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Chapter 1

Introduction

This thesis is about portfolio optimization. But what is an optimal portfolio?
Consider the following example:

Suppose you are at the casino and there are two games to play. In the first
game, there is a probability of 5% of winning 1000 euro and a 95% chance of
winning nothing. The second game also has a 5 percent winning chance, but
you will win 5000 euro. On the contrary, if you lose, then you have to pay the
casino 200 euro. The facts are in the table below.

game I game II
5%: +1000 euro 5%: +5000 euro

95%: 0 euro 95%: -200 euro

Table 1.1: The casino game

You are allowed to play the game once. Which game will you choose?

Most people will choose for game I. It is interesting to see why. The expected
return for the first game is (0.05× 1000) + (0.95 × 0) = 50, while the expected
return for game II is (0.05×5000)+(0.95×−200) = 60. Looking at the expected
return, it is more logical to play the second game! Nevertheless, in spite of this
statistical fact, game I is the most popular. The explanation is that game II
appears to be more risky than game I. But what is risk? Risk can be defined in
many ways, and for each person this definition of risk can be different. However,
most people have one thing in common: they all are risk averse.

A risk averse investor doesn’t like to take risk. If he can choose between two
investments with the same expected return, he will choose the less risky one.

1



Chapter 1. Introduction

The opposite of a risk averse investor is a risk loving investor. If a risk loving
investor can choose between two investments with the same expected return,
he will choose the most risky one. This seems a bit strange, but consider for
example a person who desperately needs 5000 euros. He will strongly consider
to take on the risky game II and is willing to take more risk to achieve his
goal. Although risk loving behavior is a common type of investing strategy, the
models in this thesis assume that each investor doesn’t like to take more risk
than necessary, and thus is risk averse.

Let’s return to the example. We said that game II is the more risky game.
This seems plausible, but we have not defined what risk is. As stated before, it
can be defined in many ways. Suppose gambler A uses the following definition of
risk: The more chance there is of losing money, the more risky the investment.
In his case, game I is risk-free, because you never lose money, and game II is
full of risk, because there is a 95% chance of losing something. Gambler B uses
another definition: The more dispersion in the outcomes of the investment, the
more risky it is. Dispersion can be measured by standard deviation. The higher
the dispersion, the more the outcomes are expected to differ from the expected
value. Looking at the example, game I has a standard deviation of

stdev(I) =
√

0.05× (1000− 50)2 + 0.95× (0 − 50)2 = 218,

while game II’s dispersion can be written as

stdev(II) =
√

0.05× (5000− 60)2 + 0.95× (−200− 60)2 = 1133.

So the dispersion of game II is more than five times higher than the dispersion
of game I, and that is why gambler B will choose to play the first game, in spite
of the lower expected return.

In the theory of portfolio optimization, the risk measure of standard devi-
ation is very popular. In 1952 Harry Markowitz wrote a paper about modern
portfolio theory, where he explained an optimization method for risk averse
investors. He won the Nobel prize for his work in 1990. His mean-variance anal-
ysis (the variance is the squared standard deviation) is used in many papers
since. Basic thought is finding the best combination of mean(expected return)
and variance(risk) for each investor.

This thesis tries to go beyond the theory of Markowitz. Extensions of this
theory are made to make the optimization of portfolios more applicable to the
current needs of, for example, a bank. This thesis gives a wide mathemati-
cal overview of the possible models that can be used for the optimization of
portfolios.

Overview of this thesis

The thesis starts with a broad mathematical view of the theory of Markowitz
in chapter 2. The theory of the efficient set is explained and optimal portfolios
are calculated. We see what happens when a risk-free asset is added to the
model and a sensitivity analysis is done. Chapter 3 introduces a safety first

2



principle, another model for portfolio optimization which deals with shortfall
probabilities. A shortfall probability is the chance that the return of the port-
folio will be lower than a predetermined value. The assumption of normally
distributed portfolio returns is made in this chapter. Chapter 4 discusses the
family of elliptical distributions. We see what happens with the safety first
model if an elliptical distribution, instead of a normal distribution, is used as
the density function for returns. The widely used risk measure Value at Risk
(VaR) is discussed in chapter 5, and optimal portfolios considering this other
risk measure are derived. Both the case with and without risk-free asset are dis-
cussed. Chapter 6 introduces the performance measures EVA (Economic Value
Added) and RAROC (Risk Adjusted Return On Capital), and implements these
in the previous models. Two proposals of dealing with uncertainty in the input
parameters are given in chapter 7. Here, the technique of second order cone
programming (SOCP) is used for solving the problems. Chapter 8 concludes
this thesis with a concluding example and recommendations for future research.
Some large or complex calculations and four MATLAB computer programs are
placed in the appendices. An example for illustrating the discussed models and
the references are placed at the end of each chapter.
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Chapter 2

The portfolio theory of Markowitz

This chapter is all about the theory of Markowitz. The theory is explained in a
short an mathematical way, and all interesting portfolios are calculated. Please
look at the references if the theory is too abstract, a nice introduction of the
Markowitz theory can be found, for example, in Elton, Gruber (1981) and Blake
(1990).

The efficient frontier is discussed in section 1. The the minimum variance
portfolio, tangency portfolio and the optimal utility maximizing portfolio are
dealt with in sections 2, 3 and 4. In section 5 a risk-free asset is added to the
model, and new optimal policies are determined. A sensitivity analysis is taken
in section 6 and we introduce an example in section 7. The last section contains
the references for this chapter.

2.1 Efficient frontier

The efficient frontier is the curve that shows all efficient portfolios in a risk-return
framework. An efficient portfolio is defined as the portfolio that maximizes the
expected return for a given amount of risk (standard deviation), or the portfolio
that minimizes the risk subject to a given expected return.

An investor will always invest in an efficient portfolio. If he desires a certain
amount of risk, he would be crazy if he doesn’t aim for the highest possible
expected return. The other way the same holds. If he wants a specific expected
return, he likes to achieve this with the minimum possible amount of risk. This
is because the investor is risk averse.

So, to calculate the efficient frontier we have to minimize the risk (standard
deviation) given some expected return. The objective function is the function
that has to be minimized, which is the standard deviation. However, we take
the variance (the squared standard deviation) as the objective function, which

5



Chapter 2. The portfolio theory of Markowitz

is allowed because the standard deviation can only be positive. The objective
function is

var(Cend) = var(C0 +Rp) = var(Rp) = var(rT θ) = θT Σθ.

There are two constraints that must hold for minimizing this objective function.
First, the expected return must be fixed, because we are minimizing the risk
given this return. This fixed portfolio mean is defined by µp. The second
constraint is that we can only invest the capital we have at this moment, so the
amounts we invest in each single asset must add up to this amount C0. This
gives the following two constraints:

µT θ = µp and 1̄T θ = C0

We are looking for the investment policy with minimum variance, so we have to
solve the following problem:

Min
{

θT Σθ AT θ = B
}

with

A =
(

µ 1̄
)

and B =

(

µp

C0

)

We use the Lagrange method to solve this system. We get the following condi-
tions, where λ0 is the Lagrange multiplier:

{

2Σθ +Aλ0 = 0
AT θ = B

with λ0 =

(

λ1

λ2

)

(2.1)

Solving the first equation of (2.1) for θ gives, with a redefinition of the vector
λ = −1/2λ0

θ = Σ−1Aλ

So the second equation of (2.1) becomes

AT Σ−1Aλ = B ⇒ λ = (AT Σ−1A)−1B ≡ H−1B

whereH = (AT Σ−1A) andHT = (AT Σ−1A)T = AT (Σ−1)TA = AT Σ−1A = H ,
so H is a symmetric (2x2)-matrix. Filling in these expressions in the variance
formula, we get

var(Rp) = θT Σθ = θT ΣΣ−1Aλ = θTAλ = (AT θ)TH−1B = BTH−1B

We have seen that H is a symmetric (2 × 2)-matrix, so suppose that

H ≡
(

a b
b c

)

⇒ H−1 =
1

ac− b2

(

c −b
−b a

)

Define d ≡ det(H) = ac− b2. Because H = (AT Σ−1A) it is easy to see that:
a = µT Σ−1µ,
b = µT Σ−11̄ = 1̄T Σ−1µ,
c = 1̄T Σ−11̄.
d = ac− b2

6



2.1. Efficient frontier

We will show that parameters a, c and d are positive: Because we have assumed
that the covariance matrix Σ is positive definite, the inverse matrix Σ−1 is also
positive definite. This means that xT Σ−1x > 0 for all nonzero (N × 1)-vectors
x, so it is clear that

a > 0, c > 0

But also (bµ−a1̄)T Σ−1(bµ−a1̄) = bba−abb−abb+aac= a(ac− b2) = ad > 0,
and because a > 0 we know that

d > 0

With the definition of H our expression for the variance becomes

var(Rp) =
1

d

(

µp C0

)

(

c −b
−b a

)(

µp

C0

)

=
1

d
(cµ2

p − 2bC0µp + aC2
0 )

This gives the expression for the efficient frontier in a risk-return framework.
Note that only the upper half of this graph is the efficient set, because portfolios
at the lower half can be chosen on the upper half so more return is obtained
with the same level of risk. The formula of the efficient frontier is given by

σ2
p =

1

d
(cµ2

p − 2bC0µp + aC2
0 ) (2.2)

Taking the square root of this formula gives an expression for the standard
deviation. The graph of the efficient frontier is shown in the next figure, where
the mean-standard deviation space is used. These are the axes we will use in
the next chapters.

mean 

standard deviation

Figure 2.1: The efficient frontier

This is a parabola in (σ2
p , µp)-space. However, in the (σp, µp)-space we are using,

this is the right side of a hyperbola. This is easily seen by noticing the following:

σ2
p =

cµ2
p − 2bC0µp + aC2

0

d
=
cµ2

p − 2bC0µp + dC2
0/c+ b2C2

0/c

d

7



Chapter 2. The portfolio theory of Markowitz

so we have, by dividing the left side by 1/c and the right side by c/c2,

σ2
p

1/c
=
µ2

p − 2bC0/cµp + dC2
0/c

2 + b2C2
0/c

2

d/c2
=

(µp − bC0/c)
2

d/c2
+ C2

0

which is the formula of the following hyperbola:

σ2
p

C2
0/c

− (µp − bC0/c)
2

dC2
0/c

2
= 1

The slopes of the two asymptotes are ±
√

dC2
0
/c2

C2
0
/c

= ±
√

d
c and the center of the

hyperbola is (0, b
cC0), so the asymptotes are given by

µp =
b

c
C0 ±

√

d

c
σp.

We are especially interested in the portfolio allocation θEF belonging to the
efficient frontier. This gives the amounts an investor must invest in the single
assets to achieve the expected return and risk on the efficient frontier. We have

θEF = Σ−1Aλ = Σ−1AH−1B =
cµp − bC0

d
Σ−1µ+

aC0 − bµp

d
Σ−11̄

=
1

d
Σ−1 ((a1̄ − bµ)C0 + (cµ− b1̄)µp) (2.3)

So for each desired value of the portfolio return µp, both the corresponding min-
imum standard deviation and the corresponding allocation can be calculated,
using (2.2) respectively (2.3).

2.2 Minimum variance portfolio

Suppose an investor desires to invest in a portfolio with the least amount of
risk. He doesn’t care about his expected return, he only wants to invest all his
money with the lowest possible amount of risk. Because he will always invest in
an efficient portfolio, he will choose the portfolio on the efficient frontier with
minimum standard deviation. At this point, also the variance is minimal. That
is why this portfolio is called the minimum variance portfolio. The graphical
interpretation of the minimum variance portfolio is shown in the next figure.
This minimum variance portfolio can be calculated by minimizing the variance
subject to the necessary constraint that an investor can only invest the amount
of capital he has. This is called the budget constraint. The minimization problem
is

Min
{

θT Σθ 1̄T θ = C0

}

Using Lagrange to solve this set, we get
{

2Σθ + 1̄λ0 = 0
1̄T θ = C0

with λ0 a constant (2.4)

Solving the first equation of (2.4) for θ gives, with a new constant λ = −1/2λ0:

θ = Σ−11̄λ

8



2.3. Tangency portfolio

mv 

mean 

standard deviation

Figure 2.2: The minimum variance portfolio

Using this expression for θ in the second equation of (2.4) gives

1̄T Σ−11̄λ = C0 ⇒ λ =
C0

1̄T Σ−11̄
≡ C0

c

where c = 1̄T Σ−11̄ is defined as the element h22 in the matrix H in the previous
section. Filling in this expression for λ in the above expression for θ gives

θmv = Σ−11̄
C0

c
(2.5)

the portfolio allocation when an investor desires minimum risk. We can ex-
press the amount of risk in the minimum variance portfolio by calculating the
minimum variance:

σ2
mv = θT Σθ =

C0

c
(Σ−11̄)T Σ

C0

c
Σ−11̄ =

(

C0

c

)2

1̄T (Σ−1)T ΣΣ−11̄

=

(

C0

c

)2

1̄T Σ−11̄ =

(

C0

c

)2

c =
C2

0

c

The expected return on this minimum variance portfolio is

µmv = µT θ = µT Σ−11̄
C0

c
= b

C0

c
=
b

c
C0

The attentive reader will notice that this minimum variance also can be cal-
culated by differentiating the formula for the efficient frontier in the previous
section, and then set it equal to zero. It can be shown that this gives the same
result.

2.3 Tangency portfolio

Suppose an investor has other preferences than taking the least possible amount
of risk and thus investing in the minimum variance portfolio. An example of

9



Chapter 2. The portfolio theory of Markowitz

another preference is investing in the portfolio with maximum Sharpe ratio. The
Sharpe ratio is defined as the return-risk ratio, so

Sharpe ratio =
mean

standard deviation

It represents the expected return per unit of risk, so the portfolio with maximum
Sharpe ratio gives the highest expected return per unit of risk, and is thus the
most ”risk-efficient” portfolio.

