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Introduction

In this paper we will study the action of Galois groups on division points.

If G is a commutative algebraic group and K is a field with separable closure
Ksep, we will consider the group of division points of G(K), defined as

D = {x ∈ G(Ksep) : ∃n ∈ Z>0 : nx ∈ G(K)}.

There are two important cases: G is the multiplicative group Gm and G is an
elliptic curve E. In the first case division points are often called radicals and
are given by {x ∈ Ksep∗ : ∃n ∈ Z>0 : xn ∈ K∗}.

In general Gal(Ksep/K) acts on G(Ksep). The structure of the torsion of
G(Ksep) is well known in our two cases and the action of Gal(Ksep/K) on
G(Ksep)tor has been studied extensively. See for example Washington [6] and
Serre [4].

In this paper we will consider the action of the Galois group on the group of
division points. In the cases we consider, this group will be divisible. Some
preliminary theory about divisible groups is in section 1.2.

In chapter 2 we will show how to obtain D from G(K) without referring to K sep

or to G. To achieve this, we will study extensions of abelian groups A ⊂ B,
where B/A is torsion. We will restrict the amount of p-torsion that A and B
can have. In the case of field extensions, we will limit the p-torsion of A and
B to rank 1 (considered as an Fp-vector space), since the p-th roots of unity
of a field have rank at most 1. In the case of elliptic curves, the p-torsion has
rank 2, except if charK = p > 0, in which case the p-torsion has rank 0 or 1,
depending on whether the elliptic curve is supersingular or ordinary.

If K ⊂ L is a Galois extension, then the Galois group of L over K acts on G(L).
An automorphism of L that is the identity on K induces an automorphism
of G(L) that is the identity on G(K). Therefore, studying automorphisms of
abelian groups can provide insight into Galois groups. In chapter 3 we will
provide several tools to describe these automorphism groups. We will introduce
analogues of several notions from Galois theory, such as normal extensions and
extending automorphisms.
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Next, we will consider the Galois action on division points. An easy example
of this is the case where G(K) contains enough torsion. In this case the Ga-
lois group is abelian and for the multiplicative group the Galois action is then
described by Kummer theory. The analogue for elliptic curves is the Kummer
pairing, which is treated in Silverman [5], VIII, Proposition 1.2.

In the fourth and last chapter we will study the Galois group in the more
general case where K ⊂ L is a Galois extension where L is formed by adjoining
a group of radicals B which satisfies some extra conditions, to K. We will give
a description of the image of the Galois group in the automorphism group of B,
which will in general not be abelian.
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Chapter 1

Preliminaries

In this chapter we will introduce the concepts of fibered sums, fibered products,
divisibility and injectivity, roughly following Lang [2] and Eisenbud [1].

1.1 Fibered sums and products

In this section, we will define the fibered product of groups and the fibered sum
of abelian groups. We first introduce these notions in a general setting.

Let C be a category, and A an object in that category. Consider the following
two categories. The objects of the category CA are morphisms B → A, where
B ∈ C. Dually, the objects of the category C

A consist of morphisms A → B,
where B is again an object of C.

A morphism in CA from B → A to C → A is a morphism B → C (in C) that
makes the following diagram commutative:

B

A.

C

A morphism in CA from A → B to A → C is a morphism B → C that makes
the following diagram commutative:

B

A

C.
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Definition 1.1. The product in CA of B → A and C → A is called the fibered
product of B and C over A. It is written B ×A C.

The coproduct in C
A of A→ B and A→ C is called the fibered coproduct or

fibered sum of B and C over A. It is written B ⊕A C.

Theorem 1.2. Fibered sums exist in the category of abelian groups. The fibered
sum of B and C over A, with homomorphisms ϕB : A → B and ϕC : A → C,
is given by (B ⊕ C)/{(ϕB(a),−ϕC(a) : a ∈ A}.

Proof. Let G be an abelian group with homomorphisms f : B → G and g : C →
G such that fϕB = gϕC .

Define F := (B ⊕ C)/{(ϕB(a),−ϕC(a) : a ∈ A}. We need to show there
is a unique homomorphism ϕ : F → G such that the following diagram is
commutative:

A B

C F

G.

ϕB

ϕC

g

f

ϕ

Define the map

ϕ′ : B ⊕ C −→ G

(b, c) 7−→ f(b) + g(c).

The subgroup {(ϕB(a),−ϕC(a) : a ∈ A} ⊂ B ⊕ C is in the kernel of ϕ′, since
f(ϕB(a)) + g(−ϕC(a)) = f(ϕB(a)) − g(ϕC(a)) = 0. Therefore, ϕ′ induces
an homomorphism ϕ : F → G. It is clear that it makes the above diagram
commutative.

The unicity of ϕ follows directly from the fact that commutativity of the above
diagram implies that ϕ(b, 0) = f(b) and ϕ(0, c) = g(c).

Theorem 1.3. Fibered products exist in the category of groups. The fibered
product of B and C over A, with homomorphisms πB : B → A and πC : C → A,
is given by {(b, c) ∈ B × C : πB(b) = πC(c)}.

Proof. Let G be a group with homomorphisms f : G→ B and g : G→ C such
that πBf = πCg.
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Define F := {(b, c) ∈ B×C : πB(b) = πC(c)}. We need to show there is a unique
homomorphism ϕ : G→ F such that the following diagram is commutative:

G

F C

B A.
πB

πC

g

f
ϕ

Define the map

ϕ : G −→ F

x 7−→ (f(x), g(x)).

Note that the pair (f(x), g(x)) indeed satisfies the required condition, since
πB(f(x)) = πC(g(x)). Also, ϕ is a homomorphism because f and g are both
homomorphisms.

It is clear that ϕ is unique, since the commutativity of the diagram directly
requires that the B-coordinate of ϕ(x) is f(x) and the C-coordinate is g(x).

Theorem 1.4. Let C be an abelian group. If A and B are subgroups of C, then
A+B is the fibered sum of A and B over A ∩B.

Proof. Let D be an abelian group and let f : A → D and g : B → D be two
homomorphisms that are equal on A ∩B.

Define a map

ϕ : A+B −→ D

a+ b 7−→ f(a) + g(b).

This is a well defined homomorphism since f and g are equal on A ∩ B. It is
clearly equal to f when restricted to A and equal to g when restricted to B.
Also, ϕ is the only homomorphism with this property, since it is necessary that
ϕ(a) = f(a) for a ∈ A and ϕ(b) = g(b) for b ∈ B. So, A + B has the universal
property of the fibered sum, as required.

Theorem 1.5. Let K be a field, and let K ⊂ L and K ⊂M be two finite Galois
extensions contained in a fixed algebraic closure of K. Then LM and L ∩M
are also Galois extensions of K, and the natural map

Gal(LM/K) −→ Gal(L/K)×Gal((L∩M)/K) Gal(M/K)

is an isomorphism.
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Proof. Theorem VI, §1.14 from Lang’s Algebra [2] states that LM and L ∩M
are Galois over K, and that the map

Gal(LM/(L ∩M)) −→ Gal(L/(L ∩M))×Gal(M/(L ∩M))

σ 7−→ (σ|L, σ|M )

is an isomorphism.

Now consider the natural map

Gal(LM/K) −→ Gal(L/K)×Gal((L∩M)/K) Gal(M/K)

σ 7−→ (σ|L, σ|M ).

Note that this is well defined, since if σ ∈ Gal(LM/K), then σ|L and σ|M are
equal on L ∩M .

It is clear that this map is injective, since if an automorphism is the identity on
L and on M , it is also the identity on LM .

For surjectivity, let (σ, τ) be an element of Gal(L/K)×Gal((L∩M)/K)Gal(M/K).
We can extend σ to an automorphism σ′ ∈ Gal(LM/K) such that σ′|L = σ.
Restricting σ′ to M gives an element of Gal(M/K), which we can invert and
compose with τ : define ϕ = σ′|−1

M τ ∈ Gal(M/K). Note that ϕ is the identity
on L ∩M , because σ′ and τ are equal on L ∩M .

Because of this, the isomorphism from Lang’s Algebra above allows us to extend
ϕ to an automorphism ϕ′ ∈ Gal(LM/K) such that ϕ′|M = ϕ and ϕ′|L = idL.

