect to the local frames {ui, i ∈ I }. Regard the
ωi’s as gl (n,R)-valued 1-forms on the Ui’s. By (1.12) it holds

ωj = θji ωi θij + θji dθij

But θji ωi θij = Ad (θji) (ωi) by (1.7) and θji dθij = (ωGL (n,R) )ij , since for p ∈ Uij
and Y ∈ TpM we have

(ωGL (n,R) )ij (Y ) = ωGL (n,R)

(
(θij)∗(Y )

)
= (Lθji(p))∗

(
(θij)∗(Y )

)

=
(
Lθji(p) ◦ θij

)
∗ (Y ) = Y

(
Lθji(p) ◦ θij

)
= θji(p)Y (θij).

Thus the {ωi, i ∈ I } satisfy

ωj = Ad (θji) (ωi) + (ωG )ij

so by Lemma 1.4.5 they induce a unique connection AD on L(E) such that its
connection form ωAD

satisfies (ωAD
)i = ωi. 26

25 Here we regard gl (n,R)-valued 1-forms as matrices of real 1-forms.
26 The horizontal distribution

ą
T hL(E)

ć
AD

can be described as follows. For a point b ofą
L(E)

ć
p

choose a local frame u = (u1, . . . , un) of E around p such that u(p) = b and D(uα)(p) = 0

for α = 1, . . . , n; such frame exists. Then
ą
T h

b L(E)
ć

AD
= u∗

ą
TpM

ć

where we regard u as a local section of L(E). Indeed, for Y ∈ TpM we have ωAD (u∗Y ) =
ωu(Y ) = 0, where ωu is the connection form of D with respect to u, thus (by dimensions)
u∗

ą
TpM

ć
= ker

ą
ωAD (p)

ć
.
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By what we said above, the connectionDAD
on E induced by AD has the {(ωAD

)i,
i ∈ I } as connection forms with respect to the local frames {ui, i ∈ I }, thus by
the uniqueness part in Lemma 1.3.3 we have DAD

= D.
Similarly, ADA

= A for all A ∈ AL(E), so the map AL(E) → DE , A 7→ DA is a
bijection. 27 ¤

Let π : E → M be a vector bundle and let L(E)
(
M,GL (n,R)

)
be its frame

bundle. We know that DE and AL(E) are affine spaces modeled respectively on
A1(E∗ ⊗ E) and A1

(
L(E) ×Ad gl (n,R)

)
(cf Propositions 1.3.2 and 1.4.8). In

the Appendix we will show that the bijection AL(E) → DE , A 7→ DA of Theo-
rem 1.4.12 is actually an affine isomorphism, whose associated linear isomorphism
A1

(
L(E) ×Ad gl (n,R)

) → A1(E∗ ⊗ E) is the map induced by the isomorphism
φ : L(E)×Ad gl (n,R)→ E∗ ⊗ E described in Example 1.2.13.

Let P (M,G) be a principal fibre bundle and let V be a vector space. Given
a connection A on P (M,G) and a V -valued r-form ω on P , define a V -valued
(r + 1)-form dA ω on P by

dA ω (X1, . . . , Xr+1) := dω
( (
Xh

1

)
A
, . . . ,

(
Xh
r+1

)
A

)

for u ∈ P and X1, . . . , Xr+1 ∈ TuP . Observe that if we have a representation
% : G → Aut(V ) of G on V and if the form ω is G-equivariant, then dAω is a
horizontal G-equivariant V -valued form on P , thus by Lemma 1.4.7 we have in
this case

dA ω ∈ Ar+1(P ×G V ).

In particular, consider the representation Ad : G→ Aut(g) and denote by (DAd)A
the connection on P ×Ad g induced by A. Then by Proposition 1.4.10 we have
dA ξ = (DAd)A (ξ) for all ξ ∈ Ar(P ×Ad g).

Let ωA be the connection form of a connection A on a principal fibre bundle
P (M,G). The g-valued 2-form ΩA = dA ωA on P is called the curvature form
of A. It is an element of A2(P ×Ad g). The following lemma will be proved in the
Appendix.

Lemma 1.4.13 Let P (M,G) be a principal fibre bundle and suppose we have a
representation % : G → Aut(V ) of G on a vector space V . Let A be a connection

27 Another, more intuitive approach to see the correspondence between DE and AL(E) is as
follows. One can prove that the concepts of connection on a vector bundle π : E → M and on
a principal fibre bundle P (M, G) are equivalent respectively to assigning a parallel translation
τα : Eα(0) → Eα(t) (t ∈ [0, 1]) along each curve α : [0, 1] → M and to a unique G-equivariant
path lifting property on P (M, G). If P (M, G) is the frame bundle of π : E → M , then these
two concepts are equivalent, since parallel translation along a curve α : [0, 1] → M can also be
thought of as carrying a frame at α(0) to a frame at α(t), for all t ∈ [0, 1]. See for example [21]
and [14, §1 of Chapter III].
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on P (M,G). Then the curvature of the connection DA on the associated vector
bundle E = P×GV is φ (ΩA) ∈ A2(E∗⊗E), where φ : A2(P×Ad g)→ A2(E∗⊗E)
is induced by the map P×Ad g→ E∗⊗E defined in Example 1.2.13. In particular,
if A is a connection on the frame bundle L(E)

(
M,GL (n,R)

)
of a vector bundle

π : E → M , then under the identification L(E) ×GL (n,R) gl (n,R) ∼= E∗ ⊗ E we
have ΩA = RA, where RA is the curvature of the connection DA on E induced by
A.

Proposition 1.4.14 Let A be a connection on a principal fibre bundle P (M,G)
and let ωA and ΩA be the connection and curvature forms of A. Then for u ∈ P
and X1, X2 ∈ TuP it holds:

dωA (X1, X2) = − 1
2

[ωA (X1), ωA (X2) ] + ΩA (X1, X2). (1.33)

Equation (1.33) is called the structure equation for a connection on a principal
fibre bundle. It can be proved by checking it separately for the three cases that
X1,X2 are both vertical, both horizontal or X1 vertical and X2 horizontal (see
[14, Theorem 5.2 of Chapter II]. In the case when P (M,G) is the frame bundle
L(E)

(
M,GL (n,R)

)
of a vector bundle π : E →M , (1.33) reduces to the structure

equation (1.19) for vector bundles. To see this, let u : U → L(E) be a local frame
of E on some open U ⊂ M . Then by Lemma 1.4.11 and by Lemma 1.4.13, the
connection and curvature forms of a connection D on E with respect to the local
frame u are given by ωu = u∗ ωAD

and Ωu = u∗ΩAD
. Equation (1.33) implies

dωu (Y1, Y2) = − 1
2

[ωu (Y1), ωu (Y2) ] + Ωu (Y1, Y2)

for p ∈ U and Y1, Y2 ∈ TpM . But this is equivalent to equation (1.19), since

(ωu ∧ ωu) (Y1, Y2) =
1
2

(
ωu(Y1)ωu(Y2)− ωu(Y2)ωu(Y1)

)
=

1
2

[ωu (Y1), ωu (Y2) ].

Proposition 1.4.15 Let ΩA be the curvature form of a connection A on a prin-
cipal fibre bundle P (M,G). Then it holds:

dA ΩA = 0. (1.34)

Equation (1.34) is called the Bianchi identity for a connection on a principal
fibre bundle. We refer for a proof to [14, Theorem 5.4 of Chapter II]. We will
show instead that (1.34) reduces to the Bianchi identity (1.20) for vector bun-
dles, when P (M,G) is the frame bundle L(E)

(
M,GL (n,R)

)
of a vector bundle

π : E →M . Let (DAd)A andDA be the connections on L(E)×Adgl (n,R) and E =
L(E)×GL (n,R)Rn induced by A. Regard ΩA and dA ΩA as forms on the vector bun-
dle L(E)×Adgl (n,R). Then by Proposition 1.4.10 we have dA ΩA = (DAd)A (ΩA),
as was observed above. By Lemma 1.4.13, ΩA is equal to the curvature RA of the
connectionDA on E, under the identification L(E)×Adgl (n,R) ∼= E∗⊗E described
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in Example 1.2.13. If we show that under this identification (DAd)A = (DA)E∗⊗E ,
then from (1.34) it will follow (DA)E∗⊗E RA = 0, which is the Bianchi identity
for vector bundles (cf. Example 1.3.7). This is done in the following lemma.

Lemma 1.4.16 Let A be a connection on the frame bundle L(E)
(
M,GL (n,R)

)
of a vector bundle π : E →M and let (DAd)A and DA be respectively the connec-
tions on L(E)×Ad gl (n,R) and E = L(E)×GL (n,R)Rn induced by A, as described
in Proposition 1.4.9. Identify L(E)×Ad gl (n,R) with E∗⊗E, as done in Example
1.2.13. Then we have:

(DA)E∗⊗E = (DAd)A.

Proof Let ϕ ∈ A0
(
L(E) ×Ad gl (n,R)

)
= A0(E∗ ⊗ E) = Hom (E,E) and

σ ∈ A0(E). Denote by ϕ̂ : L(E)→ gl (n,R) and σ̂ : L(E)→ Rn the corresponding
GL (n,R)-equivariant maps. Recall that for p ∈M we have

ϕ
(
σ(p)

)
=

(
u, ϕ̂(u) σ̂(u)

)
/∼ (1.35)

where u is some element in the fibre of L(E) over p and where the operation on
the right hand side is matrix multiplication gl (n,R) × Rn → Rn (cf. Example
1.2.13). Let Y ∈ Γ(TM) and regard ϕ and (DA)E∗⊗E (ϕ)(Y ) as C∞(M)-linear
maps A0(E)→ A0(E). Then by (1.23), (1.31) and (1.35) we have

(DA)E∗⊗E (ϕ)(Y )(σ) (p) = DA

(
ϕ(σ)

)
(Y ) (p)− ϕ (

DA(σ)(Y ) (p)
)

=
(
u, Ŷ h

A (u) (ϕ̂(σ))
)
/∼ −

(
u, ϕ̂(u) Ŷ h

A (u) (σ̂)
)
/∼

=
(
u, Ŷ h

A (u) (ϕ̂(σ))− ϕ̂(u) Ŷ h
A (u) σ̂

)
/∼.

On the other hand, by (1.31) and (1.35) we have

(DAd)A (ϕ)(Y )(σ) (p) =
(
u, Ŷ h

A (u) (ϕ̂) σ̂(u)
)
/∼.

But
Ŷ h
A (u) (ϕ̂(σ))− ϕ̂(u) Ŷ h

A (u) (σ̂) = Ŷ h
A (u) (ϕ̂) σ̂(u)

by the Leibnitz rule, since by (1.35) we have ϕ̂(σ) = ϕ̂ σ̂. ¤

Let (f, f ′) : Q (N,H)→ P (M,G) be a homomorphism of principal fibre bun-
dles. If the induced map f ′′ : N →M is a diffeomorphism, then every connection
on Q (N,H) induces a connection on P (M,G) in a natural way. If f ′ : H → G
is an isomorphism, then every connection on P (M,G) induces a connection on
Q (N,H) in a natural way. This will be needed in Chapter 4 and is explained in
the next two propositions.

Proposition 1.4.17 Let (f, f ′) : Q (N,H) → P (M,G) be a homomorphism of
principal fibre bundles such that the induced map f ′′ : N →M is a diffeomorphism.
Let A be a connection on Q (N,H) with connection and curvature forms ωA and
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ΩA. Then there is a unique connection f(A) on P (M,G) such that the horizontal
subspaces of Q (N,H) with respect to A are mapped by f to horizontal subspaces
of P (M,G) with respect to f(A). If ωf(A) and Ωf(A) are the connection and
curvature forms of f(A), then

f∗ ωf(A) = f ′∗ (ωA) (1.36)

and
f∗Ωf(A) = f ′∗ (ΩA). (1.37)

The connection f(A) on P (M,G) is defined as follows. For u ∈ P with π(u) = p
choose an element u′ in the fibre of Q over f−1(p); then u = f(u′) g, for some
g ∈ G. Define (

T h
u P

)
f(A)

:= (Rg)∗
(
f∗

(
T h
u′ Q

)
A

)
.

This definition does not depend on the choice of u′ in the fibre of Q over f−1(p)
and the distribution u 7→ (

T h
u P

)
f(A)

indeed defines a connection, whose connec-
tion and curvature forms satisfy (1.36) and (1.37). See [14, Proposition 6.1 of
Chapter II] for a proof of this.

In particular, Proposition 1.4.17 holds for a reduction Q (M,H) of a principal
fibre bundle P (M,G): every connection on Q (M,H) induces a connection on
P (M,G) in such a way that the two connections coincide on Q, when we consider
Q as a subset of P . We will denote the two connections by the same letter.

Definition 1.4.18 Let P (M,G) be a principal fibre bundle and let Q (M,H) be
a reduction of P (M,G). A connection on P (M,G) is said to be reducible to
Q (M,H) if it is induced by a connection in Q (M,H) in the way described in
Proposition 1.4.17.

Note that a connection A on P (M,G) is reducible to Q (M,H) if and only if
ωA (X) is an element of the Lie algebra of H, for all u ∈ Q and X ∈ TuQ.

Proposition 1.4.19 Let (f, f ′) : Q (N,H) → P (M,G) be a homomorphism of
principal fibre bundles such that f ′ : H → G is an isomorphism. Let A be a con-
nection on P (M,G) with connection and curvature forms ωA and ΩA. Then there
exists an unique connection f∗(A) on Q (N,H) such that the horizontal subspaces
of Q (N,H) with respect to f∗(A) are mapped by f to horizontal subspaces of
P (M,G) with respect to A. If ωf∗(A) and Ωf∗(A) are the connection and curvature
forms of f∗(A), then

f∗ ωA = f ′∗
(
ωf∗(A)

)
(1.38)

and
f∗ΩA = f ′∗

(
Ωf∗(A)

)
. (1.39)
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The connection f∗(A) on Q (N,H) is defined by
(
T h
u Q

)
f∗(A)

:= (f∗)−1
((
T h
f(u)P

)
A

)

for u ∈ Q. Then the distribution u 7→ (
T h
u Q

)
f∗(A)

indeed defines a connection,
whose connection and curvature forms satisfy (1.38) and (1.39). See [14, Proposi-
tion 6.2 of chapter II] for a proof of this.

In particular, Proposition 1.4.19 holds for the pullback bundle f∗(P ) (N,G) of
a principal fibre bundle P (M,G), where f is a smooth map N → M : every con-
nection on P (M,G) induces a connection on f∗(P ) (N,G) whose connection and
curvature forms are the pullback of the connection and curvature forms of the
connection on P (M,G).

Example 1.4.20 Let P (M,G) be a principal fibre bundle and f : N → M a
smooth map. Suppose we have a representation % : G→ Aut(V ) of G on a vector
space V . Then the vector bundle E′ = f∗(P ) ×G V associated with the pullback
bundle f∗(P ) (N,G) is the pullback of the vector bundle E = P ×G V associated
with P (M,G). This follows from the fact that the vector bundles f∗(P )×G V and
f∗ (P ×G V ) both have transition functions

{α′v ◦ % ◦ θij ◦ f : f−1(Uij)→ GL (n,R) }
over the cover { f−1(Ui), i ∈ I } of N , where α′v : Aut (V ) → GL (n,R) is the
isomorphism induced by the choice of a basis v of V , { θij : Uij → GL (n,R) }
are the transition functions of a system of local trivializations of P (M,G) over a
cover {Ui, i ∈ I } of M and where we consider the systems of local trivializations
naturally induced on f∗(P )×GV and f∗ (P×GV ), as described in Examples 1.1.16,
1.2.8 and 1.2.10. By Propositions 1.4.9 and 1.4.19 and by Example 1.3.10, given
a connection A on P (M,G) we get connections DA on E, f∗(A) on f∗(P ) (N,G)
and f∗(DA), Df∗(A) on f∗(E) = f∗(P )×G V . By Proposition 1.4.19 and Lemma
1.4.11, both connections f∗(DA) and Df∗(A) have connection forms { (σi ◦ f)∗ ωA,
i ∈ I } with respect to the local frames on f∗(E) induced by a system of local frames
{σi : Ui → P , i ∈ I } of P (M,G). By the uniqueness part in Lemma 1.3.3, it
follows that f∗(DA) = Df∗(A).

Example 1.4.21 Let P (M,G) be a principal fibre bundle and let Q (M,H) be a
reduction of P (M,G). Suppose that we have a representation % : G→ Aut(V ) of
G on a vector space V . Then, by Proposition 1.2.18, the associated vector bundles
P ×G V and Q ×H V are isomorphic. Let A be a connection on P (M,G) which
is reducible to Q (M,H). Then it is easy to see that the connections induced by A
on P ×G V and Q×H V , as described in Proposition 1.4.9, are equal.

Example 1.4.22 Let π : E → M be a vector bundle and let h be a Rieman-
nian metric on E. Consider the reduction Oh(E)

(
M,O(n)

)
of the frame bun-

dle L(E)
(
M,GL (n,R)

)
of E corresponding to h (see Example 1.2.17). We will
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show that a connection A on L(E) is reducible to Oh(E) if and only if the in-
duced connection DA on E is an h-connection. Suppose first that DA is an
h-connection. Let u0 ∈ Oh(E) and X0 ∈ Tu0Oh(E); we need to show that
ωA (X0) ∈ o(n) (then it will follow that the connection A is reducible to Oh(E)).
Let u : U → Oh(E) be a local h-orthonormal frame of E over some open U ⊂ M
with π(u0) ∈ U . Let X ∈ Tu(π(u0))Oh(E); then X − u∗

(
π∗(X)

) ∈ T v
u(π(u0))Oh(E),

thus ωA
(
X − u∗

(
π∗(X)

)) ∈ o(n). Denote by ωu the connection form of DA with
respect to u. Then by Lemma 1.4.11 we have

ωA

(
X − u∗

(
π∗(X)

))
= ωA (X)− ωu

(
π∗(X)

)
.

Since DA is an h-connection and u is an h-orthonormal frame, it follows that
ωu

(
π∗(X)

) ∈ o(n), so ωA (X) ∈ o(n). Let u0 = u
(
π(u0)

)
g for some g ∈ O(n).

Then

ωA (X0) = ωA

(
Rg∗

(
R−1
g ∗(X0)

))
= Ad(g−1) ωA

(
R−1
g ∗(X0)

) ∈ o(n),

as we wanted. Suppose now that A is a connection on L(E) reducible to Oh(E).
Then for all u ∈ Oh(E) and X ∈ TuOh(E) we have ωA (X) ∈ o(n). Consider a
local h-orthonormal frame u : U → Oh(E) of E over some open U ⊂ M . Denote
by ωu the connection form of DA with respect to u. Then by Lemma 1.4.11 we
have ωu (X) = ωA

(
u∗(X)

) ∈ o(n) for all p ∈ U and X ∈ TpM . So ωu is skew-
symmetric and it follows that DA is an h-connection.
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Chapter 2

Complexifications

In the rest of the thesis we will consider complex vector bundles over complex
manifolds and principal fibre bundles with complex structure group and complex
base space. All results of Chapter 1 apply to these objects, with only minor
changes. In this chapter we will make this statement more precise and we will
take a closer look at some properties of connections which strictly depend on the
complex structures of the base spaces and of the fibres.
Paragraph 1 contains linear-algebraic preliminaries, while in Paragraph 4 we will
collect some results over complex reductive Lie groups that are needed later.

General references for this chapter are [15, Chapter IX] for 2.1 and 2.2, [32,
Chapters I and III] and [2] for 2.1, 2.2 and 2.3, [16, pages 70-81] and [6, §2, §5 and
§7 of Chapter 0] for 2.2 and 2.3, [13, Chapter I] for 2.3 and [25, §7 of Chapter 1
and §2 of Chapter 4], [10], [12] and [30] for 2.4.

2.1 Complexification of a real vector space with a com-
plex structure

All results of this section will be applied in Paragraph 2.2 to tangent spaces of com-
plex manifolds. We follow [15, §1 of Chapter IX]. Proof of all unproven statements
can be found there.

Definition 2.1.1 A complex structure on a real vector space V is a linear
automorphism J of V such that J2 = − idV .

If a real vector space V has a complex structure J then it must be even-dimensional.
Indeed, the automorphism J of V has no eigenvalues and thus the characteristic
polynomial of J has no zero. Since the degree of the characteristic polynomial
is equal to the dimension of V , it follows that V is even-dimensional. If J is a
complex structure on a 2n-dimensional real vector space V , then we can find a
basis of V of the form { v1, J(v1), . . . , vn, J(vn) }.
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Let V be a real 2n-dimensional vector space and J a complex structure on V .
Then we can turn V into a complex vector space, denoted by (V, J), by setting
(a+ ib) v := av + bJ(v) for v ∈ V and a+ ib ∈ C. If { v1, J(v1), . . . , vn, J(vn) } is
a basis of V over R, then { v1, . . . , vn } is a basis of (V, J) over C. In particular,
dimC (V, J) = 1

2 dimR V .

Conversely, let W be a complex n-dimensional vector space. Then we can de-
fine a complex structure J on the underlying real vector space WR by J(w) := iw
for w ∈W . The map (WR, J)→W , w 7→ w is then a C-linear isomorphism.

The complex vector space W := (WR,−J) is called the conjugate of W . Ob-
serve that every conjugate-linear map W → C can be obtained by composing a
C-linear map W → C with the conjugate-linear map W → W , w 7→ w. Thus the
space of conjugate-linear maps W → C can be identified with W ∗. Similarly, the
space of sesquilinear maps W ×W → C can be identified with the space of bilinear
maps W ×W → C.

If V , V ′ are real vector spaces with complex structures J and J ′ respectively,
then an R-linear map f : V → V ′ induces a C-linear map f : (V, J) → (V ′, J ′) if
and only if J ′ ◦ f = f ◦ J .

Given a complex structure J on a real vector space V , we can define a complex
structure J∗ on the dual V ∗ by the relation

〈 J∗(v∗1), v2 〉 := 〈 v∗1, J(v2) 〉

for v∗1 ∈ V ∗ and v2 ∈ V .

Definition 2.1.2 Let V be an n-dimensional real vector space and consider the
2n-dimensional real vector space V C := V ⊗R C. Define a scalar complex mul-
tiplication on V C by µ (v ⊗ λ) := v ⊗ µλ for v ∈ V and µ, λ ∈ C and R-linear
extension. Then V C becomes an n-dimensional complex vector space, called the
complexification of V .

Observe that if we identify V with the image of the monomorphism V → V C,
v 7→ v⊗ 1, then we can write V C = { v1 + iv2, v1, v2 ∈ V } (briefly, V C = V ⊕ i V );
the scalar multiplication on V C takes then the form

(a+ ib)(v1 + iv2) = av1 − bv2 + i (av2 + bv1)

for a+ ib ∈ C and v1 + iv2 ∈ V C.

Let V be a real vector space. We have an R-linear map V C → V C, w 7→ w
(called conjugation) defined by v ⊗ λ := v⊗ λ̄ (or equivalently v1 + iv2 := v1− iv2
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for v1, v2 ∈ V ). Observe that the map V C → V C, w 7→ w is a C-linear isomor-
phism.