Graphically, the portfolio with maximum Sharpe ratio is the point where
a line through the origin is tangent to the efficient frontier, in mean-standard
deviation space, because this point has the property that is has the highest
possible mean-standard deviation ratio. That is why we call this the tangency
portfolio. See the next figure for the graph.

mean 

tg 

standard deviation

Figure 2.3: The tangency portfolio

For the calculation of the tangency portfolio we need the formula for the efficient
frontier. Remember it is given by

σp =

√

1

d
(cµ2

p − 2bC0µp + aC2
0 ).

Suppose that the tangency point has coordinates (σtg , µtg). Then the (inverse
of the) slope of the tangency line is

∆σp

∆µp
=

√

1
d(cµ2

tg − 2bC0µtg + aC2
0 ) − 0

µtg − 0
.

The slope of the efficient frontier at the tangency point is simply the derivative
of the efficient frontier at that point. The (inverse of the) slope is

∂σp

∂µp
=

1

2

(

1

d
(cµ2

p − 2bC0µp + aC2
0 )

)−1/2
1

d
(2cµp − 2bC0)

∣

∣

∣

∣

∣

µp=µtg

=
cµtg − bC0

d
√

1
d(cµ2

tg − 2bC0µtg + aC2
0 )
.

10



2.4. Optimal portfolio

At the tangency point the two slopes must be equal, so

√

1
d (cµ2

tg − 2bC0µtg + aC2
0 )

µtg
=

cµ− bC0

d
√

1
d (cµ2

tg − 2bC0µtg + aC2
0 )

⇒ µtg =
a

b
C0.

The corresponding σtg is calculated by filling in µtg in the efficient frontier
formula. This gives

σtg =

√

1

d
(c
a2

c2
C2

0 − 2ab

b
C2

0 + aC2
0 ) =

√
a

b
C0.

where we used that d = ac− b2.
To get θtg , the allocation of the assets at the tangency point, we use formula
(2.3), which gives

θtg =
ca

bC0 − bC0

d
Σ−1µ+

aC0 − ba
bC0

d
Σ−11̄

= Σ−1µ
C0

b
. (2.6)

So when an investor desires the maximization of the Sharpe ratio of his portfolio,
his optimal asset allocation is θtg .

2.4 Optimal portfolio

So far, we have seen two portfolios an investor can prefer. If he desires a
minimum amount of risk he takes on the minimum variance portfolio. If the
objective is to maximize the portfolio’s Sharpe ratio, the tangency portfolio is
taken.

The theory of Markowitz however, assumes a different kind of preference for
the investor. It says the investors goal is to maximize his utility function, where
the utility is given by

u = E(Cend) − 1

2
γvar(Cend). (2.7)

So utility is a function of the expected return, variance and a new parameter γ.
This γ is called the parameter of absolute risk aversion. As the name indicates,
it is a measure of the investors risk averseness. It can be different for each
investor, and even for an investor it can change through time. The greater
the γ, the more risk averse the investor is. This is easily verified, because in
the utility function (2.7) the parameter that indicates the risk, the variance,
becomes more important when γ is greater. And because a greater risk results
in a lower utility, the investor with the greater γ is more risk averse than an
investor with lower γ. The parameter of absolute risk aversion is assumed to
be positive, because all investors are assumed to be risk averse. A negative γ
would imply that an investor is risk loving.

11



Chapter 2. The portfolio theory of Markowitz

The optimal portfolio for an investor is the portfolio with maximum utility.
The utility function (2.7) can be written as

E(Cend)− 1

2
γvar(Cend) = E(C0+Rp)−

1

2
γvar(C0+Rp) = C0+µp−

1

2
γvar(Rp)

= C0 + µT θ − 1

2
γσ2

p = C0 + µT θ − 1

2
γθT Σθ (2.8)

Graphically, the portfolio with maximum utility is gained by moving the utility
curve as high as possible. The utility curve is the curve that shows the possible
combinations of mean and standard deviation that result in the same utility.
Because of (2.8), it is given by

µp = u− C0 +
1

2
γσ2

p

which is a parabola in mean-standard deviation space. The figure shows some
utility curves together with the optimal portfolio, that is reached at the highest
possible utility curve.

 opt

mean 

standard deviation

Figure 2.4: The optimal portfolio

In order to calculate the optimal portfolio, we have to maximize the utility
subject to the budget constraint:

Max
{

C0 + µT θ − 1
2γθ

T Σθ 1̄T θ = C0

}

.

Again we are using the Lagrange method for solving this set of equations:

{

µ− 1
2γ2Σθ+ 1̄λ = 0

1̄T θ = C0
with λ a constant (2.9)

Solving the first equation of (2.9) for θ gives

µ+ 1̄λ = γΣθ ⇒ θ =
Σ−1µ

γ
+
λΣ−11̄

γ
(2.10)
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2.4. Optimal portfolio

Using this expression for θ in the second equation of (2.9) we get:

1̄T

(

Σ−1µ

γ
+
λΣ−11̄

γ

)

= C0 ⇒ 1̄T Σ−1µ

γ
+

1̄T Σ−11̄λ

γ
= C0

We apply the elements b and c of the matrix H , which is defined in the previous
sections, to make this expression easier, so

b

γ
+
cλ

γ
= C0 ⇒ λ =

γC0 − b

c

Since we know λ we can finish the expression for θ derived in (2.10):

θopt =
Σ−1µ

γ
+

Σ−11̄

γ

(

γC0 − b

c

)

=
1

γ
Σ−1

(

µ+ 1̄

(

γC0 − b

c

))

which are the amounts an investor should invest in each asset if he desires to
maximize his utility. We can simplify this expression by using (2.5) for the
minimum variance portfolio and (2.6) for the tangency portfolio. Rearranging
these formulas gives

Σ−11̄ =
c

C0
θmv and Σ−1µ =

b

C0
θtg

We use these expressions in the optimal portfolio θopt:

θopt =
b

C0γ
θtg +

c

C0

(

C0 − b/γ

c

)

θmv

=
b

C0γ
θtg +

(

1 − b

γC0

)

θmv (2.11)

We see that the optimal portfolio is a combination of the minimum variance
portfolio and the tangency portfolio, where a proportion α = b

γC0
is invested in

the tangency portfolio and a proportion 1−α in the minimum variance portfolio.
The corresponding values for µp and σ2

p are

µopt = µT θ =
µT Σ−1µ

γ
+ µT Σ−11̄

(

C0 − b/γ

c

)

=
a

γ
+
b

c

(

C0 −
b

γ

)

=
ac− b2

cγ
+
b

c
C0 =

d

cγ
+ µmv

and

σ2
opt = θT Σθ =

ac− b2 + γ2C2
0

cγ2
=

d

cγ2
+ σ2

mv

We see that the mean and variance of the optimal portfolio is determined by
the values for the minimum variance portfolio plus an amount which depends
on the coefficient of absolute risk aversion (γ).

When an investor is absolute risk averse, so doesn’t want to take on any risk,
the γ will go to infinity and the optimal portfolio will be the minimum variance
portfolio. Thus an investor with an infinite parameter of risk aversion will invest
in the minimum variance portfolio. If γ = b

C0
it is easily seen (by substituting

this in the optimal portfolio formula) that the optimal portfolio is identical to
the tangency portfolio, or the portfolio with maximum Sharpe ratio. So both
the minimum variance and the tangency objective function are special cases of
the utility maximizing Markowitz strategy.
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Chapter 2. The portfolio theory of Markowitz

2.5 Adding a risk-free asset

In this section we will assume that an investor can also choose to invest in a
risk-free asset. A risk-free asset xf is an asset with a (low) return, but with no
risk al all, so σf = 0. This means that the expected return will be the realized
return. Furthermore, the risk-free asset is uncorrelated with the risky assets, so
ρi,f = cov(xi, xf ) = 0 for all risky assets i.

An investor can both lend and borrow at the risk-free rate. Lending means a
positive amount is invested in the risk-free asset (θf > 0), borrowing implicates
that θf < 0. If θf = 0, we have the same situation as without risk-free asset.
As an example of a risk-free asset a government bond is usually taken. It is
not absolute risk-free, but it approaches the desired constancy in returns and
insensitivity with the risky assets.

2.5.1 Capital market line & market portfolio

The efficient frontier changes when a risk-free asset is included. The theory of
Markowitz (see for example Elton, Gruber (1981)) learns that the new efficient
frontier is a straight line, starting at the risk-free point and tangent to the
old efficient frontier. The new efficient frontier is called the Capital Market
Line(CML), and we still refer to the old frontier as the efficient frontier. The
tangency point between the CML and the efficient frontier is called the market
portfolio. See the figure for a graphical representation.

R(f) 

CML 

m 

mean 

standard deviation

Figure 2.5: The market portfolio and Capital Market Line

We will calculate the CML and show that the new efficient frontier indeed is the
straight line from the theory. Suppose that an amount θf is invested in the risk-
free asset and that the return on the risk-free asset is µf . Because the risk-free
asset is uncorrelated with the risky assets we have the following relationships:

σ2
p = θT Σθ and µp = µT θ + µfθf .

The budget constraint changes in

1̄T θ + θf = C0.
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2.5. Adding a risk-free asset

The efficient frontier is the minimization if the variance subject to a fixed mean,
or the maximization of the expected return given some variance. Because the
first definition is used in the first section (to derive the efficient frontier), we use
the second definition now. Of course, for the results it does not matter which
of the two definitions is used. The problem is

Max

{

µT θ + µfθf 1̄T θ + θf = C0

σ2
p = θT Σθ

}

.

Using Lagrange to solve this system gives, after noticing that the maximization
of µT θ + µfθf is identical to the minimization of −µT θ − µfθf :















−µ+ λ11̄ + 2λ2Σθ = 0 (a)
−µf + λ1 = 0 (b)
1̄T θ + θf = C0 (c)
σ2

p = θT Σθ (d)

Equation (b) gives λ1 = µf , which is substituted in (a):

−µ+ µf 1̄ + 2λ2Σθ = 0 ⇐⇒ θ =
1

2λ2
Σ−1(µ− µf 1̄). (2.12)

Using this in (d), an expression for λ2 can be calculated. We get

σ2
p = θT Σθ =

1

4λ2
2

(µ− µf 1̄)T Σ−1(µ− µf 1̄) =
1

4λ2
2

(cµ2
f − 2bµf + a).

So

λ2 =

√

cµ2
f − 2bµf + a

4σ2
p

=
1

2σp

√

cµ2
f − 2bµf + a

We have not used (c) so far. This gives us an expression for θf :

θf = C0 − 1̄T θ = C0 −
1

2λ2
1̄T Σ−1(µ− µf 1̄) = C0 −

1

2λ2
(b− cµf ).

But then we have for the expected portfolio return µp the following expression:

µp = µT θ + µf θf =
1

2λ2
µT Σ−1(µ− µf 1̄) + µfC0 −

1

2λ2
(b− cµf )µf

=
1

2λ2
(cµ2

f − 2bµf + a) + µfC0 =
cµ2

f − 2bµf + a
√

cµ2
f − 2bµf + a

σp + µfC0

=
(√

cµ2
f − 2bµf + a

)

σp + µfC0 ≡ sσp + µfC0. (2.13)

This is the efficient frontier when the risk-free asset is added, or the CML. It is a

straight line in mean-standard deviation space with slope
√

cµ2
f − 2bµf + a ≡ s

and it intersects the mean-axis at height µfC0. This is the return when the
whole capital is invested in the risk-free asset.

The optimal allocation on the CML is given by

θCML =
µp − µfC0

s2
Σ−1(µ− µf 1̄).
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Chapter 2. The portfolio theory of Markowitz

This result is achieved by using (2.12), the expression for λ2 and the expression
for σp in terms of µp. The corresponding amount that is invested in the risk-free
asset is the ”not used” amount, which is

θf,CML = C0 − 1̄T θCML = C0 −
µp − µfC0

s2
(b− cµf ).

The market portfolio should be the portfolio that is the point of tangency be-
tween the efficient frontier and the CML. This is the portfolio on the CML where
nothing is invested in the risk-free asset. If the investor goes on the left side of
the market portfolio, he invests a proportion in the risk-free asset. If he chooses
the right side of the market portfolio, he borrows at the risk-free rate.

The market portfolio is calculated by equalizing the efficient frontier to the
CML. First we rewrite the CML (2.13) to

σp =
µp − µfC0

s
.

Then equalizing the efficient frontier and the CML gives

σp =

√

1

d
(cµ2

p − 2bµpC0 + aC2
0 ) =

µp − µfC0

s
.

This equation is solved in Appendix A. It results in one solution, so the market
portfolio indeed is the point of tangency between the efficient frontier and the
CML. The solution is

µm =
a− bµf

b− cµf
C0, σm =

s

b− cµf
C0

with s =
√

cµ2
f − 2bµf + a. Since we know the values for mean and variance of

the market portfolio, we can calculate, using (2.3), the value for θ at the market
portfolio:

θm =
c
(

a−bµf

b−cµf
C0

)

− bC0

d
Σ−1µ+

aC0 − b
(

a−bµf

b−cµf
C0

)

d
Σ−11̄

= Σ−1 (µ− µf 1̄)
C0

b− cµf

A little calculation shows that an investor with parameter of absolute risk aver-
sion γ =

b−cµf

C0
, who likes to invest in the optimal, utility maximizing, portfolio

as defined in the previous chapter, will invest in the market portfolio.
Since we know the allocation at the market portfolio θm, we see an interesting

fact. Comparing θm with θCML learns that the asset allocations only differ
a factor depending on µp. This means that each portfolio on the CML is a
linear combination of the market portfolio and the risk-free asset. We use this
important property in the next section.