The composed automorphism σ′ϕ′ is equal to σ when restricted to L, since
σ′|L = σ and ϕ′|L = idL. Also, when restricting to M , it is equal to τ , because
(σ′ϕ′)|M = σ′|Mϕ′|M = σ′|Mσ′|−1

M τ = τ .

1.2 Divisibility

Definition 1.6. An abelian group A is divisible if for all a ∈ A, n ∈ Z>0, there
is an element b ∈ A with nb = a.

Lemma 1.7. If A is a divisible abelian group, then every quotient group Q of
A is also divisible.

Proof. Let q ∈ Q, q̃ ∈ A such that q̃ 7→ q ∈ Q and n ∈ Z>0. Because A is
divisible, there is an element b ∈ A with nb = q̃. Let b̄ be the image of b in Q.
Then nb̄ = q in Q, so Q is divisible.

Lemma 1.8. Every abelian group A can be embedded in a divisible abelian
group.

10



Proof. Let F be the free Z-module
⊕

A Z and let K be the kernel of the sur-
jective homomorphism F → A given by (na)a∈A 7→

∑
a∈A naa. We find an

isomorphism A ∼= F/K. The tensor product F ⊗Z Q is divisible, and it contains
F because F is torsion-free. By lemma 1.7, (F ⊗Z Q)/K is also divisible, and it
contains F/K.

Definition 1.9. An abelian group D is called injective if every exact sequence
of abelian groups 0→ D →M → N → 0 splits.

Theorem 1.10. A divisible abelian group D is injective.

Proof. Let D be a divisible abelian group and 0→ D
f→M → N → 0 an exact

sequence of abelian groups. We will prove the existence of a homomorphism
M → D which splits f , with Zorn’s lemma.

Consider the set of all pairs (M ′, ϕ) for which M ′ is an abelian group with
D ⊂ M ′ ⊂ M and ϕ is a group homomorphism M ′ → D for which ϕif = idD.
We index this set with J and define an ordering by setting (Mi, ϕi) ≤ (Mj , ϕj)
when Mi ⊂Mj and ϕj restricted to Mi is equal to ϕi, for i, j ∈ J .

Now consider a totally ordered subset {(Mi, ϕi)}i∈I with I ⊂ J . Define a map
ψ :

⋃
i∈IMi → D by mapping x ∈ ⋃

i∈IMi to the image of x under any ϕi for
which x ∈ Mi. Note that this is well-defined, since if x ∈ Mj for j 6= i, then,
because our subset is totally ordered, either ϕi restricted toMj is equal to ϕj , or
vice versa. It is a homomorphism since if x, y ∈ ⋃

i∈IMi, then there is an i ∈ I
for which x, y ∈Mi. Then ϕi(x+y) = ϕi(x)+ϕi(y), so ψ(x+y) = ψ(x)+ψ(y).
Therefore, the pair (

⋃
i∈IMi, ψ) is an upper bound of our totally ordered subset.

By Zorn’s Lemma, there is a maximal pair (M ′, ϕ). If M ′ = M , then the
homomorphism ϕ splits the sequence 0 → D → M → N → 0, as required.
If M ′ 6= M , let x ∈ M ′ \M . We will now extend ϕ to a homomorphism ϕ′

from 〈M ′, x〉 to D. From theorem 1.4 we know that 〈M ′, x〉 =M ′ ⊕M ′∩〈x〉 〈x〉.
Therefore, a homomorphism from 〈M ′, x〉 toD is specified by an homomorphism
from M ′ to D (we take ϕ for this), and one from 〈x〉 to D, such that they are
the same on M ′ ∩ 〈x〉. Since there is an n ∈ Z≥0 such that 〈x〉 ∩M ′ = 〈nx〉,
the map ϕ′ has to map x to an element d ∈ D for which nd = ϕ(nx). If
n = 0, any d suffices. If n 6= 0, such a d exists because D is divisible. Note
that x /∈ imf ⊂ M , so we still have that ϕ′f = idD. The pair (〈M ′, x〉, ϕ′)
contradicts the maximality of (M ′, ϕ).
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Chapter 2

Adding division points to

abelian groups

We are interested in adjoining division points to an abelian group A. Specifically,
let A be an abelian group and r a map from the set of primes to the set of non-
negative integers. We will consider extensions of the following form:

Definition 2.1. Let B be an abelian group. We call an injective homomorphism
of abelian groups A ↪→ B an r-extension if B/A is torsion and if for all primes
p the rank of the p-torsion of B is at most r(p).

Definition 2.2. Let B and C be abelian groups. If ϕ : A ↪→ B and ψ : A ↪→ C
are both injections, an A-homomorphism from B to C is a group homomorphism
of B to C that makes the following diagram commutative:

B

A

C.

ϕ

ψ

Given a group A and a map r, we will construct a maximal r-extension of A.
To do this, we first need to define the injective hull of an abelian group.

2.1 Injective Hull

Before we can define the injective hull of a group, we first need some preliminary
definitions and lemmas. Key concepts are divisibility, mentioned in section 1.2,
and essential extensions.
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Definition 2.3. Let A ↪→ B be an injective homomorphism of abelian groups.
Then, B is an essential extension of A if the pre-image of every non-zero sub-
group of B in A is non-zero. Note that this implies that the cokernel of an
essential extension is torsion.

Lemma 2.4. The only essential extension of a divisible abelian group E is E
itself.

Proof. Let E be a divisible abelian group, and E ⊂ F an essential extension.
Assume that E 6= F is not surjective. Then there are a prime p and y ∈ F such
that y /∈ E and py ∈ E. Since E is divisible, there is an element e ∈ E such
that pe = py. So, e − y is a p-torsion element in 〈E, y〉 \ E, which means that
〈e− y〉 ∩ E = 0. This contradicts the fact that E ⊂ 〈E, y〉 is essential.

Theorem 2.5. Let A be an abelian group. Then there is an essential extension
i : A ↪→ E such that for every essential extension A ↪→ B there is an essential
extension B ↪→ E such that the following diagram commutes:

A B

E.

Moreover, E is divisible and the only essential extension of E is E itself. Also,
E is unique up to isomorphism in the sense that every essential extension of A
satisfying the same universal property as A ↪→ E is A-isomorphic to E.

This group E is called the injective hull of A.

Proof. As we have seen in lemma 1.8, there is a divisible abelian group B with
an injection A ↪→ B.

Consider all essential extensions of A in B. Note that this is not an empty set
since it contains A itself. If we have a chain Ei of such extensions A ⊂ Ei ⊂ B,
then

⋃
iEi is again essential over A and contained in B, since every nonzero

subgroup of
⋃
iEi intersects some Ei nontrivially and therefore intersects A

nontrivially. By Zorn’s lemma, there is now a maximal essential extension E of
A that is contained in B.

We will now prove that E is divisible. Assume that it is not. Then there is
an x ∈ E and a prime p such that there is no y ∈ E with py = x. Since
B is divisible, there is a y ∈ B with py = x. Now consider the A-injection
E ⊂ 〈E, y〉. Since E is a maximal essential extension of A inside B, this is
not an essential extension. So, there exists a subgroup F ⊂ 〈E, y〉 such that
F ∩E = 0. Let a 6= 0 be an element of F . Then a is of the form e+ky for some
e ∈ E, k ∈ Z, k 6= 0. Because gcd(k, p) = 1, a multiple of a is of the form e′+ y,
so we can let k = 1 without loss of generality. Because py ∈ E, we find that
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pa = pe+py ∈ E∩F and therefore pa = pe+py = 0. So, p(−e) = py = x. This
contradicts the assumption that x was not divisible by p in E, so E is divisible.

Because of lemma 2.4, the only essential extension of E is E itself.

Let A ↪→ C be any essential extension of A. We will show there is an injection
C ↪→ E such that

A C

E.

is a commutative diagram.

Since E is divisible and therefore injective (theorem 1.10), the exact sequence

0→ E
i→ C⊕AE splits. This means there is a homomorphism ϕ : C⊕AE → E.

Define from this a new homomorphism:

ϕ′ : C −→ E

c 7−→ ϕ(c, 0).

