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Chapter 1

Introduction

Let G be a finite group of order g. For this group we will construct two commutative
rings, which we will compare in this thesis. One of these rings, the representation
ring, is built up from the representations of G. A representation of the group G is
a finite dimensional C-vector space M together with a linear action of G, that is a
homomorphism G → GL(M). With this action M becomes a C[G]-module.

For each representation M of G and an element σ ∈ G we look at the trace
of the map M → M : m 7→ σm, which we will denote by TrM (σ) If σ and τ are
conjugate elements of G, then TrM (σ) = TrM (τ). Let G/∼ be the set of conjugacy
classes of G. We obtain a map

χM : G/∼ → C
x 7→ TrM (σ),

with σ ∈ x. This map is called the character of M . So we have a map

{representations of G} → CG/∼

M 7→ χM .

The representation ring R(G) is the subring of CG/∼ generated by χM for all
representationsM . Two representations are isomorphic if they have the same image
in CG/∼. We have two identities one for addition: χM +χN = χM⊕N and the other
for multiplication: χM · χN = χM⊗N .

We can write every C[G]-module in a unique way as a direct sum of simple
modules, that is, non-zero modules without proper submodules. The representation
ring is a free Z-module, with a basis S consisting of the isomorphism classes of the
simple modules, we have

R(G) ∼=
⊕

S∈S
Z · χS .

The number of simple modules is #(G/∼), so R(G) ⊗ C is isomorphic to CG/∼.

The other ring is the center of the group ring Z[G], which we will call Λ(G). This
ring is free with basis

{
∑

σ∈x σ : x ∈ G/∼
}

. For this ring we have an embedding
into CS :

Λ(G) → CS
∑

σ∈x

σ 7→
(

#x

dimC S
χS(x)

)

S∈S
,

where
(

#x
dimC SχS(σ)

)

is the scalar with which
∑

σ∈x σ acts on S.
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For an abelian group G these two rings are isomorphic. The ring Λ(G) is
equal to Z[G] and the representation ring can be identified with Z[Ĝ], where Ĝ
is Hom(G,C∗), the dual of G. For other groups they are not always isomorphic,
but they have some similarities, for example, they are both a free Z-module of rank
n = #(G/∼). In this thesis we will compare these two rings on several aspects. We
will compare their discriminants, their spectra and the Q-algebra they generate.

In the second chapter we compare the discriminants of these rings. The only
primes which divide the discriminant of R(G) are the primes which divide the order
of G. The same is true for the discriminant of Λ(G). For groups of order less than

512 the quotient ∆(Λ(G))
∆(R(G)) is in Z. We ask whether this is true for all groups. and

shall prove this for groups of order pk and pq, where p and q are primes and k ≤ 4.

In the third chapter we will give a description of the spectra of R(G) and Λ(G)
over A, the subring of C generated by the g-roots of unity. Since all characters
have images in A, the spectra of R(G) ⊗ A and Λ(G) ⊗ A are easier to compute
than the spectra of R(G) and Λ(G). We will get surjective maps Spec(An) →
Spec(R(G) ⊗ A) → Spec(A) and Spec(An) → Spec(Λ(G) ⊗ A) → Spec(A), such
that for all primes p of A not dividing #G there are n points of Spec(R(G) ⊗ A)
respectively Spec(Λ(G) ⊗ A) which map to p. For R(G) ⊗ A we will calculate the
spectrum and show that it is connected. For Λ(G)⊗A we will give a description of
a spectrum between Spec(An) and Spec(Λ(G) ⊗A); it remains a question whether
this spectrum is in fact equal to Spec(Λ(G) ⊗ A). The spectrum of Λ(G) is also
connected.

The rings R(G) and Λ(G) are connected by the pairing

R(G) × Λ(G) → C
(

χS ,
∑

σ∈x

σ

)

7→ χS(σ)

dimC S
S ∈ S, x ∈ G/∼ .

If we view R(G) and Λ(G) over Q, we see that they are the row span respectively
the column span of the matrix

(

1

dimC S
χS(σ)

)

S∈S,[σ]∈G/∼
.

In the last chapter we will generalize this setting and make an equivalence be-
tween two categories. For the first category the objects are matrices with entries
in C of which both the row and column span over Q are rings. For the other cat-
egory the objects are two abelian finite étale algebras, that is, finite étale algebras
for which the Galois group is abelian, with a pairing. From this we will derive
that R(G) ⊗ Q and Λ(G) ⊗ Q are abelian finite étale algebras which are Brauer
equivalent; see section 4.5 for the definition. Furthermore, we have an action of
Γ = Gal (Qab/Q) on them, which satisfies 〈γM, c〉 = γ〈M, c〉 = 〈M,γc〉 for all
M ∈ R(G) ⊗Q, c ∈ Λ(G) ⊗ Q and γ ∈ Γ, where 〈·, ·〉 is the Q-bilinear pairing

R(G) ⊗ Q × Λ(G) ⊗ Q → C
(

χS ⊗ 1,
∑

σ∈x

σ ⊗ 1

)

7→ χS(σ)

dimC S
S ∈ S, x ∈ G/∼ .
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Chapter 2

Comparison of discriminants

In this chapter we will introduce the representation ring R(G) and the center of
the group ring Λ(G) of a finite group G. Using the characters, we will give an
ring embedding into Cn, where n is the number of conjugacy classes of G. With
this embedding we can calculate the discriminant of these rings. The question we
want to answer, is whether these discriminants divide each other. We will prove for
groups of order pk or pq, with p and q prime and k ≤ 4 that this indeed the case.

2.1 The representation ring and the center of the

group ring

First we define the representation ring and center of the group ring and describe
their ring structure.

Let G be a finite group of order g.
Let X = G/∼ be the set of conjugacy classes of G.
Let S be a set of representatives for the isomorphism classes of simple C[G]-mo-

dules.
For each finitely generated C[G]-module M we have χM : G → C, the character

of M , defined by χM (σ) = Tr(M → M : m 7→ σm). If σ and τ are conjugate
elements of G, then χM (σ) = χM (τ). We define χM (x) = χM (σ) for x ∈ X , where
σ is an element of x. Furthermore, if M and N are isomorphic modules, then
χM = χN .

Let R(G) be the Grothendieck group of finitely generated C[G]-modules, that
is, the abelian group given by generators the set of isomorphism classes of finitely
generated C[G]-modules and relations {[M2] = [M1] + [M3] : 0 → M1 → M2 →
M3 → 0 a short exact sequence}. We will write [M ] for the isomorphism class
of M . One can prove that [M ] = [N ] if and only if M and N are isomorphic

The group R(G) becomes a ring with the multiplication [M ] · [N ] = [M ⊗C N ]
for M and N finitely generated C[G]-modules [4, sect. 1.5]. As a group R(G) is a
free Z-module on {[S] : S ∈ S}.

Let Λ(G) be the center of the group ring Z[G]. As a group it is a free Z-module
on {cx =

∑

σ∈x σ : x ∈ X}.

Example 2.1.1.

If G is an abelian group, then X = G and we can take S = {Sχ : χ ∈ Hom(G,C∗)},
where Sχ is C with G-action gz = χ(g)z for g ∈ G and z ∈ C.
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Now, R(G) as a group is ⊕S∈SZ[S] and for the multiplication we have [Sχ1 ] ·
[Sχ2 ] = [Sχ1 ⊗C Sχ2 ] = [Sχ1·χ2 ]. So, We obtain the ring isomorphism R(G) ∼=
Z[Hom(G,C∗)].

Furthermore, Λ(G) = Z[G]. Since G and Hom(G,C∗) are isomorphic groups,
R(G) and Λ(G) are isomorphic rings.

We will see that in general R(G) and Λ(G) are non-isomorphic. To better
understand these rings, we are going to give an explicit description of their structure.
To do this, we first define the ring homomorphism

φ : C[G] → ΠS∈SEndC(S)

σ 7→ (s 7→ σs)S∈S ,

which sends an element of C[G] to all its actions on the simple modules. From
representation theory we know that φ is an isomorphism [3, chap. XVIII, sect. 4].
So, the centers of C[G] and ΠS∈SEndC(S) are isomorphic. Using the notation Z(R)
for the center of the ring R, we have

Z(C[G]) =
⊕

x∈X

cxC and

Z(ΠS∈SEndC(S)) = ΠS∈SZ(EndC(S)) = ΠS∈SISC,

with IS the identity on S.
On the center, we can write

φ(cx) = (αSIS)S , where

αS =
1

dimC S
Tr(action of cx on S)

=
1

dimC S

∑

σ∈x

χS(σ) =
#x

dimC S
χS(x).

The isomorphism of the centers
⊕

x∈X cxC → ΠS∈SISC is given by the matrix

(

#x

dimC S
χS(x)

)

S∈S,x∈X

. (2.1)

It follows that this matrix is invertible. By restricting the isomorphism of the centers
on the left side to Λ(G), we have proved the following lemma.

Lemma 2.1.2. The map

Λ(G) → CS

cx 7→
(

#x

dimC S
χS(x)

)

S∈S
. (2.2)

is an injective ring homomorphism.

A similar description for R(G) is given by the following lemma.

Lemma 2.1.3. The map

R(G) → CX

[S] 7→ (χS(x))x∈X . (2.3)

is an injective ring homomorphism.
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Proof. First note that if M and N are isomorphic modules, then χM = χN . So this
map is independent of the choice of S.

Furthermore, for all finitely generated C[G]-modules M,N , we have χM +χN =
χM⊕N and χM ·χN = χM⊗CN , which can be seen by writing down the corresponding
matrices or looking at [4, sect. 2.1, prop, 2].

Finally, since the matrix (2.1) is invertible, the matrix (χS(x))S∈S,x∈X is invert-
ible, so the C-linear map

R(G) ⊗ C → CX

[S] 7→ (χS(x))x∈X .

is a bijection. After restricting the left side to R(G), we obtain an injection.

The matrix (χS(x))S∈S,x∈X is called the character table of G.

Example 2.1.4.

Take G = S3, the symmetric group on three elements. Then X = {(1), (1 2), (1 2 3)}
and S = M1,Mε,M2, where M1 and Mε are 1-dimensional C-modules, with the
following actions

G×M1 → M1

(σ,m) 7→ m

G×Mε → Mε

(σ,m) 7→ ε(σ)m where ε(σ) is the sign of σ.