2.5.2 Optimal portfolio

Finding the optimal portfolio (that is the portfolio with the highest utility) for
an investor means finding the best combination of the risk-free asset and the
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2.5. Adding a risk-free asset

opt 

mean 

standard deviation

Figure 2.6: The optimal portfolio with risk-free asset

market portfolio. This is because we have seen that each portfolio on the CML
(which is the efficient frontier) is a combination of the market portfolio and the
risk-free asset. The next figure shows how the maximal utility curve is found.
Suppose a proportion Θf will be invested in the risk-free asset and a proportion
of Θm in the market portfolio. These are proportions, so Θf + Θm = 1. The
portfolio return becomes

Rp = ΘfRf + ΘmRm

with
var(Rp) = Θ2

fvar(Rf ) + Θ2
mvar(Rm) + 2ΘfΘmcov(Rf , Rm)

= Θ2
mvar(Rm) ≡ Θ2

mσ
2
m

because the variance of the return on the risk-free asset is zero, and the risk-free
asset is uncorrelated with every risky portfolio. The utility function then is

E(C0 +Rp) −
1

2
γvar(C0 +Rp) = C0 + ΘfRf + Θmµm − 1

2
γΘ2

mσ
2
m

We want to maximize the utility function, so the optimization problem is

Max
{

C0 + ΘfRf + Θmµm − 1
2γΘ

2
mσ

2
m Θf + Θm = 1

}

We solve this problem with Lagrange’s method, which gives the following set of
equations:







µm − γΘmσ
2
m + λ = 0

Rf + λ = 0
Θf + Θm = 1

(2.14)

First, we solve the second equation of (2.14) for λ:

λ = −Rf

Using this in the first equation of (2.14), and solving for Θm, gives:

Θm =
µm −Rf

γσ2
m
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With the third equation of (2.14) we can solve Θf :

Θf = 1 − µm −Rf

γσ2
m

If we use the results for the market portfolio (µm and σm), the fractions become:

Θm =
b− cµf

γC0
and Θf = 1 − b− cµf

γC0

These results are the proportions an investor should invest in the market port-
folio and the risk-free asset to get maximal utility. The total amounts invested
in the risky assets are

Θmθm =
b− cµf

γC0

C0

b− cµf

(

Σ−1µ− µfΣ−11̄
)

=
1

γ
Σ−1 (µ− µf 1̄)

and the total amount invested in the risk-free asset is

ΘfC0 =

(

1 − b− cµf

γC0

)

C0 = C0 −
b− cµf

γ

So the vector of the amounts the investor should invest in each individual asset
is

θopt ≡











θ1
...
θN

θf











=









1
γ Σ−1 (µ− µf 1̄)

C0 − b−cµf

γ









The corresponding portfolio mean and standard deviation can be calculated
with µopt = µT θopt and σ2

opt = θT
optΣθopt, so

µopt = µT 1

γ

(

Σ−1µ− µf Σ−11̄
)

+ µf

(

C0 −
b− cµf

γ

)

=
1

γ
(cµ2

f − 2bµf + a) + µfC0 ≡ 1

γ
s2 + µfC0

and

σopt =

√

(

1

γ
(Σ−1µ− µfΣ−11̄)

)T

Σ

(

1

γ
(Σ−1µ− µfΣ−11̄)

)

+ 0

=
1

γ

√

cµ2
f − 2bµf + a ≡ 1

γ
s

2.6 Sensitivity analysis

In this section we describe what happens with the Markowitz portfolios when
relevant parameters change. The relevant parameters in this section are the
invested capital C0 and the parameter of risk aversion γ. When the risk-free
asset is added we also look at the risk-free rate µf . We will see how the optimal
solution changes when these parameters become different. This can be done by
differentiating the allocation formula with respect to the parameter.
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Minimum variance portfolio If C0 is raised by one, the investment in each
asset of the minimum variance portfolio is raised with the derivative, so with

∂θmv

∂C0
=
∂Σ−11̄C0

c

∂C0
= Σ−11̄

1

c

which is independent of the parameter C0. So if C0 is multiplied with a factor x,
the optimal solution also raises with factor x. In other words, it doesn’t matter
how much money an investor is able to invest, the proportions invested in each
asset always stay the same. This can be verified by the fact that the invested
fractions are given by

θmv

C0
=

Σ−11̄C0

c

C0
= Σ−11̄

1

c

which is independent of C0.

Tangency portfolio Because in the allocation formula of the tangency port-
folio the factor C0 is linearly present, we can conclude that also in this case,
the portfolio fractions are independent of C0. In other words, the tangency
allocation and the invested capital C0 depend linearly on each other.

Optimal portfolio This linear relationship is not there when the optimal port-
folio is looked at. We have seen in (2.11) that the optimal portfolio (without
risk-free asset) is given by

θopt =
b

C0γ
θtg +

(

1− b

γC0

)

θmv

in terms of the minimum variance and tangency portfolio. We see that, if C0

is moving to infinity, the optimal portfolio is moving to the minimum variance
portfolio. So if an investor has very much money to invest, he becomes more risk
averse and invests a greater amount in the minimum variance portfolio. The
proportion he invests in the tangency portfolio decreases, but stays the same in
an absolute sense. If C0 = b

γ , the situation is turned around and everything is
invested in the tangency portfolio. A weird thing happens if an investor has very
little money, so C0 is close to zero. To achieve maximum utility, the amount
invested in the tangency portfolio goes high up to infinity (assuming b > 0), and
the amount invested in the minimum variance portfolio goes far down to minus
infinity. This is not a realistic portfolio, so this optimal Markowitz portfolio
doesn’t seem usable for small values of C0.

The same analysis holds for the parameter of risk aversion γ. For a very risk
averse investor, so he has a high γ, the optimal policy is investing much in the
minimum variance portfolio. If γ = b

C0
, he invests his money in the tangency

portfolio. And if the investor is risk loving, which means he has a γ close to
zero, the optimal portfolio becomes very long in the tangency, and very short
in the minimum variance portfolio.

Market portfolio The allocation in market portfolio again is proportional to
C0, so the fractions invested in each asset are the same for all values for C0.

Looking at the risk-free rate, we see that if µf = 0, the market portfolio is
identical to the tangency portfolio. If µf raises to b

c , so the denominator goes
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to zero, the optimal portfolio moves away from the tangency portfolio along the
efficient frontier, and the allocation becomes

lim
µf→b/c

C0

b− cµf
Σ−1(µ− µf 1̄) = lim

x→0

b

x
(θtg − θmv)

so the allocation becomes proportional to θtg − θmv.

Optimal portfolio with risk-free asset By looking at the optimal allocation
formula with risk-free asset, it is clear that the allocation of the risky part
doesn’t depend on C0. The risk-free part does, so if C0 raises, the amount
invested in the risk-free part raises, while the (absolute) amount invested in the
risky assets stays identical (relatively it even decreases).

An investor with a high value for γ (so he is very risk averse), invests much

in the risk-free asset, while when γ =
b−cµf

C0
, there is nothing invested in the

risk-free part and everything in the risky part. So when the parameter of risk
aversion has this value, the optimal portfolio is identical to the market portfolio.
If γ is close to zero, the investor borrows much at the risk-free rate (it becomes
very negative) and invests the borrowed money in the risky part.

2.7 Example

Throughout this thesis I will use an example to illustrate the previous findings.

2.7.1 Data

Suppose an investor has 1 euro to invest in some securities, so C0 = 1. The
results we will derive are then the fractions the investor invests in the differ-
ent securities. He can choose to invest his single euro in seven securities from
the Dutch AEX-index, the index of the 25 top securities in the Netherlands.
These are Elsevier, Fortis, Getronics, Heineken, Philips, Shell (Royal Dutch)
and Unilever. Together these seven securities contribute more than forty per-
cent to the total AEX-index. The seven securities are chosen from seven dif-
ferent branches, the companies are respectively a publisher, bank, IT-company,
brewer, electronics-, oil- and a food company.

The data I use are the daily returns downloaded from Bloomberg, covering
the period from the 1st of January 1990 till the 31st of October the year I am
writing this, in 2003. That makes more than thirteen years of daily data, in
total 3609 daily observations per security.

With these results we can determine the vector of mean returns, and the
covariance matrix of the daily returns. Because taking the log-returns makes
the calculations a lot simpler (multiplying becomes adding), I will use the log-
returns throughout this thesis. Whenever the word return is written, the log-
return is mentioned. This does not change any of the derived results, it just
makes things easier to work with. Further I will try to write down a maximum of
three decimal places if it is possible. This gives the following table for expected
returns:
It is clear that Heineken has the highest expected return over the analyzed
period, while Getronics seems to be the worst asset to invest in. The three
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×10−3 µi

Elsevier 0.266
Fortis 0.274

Getronics 0.162
Heineken 0.519

Philips 0.394
Royal Dutch 0.231

Unilever 0.277

Table 2.1: Expected daily returns

securities Elsevier, Fortis and Unilever do not differ much from each other. The
covariances of the daily returns are

×10−3 Els For Get Hei Phi RDu Uni
Elsevier 0.345 0.150 0.183 0.088 0.186 0.090 0.095

Fortis 0.150 0.399 0.204 0.107 0.236 0.130 0.127
Getronics 0.183 0.204 1.754 0.075 0.325 0.110 0.091
Heineken 0.088 0.107 0.075 0.243 0.096 0.064 0.086

Philips 0.186 0.236 0.325 0.096 0.734 0.147 0.114
Royal Dutch 0.090 0.130 0.110 0.064 0.147 0.221 0.093

Unilever 0.095 0.127 0.091 0.086 0.114 0.093 0.219

Table 2.2: Covariances of daily returns

The most striking fact from the covariance matrix is that Getronics has a very
high variance (so a very high standard deviation). Also Philips’ variance is quite
higher than the other variances. Fortis seems to be highly correlated with the
others (all correlations are greater than 0.1), and a look at the correlation matrix
learns this is the case, while Heineken in general has much smaller covariances.
Note that the correlation matrix is not given here, but correlations can be
calculated by using the formula

ρij =
σij

σiσj
.

The risk-free investment is an investment in Dutch government bonds. This
is not completely risk-free (the Dutch government can go bankrupt with very
little chance), but it is a very stable investment compared to equities and there-
fore I will handle it as risk-free. Suppose the yearly return on this risk-free
investment is 4%. Then the daily log-risk-free rate of return is given by

µf =
log(1.04)

250
= 0.157× 10−3

where we assumed there are 250 trading days in a year.
The following figure shows the behavior of the seven indices during the time

period we took, from the 1st of January 1990 till the 31st of October 2003.
To compare the indices we have set the values at the starting date at index
100. The most interesting things to see are that Getronics has a very high
peak (due to the technology bubble in ’98 and ’99), but also falls very low, and
that Heineken en Philips seem to perform quite well over a long period. The
remaining Elsevier, Fortis, Royal Dutch and Unilever are close to each other.
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Figure 2.7: Overview of indexed returns of seven members of Dutch AEX-index
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2.7.2 Calculations

With this data we can calculate portfolios of this chapter. We have

a = µT Σ−1µ = 1.213× 10−3

b = µT Σ−11̄ = 2.639

c = 1̄T Σ−11̄ = 8.044× 103

d = ac− b2 = 2.791

The efficient frontier of our investment problem can simply be determined using
these constants. It is given by

σ2
p =

1

d
(cµ2

p − 2bC0µp + aC2
0 ) = 2882.2µ2

p − 1.891µp + 0.435× 10−3

This is equal to the hyperbola

σ2
p

0.124× 10−3
− (µp − 0.328× 10−3)2

43.13× 10−9
= 1

The vector θEF , the amounts invested in each asset when a portfolio is chosen
on the efficient frontier, is given by

θEF =





















0.369
0.156
0.103
−0.791
−0.260
0.839
0.584





















+ µp





















−0.726
−0.486
−0.273
3.293
0.761
−1.590
−0.979





















× 103

so the portfolio on the efficient frontier can be calculated for a desired portfolio
mean. The portfolio with minimum variance, the minimum variance portfolio
is given by

µmv =
b

c
C0 = 0.328× 10−3

σmv =
1√
c
C0 = 0.0111

and the corresponding investment policy is

θmv = Σ−11̄
C0

c
=





















0.131
−0.003
0.013
0.290
−0.011
0.317
0.263





















We see that the most risk averse policy is investing the major part in Heineken,
Royal Dutch and Unilever. This is explained by the fact that these three assets
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have the lowest variance, as can be seen in the covariance matrix. In a similar
way the values for the tangency portfolio can be determined. We get

µtg =
a

b
C0 = 0.460× 10−3

σtg =

√
a

b
C0 = 0.0132

θtg = Σ−1µ
C0

b
=





















0.036
−0.067
−0.022
0.723
0.089
0.108
0.134





















So the tangency portfolio, or the portfolio with maximum Sharpe ratio, consists
for more than seventy percent of Heineken. This is because Heineken has by
far the highest ratio mean/variance. Suppose the parameter of risk aversion for
our investor is γ = 2, so the utility function becomes

u = E(Rp) −
2

2
var(Rp)

The optimal, utility maximizing, Markowitz portfolio then is given by

θopt =
1

γ
Σ−1

(

µ+ 1̄

(

γC0 − b

c

))

=





















0.005
−0.088
−0.034
0.861
0.121
0.041
0.093





















with µopt = 0.502 × 10−3, σopt = 0.0145. If the investor becomes more risk
averse, for example the parameter of risk aversion raises to γ = 10, we see that
the optimal Markowitz portfolio is moving closer towards the minimum variance
portfolio:

θopt =





















0.106
−0.020
0.004
0.404
0.016
0.262
0.229





















with µopt = 0.363× 10−3 and σopt = 0.0113. So in order to lower the risk, the
investor decreases the amount invested in Heineken and increases the amounts
invested in all the other securities.

Suppose the risk-free rate µf of Dutch government bonds is added. We can
determine the capital market line, which is the new efficient frontier:

µp =
(√

cµ2
f − 2bµf + a

)

σp + C0µf = 0.0241σp + 0.157× 10−3
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The market portfolio is given by

µm =
a− bµf

b− cµf
C0 = 0.580× 10−3

σm =

√

cµ2
f − 2bµf + a

b− cµf
C0 = 0.0175

θm = Σ−1 (µ− µf 1̄)
C0

b− cµf
=





















−0.052
−0.126
−0.055
1.119
0.181
−0.084
−0.016





















We see that the market portfolio largely consists of Heineken. This means that if
there is a risk-free asset, every investor will invest in a combination of Heineken
and the risk-free asset (and very little of the other assets).