Assume that ϕ′ is not injective. Then the kernel of ϕ′ is a nontrivial subgroup
of C, and since C is essential over A, the kernel intersects A nontrivially. So,
there is an a ∈ A \ {0} for which ϕ(a, 0) = ϕ′(a) = 0. Because (a, 0) = (0, a) =
i(a) ∈ C ⊕A E, we find that ϕ(i(a)) = 0, which contradicts the fact that ϕ
splits the sequence above. We find that ϕ′ is the required injection from C to
E respecting A.

Finally, let A ↪→ E′ be an essential extension that has the same universal
property as A ↪→ E. Then, by this property, there is an essential extension
E ↪→ E′. This injection is an isomorphism because of lemma 2.4.

2.2 Maximal r-extensions

In this section, A will be a fixed abelian group, and r a fixed map from the set
of primes to the set of non-negative integers.

If G is an abelian group and n a positive integer, we denote the subgroup of G
of n-torsion elements by G[n]. In particular, if p is a prime, G[p] is the p-torsion
of G, which can be considered as an Fp-vector space. We denote the dimension
of this vector space by rankG[p].

14



Theorem 2.6. Define

Ã := A⊕
⊕

p prime

(Z/pZ)r(p)−rankA[p].

Consider the r-extension

A ↪→ A := InjHull(Ã).

For every r-extension A ↪→ B there is an r-extension B ↪→ A such that the
following diagram is commutative:

A B

A.

The only r-extension of A is A itself. Up to isomorphism of A, the r-extension
A ↪→ A is the only r-extension satisfying the universal property.

We will use the following lemmas in the proof.

Lemma 2.7. Let A be an abelian group, p a prime and suppose that A[p] is
finite. Then, A[pn] is finite for all n ∈ Z>0.

Proof. We use induction to n. For n = 1 we assumed that A[p1] is finite. For
n > 1, let B := A[pn]. Then we have the exact sequence

0 −→ pn−1B/pnB −→ B −→ B/pn−1B −→ 0.

Note that pnB = 0. Because B/pB is finite and there is a natural surjection
B/pB →→ pn−1B/pnB, we see that pn−1B/pnB is also finite. By the induction
hypothesis, B/pn−1B is finite and therefore #B = #(pn−1B/pnB)#(B/pn−1B)
is finite.

Lemma 2.8. Let B be an r-extension of A such that for all primes p, the rank
of the p-torsion of A and B is equal. Then B is an essential extension.

Proof. Let C 6= 0 be a subgroup of B that intersects (the image of) A trivially.
Since B is torsion over A, there is an element x 6= 0 in C such that px ∈ A
for some prime p. Since px ∈ C ∩ A, it is 0, so x is a p-torsion element of B
that is not contained in the image of A. This contradicts the fact that A and
B have p-torsion of equal rank. So, every non-trivial subgroup of B intersects
A non-trivally, and B is an essential extension.

15



Proof of theorem 2.6. First, we need to show that the extension A ⊂ A has the
required properties. That is, A/A is torsion, and rankA[p] ≤ r(p).

Let x ∈ A. Because A is essential over Ã, the subgroup 〈x〉 ⊂ A has a non-

trivial intersection with Ã. So, there is an n ∈ Z, n > 0 such that nx ∈ Ã.
By definition, Ã is a direct sum of A and a number of torsion groups. There is
an m ∈ Z, m > 0 that annihilates the torsion part of nx ∈ Ã, so (mn)x ∈ A.
Therefore, A/A is torsion.

By construction, rank Ã[p] = r(p). Since A is an essential extension, it also has
rankA[p] = r(p).

Now let ϕ : A ↪→ B be an r-extension. From this we will first construct an
injective homomorphism A⊕⊕

p(Z/pZ)
rankB[p]−rankA[p] → B.

Since A[p] and B[p] are both Fp-vector spaces, we know that B[p] = ϕ(A[p])⊕Vp,
where Vp is an Fp-vector space of dimension (rankB[p] − rankA[p]). Consider
the homomorphism

ϕ′ : A⊕
⊕

p

Vp −→ B

(a, (tp)) 7−→ ϕ(a) +
∑

p

tp.

Let (a, (tp)) be an element of the kernel of ϕ′. Then ϕ(a) +
∑
p tp = 0, so ϕ(a)

is torsion. Because ϕ is an injection, a is also torsion. So, we see that kerϕ′ is
torsion.

Let q be a prime number, and let (a, (tp)) be a q-torsion element of kerϕ′.
This means that tp = 0 unless p = q. The image of (a, (tp)) is ϕ(a) + tq = 0,
which means that ϕ(a) = −tq. Here ϕ(a) is a q-torsion element in ϕ(A) and
tq ∈ Vq. However, by definition of Vq, we know that Vq ∩ ϕ(A[q]) = {0}. So,
ϕ(a) = tq = 0. The injectivity of ϕ now implies that a = 0. Therefore, kerϕ′

has trivial q-torsion for all primes q and since kerϕ′ is a torsion group, it is
trivial.

By taking the direct sum of ϕ′ with the identity map on
⊕

p(Z/pZ)
r(p)−rankB[p]

we obtain an injective homomorphism ψ : Ã → B̃ (where B̃ is defined analo-

gously to Ã).

Because the rank of the p-torsion of Ã is equal to that of B̃, we can apply
lemma 2.8, which implies that ψ is essential. The universal property of the
injective hull A of Ã now provides an injection B̃ → A.
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A B

Ã B̃

A.

ϕ

ψ

This gives the required injection B ↪→ A.

Let ϕ : A ↪→ E be an r-extension. Then we have that rankA[p] = rankE[p] =
r(p). So, by lemma 2.8, this extension is essential, and since A is divisible, the
only essential of A is A itself (lemma 2.4).

Now assume that A ↪→ E is another r-extension of A satisfying the same univer-
sal property as A ↪→ A. Then by this universal property, there is an r-extension
A ↪→ E. We have just seen that any such r-extension must be an isomor-
phism.

Corollary 2.9. A is closed under r-extensions, in the sense that A = A

Example 2.10 Let A = Q∗. Since the unit group of an algebraic field extension
of Q has p-torsion of at most rank 1, we set r(p) = 1. Then A = {x ∈ Q

∗
: ∃n ∈

N, xn ∈ Q∗}.

Alternatively, if we write A = Q∗ ∼= 〈−1〉 ⊕
⊕

p(p
Z), A ∼= µ⊕⊕

p(p
Q)

Example 2.11 Let E be an elliptic curve over Q and A = E(Q). Because the
p-torsion of an elliptic curve over Q has rank 2, we set r(p) = 2 for all primes
p. Then A = {P ∈ E(Q) : ∃n ∈ Z>0 : nP ∈ E(Q)}.

If E is an elliptic curve over Fp, we set r(l) = 2 for all primes l 6= p, and
r(p) = 0 or 1, depending on whether E is supersingular or ordinary.
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Chapter 3

Galois theory for abelian

groups

3.1 Normal extensions

In this section we will describe A-automorphisms of r-extensions of a fixed
abelian group A. As in the previous section, r is a fixed map from the set of
primes to the set of non-negative integers.

Definition 3.1. Let A ↪→ B be abelian groups. We define AutA(B) as the
subgroup of all σ ∈ Aut(B) for which the following diagram commutes:

B

A

B.

σ

Definition 3.2. Let A ↪→ B be an r-extension of abelian groups. We call B
normal over A if all injective A-homomorphisms (A-embeddings) from B into
A have the same image.

Theorem 3.3. Let A ↪→ B be an r-extension of abelian groups. If for every
n ∈ Z that occurs as the order of an element of B/A we have that #B[n] =
#A[n], then B is normal over A.

Proof. Let n be an integer that occurs as the order of some element of B/A.
The injection f maps the (finite) set of n-th roots of unity in B injectively to
the set of n-th roots of unity in A. By our assumption, both sets have the same
cardinality, so f is also surjective. It follows that the image of f contains all of
the n-torsion of A
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Let b be an element of B and let n be the order of n in B/A. Then f(nb) = g(nb),
so f(b) − g(b) = ζ where ζ is an n-torsion element in A. As we have seen, all
the n-torsion of A is contained in the image of f , so ζ ∈ Im(f). We find that
f(b− f−1(ζ))− g(b) = 0. So, g(b) ∈ Im(f). Because of symmetry, we find that
f(b) ∈ Im(g). So, f(B) = g(B).