Let V ∗ be the dual of a real vector space V . Then its complexification is canoni-
cally isomorphic (over C) to the (complex) dual of the complexification of V , i.e.
(V ∗)C = (V C)∗ = Hom(V C,C). The dual pairing (V ∗)C × V C → C is given by
〈 v∗1 ⊗ λ, v2 ⊗ µ 〉 := λµ 〈 v∗1, v2 〉 for λ, µ ∈ C, v∗1 ∈ V ∗ and v2 ∈ V . Note that for
w∗1 ∈ (V ∗)C and w2 ∈ V C we have 〈w∗1, w2 〉 = 〈w∗1, w2 〉.

Observe that for every real vector space V we have a canonical C-linear isomor-
phism

( ∧r V
)C ∼= ∧r V C (thus in particular

( ∧r V ∗
)C =

∧r (
V ∗

)C =
∧r (

V C
)∗).

It is obtained by applying the universal factorization property of the exterior power
to the r-linear alternating map V C × . . .× V C → ( ∧r V

)C,
(
v1 ⊗ λ1, . . . , vr ⊗ λr

) 7→ v1 ∧ . . . ∧ vr ⊗ λ1 . . . λr .

From now on, till the end of the section, V will be a 2n-dimensional real vector
space with a complex structure J and V C its complexification.

We can extend J to a C-linear automorphism of V C by J (v ⊗ λ) := J(v) ⊗ λ
(equivalently, J (v1 + iv2) := J(v1) + iJ(v2) for v1, v2 ∈ V ). Consider the polyno-
mial ϕ(x) = x2+1 = (x+i)(x−i). Since ϕ(J) = 0 and J+i 6= 0 6= J−i, it follows
that ϕ(x) is the minimal polynomial of J , thus +i and −i are the eigenvalues of
J . We will denote by V 1,0 (respectively V 0,1) the eigenspace of +i (respectively
−i). Then V C = V 1,0 ⊕ V 0,1. Given a vector w ∈ V C, we will denote by w1,0

(respectively w0,1) the projection of w into V 1,0 (respectively V 0,1). Then we have

w1,0 =
w − iJ(w)

2
and w0,1 =

w + iJ(w)
2

. (2.1)

The proof of the following lemma is immediate.

Lemma 2.1.3 Let V C = V 1,0 ⊕ V 0,1 as above. Then:

1. V 1,0 = { v − iJ(v), v ∈ V } and V 0,1 = { v + iJ(v), v ∈ V };
2. the R-linear isomorphism V C → V C, w 7→ w induces a conjugate-linear map

V 1,0 → V 0,1;

3. the maps (V, J) → V 1,0, v 7→ v−iJ(v)
2 and (V,−J) → V 0,1, v 7→ v+iJ(v)

2 are
C-linear isomorphisms. 1

The above observations apply to the dual space V ∗ and the induced complex
structure J∗. Thus we can write

(
V C

)∗ =
(
V ∗

)C = V1,0 ⊕ V0,1 (2.2)

1 The motivation for the factor 1
2

will appear in Section 2.2.
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where V1,0 := {w∗ ∈ (
V ∗

)C
/ J∗(w∗) = i w∗ } = { v∗ − i J∗(v∗), v∗ ∈ V ∗ }

and V0,1 := {w∗ ∈ (
V ∗

)C
/ J∗(w∗) = −i w∗ } = { v∗ + i J∗(v∗), v∗ ∈ V ∗ }.

It is easy to see that V1,0 = {w∗ ∈ (
V ∗

)C
/ 〈w∗, w′ 〉 = 0, ∀w′ ∈ V 0,1 } and

V0,1 = {w∗ ∈ (
V ∗

)C
/ 〈w∗, w′ 〉 = 0, ∀w′ ∈ V 1,0 }. Thus V1,0 = (V 1,0)∗ and

V0,1 = (V 0,1)∗ (complex duals).

Remark 2.1.4 Observe that, using the conjugate-linear map V 1,0 → V 0,1 of
Lemma 2.1.3, we can identify V0,1 with the vector space of conjugate-linear maps
V 1,0 → C (i.e. for α ∈ V0,1 we define a conjugate-linear map α̃ : V 1,0 → C by
α̃(w) := α(w)). This identification will be always tacitly assumed in the following.

The decomposition (2.2) induces a decomposition of the exterior algebra
∧(

V C
)∗

as follows. For integers s, q ≥ 0 define
∧s,q (

V C
)∗ :=< α ∧ β ∈ ∧s+q (

V C
)∗
/ α ∈ ∧s V1,0 , β ∈

∧q V0,1 >C

where < >C denotes the C-linear span. Then for every integer r ≥ 0 we have
∧r (

V C
)∗ =

⊕
s+q=r

∧s,q (
V C

)∗
. (2.3)

Complex conjugation in
(
V C

)∗ =
(
V ∗

)C can be extended to
∧(

V C
)∗ in a natural

way. In particular we obtain an R-linear isomorphism between
∧s,q (

V C
)∗ and∧q,s (

V C
)∗. Note that if α ∈ ∧r (

V C
)∗ and w1, . . . , wr ∈ V C, then

α (w1, . . . , wr) = α (w1, . . . , wr) .

The proof of the following proposition is straightforward.

Proposition 2.1.5 Let h be an Hermitian inner product on V 1,0 and denote
by h the Hermitian inner product on (V, J) induced by h, via the isomorphism
(V, J)→ V 1,0, v 7→ v−iJ(v)

2 . Then:

1. The map h̃ := Re (h) : V × V → R is an inner product on V such that
h̃

(
J(v1), J(v2)

)
= h̃ (v1, v2) for all v1, v2 ∈ V . It holds

h (v1, v2) = h̃ (v1, v2) + i h̃
(
v1, J(v2)

)
.

2. The C-linear extension of h̃ : V × V → R to V C is a C-bilinear symmetric
non-degenerate map h̃ : V C × V C → C such that for w, w1 and w2 ∈ V C it
holds

- h̃ (w1, w1) = h̃ (w1, w2);

- h̃ (w,w) > 0 if w 6= 0;

- h̃ (w1, w2) = 0 if w1, w2 ∈ V 1,0 or w1, w2 ∈ V 0,1;

- h (w1, w2) = 2 h̃ (w1, w2) for w1, w2 ∈ V 1,0.
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3. For every positive integer r, h̃ : V C × V C → C extends to a C-bilinear
symmetric non-degenerate map

∧r h̃ :
∧r(V C)×∧r(V C)→ C by defining

∧r h̃ (w1 ∧ . . . ∧ wr, w′1 ∧ . . . ∧ w′r ) := det
( (

h̃ (wi, w′j)
)
ij

)

for w1, . . . , wr, w
′
1, . . . , w

′
r ∈ V C and linear extension. Then we have

∧r h̃ (ᾱ, β̄) =
∧r h̃ (α, β)

for α, β ∈ ∧r(V C).

4. The map −1
2 Im (h) : V × V → R is an element of

∧2 V ∗ and its C-linear
extension k to V C is an element of

∧1,1 (
V C

)∗. It holds

k (w1, w2) = −1
2
h̃

(
w1, J(w2)

)

for w1, w2 ∈ V C.

2.2 Complex and almost complex manifolds

Definition 2.2.1 A complex n-dimensional manifold consists of a topological
manifold M together with a family { (Ui, ϕi), i ∈ I } such that:

- {Ui, i ∈ I } is a cover of M ;

- for every i ∈ I, ϕi is a homeomorphism between Ui and an open subset of
Cn;

- for every i, j ∈ I with Uij 6= ∅, the transition function ϕi ◦ ϕ−1
j : ϕj (Uij)→

ϕi (Uij) is holomorphic.

A chart for the complex manifold M consists of an open subset U of M and a
homeomorphism ϕ between U and an open subset of Cn such that for every i ∈ I
with U ∩ Ui 6= ∅ the map ϕi ◦ ϕ−1 : ϕ (U ∩ Ui) → ϕi (U ∩ Ui) is holomorphic. A
continuous map f between two complex manifolds N and M is holomorphic if for
every p ∈ N and some (and hence all) charts (U , ϕ) of N around p and (V, ψ)
of M around f(p) the map ψ ◦ f ◦ ϕ−1 : ϕ

(
f−1(V) ∩ U ) → ψ

(V ∩ f(U)
)

is
holomorphic.

Note that every complex n-dimensional manifold has the structure of a real 2n-
dimensional manifold and that a holomorphic map between complex manifolds is
in particular a smooth map between the underlying real manifolds.

Let M be a complex manifold and p ∈ M . We will denote by TCp M the holo-
morphic tangent space of M at p, i.e. the complex vector space of C-linear deriva-
tions of germs of holomorphic functions on M , and by TRp M the tangent space
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at p of the underlying smooth manifold, thus the real vector space of R-linear
derivations of germs of smooth functions on M . If ϕ = (z1, . . . , zn) : U →
Cn is a chart of M around p then { ∂

∂z1
, . . . , ∂

∂zn
} 2 is a basis of TCp M over C

(see [7, p. 152]) and { ∂
∂x1

, ∂
∂y1

, . . . , ∂
∂xn

, ∂
∂yn
} a basis of TRp M over R, where

zj = xj + iyj for j = 1, . . . , n. Note that we have a canonical R-linear isomor-
phism φ : TRp M →

(
TCp M

)R, defined by φ(X) (f) := X
(
Re(f)

)
+ iX

(
Im(f)

)
for

X ∈ TRp M and for a holomorphic germ f on M . In local coordinates we have,
using the Cauchy-Riemann equations, φ ( ∂

∂xj
) = ∂

∂zj
and φ ( ∂

∂yj
) = i ∂

∂zj
. The

complex structure of TCp M induces a complex structure on
(
TCp M

)R as explained

in §1 and thus, via the R-linear isomorphism φ : TRp M → (
TCp M

)R, a complex
structure J on TRp M (i.e., we define J to be the unique complex structure on
TRp M turning φ : (TRp M,J) → TCp M into a C-linear isomorphism). Locally we
have J ( ∂

∂xj
) = ∂

∂yj
for j = 1, . . . , n.

All results of Section 2.1 apply now to the real vector space TRp M with the com-
plex structure J . We will denote by TpM the complexification of TRp M (and
call it the tangent space of the complex manifold M) and by T ′pM and T ′′pM re-
spectively the eigenspaces of +i and −i for the endomorphism J of TpM . Then
TpM = T ′pM ⊕ T ′′pM . Note that we can identify TpM with the complex vector
space of C-linear derivations of germs of smooth C-valued functions on M , by
defining (X ⊗ λ) (f) := λ

(
X

(
Re(f)

)
+ iX

(
Im(f)

))
for X ⊗ λ ∈ TpM and for a

smooth germ f .

Consider a chart ϕ = (z1, . . . , zn) : U → Cn of M around p, and let zj = xj + iyj
for j = 1, . . . , n. Define elements ∂

∂zj
and ∂

∂zj
of TpM by

∂

∂zj
:=

1
2

( ∂

∂xj
⊗ 1− ∂

∂yj
⊗ i ) and

∂

∂zj
:=

1
2

( ∂

∂xj
⊗ 1 +

∂

∂yj
⊗ i ). (2.4)

Then, by Lemma 2.1.3, { ∂
∂z1

, . . . , ∂
∂zn
} and { ∂

∂z1
, . . . , ∂

∂zn
} are bases over C of

T ′pM and T ′′pM respectively. Note that the ∂
∂zj
∈ TpM just defined is an exten-

sion of ∂
∂zj
∈ TCp M since, because of the Cauchy-Riemann equations, the two

operators coincide on holomorphic functions. Observe that when we identify
∂
∂zj
∈ TCp M with ∂

∂zj
∈ T ′pM we are actually applying the inverse of the iso-

morphism φ : (TRp M,J) → TCp M defined above composed with the isomorphism
(TRp M,J)→ T ′pM of Lemma 2.1.3. From now on, the identification TCp M ≡ T ′pM

2 By abuse of notation, we write ∂
∂zj

for the element of TCp M defined by

∂

∂zj
(f) :=

∂

∂zj
(f ◦ ϕ−1)

for f : U → C holomorphic. Similarly for ∂
∂xj

and ∂
∂yj

.
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will be always tacitly assumed.

Let { dz1, . . . , dzn } and { dz1, . . . , dzn } be the dual bases for T ′PM
∗ and T ′′PM

∗

of { ∂
∂z1

, . . . , ∂
∂zn
} and { ∂

∂z1
, . . . , ∂

∂zn
} respectively. Then we have

dzj = dxj + i dyj and dzj = dxj − i dyj (2.5)

for j = 1, . . . , n, where { dx1, dy1, . . . , dxn, dyn } is the basis of TpM ∗ dual to
{ ∂
∂x1

, ∂
∂y1

, . . ., ∂
∂xn

, ∂
∂yn
}.

Given a complex manifold M , we will denote by TRM the tangent bundle of
the real manifold underlying M and by TM :=

⋃
p∈M TpM the tangent bundle

of M . The last is a complex vector bundle and its construction is analogous to
that of the tangent bundle of a real manifold. Similarly, we obtain complex vector
bundles TCM :=

⋃
p∈M TCp M and (TRM,J) :=

⋃
p∈M (TRp M,J). Note that the

C-linear isomorphisms φ : (TRp M,J) → TCp M (p ∈ M) defined above induce a
vector bundle isomorphism φ between (TRM,J) and TCM .

We can now apply Example 1.1.14 to TM (see also Remark 1.1.19) and con-
struct the complex vector bundle

∧r TM ∗. We define Ar(M) := Γ
( ∧r TM ∗).

Elements of A(M) :=
⊕

r≥0Ar(M) are called complex differential forms on M .
It is easy to see that the decomposition (2.3), applied to the tangent spaces of M ,
yields a decomposition

Ar(M) =
⊕
s+q=r

A s,q (M)

where A s,q (M) := {ω ∈ Ar(M) / ω(p) ∈ ∧ s,q (TpM)∗,∀p ∈M }. We will denote
by π s,q the projection Ar(M) → A s,q (M). On the domain of local holomorphic
coordinates (z1, . . . , zn) of M , every differential form ω ∈ A s,q (M) can be written
in the form

ω =
∑

|I|=s, |J |=q
fI,J dzI ∧ dzJ (2.6)

where the fI,J are smooth C-valued functions.

Conjugation on Γ(TM) and A(M) is defined pointwise as described in Section
2.1 (note in particular that in local coordinates we have ∂

∂zj
= ∂

∂zj
and dzj = dzj

for j = i, . . . , n). If ω ∈ A s,q (M), then ω ∈ A q,s (M) and

ω (X1, . . . , Xr) = ω (X1, . . . ,Xr)

for X1, . . . , Xr ∈ Γ(TM). In local coordinates, if ω is given by (2.6) then

ω =
∑

|I|=s, |J |=q
fI,J dzI ∧ dzJ . (2.7)
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Note that conjugation commutes with the wedge product, i.e. for ω1, ω2 ∈ A(M)
we have ω1 ∧ ω2 = ω1 ∧ ω2.

The exterior derivative d on real differential forms is extended to A(M) by com-
plex linearity. Then for a differential form ω ∈ A s,q (M) which is locally given by
(2.6) we have, using (2.4) and (2.5):

dω =
∑( ∂ fI,J

∂xj
dxj +

∂ fI,J
∂yj

dyj
) ∧ dzI ∧ dzJ

=
∑ ∂ fI,J

∂zj
dzj ∧ dzI ∧ dzJ +

∂ fI,J
∂zj

dzj ∧ dzI ∧ dzJ . (2.8)

It follows that
d

(A s,q (M)
) ⊂ A s+1,q (M)⊕A s,q+1 (M).

We will denote by ∂ : A s,q (M) → A s+1,q (M) the operator π s+1,q ◦ d and by
∂ : A s,q (M)→ A s,q+1 (M) the operator π s,q+1 ◦ d. Then d = ∂ + ∂.
Note that the exterior derivative commutes with conjugation, i.e. for all ω ∈ A(M)
we have dω = dω. This is easy to see, using (2.7) and (2.8).

Let h be an Hermitian metric onM , i.e. a C∞ field of Hermitian inner products
in the fibres of TCM . Via the vector bundle isomorphism φ : (TRM,J)→ TCM ,
we obtain then an Hermitian metric h on (TRM,J). By Proposition 2.1.5 it follows
that h̃ := Re (h) is a Riemannian metric on the real manifold underlying M and
that the C-linear extension k of −1

2 Im (h) is an element of A1,1(M) (the associated
(1, 1)-form of the metric).

Definition 2.2.2 Let h be an Hermitian metric on a complex manifold. Then the
associated (1, 1)-form k is called the Kähler form of h. The metric h is said to be
a Kähler metric if its Kähler form is closed, i.e. if dk = 0. A complex manifold
admitting a Kähler metric is called a Kähler manifold.

Let ϕ = (z1, . . . , zn) : U → Cn be a chart for M . Then an Hermitian metric h can
be written on U in the form

h =
∑

α,β

hαβ dzα ⊗ dzβ

where
(
hαβ (p)

)
αβ

:=
(
h( ∂

∂zα
, ∂
∂zβ

) (p)
)
αβ

is a positive-definite Hermitian matrix

for every p ∈ U and where we regard the dzβ’s as conjugate-linear maps TCp M → C
(see Remark 2.1.4). 3

3 It can be shown that h is a Kähler metric if and only if it approximates the Euclidean
metric up to order 2 at each point, i.e. if and only if we can find around each p ∈ M a chart
ϕ = (z1, . . . , zn) with ϕ(p) = 0 and such that

ą
hαβ (p)

ć
= I and dhαβ(p) = 0 for all α, β. See

[6, p. 107].
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Let k =
∑

α,β 2 k( ∂
∂zα

, ∂
∂zβ

) dzα ∧ dzβ ∈ A1,1(M) be the Kähler form of h. Using

the relations in Proposition 2.1.5, it is easy to see that k( ∂
∂zα

, ∂
∂zβ

) = i
4 h(

∂
∂zα

, ∂
∂zβ

).
Thus we have

k =
i

2

∑

α,β

hαβ dzα ∧ dzβ. (2.9)

Definition 2.2.3 An almost complex structure on a real manifold M is a tensor
field J ∈ Γ (TM∗ ⊗ TM) such that J2 = −id. An almost complex manifold is
a real manifold with an almost complex structure.

If a real manifold admits an almost complex structure, then it must be even-
dimensional and orientable (for the last, see [15, Proposition 2.1 of Chapter IX]).

Given a complex manifold M , we can define a tensor field J ∈ Γ (TRM ∗ ⊗ TRM)
pointwise as described in the beginning of the paragraph. This gives an almost
complex structure on the underlying real manifold.

Definition 2.2.4 Let (M,J) and (M ′, J ′) be almost complex manifolds. A smooth
map f : M →M ′ is said to be almost holomorphic if f∗ ◦ J = J ′ ◦ f∗.

Proposition 2.2.5 A smooth map f : M → M ′ between complex manifolds is
holomorphic if and only if it is almost holomorphic with respect to the induced
almost complex structures on M and M ′.

This can be proved locally, using the Cauchy-Riemann equations (see [15, Propo-
sitions 2.2 and 2.3 of Chapter IX]).

Definition 2.2.6 Let J be an almost complex structure on a real manifold M .
The torsion of J is the tensor field NJ ∈ Γ (TM∗ ⊗ TM∗ ⊗ TM) given by

NJ (X,Y ) := 2
([
J(X), J(Y )

]− [X,Y ]− J(
[X, J(Y )]

)− J(
[J(X), Y ]

))

for X, Y ∈ Γ(TM). The almost complex structure J is said to be integrable if
NJ = 0.

The induced almost complex structure on a complex manifold is integrable. For
a proof of this, see [15, Theorem 2.5 of Chapter IX]). The converse is a classical
result due to Newlander and Nirenberg (see [24]).

Theorem 2.2.7 Let J be an integrable almost complex structure on a real mani-
fold M . Then M has a unique complex structure which induces the almost complex
structure J .
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Observe that some of the definitions in this section also make sense when M is
a real manifold. For every p ∈M we can consider the complexification

(
TpM

)C of
the tangent space and interpret it as the space of C-linear derivations of germs of
smooth C-valued functions on M . We can construct the complex vector bundles
TMC :=

⋃
p∈M

(
TpM

)C and
∧r (

TMC)∗. We define Ar(M)C := Γ
(∧r (

TMC)∗)

and call elements of A(M)C :=
⊕

r≥0Ar(M)C complex differential forms on M .
Conjugation on TMC and A(M)C and the exterior derivative

d : Ar(M)C → Ar+1(M)C

are defined as above. Finally, if Y1 ⊗ λ1, Y2 ⊗ λ2 ∈ TMC, we can define the Lie
bracket [Y1 ⊗ λ1, Y2 ⊗ λ2] ∈ TMC as usual by

[Y1 ⊗ λ1, Y2 ⊗ λ2] (f) := (Y1 ⊗ λ1)
(
(Y2 ⊗ λ2) (f)

)− (Y2 ⊗ λ2)
(
(Y1 ⊗ λ1) (f)

)

for f ∈ C∞(M,C). Then [Y1 ⊗ λ1, Y2 ⊗ λ2] = [Y1, Y2]⊗ λ1λ2.

2.3 Connections on complex vector bundles

Let π : E → M be a complex vector bundle over a real (respectively com-
plex) manifold. A (smooth) r-form on M with values in E is an element of
Ar(E) := Γ(E)⊗C∞(M,C)Ar(M)C (respectively Ar(E) := Γ(E)⊗C∞(M,C)Ar(M)).
A connection on E is a C-linear map D : A0(E) → A1(E) which satisfies the
Leibnitz rule (for C-valued smooth functions on M). Observe that all results of
Paragraph 1.3, with the exception of Example 1.3.8 and Definition 1.3.9, also ap-
ply to connections on complex vector bundles. In this section we will first show
how those two points have to be changed in the complex case, and then we will de-
scribe some specific properties of connections on complex and holomorphic vector
bundles over complex manifolds.

Example 2.3.1 Let π : E →M be a complex vector bundle with transition func-
tions { θij : Uij → GL(n,C) } with respect to a cover {Ui, i ∈ I } of M . The func-
tions { θij : Uij → GL(n,C) } satisfy the cocycle condition (1.2), thus by Propo-
sition 1.1.8 (see Remark 1.1.19) they are the transition functions of a complex
vector bundle Ē over M , called the conjugate bundle of E. We have Ēp ∼= Ep
in a canonical way. The isomorphism is given by the well-defined C-linear map
( i, p, x ) /∼ 7→ ( i, p, x̄ ) /∼ (notation as in the proof of Proposition 1.1.8). Note that
the construction of Ē does not depend on the set of transition functions defining
E. Moreover, if E and E′ are isomorphic vector bundles, then so are Ē and Ē′.
The proof of this is similar to that in Example 1.1.9.

Example 2.3.2 Let π : E →M be a complex vector bundle. Combining Examples
2.3.1, 1.1.9 and 1.1.11, we can define the complex vector bundle E∗ ⊗ Ē∗. Since
(E∗ ⊗ Ē∗)p = (Ep)∗ ⊗ (Ep)∗ for all p ∈M , we see that a section of E∗ ⊗ Ē∗ gives
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a sesquilinear map Ep ×Ep → C on each fibre of E, varying smoothly with p. An
Hermitian metric on π : E →M is a section h of E∗⊗ Ē∗ such that h(p) is an
Hermitian inner product on Ep, for all p ∈M .