The optimal portfolio when the risk-free asset is available can also be calcu-
lated. Assume again the parameter of risk aversion is γ = 2. Then

θopt =









1
γ Σ−1 (µ− µf 1̄)

C0 − b−cµf

γ









=

























−0.036
−0.087
−0.038
0.771
0.125
−0.058
0.011
0.311

























so the investor is investing 31 percent in the risk-free asset. The corresponding
portfolio mean and standard deviation are µopt = 0.448 × 10−3 and σopt =
0.0121. If the investor is more risk averse, for example γ = 10, we have the
following optimal investment policy:

θopt =

























−0.007
−0.017
−0.008
0.154
0.025
−0.012
0.002
0.862

























with µopt = 0.215 × 10−3 and σopt = 0.0024, and it is clear that the more risk
averse investor invests more in the risk-free asset and less in the risky assets.

We can draw the points found in a diagram, which looks like the following.
In the figure we see the efficient frontier (EF), the capital market line (CML)
and the tangency line (TG). There are also two utility curves, with parameters
of risk aversion γ = 1 and γ = 10. The indicated points are the minimum
variance portfolio (mv), tangency portfolio (tg), market portfolio (m) and risk-
free rate (rf). We also see two optimal portfolios belonging to the two utility
curves.
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Figure 2.8: Graphical view of the portfolios of the example
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Chapter 3

Another aproach for risk: Safety

first

So far, we have discussed the portfolio optimization in a mean-standard devia-
tion framework. We said risk can be measured by standard deviation. There is
some criticism against this approach. The main argument against this is that
standard deviation is a measurement for volatility. A portfolio with a high stan-
dard deviation has a high volatility, but this is both upside and downside. Some
people are only interested in the chance of a downside risk, so another model
had to be made. One of these models, which are concerned with the downside
risk, is the safety first principle.

This chapter first gives an overview of some safety first models. The second
section solves one particular safety first criterion, the Telser model. The third
section adds a risk-free asset and in section 4 the example of the previous chapter
is continued. The last section contains the references.

3.1 Safety first models

There are three basic safety first models. These models are made in the fifties
and sixties and are developed by Roy, Kataoka and Telser. They all handle with
a limit capital CL. This is a lower bound for the amount of capital at the end
of the period Cend.

Roy Roy predetermines the limit capital. He wants to minimize the chance
that the capital at the end of the period gets lower than the limit capital. so

Min {P (Cend ≤ CL)}
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Kataoka Kataoka takes another approach. He chooses a value α, called the
shortfall probability. He wants to maximize the lower limit capital CL such that
the chance that the end-capital gets lower than the limit capital will be α or
less:

Max
{

CL P (Cend ≤ CL) ≤ α
}

Telser The third safety first approach is from Telser. He predetermines the
shortfall probability α, but he also chooses the limit capital CL. Telser wants
to maximize the expected capital at the end of the period given these shortfall
probability and limit capital:

Max
{

E(Cend) P (Cend ≤ CL) ≤ α
}

In the further sections we will continue with the Telser approach, because this
approach is most relevant for Rabobank. Rabobank has a fixed rating, which
means that there is a fixed shortfall probability α. At the moment, the rating
for Rabobank is AAA, which means that the probability of getting in default
is less than 0, 01% at a yearly basis. The limit capital CL then is the amount
of capital an investor has when he gets in default, so CL = 0. We see that for
Rabobank both α and CL are fixed, so it is most useful to use Telsers criterion.
Furthermore, the Telser criterion is intuitively the most logical way of choosing
the optimal portfolio. This is because the intention of most investors is simply
to maximize returns, and the Telser criterion is the one that has this basic
principle.

3.2 Telsers criterion

This section formulates and solves the optimal portfolio when the Telser criterion
is used. Both an intuitive and an analytical solution are provided.

3.2.1 Formulation

When we take on Telsers approach, we maximize expected return subject to the
constraint that the shortfall probability is α or less. The shortfall probability
is the chance that the investor looses all his invested money, so when Cend ≤ 0.
In formula, this becomes

Max
{

E(C0 +Rp) P (C0 +Rp ≤ 0) ≤ α
}

.

If we use that E(C0 + Rp) = E(C0) + E(Rp) = C0 + µp and if we add the
necessary constraints that the sum of the θi, i = 1, . . . , N must be equal to the
start capital, and that µp = µT θ, then the set of equations becomes

Max







P (Rp ≤ −C0) ≤ α
µp 1̄T θ = C0

µp = µT θ







. (3.1)

Right now we make an important assumption. To say something about the
shortfall constraint, we assume that the returns are normally distributed. This
means that we assume that

P (Rp ≤ X) =
1√
2π

∫ k

−∞
e−

1
2
t2dt ≡ Φ(k) with k =

X − µp

σp
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With this assumption we can simplify the constraint P (Rp ≤ −C0) ≤ α. This
becomes

Φ

(−C0 − µp

σp

)

≤ α ⇒ −C0 − µp

σp
≤ kα

µp ≥ −C0 − kασp.

which is the upper half of the line through (0,−C0) with slope −kα. This is
the shortfall line. In this formula kα is the quantile of the standard normal
distribution with probability α. For example, when α = 0.01 the corresponding
quantile is kα = −2.33. Note that kα is negative for all α ≤ 0.5, so the slope of
the shortfall line is positive.

When changing the shortfall constraint into a constraint with parameters µp

and σp for the portfolio mean respectively the portfolio standard deviation, we
have to add the constraint for the standard deviation (variance) σ2

p = θT Σθ, so
system (3.1) becomes

Max















µp ≥ −C0 − kασp

µp 1̄T θ = C0

µp = µT θ
σ2

p = θT Σθ















. (3.2)

3.2.2 Intuitive solution

Let’s first solve this system intuitively. The last three constraints give the set of
efficient portfolios, all possible combinations of risky assets when total amount
C0 is spent. In a figure (mean-standard deviation space) this is the area on
the ”inside” of the efficient frontier. The first constraint of (3.2) gives the area
below the line µp = −C0 −kασp. All constraints together give the area A in the
figure. The goal of (3.2) is to maximize the expected return, so we have to find
the maximum value of µp in area A. It is clear that this is the case in point T ,
which is the intersection point of the efficient frontier and the shortfall line.

mean 

T

-C(0) 

standard deviation

A

Figure 3.1: The feasible area A and the optimal Telser point
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The intersection point T can easily be calculated, using the formulas for the
efficient frontier and the shortfall line:

σ2
p =

1

d
(cµ2

p − 2bC0µp + aC2
0 ) and σ2

p =

(−C0 − µp

kα

)2

Calculating the intersection point means equalizing both formulas and solving
for µp, which gives

1

d
(cµ2

p − 2bC0µp + aC2
0 ) =

(−C0 − µp

kα

)2

This equation is solved in appendix A. It results in

µT =
bk2

α + d+
√

dk2
α(a+ 2b+ c− k2

α)

ck2
α − d

C0 (3.3)

So the variance can be calculated:

σT =

(−C0 − µT

kα

)

=
(c+ b)k2

α +
√

dk2
α(a+ 2b+ c− k2

α)

(d− ck2
α)kα

C0

The vector θT , the amounts invested in each individual asset in the Telser op-
timal point, can be calculated by using the formula in the previous chapter for
portfolios on the efficient frontier

θT =
1

d
Σ−1 ((a1̄ − bµ)C0 + (cµ− b1̄)µT )

and filling in the value for µT , which gives a large expression that is not useful
to write down here.

3.2.3 Analytical solution

After this intuitive approach I will use a more mathematical analysis to check
the above results of (3.2). Because the calculations can be quite heavy, they can
be found in appendix B at the end of this thesis. After reading this appendix,
we can conclude that the results of this more analytical approach are identical
to the results above.

3.3 With risk-free asset

If we add a risk-free asset, the efficient frontier changes in the CML, the line
that shows linear combinations of the risk-free asset and the market portfolio.
Again, we first solve this problem intuitively, and then discuss the analytical
solution.

3.3.1 Intuitive solution

Solving the system (3.1) means finding the maximum value for µp in the area
below the CML and above the shortfall line. This maximum value is the in-
tersection point of the shortfall line with the CML, as can be seen in the next
figure.
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CML 

T

standard deviation

mean 

Figure 3.2: The optimal Telser portfolio with risk-free asset

To calculate this point of intersection, we equalize the formulas of both lines, so
(√

cµ2
f − 2bµf + a

)

σp + C0µf = −C0 − kασp

σT =
−1 − µf

kα +
√

cµ2
f − 2bµf + a

C0 ≡ −1 − µf

s+ kα
C0

where we defined s ≡
√

cµ2
f − 2bµf + a, the slope of the CML. The correspond-

ing mean can be found by using the formula of one of both lines. Here the
shortfall line is used:

µT = −C0 − kασp = −C0 − kα
−1 − µf

s+ kα
C0 =

µfkα − s

s+ kα
C0

Now we want to calculate the corresponding values for θ. Because we are not
on the efficient frontier (like the situation without a risk-free asset) we can not
use the same formula. Remember that every portfolio on the CML is a linear
combination of the market portfolio and the risk-free asset. Suppose we invest
a proportion Θm in the market portfolio and a proportion Θf in the risk-free
asset. Because the variance in the portfolio return of the risk-free asset is zero
(there is no risk) and the covariance between the risk-free asset an the market
portfolio is zero (they are uncorrelated), we know that

µT = Θmµm + ΘfC0µf and σT = Θmσm (3.4)

like we have seen in the previous chapter. The µm and σm are the mean and
standard deviation of the market portfolio. Expressions of these are found in
the previous chapter. From (3.4) we see that

Θm =
σT

σm

Since we have expressions for both σT and σm, we can calculate this fraction.
The result is:

Θm =
(1 + µf )(cµf − b)

s(s+ kα)
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If we use the other equation of (3.4), we can calculate the proportion invested
in the risk-free asset:

Θf =
µT − Θmµm

C0µf

We have expressions for µT , Θm and µm, so we can calculate this proportion.
We give the result:

Θf =
a+ b− (b+ c)µf + kαs

s(s+ kα)

We can check the results by adding the two proportions, which results in

Θm + Θf =
(1 + µf )(cµf − b) + a+ b− (b+ c)µf + kαs

s(s+ kα)
= 1

so the total proportion is one, which should be the case. Then the total amounts
invested in each portfolio are

θT ≡











θ1
...
θN

θf











=









Θmθm

ΘfC0









=











1+µf

s(s+kα)Σ
−1 (µf 1̄ − µ)C0

a+b−(b+c)µf+kαs
s(s+kα) C0











(3.5)

3.3.2 Analytical solution

Also when adding a risk-free asset, we can use a more analytical approach in
solving the problem and getting the results derived above. See appendix B for
the detailed results.

3.4 Example

We can look at the example of section 2.7 and see what happens if we take the
optimal Telser portfolio. Suppose the portfolio returns are normally distributed
with means and variances as in section 2.7. Remember these are daily returns,
which is not what we need in this chapter. We need yearly returns, because in
general the probability of default is given at a yearly basis, and not at a daily
basis. That is why we transform the mean and covariance matrix to a yearly
basis, by multiplying them by 250 (this is allowed because the returns are the
log-returns). Then the means, standard deviations and correlations are given
by the next table. A percentage notation is used for a better interpretation of
the data.
With this data the two necessary parameters, the mean vector µ and the co-
variance matrix Σ, can be determined. They are in the next table.
We have to set a probability of default α. As mentioned before, Rabobank has
a AAA rating. This means that the probability that the bank goes in default is
less than 0.01% per year. In other words, the chance that this happens is less
than once in a ten-thousand years. So

α = 0.0001

Suppose that the yearly portfolio return is normally distributed with means
and covariances as above. This is an important assumption we make, because
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3.4. Example

mean st.dev. correlations ρij (%)
(%) (%) Els For Get Hei Phi RDu Uni

Els 7 29 100 41 24 30 37 33 35
For 7 32 41 100 24 35 44 44 43
Get 4 66 24 24 100 12 29 18 15
Hei 13 25 30 35 12 100 23 27 37
Phi 10 43 37 44 29 23 100 36 28
RDu 6 23 33 44 18 27 36 100 42
Uni 7 23 35 43 15 37 28 42 100

Table 3.1: Yearly means, standard deviations and correlations

µ Σ ×10−3

66.52 86.22 37.62 45.73 21.99 46.59 22.62 23.75
68.47 37.62 99.65 50.98 26.84 59.10 32.51 31.74
40.40 45.73 50.98 438.40 18.77 81.14 27.53 22.63
129.69 21.99 26.84 18.77 60.64 23.96 15.91 21.60
98.58 46.59 59.10 81.14 23.96 183.51 36.63 28.47
57.69 22.62 32.51 27.53 15.91 36.63 55.22 23.35
69.23 23.75 31.74 22.63 21.60 28.47 23.35 54.86

Table 3.2: µ and Σ of yearly returns (×10−3)

in reality it is absolutely not known which distribution belongs to the yearly
returns. There are too little data, and the yearly range is too long to estimate
this. But if returns are normally distributed, then

kα = k0.0001 = −3.719,

the quantile of the normal distribution. The corresponding Telser portfolio has
mean

µT =
bk2

α + d+
√

dk2
α(a+ 2b+ c− k2

α)

ck2
α − d

C0 = 0.158

and standard deviation

σT =
(c+ b)k2

α +
√

dk2
α(a+ 2b+ c− k2

α)

(d− ck2
α)kα

C0 = 0.311

The optimal allocation is

θT =
1

d
Σ−1 ((a1̄ − bµ)C0 + (cµ− b1̄)µT ) =





















−0.088
−0.150
−0.069
1.285
0.219
−0.164
−0.033





















This looks very much like the market portfolio. So it seems that, if the yearly
portfolio return is assumed normally distributed, the optimal Telser portfolio
comes close to the market portfolio, where almost everything is invested in
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Chapter 3. Another aproach for risk: Safety first

Heineken. If we compare this with the optimal Markowitz portfolio, we see that
the optimal Telser portfolio is almost similar to the optimal Markowitz portfolio
with parameter of risk aversion γ = 2. It can be calculated that an investor
with parameter γ = 2.20 has the same preferences in the Markowitz approach
as in the Telser approach.