Example 3.4 The converse of this theorem does not hold. As an example,
let A = 〈2〉 ⊂ C∗ and B = 〈2, α〉, where α is a fixed element of C such that
α4 = −4.

When embedding B into A, we only have to give the image of α. There are
eight possible images, since A has eight 8th roots of unity. However, four of
these have 4th power 4, and do therefore not induce an injection.

The remaining four embeddings send α to ikα, where i = α2/2 ∈ B. Note that
i2 = −1. Since i ∈ B, these four embeddings have the same image in A. This
means that A ⊂ B is normal.

However, there is an element in B/A of order 8, but B does not contain any
primitive 8th roots of unity.

Theorem 3.5. Let A ↪→ B ↪→ C be abelian groups. Assume that B is normal
over A. Then there is a homomorphism AutA(C) → AutA(B) such that the
following sequence is exact:

0 −→ AutB(C) −→ AutA(C) −→ AutA(B)

Proof. Since B is normal over A, every A-injection from B to A has the same
image. Therefore, every A-injection from B to C also has the same image. In
particular, if σ ∈ AutA(C), the restriction of σ to B maps B onto itself, since its
image must be the same as that of the identity on C restricted to B. Therefore,
there is a well-defined restriction map from AutA(C)→ AutA(B).

The kernel of this map consists of exactly those automorphisms in AutA(C)
that are the identity on B, so the kernel is AutB(C).

Example 3.6 The last map is generally not a surjection. As an example,
choose a fixed α ∈ C∗ such that α8 = −9 and let i = α4/3. Note that i2 = −1.
Now consider the extension 〈Q∗, i〉 ⊂ 〈Q∗, α〉. The torsion subgroup of 〈Q∗, α〉
is 〈i〉.

Consider an automorphism σ ∈ AutQ∗(〈Q∗, α〉). We know that σ(α)8 = −9, so
σ(α) = ikα, for a k ∈ Z. This means that σ(i) = (ikα)4/3 = α4/3 = i, so i is
fixed under all automorphisms in AutQ∗(〈Q∗, α〉)

However, AutQ∗(〈Q∗, i〉) contains an automorphism that sends i to −i.

19



Theorem 3.7. Let A ↪→ B ↪→ C be abelian groups such that B and C are both
normal over A. Then the following sequence is exact:

0 −→ AutB(C) −→ AutA(C) −→ AutA(B) −→ 0.

The proof of this theorem depends on the following lemmas.

Lemma 3.8. Let A ↪→ B and B ↪→ C be r-extensions of abelian groups. Then
the restriction map EmbA(C,A)→ EmbA(B,A) is a surjection.

Proof. Let φ be an element of EmbA(B,A). Because every r-extension of B is
also an r-extension of A, this embedding φ has the universal property of B ↪→ B.
Then, since B ↪→ C is an r-extension, there is an injection C ↪→ A such that
the following diagram commutes:

B A.

C

Therefore, the restriction map EmbA(C,A)→ EmbA(B,A) is a surjection.

Lemma 3.9. Let A ↪→ B be a normal extension and σ ∈ EmbA(B,A). Then
the map

σ∗ : AutA(B) −→ EmbA(B,A)

ϕ 7−→ σϕ

gives a bijection between EmbA(B,A) and AutA(B).

Proof. Consider the map

EmbA(B,A) −→ AutA(B)

τ 7−→ σ−1τ

This map is well-defined since τ(B) = σ(B) by the definition of a normal ex-
tension, and therefore σ−1 is defined on the image of τ .

It is clear from the definition that this map is a two-sided inverse of σ∗. This
means that σ∗ is a bijection.

Proof of theorem 3.7. Because of theorem 3.5, we only need to prove that the
restriction map AutA(C)→ AutA(B) is a surjection.
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Choose σ ∈ EmbA(C,A) and let σ′ ∈ EmbA(B,A) be the restriction of σ to B.
As shown in lemma 3.9, these two embeddings induce bijections σ∗ : AutA(C)

∼→
EmbA(C,A) and σ

′
∗ : AutA(B)

∼→ EmbA(B,A).

AutA(C)
res−→ AutA(B)y ∼σ∗

y ∼σ′
∗

EmbA(C,A)
res−→ EmbA(B,A)

An automorphism of C composed with σ, restricted to B gives the same em-
bedding of B into A as first restricting to B and then composing with σ′,
so the above diagram is commutative. Since we already know the restric-
tion map EmbA(C,A)→ EmbA(B,A) is surjective (lemma 3.8), the restriction
AutA(C)→ AutA(B) is a surjection.

The following theorem is the analogue of theorem 1.5.

Theorem 3.10. Let A be an abelian group, and A ⊂ B and A ⊂ C two r-
extensions contained in A. If B and C are both normal over A, then B+C and
B ∩ C are also normal over A, and there is a natural isomorphism

AutA(B + C)
∼−→ AutA(B)×AutA(B∩C) AutA(C).

Proof. All embeddings of B into A have the same image because B is normal
over A, and the same holds for C. Therefore, all embeddings of B ∩ C into A
have the same image: the intersection of the images of B and C. So, B ∩ C is
normal over A.

Similarly, every embedding of B +C into A can be restricted to embeddings of
B and C into A. The image of B+C in A is the sum of the images of B and C,
and therefore all embeddings of B + C into A have the same image and B + C
is normal over A.

Because of theorem 3.5 there are restriction maps from AutA(B+C) to AutA(B)
and AutA(C), and from AutA(B) and AutA(C) to AutA(B ∩ C). Clearly, re-
stricting an automorphism from AutA(B + C) first to B and then to B ∩ C
gives the same automorphism as first restricting to C and then to B ∩ C. So,
the universal property of AutA(B)×AutA(B∩C)AutA(C) gives a homomorphism
from AutA(B + C) to this fibered product.

The kernel of this homomorphism consists of those automorphisms that are the
identity on B and on C. Those automorphisms are clearly also the identity on
B + C, so, the kernel is trivial.

To prove that it is surjective, let (σB , σC) ∈ AutA(B) ×AutA(B∩C) AutA(C).
Define an automorphism in AutA(B + C) by sending elements b + c ∈ B + C
(where b ∈ B and c ∈ C) to σB(b)+σC(c) ∈ B+C. This is well defined since σB
and σC are equal on B ∩C. It is an automorphism since it maps B to B, C to
C and B ∩C to B ∩C and therefore the inverse is given by the homomorphism
analogously derived from (σ−1

B , σ−1
C ).
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3.2 Computing automorphism groups

Let 0→ A→ B
g→ C → 0 be an exact sequence of abelian groups. Consider all

automorphisms σ of B for which the following diagram is commutative:

0 −→ A −→ B −→ C −→ 0

=

y ∼σ =

0 −→ A −→ B −→ C −→ 0.

We will call the group of these automorphisms Aut1A(B). If we make the con-
dition that the diagram has to commute explicit, we get the following alternate
description:

Aut1A(B) = {σ ∈ Aut(B) : ∀x ∈ A : σ(x) = x and ∀y ∈ B : g(σ(y)− y) = 0}.

Using the exactness of 0 → A → B → C → 0, we can rewrite the second
condition, yielding:

Aut1A(B) = {σ ∈ Aut(B) : ∀x ∈ A : σ(x) = x and ∀y ∈ B : σ(y)− y ∈ A}.

Lemma 3.11. If 0→ A→ B
g→ C → 0 is an exact sequence of abelian groups,

then the map

ϕ : Aut1A(B) −→ Hom(C,A)

σ 7−→ (c 7→ σ(c̃)− c̃, where c̃ ∈ g−1(c).)

is a well defined isomorphism of abelian groups.

Proof. By definition of Aut1A(B), we know that σ(c̃)− c̃ is really an element of
A for all c̃ ∈ B. Also, if c̃′ is another element in the inverse image of c, then the
difference c̃ − c̃′ is contained in A, so σ maps c̃ − c̃′ to itself. Because of that,
σ(c̃)− c̃ = σ(c̃′)− c̃′, so the above map is well-defined.