Example 2.3.3 Let π : E → M be a complex vector bundle and let Ē be the
conjugate bundle. Observe first that sections of E can also be regarded as sections
of Ē (and vice versa) because for every p ∈ M the sets underlying the vector
spaces Ep and Ēp are equal (under the canonical isomorphism Ēp ∼= Ep described
in Example 2.3.1) We define a map Q : Ar(E)→ Ar(Ē) by

Q (σ ⊗ ϕ) := σ ⊗ ϕ̄

for σ ∈ A0(E), ϕ ∈ Ar(M) and linear extension (in particular, note that for
f ∈ C∞(M,C) we have Q (fσ) = f̄ · σ, where the operation on the right hand side
is pointwise scalar multiplication in the fibres of Ē). Given a connection D on E,
define a connection D̄ on Ē by

D̄(σ) := Q
(
D(σ)

)
(2.10)

for σ ∈ A0(Ē). If ωu and Ωu are the connection and curvature forms of D with
respect to a local frame u of E, then ωu and Ωu are the connection and curvature
forms of D̄ with respect to the same u, considered as a frame of Ē.

Example 2.3.4 Let π : E → M be a complex vector bundle and let D be a con-
nection on E. Combining (1.23), (1.21) and (2.10), we get a connection DE∗⊗Ē∗
on the bundle E∗ ⊗ Ē∗. With a calculation similar to that in Example 1.3.8 we
get, for h ∈ A0(E∗ ⊗ Ē∗) and σ1, σ2 ∈ A0(E)

DE∗⊗Ē∗(h) (σ1, σ2) = d h(σ1, σ2)− h
(
σ1, D(σ2)

)− h (
D(σ1), σ2

)

where h is considered as a C∞(M,C)-sesquilinear map A0(E)×A0(E)→ C∞(M,C)
and where the extensions h : A0(E)×A1(E)→ A1(M) and h : A1(E)×A0(E)→
A1(M) on the right hand side are defined by h(σ1, σ2 ⊗ ϕ) := h(σ1, σ2)ϕ and
h(σ1 ⊗ ϕ, σ2) := h(σ1, σ2)ϕ for σ1, σ2 ∈ A0(E) and ϕ ∈ A1(M) and by linear
extension.

Definition 2.3.5 Let π : E → M be a complex vector bundle with an Hermitian
metric h. A connection D on E is said to be compatible with h (or to be an
h-connection) if DE∗⊗Ē∗(h) = 0, i.e. if for all σ1, σ2 ∈ A0(E) it holds

d h(σ1, σ2) = h
(
σ1, D(σ2)

)
+ h

(
D(σ1), σ2

)
. (2.11)

If D is an h-connection, then its connection and curvature forms ωu and Ωu with
respect to an h-orthonormal frame u are skew-Hermitian 4 (in particular, we have
ωu(X) ∈ u(n) for every real vector X). Conversely, if around each point of M

4 I.e. ωαβ = −ωβα and Ωαβ = −Ωβα for all α, β.
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there is a local h-orthonormal frame u such that the connection form ωu of a con-
nection D with respect to it is skew-Hermitian (equivalently, if ωu(X) ∈ u(n) for
every real vector X), then D is an h-connection. This all can be seen similarly to
the real case.

Let π : E → M be a complex vector bundle over a complex manifold. For
integers s, q ≥ 0, define

As,q(E) := Γ(E)⊗C∞(M,C) As,q(M).

Then for every integer r ≥ 0 we have Ar(E) :=
⊕

s+q=rAs,q(E). We will denote
by πs,q the projection Ar(E)→ As,q(E).

Let D : A0(E)→ A1(E) be a connection on E. We can write

D = D′ +D′′ (2.12)

where D′ = π1,0 ◦D : A0(E) → A1,0(E) and D′′ = π0,1 ◦D : A0(E) → A0,1(E).
Extend D′ and D′′ to operators Ar(E)→ Ar+1(E) by defining

D′ (σ ⊗ ω) = σ ⊗ ∂ω +D′(σ) ∧ ω

and
D′′ (σ ⊗ ω) = σ ⊗ ∂ω +D′′(σ) ∧ ω

for σ ∈ A0(E), ω ∈ Ar(M) and linear extension. Then we have

D′(As,q(E)
) ⊂ As+1,q(E) and D′′(As,q(E)

) ⊂ As,q+1(E).

Note that (2.12) holds also for these extended operators. Let R ∈ A2(E∗ ⊗E) be
the curvature of D. Using (2.12) we get

R = D′ ◦D′ + (D′ ◦D′′ +D′′ ◦D′) +D′′ ◦D′′ (2.13)

where D′ ◦D′ ∈ A2,0(E∗ ⊗E), D′ ◦D′′ +D′′ ◦D′ ∈ A1,1(E∗ ⊗E) and D′′ ◦D′′ ∈
A0,2(E∗ ⊗E).

Definition 2.3.6 A holomorphic vector bundle is a complex vector bundle
over a complex manifold which has a system of local trivializations with holomor-
phic transition functions.

Example 2.3.7 The complex tangent bundle TCM of a complex manifold M is
a holomorphic vector bundle.

Note that we can define a complex manifold structure on the total space of a
holomorphic vector bundle π : E → M by requiring the local trivializations in
Definition 2.3.6 to be biholomorphic. Then the projection π : E → M becomes
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a holomorphic map. A local frame for π : E → M over an open U ⊂ M is said
to be holomorphic if so is the induced map π−1(U)→ U ×Cn with respect to the
complex structure on E just defined. Let u = (u1, · · · , un) be a local holomorphic
frame for E over an open U ⊂ M . Then a section σ =

∑n
α=1 vαuα of E over

U is holomorphic if and only if so are the functions v1, . . . , vn : U → C. If u′ is
another local holomorphic frame for E over U , then we can write u′ = ua, where
a : U → GL(n,C) is a holomorphic map.

Let π : E → M be a holomorphic vector bundle. We can define an exte-
rior derivative ∂ on the space of differential forms with values in E as follows.
Every ξ ∈ Ar(E) can be written locally in the form ξ =

∑n
α=1 uα ⊗ ωα, where

u = (u1, · · · , un) is a local holomorphic frame for E and where the ωα’s are local
r-forms on M . We define ∂ξ :=

∑n
α=1 uα ⊗ ∂ωα. Note that this definition does

not depend on the choice of the local holomorphic frame. Indeed, given another
holomorphic frame u′ = ua, where a is a GL(n,C)-valued holomorphic map, we
have ξ =

∑n
α,β=1 u

′
β ⊗ aβα ωα and

n∑

α,β=1

u′β ⊗ ∂ (aβα ωα) =
n∑

α,β=1

u′β ⊗ aβα ∂ωα =
n∑

α=1

uα ⊗ ∂ωα ,

since ∂aβα = 0. In particular, the local definitions of ∂ξ glue together to give a
well-defined differential form. Note that ∂ satisfies the Leibnitz rule

∂ (fσ) = σ ⊗ ∂f + f ∂σ (2.14)

for f ∈ C∞(M,C) and σ ∈ A0(E), that ∂ 2 = 0 and that ∂
(As,q(E)

) ⊂ As,q+1(E).
Observe also that a section σ of E is holomorphic if and only if ∂σ = 0, thus ∂
determines the holomorphic structure of π : E →M .

Definition 2.3.8 A semiconnection on a complex vector bundle π : E → M
over a complex manifold is an operator δ : A0(E) → A0,1(E) which satisfies the
Leibnitz rule (2.14).

We will denote by D(E) the space of semiconnections on π : E → M . Note that
D(E) is an affine space modeled on A0,1(E∗ ⊗ E) (the proof of this is similar
to that of Proposition 1.3.2), and that every semiconnection δ ∈ D(E) can be
extended to operators δ : As,q(E) → As,q+1(E) by forcing the Leibnitz rule, just
in the same way we have done for connections (see page 34).

Definition 2.3.9 A semiconnection δ on a complex vector bundle over a complex
manifold is said to be integrable if δ ◦ δ = 0.

Let π : E → M be a complex vector bundle over a complex manifold. Note
that the operator ∂ associated to a holomorphic structure on π : E → M is an
integrable semiconnection. Conversely, we have the following theorem (see for a
proof [1, Theorem 5.1]).

67



Theorem 2.3.10 Suppose we have an integrable semiconnection δ on a complex
vector bundle π : E → M over a complex manifold. Then there exists a unique
structure of a holomorphic vector bundle on E such that δ = ∂.

From Theorem 2.3.10 it follows that we can identify integrable semiconnections
on a complex vector bundle over a complex manifold with holomorphic structures
on it.

We conclude this section by proving the Chern correspondence in the vector
bundle case.

Proposition 2.3.11 Let π : E → M be a complex vector bundle over a complex
manifold and let h be an Hermitian metric on it. Then the map D 7→ D′′ gives
a bijection between the space of h-connections on π : E → M and D(E). Under
this bijection, integrable semiconnections on π : E → M correspond precisely to
h-connections with curvature of type (1, 1).

Proof Observe first that if D is an h-connection then by (2.11) we have

∂ h(σ1, σ2) = h
(
σ1, D

′′(σ2)
)

+ h
(
D′(σ1), σ2

)
(2.15)

for σ1,σ2 ∈ A0(E). This shows that an h-connection D is uniquely determined by
D′′, and thus that the map D → D′′ is injective.
To show surjectivity, let D′′ be a semiconnection on π : E →M and define D′ by
(2.15). Then D := D′ +D′′ is easily seen to be an h-connection.
For the last statement, recall that D′′◦D′′ is the (0, 2)-component of the curvature
RD of a connection D (see (2.13)). From this it follows immediately that if RD
has type (1, 1) then D′′ is integrable. Conversely, suppose that D′′ is integrable.
Then RD has no (0, 2)-component. Applying ∂ to both sides of (2.15) we get

0 = h
(
σ1, D

′′ ◦D′′(σ2)
)

+ h
(
D′ ◦D′(σ1), σ2

)

for all σ1,σ2 ∈ A0(E), thus we see that the (2, 0)-component D′ ◦ D′ of RD also
vanishes, so RD is a (1, 1)-form. ¤

Note that by Theorem 2.3.10 the bijection in Proposition 2.3.11 induces a 1-1
correspondence between holomorphic structures on π : E →M and h-connections
with curvature of type (1, 1).

Definition 2.3.12 Given an Hermitian metric h on a complex vector bundle
π : E → M over a complex manifold, the h-connection corresponding to a semi-
connection δ is called the Chern connection on π : E → M with respect to the
metric h and the semiconnection δ, and is denoted by Dh,δ.

We will see in Chapter 3 how the 1-1 correspondences in Proposition 2.3.11 gen-
eralize to principal fibre bundles.
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2.4 Complexification of Lie algebras and Lie groups

Let g be a complex Lie algebra, i.e. a complex vector space with a Lie bracket
operation [ , ] : g × g → g which is bilinear over C, antisymmetric and which
satisfies the Jacobi identity. Then multiplication by i induces on the underlying
real vector space a complex structure J such that

[
J(v1), v2

]
= J

(
[v1, v2]

)
(2.16)

for all v1, v2. Conversely, let g be a real Lie algebra with a complex structure J
such that (2.16) holds for all v1, v2. Then the complex vector space (g, J) with
the induced Lie bracket becomes a complex Lie algebra.

A complex Lie group G is by definition a complex manifold with a group
structure such that the group operations are holomorphic. Since in particular
for all g ∈ G the left translation Lg : G → G is holomorphic, it follows that if
X ∈ Γ(TRG) is a left invariant vector field, then so is J(X), where J is the natural
almost complex structure on the real manifold underlying G. Thus J induces a
complex structure on the Lie algebra gR of the real Lie group underlying G. We
will now show that condition (2.16) is satisfied, and thus that the complex vector
space ( gR, J ) has the structure of a complex Lie algebra. We know that for all
g ∈ G the automorphism c(g) : G → G is holomorphic, thus Ad(g) is a C-linear
automorphism of ( gR, J ). From this it follows that ad(X) is a C-linear endomor-
phism of ( gR, J ) for all X ∈ gR, where ad : gR → End(gR) denotes the differential
of Ad : G → End(gR) at the identity. Since ad(X) (Y ) = [X,Y ] (see [31, 3.47]),
we get that

[
X,J(Y )

]
= J

(
[X,Y ]

)
for all X,Y ∈ gR, which is equivalent to (2.16).

The complex Lie algebra ( gR, J ) will be denoted by g and called the Lie algebra of
the complex Lie group G. We will often identify it with the holomorphic tangent
space of G at the identity, with induced Lie bracket.
We have seen that ad

(
J(X)

)
(Y ) =

[
J(X), Y

]
= J

(
[X,Y ]

)
= J

(
ad(X)(Y )

)
for all

X,Y ∈ gR. From this it follows that ad : g → End(g) is C-linear, and thus that
the representation Ad : G → Aut(g) is holomorphic. It can be shown that the
exponential map exp : g → G is also holomorphic, for example by checking that
its differential (see [30, 2.14]) is C-linear.

Let g be a real Lie algebra. If we define a Lie bracket on the complex vector
space gC by [v1 ⊗ λ1, v2 ⊗ λ2] := [v1, v2] ⊗ λ1λ2, then gC becomes a complex Lie
algebra, called the complexification of g. Let now g be a complex Lie algebra and
denote by gR the underlying real Lie algebra. A real form of g is a Lie subalgebra
g0 of gR such that g C

0 = g, in the sense that the inclusion g0 ↪→ g induces a
C-linear isomorphism g C

0
∼= g. Observe that the conjugation on g with respect

to a real form g0 (i.e. the conjugation on g = g C
0 defined in Section 2.1) is an

R-linear automorphism σ of g such that σ2 = idg, σ(λ v) = λ̄ σ(v) for λ ∈ C,
v ∈ g and σ

(
[v1, v2]

)
=

[
σ(v1), σ(v2)

]
for v1, v2 ∈ g. Conversely, given an R-

linear automorphism σ of g which satisfies the three conditions above, the set
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g0 := { v ∈ g / σ(v) = v } is a real form of g and σ is the conjugation with respect
to g0. Note that if we drop the conditions involving the Lie algebra structure in
the discussion above, we get a 1-1 correspondence between real forms of a complex
vector space W (i.e. real subspaces V such that V C = W ) and conjugations on
W (i.e. automorphisms σ of W with σ2 = idW and σ(λw) = λ̄ σ(w) for λ ∈ C,
w ∈W ).

Example 2.4.1 X 7→ X̄ and X 7→ −X̄t are conjugations on the complex Lie
algebra gl (n,C) and the corresponding real forms are respectively gl (n,R) and
u(n).

From now on, all Lie groups are assumed to be connected.

Definition 2.4.2 A real form of a complex Lie group G is a real Lie subgroup of
G whose Lie algebra is a real form of the Lie algebra of G. A complex reductive
Lie group is a complex Lie group which has a compact real form.

Example 2.4.3 From Example 2.4.1 we see that GL (n,R) and U(n) are real
forms of GL(n,C); since U(n) is compact (see [3, Theorem 1, §1 of Chapter 1]),
it follows that GL(n,C) is a complex reductive Lie group.

Theorem 2.4.4 Let K be a compact real Lie group. Then there exists a unique
complex reductive Lie group G (called the complexification of K) such that K
is a real form of G. Moreover, K is a maximal compact Lie subgroup of G and
any other real form K ′ of G is of the form K ′ = gKg−1, for some g ∈ G.

For a proof of this, see [25, Theorem 2.7 of Chapter 4] and [10, Theorem 5.1 of
Chapter XVII].

From now on, till the end of the section, G will be a complex reductive Lie
group, K a compact real form of G , k and g = k⊕ ik the Lie algebras of K and G.

Note that in particular K is a closed Lie subgroup of G 5, thus G
/
K has a natural

manifold structure making the projection G→ G/
K smooth (see p. 28). It turns

out that the map ik→ G/
K , B 7→ exp(B)K is a diffeomorphism: it follows easily

form the next theorem, which is proved in [8, 2.1].

Theorem 2.4.5 Let P := exp(ik). Then P is a closed submanifold of G and the
maps exp : ik→ P and K × P → G, (k, g) 7→ kg are diffeomorphisms.

Example 2.4.6 Consider the complex reductive Lie group GL(n,C) with the com-
pact real form U(n). Then iu(u) and exp

(
iu(u)

)
are respectively the spaces of Her-

mitian matrices and of positive definite Hermitian matrices. Every A ∈ GL(n,C)
5 Continuous images of compact spaces are compact and compact subspaces of Hausdorff

spaces are closed.

70



can be written uniquely in the form A = XY , with X ∈ U(n) and Y ∈ exp
(
iu(u)

)
(polar decomposition of GL(n,C)) 6. The maps exp : iu(u) → exp

(
iu(u)

)
and

U(n)× exp
(
iu(u)

)→ GL(n,C), (X,Y ) 7→ XY are diffeomorphisms. This all can
be also proved directly, by concrete calculations with matrices (see [3, §IV and §V
of Chapter 1]).

We want to define a conjugation, which will be used in the proof of Theorem
3.2.5, on the holomorphic tangent spaces of G at points of P = exp(ik). We will
first define a natural conjugation on the holomorphic tangent bundle of GL(n,C),
and then generalize it to G.

Consider first the conjugation σ on the complex vector space gl (n,C) given by
X 7→ X̄t. The corresponding real form is the real subspace iu(n) of Hermitian
matrices 7. Note that σ(XY ) = σ(Y )σ(X).
Since GL(n,C) is an open submanifold of gl (n,C), for every A ∈ GL(n,C) we
can identify TCA GL(n,C) with TCA gl (n,C) = gl (n,C) and get thus a conjugation
σ on the holomorphic tangent bundle of GL(n,C). Then it holds

σ
(
(LA−1)∗ (X)

)
= (RA−1)∗

(
σ(X)

)

for A ∈ exp
(
iu(n)

)
and X ∈ TCA GL(n,C). To see this, let t 7→ At be a curve in

GL(n,C) with A0 = A and d
dt


t=0

At = X; then

(LA−1)∗ (X) =
d

dt


t=0

A−1At = A−1 d

dt


t=0

At = A−1X. (2.17)

Similarly, (RA−1)∗
(
σ(X)

)
= σ(X)A−1. Since A−1 ∈ exp

(
iu(n)

)
is Hermitian (see

Example 2.4.6), we have

σ
(
(LA−1)∗ (X)

)
= σ (A−1X) = σ(X)σ(A−1) = σ(X)A−1 = (RA−1)∗

(
σ(X)

)
.

Consider now the complex reductive Lie group G. Define a conjugation σ on the
complex vector space g = TeG to be the reflexion about the real form ik and on
TgG, for g ∈ P = exp(ik), to be the map X 7→ (Rg)∗

(
σ

(
(Lg−1)∗(X)

))
.

Lemma 2.4.7 For g ∈ P = exp(ik), the conjugation σ on TgG defined above is
the reflexion about the tangent space of P at g.

To prove this, we will need the following theorem and lemma.
6 Note that for n = 1 this reduces to the representation of a complex number as the product

of its absolute value and a unitary number eiϕ.
7 Note that it is a natural choice to consider iu(n) instead of u(n) as real form of the vector

space gl (n,C), since for every Hermitian matrix X ∈ iu(n) there exists a unitary matrix A ∈ U(n)
such that AXA−1 is diagonal with real eigenvalues. Note also that gl(1,C) = C and iu(1) = R.
Observe, on the other hand, that iu(n) is not a real form of the Lie algebra gl (n,C).
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Theorem 2.4.8 Every complex reductive Lie group G with compact real form K
has a holomorphic faithful representation % : G ↪→ GL(n,C) with % (K) ⊂ U(n).

Proof It is a classical result that a compact Lie group K can be embedded in
some U(n) by a faithful representation %0 : K ↪→ U(n) (see [26, Theorem 6.1.1])
and it can be shown that %0 can be uniquely extended to a holomorphic faithful
representation % : G ↪→ GL(n,C) (see [12, Remark after Proposition 7.12] and [10,
Theorem 5.2 of Chapter XVII]). ¤

Lemma 2.4.9 Let % : G ↪→ GL(n,C) be a representation as in Theorem 2.4.8
and let σ be the conjugation on the holomorphic tangent bundle of GL(n,C) and
on TgG (for g ∈ P = exp(ik)) defined above. Then for X ∈ TgG we have

%∗
(
σ(X)

)
= σ

(
%∗(X)

)
.

Proof Consider first a vector Y ∈ TeG = g; write Y = Y1 + i Y2, with Y1,
Y2 ∈ ik. Then, since % is holomorphic, we have

%∗
(
σ(Y )

)
= %∗ (Y1−i Y2) = %∗ (Y1)−i%∗(Y2) = σ

(
%∗ (Y1)+i%∗(Y2)

)
= σ

(
%∗(X)

)
.

Using this and (2.17) we get, for X ∈ TgG

%∗
(
σ(X)

)
= %∗

(
(Rg)∗

(
σ

(
(Lg−1)∗(X)

)))
= (R%(g))∗

(
%∗

(
σ

(
(Lg−1)∗(X)

)))

= (R%(g))∗

(
σ

(
%∗

(
(Lg−1)∗(X)

)))

= (R%(g))∗

(
σ

(
(L%(g−1))∗

(
%∗(X)

)))
= σ

(
%(g−1)%∗(X)

)
%(g)

= σ
(
%∗(X)

)
σ

(
%(g−1)

)
%(g) = σ

(
%∗(X)

)

where the last equality follows from the fact that %(g−1) ∈ exp
(
iu(n)

)
is an Her-

mitian matrix. ¤

Proof of Lemma 2.4.7 Let g = exp(X), for some X ∈ ik. Since exp : ik→ P
is a diffeomorphism (see Theorem 2.4.5), we have a vector space isomorphism exp∗
between TXik and TgP . Thus we have to show that σ

(
exp∗(Y )

)
= exp∗(Y ) for

all Y ∈ TXik.
Consider first the conjugation on the holomorphic tangent bundle of GL(n,C).
Let A ∈ iu(n), B ∈ iu(n) = TA

(
iu(n)

)
and write B = d

dt


t=0

(A + tB). Then

exp∗(B) = d
dt


t=0

exp(A + tB) = limt→0
exp(A+tB)−exp(A)

t . Since exp(A+tB)−exp(A)
t

is an Hermitian matrix for all t, we have σ
(
exp∗(B)

)
= exp∗(B).