If we add the risk-free asset with µf = log(1.04) = 0.0392 (remember we are
working in a yearly context now), we get the following optimal allocation:

θT =











1+µf

s(s+kα)Σ
−1 (µf 1̄ − µ)C0

a+b−(b+c)µf+kαs
s(s+kα) C0











=

























−0.058
−0.141
−0.062
1.258
0.203
−0.094
0.018
−0.124

























with µT = 0.158 and σT = 0.311. So with the addition of the risk-free asset, we
still are doing well to invest much in Heineken. Because we invest a negative
amount in the risk-free asset, we borrow money to finance the investments in
the risky securities. But it is not very much we are borrowing at the risk-free
rate, so the optimal Telser portfolio with risk-free asset doesn’t differ much from
the optimal portfolio without risk-free asset.

The figure below shows the Telser portfolio in a graphical view. The efficient
frontier (EF), capital market line (CML) and shortfall line (SL) are drawn.

SL

EF
CML

rf   

 opt
 m

standard deviation

mean 

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

Figure 3.3: Graphical view of the Telser portfolio of this example

34



3.5. References

3.5 References

Elton, Gruber [1981] Modern Portfolio Theory and Investment Analysis

Kataoka [1963] ”A Stochastic Programming Model” Econometrica 31

Roy [1952] ”Safety-first and the Holding of Assets” Econometrics 20

Telser [1955] ”Safety-first and Hedging” Review of Economic Studies 23

35





Chapter 4

Elliptical distributions

Up to now, we have assumed that asset returns are normally distributed. This
made mean-variance analysis straightforward, because the shortfall probability
is completely determined by its mean and variance. Unfortunately, it is not
realistic to assume that portfolio returns are normally distributed. It appears
that in reality the distribution of asset returns has fatter tails, so an unusual
return does more often happen in reality than when the normal distribution
is used for modelling. In this chapter I will introduce a set of distributions,
the elliptical distributions, that covers the asset returns more realistic than the
normal distribution.

The first section formulates the properties of an elliptical distribution. Some
examples of elliptical distributions are shown in section 2. Section 3 gives a
proof that mean-variance analysis also holds for all elliptical distributions, and
this is used in section 4 where the Telser optimal portfolios are recalculated
for elliptically distributed returns. Sections 5 and 6 are for the example and
references.

4.1 Introduction

Consider a n-dimensional vector X = (X1, X2, . . . , Xn)T . If X is elliptical
distributed, it has by definition the following density function

fX(x) = cn|Ω|−1/2gn

[

1

2
(x − µ)T Ω−1(x− µ)

]

(4.1)

for some column vector µ, positive definite (n × n)-matrix Ω and for some
function gn(·) called the density generator. | · | means taking the determinant.
If the density generator doesn’t depend on n, which is often the case, we simply
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Chapter 4. Elliptical distributions

write g(·). The condition

∫ ∞

0

xn/2−1gn(x)dx <∞

guarantees gn(x) to be a density generator (see Landsman and Valdez (2002)).
By noticing that the total density must be one, the constant cn can be calculated.
This gives

cn =
Γ(n/2)

(2π)n/2

[
∫ ∞

0

xn/2−1gn(x)dx

]−1

(4.2)

which is shown by Landsman and Valdez (2002). Γ(·) represents the gamma
function.

The characteristic function of the elliptical distributed X has the form

φX(t) ≡ E(eitT X) = eitT µψ(
1

2
tT Ωt) (4.3)

for some column vector µ, positive definite (n × n)-matrix Ω and some func-
tion ψ(t). The latter function is called the characteristic generator. If the
n-dimensional vector X is elliptical distributed we write X ∼ En(µ,Ω, ψ). We
can also determine the elliptical distribution by the density generator gn and
write X ∼ En(µ,Ω, gn), which is the notation I will use this chapter.

The family of elliptical distributions has some interesting properties. For
proofs of the properties I refer tho the article of Landsman and Valdez (2002).
If

∫ ∞

0

g1(x)dx <∞

the mean of vector X exists (so this is not always the case). The mean then is
E(X) = µ. In addition, if

|ψ′(0)| <∞
the covariance matrix exists and is equal to Cov(X) = −ψ′(0)Ω, so if the
characteristic generator can be chosen such that ψ′(0) = −1, then the covariance
matrix equals Ω. Because, with this notation, Ω does not necessarily have to
be the covariance matrix (but is proportional to covariance matrix), we do not
write it as Σ. We refer to Ω as the dispersion matrix.

Another property of the elliptical distributions is that if X ∼ En(µ,Ω, gn),
then for some (m× n)-matrix A and some m-dimensional column vector B we
have that

AX +B ∼ Em(Aµ+ b, AΩAT , gm) (4.4)

So any linear combination of elliptical distributions is another elliptical distri-
bution, with the same density generator function.

It follows that the marginal distribution of any component of X is also ellip-
tically distributed with the same characteristic generator. If X has an elliptical
distribution, so X = (X1, X2, . . . , Xn)T ∼ En(µ,Ω, gn), then the marginal dis-
tributions are distributed by Xk ∼ E1(µk, ω

2
k, g1) for k = 1, 2, . . . , n, where ω2

k

is the k’th element of the diagonal of Ω. This means that the marginal densities
can be written as

fXk
(x) =

c1
ωk
g1

[

1

2

(

x− µk

ωk

)2
]

(4.5)
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If we define the sum Xsum = X1 +X2 + . . .+Xn = 1̄TX , then by using (4.4)
it follows that

Xsum ∼ E1(1̄
Tµ, 1̄T Ω1̄, g1)

and in a similar way it is clear that the weighted sum Xweighted = θ1X1+θ2X2+
. . .+ θnXn = θTX is distributed by

Xweighted ∼ E1(θ
Tµ, θT Ωθ, g1)

4.2 Some examples of elliptical distributions

Let’s look at some well known families of the elliptical distributions. The exam-
ples are presented concise, a more detailed approach can be found in the article
by Landsman and Valdez (2002).

We will discuss the normal, student-t, Laplace and Logistic family of ellip-
tical distributions in this section. The last subsection compares the different
elliptical distributions with each other.

4.2.1 Normal family

The most familiar example of an elliptical distribution is the normal family. If
we take for the elliptical vector X the density generator

g(u) = e−u

which doesn’t depend on n, we get the normal distribution. To show this, we
calculate cn with formula (4.2). We get cn = (2π)−n/2. If we use (4.5) and the
value of c1, it follows that the marginal density function of Xk is given by

fXk
(x) =

1√
2πωk

e
− 1

2

(

x−µk
ωk

)2

which is the normal distribution. So Xk ∼ N(µk, ω
2
k). The multivariate density

of the vector X is given by formula (4.1), which gives

fX(x) =
1

(2π)n/2
|Ω|−1/2exp

[

−1

2
(x − µ)T Ω−1(x − µ)

]

,

the multivariate normal density function. So a normally distributed vector is a
special case of an elliptical distributed vector. It is well known that E(X) = µ
and Cov(X) ≡ Σ = Ω. It follows that σk = ωk.

The next figures are the marginal standard normal density function and the
bivariate standard normal case, so µ = 0 and Ω = I , the identity matrix.

4.2.2 Student-t family

For the density generator

gn(u) =

(

1 +
2u

ν

)−(n+ν)/2

39



Chapter 4. Elliptical distributions

0.1

0.2

0.3

0.4

0.5

y

–3 –2 –1 1 2 3
x

–3
–2

–1
0

1
2

3

x

–3
–2

–1
0

1
2

3

y

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

Figure 4.1: Marginal and bivariate standard normal density function

the elliptical vector X has a multivariate student-t distribution with ν degrees
of freedom. Using (4.2) it can be shown that

cn =
Γ((n+ ν)/2)

Γ(ν/2)(πν)n/2

so the multivariate distribution is, using (4.1),

fX(x) =
Γ((n+ ν)/2)

Γ(ν/2)(πν)n/2|Ω|1/2

[

1 +
1

ν
(x− µ)T Ω−1(x− µ)

]−(n+ν)/2

If we take n = 1 we get the marginal density function of Xk, k = 1 . . . n, which
results in

fXk
(x) =

Γ((ν + 1)/2)

Γ(ν/2)
√
πν

[

1 +
1

ν
x2

]−(ν+1)/2

In this formula we took ωk = 1 and µk = 0. We see that this is the well
known density function of the student-t distribution with ν degrees of freedom.
The dispersion ω doesn’t equal the standard deviation, but as mentioned before
there is a linear relationship. It is shown that this relationship is given by
V ar(Xk) ≡ σ2

k = ν
ν−2ω

2
k for a t-distributed variable with ν degrees of freedom.

If we take ν = 1 we get the Cauchy distribution. For ν → ∞ we get the
(standard) normal distribution. The graphs below give the marginal density
functions for some ν and the bivariate case for ν = 1

4.2.3 Laplace family

Another example of an elliptical distribution is the Laplace or Double Exponen-
tial distribution. This distribution is obtained by taking

g(u) = e−
√

2u

as the density generator. Again we can calculate cn by using (4.2), which gives
(for a change I give the complete calculation)

cn =
Γ(n/2)

(2π)n/2

[∫ ∞

0

xn/2−1e−
√

2xdx

]−1

=
Γ(n/2)

(2π)n/2

[∫ ∞

0

yn−2e−y
√

22ydy

]−1
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Figure 4.2: Marginal and bivariate student-t density functions

Where we used the substitution y =
√
x. Further calculating gives

cn =
Γ(n/2)

(2π)n/2

[∫ ∞

0

2yn−1e−y
√

2dy

]−1

=
Γ(n/2)

(2π)n/2

[

2Γ(n)

2n/2

]−1

=
Γ(n/2)

2Γ(n)πn/2

So the multivariate density function is, by using (4.1),

fX(x) =
Γ(n/2)

2Γ(n)πn/2
|Ω|−1/2exp

[

−
(

(x− µ)T Ω−1(x− µ)
)1/2

]

which is the density function of the multivariate Laplace distribution. Taking
n = 1 gives the marginal density, which results in

fXk
(x) =

Γ(1/2)

2Γ(1)π1/2ωk
exp



−

√

(

x− µk

ωk

)2


 =
1

2ωk
e−|x−µk|/ωk

This is the well known density function for the Laplace distribution with pa-
rameters µk and ωk. The mean E(X) equals µk, but notice that the parameter
ωk does not has to be the standard deviation, but, as stated before, is a lin-
ear combination of the standard deviation. In fact, the variance (the squared
standard deviation) appears to be V ar(Xk) ≡ σ2

k = 2ω2
k

Below is shown the marginal density function (with µk = 0 and ωk = 1) and
the bivariate Laplace density with µ = 0 and Ω the identity (2 × 2)-matrix.

4.2.4 Logistic family

The last example of a member of the family of elliptical distributions is the
distribution with density generator

g(u) =
e−

√
2u

(1 + e−
√

2u)2
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Figure 4.3: Marginal and bivariate Laplace density functions

Note that this is another density generator than proposed by Landsman and
Valdez, who don’t use the square root sign. By using (4.2) we can calcu-

late cn, which gives after many calculations (and noticing that e−
√

2x

(1+e−
√

2x)2
=

∑∞
j=1(−1)j−1je−j

√
2x) the following expression

cn =
Γ(n/2)

2Γ(n)πn/2





∞
∑

j=1

(−1)j−1j1−n





−1

The multivariate density function can be found by using (4.1), which gives the
multivariate logistic density. Taking n = 1 gives the marginal logistic density.

Using that c1 = Γ(1/2)
2Γ(1)π1/2

[

∑∞
j=1(−1)j−1

]−1

= 1, this gives

fXk
(x) =

1

ωk

exp
(

−|x−µk

ωk
|
)

(

1 + exp
(

−|x−µk

ωk
|
))2 =

1

ωk

exp
(

−x−µk

ωk

)

(

1 + exp
(

−x−µk

ωk

))2

where we have dropped the absolute value signs because the function is sym-
metric, which can be seen as follows:

e−y

(1 + e−y)2
=

ey

(ey)2(1 + e−y)2
=

ey

(ey + 1)2

The marginal distribution is, indeed, the logistic density. The mean of this
marginal density is E(Xk) = µk, the standard deviation is again a linear com-
bination of ωk. It is shown that the variance V ar(Xk) ≡ σ2

k = 1
3π

2ω2
k

The next graphs show the marginal density and the bivariate case with
µk = 0, ωk = 1 respectively µ = 0, Ω = I , the identity matrix.

4.2.5 Differences and similarities

We have discussed four examples of elliptical distributions. There are many
more, like the Bessel, Exponential Power and Stable Laws function. If we com-
pare the four discussed elliptical families we can easily see the differences be-
tween them. Especially the tail behavior can be very different, which is exactly
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Figure 4.4: Marginal and bivariate Logistic density functions

the reason why we are looking at the family of elliptical distributions instead
of only looking at the normal distribution. In the next two figures, we took the
parameters in a way that all means equal zero, and all variances equal one. The
second figure is an enlargement of the righthand tail, so the differences in the
tail become clear.
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Figure 4.5: Comparison of four elliptical distributions

We have seen that the dispersion matrix Ω doesn’t have to be the same as
the covariance matrix Σ. They are proportional to each other, like mentioned in
the four examples in the previous subsections. In general we can say that Σ =
−ψ′(0)Ω, so Ω = (−ψ′(0))−1Σ, which was earlier mentioned in the introduction
of this chapter. For the four examples we gave, we have explicit expressions for
the factor −ψ′(0), so we can say the following about the dispersion matrix Ω,
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Figure 4.6: Enlargement of the righthand tail

in terms of the covariance matrix:

Ω =















Σ normal
ν

ν−2Σ student-t(ν)
1
2Σ Laplace
3

π2 Σ logistic

So the following holds for dispersion, in terms of standard deviation of the k’th
element:

ωk =



















σk normal
√

ν
ν−2σk student-t(ν)

1√
2
σk Laplace

√
3

π σk logistic

(4.6)

Because we are working in a (µ, σ)-space, these relationships will be needed to
transform expressions in the correct parameters. We already used them in the
previous figure, to create probability density functions with the same mean and
standard deviation.