Let S3 act on C3 = v1C ⊕ v2C ⊕ v3C by permuting the coordinates. Now, S3 acts
trivially on the vector space (v1 + v2 + v3)C. The module M2 is C3/(v1 + v2 + v3)C.

Now we can calculate the character table:

χM1(σ) = 1
χMε(σ) = ε(σ)

χM2(1) = Tr

(

1 0
0 1

)

= 2

χM2(1 2) = Tr

(

0 1
1 0

)

= 0

χM2(1 2 3) = Tr

(

0 −1
1 −1

)

= −1

So

(χS(σ))S∈S,[σ]∈X =

(1) (1 2) (1 2 3)
M1

Mε

M2





1 1 1
1 −1 1
2 0 −1





.

We obtain the following ring isomorphism

R(S3) ∼= Z(1, 1, 1) ⊕ Z(1,−1, 1)⊕ Z(2, 0,−1) ⊂ Z3.

Furthermore,

(

#x

dimC S
χS(x)

)

S∈S,x∈X

=

(1) (1 2) (1 2 3)
M1

Mε

M2





1 3 2
1 −3 2
1 0 −1





.

6



Which gives the ring isomorphism

Λ(S3) ∼= Z





1
1
1



⊕ Z





3
−3
0



⊕ Z





2
2
−1



 ⊂ Z3.

2.2 Discriminants

In this section we calculate the discriminants of R(G) and Λ(G). First the definition
of discriminant.

Definition 2.2.1. Suppose R = ⊕n
i=1Z · ωi is a ring, then the discriminant ∆(R)

is defined as the Z-ideal generated by det(TrR/Z(ωiωj))i,j=1...n.

In this section we will prove the following two propositions.

Proposition 2.2.2. Let G be a finite group of order g. The discriminant of R(G)

is generated by g#X
Q

x∈X #x .

Proposition 2.2.3. Let G be a finite group of order g. The discriminant of Λ(G)

is generated by
g#X ·Qx∈X #x

(
Q

S∈S
dimC S)2 .

For the proof of these propositions we first give some lemmas.

Lemma 2.2.4. Suppose R = ⊕n
i=1Z · ωi is a ring, then #Homring(R,C) ≤ n and

#Homring(R,C) = n if and only if R is a reduced ring, that is, a ring without
nilpotent elements.

Proof. By extending every morphism of R to R⊗ Q, we see that Homring(R,C) ∼=
Homring(R ⊗ Q,C). The ring R ⊗ Q = ⊕n

i=1Q · ωi is artinian and therefore it
is a finite product of artinian local rings [1, thm. 8.7]. Write R ⊗ Q =

∏

j Rj ,
where the Rj are artinian local rings. Let mj be the maximal ideal of Rj . From
[3, chap. X, cor. 2.2] we know that mj consists of all the nilpotent elements of Rj .
So we have Homring(R ⊗ Q,C) =

∐

j Homring(Rj ,C) ∼=
∐

j Homring(Rj/mj ,C).
Therefore

#Homring(R,C) =
∑

j

#Homring(Rj/mj ,C)

=
∑

j

# dimQ Rj/mj ≤ # dimQ Rj = n,

where the second equality come from the fact that Rj/mj is separable over Q
[3, chap. V, sect. 4]. Equality holds if and only if mj = 0 for all j, that is, R
has no nilpotent elements.

Lemma 2.2.5. Suppose R = ⊕n
i=1Z ·ωi is a reduced ring. Then ∆(R) is generated

by det(fωi)
2
i,f , where i ranges from 1 to n and f over F = Homring(R,C).

Proof. Since R is reduced, we have the following ring isomorphism

R⊗ C → CF

ω 7→ (f(ω))f .

Restricting this morphism to R and taking the trace on both sides, we obtain
TrR/Z(ω) =

∑

f f(ω) for all ω ∈ R.
So we have (TrR/Z(ωiωj))i,j = (

∑

f f(ωiωj))i,j = (f(ωi))i,f · (f(ωj))f,j .

Therefore ∆(R) is generated by det(f(ωi))i,f · det(f(ωj))f,j = det(fωi)
2
i,f .
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Lemma 2.2.6. For all x, y ∈ X we have

∑

S∈S
χS(x)∗χS(y) =

{

g/#x if x = y
0 if x 6= y

.

where χS(x)∗ is the complex conjugate of χS(x).

Proof. [4, sect. 2.5, prop. 7] �

Proof of proposition 2.2.2. The representation ring R(G) = ⊕S∈SZ[S] satisfies
#Homring(R(G),C) = #S, since we have the following distinct ring homomor-
phisms from lemma 2.1.3

R(G) → C
[S] 7→ χS(x) for all x ∈ X .

So R(G) is reduced and we can apply lemma 2.2.5. Its discriminant is generated by
det(χS(x))2S∈S,x∈X . For some number k we have

det(χS(x))2S∈S,x∈X = (−1)k det
(

(χS(x)∗)T
S∈S,x∈X(χS(x))S∈S,y∈X

)

.

Using lemma 2.2.6, the generator of ∆(R(G)) is

det
(

(χS(x)∗)T
S∈S,x∈X(χS(x))S∈S,y∈X

)

= det

(

∑

S∈S
χS(x)∗χS(y)

)

x,y∈X

= det







g
#x1

0 0

0
. . . 0

0 0 g
#xn






where the xi run over X

=
g#X

∏

x∈X #x
.

�

Proof of proposition 2.2.3. The center of the group ring Λ(G) = ⊕x∈XZ ·cx satisfies
#Homring(Λ(G),C) = #X , since we have the following distinct ring homomor-
phisms from lemma 2.1.2

Λ(G) → C

cx 7→ #x

dimC S
χS(x) for all S ∈ S.

So Λ(G) is reduced and we can apply lemma 2.2.5. The discriminant of Λ(G) is

∆(Λ(G)) = det

(

#x

dimC S
χS(x)

)2

S∈S,x∈X

.

It follows that ∆(Λ(G))
∆(R(G)) is generated by

det
(

#x
dimC SχS(σ)

)2

S∈S,x∈X

det(χS(σ))2S∈S,[σ]∈X

=

(

Πx∈X#x

ΠS∈S dimC S

)2

and ∆(Λ(G)) by
(

Πx∈X#x

ΠS∈S dimC S

)2

· g#X

∏

x∈X #x
=

g#X ·∏x∈X #x
(
∏

S∈S dimC S
)2 .

�
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Example 2.2.7.

Take G = S3, then ∆(R(G)) =
(

63

1·2·3

)

= (36) and ∆(Λ(G))
∆(R(G)) =

(

1·2·3
1·1·2

)2
= (9), so

∆(Λ(G)) = (324).
We see that Λ(G) and R(G) are not isomorphic as rings, since they have different

discriminants. The quotient ∆(Λ(G))
∆(R(G)) is an integer ideal and we can ask ourselves

whether this is always the case.

2.3 Divisibility of discriminants

To ease the notation we will use ∆(R) = r for “∆(R) is generated by r”.
For every g ∈ N we consider the following statement

Statement 2.3.1. For each finite group G of order g, we have
∆Λ(G)/Z

∆R(G)/Z

∈ Z.

In this section we will prove the following theorems

Theorem 2.3.2. Let p be a prime. If g = pk with k ≤ 4 then statement 2.3.1 is
true.

Theorem 2.3.3. Let p, q be primes. If g = pq then statement 2.3.1 is true.

To show this we will prove the following statement, which is a sufficient condition
for statement 2.3.1 to be true, for g = pk and g = pq.

Statement 2.3.4. For all c1, . . . cs, d1, . . . dt ∈ N such that

1. s = t,

2.
∑

ci =
∑

d2
j = g,

3. ci | g for all i,

4. dj | g for all j,

5. #{i | ci = 1} | g,

6. g
#{i|ci=1} is not prime,

7. #{i | di = 1} | g,

we have
Q

i ci
Q

j dj
∈ Z

Theorem 2.3.5. For every g ∈ N statement 2.3.4 implies statement 2.3.1.

For the proof we need the following lemma.

Lemma 2.3.6. Let G be a finite group and Z(G) its center. The index [G : Z(G)]
is not prime.

Proof. If [G : Z(G)] is prime, then G/Z(G) is cyclic. We will prove that if G/Z(G)
is cyclic, then G/Z(G) is trivial.

Let σ ∈ G such that σ generates G/Z(G). Let h ∈ G be an element, then we can
write h = σkh′ for some k ∈ N and h′ ∈ Z(G). Now, σh = σσkh′ = σkh′σ = hσ, so
σ ∈ Z(G) and G/Z(G) is trivial.

Proof of theorem 2.3.5. Let G be a group of order g. Denote by ci the number of
elements of the i-th conjugacy class of G and by dj the C-dimension of the j-th
simple C[G]-module.

Then we have

9



1. s = #X = #S = t,

2.
∑

ci =
∑

x∈X #x = g and

g = dimC C[G] = dimC ΠS∈SEndC(S) =
∑

S∈S dim2
C S =

∑

d2
j ,

3. ci | g, since for the corresponding x ∈ X we have #x | g,

4. dj | g, since for the corresponding S ∈ S we have dimC S | g
[3, chap. XVIII, cor. 4.8],

5. #{i | ci = 1} = #Z(G) | g, where Z(G) is the center of G,

6. g
#{i|ci=1} = g

#Z(G) is not prime, see lemma 2.3.6,

7. #{i | di = 1} = #Gab | g, where Gab is the abelianized G.

According to statement 2.3.4, we have
Q

i ci
Q

j dj
∈ Z. Therefore

∆Λ(G)/Z

∆R(G)/Z

=

(

∏

i ci
∏

j dj

)2

∈ Z.

�

We shall now prove theorem 2.3.2 and 2.3.3 by proving statement 2.3.4 for g = pk

and g = pq.

Theorem 2.3.7. Let p be a prime. If g = pk with k ≤ 4 then statement 2.3.4 is
true.

Proof. Let Cm = #{i | ci = m} and Dm = #{i | di = m} for all m ∈ N.
Suppose statement 2.3.4 is not true for g = pk, then

1.
∑

l Cpl =
∑

lDpl ,

2. pk =
∑

l Cpl · pl,

3. pk =
∑

lDpl · p2l,

4. C1 = plc with lc ≤ k and lc 6= k − 1,

5. D1 = pld with ld ≤ k,

6.
∑

l l · Cpl <
∑

l l ·Dpl .