Let now Y ∈ TX(ik) and consider a representation % : G ↪→ GL(n,C) as in
Theorem 2.4.8. Then %∗

(
exp∗(Y )

) ∈ exp∗
(
iu(n)

)
, thus σ

(
%∗

(
exp∗(Y )

))
=

%∗
(
exp∗(Y )

)
. But σ

(
%∗

(
exp∗(Y )

))
= %∗

(
σ
(
exp∗(Y )

))
by Lemma 2.4.9, thus

σ
(
exp∗(Y )

)
= exp∗(Y ), as we wanted. ¤
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2.5 Complex principal fibre bundles

A principal fibre bundle is said to be a complex principal fibre bundle if the
base space is a complex manifold and the structure group a complex Lie group.
When we apply results of Paragraph 1.2 to complex principal fibre bundles, we
always mean that we apply them to the underlying real principal fibre bundles.
For example, by a reduction of a complex principal fibre bundle P (M,G) we mean
a principal fibre bundle Q (M,H), where H is a Lie subgroup of the real Lie group
underlying G, with a smooth map f : P → Q and a Lie group monomorphism
f ′ : H → G, as required in Definition 1.2.4.
All examples in Paragraph 1.2 which describe relations between real vector bun-
dles and real principal fibre bundles can be modified in order to obtain relations
between complex vector bundles over complex manifolds and complex principal
fibre bundles. So, by substituting R with C in Examples 1.2.2, 1.2.10 and 1.2.11,
we see that there is a 1-1 correspondence between complex vector bundles (over
complex manifolds) and (complex) principal fibre bundles with structure group
GL(n,C) (in Example 1.2.10, V has to be a complex vector space and Aut(V ) the
group of C-linear automorphisms of V ).
Given a complex principal fibre bundle P (M,G), we can define the adjoint bun-
dle P ×Ad gR, as done in Example 1.2.13. If we consider the Lie algebra of
G as a complex vector space, then P ×Ad g becomes a complex vector bundle.
Let % : G → Aut(V ) be a holomorphic representation of G on a complex vec-
tor space V . Then %∗ : g → End(V ) is a C-linear homomorphism and the map
φ : P ×Ad g → E∗ ⊗ E defined in Example 1.2.13, where E = P ×G V , is a ho-
momorphism of complex vector bundles. In particular, for every complex vector
bundle π : E →M we have

L(E)×Ad gl (n,C) ∼= E∗ ⊗ E.
In Example 1.2.17, we substitute O(n) and GL (n,R) with U(n) and GL(n,C) and
”Riemannian metric” with ”Hermitian metric”. Then for every complex vector
bundle π : E →M we get 1-1 correspondences

{Hermitian metrics on E } 1-1←→ { reductions of L(E) to U(n) }/∼
1-1←→ { sections of L(E)/

U(n) }. (2.18)

We will denote by Uh(E) the bundle of h-orthonormal frames of a complex vector
bundle π : E →M with an Hermitian metric h.

Let P (M,G) be a complex principal fibre bundle and let A be a connection on
the underlying real principal fibre bundle. For every p ∈ M and u ∈ π−1(p), we
can extend the horizontal lift TRp M → TuP , Y 7→ (

Ŷ h
u

)
A

to the complexifications

TpM and
(
TuP

)C by defining
(
(Ŷ ⊗ λ)hu

)
A

:=
(
Ŷ h
u

)
A
⊗ λ
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for Y ∈ TRp M and λ ∈ C and linear extension. Similarly, we can do so for the
horizontal and vertical projections TuP → TuP , X 7→ (

Xh
u

)
A

and X 7→ (
Xv
u

)
A
.

Observe that Lemma 1.4.2 also holds for these extended maps.
Consider the connection form ωA of A. It is a 1-form on P with values in the real
vector space gR and it extends to a complex g-valued 1-form on P by complex
linearity (i.e. for X ⊗ λ ∈ TPC we define ωA(X ⊗ λ) := λωA(X)). Note that
properties 1. and 2. in Lemma 1.4.3 also hold for the complex form ωA. In 2., R ∗

g

has to be interpreted as the C-linear extension to the space of complex differential
forms (and the property holds because Ad(g−1) is a C-linear automorphism of g).
The formulation of 1. remains the same as in the real case (indeed, (B∗)u is a
real vector). Conversely, given a complex g-valued 1-form ω on P satisfying prop-
erties 1. and 2., we can restrict it to a real gR-valued 1-form which still satisfies
properties 1. and 2. and thus determines a connection Aω on P (M,G). Then the
complex connection form of Aω is the initial ω. Thus we see that there is a 1-1
correspondence between the set of connections on a complex principal fibre bundle
P (M,G) and the set of complex g-valued 1-forms on P satisfying properties 1.
and 2. of Lemma 1.4.3. In the following, by connection form of a connection on
a complex principal fibre bundle we will always mean the complex form. Observe
that Lemma 1.4.4 and Proposition 1.4.5 also hold in the complex case (after ex-
tending the Maurer-Cartan form to a complex 1-form on G). In particular, given
a system of local trivializations { θi : π−1(Ui)→ Ui ×G , i ∈ I }, we can express
every connection form ω on P (M,G) as a family of local complex g-valued 1-forms
{ωi, i ∈ I } on M .
In Definition 1.4.6 and Lemma 1.4.7, we can consider a complex vector space
V and the complex vector bundle P ×G V . Then we get a 1-1 correspondence
between Ar(P ×G V ) and the set of horizontal G-equivariant V -valued complex
r-forms on P (M,G). Using this, we can extend Proposition 1.4.8 to the complex
case. Similarly, all other results of §1.4 are easily seen to hold also for complex
principal fibre bundles (but note that for all facts proved in the Appendix we need
the representation % : G → Aut(V ) to be holomorphic). In Example 1.4.22 we
consider a complex vector bundle π : E → M with an Hermitian metric h and
substitute O(n), GL (n,R) and Oh(E) with U(n), GL(n,C) and Uh(E).

The following definitions and results are specific of the complex case.

Definition 2.5.1 An almost holomorphic structure on a complex principal
fibre bundle P (M,G) is an almost complex structure J in the total space P such
that the projection π : P →M and the action λ : P ×G→ P are almost holomor-
phic, i.e.

1. π∗ ◦ J = JM ◦ π∗
2. J

(
λ∗(Y,B)

)
= λ∗

(
J(Y ), JG(B)

)
for u ∈ P , Y ∈ TuP and g ∈ G, B ∈ TgG

where JM and JG are the natural almost complex structures of the complex mani-
folds M and G.
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Applying the Leibnitz rule to the map λ : P × G → P on both sides of 2., we
obtain

J
(
(Rg)∗(Y )

)
+ J

((
ωG(B)∗

)
u

)
= (Rg)∗

(
J(Y )

)
+

(
ωG

(
JG(B)

)∗)
u

(2.19)

for u ∈ P , Y ∈ TuP and g ∈ G, B ∈ TgG, where ωG is the Maurer-Cartan form
on G. In particular, for B = 0 ∈ TgG this gives

J
(
(Rg)∗(Y )

)
= (Rg)∗

(
J(Y )

)
(2.20)

for u ∈ P , Y ∈ TuP , thus the almost holomorphic structure J is G-invariant.
Moreover, from formulas (2.19) and (2.20) we see that condition 2. is equivalent
to

J
(
(B∗)u

)
=

(
JG(B)∗

)
u

(2.21)

for all B ∈ g and u ∈ P , i.e. to requiring the restriction of J to the vertical
subspaces to coincide with the almost complex structure induced on them by the
identification of their tangent spaces with g.

We will denote the set of almost holomorphic structures on a complex principal
fibre bundle P (M,G) by C(P ).

Definition 2.5.2 A holomorphic structure on a complex principal fibre bundle
is an integrable almost holomorphic structure on it.

Using Theorem 2.2.7 and Proposition 2.2.5, we see that a holomorphic structure on
a complex principal fibre bundle P (M,G) can be equivalently defined as a complex
manifold structure on the total space P such that the projection π : P →M and
the action P × G → P are holomorphic. A third equivalent description is given
by the following proposition.

Proposition 2.5.3 A complex principal fibre bundle admits a holomorphic struc-
ture if and only if it has a system of local trivializations with holomorphic transition
functions.

Proof Suppose that P (M,G) is a complex principal fibre bundle which has
a system of local trivializations with holomorphic transition functions. We can
define a complex manifold structure on P by requiring these local trivializations
to be biholomorphic. Then the projection π : P →M and the action P ×G→ P
become holomorphic maps, thus we get a holomorphic structure on P (M,G).
Conversely, suppose that the total space P of a complex principal fibre bundle is a
complex manifold and that the projection π : P →M and the action P ×G→ P
are holomorphic. Let dimCM = n and dimCG = r. Since π : P →M is a holomor-
phic map of constant rank n, for every point u0 of P we can find complex charts
(V, ϕ) for P around u0 and (U , ψ) for M around p0 := π(u0) with ϕ(u0) = 0,
ψ(p0) = 0, π(V) ⊂ U and such that ψ ◦ π ◦ ϕ−1 : Cn+r → Cn is the projection
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(x, y) 7→ (x, 0) 8. Define a local section of P around p0 by p 7→ ϕ−1
((
ψ(p), 0

))
.

Since this can be done around each point of M , we get a system of local holomor-
phic sections of P (M,G), thus a system of local trivializations with holomorphic
transition functions. ¤

We will denote the set of holomorphic structures on a complex principal fibre
bundle P (M,G) by C(P ).

Example 2.5.4 Let π : E →M be a complex vector bundle over a complex mani-
fold and let L(E) be its frame bundle. Since every system of local trivializations
of E induces a system of local trivializations of L(E) with the same transition
functions and vice versa, we see that L(E) has a holomorphic structure if and only
if π : E → M is a holomorphic vector bundle. More generally, let P (M,G) be a
complex principal fibre bundle and assume we have a holomorphic representation
% : G → Aut(V ) of G on a complex vector space V . Suppose that P (M,G) has
a holomorphic structure and let { θi : π−1(Ui) → Ui × G , i ∈ I } be a system of
local trivializations with holomorphic transition functions { θij : Uij → G }. Then
the transition functions { θEij = α′v ◦ % ◦ θij : Uij → GL(n,C) } of the induced local
trivializations on the associated complex vector bundle E = P ×G V (with respect
to a basis v of V ) are also holomorphic, thus E = P ×G V is a holomorphic vector
bundle.

The previous example can be generalized even more, as explained in the next
proposition.

Proposition 2.5.5 Let P (M,G) be a complex principal fibre bundle and suppose
that we have a holomorphic representation % : G → Aut(V ) of G on a complex
vector space V . Then every almost holomorphic structure J on P (M,G) induces a
semiconnection δJ on the associated vector bundle E = P×GV , which is defined as
follows. Let Y ∈ Γ(TM) and σ ∈ A0(E). Denote by σ̂ : P → V the G-equivariant
map corresponding to σ in the sense of Lemma 1.2.9. Then δJ(σ) (Y ) ∈ A0(E) is
defined by

δJ(σ) (Y ) (p) :=
(
u, Ŷ 0,1

u (σ̂)
)
/∼

for p ∈M , where u is some element of the fibre of P over p and Ŷu is any vector
of TuP with π∗(Ŷu) = Yp .

Proof We will first show that the map M → E, p 7→
(
u, Ŷ 0,1

u (σ̂)
)
/∼

is well-

defined. Two vectors of TuP that both project to Yp differ by a vertical vector

8 A proof of an analogous statement for real manifolds and smooth maps can be found for
example in [27, Theorem 1.31 of Chapter 1]. The complex case can be proved similarly, using the
Inverse Function Theorem for holomorphic functions between open subsets of Cn (see [6, p.18]).
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(B∗)u, where B is some element of g. But by (2.1), (2.21) and Lemma A.1, and
since % is holomorphic, we have

(B∗) 0,1
u (σ̂) =

(
(B∗)u + i J

(
(B∗)u

)

2

)
(σ̂) =

(
(B∗)u + i

(
JG(B) ∗

)
u

2

)
(σ̂)

=
− %∗(B)

(
σ̂(u)

)− i %∗
(
JG(B)

) (
σ̂(u)

)

2

=
− %∗(B)

(
σ̂(u)

)
+ %∗(B)

(
σ̂(u)

)

2
= 0 .

This shows that the definition of p 7→
(
u, Ŷ 0,1

u (σ̂)
)
/∼

does not depend on the

choice of Ŷu ∈ TuP . It also does not depend on the choice of u in the fibre of P
over p, since for g ∈ G we can take Ŷ 0,1

ug = (Rg)∗ (Ŷu), and so by (2.20) we have

Ŷ 0,1
ug (σ̂) =

(
(Rg)∗ (Ŷu)

)0,1 (σ̂) = (Rg)∗
(
Ŷ 0,1
u

)
(σ̂)

= Ŷ 0,1
u (σ̂ ◦Rg) = Ŷ 0,1

u

(
% (g−1) ◦ σ̂)

= % (g−1)
(
Ŷ 0,1
u (σ̂)

)

where the last equality follows from the fact that % (g−1) : V → V is linear.

The map δJ(σ) : Γ(TM) → A0(E) is C∞(M,C)-linear, thus δJ(σ) ∈ A1(E).
In fact, we have δJ(σ) ∈ A0,1(E) because if Y ∈ T ′pM then by Lemma 2.1.3 we
have Y = Z − i JM (Z), for some Z ∈ TRp M and thus, since

π∗
(
Ẑu − i J(Ẑu)

)
= Z − π∗

(
i J(Ẑu)

)
= Z − i JM (Z) = Y

by condition 1. of Definition 2.5.1, we have

δJ(σ) (Y ) =
(
u,

(
Ẑu − i J(Ẑu)

) 0,1 (σ̂)
)
/∼

= 0.

To conclude that δJ : A0(E)→ A0,1(E) is a semiconnection, we have to check that
the Leibnitz rule is satisfied. For this, let σ ∈ A0(E), f ∈ C∞(M,C), Y ∈ Γ(TM)
and p ∈M . Then

δJ (f σ) (Y ) (p) =
(
u, Ŷ 0,1

u

(
(f ◦ π) σ̂

) )
/∼

=
(
u, σ̂(u) Ŷ 0,1

u (f ◦ π) + f(p) Ŷ 0,1
u (σ̂)

)
/∼

=
(
u, σ̂(u)Y 0,1

p (f) + f(p) Ŷ 0,1
u (σ̂)

)
/∼

= σ(p) ∂f(Yp) + f(p) δJ(σ) (Y ) (p) ,

i.e. δJ (fσ) = σ ⊗ ∂f + f δJ(σ). ¤

Note that if J ∈ C(P ) then Proposition 2.5.5 reduces to the case described in
Example 2.5.4. Indeed, we will now show that if J ∈ C(P ) then δJ = ∂, where ∂
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denotes the operator associated to the holomorphic structure induced by J on E,
in the sense of Example 2.5.4. Let σ ∈ A0(E) and write it on some U ⊂ M as
σ = (u, x ) /∼, where u : U → P is a local holomorphic section of P (M,G) and
x a function U → V . We have to prove that ∂σ (Y ) = δJ(σ) (Y ) for p ∈ U and
Y ∈ TpM . Let ( fv, α′v ◦ % ) : P (M,G) ↪→ L(E)

(
M,GL(n,C)

)
be the reduction

described in Example 1.2.10, with respect to a basis (v1, . . . , vn) of V ; note that
the map fv : P → L(E) is holomorphic, with respect to the holomorphic structure
induced by J on π : E → M and on L(E), as described in Example 2.5.4. If
we identify E with L(E) ×GL(n,C) Cn, then we can write σ =

(
fv(u), αv(x)

)
/∼

(where now ”∼” denotes the equivalence relation on the set L(E) × Cn). This is
clear from the way the map fv : P → L(E) is defined. Observe that f(u) is a
local holomorphic frame of π : E →M , with respect to the holomorphic structure
induced by J . Thus we have

∂σ (Y ) =
(
fv

(
u(p)

)
, ∂ αv(x) (Y )

)
/∼

=
(
fv

(
u(p)

)
, αv

(
Y 0,1(x)

) )
/∼

=
(
u(p) , Y 0,1(x)

)
/∼

and
δJ(σ) (Y ) =

(
u(p) , u∗(Y ) 0,1 (σ̂)

)
/∼

.

But Y 0,1(x) = Y 0,1 (σ̂ ◦ u) = u∗(Y 0,1) (σ̂) = u∗(Y ) 0,1 (σ̂), because u is holomor-
phic.

Let P (M,G) be a complex principal fibre bundle and let G = Aut(P ) be its
gauge group (see Example 1.2.14). We define an action of G on C(P ) on the right
by (J, ϕ) 7→ ϕ(J), where

ϕ(J) (X) := ϕ −1
∗

(
J

(
ϕ∗(X)

))

for u ∈ P and X ∈ TuP .

Proposition 2.5.6 Let G be the gauge group of a complex principal fibre bundle
P (M,G). Then the action C(P )×G → C(P ) defined above leaves C(P ) invariant.

Proof Let J ∈ C(P ) and ϕ ∈ G. We have to show that ϕ(J) ∈ C(P ). Let X1,
X2 ∈ Γ(TP ). A straightforward calculation shows that

Nϕ(J) (X1, X2) = ϕ −1
∗

(
NJ

(
ϕ∗(X1), ϕ∗(X2)

))

where NJ and Nϕ(J) are the torsions of J and ϕ(J) respectively (see Definition
2.2.6). Since NJ = 0, it follows that Nϕ(J) = 0 and thus ϕ(J) ∈ C(P ). ¤

Definition 2.5.7 Two (almost) holomorphic structures J1 and J2 on a complex
principal fibre bundle P (M,G) are isomorphic if they are in the same G-orbit with
respect to the action C(P ) × G → C(P ) defined above, i.e. if there exists ϕ ∈ G
such that ϕ(J1) = J2 (equivalently, such that J1 ◦ ϕ∗ = ϕ∗ ◦ J2).
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Chapter 3

The Chern correspondence

Throughout this chapter, G will be a complex reductive Lie group with a compact
real form K and P (M,G) a complex principal fibre bundle.

In Paragraph 3.1 we will consider a fixed K-reduction Q (M,K) of P (M,G) and
we will show that there is a 1-1 correspondence between the set of almost holomor-
phic structures on P (M,G) and the space of connections on Q (M,K). We will
prove that this is an extension of the 1-1 correspondence, described in Proposition
2.3.11, between semiconnections and h-connections on a complex vector bundle
with an Hermitian metric h. Using the second part of Proposition 2.3.11 and
Theorem 2.3.10 we will then derive that connections on Q (M,K) with curvature
form of type (1, 1) correspond precisely to the holomorphic structures of P (M,G).

In Paragraph 3.2 we will consider a fixed almost holomorphic structure J on
P (M,G) and the corresponding connection, regarded as a connection on P (M,G),
with respect to a K-reduction. We will describe the way this connection changes
when we vary the reduction.

In this chapter we will always regard K as a subset of G. Note that K will
have then the relative topology, because it is a closed subgroup 1. The Lie alge-
bras of G and K will be denoted respectively by g and k. We will identify g with
k⊕ ik and, in particular, denote the almost complex structure JG of G simply as
multiplication by i. Given a reduction Q (M,K) of P (M,G), we will consider the
total space Q as a subset (with the relative topology) of P .

3.1 The Chern correspondence

Throughout this section, Q (M,K) will be a fixed K-reduction of P (M,G).

1 See footnotes 13 of Chapter I and 5 of Chapter II.
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Theorem 3.1.1 Let J be an almost holomorphic structure on P (M,G). Then the
distribution u ∈ Q 7→ TuQ ∩ J

(
TuQ

)
defines a connection AJ on Q (M,K). The

map J 7→ AJ gives a 1-1 correspondence (the Chern correspondence) between
the set C(P ) of almost holomorphic structures on P (M,G) and the space A(Q) of
connections on Q (M,K).

Proof Let J ∈ C(P ) and define
(
T h
u Q

)
AJ

:= TuQ∩ J
(
TuQ

)
for u ∈ Q. We have

to show that the distribution u 7→ (
T h
u Q

)
AJ

is smooth and satisfies conditions
1. and 2. of Definition 1.4.1. Observe first that

(
T h
u Q

)
AJ
∩ T v

u Q = (0). Indeed,
suppose that we have an X ∈ (

T h
u Q

)
AJ
∩ T v

u Q and write X = (B∗)u, for some
B ∈ k. Then by (2.21) we have J(X) = ( iB ∗ )u. But J(X) ∈ TuQ because
X ∈ J(

TuQ
)
, thus it must be iB ∈ k; so B ∈ k∩ ik = (0) and X = 0. To conclude

that
(
T h
u Q

)
AJ
⊕ T v

u Q = TuQ, observe that

dim
((
T h
u Q

)
AJ

)
= dim

(
TuQ ∩ J

(
TuQ

))

= dim
(
TuQ

)
+ dim

(
J
(
TuQ

))− dim
(
TuQ+ J

(
TuQ

))

≥ dimRM

thus
(
T h
u Q

)
AJ
⊕T v

u Q has the required dimension. Property 2. of Definition 1.4.1
can be easily proved using (2.20), thus it remains to show that u 7→ (

T h
u Q

)
AJ

is a
smooth distribution. For this, let (X1, . . . , Xm+r) be a local frame of the tangent
bundle of Q over some open U ⊂ Q, where m = dimRM and r = dimK. Con-
sider X1, . . ., Xm+r and J(X1), . . ., J(Xm+r) as smooth maps U → TP and let
u0 ∈ U ; since X1(u0), . . ., Xm+r(u0) span Tu0Q and J(X1)(u0), . . ., J(Xm+r)(u0)
span J

(
Tu0Q

)
and since Tu0Q + J

(
Tu0Q

)
= Tu0P , there must be r elements

of the set { J(X1)(u0), . . ., J(Xm+r)(u0) }, say J(Xm+1)(u0), . . ., J(Xm+r)(u0),
such that X1(u0), . . ., Xm+r(u0), J(Xm+1)(u0), . . ., J(Xm+r)(u0) is a basis of
Tu0P ; the same then holds in a small neighborhood V of u0. Thus J(X1), . . .,
J(Xm) can be written in V as combinations of X1, . . ., Xm+r, J(Xm+1), . . .,
J(Xm+r). Let J(Xi) =

∑m+r
j=1 aijXj +

∑r
j=1 bijJ(Xm+j) on V, for i = 1, . . . ,m.

Then {∑m+r
j=1 aijXj = J(Xi) −

∑r
j=1 bijJ(Xm+j), i = 1, . . . ,m } span the distri-

bution u 7→ (
T h
u Q

)
AJ

, showing that the distribution is smooth.

We will now construct the inverse of the map J 7→ AJ . Let A be a connec-
tion on Q (M,K) and define an almost holomorphic structure JA on P (M,G) as
follows. Extend first A to a connection on P (M,G) (see the remark after Proposi-
tion 1.4.17). Then, for u ∈ P and X ∈ TuP , with (Xv)A = (B∗)u for some B ∈ g,
define

JA (X) := ( iB ∗ )u +
(

̂JM
(
π∗(X)

)h
u

)
A
. (3.1)

Note that JA is indeed an almost holomorphic structure on P (M,G), since it
satisfies (2.21) and condition 1. of Definition 1.4.1.
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The two constructions are inverse of each other. Consider first a connection A
on Q (M,K); we need to show that A = AJA

, i.e. that for u ∈ Q we have(
T h
u Q

)
A

= TuQ ∩ JA
(
TuQ

)
. Let X ∈ (

T h
u Q

)
A
. Then using (3.1) we get

X = JA

((
̂−JM
(
π∗(X)

)h
u

)
A

)

thus X ∈ TuQ ∩ JA
(
TuQ

)
. Since

(
T h
u Q

)
A

and TuQ ∩ JA
(
TuQ

)
have the same

dimension, it follows that they are equal.
Consider now an almost holomorphic structure J on P (M,G); we have to show
that J = JAJ

. It is enough to show that J(X) = JAJ
(X) for u ∈ Q and

X ∈ (
T h
u Q

)
AJ

, since both J and JAJ
are G-invariant and since they coincide

on vertical vectors. By (3.1) we have

JAJ
(X) =

(
̂JM
(
π∗(X)

)h
u

)
AJ

.