4.3 Mean-variance analysis

In this section I will show that mean-variance analysis is a valid tool for ellip-
tical distributions. The basic thought with mean-variance analysis is that an
investor wants to minimize his variance given some return. If he can choose
between portfolios with the same expected return, he will take the portfolio
with minimum variance (dispersion). I will show that for every elliptical distri-
bution, the distribution is completely specified by its mean and variance. The
higher moments are zero or proportional to the first (mean) or second (variance)
moment.
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4.3. Mean-variance analysis

Suppose that an investor has a portfolio θ of risky assets with portfolio
return Rp = rT θ = θT r, and that the the vector of asset returns has an elliptical
distribution: r ∼ En(µ,Ω, ψ), with ψ the characteristic generator as in (4.3),
µ the mean and dispersion matrix Ω (I don’t use Σ again on purpose because
the dispersion matrix doesn’t have to be the covariance matrix). Then the
portfolio return is also elliptical distributed, namely Rp ∼ E1(θ

Tµ, θT Ωθ, ψ).
Define µp = θTµ the expected portfolio return and ω2 = θT Ωθ the dispersion
of the portfolio. The characteristic function of Rp is, by using (4.3),

φp(t) = eitµpψ(
1

2
tω2t) = eitµpψ(

1

2
ω2t2)

The kth central moment about Rp is defined as

E(Rp − µp)
k =

∫

(X − µp)
kfp(X)dX ≡Mk

with fp(X) the elliptical probability density function of Rp. As we know, the
second central moment E(Rp − µp)

2 is the variance. With this definition we se
the following:

ψ(
1

2
ω2t2) = φp(t)e

−itµp ≡ EeitRpe−itµp = Eeit(Rp−µp)

=

∫

eit(X−µp)fp(X)dX =

∫ ∞
∑

k=0

(it(X − µp))
k

k!
fp(X)dX

=

∞
∑

k=0

(it)k

k!

∫

(X − µp)
kfp(X)dX =

∞
∑

k=0

(it)k

k!
Mk

= 1 +
it

1!
M1 +

i2t2

2!
M2 +

i3t3

3!
M3 + . . .

By noticing that the mth derivative of iktk

k! Mk is

dm

dtm

(

iktk

k!
Mk

)

=











0 for k < m
m(m−1)(m−2)...(2)(1)imt0

m! Mm = imMm for k = m
k(k−1)(k−2)...(k−m+1)iktk−m

k! Mk = iktk−m

(k−m)!Mk for k > m

we see that

dm

dtm

(

ψ(
1

2
ω2t2)

)∣

∣

∣

∣

t=0

=
dm

dtm

( ∞
∑

k=0

(it)k

k!
Mk

)∣

∣

∣

∣

∣

t=0

= imMm

So the the mth central moment of Rp will be

Mm = i−m dm

dtm
ψ(

1

2
ω2t2)

∣

∣

∣

∣

t=0

The following holds for the mth derivative of ψ( 1
2ω

2t2), with even m:

{

dm

dtmψ( 1
2ω

2t2) =
∑m/2

l=0 Cmlψ
(m−l)( 1

2ω
2t2)ω2(m−l)tm−2l

dm+1

dtm+1ψ( 1
2ω

2t2) =
∑m/2

l=0 Cm+1,lψ
(m+1−l)( 1

2ω
2t2)ω2(m+1−l)tm+1−2l
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where Cml are constants for all m, l. This is easy to prove using induction.
Using this result we see that the mth moment can be written as

{

Mm = Cmψ
(m/2)(0)ω2(m/2) = C ′

mω
m

Mm+1 = 0
for m even

with Cm, C
′
m constants. We used that, for even m, both i−m and ψ(m/2)(0) are

real constants, and these are included in the constant C ′
m.

We see that all odd central moments are zero (this result is not a big surprise
because every marginal elliptical distribution is, according to (4.5), symmetric
around µ), and all even central moments are proportional to ωm. Therefore,
if the density generator is chosen, the distribution of the portfolio return is
completely characterized by the first two moments, or by mean µp and dispersion
ω. The first two central moments are

M1 = 0 (so E(Rp) = µp)

M2 = V ar(Rp) = −ψ′(0)ω2

Note that if ψ′(0) = −1, the dispersion ω is equivalent to the standard deviation
σp. We have seen this before in the introduction of this chapter.

The result of this proof is that the Telser analysis we did with the normal
distribution, can be easily extended to all elliptical distributions, which we will
do in the next section.

4.4 Telser and elliptically distributed returns

In the previous chapter we have developed a solution for the optimal investment
policy with Telser’s approach, where we assumed that asset returns are normally
distributed. In this section we will do the same for elliptically distributed re-
turns.

Suppose that asset returns have a multivariate elliptical distribution. So

r ∼ En(µ,Ω, gn)

with expected return vector µ, dispersion matrix Ω and density generator gn(·).
We know that the covariance matrix Σ is proportional to Ω and is determined by
−ψ′(0)Ω. It follows from the theory (4.4) that the portfolio return is distributed
by

Rp = rT θ = θT r ∼ E1(θ
Tµ, θT Ωθ, g1)

If we apply µp = θTµ and ω2
p = θT Ωθ this gives

Rp ∼ E1(µp, ω
2
p, g1)

Note that the portfolios variance is determined by σ2
p = −ψ′(0)ω2

p. Then by
(4.1) the probability density function of Rp has the following form

fp(x) =
c1
ωp
g1

[

1

2

(

x− µp

ωp

)2
]
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with constant c1 defined (by (4.2)) as

c1 =
Γ(1/2)

(2π)1/2

[∫ ∞

0

x1/2−1g1(x)dx

]−1

=
1√
2

[∫ ∞

0

1√
x
g1(x)dx

]−1

Telser’s portfolio optimization approach is to maximize the expected return
subject to the budget constraint that there is a fixed probability of getting into
default. Remember that the budget constraint is

P (Rp ≤ −C0) ≤ α

Since Rp is elliptically distributed, we can write the probability as

P (Rp ≤ −C0) =

∫ −C0

x=−∞

c1
ωp
g1

[

1

2

(

x− µp

ωp

)2
]

dx

Use the substitution

z =
x− µp

ωp
⇒ x = zωp + µp ⇒ dx = ωpdz

which gives

P (Rp ≤ −C0) =

∫

−C0−µp
ωp

z=−∞

c1
ωp
g1

[

1

2
z2

]

ωpdz =

∫

−C0−µp
ωp

z=−∞
c1g1

[

1

2
z2

]

dz

Finally define kα as the quantile for which
∫ kα

z=−∞
c1g1

[

1

2
z2

]

dz = α (4.7)

Note that kα only depends on the density generator g(u) and the probability
α. For example, take the normal distribution. We have seen that g(u) = e−u,
c1 = 1√

2π
. So for the normal distribution the kα for a probability of α = 0.01 is

the solution of
∫ kα

z=−∞

1√
2π
e−

1
2
z2

dz = 0.01

The solution is k0.01 = −2.33 which is the same as the value for the normalized
quantile kα for the normal distribution defined in the previous chapter. So from
now on, kα represents the dispersion standardized α-quantile of an elliptical
distribution. In the table below, some quantiles kα for the previously discussed
elliptical distributions are shown.
Now we can write for the budget constraint

P (Rp ≤ −C0) ≤ α ⇒ −C0 − µp

ωp
≤ kα ⇒ µp ≥ −C0 − kαωp

with kα defined as in (4.7). Because we are working in a (µ, σ)-space, it is
preferable to express the dispersion ωp in terms of standard deviation σp. Using
(4.6) for our discussed elliptical distributions, this gives

µp ≥ −C0 − kαωp =



















−C0 − kασp normal

−C0 − kα

√

ν−2
ν σp student-t(ν)

−C0 − kα
1√
2
σp Laplace

−C0 − kα

√
3

π σp logistic

47



Chapter 4. Elliptical distributions

Normal Student-t Student-t Laplace Logistic
(ν = 1) (ν = 10)

α = 0.5 0 0 0 0 0
α = 0.1 -1.28 -3.08 -1.37 -1.61 -2.20
α = 0.01 -2.33 -31.82 -2.76 -3.91 -4.60
α = 0.001 -3.09 -318.3 -4.14 -6.21 -6.91
α = 0.0001 -3.72 -3183 -5.69 -8.52 -9.21

Table 4.1: The quantiles kα for some elliptical distributions

From now on we will write

µp ≥ −C0 − zασp with zα ≡ kαωp

σp
(4.8)

for all elliptical distributions. So for example if returns are distributed according
to a Laplace distribution, then zα = kα

1√
2
. The quantile zα can be interpreted

as the standard deviation standardized elliptical quantile, we will refer to zα as
the standardized quantile.

Using this definition, the Telser-optimization problem can be written as

Max















µp ≥ −C0 − zασp

µp 1̄T θ = C0

µp = µT θ
σ2

p = θT Σθ















(4.9)

This system is solved in exact the same way as we did for normally distributed
returns, except with the quantile zα instead of kα. So the optimal solution can
be given immediately by looking at the results of the previous chapter. We have
for the case without risk-free asset

θT =
1

d
Σ−1 ((a1̄ − bµ)C0 + (cµ− b1̄)µT )

with

µT =
bz2

α + d+
√

dz2
α(a+ 2b+ c− z2

α)

cz2
α − d

C0

If the risk-free asset is added, with rate of return µf , the optimal portfolio
allocation changes in

θT ≡











θ1
...
θN

θf











=











1+µf

s(s+zα)Σ
−1 (µf 1̄ − µ)C0

a+b−(b+c)µf +zαs
s(s+zα) C0











4.5 Example

In the previous chapter we continued our example of finding the optimal asset
allocation with seven securities from the Dutch AEX-index. We assumed that
the yearly returns were distributed normal, but mentioned that it is very difficult
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to find out the real yearly distribution of returns. Main reason was that the
yearly time interval is too long to have enough relevant data.

Here we will show what the optimal Telser portfolios are if the yearly returns
are elliptical. We assume the normal, student-t for different degrees of freedom,
Laplace and logistic distribution to see what happens with the optimum. The
shortfall probability remains α = 0.0001. The quantiles kα are shown in the
next table.

no risk-free asset with risk-free asset
kα zα µT σT µT σT

Normal -3.719 -3.719 0.158 0.311 0.158 0.311
Student-t(3) -22.204 -12.819 † † 0.071 0.084
Student-t(5) -9.678 -7.496 † † 0.095 0.146
Student-t(7) -7.063 -5.970 0.097 0.184 0.110 0.186
Student-t(9) -6.010 -5.300 0.116 0.211 0.120 0.211
Laplace -8.517 -6.023 0.095 0.182 0.110 0.184
Logistic -9.210 -5.078 0.121 0.221 0.124 0.221

Table 4.2: The quantiles kα for some elliptical distributions

The †-sign means that there is no solution of the problem. This is because for
the quantile zα we must have that

|zα| <
√
a+ 2b+ c = 6.145

to guarantee an optimal solution, which is explained in appendix B. This is
clearly not the case when yearly returns are assumed student-t distributed with
3 or 5 degrees of freedom. Graphically this can be interpreted that the slope of
the shortfall line is too steep, and doesn’t have a point of intersection with the
efficient frontier, so there is not any point that satisfies the shortfall constraint.
In other words, there is no possible asset allocation that will not lose more than
the invested capital C0 with a probability smaller than α.

Looking at the table we see that all policies are more conservative than when
the normal distribution is used. This is because the used distributions all have
greater quantiles (at the shortfall probability α) than the normal distribution,
or in other words, they have fatter tails: a very bad result is expected to happen
more often. To satisfy the shortfall constraint the investor must decrease his
expected return, so all means are lower than with normally distributed returns.
The optimal allocations θ belonging to the table above are

Normal t(3) t(5) Stud-t(7) Stud-t(9) Laplace logistic
-0.088 0.087 0.033 0.093 0.017
-0.150 -0.033 -0.069 -0.029 -0.079
-0.069 -0.003 -0.023 -0.001 -0.029
1.285 † † 0.492 0.736 0.463 0.806
0.219 0.036 0.092 0.029 0.108
-0.164 0.219 0.101 0.233 0.068
-0.033 0.203 0.130 0.211 0.109

Table 4.3: Optimal Telser allocation θ for different yearly distributions
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We see that the importance of Heineken and Philips is adjusted downwards
when more fat-tailed distributions are used. The securities Royal Dutch and
Unilever become more important. In a Markowitz context we can say that the
optimum is moving to in the direction of the minimum variance portfolio. If the
risk-free asset is added, we have the following optimal Telser allocations:

Normal t(3) t(5) t(7) t(9) Laplace logistic
-0.058 -0.016 -0.027 -0.035 -0.040 -0.034 -0.041
-0.141 -0.038 -0.066 -0.084 -0.096 -0.084 -0.100
-0.062 -0.017 -0.029 -0.037 -0.042 -0.037 -0.044
1.258 0.338 0.590 0.751 0.854 0.744 0.894
0.203 0.055 0.095 0.121 0.138 0.120 0.144
-0.094 -0.025 -0.044 -0.056 -0.064 -0.056 -0.067
0.018 0.005 0.009 0.011 0.012 0.011 0.013
-0.124 0.699 0.473 0.329 0.238 0.335 0.202

Table 4.4: The optimal Telser allocation θ, with risk-free asset, for different yearly
distributions.

We see that the greater the quantile zα, the more an investor invests at the risk-
free rate. So when the shortfall line is becoming steeper, the investor chooses
for more safety and invests more in the risk-free asset.