If lc or ld is equal to k, then both of them are, because of equation (1), (2)
and (3), then inequality (6) becomes an equality, contradiction. So lc ≤ k − 2 and
ld ≤ k − 1. Therefore k ≥ lc + 2 ≥ 2.

Taking equation (2) modulo p, we get C1 = 0 mod p, so lc ≥ 1. Taking equa-
tion (3) modulo p2, we get D1 = 0 mod p2, so ld ≥ 2. Therefore k ≥ lc + 2 ≥ 3.

When we subtract equation (1) from inequality (6), we get

k
∑

l=2

(l − 1) · Cpl < plc − pld +

b k−1
2 c
∑

l=2

(l − 1) ·Dpl . (2.4)

The left hand side of 2.4 is non-negative, so the right hand side needs to be greater
than 0. For k ≤ 4 the right hand side is equal to plc − pld , so we need lc > ld, so
2 ≤ ld < lc ≤ k− 2 ≤ 2. This is a contradiction, so there are no solutions for k ≤ 4.

10



Theorem 2.3.8. Let p, q be primes. If g = pq then statement 2.3.4 is true.

Proof. Let Cm = #{i | ci = m} and Dm = #{i | di = m} for all m ∈ N.
If p = q, then 2.3.7 tells us this theorem is true, so without loss of generality we

can assume p < q.
Suppose statement 2.3.4 is not true for g = pq, then

1. C1 + Cp + Cq = D1 +Dp +Dq,

2. pq = C1 + pCp + qCq ,

3. pq = D1 + p2Dp + q2Dq ,

4. C1 | pq and C1 6= p, q,

5. D1 | pq,
6. pDpqDq - pCpqCq , which means Dp > Cp or Dq > Cq .

If C1 or D1 is equal to pq, then both of them are, because of equation (1), (2)
and (3) then inequality (6) becomes an equality, so C1 = 1 and D1 6= pq.

Since pq < q2 we have Dq = 0, because of equation (3), and therefore Dp > Cp.
Taking equation (3) modulo p, we get D1 = 0 mod p, so D1 = p and Dp = q−1

p .
We are left with the following equations

Cp + Cq = p+
q − 1

p
− 1

pCp + qCq = pq − 1.

For which the solution is Cp = q−1
p = Dp and Cq = p− 1.

We needed Dp > Cp, so there are no solutions.

For g = 12 is statement 2.3.4 not true. We can take (c1 . . . c6) = (1, 1, 1, 3, 3, 3)

and (d1 . . . d6) = (1, 1, 1, 1, 2, 2). Then all the conditions are satisfied, but
Q

i ci
Q

j dj
=

33

22 6∈ Z. Through exhaustive search, we can prove that this is the only counterex-
ample for g = 12 for statement 2.3.4. Statement 2.3.4 is also false for g = 18 and
for g = 35. The following tables give all counterexamples for g = 18 and for g = 35,
where we use the same notation as in the proof of theorem 2.3.8.

g = 18
C1 C2 C3 C6 C9 D1 D2 D3

1 1 3 1 0 2 4 0
2 2 1 0 1 2 4 0
2 8 0 0 0 9 0 1
3 0 1 2 0 2 4 0
3 0 2 0 1 2 4 0

g = 35

C1 C3 C9 C27 C81 D1 D3 D9

27 0 0 8 0 9 26 0
27 0 3 4 1 9 26 0
27 0 6 0 2 9 26 0
27 3 2 1 2 9 26 0

A computer program has checked statement 2.3.1 for g < 512, so for the above
examples, the ci and dj are not the conjugacy class sizes respectively dimensions of
simple modules of existing groups.

The way to improve this method would be to give more or better conditions for
the ci and dj in statement 2.3.4.
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Chapter 3

Comparison of spectra

In this chapter we are going to calculate the spectra of R(G) and Λ(G). We view
the rings over the subring of C generated by the g-th roots of unity, with g the
order of G. We will this ring A. Since all characters of representations of G have
images in A, the spectra of R(G) ⊗ A and Λ(G) ⊗ A are easier to compute than
the spectra of R(G) and Λ(G). After some general notions about spectra we will
calculate the spectrum of R(G)⊗A. For the spectrum of Λ(G)⊗A we will give an
‘approximation’.

3.1 Spectra

First some general theory about spectra.

Definition 3.1.1. Let R be a commutative ring. The spectrum of R, denoted by
Spec(R), is the topological space consisting of all prime ideals of R, with topology
defined by the closed sets C(I) = {p prime : p ⊃ I}, for each ideal I of R. This
topology is called the Zariski topology.

Proposition 3.1.2. If
φ : R1 → R2

is a ring homomorphism, then we have an induced continuous map

φ∗ : Spec(R2) → Spec(R1)

p 7→ φ−1(p).

Proof. We need to prove that φ−1(p) is a prime ideal of R1. The map

φ′ : R1 → R2 → R2/p

gives to following injection into the domain R2/p

R1/ ker(φ′) ↪→ R2/p.

So R1/ ker(φ′) is also a domain and ker(φ′) = φ−1(p) is a prime ideal.
Furthermore, to see that φ∗ is continuous, let Vf = {p ∈ Spec(R1) : f 6∈ p}

for every element f ∈ R1. These sets are open in Spec(R1), since V c
f = C(fR),

where V c is the complement of the set V . They also form a basis for the topology
of Spec(R1), since C(I)c =

⋃

f∈I Vf for every ideal I . Let Wg = {p ∈ Spec(R2) :
g 6∈ p} for every element g ∈ R2.

Now we have

φ−1
∗ (Vf ) = {p ∈ Spec(R2) : φ∗(p) ∈ Vf}
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= {p : f 6∈ φ−1(p)}
= {p : φ−1φf 6∈ φ−1(p)}
= {p : φf 6∈ (p)} = Wφ(f).

So, φ∗ is continuous.

Proposition 3.1.3. If R1 and R2 are commutative rings, then Spec(R1 × R2) =
Spec(R1)

∐

Spec(R2).

Proof. If p1 is a prime ideal of R1, then (R1 ×R2)/(p1 ×R2) = R1/p1 is a domain.
So (p1 ×R2) is a prime ideal of (R1 × R2). In the same way, if p2 is a prime ideal
of R2, then R1 × (p2) is a prime ideal of (R1 ×R2).

If p is a prime ideal of R1×R2, then (R1×R2)/p is a domain. In this domain we
have (1, 0) · (0, 1) = (0, 0), so (1, 0) = (0, 0) or (0, 1) = (0, 0). If (1, 0) = (0, 0), then
R1×0 ⊂ p, so p = R1×p2, where p2 is a prime ideal of R2. Since (R1×R2)/(R1×p2)
is a domain, p2 is a prime ideal of R2. In the same way if (0, 1) = (0, 0), then
p = p1 × R2, where p1 is a prime ideal of R1.

Definition 3.1.4. Let R be a commutative ring. Let p0 ( p1 ( . . . ( pk be a chain
of prime ideals of R. We call k the length of such a chain. Define the dimension
of R to be the maximal length of all such chains.

Now, let A be an order in a number field and let B be a ring such that we have a
finite set V and injective A-algebra morphisms A ↪→ B ↪→ AV , such that the index
[AV : B] is finite.

Since each non-zero prime ideal of A is maximal, the dimension of A is 1. We can
think of Spec(A) as a line. Furthermore, by proposition 3.1.3, we have Spec(AV ) =
V × Spec(A), so we can think of Spec(AV ) as #V lines.

We want to determine Spec(B). We have ring homomorphisms A → B → AV ,
so according to proposition 3.1.2, we have continuous maps Spec(AV ) → Spec(B) →
Spec(A). Let π be the map Spec(A)V → Spec(B).

Proposition 3.1.5. The map Spec(AV ) → Spec(B) is surjective.

Proof. Examine the extension

A ⊂ AV

a 7→ (a, a, . . . , a).

Let α = (a1, a2, . . . , an) ∈ AV and f = Πi(X − ai) ∈ A[X ], then f(α) = 0. So
A ⊂ AV is integral. So AV is also integral over B. According to the going-up-
theorem [1, thm. 5.10] Spec(AV ) → Spec(B) is surjective.

We now know that Spec(B) is a quotient set of Spec(AV ). If two elements
(v1, p1), (v2, p2) ∈ Spec(AV ) are in the same equivalence class, then p1 = p2.

The following proposition tells us for which primes p the equivalence class (v, p)
consists of one point, for all v ∈ V .

Proposition 3.1.6. Let p be a non-zero prime ideal of A and p the characteristic
of A/p. Suppose p - [AV : B] = t, then B is totally split at p, which means that the
equivalence class (v, p) consists of one point, for all v ∈ V .

Proof. We have tAV ⊂ B ⊂ AV and since localisation is exact, we have tAV
p ⊂

Bp ⊂ AV
p . Now, since p - t, we have t ∈ (AV

p )∗, so Bp = AV
p . Therefore we have the

following ring isomorphisms

Bp ⊗ (Ap/pp) = AV
p ⊗ (Ap/pp).
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So, we have

B/p = Bp/pp = Bp ⊗ (Ap/pp) = AV
p ⊗ (Ap/pp) = (Ap/pp)

V = (A/p)V .

Therefore is the number of primes of B which map to the prime p of A equal to #V .

The following proposition gives us a way of computing Spec(B) in case we have
an explicit description.

Proposition 3.1.7. Suppose B can be written as B =
⊕#V

i=1 ci · A, with ci =
(cvi)v ∈ AV . The points (v1, p), (v2, p) ∈ Spec(AV ) have the same image in Spec(B)
if and only if we have cv1i ≡ cv2i mod p for all i.

Proof. Suppose cv1i ≡ cv2i mod p for all i. Let b ∈ π(v1, p) be an element, we can
write b =

∑

i aici = (
∑

i aicvi)v with ai ∈ A and
∑

i aicv1i ∈ p. Since
∑

i aicv1i ≡
∑

i aicv2i mod p, we have
∑

i aicv2i ∈ p. Therefore b ∈ π(v2, p) and π(v1, p) =
π(v2, p).