But we have also
J (X) =

(
̂JM
(
π∗(X)

)h
u

)
AJ

.

Indeed, J(X) ∈ (
T h
u Q

)
AJ

= TuQ∩ J
(
TuQ

)
since X does and, by condition 1. of

Definition 1.4.1, π∗
(
J(X)

)
= JM

(
π∗(X)

)
. ¤

Example 3.1.2 Let % : G ↪→ GL(n,C) be a holomorphic faithful representation
of G with % (K) ⊂ U(n) (see Theorem 2.4.8). Suppose that we have an almost
holomorphic structure J on P (M,G). Then J induces a semiconnection δJ on
the associated vector bundle E = P ×G Cn, as described in Proposition 2.5.5. Let
( f, % ) : P (M,G) ↪→ L(E)

(
M,GL(n,C)

)
be the reduction described in Example

1.2.10. The reduction Q (M,K) ↪→ P (M,G) induces a metric h on E, which is
defined as follows. For all p ∈ M , h(p) is the metric on Ep which has matrix I
with respect to a basis f(u) of Ep, where u is some element of the fibre of Q over
p (see also Example 1.2.17). Let AJ be the connection on Q (M,K) corresponding
to the almost holomorphic structure J of P (M,G) under the Chern correspon-
dence and extend it to a connection on P (M,G), as explained in the remark after
Proposition 1.4.17.

We will show that the induced connection DAJ
is the Chern connection of E with

respect to the metric h and the induced semiconnection δJ .

AJ can be extended to a connection on L(E)
(
M,GL(n,C)

)
, which is then reducible

to Uh(E)
(
M,U(n)

)
; so, using Examples 1.4.21 and 1.4.22, we see that DAJ

is an
h-connection. Thus it remains to show that DAJ

′′ = δJ . Let σ : M → E be a
section of E = P ×G Cn. It is enough to prove that δJ(σ) (Y ) = DAJ

′′(σ) (Y ) for
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p ∈M and Y ∈ TRp M . By Proposition 2.5.5 and Proposition 1.4.9 we have

δJ(σ) (Y ) =
(
u , Ŷ 0,1

u (σ̂)
)
/∼

and
DAJ

′′(σ) (Y ) = DAJ
(σ)

(
Y 0,1

)
=

(
u ,

(
Ŷ 0,1

h )
AJ

(u) (σ̂)
)
/∼
,

where σ̂ is the G-equivariant function on P corresponding to σ, u some element
in the fibre of P over p and Ŷu some vector of TuP with π∗(Ŷu) = Y . So we have

to show that Ŷ 0,1
u =

(
Ŷ 0,1

h )
AJ

(u). We know that

π∗
(
Ŷ 0,1
u

)
= Y 0,1 = π∗

((
Ŷ 0,1

h )
AJ

(u)
)
,

thus it is enough to prove that Ŷ 0,1
u ∈ (

T h
u P

)
AJ

. Using (2.1) and complex
linearity of ωAJ

(see page 74), we have

ωAJ

(
Ŷ 0,1
u

)
= ωAJ

(
Ŷu + i J

(
Ŷu

)

2

)

=
ωAJ

(
Ŷu

)
+ i ωAJ

(
J
(
Ŷu

))

2
. (3.2)

Set
(
Ŷ v
u

)
AJ

= (B∗)u, for some B ∈ g. Since

J
((
T h
u P

)
AJ

)
=

(
T h
u P

)
AJ

we have, using (2.21)
(
J
(
Ŷu

) v )
AJ

= J
((
Ŷ v
u

)
AJ

)
= J

(
(B∗)u

)
= ( iB ∗ )u .

Thus ωAJ

(
Ŷu

)
= B and ωAJ

(
J
(
Ŷu

))
= iB, so from (3.2) we get

ωAJ

(
Ŷ 0,1
u

)
= 0 ,

i.e. Ŷ 0,1
u ∈ (

T h
u P

)
AJ

, as we wanted.

Note that to prove DAJ
′′ = δJ in the previous example we have only used the fact

that J
((
T h
u P

)
AJ

)
=

(
T h
u P

)
AJ

(in particular, we didn’t need the injectivity of
the reduction % : G ↪→ GL(n,C)). Thus exactly the same argument can be used
to prove the statement of the next example.
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Example 3.1.3 Suppose we have a holomorphic representation % : G → Aut(V )
of G on a vector space V and consider the associated vector bundle E = P ×G V .
Let J be an almost holomorphic structure on P (M,G) and A a connection satis-
fying J

((
T h
u P

)
A

)
=

(
T h
u P

)
A
, for all u ∈ P . Then we have DAJ

′′ = δJ , where
DA and δJ are the connection and the semiconnection on E induced by A and J
respectively. In particular, if J is a holomorphic structure on P (M,G) then we
have DAJ

′′ = ∂, where ∂ is the operator associated to the induced holomorphic
structure on E.

Example 3.1.4 Let π : E → M be a complex vector bundle over a complex
manifold and let h be an Hermitian metric on it. Consider the frame bundle
L(E)

(
M,GL(n,C)

)
and the U(n)-reduction Uh(E)

(
M,U(n)

)
associated to h,

under the correspondence (2.18). By Theorem 3.1.1, Theorem 1.4.12, Example
1.4.22 and Proposition 2.3.11 we have 1-1 correspondences

C(L(E)
) 1-1←→ A(

Uh(E)
) 1-1←→ {h-connections on π : E →M } 1-1←→ D(E).

By Example 3.1.2 the composition of these correspondences sends an element J
of C(L(E)

)
to the induced semiconnection δJ on E = L(E) ×GL(n,C) Cn. In

particular we see that the map J 7→ δJ described in Proposition 2.5.5 gives a
1-1 correspondence between semiconnections on a complex vector bundle over a
complex manifold and almost complex structures on its frame bundle.

We will use Example 3.1.2 to prove the next proposition, which is a generalization
of the second part of Proposition 2.3.11.

Proposition 3.1.5 Under the Chern correspondence C(P ) 1-1←→ A(Q), the ele-
ments of A1,1(Q) := {A ∈ A(Q) / ΩA ∈ A1,1(P ×Ad g) } correspond precisely
to the integrable almost holomorphic structures of P (M,G), i.e. we have a 1-1
correspondence C(P ) 1-1←→ A1,1(Q).

Proof Let % : G ↪→ GL(n,C) be a holomorphic faithful representation of G with
% (K) ⊂ U(n). Consider the associated vector bundle E = P ×G Cn = Q ×K Cn
and the metric h on E defined in Example 3.1.2. Recall that we have a reduction
( f, % ) : P (M,G) ↪→ L(E)

(
M,GL(n,C)

)
.

Let J be a holomorphic structure on P (M,G) and let AJ be the correspond-
ing connection of Q (M,K). By Example 3.1.2 we know that the connection DAJ

on E induced by AJ is the Chern connection of E with respect to the metric h
and the holomorphic structure on E induced by J . Then, by Proposition 2.3.11,
the curvature RAJ

of DAJ
is an element of A1,1(E∗ ⊗ E). Since, by Lemma

1.4.13, RAJ
= φ (ΩAJ

), where φ : A2(P ×Ad g) → A2(E∗ ⊗ E) is induced by
the injective map P ×Ad g → E∗ ⊗ E defined in Example 1.2.13, it follows that
ΩAJ

∈ A1,1(P ×Ad g), thus AJ ∈ A1,1(Q).
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Conversely, let A ∈ A1,1(Q) and extend it to a connection on L(E)
(
M,GL(n,C)

)
,

which is then reducible to Uh(E)
(
M,U(n)

)
. By Examples 1.4.21 and 1.4.22, the

connection DA on E induced by A is an h-connection and by hypothesis its cur-
vature RA = φ (ΩA) is of type (1, 1). Consider the holomorphic structure on E
corresponding to DA, in the sense of Proposition 2.3.11 and Theorem 2.3.10. This
holomorphic structure on E induces a holomorphic structure J on L(E), as ex-
plained in Example 2.5.4. Then (the extension of) A is the connection on Uh(E)
corresponding to J under the Chern correspondence.

Let u ∈ P and X ∈ TuP . Write X = (B∗)u+
(
Xh

)
A
, for some B ∈ g. Then, since

f∗
((
T h
u P

)
A

)
=

(
T h
f(u)L(E)

)
A
, we have f∗(X) =

(
%∗(B) ∗

)
u

+
(
f∗(X)h

)
A

and
by (3.1)

J
(
f∗(X)

)
=

(
i%∗(B) ∗

)
f(u)

+
(

̂
JM

(
π∗

(
f∗(X)

))h

f(u)

)

A

=
(
%∗(iB) ∗

)
f(u)

+ f∗

((
̂JM
(
πP ∗(X)

)h
u

)
A

)

= f∗

(
( iB ∗ )u +

(
̂JM
(
πP ∗(X)

)h
u

)
A

)

= f∗
(
JA(X)

)
(3.3)

where π denotes the projection L(E) → M and πP the projection P → M . Let
NJA

and NJ be the torsions of the almost holomorphic structures JA and J on P
and L(E) respectively (see Definition 2.2.6). Then for X1,X2 ∈ Γ(TP ) we have,
using (3.3) and the fact that J is integrable,

f∗
(
NJA

(X1, X2)
)

= NJ

(
f∗(X1), f∗(X2)

)
= 0 .

Since f : P → L(E) is an immersion, it follows that NJA
(X1, X2) = 0, thus JA is

integrable. ¤

Let GP = Γ(P ×Ad G) and GQ = Γ(Q×Ad K) be the gauge groups of P (M,G)
and Q (M,K) respectively. By Proposition 1.2.18, we know that P ×Ad G =
Q ×Ad G. Since the natural inclusion Q ×Ad K ⊂ Q ×Ad G induces a group
monomorphism Γ(Q ×Ad K) ↪→ Γ(Q ×Ad G) = Γ(P ×Ad G), we can regard GQ
as a subgroup of GP . Equivalently, the inclusion GQ ⊂ GP can be described as
follows. For ϕ ∈ GQ = Aut(Q) and u ∈ P with u = u′g, for some u′ ∈ Q and
g ∈ G, we define ϕ(u) := ϕ(u′) g.

We have a natural action of GQ on A(Q) on the right, given by (A,ϕ) 7→ ϕ∗(A),
where ϕ∗(A) is defined by

(
T h
u Q

)
ϕ∗(A)

:= (ϕ∗)−1
((
T h
ϕ(u)Q

)
A

)
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for u ∈ Q, as in Proposition 1.4.19. Note that A1,1(Q) is invariant under this
action. This can be seen as follows. Let A ∈ A1,1(Q) and ϕ ∈ GQ. Let ΩA,
Ωϕ∗(A) ∈ A2(P ×Ad g) be the curvature forms of A and ϕ∗(A) respectively and de-
note the corresponding G-equivariant horizontal forms on P by Ω̂A and Ω̂ϕ∗(A). By
Proposition 1.4.19 we know that Ω̂ϕ∗(A) = ϕ∗(Ω̂A). Let p ∈M and Y1, Y2 ∈ TpM .
Then Ωϕ∗(A)(Y1, Y2) =

(
ϕ−1(u), Ω̂A(Ŷ1, Ŷ2)

)
/∼, where u is some element in the

fibre of p over P and Ŷ1, Ŷ2 are vectors of TuP with π∗(Ŷi) = Yi (i = 1, 2). Suppose
that Y1, Y2 ∈ T ′pM (or Y1, Y2 ∈ T ′′pM). Then, since ΩA ∈ A1,1(P ×Ad g), we have
0 = ΩA(Y1, Y2) =

(
u, Ω̂A(Ŷ1, Ŷ2)

)
/∼, thus Ω̂A(Ŷ1, Ŷ2) = 0 and Ωϕ∗(A)(Y1, Y2) = 0.

This proves that Ωϕ∗(A) ∈ A1,1(P×Ad G) and thus ϕ∗(A) ∈ A1,1(Q), as we wanted.

We have seen at the end of Section 2.5 that GP works on the right on C(P ) by
(J, ϕ) 7→ ϕ(J) := ϕ −1∗ ◦J ◦ ϕ and that this action leaves C(P ) invariant. Using the
Chern correspondence C(P ) 1-1←→ A(Q) (and the restriction C(P ) 1-1←→ A1,1(Q)) we
get an action

A(Q)× GP → A(Q) , (A,ϕ) 7→ Aϕ(JA)

which can be restricted to A1,1(Q)× GP → A1,1(Q).

Proposition 3.1.6 The action of GP on A(Q) defined above extends the natural
GQ-action on A(Q).

Proof Let A ∈ A(Q) and ϕ ∈ GQ. Then for u ∈ Q we have

(
T h
u Q

)
Aϕ(JA)

= TuQ ∩ ϕ(JA)
(
TuQ

)
= TuQ ∩ ϕ −1

∗
(
JA

(
ϕ∗(TuQ)

))

= ϕ −1
∗

(
Tϕ(u)Q ∩ JA

(
Tϕ(u)Q

))
= ϕ −1

∗
((
T h
ϕ(u)Q

)
A

)

=
(
T h
u Q

)
ϕ∗(A)

,

thus ϕ∗(A) = Aϕ(JA). ¤

Recall that two (almost) holomorphic structures on P (M,G) are said to be
isomorphic if they are in the same GP -orbit. From what was said above, we
conclude that we can identify the moduli space of isomorphism classes of (almost)

holomorphic structures on P (M,G) with the quotient A1,1(Q)/
GP (respectively

A(Q)/
GP ).

3.2 Chern connections

Definition 3.2.1 Given an almost holomorphic structure J on P (M,G) and a
reduction Q (M,K) ↪→ P (M,G), the connection on Q (M,K) corresponding to J
under the Chern correspondence, extended to a connection on P (M,G), is denoted

85



by AJ,Q and is called the Chern connection of P (M,G) with respect to the
reduction Q (M,K) and the almost holomorphic structure J .

In this section we want to study the dependence of AJ,Q on the reductionQ (M,K)
of P (M,G), when J is fixed.

Given a reduction Q (M,K) of P (M,G), we will denote by TuQ⊥, for u ∈ Q,
the linear subspace { (B∗)u / B ∈ ik } of TuP . Then TuP = TuQ⊕ TuQ⊥.

Lemma 3.2.2 Let AJ,Q be the Chern connection of P (M,G) with respect to a
reduction Q (M,K) and an almost holomorphic structure J . Then for u ∈ Q and
X ∈ TuQ we have (

Xv
)
AJ, Q

= −J
(
prTuQ⊥

(
J(X)

))
.

Proof We have to prove that J
(
prTuQ⊥

(
J(X)

)) ∈ T v
u P and

X + J
(
prTuQ⊥

(
J(X)

)) ∈ (
T h
u P

)
AJ, Q

= TuQ ∩ J
(
TuQ

)
.

Let prTuQ⊥
(
J(X)

)
= (B∗)u, for some B ∈ ik. Then by (2.21) we have

J
(
prTuQ⊥

(
J(X)

))
= J

(
(B∗)u

)
=

(
iB ∗ )

u
∈ T v

u Q.

Thus J
(
prTuQ⊥

(
J(X)

)) ∈ T v
u P and X + J

(
prTuQ⊥

(
J(X)

)) ∈ TuQ. It remains

to show that X + J
(
prTuQ⊥

(
J(X)

)) ∈ J
(
TuQ

)
. But this holds, because it is

equivalent to J(X)− prTuQ⊥
(
J(X)

) ∈ TuQ. ¤

Consider the adjoint representation Ad : G → Aut(g). Since Ad(g) : g → g is
C-linear for all g ∈ G and since Ad(K) ⊂ Aut(k), we see that Ad : G → Aut(g)
induces an action K × ik → ik, (k, iB) 7→ Ad(k)(iB) = iAd(k)(B). If we have
a reduction Q (M,K) of P (M,G), we can then consider the associated vector
bundle Q ×Ad ik. Given a section s ∈ Γ (Q ×Ad ik), we will denote as usual
by ŝ the corresponding K-equivariant map Q → ik. Let eŝ be the composition
exp ◦ ŝ : Q→ G. Using (1.6) we get, for u ∈ Q and k ∈ K

eŝ (uk) = eŝ (uk) = eAd (k−1)
(
ŝ(u)

)
= c (k−1)

(
eŝ(u)

)
= c (k−1)

(
eŝ(u)

)
. (3.4)

Thus eŝ : Q → G is K-equivariant with respect to the action K × G → K,
(k, g) 7→ c(k)(g) and so it induces a section es of Q ×Ad G = P ×Ad G, thus an
element es ∈ GP . Consider now the map pr (eŝ) : Q → G/

K , u 7→ eŝ(u)K. For
u ∈ Q and k ∈ K we have

pr (eŝ) (uk) = eŝ(uk)K = c (k−1)
(
eŝ(u)

)
K = k−1 eŝ(u)K

= k−1pr (eŝ) (u) . (3.5)
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Thus pr (eŝ) is K-equivariant, with respect to the action K×G/
K , (k, gK) 7→ kgK

and so it induces a section pr (es) of the fibre bundle Q×KG
/
K . This will be used

in the proof of the next proposition.

Proposition 3.2.3 Let Q0 (M,K) be a fixed K-reduction of P (M,G). Then for
every s ∈ Γ (Q0 ×Ad ik) the set Qs := es (Q0) := {u eŝ(u) , u ∈ Q0 } defines a K-
reduction of P (M,G). Moreover, every K-reduction of P (M,G) can be written
in this form.

Proof We will show that there is a canonical bijection between Γ (Q0 ×Ad ik)
and the set of K-reductions of P (M,G), and that under this bijection a section s
of Q0 ×Ad ik corresponds to the reduction of P (M,G) with total space Qs.
By Propositions 1.2.16 and 1.2.18 we already know that there are natural 1-1
correspondences

{ reductions of P (M,G) to K } 1-1←→ Γ
(
P ×G G/

K
) 1-1←→ Γ

(
Q0 ×K G/

K
)
.

We claim that the natural map Γ (Q0 ×Ad ik) → Γ (Q0 ×K G/
K ), s 7→ pr (es)

defined above is the 1-1 correspondence that we need to conclude the proof.
We will first show that composition with pr ◦ exp : ik → G/

K gives a bijection
φ 7→ pr (eφ) between the set of K-equivariant maps Q0 → ik and of K-equivariant
maps Q0 → G/

K , and thus induces a 1-1 correspondence between Γ (Q0 ×Ad ik)
and Γ (Q0 ×K G/

K ). Since we know that pr ◦ exp : ik → G/
K is a bijection (see

the remark before Theorem 2.4.5), we only have to check that a map φ : Q0 → ik

is K-equivariant if and only if so is pr (eφ) : Q0 → G/
K . Suppose first that φ

is K-equivariant. Then by (3.4), with φ replacing ŝ, we see that pr (eφ) is K-
equivariant. Conversely, suppose that pr (eφ) is K-equivariant, then for u ∈ Q0

and k ∈ K we have, reversing the calculations of (3.4) and (3.5), with φ in the
place of ŝ

eφ(uk)K = pr (eφ) (uk) = k−1pr (eφ) (u) = c (k−1)
(
eφ(u)

)
K = eAd (k−1)φ(u)K .

Since pr ◦ exp : ik → G/
K is bijective, it follows that φ(uk) = Ad(k−1)φ(u), so

φ : Q0 → ik is K-equivariant. Thus Γ (Q0 ×Ad ik)→ Γ (Q0 ×K G/
K ), s 7→ pr (es)

is a bijection.
Let s ∈ Γ (Q0 ×Ad ik) and p ∈ M . Then the fibre over p of the K-reduction of
P (M,G) corresponding to s under the canonical bijections described above can
be written as u0 pr (eŝ)(u0) = u0 e

ŝ(u0)K, for some u0 in the fibre of Q0 (M,K)
over p. But u0 e

ŝ(u0)K = {u eŝ(u) / u ∈ Q0 with π(u) = p }, since for k ∈ K we
have u0 e

ŝ(u0) k = (u0k) eŝ(u0k). Thus indeed the total space of this reduction is
Qs = {u eŝ(u) , u ∈ Q0 }, as we wanted. ¤

Example 3.2.4 Let h0 be a fixed Hermitian metric on a complex vector bun-
dle π : E → M and consider the U(n)-reduction Uh0(E) of the frame bundle
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L(E)
(
M,GL(n,C)

)
, corresponding to h0 under (2.18). Under the identification

of Example 1.2.13, given s ∈ Γ
(
Uh0(E)×Ad i u(n)

)
we can consider

es ∈ GL(E) = Γ
(
L(E)×Ad GL(n,C)

) ⊂ Γ
(
L(E)×Ad gl (n,C)

)

(see also (1.7)) as a section of E∗⊗E, i.e. an endomorphism of E. Consider the
U(n)-reduction

Uh(E) := es
(
Uh0(E)

)
= {u eŝ(u) , u ∈ Uh0(E) }

of L(E), corresponding to a metric h on π : E → M . Then, for every p ∈ M ,
h(p) has matrix I with respect to the basis u0 e

ŝ(u0) of Ep, where u0 is some h0-
orthonormal basis of Ep. In other words, the automorphism es(p) of Ep sends an
h0-orthonormal basis u0 to an h-orthonormal basis u0 e

ŝ(u0), thus it is an isometry
between (Ep, h0) and (Ep, h). It is easy to see that h can be equivalently defined by

h
(
es(σ1), σ2

)
= h0 (σ1, σ2)

for σ1, σ2 ∈ A0(E).

Let J be an almost holomorphic structure on P (M,G) and let AJ,Q be the
Chern connection of P (M,G) with respect to a reduction Q (M,K). Given an
element φ ∈ GP (regarded as a G-equivariant map P → G), we define a g-valued
complex 1-form dQ φ on P by

dQ φ (X) := ωG

(
φ∗

((
Xh

)
AJ, Q

))

for u ∈ P and X ∈ (TuP )C, where ωG is the Maurer-Cartan form on G, ex-
tended to the complexified tangent bundle of G. Then dQ φ is horizontal and
G-equivariant, the last since

dQ φ
(
(Rg)∗(X)

)
= ωG

(
φ∗

((
(Rg)∗(X)h

)
AJ, Q

))

= ωG

(
φ∗

(
(Rg)∗

((
Xh

)
AJ, Q

)))

= ωG

(
(Lg−1)∗ (Rg)∗

(
φ∗

((
Xh

)
AJ, Q

) ))

= Ad (g−1) ωG

(
φ∗

((
Xh

)
AJ, Q

))
= Ad (g−1)

(
dQ φ (X)

)

for g ∈ G. Thus by Lemma 1.4.7 we have dQ φ ∈ A1(P ×Ad g). We define
∂Q φ ∈ A1,0(P ×Ad g) and ∂Q φ ∈ A0,1(P ×Ad g) to be the (1, 0) and (0, 1)
components of dQ φ. Note that ∂Q φ and ∂Q φ remains of type (1, 0) and (0, 1)
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also when considered as forms on P . Indeed, suppose we have X ∈ T ′′uP ; then
J(X) = − iX and, by property 1. of Definition 2.5.1,

JM
(
π∗(X)

)
= π∗

(
J(X)

)
= π∗ (− iX) = − iπ∗(X),

thus π∗(X) ∈ T ′′π(u)M . Similarly, if X ∈ T ′uP then π∗(X) ∈ T ′π(u)M . Thus we have
∂Q φ (X) = 0 for all X ∈ T ′′uP and ∂Q φ (X) = 0 for all X ∈ T ′uP and this means
that ∂Q φ and ∂Q φ are respectively of type (1, 0) and (0, 1).