It is clear that the identity is mapped to 0, so to show that ϕ is a homomorphism,
we only need to consider ϕ(στ) for σ, τ ∈ Aut1A(B):

ϕ(στ)(c) = στ(c̃)− c̃ = στ(c̃)− σ(c̃) + σ(c̃)− c̃
= σ(τ(c̃)− c̃)) + σ(c̃)− c̃ = τ(c̃)− c̃+ σ(c̃)− c̃
= ϕ(σ)(c) + ϕ(τ)(c)

Now consider the following map:

ψ : Hom(C,A) −→ Aut1A(B)

h 7−→ (b 7→ b+ hg(b)) .
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Note that if h ∈ Hom(C,A), the homomorphism b 7→ hg(b) + b is indeed an
element of Aut1A(B): it is an automorphism since b 7→ b − hg(b) is the inverse;
if b ∈ A, then g(b) = 0, so b+ hg(b) = b, and g(b+ hg(b)) = 0 + g(b) = g(b).

This is a two-sided inverse of ϕ, since

(ϕψ(h))(c) = ψ(h)(c̃)− c̃ = (hg(c̃) + c̃)− c̃ = hg(c̃) = h(c)

and

ψϕ(σ)(b) = b+ ϕ(σ)(g(b)) = b+ σ(g̃(b))− g̃(b) = b+ σ(b)− b = σ(b).

Corollary 3.12. If A ↪→ B is an r-extension, then

AutA+Btor
(B) ∼= Hom(B/(A+Btor), Btor)

Proof. We apply the previous lemma to the exact sequence 0 → A + Btor →
B → B/(A+ Btor) → 0. This gives us an isomorphism between Aut1A+Btor

(B)
and Hom(B/(A+Btor), A+Btor).

Claim: Aut1A+Btor
(B) = AutA+Btor

(B). By the definition of the left-hand auto-
morphism group, it is sufficient to show that for all σ ∈ AutA+Btor

(B) and all
b ∈ B we have that σ(b)− b ∈ A+Btor.

Since A ↪→ B is an r-extension, the group B/(A + Btor) is torsion. Therefore,
there is an n ∈ Z>0 such that nb is mapped to zero in B/(A+Btor). Therefore,
nb ∈ ABtor, and σ(nb) − nb = 0. So, n(σ(b) − b) = 0, which means that
σ(b)− b ∈ Btor.

Claim: Hom(B/(A + Btor), A + Btor) = Hom(B/(A + Btor), Btor). We have
already seen that B/(A + Btor) is torsion. Therefore, the image of any ho-
momorphism from B/(A + Btor) to A + Btor is torsion as well and therefore
contained in Btor.

Corollary 3.13. AutA+Btor
(B) is abelian.

Define the Tate-module T (A) := lim←−Ator[n] (cf. Silverman [5] III, §7). The pro-

jective limit ranges over all positive integers n, with projection maps Ator[m
′]→

Ator[m] if m | m′.

Theorem 3.14. The map

χ : Hom(A/(A+Ator), Ator) −→ Hom(A, T (A))

ϕ 7−→ (x 7→ (ϕ(x/n))n)

is a well defined isomorphism of abelian groups.
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Proof. Let x be an element of A and n ∈ Z>0. Then x
n is an element of A of

which the n-th power is in A + Ator. Therefore, ϕ( xn ) ∈ A[n]. Note that while
x
n is only defined up to n-torsion, Ator is contained in the kernel of ϕ, so ϕ( xn
is properly defined. If m | n, then ϕ( xm ) ∈ A[m], and n

mϕ(
x
n ) = ϕ( xm ). So,

(ϕ( xn ))n is a proper element of T (A). It is clear that the map χ respects the
group operation, so it remains to prove that χ is an isomorphism.

If ϕ( xn ) = 0 for all x ∈ A and n ∈ Z>0, and assume that ϕ 6= 0. Then there is

an a ∈ A/(A+Ator) such that ϕ(a) 6= 0. Let n be the order of a in A/(A+Ator)
and let x = na. Then, ϕ( xn ) = ϕ(a) 6= 0. Therefore, the homomorphism is an
injection.

To prove surjectivity, let ψ ∈ Hom(A, T (A)). Define a homomorphism ϕ′ from
A to Ator as follows: let x ∈ A. Then there is an y ∈ A and an n ∈ Z>0 such
that nx = y. Now set ϕ′(x) = ψ(y)n. Here ψ(y)n means the n-th component
of the projective limit ψ(y). This is an element of A[n] ⊂ Ator. This map is
well defined because of the restriction properties of the projective limit. It is
a homomorphism because ψ is a homomorphism. If x ∈ A, then we can take
y = x and n = 1, and since ψ(x)1 ∈ Ator[1] = {0}, ϕ′(x) = 0 If x ∈ Ator, we can
take y = 0, so ϕ′(x) = ψ(0)n = 0. Therefore, A + Ator ⊂ kerϕ′, which means
that ϕ induces a homomorphism ϕ from A/(A + Ator) to Ator. It is clear that
χ maps ϕ to ψ. So, χ is an isomorphism, as required.

Let 0 → A → B → C → 0 again be an exact sequence of abelian groups, and
let D be a subgroup of A.

Consider the automorphisms of B that map A to itself: Aut(A,B) := {σ ∈
Aut(B) : σ(A) = A}. Define AutD(A,B) to be the subgroup consisting of those
automorphisms that are the identity when restricted to D.

Lemma 3.15. The sequence

0 −→ Aut1A(B) −→ AutD(A,B) −→ AutD(A)×Aut(C)

is exact. Additionally, if the exact sequence 0 → A → B → C → 0 splits, the
sequence

0 −→ Aut1A(B) −→ AutD(A,B) −→ AutD(A)×Aut(C) −→ 0

is exact and it splits.

Proof. First, we will show the first sequence is indeed exact. The automorphisms
in Aut1A(B) are the identity when restricted to A, so they clearly map A to itself
and are the identity when restricted to D. Therefore, Aut1A(B) is a subgroup of
AutD(A,B). The sequence is exact at AutD(A,B), since the image of the first
map and kernel of the second map are both exactly those automorphisms in
AutD(A,B) that are the identity when restricted to A and induce the identity
on C.
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Now assume that 0→ A→ B → C → 0 splits. Then, B ∼= A⊕ C. This means
that, given an automorphism in AutD(A) and an automorphism of C, we can
compose them into an automorphism of B ∼= A⊕C that maps A to itself and is
the identity on D. This gives a map AutD(A) × Aut(C) → AutD(A,B) which
splits the exact sequence.

Now define Aut1D(A,B) as the subgroup of AutD(A,B) consisting of the auto-
morphism that induce the identity on C. This means that

Aut1D(A,B) = {σ ∈ Aut(B) : σ|A ∈ AutD(A) and ∀b ∈ B : σ(b)− b ∈ A}.

We can restrict the exact sequence from lemma 3.15 to these automorphisms:

Lemma 3.16. The sequence

0 −→ Aut1A(B) −→ Aut1D(A,B) −→ AutD(A)

is exact. If the sequence 0→ A/D → B/D → C → 0 splits, the sequence

0 −→ Aut1A(B) −→ Aut1D(A,B) −→ AutD(A) −→ 0

is exact and splits.

Proof. Since automorphisms in Aut1A(B) are automorphisms of B that are the
identity on D and C and map A to itself, Aut1A(B) ⊂ Aut1D(A,B), so the
sequence is exact at Aut1A(B).

The image of the first map and kernel of the second map in Aut1D(A,B) are
exactly those automorphisms of Aut1D(A,B) that are the identity on A, so the
sequence is exact at Aut1D(A,B).

Now assume that 0→ A/D → B/D → C → 0 splits.

There is an abelian group C̃ with D ⊂ C̃ ⊂ B such that the map B/D → C

induces an isomorphism C̃/D → C. Because C̃ ∩ A = D, theorem 1.4 implies

that B = C̃ ⊕D A. Because of this, we can extend an automorphism of A that
is the identity on D to an automorphism of B: the image of the map

AutD(A) −→ AutD(A)×AutD(C̃) ↪→ AutD(B)

σ 7−→ (σ ⊕ id eC)

is contained in Aut1D(A,B) and this map gives the required splitting.