On the other hand, if π(v1, p) = π(v2, p), then ci − cv1i · 1 = (cvi − cv1i)v ∈
π(v1, p) = π(v2, p) for all i, so cv2i − cv1i ∈ p for all i.

Example 3.1.8.

Let G be S3, the symmetric group on three elements. From example 2.1.4 we have
the following ring isomorphism

Λ(G) ∼= Z





1
1
1



⊕ Z





3
−3
0



⊕ Z





2
2
−1



 ⊂ Z3.

The points (M1, p) and (Mε, p) are in the same equivalence class if and only if
(1, 3, 2) = (1,−3, 2) in (Z/pZ)3, that is, when p is 2 or 3.

The points (M1, p) and (M2, p) are in the same equivalence class if and only if
(1, 3, 2) = (1, 0,−1) in (Z/pZ)3, that is, when p is 3.

The points (Mε, p) and (M2, p) are in the same equivalence class if and only if
(1,−3, 2) = (1, 0,−1) in (Z/pZ)3, that is, when p is 3.

3.2 The spectrum of the representation ring

Let G be a finite group of order g and A the subring of C generated by the g-th
roots of unity.

First we calculate the spectrum of R(G)⊗A. We are going to embed R(G)⊗A
in AX , for this we use the following lemma.

Lemma 3.2.1. Let M be a representation of G and σ ∈ G, then χM (σ) ∈ A.

Proof. We have χM (σ) = Tr(M →M : m 7→ σm), which is the sum of the eigenval-
ues counted with their multiplicity. Since (M →M : m 7→ σm) has order a divisor
of g, all its eigenvalues have order a divisor of g. So all eigenvalues are a g-th root
of unity.

So, we can embed R(G) ⊗A in AX by the injective A-algebra morphisms

A→ R(G) ⊗A → AX

a 7→ 1 ⊗ a
[M ] ⊗ 1 7→ (χM (x))x∈X .
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So we have continuous maps

Spec(AX ) = X × Spec(A)
π→ Spec(R(G) ⊗A) → Spec(A)

and Spec(R(G) ⊗ A) is a quotient space of Spec(AX ). We want to know which
equivalence classes of Spec(R(G) ⊗A) consist of more than one point.

First a lemma which restricts the primes we need to look at.

Lemma 3.2.2. If a prime p divides [AX : R(G) ⊗A], then it divides g = #G.

Proof. For this proof we use the generalized notion of discriminant from a book
by Serre, which defines the discriminant and index for lattices over a Dedekind
domain [5, chap. III, sect. 2]. We will denote the discriminant of a lattice L over
the Dedekind domain A as ∆A(L) and the index of lattice L and L′ as [L : L′]A.

From [5, chap. III, sect. 2, prop. 5] we have the following formula for lattices
L′ ⊂ L over A

∆A(L′) = ∆A(L)[L : L′]2A. (3.1)

Using this formula for L = AX and L′ = R(G) ⊗ A and proposition 2.2.2, we
obtain

[AX : R(G) ⊗A]2 = [AX : R(G) ⊗A]2A =
∆A(R(G) ⊗A)

∆A(AX )
=

(

g#X

∏

x∈X #x

)

.

So, according to proposition 3.1.6, if a prime p of A does not divide the order of
G, then the equivalence classes of Spec(R(G) ⊗A) above p consist of one element.

Next, we will calculate Spec(R(G) ⊗A) in the same way as [4, sect. 11.4].

Lemma 3.2.3. Let p be a prime number and G a finite group, then each x ∈ G can
be written in a unique way as x = xuxr where xu is a p-unipotent element, that is,
it has order a power of p and xr is a p-regular element, that is, it has order prime
to p.

Proof. To see that there is a pair xu and xr, decompose the cyclic subgroup gener-
ated by x as a direct product H1 ×H2 of two subgroups, where the order of H1 is
a power of p and the order of H2 is prime to p.

To see this is the only way, suppose x = xuxr , with xu a p-unipotent element
and xr a p-regular element. Let H1 be the subgroup generated by x and let H2 be
the subgroup generated by xu and xr . Both H1 and H2 are cyclic of order ord(x).
Since x ∈ H2, we have H1 = H2, so xu and xr are powers of x.

The element xu (respectively xr) is called the p-component (respectively the
p′-component) of x. Note that xu and xr commute.

Lemma 3.2.4. Let p be a prime of A with char(A/p) = p, let χ be the image of an
element of R(G) ⊗A in AX , let x ∈ G, and let xr be the p′-component of x. Then
χ(x) ≡ χ(xr) mod p.

Proof. The character χ is also the character of an element of R(H) ⊗ A for every
subgroup H of G. We will prove the lemma using the subgroup generated by x,
which we will call H . Now χ = χ|H =

∑

i aiχi, with ai ∈ A and χi running over
the distinct characters of degree 1 of H . If q is a sufficiently large power of the
norm of p, we have xq = xq

r and thus χi(x)
q = χi(xr)

q for all i. Therefore χ(x)q =
(
∑

i aiχi(x))
q ≡ ∑

i a
q
iχi(x)

q =
∑

i a
q
iχi(xr)

q ≡ (
∑

i aiχi(xr))
q = χ(xr)

q mod p,
hence χ(x) = χ(xr) mod p, since aq ≡ a mod p for all a ∈ A.
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Lemma 3.2.5. Let x be a p′-element of G, that is, an element of order coprime
to p. Then there is an element M ∈ R(G) ⊗ A for which the character has the
following properties:

χ(x) 6≡ 0 mod p
χ(s) = 0 for each p′-element of G which is not conjugate to x.

Proof. [4, sect. 10.3, lemma 8]

Theorem 3.2.6. Let p be a prime ideal of A and p the characteristic of A/p,
furthermore let c1 and c2 be conjugacy classes of G. Let c′1 (respectively c′2) be the
class consisting of the p′-components of the elements of c1 (respectively c2). Let π
be that map X × Spec(A) → Spec(R(G) ⊗ A) defined previously. Then we have
π(c1, p) = π(c2, p) if and only if c′1 = c′2.

Proof. According to proposition 3.1.7, the two primes π(c1, p) and π(c2, p) are the
same if and only if for all simple C[G]-modules S we have χS(c1) = χS(c2) mod p.

If c′1 = c′2, lemma 3.2.4 shows that for every C[G]-module M we have TrM (c1) =
TrM (c′1) = TrM (c′2) = TrM (c2) mod p, hence π(c1, p) = π(c2, p).

If c′1 6= c′2, then lemma 3.2.5 gives an element M ∈ R(G) ⊗ A, such that its
character χ satisfies

χ(c′1) 6≡ 0 mod p
χ(c′2) = 0,

which implies there is a simple module S for which χS(c1) 6= χS(c2) mod p, hence
π(c1, p) 6= π(c2, p).

Example 3.2.7.

Let G be S3, the symmetric group on three elements, then #G = 6, so according
to lemma 3.2.2 it suffices to look at primes of residue-characteristic 2 or 3. In the
following table are the p′-components for p equal 2 or 3 for all conjugacy classes
of G.

conjugacy class (1) (1 2) (1 2 3)

p = 2 (1) (1) (1 2 3)

p = 3 (1) (1 2) (1)

So, for all p of A of residue-characteristic 2, we have π((1), p) = π((1 2), p) and
for all p of A of residue-characteristic 3, we have π((1), p) = π((1 2 3), p).

We could also have calculated this spectrum using proposition 3.1.7. Since all
the characters of S3 have image in Z3, we would have gotten the same result for
R(S3). So the spectrum of R(S3) looks like
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32

(12)

(1)

(123)

The spectrum of R(S3 ⊗ A) looks the same, with the exception that there are
more primes of residue-characteristic 2 or 3.

The spectrum we obtained in the previous example is connected. The following
theorem tells us this is the case for all finite groups.

Theorem 3.2.8. The spectrum Spec(R(G)⊗A) is connected in the Zariski topology.

Proof. Let x be an element of G and let pk1
1 p

k2
2 . . . pkl

l be the prime decomposition
of the order of x.

The element x can be written as x = xuxr, where xu has order a power of p
and xr has order prime to p. Using this for every prime, we get x = xp1xp2 . . . xpl

,

where xpi has order pki

i .
Since x and xp2 . . . xpl

have the same p′-components, theorem 3.2.6 tells us that
(x, p1) and (xp2 . . . xpl

, p1) are in the same equivalence class of R(G) ⊗A.
Furthermore π({y}×Spec(A)) is connected for all y ∈ X , since it is isomorphic to

Spec(A). So, continuing in the same way, we obtain that π(x, Spec(A)) is connected
to π(1, Spec(A)). So Spec(R(G) ⊗A) is connected.

Corollary 3.2.9. The spectrum Spec(R(G)) is connected in the Zariski topology.

Proof. From the ring homomorphism R(G) → R(G) ⊗ A we obtain a surjective
continuous map Spec(R(G) ⊗ A) → Spec(R(G)). The spectrum Spec(R(G)) is the
image of a connected space under a continuous map and is therefore connected.

3.3 The spectrum of the center of the group ring

For the spectrum of Λ(G)⊗A we will give a criterion for when an equivalence class
certainly consists of more than one element.

We want to embed Λ(G) ⊗A in AS , for that we will use the following lemma.

Lemma 3.3.1. Let x ∈ X be a conjugacy class of G, then #x
dimC SχS(x) ∈ A.

Proof. From lemma 3.2.1 we know that χS(x) ∈ A. Furthermore, the characteristic
polynomial of the matrix of the map

Λ(G) → Λ(G)
c 7→ cxc.

is monic and cx is a zero of it and therefore is cx integral over Z. Since #x
dimC SχS(x) is

the scalar by which cx acts on S, we have #x
dimC SχS(x) integral over Z and therefore

it is an element of A.
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So, we can embed Λ(G) ⊗A in AS with the A-algebra homomorphisms

A→ Λ(G) ⊗A → AS

a 7→ 1 ⊗ a

cx ⊗ 1 7→
(

#x

dimC S
χS(x)

)

S∈S
.

So we have continuous maps

Spec(AS) = S × Spec(A)
π→ Spec(Λ(G) ⊗ A) → Spec(A).

We want to know for which elements of Spec(AS) we have π(M1, p) = π(M2, p).
First a lemma which restricts the primes we need to look at.