We are now in a position to formulate and prove the following theorem, which
is the main result of this section.

Theorem 3.2.5 Let Q0 (M,K) and Q (M,K) be reductions of P (M,G) and write
Q = es (Q0), for some s ∈ Γ (Q0 ×Ad ik), as described in Proposition 3.2.3. Let J
be an almost holomorphic structure on P (M,G) and consider the associated Chern
connections A := AJ,Q and A0 := AJ,Q0 on P (M,G). Then the connection forms
ω and ω0 of A and A0 are related by the formula

ω − ω0 = ∂Q0 e
−2s

(recall that e−2s ∈ GP , see page 86).

Proof Since ω−ω0 and ∂Q0 e
−2s are both horizontal G-equivariant forms on P ,

it is enough to prove
(ω − ω0) (X0) = ∂Q0 e

−2s (X0)

for u0 ∈ Q0 and X0 ∈
(
T h
u0
Q0

)
A0

=
(
T h
u0
P

)
A0

.

Let eŝ be the K-equivariant map Q0 → G corresponding to es, and fs the map
Q0 → Q, u 7→ u eŝ(u). Denote by µ : P ×G→ P the action (u, g) 7→ ug. Then fs
is the composition µ ◦ ( id × eŝ ). By the Leibnitz rule 2, the differential of fs at
u0 is given by

fs ∗(X) = µ∗
(
X, (eŝ) ∗(X)

)
= (Reŝ(u0) )∗ (X) +

(
ωG

(
(eŝ) ∗(X)

))∗
fs(u0)

for X ∈ Tu0Q. For X0 ∈
(
T h
u0
Q0

)
A0

this becomes

fs ∗ (X0) = (Reŝ(u0) )∗(X0) +
(
dQ0 e

s (X0)
)∗
fs(u0)

. (3.6)

Since J(X0) ∈
(
T h
u0
Q0

)
A0

too, we also have

fs ∗
(
J(X0)

)
= (Reŝ(u0) )∗

(
J(X0)

)
+

(
dQ0 e

s
(
J(X0)

) )∗
fs(u0)

. (3.7)

2 See footnote 24 of Chapter I.
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By (3.6) and since (Reŝ(u0) )∗(X0) is A0-horizontal, we have

(ω − ω0)
(
fs ∗(X0)

)
= ω

(
(Reŝ(u0) )∗(X0) +

(
dQ0 e

s (X0)
)∗
fs(u0)

)
− dQ0 e

s (X0) .

(3.8)
Using Lemma 3.2.2, (2.20), (2.21) and (3.7) we get

((
(Reŝ(u0) )∗(X0) +

(
dQ0 e

s (X0)
)∗
fs(u0)

) v
)

A

= −J
(

prTu0Q
⊥

(
J

(
(Reŝ(u0) )∗(X0) +

(
dQ0 e

s (X0)
)∗
fs(u0)

)) )

= −J
(

prTu0Q
⊥

(
(Reŝ(u0) )∗

(
J(X0)

)
+

(
i dQ0 e

s (X0)
)∗
fs(u0)

) )

= −J
(

prTu0Q
⊥

(
−

(
dQ0 e

s
(
J(X0)

) )∗
fs(u0)

+
(
i dQ0 e

s (X0)
)∗
fs(u0)

) )

= −J
(

prTu0Q
⊥

( (
− dQ0 e

s
(
J(X0)

)
+ i dQ0 e

s (X0)
)∗
fs(u0)

) )

= −J
((

prik
(
− dQ0 e

s
(
J(X0)

)
+ i dQ0 e

s (X0)
))∗

fs(u0)

)

=
(
− iprik

(
− dQ0 e

s
(
J(X0)

)
+ i dQ0 e

s (X0)
))∗

fs(u0)

.

Thus

ω

(
(Reŝ(u0) )∗(X0) +

(
dQ0 e

s (X0)
)∗
fs(u0)

)

= − iprik
(
− dQ0 e

s
(
J(X0)

)
+ i dQ0 e

s (X0)
)

= − iprik
(

2i
dQ0

es (X0)+ i dQ0
es

(
J(X0)

)
2

)
= − iprik

(
2i ∂Q0 e

s (X0)
)
,

since

dQ0 e
s (X0) + i dQ0 e

s
(
J(X0)

)

2
=

dQ0 e
s (X0) + dQ0 e

s
(
i J(X0)

)

2

= dQ0 e
s
( X0 + i J(X0)

2
)

= ∂Q0 e
s (X0) .

We claim that

prik
(
2i ∂Q0 e

s (X0)
)

= i ∂Q0 e
s (X0)− iAd

(
eŝ(u0)

) (
∂Q0 e

s (X0)
)

(3.9)
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(we will prove this later). Using this and (3.8) we get

(ω − ω0)
(
fs ∗(X0)

)

= −i
(
i ∂Q0 e

s (X0)− iAd
(
eŝ(u0)

) (
∂Q0 e

s (X0)
) )
− dQ0e

s(X0)

= − ∂Q0 e
s (X0)− Ad

(
eŝ(u0)

) (
∂Q0 e

s (X0)
)
. (3.10)

So, using (3.6) and the fact that ω − ω0 is a G-equivariant horizontal form, we
have

(ω − ω0) (X0) = Ad
(
eŝ(u0)

) (
(ω − ω0)

(
(Reŝ(u0))∗(X0)

) )

= Ad
(
eŝ(u0)

) (
(ω − ω0)

(
fs ∗(X0)

) )

= Ad
(
eŝ(u0)

) (
− ∂Q0 e

s (X0)− Ad
(
eŝ(u0)

) (
∂Q0 e

s (X0)
) )

= −Ad
(
eŝ(u0)

) (
∂Q0 e

s (X0)
)− Ad

(
eŝ(u0)

2 ) (
∂Q0 e

s (X0)
)
.

What we need to show is thus

∂Q0 e
−2s (X0) = −Ad

(
eŝ(u0)

) (
∂Q0 e

s (X0)
)− Ad

(
eŝ(u0)

2 ) (
∂Q0 e

s (X0)
)
.

Since ∂Q0 e
−2s (X0) = dQ0 e

−2s
( X0−i J(X0)

2

)
and since X0 and J(X0) are A0-

horizontal vectors, it is enough to prove

dQ0 e
−2s (X) = −Ad

(
eŝ(u0)

) (
dQ0 e

s (X)
)− Ad

(
eŝ(u0)

2 ) (
dQ0 e

s (X)
)

for all X ∈ (
T h
u0
Q0

)
A0

.

For this, observe first that ê−2s : Q0 → G is the composition

Q0
eŝ−→ G

g 7→ g−1

−−−−−→ G
g 7→ g2−−−−→ G

and thus its differential Tu0Q0 → T
eŝ(u0)−2 G is given by the composition 3

Y 7−→ eŝ ∗(Y ) 7−→ − (L
eŝ(u0)−1)∗

(
(R

eŝ(u0)−1)∗
(
eŝ ∗(Y )

) )

7−→ (R
eŝ(u0)−1)∗

(
− (L

eŝ(u0)−1)∗
(

(R
eŝ(u0)−1)∗

(
eŝ ∗(Y )

) ))

+(L
eŝ(u0)−1)∗

(
− (L

eŝ(u0)−1)∗
(

(R
eŝ(u0)−1)∗

(
eŝ ∗(Y )

) ))
.

3 See footnotes 22 and 23 of Chapter I.
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Thus for X ∈ (
T h
u0
Q0

)
A0

we have

dQ0 e
−2s (X) = ωG

(
( ê−2s )∗ (X)

)

= ωG

(
(R

eŝ(u0)−1)∗

(
− (L

eŝ(u0)−1)∗
(

(R
eŝ(u0)−1)∗

(
eŝ ∗(X)

) ))

+(L
eŝ(u0)−1)∗

(
− (L

eŝ(u0)−1)∗
(

(R
eŝ(u0)−1)∗

(
eŝ ∗(X)

) )))

= −Ad
(
eŝ(u0)

2 ) (
ωG

(
eŝ ∗(X)

) )
− Ad

(
eŝ(u0)

) (
ωG

(
eŝ ∗(X)

) )

= −Ad
(
eŝ(u0)

2 ) (
dQ0 e

s (X)
)− Ad

(
eŝ(u0)

) (
dQ0 e

s (X)
)
,

as we wanted.

It remains to prove formula (3.9),

prik
(
2i ∂Q0 e

s (X0)
)

= i ∂Q0 e
s (X0)− iAd

(
eŝ(u0)

) (
∂Q0 e

s (X0)
)
.

For this, we will use the conjugation σ on the holomorphic tangent spaces of
G at points of exp (ik) which was defined in Section 2.4. Recall that on TgG,
for g ∈ exp (ik), σ is the reflexion about the tangent space of exp (ik) at g (in
particular, on g = TeG the reflexion about ik) and that for X ∈ TgG it holds

σ(X) = (Rg)∗
(
σ

(
(Lg−1)∗ (X)

) )
. (3.11)

Thus we have

prik
(

2i ∂Q0 e
s (X0)

)
=

2i ∂Q0 e
s (X0) + σ

(
2i ∂Q0 e

s (X0)
)

2
= i ∂Q0 e

s (X0)− i σ
(
∂Q0 e

s (X0)
)
,

so we need to show that σ
(
∂Q0 e

s (X0)
)

= Ad
(
eŝ(u0)

) (
∂Q0 e

s (X0)
)
. But, using

(3.11), we have

σ
(
∂Q0 e

s (X0)
)

= σ
(
dQ0 e

s
( X0+i J(X0)

2

) )
= σ

(
dQ0

es (X0)+i dQ0
es

(
J(X0)

)
2

)

=
σ
(
dQ0

es (X0)
)
− i σ

(
dQ0

es
(
J(X0)

))

2

=
σ

(
(L

eŝ(u0)
−1 )∗

(
eŝ∗(X0)

))
− i σ

(
(L

eŝ(u0)
−1 )∗

(
eŝ∗

(
J(X0)

)))

2
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=
(R

eŝ(u0)
−1 )∗

(
σ
(
eŝ∗(X0)

))
− i (R

eŝ(u0)
−1 )∗

(
σ

(
eŝ∗

(
J(X0)

)))

2

=
(R

eŝ(u0)
−1)∗

(
eŝ∗(X0)

)
− i (R

eŝ(u0)−1 )∗

(
eŝ∗

(
J(X0)

))

2

= (R
eŝ(u0)−1)∗

(
eŝ∗

(X0− i J(X0)
2

) )
= Ad

(
eŝ(u0)

) (
dQ0 e

s
(X0− i J(X0)

2

))

= Ad
(
eŝ(u0)

) (
∂Q0 e

s (X0)
)
,

as we wanted. ¤

Corollary 3.2.6 Suppose that J in Theorem 3.2.5 is a holomorphic structure on
P (M,G). Then the curvature forms Ω and Ω0 of A and A0 are related by the
formula

Ω− Ω0 = ∂
(
∂Q0 e

−2s
)

where ∂ is the operator associated with the holomorphic structure induced by J on
the vector bundle P ×Ad g.

Proof We have Ω = dA ω and Ω0 = dA0 ω0, thus

Ω− Ω0 = dA (ω − ω0) + (dA − dA0) (ω0). (3.12)

Denote by (DAd)A the connection induced by A on P ×Ad g. Then we know that
(DAd)A = dA (see page 49). We will now calculate the second term of the right
hand side of (3.12). Let X1, X2 ∈ Γ (TP ). Then, using the structure equation
(1.33) and the fact that Ω0 is a horizontal form, we get

(dA − dA0) (ω0) (X1, X2) = dω0

( (
X h

1

)
A
,
(
X h

2

)
A

)
− dω0

( (
X h

1

)
A0
,
(
X h

2

)
A0

)

= −1
2

[
ω0

( (
X h

1

)
A

)
, ω0

( (
X h

2

)
A

)]
+ Ω0

( (
X h

1

)
A
,
(
X h

2

)
A

)

−Ω0

( (
X h

1

)
A0
,
(
X h

2

)
A0

)

= −1
2

[
ω0

( (
X h

1

)
A

)
, ω0

( (
X h

2

)
A

)]
. (3.13)

Note that for X ∈ TP we have
(
X h

)
A
− (

X h
)
A0

= X − (
X v

)
A
− (

X h
)
A0

=
(
X v

)
A0
− (

X v
)
A

= ω0 (X) ∗ − ω (X) ∗ = (ω0 − ω) (X) ∗ ,

thus
ω0

( (
X h

)
A

)
= ω0

( (
X h

)
A0

+ (ω0 − ω) (X) ∗
)

= (ω0 − ω) (X).

Using this, (3.13) becomes

(dA − dA0) (ω0) (X1, X2) = − 1
2

[
(ω − ω0) (X1) , (ω − ω0) (X2)

]
,

93



briefly

(dA − dA0) (ω0) = −1
2

[
ω − ω0 , ω − ω0

]
.

Thus we have

Ω− Ω0 = (DAd)A (ω − ω0)− 1
2

[
ω − ω0 , ω − ω0

]
.

We know that ω − ω0 = ∂Q0 e
−2s ∈ A1,0(P ×Ad g) and, by Proposition 3.1.5, that

Ω0 − Ω ∈ A1,1(P ×Ad g). Thus we get

Ω− Ω0 = (DAd)A ′′ (ω − ω0).

But (DAd)A ′′ = ∂, as explained in Example 3.1.3, thus we conclude

Ω− Ω0 = ∂ (ω − ω0) = ∂
(
∂Q0 e

−2s
)
.

¤

Proposition 3.2.7 Let Q0 (M,K) and Q (M,K) be reductions of P (M,G) and
write Q = es (Q0), for some s ∈ Γ (Q0 ×Ad ik). Let A := AJ,Q and A0 := AJ,Q0

be the Chern connections with respect to an almost holomorphic structure J on
P (M,G). Denote by fs the map Q0 → Q, u 7→ u eŝ(u) and consider the connection
f ∗s (A) on Q0 (M,K), as defined in Proposition 1.4.19. Then the connection and
curvature forms ωf ∗s (A) and Ωf ∗s (A) of f ∗s (A) are given by

ωf ∗s (A) − ω0 = ∂Q0 e
s −Ad (eŝ)

(
∂Q0 e

s
)

where ω0 is the connection form of A0, and

Ωf ∗s (A) = Ad (e−ŝ) (Ω)

where Ω is the curvature form of A. In particular, if J is integrable then

Ωf ∗s (A) = Ad (e−ŝ)
(

Ω0 + ∂
(
∂Q0 e

−2s
) )
.

Proof For the first equality, it is enough to prove that

(ωf ∗s (A) − ω0) (X) = ∂Q0 e
s (X)−Ad

(
eŝ(u)

) (
∂Q0 e

s (X)
)

for u ∈ Q0 and X ∈ (
T h
u Q0

)
A0

. We have seen in the proof of Theorem 3.2.5 that

ω
(
fs∗(X)

)
= ∂Q0 e

s (X)−Ad
(
eŝ(u)

) (
∂Q0 e

s (X)
)
,

where ω is the connection form of A (see formula (3.10)). Since ωf ∗s (A) = f ∗s (ω)
(see Proposition 1.4.19), we get

(ωf ∗s (A) − ω0) (X) = ω
(
fs∗(X)

)− ω0 (X) = ω
(
fs∗(X)

)

= ∂Q0 e
s (X)−Ad

(
eŝ(u)

) (
∂Q0 e

s (X)
)
,
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as we wanted.
Let now X1, X2 ∈ TuQ0. Then, since Ω is G-equivariant and horizontal, we have,
using (3.6)

Ad
(
e−ŝ(u)

) (
Ω(X1, X2)

)
= Ω

(
(Reŝ(u))∗(X1), (Reŝ(u))∗(X2)

)

= Ω
(
fs∗(X1), fs∗(X2)

)
= f∗s Ω(X1, X2)

= Ωf ∗s (A) (X1, X2) ,

where the last equality follows from Proposition 1.4.19.
The last statement is then a consequence of this and Corollary 3.2.6. ¤
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Chapter 4

The Hermite-Einstein equation

The aim of this chapter is to discuss some aspects of an important application of
the Chern correspondence and in particular of Theorem 3.2.5 and its corollary.

Let G be a complex reductive Lie group with a compact real form K and let
P (M,G) be a complex principal fibre bundle over a compact base space. One
is interested in finding a K-reduction Q (M,K) of P (M,G) such that the curva-
ture form ΩAJ,Q

of the corresponding Chern connection with respect to a fixed
holomorphic structure J on P (M,G) satisfies the Hermite-Einstein equation

Λg
(
ΩAJ, Q

)
= C (4.1)

for some constant C in the center of g. Here Λg is the contraction operator asso-
ciated to an Hermitian metric g on M , which maps (1,1)-forms to 0-forms.

In [19] it is proved that under certain conditions on J and for certain values
of C the Hermite-Einstein equation has a solution. The strategy of the proof is
to fix a reduction Q0 (M,K) and to write an arbitrary reduction Q (M,K) as
Q = es (Q0), for some s ∈ Γ(Q0 ×Ad ik). Then, using the formula we obtained
in Corollary 3.2.6, (4.1) becomes a differential equation for s, which is solved. In
this chapter we will not go into this, but we will only give a necessary condition
for C in order to have a solution. In the vector bundle case, we will show that
this condition determines C. We will only consider the case when g is a Kähler
metric on M , but we will mention that actually only a much weaker assumption
on g is needed. We refer to [18] and [19] for a discussion of how this fact can be
used to generalize the results of this chapter to the Hermitian case.

The condition on C is obtained in the last section of this chapter, using the
results of Paragraphs 4.2 and 4.3. Section 4.1 contains some algebraic preliminar-
ies. General references for the first three sections of this chapter are [15, Chapter
XII], [2, Appendix on Geometry of Characteristic Classes], [4, Chapter 4] and,
only for 4.3, [22, Appendix C], [6, §3 of Chapter 3], [32, §3 of Chapter III], [13, §2
of Chapter II] and [11, Chapter 19].
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4.1 Invariant polynomials

Throughout this section, V will be a complex n-dimensional vector space 1.

Let k be a positive integer. A linear map V ⊗ . . .⊗ V︸ ︷︷ ︸
k

→ C is said to be symmetric

if f
(
vσ(1) ⊗ . . . ⊗ vσ(k)

)
= f

(
v1 ⊗ . . . ⊗ vk

)
, for all permutations σ of (1, . . . , k).

The vector space of symmetric linear maps f : V ⊗ . . .⊗ V︸ ︷︷ ︸
k

→ C will be denoted

by Sk(V ∗). We set S0(V ∗) := C and

S∗(V ∗) :=
∞⊕

k=0

Sk(V ∗).

We define a product in S∗(V ∗) as follows. For f1 ∈ Sk(V ∗) and f2 ∈ Sl(V ∗),
f1 · f2 is an element of Sk+l(V ∗), given by

f1·f2

(
v1⊗. . .⊗ vk+l

)
:=

1
(k + l)!

∑
σ

f1

(
vσ(1)⊗. . .⊗ vσ(k)

)
f2

(
vσ(k+1)⊗. . .⊗ vσ(k+l)

)

for v1, . . . , vk+l ∈ V , where the summation is taken over all permutations σ of
( 1, . . . , k + l ). The product is extended to S∗(V ∗) by distributivity. This gives
S∗(V ∗) the structure of a C-algebra.

Let v ∗1 , . . . , v
∗
n be a basis of V ∗. A (homogeneous) polynomial function on V

is a function f : V → C that can be expressed as a (homogeneous) polynomial of
v ∗1 , . . . , v

∗
n . This concept does not depend on the choice of the basis of V ∗. Ob-

serve that the set of polynomial function on V has a natural C-algebra structure.

Proposition 4.1.1 Given a map f ∈ Sk(V ∗), define a polynomial function f̃ on
V by f̃(v) := f

(
v ⊗ . . . ⊗ v), for v ∈ V . Then f 7→ f̃ is a vector space isomor-

phism between Sk(V ∗) and the vector space of homogeneous polynomial functions
of degree k on V . The linear extension of this map gives an algebra isomorphism
between S∗(V ∗) and the algebra of polynomial functions on V .

Proof It is clear that f 7→ f̃ is linear and that f̃1 · f2 = f̃1 · f̃2. To complete the
proof we will exhibit the inverse of f 7→ f̃ . Let P be a homogeneous polynomial
function of degree k on V and write it as P =

∑
1≤i1,...,ik≤n ai1,...,ik v

∗
i1
. . . v ∗ik , where

ai1,...,ik ∈ C. Define P0 ∈ Sk(V ∗) by

P0

(
v1 ⊗ . . .⊗ vk

)
:=

1
k!

∑

1≤i1,...,ik≤n
ai1,...,ik

∑
σ

v ∗i1(vσ(1)) . . . v
∗
ik

(vσ(k))

1 Of course, all result of the first three paragraphs of this chapter (except Proposition 4.3.3
and Remark 4.3.4) also hold in the real case: Paragraph 4.1 for real vector spaces, Paragraph 4.2
for real principal fibre bundles and Paragraph 4.3 for complex vector bundles over real manifolds.
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where the second summation is taken over all permutations σ of (1, . . . , k). Then
it is easy to see that P̃0 = P for all homogeneous polynomial functions P of degree
k on V , and (f̃)0 = f for all f ∈ Sk(V ∗), thus P 7→ P0 is the inverse of f 7→ f̃ . ¤

Let G be a Lie group and suppose we have a representation % : G → Aut(V )
of G on V . Then a map f ∈ Sk(V ∗) is said to be G-invariant if it holds

f
(
%(g) (v1)⊗ . . .⊗ %(g) (vk)

)
= f

(
v1 ⊗ . . .⊗ vk

)

for all g ∈ G and v1, . . . , vk ∈ V . A polynomial function P on V is said to be
G-invariant if P

(
%(g) (v)

)
= P (v), for all g ∈ G and v ∈ V .

Note that the G-invariant forms are a subalgebra of S∗(V ∗) and that, under the
isomorphism of Proposition 4.1.1, they correspond toG-invariant polynomial func-
tions of V .

Example 4.1.2 Let G be a complex Lie group with Lie algebra g and consider
the representation Ad : G→ Aut(g). We will denote by Ik(G), for a non-negative
integer k, the vector space of G-invariant forms in Sk(g∗), and by I(G) the algebra
of G-invariant forms in S∗(g∗). Elements of I(G) are called invariant polynomial
functions (or simply invariant polynomials) on G.