In a figure, the Telser portfolios with elliptically distributed returns look like
the following. The right figure is a zoomed version of the left figure. The used
shortfall lines are with the normal distribution and the student-t with 3,5,7 and
9 degrees of freedom. We also see the efficient frontier(EF), the capital market
line (CML) and the market portfolio (m). Note that there is no optimal solution
if we deal without risk-free asset and assume a student-t(3) or a student-t(5)
distribution, which corresponds with the † in the tables before.
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Figure 4.7: The Telser portfolios with different elliptical distributions
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Chapter 5

Value at Risk based optimization

We have seen that the Telser optimization method is not based on standard
deviation as the risk measure. The measure of risk is the probability of getting
in default, P (Rp ≤ −C0). This risk measure is a special case of the world wide
used Value at Risk risk measure (VaR). We will discuss the Value at Risk, and
portfolio optimization with a VaR constraint, in this chapter.

First the mean-VaR efficient frontier will be derived, both with and without
risk-free asset. Section 3 calculates the optimal portfolios with a VaR-constraint,
like we did with the Markowitz and Telser framework. The last two sections are
for the example and references.

5.1 VaR efficient frontier

The VaR at level 1 − α of a portfolio (V aRα) is defined by

P (Rp ≤ −V aRα) = α

In words we can say that it is the minimum amount an investor can loose
(in dollars) with a confidence interval of 1 − α. The bigger the VaR at some
confidence level, the more risky the portfolio is. So an investor who is extreme
risk averse will prefer an extreme low VaR. The figure below shows the graphical
interpretation of the VaR risk measure.
If we take V aRα = C0 and α the shortfall probability, then the VaR defini-
tion becomes the shortfall constraint of the previous chapter. So a shortfall
constraint is a special case of a VaR constraint.

Because Value at Risk is our new risk measure, instead of standard deviation,
a new efficient frontier can be calculated, just as we did in the mean-standard
deviation framework. The Efficient frontier gives the highest expected return
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mean

alpha

-VaR 0

VaR

Figure 5.1: Definition of Value at Risk

for some given Value at Risk, or the minimum VaR for a fixed mean. It appears
that the efficient mean-VaR frontier is the same as the efficient mean-standard
deviation frontier, when returns are elliptically distributed, which we will show.
For the calculations in this chapter we will assume returns are elliptically dis-
tributed.

When the elliptical assumption is made, the Value at Risk can be written as

P (Rp ≤ −V aRα) = α ⇐⇒ P

(

Rp − µp

ωp
≤ −V aRα − µp

ωp

)

= α

⇐⇒ −V aRα − µp

ωp
= kα ⇐⇒ V aRα = −µp − kαωp

If we use substitution (4.8), the VaR can be written in terms of mean and
standard deviation:

V aRα = −µp − zασp (5.1)

Remember the negative value of zα. The efficient frontier consists of the points
where, for a given mean, the VaR is minimized. It is also defined by the points
where, for a given VaR, the mean return is maximized. We will work with the
latter definition, which is in formulas:

Max















V aRα = −µp − zασp

µp µp = µT θ
σ2

p = θT Σθ
1̄T θ = C0















(5.2)

The first constraint of (5.2) can be transformed to

(V aRα + µp)
2 = (−zασp)

2 ⇐⇒ V aR2
α + 2V aRαµp + µ2

p − z2
ασ

2
p = 0

and if we substitute the other constraints we get

V aR2
α + 2V aRαµ

T θ + θTµµT θ − z2
αθ

T Σθ = 0

⇐⇒ V aR2
α + 2V aRαµ

T θ + θT Ψθ = 0

where the matrix Ψ is defined as

Ψ = µµT − z2
αΣ

54



5.1. VaR efficient frontier

The maximization problem (5.2) then becomes shorter:

Max

{

µT θ V aR2
α + 2V aRαµ

T θ + θT Ψθ = 0
1̄T θ = C0

}

(5.3)

Ψ is symmetric, because

ΨT = (µµT − z2
αΣ)T = (µµT )T − z2

αΣT = µµT − z2
αΣ = Ψ

As before, we define the following constants:

â ≡ µT Ψ−1µ

b̂ ≡ µT Ψ−11̄ = 1̄T Ψ−1µ
ĉ ≡ 1̄T Ψ−11̄

d̂ ≡ âĉ− b̂2

The relationship between the constants â, b̂, ĉ, d̂ and the familiar constants from
the previous chapters a, b, c, d can be easily derived. The following holds for the
inverse covariance matrix

Σ−1 = Σ−1ΨΨ−1 = Σ−1(µµT − z2
αΣ)Ψ−1 = Σ−1µµT Ψ−1 − z2

αΨ−1

Using this expression for Σ−1 we have







a = µT Σ−1µ = µT Σ−1µµT Ψ−1µ− z2
αµ

T Ψ−1µ = aâ− z2
αâ = â(a− z2

α)

b = µT Σ−11̄ = µT Σ−1µµT Ψ−11̄ − z2
αµ

T Ψ−11̄ = ab̂− z2
αb̂ = b̂(a− z2

α)

c = 1̄T Σ−11̄ = 1̄T Σ−1µµT Ψ−11̄ − z2
α1̄T Ψ−11̄ = bb̂− z2

αĉ

We solve this set to get the desired expressions, and get























â = a
a−z2

α

b̂ = b
a−z2

α

ĉ =
cz2

α−d
z2

α(a−z2
α)

d̂ = âĉ− b̂2 = −d
z2

α(a−z2
α)

(5.4)

Later on we will use this results to compare the derived results with previous
findings.

We solve the problem (5.3) using the Lagrange method. This gives the
following set of equations







µ+ 2λ1V aRαµ+ 2λ1Ψθ + λ21̄ = 0 (a)
V aR2

α + 2V aRαµ
T θ + θT Ψθ = 0 (b)

1̄T θ = C0 (c)

Solving equation (a) for θ gives, with λ3 = 1
−2λ1

and λ4 = − λ2

2λ1
:

θ = (λ3 − V aRα)Ψ−1µ+ λ4Ψ
−11̄ (5.5)

Using this θ in (c), we get an expression for λ4:

1̄T θ = (λ3 − V aRα)b̂+ λ4ĉ = C0
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⇐⇒ λ4 =
C0 + b̂V aRα − λ3b̂

ĉ

The calculation of λ3 follows from (b). After many calculations, which are
shown in appendix A, we get

λ2
3 =

1

d̂

(

V aR2
α(d̂− ĉ) − 2C0b̂V aRα − C2

0

)

So

λ3 = ±
√

1

d̂

(

V aR2
α(d̂− ĉ) − 2C0b̂V aRα − C2

0

)

≡ ±
√
W

Since we now have values for λ3 and λ4, we calculate θ using (5.5), which gives

θ = (±
√
W − V aRα)Ψ−1µ+

1

ĉ
(C0 + V aRαb̂∓

√
W )Ψ−11̄

So the desired expression for the portfolio mean, as a function of the Value at
Risk, is

µp = µT θ = (±
√
W − V aRα)â+

1

ĉ
(C0 + V aRαb̂∓

√
W )b̂

=
d̂

ĉ

(

±
√
W − V aRα +

b̂

d̂
C0

)

(5.6)

Using the minus sign in this expression gives the mean-VaR efficient frontier.
To compare this frontier with the mean-standard deviation efficient frontier, we
first invert the function (write V aRα as a function of µp). In (5.6), we isolate√
W , take squares on both sides and solve the arisen quadratic function for

V aRα. This gives:

V aRα = −µp +

√

1

d̂

(

(d̂− ĉ)µ2
p + 2b̂C0µp − âC2

0

)

The second step is to substitute the constants â, b̂, ĉ, d̂ for constants a, b, c, d.
We use substitution (5.4) for this, and get

V aRα = −µp − zα

√

1

d

(

cµ2
p − 2bC0µp + aC2

0

)

(5.7)

The last step is to transform this equation to the mean-standard deviation
framework. We use the substitution (5.1) for V aRα and get

−µp − zασp = −µp − zα

√

1

d

(

cµ2
p − 2bC0µp + aC2

0

)

where zα is assumed to be negative. So the mean-VaR efficient frontier in a
mean-standard deviation framework is given by

σp =

√

1

d

(

cµ2
p − 2bC0µp + aC2

0

)

(5.8)

which we recognize as the mean-variance efficient frontier! So our conclusion
can be that minimizing the variance is the same as minimizing the Value at
Risk, when returns are elliptically distributed.
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mean 

standard deviation

mean 

value at risk

Figure 5.2: The efficient frontier in mean-standard deviation and mean-VaR frame-
work

The two frontiers are shown in the following two graphs, the left figure is
the efficient frontier in a mean-standard deviation framework, the right figure
is the same efficient frontier in a mean-VaR framework.

Because the mean-standard deviation efficient frontier and the mean-VaR
efficient frontier are the same, the allocation at the frontier is still given (in
terms of µp) by (2.3).

We have seen analytically what the relationship is between the efficient fron-
tiers in mean-standard deviation space and mean-VaR space. This relationship
can also be shown in a figure, as shown below. The slope of the shortfall lines in
the left graph depends on the (elliptical) distribution of returns and the short-
fall probability α, but is a fixed constant. The values p, q, r in the left graph
are similar to the values p, q, r in the right graph, so the cross-lines in the right
graph have slope 1.

value at risk

 mean

rqp

-r 

-q 

-p 

 mean

standard deviation

Figure 5.3: Graphical relationship of the efficient frontier in mean-st.dev. and
mean-VaR framework.
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5.2 Adding the risk-free asset

In the mean-standard deviation framework, the efficient frontier changes into
the capital market line when a risk-free asset is introduced. An investor then
will invest in a combination of the market portfolio and the risk-free asset.
Remember that the CML is given by

µp = sσp + C0µf with s =
√

cµ2
f − 2bµf + a (5.9)

The constant s is the slope of the CML. The representation of the CML in the
mean-VaR framework can be derived using (5.1) as an expression for σp and
substituting this in (5.9). This gives

µp = sσp + C0µf = s

(−V aRα − µp

zα

)

+ C0µf

which results in the CML for the mean-VaR framework:

µp =
−s

zα + s
V aRα +

zαµf

zα + s
C0 (5.10)

The figure below shows the capital market line in the two settings. The con-
struction lines show how the two lines are related to each other. The point of

value at risk

 mean

rqp

-r  

-q  

-p  

 mean

standard deviation

Figure 5.4: Graphical relationship of the CML in mean-st.dev. and mean-VaR
framework.

tangency between the CML and the efficient frontier is the market portfolio.
We have seen in the Markowitz chapter that the mean return in the market
portfolio is µm =

a−bµf

b−cµf
C0. To see which Value at Risk belongs to the market

portfolio we equalize µm with (5.10) and get

a− bµf

b− cµf
C0 =

−s
zα + s

V aRα +
zαµf

zα + s
C0
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which results in

V aRm =
bµf − a− zαs

b− cµf
C0

where we used the substitution s2 = cµ2
f − 2bµf + a. So (V aRm, µm) is the

market portfolio in the mean-VaR framework. The allocation θm remains the
allocation calculated in the mean-standard deviation market portfolio section.

5.3 Optimal portfolios

Like we did in the mean-standard deviation framework, we can derive different
optimal portfolios in the mean-VaR framework. An investor can choose to invest
in the minimum Value at Risk portfolio, which is the portfolio that minimizes
the VaR. The minimum VaR portfolio differs from the minimum variance port-
folio, which can be seen by comparing the efficient frontiers in both frameworks.
Another interesting portfolio is the tangency portfolio in the mean-VaR frame-
work. This is the portfolio that maximizes the ratio mean/VaR, so it gives the
portfolio with maximal return per unity VaR. Looking in a Telser context, we
can calculate the optimal Telser portfolio, which is the portfolio that maximizes
the expected return, while satisfying a Value at Risk constraint. We will look
at this in a framework with and without a risk-free asset.

5.3.1 Minimum Value at Risk portfolio

The minimum Value at Risk portfolio is the portfolio that minimizes the Value
at Risk. Because we have derived formula (5.7) as the efficient frontier, we only
have to set the derivative of this function to zero and solve it for µp. We get

∂V aRα

∂µp
= −1 − zα(cµp − bC0)

d
√

1
d (cµ2

p − 2bC0µp + aC2
0 )

= 0 (5.11)

Solving this for µp results in the minimum VaR expected return

µmvr =

(

b

c
+

d

c
√

cz2
α − d

)

C0

The corresponding Value at Risk is calculated by using (5.7):

V aRmvr = −µmvr − zα

√

1

d
(cµ2

mvr − 2bC0µmvr + aC2
0 )

=

(

−b
c

+
1

c

√

cz2
α − d

)

C0

The minimum VaR standard deviation is

σmvr =

√

1

d
(cµ2

mvr − 2bC0µmvr + aC2
0 ) =

−zα
√

cz2
α − d

C0

The asset allocation θ at the minimum Value at Risk portfolio is calculated by
using (2.3), the allocation on the efficient frontier, which results in

θmvr =
1

c
√

cz2
α − d

Σ−1
(

(
√

cz2
α − d− b)1̄ + cµ

)

C0
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The minimum value at risk portfolio is shown in the following figure, which is
in the mean-VaR framework.

mvr 

mean 

value at risk

Figure 5.5: The minimum VaR portfolio

5.3.2 Tangency VaR portfolio

The tangency VaR portfolio is the portfolio where the line through the origin
is tangent to the mean-VaR efficient frontier. It represents the portfolio with
maximum ratio mean/VaR, so with maximum value for mean per unit VaR.

At the tangency VaR portfolio, the slope of the tangency line must be the
same as the slope of the efficient frontier. So

∆V aRtvr

∆µtvr
=
∂V aRα

∂µp

∣

∣

∣

∣

µp=µtvr

Using formula (5.7), we get the following equation

−µtvr − zα

√

1
d (cµ2

tvr − 2bC0µtvr + aC2
0 ) − 0

µtvr − 0
=

−1− zα(cµp − bC0)

d
√

1
d (cµ2

p − 2bC0µp + aC2
0 )

∣

∣

∣

∣

∣

∣

µp=µtvr

The solution of this equation is

µtvr =
a

b
C0

We see that this is the same result as the tangency portfolio in a mean-standard
deviation framework! So µtvr = µtg. Looking better, it is clear that this result
is quite logic. Because

Maximize
µp

V aRα
= Maximize

µp

−µp − zασp
= Minimize

−µp − zασp

µp
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= Minimize
−zασp

µp
= Maximize

µp

σp

the maximization of the tangency line in the mean-VaR framework and the
mean-standard deviation framework gives the same result. The corresponding
VaR is

V aRtg = −µtg − zασtg = −
√
a

b
(
√
a+ zα)C0

and the allocation θtg is the same as the allocation in the mean-standard devi-
ation tangency portfolio.