Lemma 3.3.2. If a prime p divides [AX : Λ(G) ⊗A], then it divides g = #G.

Proof. Using formula 3.1 for L = AX and L′ = Λ(G)⊗A, and proposition 2.2.3 we
obtain

[AX : Λ(G) ⊗A]2 =
∆A(Λ(G) ⊗A)

∆A(AX )
=

g#X ·∏x∈X #x
(
∏

S∈S dimC S
)2 .

So, according to proposition 3.1.6, if a prime p doesn’t divide the order of G,
then the equivalence classes of Spec(Λ(G) ⊗A) above p consist of one element.

Theorem 3.3.3. Let M and N be two A[G]-modules, such that M ⊗A C and
N ⊗A C are simple C[G]-modules and let p be a non-zero prime of A. Define
M̄ = M ⊗A A/pA and N̄ = N ⊗A A/pA. If M̄ and N̄ have a common non-trivial
A/pA-subquotient then π(M, p) = π(N, p).

Proof. Each element c ∈ Λ(G) ⊗ A acts as a scalar of A on M and N , therefore c
will act as a scalar of A/pA on M̄ and N̄ , say cM and cN respectively.

According to proposition 3.1.7, the two primes π(M, p) and π(N, p) are the same
if for all c ∈ Λ(G) ⊗A we have cM = cN .

If M̄ and N̄ have a non-trivial common subquotient then each c acts as a scalar
on that subquotient, say cS . We get cM = cS = cN .

Note: if M̄ and N̄ have a non-trivial common subquotient, then they certainly
have a common simple subquotient, so it suffices to look at simple subquotients of
M̄ and N̄ .

It is proven in [4, section 15.2] that for each simple C[G]-module MC we can find
an A[G]-module MA, such that MA ⊗ C = MC and that its simple subquotients do
not depend on the choice of MA. So it is sufficient to construct one A[G]-module
for each simple C[G]-module and compare only those modules.

Example 3.3.4.

Again, let G be S3, then #G = 6, so according to lemma 3.3.2 it suffices to look at
primes of residue-characteristic 2 or 3.

Recall from section 2.1 the three simple modules M1,Mε and M2. The A[G]-mo-
dules we will use are the module generated by 1 for M1 and Mε. For M2 we will
use the A[G]-module generated by v1 and v2.

For primes of residue-characteristic 2 the modules M̄1 and M̄ε are equal, since
(1, 1, 1) = (1,−1, 1) in (Z/2Z)3. So they certainly have a common non-trivial sub-
quotient.

The module M̄2 does not have a common non-trivial subquotient with M̄1 or
M̄ε, since if it would, then there would be a submodule of dimension 1 for which
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(1 2 3) acts trivially. There is no such submodule, since M̄2 consists of four elements,
0,v1, v2 and v1 + v2, and (1 2 3) acts as a cyclic permutation of v1, v2 and v1 + v2.

For primes of residue-characteristic 3, let N be the submodule of M̄2 spanned by
v1 +2v2, then G acts as the sign on N , since (1 2) ·v1 +2v2 = v2 +2v1 = −(v1 +2v2)
and (1 2 3) · v1 + 2v2 = v2 + 2v3 = v2 + 2(−v1 − v2) = v1 + 2v2. So M̄2 and M̄ε have
a common non-trivial subquotient.

Furthermore, G acts on M̄2/N trivially, since we have (1 2) · v1N = v2N =
(v2 + v1 + 2v2)N = v1N and (1 2 3) · v1N = v2N = v1N . So M̄2 and M̄1 also have
a common non-trivial subquotient.

Note that M̄1 and M̄ε do not have a common non-trivial subquotient, since
(1, 1, 1) 6= (1,−1, 1) in (Z/3Z)3. Still, for primes of residue-characteristic 3, we have
π(M1p) = π(M2, p) = π(Mε, p).

Apparently, the relation ‘M̄ and N̄ have a common non-trivial subquotient’ is
not transitive, so we need to take the transitive closure to get an quotient space of
Spec(AS). This space is an approximation of Spec(Λ(G) ⊗A).

Let us call the spectrum we just calculated Spec(B′). From theorem 3.3.3 we
know we have surjective continuous maps Spec(AS) � Spec(B′) � Spec(Λ(S3)⊗A).

In fact we have Spec(B′) = Spec(Λ(S3) ⊗ A), since we could also have cal-
culated the spectrum of Λ(S3) ⊗ A using proposition 3.1.7. Since we know from
example 2.1.4 that Λ(S3)⊗A has image in Z3, we would have gotten the same result
for Spec(Λ(S3)), which we calculated in example 3.1.8.

Both Spec(Λ(S3)) and Spec(B′) look like

M1

M2

M

32

There are more groups for which theorem 3.3.3 gives not only a necessary, but
also sufficient condition, but it is not known to the author whether this is true for
all groups.

The example tells us that Spec(Λ(S3)) is connected. This is the case for all
groups as we shall see from theorem 3.3.8. First some lemmas we need to prove this
theorem.

Definition 3.3.5. A ring R is local if is has a unique maximal left ideal and a
unique maximal right ideal and these two ideals coincide [6, thm. 1.3.4].

Lemma 3.3.6. Let H be a group of order pk with p a prime. The ring Fp[H ] is a
local ring.

Proof. Let m be a maximal left ideal of Fp[H ]. Let I be the ideal generated by
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{h− 1 : h ∈ H}; it is the kernel of the map

Fp[H ] → Fp
∑

h

ahh 7→
∑

h

ah,

so I is a maximal ideal. Let m be a maximal left ideal of Fp[H ]. Now, M = Fp[H ]/m
is a simple left Fp[H ]-module. From [3, chap. I, thm 6.5] we know that the center

ofH contains a non-trivial element c. Since cp
k

= 1, for some k, we have (c−1)pk

= 0
in Fp[H ]. So the left module automorphism

φ : M → M
m 7→ (c− 1)m

is not surjective. Therefore is the image of φ equal to 0. So c acts trivially on M
and M is a simple Fp[H/〈c〉]-module, where 〈c〉 is the subgroup of H generated
by c.

By induction to the order of H , we get that M is a simple Fp-module and
I = 〈h− 1 : h ∈ H〉 ⊂ m. Since I is maximal, we have I = m.

In the same way we prove that I is the unique maximal right ideal and therefore
is Fp[H ] a local ring.

Lemma 3.3.7. Let G be a finite group and let P be a finitely generated projective
Z[G]-module, then #G divides the Z-rank of P .

Proof. Let p be a prime dividing the order of G. Let H be the Sylow-p-group of G,
then P is also a Z[H ]-module.

The module P ⊗ Fp is a projective Fp[H ]-module. From the above lemma we
know that Fp[H ] is a local ring, so P is a free module [6, th. 1.3.11] and the rank
of P is a multiple of #H . Since this is true for all primes p we have #G dividing
the Z-rank of P .

Theorem 3.3.8. Let G be a finite group, then Spec(Λ(G)) is connected in the
Zariski topology.

Proof. Suppose Spec(Λ(G)) is not connected, then we can write Λ(G) = L1 ⊕ L2,
with L1 and L2 proper quotient rings of Λ(G). Let e be the unit of L1, then we can
write Λ(G) = e · Λ(G) ⊕ (1 − e)Λ(G), with e not 0 or 1.

The module e ·Z[G] is a finitely generated projective Z[G]-module of rank which
does not divide #G. This is a contradiction with the previous lemma.
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Chapter 4

Comparison of Q-algebras

In this final chapter we view our rings over Q. We will give an equivalence between
two categories. The first will generalize the idea of a character table, the second
one will consist of a pairing between two abelian finite étale algebras. From this
equivalence we will see that R(G) ⊗ Q and Λ(G) ⊗ Q are abelian finite étale Q-
algebras which are Brauer equivalent. In this chapter we will use several notions
from category theory. For definitions, see [2, chap. 2].

4.1 Q-algebras

We are going to examine the rings R(G) ⊗ Q and Λ(G) ⊗ Q. By tensoring the
homomorphism 2.3 with Q, we obtain the following Q-algebra isomorphism

R(G) ⊗ Q
∼→ Q-span rows (TrS(σ))S,σ ⊂ CX .

Since we are taking the Q-span of the rows, we can multiply a row with a
number from Q, without changing the algebra, so we may replace (TrS(σ))S,σ by
(

TrS(σ)
dimC S

)

S,σ
to obtain

R(G) ⊗ Q
∼→ Q-span rows

(

TrS(σ)

dimC S

)

S,σ

⊂ CX .

In the same way, by tensoring the homomorphism 2.2 with Q, we obtain the
Q-algebra isomorphism

Λ(G) ⊗ Q
∼→ Q-span columns

(

TrS(σ)
#[σ]

dim S

)

S,σ

⊂ CS .

We can replace
(

TrS(σ) #[σ]
dimS

)

S,σ
by
(

TrS(σ)
dimC S

)

S,σ
to obtain

Λ(G) ⊗ Q
∼→ Q-span columns

(

TrS(σ)

dimS

)

S,σ

⊂ CS .

So the C-valued matrix
(

TrS(σ)
dim S

)

S,σ
has the property that both the Q-span of

the rows and the Q-span of the columns is a ring. We are going the study this kind
of matrices and see what we can tell about the Q-spans of rows and columns.
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4.2 Finite abelian étale algebras

First we need some new terminology and theory about abelian finite étale algebras.
Let K be a field, K̄ an algebraic closure of K. Let Ksep be the maximal

separable extension of K within K̄ and Kab ⊂ Ksep the maximal abelian extension
of K within Ksep. Let Γ and Γab be the Galois groups of Ksep/K and Kab/K
respectively.

A finite étaleK-algebra is a finite product
∏

iEi where the Ei are finite separable
field extensions of K. An abelian finite étale K-algebra is a finite étale K-algebra
where the field extensions are abelian over K.

Lemma 4.2.1. Let E be a abelian finite étale K-algebra.

1. There is a unique Γab-action on the set E, such that every K-algebra homo-
morphism E → Kab is Γab-equivariant.

2. For this Γab-action the map

E → E
e 7→ γe

is a K-algebra homomorphism for all γ ∈ Γab.

Proof. Let Ei be a finite abelian extension of K. Let σ1 : Ei → Kab be a K-algebra
homomorphism.