Example 4.1.3 The maps det : gl (n,C) → C and trace : gl (n,C) → C are
invariant polynomials on GL(n,C).

4.2 The Weil homomorphism

Let P (M,G) be a complex principal fibre bundle and let A be a connection on
it, with curvature form ΩA. Regard ΩA as a complex g-valued 2-form on P and
consider the g⊗ . . .⊗ g︸ ︷︷ ︸

k

-valued complex form Ω k
A := ΩA ∧ . . . ∧ ΩA︸ ︷︷ ︸

k

on P 2. Given

an invariant polynomial f ∈ Ik(G), we get then a form f
(
Ω k
A

) ∈ A2k(P )C; note
that f

(
Ω k
A

)
projects to a unique 2k-form f

(
Ω k
A

)
0

on M , which is given by

f
(
Ω k
A

)
0
(Y1, . . . , Y2k) := f

(
Ω k
A

)
(X1, . . . , X2k)

2 The wedge product for vector-valued differential forms on a manifold N is defined as follows.
Let V and W be two vector spaces. Given a V -valued k-form ω1 and a W -valued l-form ω2 on
N , ω1 ∧ ω2 is a V ⊗W -valued (k + l)-form on N , defined by

(ω1 ∧ ω2) (X1, . . . , Xk+l) :=
1

(k + l)!

X
σ

(−1)σω1

ą
Xσ(1), . . . , Xσ(k)

ć⊗ ω2

ą
Xσ(k+1), . . . , Xσ(k+l)

ć

for X1, . . . , Xk+l ∈ Γ(TN), where the summation is taken over all permutations σ of (1, . . . , k+l).
It is easy to see that the wedge product is associative and that it holds

d (ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)k ω1 ∧ dω2

where d is the exterior derivative defined in footnote 21 of Chapter I.
See for example [27, §5 of Chapter I] for more details over differential forms with values in a
vector space.
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for p ∈M and Y1, . . . , Y2k ∈ TpM , where X1, . . . , X2k are vectors in TuP , for some
u in the fibre of P over p, with π∗(Xi) = Yi, for i = 1, . . . , 2k. Observe that this is
well-defined, because f

(
Ω k
A

)
is horizontal (since so is ΩA) and because for g ∈ G

it holds R ∗
g f

(
Ω k
A

)
= f

(
Ω k
A

)
(since ΩA is G-equivariant and f is G-invariant).

In the following, f
(
Ω k
A

)
0
∈ A2k(M) will be also denoted by f

(
Ω k
A

)
. It will be

clear from the context when f
(
Ω k
A

)
will be regarded as a form on P and when

as a form on M .

Theorem 4.2.1 Let P (M,G) be a complex principal fibre bundle and I(G) the
algebra of invariant polynomials on G. Then:

1. for each f ∈ Ik(G) and each connection A on P (M,G), the 2k-form f
(
Ω k
A

)
on M defined above is closed;

2. for each f ∈ Ik(G), the element
[
f
(
Ω k
A

) ]
of the De Rham cohomology

group H2k(M,C), where A is any connection on P (M,G), is well-defined,
i.e. it does not depend on the choice of A;

3. the map I(G)→ H∗(M,C), f 7→ [
f
(
Ω k
A

) ]
(where A is any connection on

P (M,G) and where k = deg(f)) is an algebra homomorphism (the Weil
homomorphism).

Proof We follow [15] for 1. and [22] for 2. See these references for more details.

Let f ∈ Ik(G) and let A be a connection on P (M,G), with curvature form ΩA.
We will show that d f

(
Ω k
A

)
= 0, where f

(
Ω k
A

)
is regarded as a form on P . Then

the same will be true, also when we regard f
(
Ω k
A

)
as a form on M .

Observe first that if ϕ̃ ∈ Ar(M) and ϕ = π∗ ϕ̃, where π is the projection P →M ,
then dϕ = dAϕ. Indeed, for X1, . . ., Xr ∈ Γ(TP ) we have

dϕ (X1, . . . , Xr) = d (π∗ ϕ̃) (X1, . . . , Xr) = π∗ dϕ (X1, . . . , Xr)

= π∗ dϕ
( (
X h

1

)
A
, . . . ,

(
X h
r

)
A

)

= d (π∗ ϕ̃)
( (
X h

1

)
A
, . . . ,

(
X h
r

)
A

)

= dϕ
( (
X h

1

)
A
, . . . ,

(
X h
r

)
A

)
= dAϕ (X1, . . . , Xr).

Thus we have to show that dA f
(
Ω k
A

)
= 0. But, using the the Bianchi identity

dA ΩA = 0 (see Proposition 1.4.15), we have

dA f
(
Ω k
A

)
= f

(
dA Ω k

A

)
= k f

(
dA ΩA ∧ Ω k−1

A

)
= 0.

Let now A0 and A1 be connections on P (M,G), with connection and curvature
forms ω0, ω1 and Ω0, Ω1 respectively. We have to show that for f ∈ Ik(G) it holds[
f
(
Ω k

0

) ]
=

[
f
(
Ω k

1

) ]
. Consider the map pr1 : M × R → M , (p, t) 7→ p and the
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pullback bundle pr ∗
1 (P ) (M × R, G, π′) (see Example 1.2.8). Let A′0 and A′1 be

the connections induced on pr ∗
1 (P ) (M × R, G) by A0 and A1 respectively (see

Proposition 1.4.19) and let ω′0 and ω′1 be their connection forms. Then we have
ω′0 = pr ∗

1 ω0 and ω′1 = pr ∗
1 ω1 where pr : pr ∗

1 (P ) → P is the map between total
spaces inducing the homomorphism pr ∗

1 (P ) (M ×R, G)→ P (M,G), as described
in Example 1.2.8. Define a connection A on pr ∗

1 (P ) (M × R, G) with connection
form ωA by

ωA := ω′0 + (pr2 ◦ π′) (ω′1 − ω′0)
where pr2 is the projection M × R → R. Note that, by Proposition 1.3.2, ωA
is indeed a connection form. Consider the maps i0 : M → M × R, p 7→ (p, 0)
and i1 : M → M × R, p 7→ (p, 1). Then P (M,G) is the pullback bundle of
pr ∗

1 (P ) (M ×R, G) with respect to i0 and with respect to i1 and the connections
on P (M,G) induced by A are A0 and A1 respectively; indeed, an easy calculation
shows that ω0 = i0

∗
ωA and ω1 = i1

∗
ωA, where i0 and i1 are the maps P → pr ∗

1 (P )
corresponding to i0 and i1 respectively. In particular, we have Ω0 = i0

∗ΩA and
Ω1 = i1

∗ΩA, where ΩA is the curvature form of A, and so f
(
Ω k

0

)
= i ∗0

(
f
(
Ω k
A

) )

and f
(
Ω k

1

)
= i ∗1

(
f
(
Ω k
A

) )
. Since i0 and i1 : M → M × R are homotopic, it

follows that
[
f
(
Ω k

0

) ]
=

[
f
(
Ω k

1

) ]
.

3. can be seen as follows. Given a permutation σ of (1, . . . , k+l), denote by Tσ the
automorphism of g⊗ . . .⊗ g︸ ︷︷ ︸

k+l

defined by Tσ (B1⊗ . . .⊗Bk+l ) = Bσ(1)⊗ . . . Bσ(k+l).

Then, since ΩA has degree 2, we have Ω k+l
A = Tσ ◦ Ω k+l

A . Thus for f1 ∈ Ik(G)
and f2 ∈ I l(G) it holds

f1 · f2

(
Ω k+l
A

)
=

1
(k + l)!

∑
σ

(f1 ⊗ f2) ◦ Tσ ◦ Ω k+l
A

=
1

(k + l)!

∑
σ

(f1 ⊗ f2) ◦ Ω k+l
A = (f1 ⊗ f2) Ω k

A ∧ Ω l
A

= f1

(
Ω k
A

) ∧ f2

(
Ω l
A

)
.

¤

4.3 Chern classes of a complex vector bundle

Let π : E → M be a complex vector bundle of rank n over a complex manifold
and let D be a connection on it, with curvature RD. Consider a system of local
trivializations { θi : π−1(Ui) → Ui × Cn, i ∈ I } of E with respect to a cover
{Ui, i ∈ I } of M and let {ui, i ∈ I } be the corresponding local frames, i.e.
uiα(p) = θ−1

i (p, eα) for p ∈ U and α = 1, . . . , n. For every i ∈ I, let (ΩD)i be the
curvature form of D with respect to the local frame ui. Given an invariant polyno-
mial f ∈ Ik(GL(n,C)

)
, we can consider the local forms { f(

(ΩD) ki
) ∈ A2k(Ui),
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i ∈ I }. By (1.18) we have (ΩD)j = θji (ΩD)i θij on Uij and so, since f is GL(n,C)-
invariant, it follows that f

(
(ΩD) k

j

)
= f

(
(ΩD) ki

)
on Uij (recall that the adjoint

representation of GL(n,C) is given by Ad(A)(X) = AXA−1 for A ∈ GL(n,C)
and X ∈ gl (n,C), see (1.7)). Thus the { f(

(ΩD) ki
)
, i ∈ I } glue together to give

a well-defined global 2k-form on M , denoted by f
(
R k
D

)
.

The following theorem is an immediate consequence of Theorem 4.2.1, Theorem
1.4.12 and Lemma 1.4.13. A direct proof can be found for example in [22, p.
296-298] or [13, p. 37-38].

Theorem 4.3.1 Let π : E →M be a complex vector bundle of rank n over a com-
plex manifold and I

(
GL(n,C)

)
the algebra of invariant polynomials on GL(n,C).

Then:

1. for each f ∈ Ik
(
GL(n,C)

)
and each connection D on π : E → M , the

2k-form f
(
R k
D

)
on M defined above is closed;

2. for each f ∈ Ik(GL(n,C)
)
, the element

[
f
(
R k
D

) ]
of the De Rham coho-

mology group H2k(M,C), where D is any connection on π : E → M , is
well-defined, i.e. it does not depend on the choice of D;

3. the map I
(
GL(n,C)

) → H∗(M,C), f 7→ [
f
(
R k
D

) ]
(where D is any con-

nection on π : E →M and where k = deg(f)) is an algebra homomorphism.

For k = 1, . . . , n, define homogeneous polynomial functions fk of degree k on
gl (n,C) by

det (In +
i

2π
X) = 1 + f1(X) + f2(X) + · · ·+ fn(X)

for X ∈ gl (n,C). Since

det (In +
i

2π
AXA−1) = det

(
A (In +

i

2π
X)A−1

)
= det (In +

i

2π
X)

for all A ∈ GL(n,C) and X ∈ gl (n,C), it follows that the fk’s are GL(n,C)-
invariant, thus fk ∈ Ik

(
GL(n,C)

)
, for k = 1, . . . , n. For example, note that

f1 : gl (n,C)→ C is given by X 7→ i
2π tr (X).

Definition 4.3.2 Let π : E → M be a complex vector bundle of rank n over a
complex manifold and for k = 1, . . . , n let fk ∈ Ik

(
GL(n,C)

)
be the invariant

polynomial defined above. The k-th Chern form of π : E → M with respect to a
connection D is the closed 2k-form ck(E,D) := fk

(
R k
D

)
on M . The k-th Chern

class of π : E →M is ck(E) :=
[
fk

(
R k
D

) ] ∈ H2k(M,C).

Proposition 4.3.3 Let M be a compact m-dimensional Kähler manifold with
Kähler metric g and denote by kg ∈ A1,1(M) the associated Kähler form (see
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page 62). Let π : E → M be a complex vector bundle over M and consider the
first Chern form c1(E,D) of E with respect to a connection D. Then

deg (E) :=
∫

M
c1(E,D) ∧ k m−1

g

does not depend on the connection D. It is called the degree of the vector bundle
π : E →M .

Proof Let D′ be another connection on π : E → M . Then by Theorem 4.3.1
we have c1(E,D′) = c1(E,D) + dα, for some α ∈ A1(M). Thus

∫

M
c1(E,D′) ∧ k m−1

g =
∫

M

(
c1(E,D) + dα

) ∧ k m−1
g

=
∫

M
c1(E,D) ∧ k m−1

g +
∫

M
dα ∧ k m−1

g ,

so we need to show that
∫
M dα ∧ k m−1

g = 0. But this follows from the Theorem
of Stokes, since, using the fact that kg is closed, we have

∫

M
dα ∧ k m−1

g =
∫

M
d (α ∧ k m−1

g ).

¤

Remark 4.3.4 Let g be an Hermitian metric on a complex m-dimensional mani-
fold M and let kg ∈ A1,1(M) be its Kähler form. Then g is called a Gauduchon
metric if ∂∂ k m−1

g = 0. Note that if g is a Kähler metric, then in particular it is
Gauduchon, because from dkg = 0 it follows that ∂kg = 0 and ∂∂ k m−1

g = 0.

In Proposition 4.3.3 we have defined the degree of a complex vector bundle over a
compact Kähler manifold. We will now show that if we have a fixed holomorphic
structure on a complex vector bundle over a compact manifold then, in order to
define its degree, we only need the metric on the base space to be Gauduchon.

Let π : E →M be a holomorphic vector bundle over a compact complex manifold
and suppose that we have a Gauduchon metric g on M , with Kähler form kg. Let
h be an Hermitian metric on π : E →M and consider the Chern connection Dh.
Define deg (E) :=

∫
M c1(E,Dh) ∧ k m−1

g . We claim that this definition does not
depend on the choice of the Hermitian metric h on π : E →M . Indeed, let Dh′ be
the Chern connection on π : E →M with respect to another Hermitian metric h′.
Then it can be shown that c1(E,Dh′) = c1(E,Dh) + ∂∂β, for some β ∈ C∞(M)
(see [18, Lemma 1.1.18]). Thus

∫

M
c1(E,Dh′) ∧ k m−1

g =
∫

M

(
c1(E,Dh) + ∂∂β

) ∧ k m−1
g

=
∫

M
c1(E,Dh) ∧ k m−1

g +
∫

M
∂∂β ∧ k m−1

g ,
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so all we need to show is that
∫
M ∂∂β ∧ k m−1

g = 0. We have

∂∂β ∧ k m−1
g = ∂ ( ∂β ∧ k m−1

g ) + ∂β ∧ ∂ k m−1
g

= ∂ ( ∂β ∧ k m−1
g ) + ∂ (β ∧ ∂ k m−1

g )− β ∧ ∂∂ k m−1
g

= ∂ ( ∂β ∧ k m−1
g ) + ∂ (β ∧ ∂ k m−1

g )

where in the last equality we use ∂∂ k m−1
g = 0. Since ∂β ∧ k m−1

g and β ∧ ∂ k m−1
g

are respectively of type (m,m − 1) and (m − 1,m) and by the Theorem of Stokes
we have ∫

M
∂ ( ∂β ∧ k m−1

g ) =
∫

M
d ( ∂β ∧ k m−1

g ) = 0

and ∫

M
∂ (β ∧ ∂ k m−1

g ) =
∫

M
d (β ∧ ∂ k m−1

g ) = 0.

Thus
∫
M ∂∂β ∧ k m−1

g = 0, as we wanted.

It can be shown (see [5, p.502]) that if M is compact then for every Hermitian
metric g there exists a positive function ϕ ∈ C∞(M) such that g0 := ϕ·g is Gaudu-
chon. If M is connected and m ≥ 2, then g0 is unique up to a positive constant.
This fact can be used to define the degree of holomorphic vector bundles on arbi-
trary compact Hermitian manifolds. See [18, Remark 1.3.17] for a discussion of
this.

4.4 The contraction operator Λ

Let g be an Hermitian metric on a complex manifold M (i.e. an Hermitian met-
ric on the vector bundle TCM = T ′M). Denote by g the Hermitian metric on
(TRM,J) induced by g via the vector bundle isomorphism φ : (TRM,J)→ TCM
described in Section 2.2, and by g∗ the dual metric on (TRM∗, J∗), which is de-
fined pointwise by requiring the dual of a g-orthonormal frame on (TRM,J) to
be g∗-orthonormal. By Proposition 2.1.5, g∗ induces a C-bilinear symmetric non-
degenerate map g̃∗ : TM∗ × TM∗ → C, and this can be extended to a C∞(M,C)-
bilinear symmetric non-degenerate map

∧
g̃ ∗ : Ar(M)×Ar(M)→ C∞(M,C), for

every positive integer r. Recall that we have
∧
g̃ ∗ (α, β) =

∧
g̃ ∗ (ᾱ, β̄), for all α,

β ∈ Ar(M) and note that if α ∈ As,q(M), β ∈ As+q(M) and
∧
g̃ ∗ (α, β) 6= 0, then

β ∈ Aq,s(M).

Definition 4.4.1 Let M be a complex manifold and g an Hermitian metric on
it, with Kähler form kg ∈ A1,1(M). The Lefschetz operator associated to g is the
map Lg : A(M) → A(M), α 7→ α ∧ kg. The contraction operator associated to g
is the map Λg : Ar(M)→ Ar−2(M) defined by

∧
g̃ ∗

(
Λg(α), β

)
=

∧
g̃ ∗

(
α,Lg(β)

)
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for r > 2, α ∈ Ar(M) and β ∈ Ar−2(M) and by

Λg(α) =
∧
g̃ ∗ (α, kg )

for α ∈ A2(M).

Lemma 4.4.2 Let M be an m-dimensional complex manifold with an Hermitian
metric g. Let kg ∈ A1,1(M) be the Kähler form, Lg the Lefschetz operator and Λg
the contraction operator associated to g. Then:

1. Λg maps As,q(M) to As−1,q−1(M);

2. Lg and Λg are real operators, i.e. Lg(ᾱ) = Lg(α) and Λg(ᾱ) = Λg(α) for
all α ∈ A(M);

3. for every α ∈ A2(M) we have

L m−1
g (α) =

1
m

Λg(α) k m
g .

Proof Let α ∈ As,q(M), for s + q > 2; then either Λg(α) = 0 ∈ As−1,q−1(M),
or we can find a form β ∈ As+q−2(M) such that

∧
g̃ ∗

(
α,Lg(β)

)
=

∧
g̃ ∗

(
Λg(α), β

) 6= 0.

In this last case, by what was observed before Definition 4.4.1, we must have
Lg(β) ∈ Aq,s(M) and thus β ∈ Aq−1,s−1(M) and again Λg(α) ∈ As−1,q−1(M).
Let now α ∈ As,q(M), for s + q = 2; then either Λg(α) = 0 ∈ As−1,q−1(M), or∧
g̃ ∗ (α, kg ) = Λg(α) 6= 0. In this last case we must have then α ∈ A1,1(M).

Since Λg(α) ∈ A0(M), 1. is proved also in this case.

Let α ∈ Ar(M). Then Lg(ᾱ) = Lg(α), since kg = kg (as can be seen using the
local expression of kg given in formula (2.9)). The second equality in 2. follows if
r > 2 from the fact that

∧
g̃ ∗

(
Λg(ᾱ), β

)
=

∧
g̃ ∗

(
ᾱ, Lg(β)

)
=

∧
g̃ ∗

(
α,Lg(β)

)

=
∧
g̃ ∗

(
α,Lg(β̄)

)
=

∧
g̃ ∗

(
Λg(α), β̄

)
=

∧
g̃ ∗

(
Λg(α), β

)

for all β ∈ Ar−2(M), and if r = 2 from

Λg(ᾱ) =
∧
g̃ ∗ (ᾱ, kg) =

∧
g̃ ∗ (α, kg) = Λg(α).

Let ∂
∂z1

, . . . , ∂
∂zm

be a local orthonormal frame of M . With respect to this frame
the local expression of kg given in (2.9) becomes

kg =
i

2

m∑

k=1

dzk ∧ dzk.
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We will prove 3. for a form α = dzk ∧ dzk, for k ∈ { 1, . . . ,m }. This is the only
case we need to consider, because for forms of the type dzk ∧ dzl and dzk ∧ dzl, for
k, l ∈ { 1, . . . ,m } or dzk ∧ dzl, for k, l ∈ { 1, . . . ,m } with k 6= l, both sides of the
equality vanish. We have

L m−1
g (α) =

im−1

2m−1
(m− 1)! dz1 ∧ dz1 ∧ . . . ∧ dzm ∧ dzm

and
1
m

Λg(α) k m
g =

1
m

Λg(α)m!
im

2m
dz1 ∧ dz1 ∧ . . . ∧ dzm ∧ dzm ,

thus we need to show that Λg(α) = −2 i. But

Λg(α) =
∧
g̃ ∗ ( dzk ∧ dzk , kg ) = i

2

∑m
l=1

∧
g̃ ∗ ( dzk ∧ dzk , dzl ∧ dzl )

= i
2

∑m
l=1 det

(
g̃∗(dzk, dzl) g̃∗(dzk, dzl)
g̃∗(dzk, dzl) g̃∗(dzk, dzl)

)
= i

2

∑m
l=1 −4 δkl = −2 i.

¤

Let π : E → M be a complex vector bundle over a complex manifold and let
g be an Hermitian metric on M . Then the associated contraction operator Λg
on M can be extended in a natural way to the space of differential forms on M
with values in E. Let ξ ∈ Ar(E) and write it locally as ξ =

∑n
i=1 ui ⊗ ωi, where

(u1, . . . , un) is a local frame of π : E →M and where every ωi is a local r-form on
M . Then Λg(ξ) is defined locally by Λg(ξ) :=

∑n
i=1 ui ⊗ Λg(ωi). This definition

does not depend on the choice of the local frame, because Λg is C∞(M,C)-linear.

4.5 The Hermite-Einstein equation

Let G be a complex reductive Lie group with a compact real form K and let
P (M,G) be a complex principal fibre bundle. Suppose that M is compact and
Kähler and let kg and Λg be the Kähler form and the contraction operator asso-
ciated to a Kähler metric g. Let J be a fixed holomorphic structure on P (M,G)
and consider the Chern connection AJ,Q on P (M,G) corresponding to a K-
reduction Q (M,K). By Proposition 3.1.5 we know that the curvature form ΩAJ, Q

is an element of A1,1(P ×Ad g); using point 1 of Lemma 4.4.2, we see thus that
Λg

(
ΩAJ, Q

) ∈ A0(P ×Ad g).

Lemma 4.5.1 Let z(g) := {C ∈ g / [C,X] = 0, ∀ X ∈ g } be the center of g.
Then we have z(g) = {C ∈ g / Ad(g) (C) = C, ∀ g ∈ G }. In particular, every
C ∈ z(g) can be regarded as an element of A0(P ×Ad g).