Corollary 3.17. If 0 → Btor/Ator → B/A splits, the following sequence is
exact and splits:

0 −→ AutA+Btor
(B) −→ AutA(B) −→ AutAtor

(Btor) −→ 0
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Proof. We will apply lemma 3.16 to the exact sequence 0 → ABtor → B →
B/ABtor → 0, with A ⊂ ABtor taking the role of D.

Since ABtor/A = Btor/Ator, the exact sequence 0 → ABtor/A → B/A →
B/ABtor → 0 splits.

We can now apply lemma 3.16. Together with the fact that AutA(A+Btor) =
AutAtor

(Btor), this shows that the sequence

0 −→ Aut1A+Btor
(B) −→ AutA(B) −→ AutAtor

(Btor) −→ 0

splits. As we have seen in the proof of corollary 3.12, the groups Aut1A+Btor
(B)

is equal to AutA+Btor
(B).

Corollary 3.18. The following sequence is exact and splits:

0 −→ AutA+Ator
(A) −→ AutA(A) −→ AutAtor

(Ator) −→ 0

Proof. A is divisible by definition. For all a ∈ Ator, n ∈ Z, n 6= 0, there is a
b ∈ A with nb = a. Since a is torsion and a multiple of b, the element b is also
torsion. Therefore, Ator is also divisible. By lemma 1.7, Ator/Ator is divisible.
This means that it is injective (theorem 1.10), so we can apply corollary 3.17 to
B = A.

Corollary 3.19. Using the previous corollary and theorem 3.14, we find that

AutA(A) ∼= Hom(A, lim←−A[n]) o AutAtor
(Ator).

Example 3.20 Let A be Q∗ and r(p) = 1 for all primes p. Define µ̂ = T (Q∗) =
lim←−µn, where n ranges over the positive integers, with projection maps µm →
µm′ given by raising to the power m/m′, if m′ | m.

Then the following map is an isomorphism:

AutA(A)
∼−→ Hom(Q∗, µ̂) o Ẑ∗

σ 7−→ (x 7→ (σ( n
√
x)/ n
√
x)n, σ|Ator

).

Note that this isomorphism depends on the choice of n-th roots.

Example 3.21 The sequence from corollary 3.17, 0 −→ AutA+Btor
(B) −→

AutA(B) −→ AutAtor
(Btor) −→ 0 is not always exact.

Consider the extensions from example 3.6. Let A be Q∗, and B = 〈Q∗, α〉. As
seen before, the image of AutA(B) in AutAtor

(Btor) is trivial, while on the other
hand, AutAtor

(Btor) = Aut〈−1〉(〈i〉) ∼= Z/2Z.
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Example 3.22 Even if the sequence is exact, it does not always have to split.

As an example, let A = 〈−1, 4
√
−3〉, and B = 〈ζ8, 8

√
3〉. Denote 4

√
−3 by α and

8
√
3 by β. Choose the roots in such a way that β2 = ζ8α. The torsion subgroup
Ator is equal to 〈−1〉 and Btor = 〈ζ8〉.

Since β2 = ζ8α, the automorphism group AutABtor
(B) = Z/2Z. The automor-

phism group of the torsion AutAtor
(Btor) is (Z/8Z)

∗ ∼= Z/2Z× Z/2Z.

So, if the sequence were to split, AutA(B) would be of exponent 2. However, B
has an automorphism σ that sends ζ8 to ζ3

8 and β to ζ8β. This automorphism
is the identity on A, since it maps −1 = ζ4

8 to ζ12
8 = −1 and α = ζ−1

8 β2 to
ζ−3
8 ζ2

8β
2 = α. It does not have order 2, however, since σ2 maps β to ζ2

8β, which
is not equal to β. Therefore, the sequence does not split.
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Chapter 4

Galois theory

4.1 Kummer theory

Let K be a field with algebraic closure K and m a positive integer such that
charK does not divide m. Define the subgroup of K∗ of m-th roots of unity as

µm(K) := {ζ ∈ K∗ : ζm = 1}.

Denote µm(K) by µm. For a subgroup W of K∗ define the subgroup of K
∗
of

m-th roots of W as
W 1/m := {x ∈ K∗ : xm ∈W}.

Theorem 4.1. (Kummer theory) Let K be a field and m ∈ Z>0 such that
charK does not divide m, and µm is contained in K∗. Then, the map from
groups to fields

{W : K∗m ⊂W ⊂ K∗} −→ {L : K ⊂ L ⊂ K,L/K abelian of exponent m}
W 7−→ K(W 1/m)

is a bijection.

Additionally, if K∗m ⊂ W ⊂ K∗ and [W : K∗m] < ∞, then [K(W 1/m) : K] =
[W : K∗m] and the map

Gal(K(W 1/m)/K) −→ Hom(W/K∗m, µm)

σ 7−→ (α 7→ σ(β)/β, for β ∈W satisfying βm = α)

is an isomorphism.

Proof. See Lang’s Algebra [2], section VI, theorems §8.1 and §8.2.
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Corollary 4.2. Let K and m be as above. Let W is an abelian group with
K∗m ⊂W ⊂ K∗, where K(W 1/m)/K may be infinite. Then, the map

Gal(K(W 1/m)/K) −→ Hom(W/K∗m, µm)

σ 7−→ (α 7→ σ(β)/β, for β ∈W satisfying βm = α)

is an isomorphism.

Proof. From infinite Galois theory, we know that

Gal(K(W 1/m)/K) = lim←−Gal(K(W
1/m
0 )/K),

where W0 ranges over all abelian groups K∗m ⊂ W0 ⊂ W for which the field

extension K(W
1/m
0 )/K is finite.

Because W/K∗m = lim−→W0/K
∗m, the universal property of the injective limit

gives us that

Hom(W/K∗m, µm) ∼= lim←−Hom(W0/K
∗m, µm).

Theorem 4.1 tells us that the maps Gal(K(W
1/m
0 )/K) → Hom(W0, µm) are

isomorphisms, and since these maps are respected by the inclusions between
the W0’s, the corollary follows.

Theorem 4.3. Let K, m and W be as in the previous theorem. Then the
natural restriction map

Gal(K(W 1/m)/K) −→ AutK∗(W 1/m)

is an isomorphism.

Proof. Consider the sequence

1 −→ K∗ −→W 1/m m−→W/K∗m −→ 1.

It is exact, since the elements of W 1/m that are 1 ∈ W/K∗m after taking the
m-th power are exactly those in K∗ (note that µm ∈ K∗), and every element in
W has an m-th root in W 1/m.

In lemma 3.11 we have seen that there is an isomorphism

Aut1K∗(W 1/m) −→ Hom(W/K∗m,K∗)

σ 7−→ (α 7→ σ(β)/β, where βm = α.)

Since W/K∗m is a subgroup of K∗/K∗m, if an automorphism of W 1/m is
the identity on K∗, it also induces the identity on W/K∗m. Because of this,
Aut1K∗(W 1/m) is equal to AutK∗(W 1/m).
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Also, W/K∗m is a group of exponent m, and therefore the image of any ho-
momorphism from W/K∗m to K∗ is in fact contained in µm. This means that
Hom(W/K∗m,K∗) = Hom(W/K∗m, µm).

Combining this with corollary 4.2 proves the theorem.

We can generalize the above to (suitably defined) infinite values ofm. A Steinitz
number m is a formal expression

m =
∏

p prime

pm(p)

where m(p) ∈ Z≥0 ∪ {∞}.

We can define a natural multiplication on Steinitz numbers, as well as the con-
cept of divisibility: if m =

∏
p prime p

m(p) and n =
∏
p prime p

n(p) are Steinitz

numbers, then mn =
∏
p prime p

m(p)+n(p) and m | n if ∀p prime : m(p) ≤ n(p).

Note that the positive integers form a subset of the Steinitz numbers. If n is a
positive integer, n =

∏
p prime p

ordp(n)

If K is again a field with algebraic closure K and m a Steinitz number, define

µm(K) = {ζ ∈ K∗ : ∃n ∈ Z>0, n | m with ζn = 1}

and again denote µm(K) by µm. Also define, for a subgroup W of K∗,

W 1/m = {x ∈ K∗ : ∃n ∈ Z>0, n | m with xn ∈W}.