1. The only action of Γab on Ei which satisfies the requirements is

Γab ×Ei → Ei

(γ, e) 7→ σ−1
1 γσ1e.

We want to prove that this action is independent of the choice of σ1. Let
σ2 : Ei → Kab be another K-algebra homomorphism. There is a γ̃ ∈ Γab such
that σ2 = γ̃σ1. We now have

Γab ×Ei → Ei

(γ, e) 7→ σ−1
2 γσ2e

= σ−1
1 γ̃−1γγ̃σ1e

= σ−1
1 γγ̃−1γ̃σ1e

= σ−1
1 γσ1e.

So the action on Ei is independent of the choice of σ.

Since every K-algebra homomorphism E → Kab is composed of a projection
E → Ei and a K-algebra homomorphism Ei → Kab, the only action of Γab

on E which satisfies the requirements is the componentwise action on the Ei.

2. A projection E → Ei and the map

Γab ×Ei → Ei

(γ, e) 7→ σ−1
1 γσ1e

are K-algebra homomorphisms.
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4.3 Two categories

In this section we define two categories.
Let L be a field, such that Kab ∈ L.
Define the category C in the following way. The objects of C are triples (S, T,A)

with S and T finite sets and A = [ast]s∈S,t∈T ∈ Map(S × T, L) an invertible ma-

trix such that
∑

sK(s-th row of A) ⊂ LT and
∑

tK(t-th column of A) ⊂ LS are
subrings.

A morphism (S, T,A) → (S′, T ′, A′) consists of a map φS : S′ → S and a map
φT : T → T ′ such that aφS(s′)t = a′s′φT (t) for all s′ ∈ S′, t ∈ T .

It usually easier to think of a C-morphism as a diagram.

S × T L

S′ × T ′ L

φS φT idL

A

A′

Example 4.3.1.

We take K = Q. Let a and b be non-zero natural numbers. Take for S and T the
set {1, 2, 3, 4, 5, 6, 7} and

A =



















1 1 1 1 0 0 0√
a

√
a −√

a −√
a 1 0 0

−√
a −√

a
√
a

√
a 1 0 0√

b −
√
b

√
b −

√
b 0 1 0

−
√
b

√
b −

√
b

√
b 0 1 0√

ab −
√
ab −

√
ab

√
ab 0 0 1

−
√
ab

√
ab

√
ab −

√
ab 0 0 1



















.

Then (S, T,A) is an element of C. To see this we need to show:

1. the element (1, 1, 1, 1, 1, 1, 1) is in the row space.

2. the element (1, 1, 1, 1, 1, 1, 1) is in the column space.

3. if we multiply two rows we get a Q-linear combination of the rows.

4. if we multiply two columns we get a Q-linear combination of the columns.

5. the matrix A is invertible.

Let ri be the i-th row of A and cj the j-th column.

1. We have: (1, 1, 1, 1, 1, 1, 1) = r1 + 1
2 (r2 + r3 + r4 + r5 + r6 + r7) .

2. We have: (1, 1, 1, 1, 1, 1, 1) = 1
4 (c1 + c2 + c3 + c4) + c5 + c6 + c7.

3. There are several types of rows. Below is for every combination of types one
example.

r1 · r1 = r1,

r1 · r2 =
1

2
(r2 − r3) ,
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r2 · r2 = ar1 +
1

2
(r2 + r3) ,

r2 · r6 = ar4 −
1

2
(r4 + r5) .

4. There are several types of columns. Below is for every combination of types
one example.

c1 · c2 =
1

4
(c1 + c2 + c3 + c4) + ac5 − bc6 − abc7,

c1 · c5 =
1

4
(c1 + c2 + c3 + c4) ,

c5 · c5 = c5,

c5 · c6 = 0.

5. The determinant of A is 128ab.

Now, define the category D. The objects of D are triples (E,F, 〈·, ·〉) where E
and F are abelian finite étale K-algebras, and 〈·, ·〉 is a non-degenerate K-bilinear
pairing

E × F
〈·,·〉−→ Kab,

which satisfies 〈γe, f〉 = 〈e, γf〉 = γ〈e, f〉 for all e ∈ E, f ∈ F and γ ∈ Γab.
A morphism (E,F, 〈·, ·〉) → (E′, F ′, 〈·, ·〉′) consists of K-algebra homomorphisms
φE : E′ → E and φF : F → F ′ such that 〈φE(e′), f〉 = 〈e′, φF (f)〉′ for all e′ ∈ E′

and f ∈ F .
It usually easier to think of a D-morphism as a diagram.

E × F Kab

E′ × F ′ Kab

φE φF idKab

〈·, ·〉

〈·, ·〉′

Example 4.3.2.

We take K = Q. Let a and b be two non-square integers. Take

E = Q × Q(
√
a) × Q(

√
b) × Q(

√
ab)

and
F = Q(

√
a,
√
b) × Q3.

The pairing will be defined by setting

e = (t, u+ v
√
a, w + x

√
b, y + z

√
ab) ∈ E

and
f = (t′ + v′

√
a+ x′

√
b+ z′

√
ab, u′, w′, y′) ∈ F

and taking

〈·, ·〉 : E × F → Qab

(e, f) 7→ tt′ + uu′ + vv′
√
a+ ww′ + xx′

√
b+ yy′ + zz′

√
ab.
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The triple (E,F, 〈·, ·〉) is an element of D. To see this we need to show that
〈γe, f〉 = 〈e, γf〉 = γ〈e, f〉 for all γ ∈ Γab.

The only elements of Γab we need to consider are

γ1 : (
√
a→

√
a,
√
b→ −

√
b),

γ2 : (
√
a→ −

√
a,
√
b→

√
b) and

γ3 : (
√
a→ −

√
a,
√
b→ −

√
b).

We have

〈γ1e, f〉 = 〈e, γ1f〉 = γ1〈e, f〉 = tt′ + uu′ + vv′
√
a+ ww′ − xx′

√
b+ yy′ − zz′

√
ab,

〈γ2e, f〉 = 〈e, γ2f〉 = γ2〈e, f〉 = tt′ + uu′ − vv′
√
a+ ww′ + xx′

√
b+ yy′ − zz′

√
ab,

〈γ3e, f〉 = 〈e, γ3f〉 = γ3〈e, f〉 = tt′ + uu′ − vv′
√
a+ ww′ − xx′

√
b+ yy′ + zz′

√
ab.

4.4 An equivalence of categories

We are going to give an equivalence between the categories C and D, defined in the
previous section. First we will construct a functor C → D. Theorem 4.4.6 will later
tell us this functor is an equivalence.

Lemma 4.4.1. Let (S, T,A) be an object of C, define E =
∑

s K(s-th row of A)
and F =

∑

t K(t-th column of A) then (E,F, 〈·, ·〉), with 〈·, ·〉 defined through

E × F
〈·,·〉−→ Kab

(s-th row of A, t-th column of A) 7→ ast for all s ∈ S, t ∈ T

is an element of D.

Proof. First observe that the rows of A generate a ring of finite dimension over K,
therefore, all of the elements of A are algebraic.

Write es = s-th row of A for s ∈ S, and ft = t-th column of A, for t ∈ T . Write
X = HomK-alg(E,L) and Y = HomK-alg(F,L).

Let t ∈ T and let πt : LT → L be the projection on the t-th coordinate. Define
a K-algebra morphism xt : E → L, such that the following diagram of K-algebra
morphisms commutes.

E LT

K L

⊂

xt

πt

We have xt(es) = ast for all s ∈ S and t ∈ T . All the xt are elements of X and
since no two columns of A are the same, all these maps are different. We obtain
#X ≥ n = dimK E.

Since E is Artinian, we obtain from [3, chap. X, thm. 7.7] that E is the direct
product of local, Artinian rings, E =

∏

i Ei. Let m be the maximal ideal of E1.
The sequence m ⊃ m2 ⊃ m3 ⊃ . . . has a finite number of ideals, therefore we get
from Nakayama’s lemma [3, chap. X, lemma 4.1] that mk = 0 for some k. We get
m is nilpotent. Since LT has no nilpotent elements, E1 has no nilpotent element.
So m = 0 and E1 is a field. We obtain E is a finite product of finite field extensions
of K.
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We now have

dimK E ≤ #X = #HomK-alg(E,L)

=
∑

i

#HomK-alg(Ei, L)

≤
∑

i

#HomK(Ei, K̄)

(∗)
≤

∑

i

dimK Ei = dimK E.

So we obtain equality at (*). Therefore all of the Ei are separable [3, chap. V, sect. 4].
We now have ast ∈ Ksep for all s ∈ S, t ∈ T .

Observe that X = {xt : t ∈ T}. We can let Γ act on X in the following way.

Γ ×X → X

(γ, x) 7→ γx.

For all t ∈ T we have ft = (ast)s∈S = (xt(es))s∈S . Let K[X ] be the permutation
module of X , in other words the K[Γ]-module with basis X . We have a K-module
isomorphism

i : K[X ] → F ⊂ (Ksep)
S

x 7→ (x(es))s∈S

and since i(γx) = ((γx)(es))s = (γ(x(es)))s = γix for all γ ∈ Γ, we see that i
is a K[Γ]-module isomorphism. In the same way we can define a K[Γ]-module

isomorphism K[Y ] → E ⊂ (Ksep)
T
.

Now we have γ〈es, ft〉 = γ(xt(es)) = (γxt)(es) = 〈es, γft〉 and in the same way
γ〈es, ft〉 = 〈γes, ft〉 for all γ ∈ Γ, s ∈ S and t ∈ T .

Since {es : s ∈ S} and {ft : t ∈ T} are bases for E and F , we can extend their
this property to E and F . So, we have 〈e, γf〉 = γ〈e, f〉 = 〈γe, f〉 for all γ ∈ Γ,
e ∈ E and f ∈ F .

Now, we have

γ1γ2〈e, f〉 = γ2〈γ1e, f〉
= 〈γ1e, γ2f〉
= γ1〈e, γ2f〉
= γ2γ1〈e, f〉 for all γ1, γ2 ∈ Γ, e ∈ E, f ∈ F .