Proof Let C ∈ g with Ad(g) (C) = C, for all g ∈ G. Then for all X ∈ g we
have

[C,X] = [−X,C] = ad(−X) (C) =
d

dt


t=0

Ad
(
exp(−tX)

)
(C) = 0,
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thus C ∈ z(g).
To prove the other inclusion we need the following fact (see [31, 3.50(a)]). Let
Z(G) := { g ∈ G / c(g′) (g) = g, ∀ g′ ∈ G } be the center of G. Then Z(G) is a
closed subgroup of G and its Lie algebra is z(g).
Let C ∈ z(g). Then exp(tC) ∈ Z(G) for all t ∈ R, and so using (1.6) we have

exp(tC) = c(g)
(
exp(tC)

)
= exp

(
Ad(g)(tC)

)
= exp

(
tAd(g)(C)

)

for all g ∈ G. Since this hold for all t ∈ R, it follows that C = Ad(g) (C), for all
g ∈ G.
For the last statement, observe that , given C ∈ z(g), the function P → g, u 7→ C
is G-equivariant and thus induces a section of P ×Ad g. ¤

The Hermite-Einstein equation is the equation

Λg
(
ΩAJ, Q

)
= C (4.2)

where C is some element of z(g) and where ΩAJ, Q
is the curvature of the Chern

connection corresponding to a variable K-reduction Q (M,K) of P (M,G), with
respect to the fixed holomorphic structure J . Using the results of Section 4.2,
we will give now a necessary condition for C in order to have a solution of this
equation.

Suppose that (4.2) holds, for some K-reduction Q (M,K) of P (M,G). Then
for every f ∈ I1(G) we have, using point 3. of Lemma 4.4.2,

∫

M
f(C) k m

g =
∫

M
f

(
Λg

(
ΩAJ, Q

))
k m
g =

∫

M
Λg

(
f

(
ΩAJ, Q

))
k m
g

= m

∫

M
f

(
ΩAJ, Q

) ∧ k m−1
g

where m is the dimension of M . We claim that δf (P ) :=
∫
M f

(
ΩAJ, Q

) ∧ k m−1
g

does not depend on the reduction Q (M,G). Indeed, let A and A′ be two connec-
tions on P (M,G), with curvature forms Ω and Ω′. Then by Theorem 4.2.1 we
have f(Ω′) = f(Ω) + dα, for some α ∈ A1(M), and this allows us to conclude, as
in the proof of Proposition 4.3.3, that

∫
M f (Ω′) ∧ k m−1

g =
∫
M f (Ω) ∧ k m−1

g .

Thus we see that (4.2) can have a solution only if

f(C) =
mδf (P )∫
M k m

g
(4.3)

for all f ∈ I1(G).

Example 4.5.2 Let π : E → M be a holomorphic vector bundle over a com-
pact Kähler manifold and let L(E)

(
M,GL(n,C)

)
be its frame bundle, with in-

duced holomorphic structure J . To every Hermitian metric h on π : E → M
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there corresponds a U(n)-reduction Uh(E)
(
M,U(n)

)
of L(E)

(
M,GL(n,C)

)
(see

page 73). Consider the Chern connections Dh on π : E → M and AJ, Uh(E) on
L(E)

(
M,GL(n,C)

)
. By Example 3.1.4 we know that Dh is the connection on

π : E → M associated to AJ, Uh(E), in the sense of Theorem 1.4.12. Thus, by
Lemma 1.4.13, the curvature Rh of Dh is equal to the curvature form ΩAJ, Uh(E)

of
AJ, Uh(E). The Hermite-Einstein equation becomes in this case

Λg (Rh) = C (4.4)

where C is some element of z
(
gl (n,C)

)
and where the Hermitian metric h plays

the role of the K-reduction Q (M,G) of P (M,G) in (4.2). Observe that

z
(
gl (n,C)

)
= {X ∈ gl (n,C) / XY = Y X, ∀Y ∈ gl (n,C) } = {λ In / λ ∈ C }.

Since Λg (Rh) is a map L(E) → gl (n,C) that on Uh(E) takes values in u(n) (by
the remark after Definition 2.3.5 and by point 2. of Lemma 4.4.2), we must have
λ ∈ iR. Equation (4.4) thus becomes

Λg (Rh) = i c In , (4.5)

for some c ∈ R. Consider the invariant polynomial tr ∈ I1
(
gl (n,C)

)
. Condition

(4.3) gives in this case

c = − m
n

2π deg(E)∫
M k m

g
,

where m is the dimension of M .

Note that, by Remark 4.3.4, in the previous example we only need the metric g
to be Gauduchon. The same is true in the general case of principal fibre bundles.
This can be seen as follows.

Let G be a complex reductive Lie group with a compact real form K and P (M,G)
a complex principal fibre bundle. Consider two K-reductions Q0 (M,K) and
Q (M,K) of P (M,G), with Q = es(Q0) for some s ∈ Γ (Q0 ×Ad ik). Then, by
Corollary 3.2.6, the curvature forms ΩAJ, Q0

and ΩAJ, Q
of the Chern connections

AJ,Q0 and AJ,Q with respect to a fixed holomorphic structure J on P (M,G) are
related by the formula ΩAJ, Q

= ΩAJ, Q0
+ ∂

(
∂Q0 e

−2s
)
. Thus, for every invariant

polynomial f ∈ I1(G) we have f
(
ΩAJ, Q

)
= f

(
ΩAJ, Q0

)
+ ∂

(
f

(
∂Q0 e

−2s
))

. It

can be shown that f
(
∂Q0 e

−2s
)

= ∂
(
f(−2s)

)
(see [19, p. 28]), where f(−2s) is

regarded as a function on M . So we have f
(
ΩAJ, Q

)
= f

(
ΩAJ, Q0

)
+∂∂

(
f(−2s)

)
and this allows us to conclude, as in Remark 4.3.4, that

∫

M
f

(
ΩAJ, Q

) ∧ k m−1
g =

∫

M
f

(
ΩAJ, Q0

) ∧ k m−1
g

if g is a Gauduchon metric. Thus also in this case we see that the number
δf (P ) :=

∫
M f

(
ΩAJ, Q

)∧k m−1
g does not depend on the choice of the K-reduction
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Q (M,K) used to define it.

This fact is particularly important, since, as mentioned in Remark 4.3.4, every
compact complex manifold admits a Gauduchon metric (while there are topo-
logical obstructions for the existence of a Kähler metric on a compact complex
manifold, see for example [32, p.191]).
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Appendix A

Let P (M,G) be a principal fibre bundle, % : G → Aut(V ) a representation of G
on a vector space V and E = P ×G V the associated vector bundle. We will prove
here some results that are stated in Paragraph 1.4. Throughout this appendix we
will need the following lemma.

Lemma A.1 Let φ : P → V be a G-equivariant map, i.e. a map such that
φ (ug) = % (g−1)

(
φ(u)

)
for all u ∈ P and g ∈ G. Then for B ∈ g and u ∈ P we

have
(B∗)u (φ) = − %∗(B)

(
φ(u)

)

where B∗ ∈ Γ(TP ) is the fundamental vector field corresponding to B and where
%∗ : g→ End(V ) is the differential of %.

Proof Recall that (B∗)u = d
dt


t=0

u exp (tB). We have

(B∗)u (φ) =
d

dt


t=0

φ
(
u exp (tB)

)
=

d

dt


t=0

%
(
exp (tB)−1

) (
φ(u)

)

=
d

dt


t=0

%
(
exp (−tB)

) (
φ(u)

)
= − %∗(B)

(
φ(u)

)
.

¤

We proved in Paragraph 1.4 that every connection A on P induces a connection
DA on E. This is defined by

DA(σ) (Y ) (p) :=
(
u,

(
Ŷ h

)
A
(u) (σ̂)

)
/∼

(A.1)

for σ ∈ A0(E), Y ∈ Γ(TM) and p ∈ M , where u is some element of the fibre of
P over p and where σ̂ denotes the G-equivariant map P → V corresponding to σ
(see Lemma 1.2.9).

Recall that if we choose a basis v = (v1, . . . , vn) of V , then the map fv from
P to the total space of the frame bundle of E defined by

fv : P → L(E) , u 7→ (
(u, v1 ) /∼, . . . , (u, vn ) /∼

)

induces a homomorphism of principal fibre bundles (see Example 1.2.10).
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Proposition A.2 Consider a local section σ : U → P of P over some open
U ⊂ M and the induced local frame u = fv ◦ σ : U → L(E) of E over U , relative
to a basis v of V . Let A be a connection on P with connection form ωA and let
DA be the connection on E induced by A. Then the connection form ωu of DA

with respect to the local frame u is given by ωu = (α′v)∗
(
%∗ (σ∗ ωA )

)
, where (α′v)∗

is the isomorphism End(V )→ gl (n,R) induced by the basis v of V (see Example
1.2.10).

Proof Observe first that if we write u = (u1, . . . , un) then for all p ∈ U and
α = 1, . . . , n we have uα(p) =

(
σ(p), vα

)
/∼, in other words

ûα
(
σ(p)

)
= vα . (A.2)

We have to show that

DA (uα) =
n∑

β=1

uβ ⊗
(
(α′v)∗

(
%∗ (σ∗ωA)

))
β α

,

thus that for Y ∈ Γ(TM) and p ∈ U we have

DA (uα)(Y ) (p) =
n∑

β=1

uβ(p)

(
(α′v)∗

(
%∗

(
ωA

(
σ∗(Yp)

))))

β α

.

By (A.1), Lemma A.1 and (A.2) we have

DA (uα)(Y ) (p) =
(
σ(p),

(
Ŷ h

)
A

(
σ(p)

)
(ûα)

)
/∼

=
(
σ(p),

(
σ∗(Yp)−

(
ωA

(
σ∗(Yp)

))∗
σ(p)

)
(ûα)

)

/∼

=
(
σ(p), Yp

(
ûα ◦ σ

)
+ %∗

(
ωA

(
σ∗(Yp)

))(
ûα

(
σ(p)

)))

/∼

=
(
σ(p), %∗

(
ωA

(
σ∗(Yp)

)) (
vα

) )

/∼
.

On the other hand, since uβ(p) =
(
σ(p), vβ

)
/∼ we have

∑n
β=1 uβ(p)

(
(α′v)∗

(
%∗

(
ωA

(
σ∗(Yp)

))))

β α

=

(
σ(p),

∑n
β=1 vβ

(
(α′v)∗

(
%∗

(
ωA

(
σ∗(Yp)

))))

β α

)

/∼

=
(
σ(p), %∗

(
ωA

(
σ∗(Yp)

)) (
vα

) )

/∼
. ¤
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Recall that the space DE of connections on E and the space AP of connections
on P are affine spaces modeled on A1(E∗⊗E) and A1(P ×Ad g) respectively (see
Propositions 1.3.2 and 1.4.8). We have a vector bundle map

φ : P ×Ad g→ E∗ ⊗ E
which is defined by

φ
(
(u,B ) /∼

) (
(u, v ) /∼

)
=

(
u, %∗(B) (v)

)
/∼ (A.3)

for p ∈ M , (u,B ) /∼ ∈ (P ×Ad g)p and (u, v ) /∼ ∈ Ep (see Example 1.2.13). We
will denote the induced maps Ar(P ×Ad g)→ Ar(E∗ ⊗ E) also by φ.

Proposition A.3 The map AP → DE, A 7→ DA is an affine homomorphism with
associated linear map φ : A1(P ×Ad g)→ A1(E∗ ⊗E).

Proof Let ξ ∈ A1(P ×Ad g) and denote by ξ̂ the corresponding G-equivariant
horizontal g-valued 1-form on P (see Lemma 1.4.7). Recall that for Y ∈ Γ(TM)
and p ∈M we have

ξ (Yp) =
(
u, ξ̂ (Ŷu)

)
/∼ (A.4)

where u is some element in the fibre of P over p and Ŷ is a vector field of P such
that π∗(Ŷ ) = Y . Let A be a connection on P . We have to show that

DA+ξ = DA + φ(ξ).

Observe first that for Y ∈ Γ(TM) we have
(
Ŷ h

)
A+ξ

=
(
Ŷ h

)
A
− (

ξ̂(Ŷ )
)∗ (A.5)

since
(
Ŷ h

)
A+ξ

= Ŷ − (
Ŷ v

)
A+ξ

= Ŷ − (
ωA+ξ (Ŷ )

)∗

= Ŷ − (
ωA (Ŷ )

)∗ +
(
ωA (Ŷ )− ωA+ξ (Ŷ )

)∗

=
(
Ŷ h

)
A
− (

ξ̂(Ŷ )
)∗
.

The last equality follows from the fact that by definition A+ ξ is the connection
on P with connection form ωA+ξ = ωA+ ξ̂. Let now σ ∈ A0(E) and p ∈M . Then
by (A.1), (A.5), Lemma A.1, (A.3) and (A.4) we have:

DA+ξ (σ)(Y ) (p) =
(
u,

(
Ŷ h

)
A+ξ

(u) (σ̂)
)
/∼

=
(
u,

(
Ŷ h

)
A
(u) (σ̂)− (

ξ̂(Ŷu)
)∗
u
(σ̂)

)
/∼

= DA(σ)(Y ) (p) +
(
u, %∗

(
ξ̂(Ŷu)

)
(σ̂(u))

)
/∼

= DA(σ)(Y ) (p) + φ
((
u, ξ̂ (Ŷu)

)
/∼

)((
u, σ̂(u)

)
/∼

)

= DA(σ)(Y ) (p) + φ
(
ξ(Yp)

)(
σ(p)

)
. ¤
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Recall that the curvature form of a connection on P (M,G) is an element
of A2(P ×Ad g) and that the curvature of a connection on E is an element of
A2(E∗ ⊗ E).

Proposition A.4 Let A be a connection on P with curvature form ΩA. Denote
by RA the curvature of the connection DA on E. Then we have

RA = φ (ΩA).

Proposition A.4 is an immediate consequence of the next two lemmas.

Lemma A.5 Let A be a connection on P with curvature form ΩA and let DA be
the connection on E induced by A. Then for Y1, Y2 ∈ Γ(TM) and σ ∈ A0(E) we
have

φ (ΩA) (Y1, Y2)(σ)

= 1
2

(
DA

(
DA (σ)(Y2)

)
(Y1)−DA

(
DA (σ)(Y1)

)
(Y2)−DA (σ)

(
[Y1, Y2]

) )
.

Lemma A.6 Let π : F → M be a vector bundle and let R be the curvature of a
connection D on F . Then for Y1, Y2 ∈ Γ(TM) and σ ∈ A0(F ) it holds:

R (Y1, Y2)(σ) =
1
2

(
D

(
D(σ)(Y2)

)
(Y1)−D

(
D(σ)(Y1)

)
(Y2)−D(σ)

(
[Y1, Y2]

) )
.

Proof of Lemma A.5 Let p ∈M and let u be some element in the fibre of P
over p. By (A.1) we have ̂DA (σ)(Y2) =

(
Ŷ h

2

)
A

(σ̂) and

DA

(
DA (σ)(Y2)

)
(Y1) (p) =

(
u,

(
Ŷ1
h )

A
(u)

((
Ŷ h

2

)
A

(σ̂)
))

/∼
.

Similarly

DA

(
DA (σ)(Y1)

)
(Y2) (p) =

(
u,

(
Ŷ2
h )

A
(u)

((
Ŷ h

1

)
A

(σ̂)
))

/∼
,

thus

DA

(
DA (σ)(Y2)

)
(Y1) (p)−DA

(
DA (σ)(Y1)

)
(Y2) (p)

=
(
u,

[ (
Ŷ1
h )

A
,
(
Ŷ2

h )
A

]
(u) (σ̂)

)

/∼
.
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Recall that
( ̂[Y1, Y2] h

)
A

=
( [ (

Ŷ1
h )

A
,
(
Ŷ2
h )

A

]h )
A

(see Lemma 1.4.2). Using

this, Lemma A.1 and (A.3) we get:
(
DA

(
DA (σ)(Y2)

)
(Y1)−DA

(
DA (σ)(Y1)

)
(Y2)−DA (σ)

(
[Y1, Y2]

) )
(p)

=
(
u,

[ (
Ŷ1
h )

A
,
(
Ŷ2
h )

A

]
(u) (σ̂)

)

/∼
−

(
u,

(
̂[Y1, Y2] h

)
A
(u) (σ̂)

)

/∼

=
(
u,

( [ (
Ŷ1
h )

A
,
(
Ŷ2
h )

A

]v )
A
(u) (σ̂)

)

/∼

=
(
u,

(
ωA

( [ (
Ŷ1
h )

A
,
(
Ŷ2

h )
A

]
(u)

))∗

u

(σ̂)
)

/∼

=
(
u, −%∗

(
ωA

( [ (
Ŷ1
h )

A
,
(
Ŷ2
h )

A

]
(u)

)) (
σ̂(u)

))

/∼

= −φ
((

u, ωA

( [ (
Ŷ1
h )

A
,
(
Ŷ2
h )

A

]
(u)

))

/∼

)
(
σ(p)

)
.

Thus we have to show that

ΩA (Y1, Y2) (p) =
(
u, − 1

2
ωA

( [ (
Ŷ1
h )

A
,
(
Ŷ2

h )
A

]
(u)

))

/∼
.

But this follows from

ΩA (Y1, Y2) (p) =
(
u, dωA

((
Ŷ1

h )
A
(u),

(
Ŷ2
h )

A
(u)

))

/∼

=

(
u, 1

2

((
Ŷ1
h )

A
(u)

(
ωA

((
Ŷ2
h )

A

) )
− (

Ŷ2
h )

A
(u)

(
ωA

((
Ŷ1
h )

A

))

−ωA
( [ (

Ŷ1
h )

A
,
(
Ŷ2
h )

A

]
(u)

))

/∼

since ωA
((
Ŷ2
h )

A

)
= ωA

((
Ŷ1
h )

A

)
= 0. 1 ¤

Proof of Lemma A.6 Let p ∈ M and let u : U → L(F ) be a local frame of
F over an open U ⊂M with p ∈ U . Identify F with L(F )×GL (n,R) Rn and write
σ =

(
u, v

)
/∼ on U , where v is a smooth function U → Rn. Let ωu and Ωu be the

connection and curvature forms of D with respect to u. Recall the relations

D(σ) = (u, dv + ωu v ) /∼ (A.6)

1 For a 1-form ω on a manifold M with values in a vector space V and for Y1, Y2 ∈ Γ(TM)
it holds:

dω (Y1, Y2) =
1

2

ş
Y1

ą
ω(Y2)

ć− Y2

ą
ω(Y1)

ć− ω
ą
[Y1, Y2]

ćť

(see [14, Proposition 3.11 of Chapter I] or [27, Lemma 5.15 of Chapter 1]).
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R(σ) = (u,Ωu v ) /∼ (A.7)

and the structure equation

Ωu = dωu + ωu ∧ ωu . (A.8)

By (A.6) we have D(σ)(Y2) =
(
u, Y2(v) + ωu(Y2) v

)
/∼ on U and

D
(
D(σ)(Y2)

)
(Y1) (p) =

(
u(p), Y1(p)

(
Y2(v) + ωu(Y2) v

)

+ ωu
(
Y1(p)

)(
Y2(p) (v) + ωu

(
Y2(p)

)
v(p)

))

/∼

=
(
u(p), Y1(p)

(
Y2(v)

)
+ Y1(p)

(
ωu(Y2)

)
v(p)

+ ωu
(
Y2(p)

)
Y1(p)(v) + ωu

(
Y1(p)

)
Y2(p) (v)

+ ωu
(
Y1(p)

)
ωu

(
Y2(p)

)
v(p)

)
/∼
.

Similarly

D
(
D(σ)(Y1)

)
(Y2) (p) =

(
u(p), Y2(p)

(
Y1(v)

)
+ Y2(p)

(
ωu(Y1)

)
v(p)

+ ωu
(
Y1(p)

)
Y2(p)(v) + ωu

(
Y2(p)

)
Y1(p) (v)

+ ωu
(
Y2(p)

)
ωu

(
Y1(p)

)
v(p)

)
/∼

and

D(σ)
(
[Y1, Y2]

)
(p) =

(
u(p), [Y1, Y2] (p)(v) + ωu

(
[Y1, Y2](p)

)
v(p)

)
/∼
.

Thus the right hand side in the statement is equal to
(
u(p), 1

2

(
Y1(p)

(
ωu(Y2)

)− Y2(p)
(
ωu(Y1)

)

+
[
ωu

(
Y1(p)

)
, ωu

(
Y2(p)

) ]
− ωu

(
[Y1, Y2](p)

))
v(p)

)

/∼
.

On the other hand, using (A.7) and (A.8) we get:

R (Y1, Y2)(σ) (p) =
(
u(p), Ωu

(
Y1(p), Y2(p)

)
v(p)

)
/∼

=
(
u(p),

(
dωu

(
Y1(p), Y2(p)

)
+ ωu ∧ ωu

(
Y1(p), Y2(p)

))
v(p)

)

/∼

=
(
u(p), 1

2

(
Y1(p)

(
ωu(Y2)

)− Y2(p)
(
ωu(Y1)

)

+
[
ωu

(
Y1(p)

)
, ωu

(
Y2(p)

) ]
− ωu

(
[Y1, Y2](p)

))
v(p)

)

/∼
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where the last equality follows from

dωu
(
Y1(p), Y2(p)

)
=

1
2

(
Y1(p)

(
ωu(Y2)

)− Y2(p)
(
ω(Y1)

)− ωu
(
[Y1, Y2](p)

))
2

and

ωu ∧ ωu
(
Y1(p), Y2(p)

)
= 1

2

(
ωu

(
Y1(p)

)
ωu

(
Y2(p)

)− ωu
(
Y2(p)

)
ωu

(
Y1(p)

))

= 1
2

[
ωu

(
Y1(p)

)
, ωu

(
Y2(p)

)]
.

¤

2 See footnote 1.
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[18] M. LÜBKE, A. TELEMAN, The Kobayashi-Hitchin Correspondence, World
Scientific, 1995.

[19] M.LÜBKE, A.TELEMAN, The universal Kobayashi-Hitchin correspondence
on Hermitian manifolds, arXiv: math. DG/0402341, to appear in Memoirs
of the AMS.

[20] C.C. MACDUFFEE, The Theory of Matrices, Chelsea Publ. Co., 1946.

[21] R.S. MILLMAN and K. STEHNEY, The Geometry of Connections, The
American Mathematical Monthly, Vol. 80, No.5 (May, 1973), 475-500.

[22] J.W. MILNOR and J.D. STASHEFF, Characteristic Classes, Princeton Univ.
Press., 1974.

[23] I. MUNDET i RIERA, A Hitchin-Kobayashi correspondence for Kähler fi-
brations, J. Reine Angew. Math. 528 (2000), 41-80.

[24] A. NEWLANDER and L. NIRENBERG, Complex Analytic Coordinates in
Almost Complex Manifolds, Ann. of Math., 65 (1957), 391-404.

[25] A.L. ONISHCHIK and E.B. VINBERG, Lie Groups and Lie Algebras III,
Springer, 1994.

[26] J.F. PRICE, Lie Groups and Compact Groups, Cambridge Univ. Press, 1977.

[27] R.W. SHARPE, Differential Geometry, Grad. Texts in Math., Springer-
Verlag, 1997.

[28] M. SPIVAK, A Comprehensive Introduction to Differential Geometry, Publish
or Perish, 1979.

[29] N. STEENROD, The Topology of Fibre Bundles, Princeton Univ. Press, 1951.

[30] V.S. VARADARAJAN, Lie Groups, Lie Algebras, and their Representations,
Prentice-Hall, 1974.

[31] F.W. WARNER, Foundations of Differentiable Manifold and Lie Groups,
Scott, Foresman and Co., 1971.

[32] R.O. WELLS, Differential Analysis on Complex Manifolds, Prentice-Hall,
1973.

117