Theorem 4.4. (Kummer theory for Steinitz numbers) Let K be a field and m
a Steinitz number with charK not dividing m such that µm ⊂ K∗. Then there
is a bijection

{B : K∗ ⊂ B ⊂ K∗1/m} −→ {L : K ⊂ L ⊂ K,L/K abelian of exponent m}
B 7−→ K(B)

Additionally, if B is an abelian group with K∗ ⊂ B ⊂ K∗1/m, then the natural
restriction

Gal(K(B)/K) −→ AutK∗(B)

is an isomorphism.

Proof. A group B with K∗ ⊂ B ⊂ K∗1/m is the union of a number of groups
W 1/n, where n is a positive integer and K∗n ⊂ W ⊂ K∗. Similarly, a field L
with K ⊂ L ⊂ K such that L/K is abelian of exponent m is the union of a
number of fields L0, where L0/K is of finite exponent n | m.

Because of this, the bijection between {W : K∗m ⊂ W ⊂ K∗} and {L : K ⊂
L ⊂ K,L/K abelian of exponent m} from theorem 4.1 now extends to the case
where m is a Steinitz number.
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For the second part of the proof, consider all groups W for which there is a
positive integer n such that W 1/m ⊂ B and K∗n ⊂ W ⊂ K∗. For such pairs
(W,n), we can apply theorem 4.3, which states that the natural restriction
Gal(K(W 1/n)/K)→ AutK∗(W 1/n) is an isomorphism.

We now take the projective limit over all such pairs (W,n) on both sides. Since
the inclusions between such W respect these restriction maps, the natural re-
striction between the projective limits is an isomorphism as well. The left-hand
projective limit is Gal(K(B)/K).

Because K∗ ⊂ W 1/n is normal, each automorphism of B maps W 1/n to it-
self. Since we also have that

⋃
W 1/n = B, the right-hand projective limit

lim←−AutK∗(W 1/n) is AutK∗(B).

Therefore, the restriction is an isomorphism:

Gal(K(B)/K)
∼−→ AutK∗(B).

4.2 Galois groups of radical field extensions

Let K again be a field with fixed algebraic closure K. Let B be a group such
that K∗ ⊂ B ⊂ K∗1/m, for a Steinitz number m for which charK does not
divide m. Assume that µm is contained in B. Note that this implies that K(B)
is normal over K.

In this section we will describe the Galois group Gal(K(B)/K).

Let w be the Steinitz number for which µw = µm ∩K∗. In the case where m is
finite, this means that w is the number of m-th roots of unity in K. Define Bw
as B ∩K∗1/w. This makes K(Bw) over K a Kummer extension.

Additionally, assume that there is a Steinitz number t such that µm ⊂ µt ⊂ B
and µt satisfies the condition K(µtBw) ∩B = µtBw.

In the Kummer case, if µm ⊂ K∗, taking µt = µm is sufficient: K(µmBw)∩B =
K(Bw)∩B = Bw = µmBw. In corollary 4.7 below we will prove that if µmw ⊂ B,
taking µt = µmw also satisfies this condition.

Since B contains µt, we can split up our extension into a cyclotomic part K ⊂
K(µt) and K(µt) ⊂ K(B). There is a natural injection Gal(K(µt)/K) →
Autµw

(µt). We call the image of this map H. So, H ∼= Gal(K(µt)/K).

If we restrict the image of Gal(K(B)/K) in AutK∗(B) to Autµw
(µt), it is clearly

contained in H. Therefore, the image of Gal(K(B)/K) is contained in

AutK∗, H(B) := {σ ∈ AutK∗(B) : σ restricted to µt belongs to H}.
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Let M be the compositum of K(Bw) and K(µt) and N the intersection. Write
Cw := Bw ∩ K(µt)

∗. It is clear that K(Cw) ⊂ N = K(Bw) ∩ K(µt). The
opposite inclusion is derived from Kummer theory as follows. We know from
theorem 4.4 that K(Bw) ∩K(µt) is obtained by adjoining a subgroup C of Bw
to K. Additionally, C ⊂ K(µt)

∗ because K(C) ⊂ K(µt). Therefore, C ⊂ Cw
and N ⊂ K(Cw). So, N is equal to K(Cw).

The various fields we are considering are shown in the following diagram.

K(B)

M

K(Bw) K(µt)

N= K(Cw)

K

We can describe Gal(K(Bw)/K) and Gal(N/K) in terms of automorphism
groups of abelian groups with Kummer theory: theorem 4.4 states that the
natural restriction maps Gal(K(Bw)/K)

∼→ AutK∗(Bw) and Gal(N/K)
∼→

AutK∗(Cw) are isomorphisms.

We have homomorphisms ψ1 : H ∼= Gal(K(µt)/K)→ Gal(N/K) ∼= AutK∗(Cw)
and ψ2 : AutK∗(Bw)→ AutK∗(Cw). By definition of AutK∗, H(B), we also have
a homomorphism from AutK∗, H(B) to H. Combined with the natural restric-
tion from AutK∗, H(B) to AutK∗(Bw), this gives two maps from AutK∗, H(B)
to AutK∗(Cw):

ϕ1 : AutK∗, H(B) −→ H
ψ1−→ AutK∗(Cw)

ϕ2 : AutK∗, H(B) −→ AutK∗(Bw)
ψ2−→ AutK∗(Cw).

These two maps allow us to describe Gal(K(B)/K).

Theorem 4.5. The natural homomorphism Gal(K(B)/K) −→ AutK∗, H(B)
gives an isomorphism of Gal(K(B)/K) with the subgroup Γ of AutK∗, H(B)
consisting of the elements that have the same image under the two maps ϕ1 and
ϕ2 defined above.

Proof. Let Γ′ be the fibered product H ×AutK∗ (Cw) AutK∗(Bw). From theo-
rem 1.5 we know that the natural map from Γ′ to Gal(M/K) is an isomorphism.
Because of the universal property of the fibered product, the homomorphisms
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ϕ1 and ϕ2 from AutK∗, H(B) restricted to Γ to AutK∗(Cw) both factor through
Γ′ with the same map π : Γ→ Γ′.

Galois theory gives us the following short exact sequence:

0 −→ Gal(K(B)/M)
f−→ Gal(K(B)/K)

g−→ Gal(M/K) −→ 0.

We will use this sequence to describe Gal(K(B)/K).

The image of the map Gal(K(B)/K)→ AutK∗, H(B) is contained in Γ, because
if we restrict an automorphism in AutK∗, H(B) to H ∼= Gal(K(µt)/K) and to
AutK∗(Bw) ∼= Gal(K(Bw)/K), then they are the same when further restricted
to AutK∗(Cw) ∼= Gal(N/K). This gives us an induced map h : Gal(K(B)/K)→
Γ.

Since applying π after h is the same as first applying g and then applying the
isomorphism from Gal(M/K) to Γ′, the following diagram is commutative.

Gal(K(B)/K)
g−→ Gal(M/K) −→ 0yh

y ∼

Γ
π−→ Γ′

Since g and the isomorphism are both surjective, π has to be surjective. The
kernel of π consists of exactly those elements of Γ that are the identity when
mapped to H and when mapped to AutK∗(Bw). So, kerπ = AutµtBw

(B).

We also have a restriction map Gal(K(B)/M)→ AutµtBw
(B), which makes the

following square commutative:

0 −→ Gal(K(B)/M)
g−→ Gal(K(B)/K)y

y
0 −→ AutµtBw

(B) −→ Γ.

Since K(B)/M is a Kummer extension, we know from theorem 4.4 that the
restriction Gal(K(B)/M) → AutM∗∩B(B) is an isomorphism. This automor-
phism group is equal to AutµtBw

(B) by our assumption on t, which makes the
restriction map mentioned above an isomorphism.

Summarizing, we have the following commutative diagram with exact rows:

0 −→ Gal(K(B)/M)
f−→ Gal(K(B)/K)

g−→ Gal(M/K) −→ 0y ∼

yh
y ∼

0 −→ AutµtBw
(B)

ι−→ Γ
π−→ Γ′ −→ 0.