The action of Γ factors via its abelian quotient Γab. Therefore we can factor all
our Γ-actions through Γab. The algebras E and F are abelian finite étale algebras.
and our constructed Γab-action on E satisfies x(γe) = γ(x(e)) for all γ ∈ Γab, e ∈ E
and x ∈ X . So this action is the unique Γ-action on E from lemma 4.2.1. The same
holds for the Γab-action on F .

Given a morphism (S, T,A) → (S ′, T ′, A′) of C, let (E,F, 〈·, ·〉) and (E ′, F ′, 〈·, ·〉′)
be the objects of D acquired via the process in lemma 4.4.1.

From the map φS : S′ → S we define an induced map

φ∗S :
(

Kab
)S →

(

Kab
)S′

(as)s∈S 7→ (aφS(s′)s′∈S′ .

For all columns ft of A we have φ∗S(ft) = φ∗S((ast)s) = (aφS(s′)t)′s = (a′s′φT (t))′s,
which is the φT (t)-th column of A′, so we can restrict φ∗S to F . We have a map
φF : F → F ′.

In the same way, from the map φT : T → T ′ we can construct a map φE : E′ → E
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Lemma 4.4.2. The maps φE and φF are a morphism (E,F, 〈·, ·〉) → (E ′, F ′, 〈·, ·〉′)
of D.

Proof. First we shall prove that φF is a K-algebra homomorphism. It is a ring
homomorphism, since it is a restriction of φ∗

S . So it suffices to show that for all
y′ ∈ HomK-alg(F

′,Kab) we have φF y
′ ∈ HomK-alg(F,K

ab).
From the proof of lemma 4.4.1 we know that every y′ ∈ HomK-alg(F

′,Kab) is

the restriction of a projection on one of the coordinates of
(

Kab
)S′

So we have the
following commutative diagram

F
(

Kab
)S

F ′ (

Kab
)S′

Kab

⊂

⊂

φF φ∗S

π′
sy′s

and since the map φ∗Sπ
′
s is the projection on the φS(s′)-th coordinate, the map φF y

′
s

is an element of HomK-alg(F,K
ab).

In the same way, we prove that φE is a K-algebra morphism.
It remains to show that 〈φE(e′), f〉 = 〈e′, φF (f)〉′ for all e′ ∈ E′ and f ∈ F .
Let es′ ∈ E′ be the s′-th row of A′ and ft ∈ F the t-th columns of A. We have

seen that φF (ft) is the φT (t)-th column of A′ and in the same way is φE(es′) the
φS(s′)-the row of A. So we have

〈φE(es′), ft〉 = aφS(s′)t = as′φT (t) = 〈es′ , φF (ft)〉

and since {es′ : s′ ∈ S′} are a basis of E and {ft : t ∈ T} are a basis of F , the
identity 〈φE(e′), f〉 = 〈e′, φF (f)〉′ is true for all e′ ∈ E′ and f ∈ F

Define the functor ψ : C → D as follows: on objects it applies the process in
lemma 4.4.1, on morphisms it applies the process in lemma 4.4.2.

Now we are going to construct a functor D → C. This functor will become the
inverse of ψ. We first show that E and F have a natural basis. The Gram-matrix
〈·, ·〉 with respect to these bases is the matrix of the associated element of C.

Let (E,F, 〈·, ·〉) be an object of D.
We can give X = HomK-alg(E,K

ab) a Γab-action by

Γab ×X → X

(γ, x) 7→ γ ◦ x.

From the pairing 〈·, ·〉 we can define an isomorphism

F → HomK[Γab](E,K
ab)

f 7→ (e 7→ 〈e, f〉).

27



Since the action of Γ on E is the same via every x ∈ X we have x(γe) = γx(e)
for all x ∈ X, γ ∈ Γ, e ∈ E. So X ⊂ HomK[Γab](E,K

ab). For every x ∈ X , let
fx ∈ F be such that x(e) = 〈e, fx〉 for all e ∈ E.

Furthermore, since #X = dimK E = dimK F and {fx : x ∈ X} is K-linearly
independent [3, chap. 6, sect. 4], the set {fx : x ∈ X} is a K-basis of F .

In the same way, for every y ∈ Y = HomK-alg(F,K
ab), let ey ∈ E be such that

y(f) = 〈ey, f〉 for all f ∈ F . Then {ey : y ∈ Y } is a K-basis for E.

Lemma 4.4.3. The triple (Y,X,A), with A = (〈ey, fx〉)y∈Y,x∈X is an element of C.

Proof. Since {fx : x ∈ X} is a basis for F , a linear combination of the rows is 0 if
and only if the map F → Kab it represents, is the zero map. Since {ey : y ∈ Y }
is linearly independent, this can only happen when all coefficients are 0. So A is
invertible.

We have a ring isomorphism

E →
∑

y

K(〈ey, fx〉)x

ey 7→ (〈ey, fx〉)x

So the row span of A is a ring. The column span of A is isomorphic to F , so it is a
ring.

Lemma 4.4.4. Let φE : E′ → E and φF : F → F ′ be K-algebra morphisms, such
that (E,F, 〈·, ·〉) → (E′, F ′, 〈·, ·〉′) is a morphism of D, let (Y,X,A) and (Y ′, X ′, A′)
be the objects of C acquired via the process in lemma 4.4.3.

The maps

φY : Y ′ → Y
y′ 7→ y′φF

and

φX : X → X ′

x 7→ xφE

give a morphism (Y,X,A) → (Y ′, X ′, A′) of C.

Proof. For all y′ ∈ Y ′, x ∈ X , we have

aφY (y′)x = 〈eφY (y′), fx〉 = 〈ey′φF , fx〉 = y′(φF (fx)) = 〈ey′ , φF (fx)〉′
= 〈φE(ey′), fx〉 = x(φE(ey′)) = 〈ey′ , fxφE〉′ = 〈ey′ , fφX(x)〉′
= a′y′φX (x).

Define the functor ψ′ : D → C as follows: on objects it applies the process in
lemma 4.4.3, on morphisms it applies the process in lemma 4.4.4.

Example 4.4.5.

The triple (S, T,A) from example 4.3.1 is mapped by ψ to an element isomorphic
to the triple (E,F, 〈·, ·〉) from example 4.3.2.

To see this we will first calculate Hom(E,Qab). Then, using the isomorphism

F → HomK[Γab](E,K
ab)

f 7→ (e 7→ 〈e, f〉),
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we will find the appropriate basis of F . Using the same notation as example 4.3.2
we have

Hom(E,Qab) corresponding element of F
e 7→ t (1, 0, 0, 0)
e 7→ u+ v

√
a (

√
a, 1, 0, 0)

e 7→ u− v
√
a (−√

a, 1, 0, 0)

e 7→ w + x
√
b (

√
b, 0, 1, 0)

e 7→ w − x
√
b (−

√
b, 0, 1, 0)

e 7→ y + z
√
ab (

√
ab, 0, 0, 1)

e 7→ y − z
√
ab (−

√
ab, 0, 0, 1)

The same calculations for Hom(F,Qab) and E gives

Hom(F,Qab) corresponding element of E

f 7→ t′ + v′
√
a+ x′

√
b+ z′

√
ab (1,

√
a,
√
b,
√
ab)

f 7→ t′ + v′
√
a− x′

√
b− z′

√
ab (1,

√
a,−

√
b,−

√
ab)

f 7→ t′ − v′
√
a+ x′

√
b− z′

√
ab (1,−√

a,
√
b,−

√
ab)

f 7→ t′ − v′
√
a− x′

√
b+ z′

√
ab (1,−√

a,−
√
b,
√
ab)

f 7→ u′ (0, 1, 0, 0)
f 7→ w′ (0, 0, 1, 0)
f 7→ y′ (0, 0, 0, 1)

For these two basis the matrix (〈ey, fx〉) is A.

Now we have all the ingredients for the following theorem.

Theorem 4.4.6. The functor ψ is an equivalence between C and D and ψ′ is its
inverse.

Proof. We need to show the following:

1. The objects (S, T,A) and ψ′ψ(S, T,A) are isomorphic.

2. The objects (E,F, 〈·, ·〉) and ψψ′(E,F, 〈·, ·〉) are isomorphic.

3. There is a natural isomorphism τ : idC → ψ′ψ, which assigns to every element
(S, T,A) of C a morphism of C, which we will denote by τ(S,T,A) : (S, T,A) →
ψ′ψ(S, T,A), such that for all C-morphism g : (S, T,A) → (S ′, T ′, A′) the
following diagram commutes

(S, T,A) ψ′ψ(S, T,A)

(S′, T ′, A′) ψ′ψ(S′, T ′, A′)

τ(S,T,A)

τ(S′,T ′,A′)

g ψ′ψ(g)

4. There is a natural isomorphism τ : idD → ψψ′, which assigns to every ele-
ment (E,F, 〈·, ·〉) of D a morphism of D, which we will denote by τ(E,F,〈·,·〉) :
(E,F, 〈·, ·〉) → ψ′ψ(E,F, 〈·, ·〉), such that for all D-morphism d : (E,F, 〈·, ·〉) →
(E′, F ′, 〈·, ·〉′) the following diagram commutes
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(E,F, 〈·, ·〉) ψψ′(E,F, 〈·, ·〉)

(E′, F ′, 〈·, ·〉′) ψψ′(E′, F ′, 〈·, ·〉′)

τ(E,F,〈·,·〉)

τ(E′,F ′,〈·,·〉′)

d ψψ′(d)

1. Using notation from lemma 4.4.3, we write ψ(S, T,A) = (E,F, 〈·, ·〉) and
ψ′(E,F, 〈·, ·〉) = (Y,X, (〈ey, fx〉)).
Using the notation from lemma 4.4.1, we define the bijections

φT : T → X
t 7→ xt (4.1)

and

φ−1
S : S → Y

s 7→ ys. (4.2)

Observe that

ys : F → Kab

ft 7→ ast = 〈es, ft〉,

so eys = es = eφS(ys). In the same way we have ft = fxt = fφT (t). Therefore
we have 〈ey, fφT (t)〉 = 〈eφS(ys), ft〉 = aφS(ys)t for all y ∈ Y , t ∈ T .

So (φS , φT ) is a C-isomorphism.