Let σ be an element of the kernel of h. Then πh(σ) = 1, and therefore g(σ) = 1.
Because of the exactness of the top row, this means that σ ∈ Gal(K(B)/M).
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So, ι(σ) = h(σ) = 1. Because ι is an injection, we find that σ = 1, and h is
injective.

To show that h is surjective, let τ be any element of Γ. Since g is a surjection,
there is an element τ̃ ∈ Gal(K(B)/B) such that g(τ̃) = π(τ). Therefore, τ and
h(τ̃) have the same image under π, so h(τ̃)−1τ ∈ AutµtBw

(B). This means that
τ ∈ h(τ̃)AutµtBw

(B) = h(τ̃AutµtBw
(B)) ⊂ imh.

So, h is an isomorphism. This proves the theorem, up to the existence of µt if
µmw ⊂ B, which we prove below.

Theorem 4.6. (Schinzel) Let K be a field and n a positive integer not divisible
by charK. Let w be the number of n-th roots of unity in K. Then, the splitting
field of Xn−a over K is abelian over K if and only if there is an element b ∈ K
with aw = bn.

Proof. See [3].

Corollary 4.7. If µmw ⊂ B, then K(µmwBw) ∩B = µmwBw.

Proof. The inclusion K(µmwBw) ∩ B ⊃ µmwBw is clear, since µmw ⊂ B and
Bw ⊂ B, so we only need to prove K(µmwBw) ∩B ⊂ µmwBw.

Let x be an element of K(µmwBw)∩B. Because x ∈ B, there is an n ≥ 0, n | m
and an element a ∈ K such that xn = a.

K(µmwBw) contains µn, so the splitting field of Xn − a over K is contained in
K(µmwBw), which is abelian overK. This means that we can apply theorem 4.6.
Let v be the number of nth roots of unity in K. Then there is an element b ∈ K
such that av = bn.

We have xn = a, so xnv = av = bn. Therefore, there is an ε ∈ µn such that
xv = bε. Because B contains µmw and nv | mw, there is a ξ ∈ µnv such that

(xξ)v = b ∈ K. This means that xξ ∈ K∗1/w. We know that ξ ∈ µnv and
x ∈ B, so xξ ∈ Bw and x ∈ µmwBw.

Example 4.8 Taking µt = µm as in the Kummer case does not always work.

Let K = Q(
√
2) and B = 〈K∗, ζ8〉. Then, m = 4, w = 2 and Bw = 〈K∗, i〉.

Take µt = µm = 〈i〉. Then, K(µtBw) = K(i). Note that µ8 ⊂ K(i), since
µ8 = 〈(1 + i)/

√
2〉. Therefore, µ8 ⊂ K(µtBw) ∩B, while ζ8 6⊂ µtBw.

We will now apply theorem 4.5 to some examples.

Example 4.9 Consider the Galois extension Q ⊂ Q( 4
√
−9). We take K = Q,

B = 〈Q∗, 4
√
−9〉. We find that m = 4, w = 2 and we set t = 4. This results

in Bw = 〈Q∗,
√
−9〉 = 〈Q∗, i〉 and Cw = Bw. Note that µt indeed satisfies the
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required condition, since indeed Q(µ4Bw)∩B = µ4Bw. In the next example we
will handle a case where taking m = t does not work.

The automorphism group AutK∗(B) consists of the automorphisms mapping
4
√
−9 to 4

√
−9, i 4

√
−9, − 4

√
−9 and −i 4

√
−9. Note that this group is isomorphic

to the V4 because all automorphisms have order 2. Because the restriction
map Gal(Q(i)/Q) → Aut〈−1〉(〈i〉) is a surjection, we find that AutK∗, H(B) =
AutK∗(B).

Since K(µt) = K(Bw) = K(Cw), the two maps ϕ1 and ϕ2 are equal on all of
AutK∗, H(B), so theorem 4.5 states that Gal(Q( 4

√
−9)/Q) ∼= V4.

Example 4.10 Now consider the Galois extension Q ⊂ Q( 4
√
−4). We take

K = Q, B = 〈Q∗, 4
√
−4〉. As in the previous example, we find that m = 4,

w = 2. However, no value of t satisfies the condition on µt.

We therefore add ζ8 to B, so that B = 〈Q∗, ζ8, 4
√
−4〉 and we set t = 8. Now that

we have added ζ8, we see that we can also write B as 〈Q∗, ζ8,
√
2〉. Therefore,

AutK∗(B) ∼= V4 ⊕ Z/2Z ∼= (Z/2Z)3. Since the restriction Gal(Q(ζ8)/Q) →
Aut〈−1〉(〈ζ8〉) is a surjection, AutK∗, H(B) = AutK∗(B).

The group Bw is equal to 〈Q∗, i,
√
2〉 and Cw = Bw, since

√
2 ∈ Q(ζ8).

The map ϕ1 maps an automorphism of B to one of Cw through the Galois
group of Q(ζ8)/Q. The map ϕ2 maps an automorphism of B to one of Cw by
restricting it to Cw. Thus, we see that the image Gal(ζ8,

4
√
−4) in AutK∗, H(B)

consists of exactly those automorphisms σ for which σ(ζ8) + σ(ζ−1
8 ) = σ(

√
2)

(where we choose ζ8 such that ζ8 + ζ−1
8 =

√
2 in Q(ζ8)).

We find that Gal(Q(ζ8,
4
√
−4)/Q) ∼= V4 as expected, since Q(ζ8,

4
√
−4) = Q(ζ8).

The Galois group Gal(Q( 4
√
−4)/Q) is a quotient of order 2 of Gal(Q(ζ8,

4
√
−4)/Q)

and is therefore isomorphic to Z/2Z.

Example 4.11 Consider the Galois extension Q ⊂ Q(ζ3,
3
√
2). We take K = Q

and B = 〈Q∗, ζ3, 3
√
2〉. We find that m = 3, w = 1 and t = 3. Because of

this, Bw = Cw = Q∗. It is easy to see from corollary 3.12 and corollary 3.17
that AutK∗(B) = Z/3Z o (Z/3Z)∗ = S3. All 6 of these automorphisms induce
an automorphism on 〈Q∗, ζ3〉 that comes from an automorphism of Q(ζ3), so
AutK∗, H(B) = AutK∗(B). Since K(Cw) = Q, the image of both ϕ1 and ϕ2 is
trivial, so Gal(K(B)/K) ∼= AutK∗, H(B) ∼= S3.

Example 4.12 Let K = Q, m =
∏
p p
∞ and B = Q∗

1/m, i.e., B consists of all
radicals. It follows that w = 2 and t = m. So, Bw consists of all square roots
in B. If we define p∗ = ±p such that p∗ ≡ 1 mod 4, then

√
p∗ ∈ Q(ζp) (see

Lang’s Algebra [2], VI, theorem §3.3). Also, i =
√
−1 is itself cyclotomic, so we

can conclude that every square root is contained in a cyclotomic extension. It
follows that Cw = Bw.
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We have the following diagram:

AutK∗(B) −→ Ẑ∗ = Gal(Q(µ)/Q)y
y

AutK∗(Bw) = AutK∗(Bw).

The map on the right maps an element a ∈ Ẑ∗ to the automorphism of Bw given
by i 7→ iamod 4 and

√
p∗ 7→ (ap )

√
p∗.

The image of the Galois group Gal(Q(B)/Q) in AutK∗(B) now consists of those
automorphisms that have the same image under both maps to AutK∗(Bw) in
this diagram.

36



Bibliography

[1] D. Eisenbud. Commutative Algebra with a view toward algebraic geometry.
Springer-Verlay, 1995.

[2] S. Lang. Algebra. Addison Wesley, 1993.

[3] A. Schinzel. Abelian binomials, power residues and exponential congruences.
Acta Arithmetica, 8:245–274, 1977.

[4] J.-P. Serre. Abelian l-Adic Representations and Elliptic Curves. Addison
Wesley, 1989.

[5] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.

[6] L.C. Washington. Introduction to Cyclotomic Fields. Springer-Verlag, 1982.

37