2. Using notation from lemma 4.4.3, write ψ′(E,F, 〈·, ·〉) = (Y,X, (〈ey, fx〉)) and
ψ (Y,X, (〈ey, fx〉)) = (G,H, 〈·, ·〉2).
Using the notation from lemmas 4.4.1 and 4.4.3, we define the K-linear maps

φE : G → E
gy 7→ ey (4.3)

and

φF : F → H
fx 7→ hx. (4.4)

Remember that gy is the y-th row of the matrix (〈ey, fx〉) and ey is the element
of E such that y(f) = 〈ey, f〉 for all f ∈ F .

Observe that 〈φE(gy), fx〉 = 〈ey, fx〉 = 〈gy, hx〉2 = 〈gyφF (fx)〉2 for all y ∈ Y ,
x ∈ X . Therefore 〈φE(g), f〉 = 〈g, φF (f)〉2 for all g ∈ G, f ∈ F .

For all x ∈ X, g ∈ G, we have xφE(g) = 〈φE(g), fx〉 = 〈g, φF (fx)〉2 = 〈g, hx〉2,
so for all x ∈ X is xφE ∈ Hom(G,Kab). So φE is a K-algebra morphism. In
the same way we prove that φF is a K-algebra morphism.

3. Let τ(S,T,A) = (φS , φT ), with φT from 4.1 and φS from 4.2, for all C-objects
(S, T,A). Write g = (gS , gT ) and ψ(g) = (gE , gF ) and ψ′ψ(g) = ((gY , gX)).
Write ψ′ψ(S′, T ′, A′) = (Y ′, X ′, B′). We need to prove that for all t ∈ T we
have gX(φT )(t) = φT ′gT (t).

We have gX(φT )(t) = gX(xt) = xtgE. From the commutative diagram
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iE′ : E′ (

Kab
)T ′

E
(

Kab
)T

Kab

⊂

⊂

gE g∗T

πtxt

we see that xtgE = πtg
∗
T iE′ = πgT (t)iE′ = xgT (t) = φT ′gT (t).

In the same way we prove that gSφS′(y′) = φSgY (y′) for all y′ ∈ Y ′.

4. Let τ(E,F,〈.,.〉) = (φE , φF ), with φE from 4.3 and φF from 4.4, for all D-
objects (E,F, 〈., .〉).Write d = (gE , gF ) and ψ′(d) = (dY , dX ) and ψψ′(d) =
((dG, dH)). Write ψψ′(E′, F ′, 〈., .〉) = (G′, H ′, 〈., .〉′2) We need to prove that
for all f ∈ F we have dHφF (f) = φF ′dF (f)

For all x ∈ X we have dHφF (fx) = dH (hx). With iH : H → KabY
and

iH′ : H ′ → KabY ′

the inclusions from lemma 4.4.3, we get

iH′dH(hx) = d∗Y iH(hx) = d∗Y (〈ey, fx〉)y = (〈edy(y′), fx〉)y′∈Y ′

= (〈ey′dF , fx〉)y′ = (〈ey′dF , fx〉)y′ = (y′dF (fx))y′

= (〈ey′ , dF (fx)〉′)y′ = iH′φF ′dF (fx).

So, dH(hx) = φF ′dF (fx) for all x ∈ X . Therefore dHφF (f) = φF ′dF (f) for
all f ∈ F .

In the same way we prove that dEφE′(g′) = φEdG(g′) for all g′ ∈ G′.

4.5 Brauer equivalence

The category D is related to Brauer equivalence, as we show in the next section.
For this section we require char K = 0.

Let E and F be two finite etale K-algebras, then X = Hom(E,Ksep) and
Y = Hom(F,Ksep) are Γ-sets. Define for γ ∈ Γ the set X 〈γ〉 = {x ∈ X : γ(x) = x}.

Definition 4.5.1. The finite etale algebras E and F are Brauer equivalent if X and
Y are linearly equivalent, which means that for all γ ∈ Γ we have #X 〈γ〉 = #Y 〈γ〉.

Lemma 4.5.2. If K[X ] ∼=K[Γ] K[Y ] then X and Y are linearly equivalent.

Proof. For all γ ∈ Γ let TrX(γ) be the trace of γ on K[X ]. The action of γ on
K[X ] is a permutation of X , therefore TrX(γ) = #X〈γ〉. So #X〈γ〉 = TrX (γ) =
TrY (γ) = #Y 〈γ〉.
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Theorem 4.5.3. If (E,F, 〈·, ·〉) ∈ D, then E and F are Brauer equivalent.

Proof. According to lemma 4.5.2 it suffices to prove that K[X ] ∼=K[Γ] K[Y ]. Since
in this case E and F are abelian, we need to prove that K[X ] ∼=K[Γab] K[Y ].

Write E =
∏

i Ei as a product of fields and define Xi = Hom(Ei,K
ab). Accord-

ing to the normal basis theorem [3, chap. VI, thm 13.1] we have

E =
∏

i

Ei
∼=K[Γab]

∏

K[Xi] = K
[

∐

Xi

]

= K[X ].

Furthermore, from the proof of lemma 4.4.1, we know that E ∼=K[Γab] K[Y ].

For a finite étale Q-algebra E =
∏

i Ei we define the ring of integers OE as
∏

i OEi , where OEi is the ring of integers of Ei. Define the discriminant of OE as
∏

i ∆OEi .
If E and F are two finite étale algebras which are Brauer equivalent, then the

discriminants of their rings of integers are equal [5, chap. VI, sect. 3].

Example 4.5.4.

From example 4.3.2 we get that Q×Q(
√
a)×Q(

√
b)×Q(

√
ab) and Q(

√
a,
√
b)×Q3

are Brauer equivalent.

Furthermore, we have ∆
(

OQ(
√

a)

)

·∆
(

O
Q(

√
b)

)

·∆
(

O
Q(

√
ab)

)

= ∆
(

O
Q(

√
a,
√

b)

)

.

4.6 Q-algebras, continuation

As we have seen in section 4.1, for every finite group G the triple

A(G) =

(

S, X,
(

TrS(x)

dimS

)

S,x

)

is an element of C. We now have the following corollaries from the theory in sec-
tions 4.3–4.5.

Corollary 4.6.1. The Q-algebras R(G) ⊗ Q and Λ(G) ⊗ Q are abelian finite étale
Q-algebras with a natural Γab-action. The Q-bilinear pairing

〈·, ·〉G : R(G) ⊗ Q × Λ(G) ⊗ Q → Qab

([S] ⊗ 1, cx ⊗ 1) 7→ TrS(x)

dimS
for S ∈ S, x ∈ X.

satisfies γ〈M, c〉G = 〈γM, c〉G = 〈M,γc〉G for all γ ∈ Gal (Qab/Q),M ∈ R(G) ⊗ Q
and c ∈ Λ(G) ⊗ Q.

Proof. The triple (R(G) ⊗ Q,Λ(G) ⊗ Q, 〈·, ·〉G) is the image of A(G) under ψ. Ac-
cording to lemma 4.4.1 it is an element of D.

Note that a different scaling of the character table would not have the properties
we want, for example, the Q-span of the rows of (TrS(x))S,x is a subring of CX , but

the Q-span of the columns is not in general a subring of CS . In fact the only scaling
we can do which keeps both rows span and column span a subring, is multiplying
the entire matrix with a constant from Q.

Corollary 4.6.2. The Q-algebras R(G) ⊗ Q and Λ(G) ⊗ Q are Brauer equivalent.

Proof. The triple (R(G) ⊗ Q,Λ(G) ⊗ Q, 〈·, ·〉G) is an element of D. Lemma 4.5.3
tells us that R(G) ⊗ Q and Λ(G) ⊗ Q are Brauer equivalent.
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We now also have that the discriminant of the rings of integers of R(G)⊗Q and
Λ(G) ⊗ Q are equal. Remember that the discriminants of R(G) and Λ(G) are not
always equal, as we have seen in section 2.2.

The rings R(G)⊗Q and Λ(G)⊗Q are not always isomorphic. Counterexamples
for 2-groups can be found in [7].

Finally, we give an example of morphisms of C and D which occur in represen-
tation theory.

Let N be a normal subgroup of G. Let S ′ be a set of representatives for the
isomorphism classes of simple C[G/N ]-modules and let X ′ be the set of conjugacy
classes of G/N .

Lemma 4.6.3. The maps

φS : S ′ → S
S′ 7→ S,

where S is the C-module S ′ with action G× S → S defined by (g, s) 7→ (gN)s, and

φX : X → X ′

x 7→ xN = {σN : σ ∈ x}

give a morphism A(G) → A(G/N) in C.

Proof. First we need to show that φS and φX are well defined.
Let S = φS(S′) for some S′ ∈ S ′. A C-vector space with G-action such that

N acts trivially, is a C[G/N ]-module. So any submodule of S is a submodule of
S′, since N acts trivially on the submodule. Therefore is S a simple C[G]-module.
Let S′

2 be the kernel of this morphism. Since S ′
2
∼= S2 as C-modules and for all

s ∈ S2 we have gNs ∈ S2, we have gNs′ ∈ S2 for all s′ ∈ S′
2. So S′

2 is a non-trivial
submodule of S′. Since this is a contradiction with S ′ simple, S is a simple module.

Let σ be an element of x. We have

xN = {τστ−1N : τ ∈ G} = {τσNτ−1 : τ ∈ G/N}.

So xN is a conjugacy class of G/N .
Furthermore, for all S′ ∈ S ′ and x ∈ X we have TrφS(S′)(x) = TrφS(S′)(σ) =

Tr(s 7→ σs) = Tr(s 7→ σNs) = TrS′(σN) = TrS′(xN). and dimφS(S′) = dimS′.
So

χφS(S′)(x)

dimφS(S′)
=
χS′(φX (x))

dimS′

for all S′ ∈ S ′ and x ∈ X .

Proposition 4.6.4. There exist Q-algebra homomorphisms φR : R(G/N) ⊗ Q →
R(G)⊗Q and φΛ : Λ(G)⊗Q → Λ(G/N)⊗Q such that 〈φR(M), c〉G = 〈M,φΛ(c)〉G/N

for all M ∈ R(G/N) ⊗ Q, c ∈ Λ(G) ⊗ Q.

Proof. The image under ψ of the map described in lemma 4.6.3, is a map (R(G)⊗
Q,Λ(G)⊗Q, 〈·, ·〉G) → (R(G/N)⊗Q,Λ(G/N)⊗Q, 〈·, ·〉G/N ). This map consists of
the maps φR and φΛ.
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