The portfolio looks like the following in a figure.

tg

mean 

value at risk

Figure 5.6: The minimum VaR portfolio

5.3.3 Telser

We defined the optimal Telser portfolio as the portfolio that maximizes expected
return subject to a shortfall constraint. Because the shortfall constraint is a spe-
cial case of a Value at Risk constraint, we redefine the definition of the optimal
Telser portfolio. From now on, the optimal Telser portfolio is the portfolio that
maximizes the expected return while satisfying a Value at Risk constraint. If
we need the ”old version” of the Telser portfolio, we take V aR = C0 in the
definition. So the Telser problem looks like

Max







V aRα ≤ V aRc

µp 1̄T θ = C0

µp = µT θ







(5.12)

where V aRc is the maximum allowed Value at Risk of the portfolio. When we
assume that returns are distributed elliptically, the first constraint of (5.12) can
be rewritten as (use expression (5.1) for the VaR):

V aRα ≤ V aRc ⇐⇒ V aRc ≥ V aRα = −µp − zασp

⇐⇒ µp ≥ −V aRc − zασp
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So the optimization problem transforms to

Max















µp ≥ −V aRc − zασp

µp 1̄T θ = C0

µp = µT θ
σ2

p = θT Σθ















(5.13)

If we take the maximum allowed Value at Risk V aRc equal to the starting
capital, so V aRc = C0, we exactly get the ”old” formulation as described in the
Safety First chapter. The corresponding figures for problem (5.13) look like the
following, where the optimum lies in area A, and the optimum is found at the
maximum expected return, so at point opt. The left graph is in mean-standard
deviation space, the right graph in mean-VaR space. These two graphs clearly

opt

A

standard deviation

-VaR(c) 

mean 

value at risk

A

mean 

VaR(c)

opt

Figure 5.7: The optimal Telser portfolio

show why it is useful to work with the mean-VaR efficient frontier. It is because
the Value at Risk constraint becomes a vertical line, which is much easier to
work with.

The optimal point is calculated by using the mean-VaR efficient frontier (5.7)
with V aRα = V aRc, which gives

V aRc = −µp − zα

√

1

d

(

cµ2
p − 2bC0µp + aC2

0

)

Solving this for µp results in

µopt =
bz2

αC0 + dV aRc − zα

√

d((a− z2
α)C2

0 + 2bV aRcC0 + cV aR2
c)

cz2
α − d

The corresponding standard deviation is

σopt =

(−V aRc − µopt

zα

)

=
zα(bC0 + cV aRc) −

√

d((a− z2
α)C2

0 + 2bV aRcC0 + cV aR2
c)

d− cz2
α
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and the Value at Risk equals V aRc. The optimal asset allocation θopt is found
by using the fact that the optimal portfolio lies on the efficient frontier, so we
can use formula (2.3) we derived in the Markowitz chapter:

θopt =
1

d
Σ−1 ((cµ− b1̄)µopt + (a1̄ − bµ)C0)

5.3.4 Telser with risk-free asset

If we add a risk-free asset, the efficient frontier changes into the CML. The
optimal Telser portfolio with risk-free asset is the portfolio where maximum
return is gained, while satisfying the VaR-constraint. In the figures below, we
are looking for the highest return in the area A. This is at point opt, the point
of intersection between the CML and the VaR constraint line.

A

standard deviation

-VaR(c) 

mean 

opt

value at risk
VaR(c)

A

mean 

opt

Figure 5.8: The optimal Telser portfolio with risk-free asset

For the calculation of this point of intersection we use the mean-VaR frame-
work, because the VaR constraint line is vertical. Remember the CML is given
by (5.10). The point of intersection is at the point where V aRα = V aRc, so

µopt =
−sV aRc + C0zαµf

zα + s

The corresponding standard deviation is

σopt =
µopt + V aRc

−zα
= −C0µf + V aRc

zα + s

and the Value at Risk is V aRc. For calculating the optimal asset allocation
with risk-free asset, we do the same as we did before in the Markowitz and
Telser chapters. The optimal allocation consists of a combination the market
portfolio and the risk-free asset. Suppose a fraction Θm is invested in the market
portfolio and a fraction Θf in the risk-free asset. The two fractions sum to
one. Because the returns on the risk-free asset have no standard deviation, the
portfolio standard deviation of the optimal portfolio is given by

σopt =
√

Θ2
mσ

2
m + Θ2

f · 0 = Θmσm
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where σm is the standard deviation in the market portfolio, derived in the
Markowitz chapter. So the fraction invested in this market portfolio is

Θm =
σopt

σm
=

−C0µf+V aRc

zα+s
s

b−cµf
C0

=
(C0µf + V aRc)(cµf − b)

s(zα + s)C0

So the fraction invested in the risk-free asset is

Θf = 1 − Θm =
(a− bµf + szα)C0 + V aRc(b− cµf )

s(zα + s)C0

where we used that s =
√

cµ2
f − 2bµf + a. So the optimal allocation with risk-

free asset becomes

θopt ≡











θ1
...
θN

θf











=









Θmθm

ΘfC0









=











V aRc+µf C0

s(s+zα) Σ−1 (µf 1̄ − µ)

(a−bµf +szα)C0+V aRc(b−cµf )
s(zα+s)











5.4 Example

We continue the example of seven securities of the Dutch AEX-index. In the
Elliptical Distributions chapter, the optimal Telser portfolio was calculated us-
ing the shortfall constraint. This shortfall constraint was a yearly probability
of getting in default, and that was the reason why we transformed the daily
returns into yearly returns. In this chapter we switched to a VaR constraint.
But in contrast to the shortfall constraint, the VaR is given for a much shorter
period, mostly one day. So the daily returns can be used again. The probability
α is also adjusted. The confidence level for the one day VaR that Rabobank is
using at the moment is 97,5%, so

α = 0.025

We will not assume that the daily returns have a normal distribution. Because
we have 3609 observations of the daily returns from the 1st of January 1990
till the 31st of October 2003, we can estimate the distributions of the seven
securities. We use the quantile-quantile(QQ)-plot for this.

A QQ-plot is useful for comparing a set of data with different distribution
functions. The quantiles of the date are plotted against the quantiles of some
(elliptical) distribution functions. The data are sort and standardized for each
distribution using the mean and standard deviation and these are compared
with the quantiles kα, where α is taken from 3609 values in the interval [0,1].
The best fitting of the distribution of returns for each asset is the plot that is
closest to the 45 degrees line, because both quantiles are close to each other
there. This results in the QQ-plots at the next pages.

In every plot the normal distribution is shown. It is clear that for none of the
securities the normal distribution is a good approximation of the distribution
function. Also two or three other elliptical distributions (student-t, Laplace,
logistic) are shown, these are the two or three that are closest to the 45 degrees
line.
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Figure 5.9: QQ-plots of Elsevier, Fortis, Getronics and Heineken.
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Figure 5.10: QQ-plots of Philips, Royal Dutch and Unilever.
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With these plots we can estimate the distributions of the returns. Note
that we are only interested in the left tail distribution, because for the VaR
constraint we need the 0.025 quantile. By looking at the QQ-plots the following
distributions of the left tail can be estimated:

Elsevier student-t(6)/student-t(7)
Fortis student-t(7)/Laplace

Getronics student-t(3)
Heineken student-t(6)/student-t(7)

Philips student-t(6)/Laplace
Royal Dutch student-t(7)

Unilever student-t(7)/student-t(6)

Table 5.1: Estimated left tail distribution of returns

Notice that Getronics has a difficult elliptical match. The fluctuation in the
last years was very high, so the tails are very fat,and there is not an elliptical
distribution that really fits. The estimated student-t with 3 parameters of free-
dom is the closest. But all the others are quite close to each other. Especially
the student-t distribution with 6 or 7 degrees of freedom fits for the other six
securities. Because a choice for the portfolio distribution has to be made, I
choose the student-t distribution with 6 degrees of freedom as the distribution
of portfolio returns.

The quantile kα of the student-t(6) distribution for α = 0.025 is

k0.025 = −2.447

so the standardized quantile zα is

z0.025 = k0.025

√

ν − 2

ν
= −2.447

√

6− 2

6
= −1.998

Note that this value doesn’t differ much from the quantile if returns would
be expected to be distributed normally, because then we would have z0.025 =
k0.025 = −1.960. If we move further to the tail of the distribution, so α decreases,
the difference between the quantiles grows. This is shown in the table below,
where the quantiles for different elliptical distributions and different values for
α have been calculated.

α = 0.025 α = 0.01 α = 0.0001
kα zα kα zα kα zα

Normal -1.96 -1.96 -2.33 -2.33 -3.72 -3.72
Student-t(3) -3.18 -1.84 -4.54 -2.62 -22.20 -12.82
Student-t(4) -2.78 -1.96 -3.75 -2.65 -13.03 -9.22
Student-t(6) -2.45 -2.00 -3.14 -2.57 -8.02 -6.55
Student-t(8) -2.31 -2.00 -2.90 -2.51 -6.44 -5.58
Student-t(10) -2.23 -1.99 -2.76 -2.47 -5.69 -5.09
Laplace -3.00 -2.12 -3.91 -2.77 -8.52 -6.02
Logistic -3.66 -2.02 -4.60 -2.53 -9.21 -5.08

Table 5.2: The quantiles for some elliptical distributions at different α
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It is clear that only for extreme low α it matters what the distribution of returns
looks like. If a VaR-confidence level of 97,5% is used, like we do, the results for
student-t distributed returns with 4 up to and including 10 degrees of freedom
are very close to the normally distributed returns. The same holds for logistic
distributed returns.

The mean-VaR efficient frontier is given by

V aRα = −µp − zα

√

1

d

(

cµ2
p − 2bC0µp + aC2

0

)

= −µp + 1.998
√

2882.2µ2
p − 1.891µp + 0.435× 10−3

The minimum Value at Risk portfolio has the following coordinates:

µmvr =

(

b

c
+

d

c
√

cz2
α − d

)

C0 = 0.330× 10−3

V aRmvr =

(

−b
c

+
1

c

√

cz2
α − d

)

C0 = 0.0219

σmvr =
−zα

√

cz2
α − d

C0 = 0.0112

The asset allocation θmvr at the minimum Value at Risk portfolio is

θmvr =
1

c
√

cz2
α − d

Σ−1
(

(
√

cz2
α − d− b)1̄ + cµ

)

C0 =





















0.130
−0.004
0.013
0.296
−0.009
0.314
0.261





















which is a quite diversified portfolio.
Suppose the investor has a Value at Risk limit of 10%, so V aRc = 0.1. This

means that the probability that he loses more than 10 percent of his money is
less then α = 0.025. Then the optimal Telser mean, standard deviation and
allocation are

µT =
bz2

αC0 + dV aRc − zα

√

d((a− z2
α)C2

0 + 2bV aRcC0 + cV aR2
c)

cz2
α − d

= 1.249×10−3

σT =

(−V aRc − µT

zα

)

= 0.0507

θT =
1

d
Σ−1 ((cµ− b1̄)µT + (a1̄ − bµ)C0) =





















−0.537
−0.451
−0.238
3.322
0.690
−1.147
−0.639
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Realize that this value for the VaR is quite high, because the optimal portfolio
invests very much in Heineken and goes short in five other securities to generate
the amount invested in Heineken. If the investor is more risk averse, so the VaR
limit is lower, the following happens. We take V aRc = 0.05.

µT = 0.753× 10−3, σT = 0.0254, θT =





















−0.177
−0.210
−0.102
1.690
0.313
−0.359
−0.154





















And for V aRc = 0.025 we have

µT = 0.443× 10−3, σT = 0.0127, θT =





















0.048
−0.059
−0.018
0.667
0.076
0.135
0.150





















If the risk-free asset is added, with rate of return µf = 0.157 × 10−3, the
efficient frontier changes into the CML, which is in mean-VaR space

µp =
−s

zα + s
V aRα +

zαµf

zα + s
C0 = 0.0122V aRα + 0.159× 10−3

The Value at Risk at the market portfolio, for which we have calculated that
µm = 0.580× 10−3, is

V aRm =
bµf − a− zαs

b− cµf
C0 = 0.0344

The values for the optimal Telser portfolio with risk-free asset are calculated
with

µT =
−sV aRc + C0zαµf

zα + s
, σT = −C0µf + V aRc

zα + s

θT =











V aRc+µf C0

s(s+zα) Σ−1 (µf 1̄ − µ)

(a−bµf +szα)C0+V aRc(b−cµf )
s(zα+s)











The results that these formulas give for different values of the VaR limit are
given in the following table.

We see that the more risk averse (the lower the VaR) the investor is, the lower
the expected return. The standard deviation gets also lower and the amount
borrowed at the risk-free rate becomes less. When V aRc = 0.025, the investor
even lends at the risk-free rate. In the figure below, this is shown by the fact
that this optimum lies on the left side of the market portfolio. We also see the
minimum VaR portfolio(mvr), market portfolio(m), the efficient frontier(EF),
capital market line(CML) and the three Value at Risk constraints.
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V aRc = 0.1 V aRc = 0.05 V aRc = 0.025
µT 1.382× 10−3 0.770× 10−3 0.465× 10−3

σT 0.0507 0.0254 0.0127
-0.150 -0.075 -0.038
-0.364 -0.182 -0.091
-0.159 -0.080 -0.040

θT 3.241 1.623 0.814
0.524 0.262 0.132
-0.242 -0.121 -0.061
0.046 0.023 0.012

θrf -1.895 -0.450 0.273

Table 5.3: Optimal Telser portfolio results with risk-free asset
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70



5.5. References

Huisman, Koedijk, Pownall [1999] Asset Allocation in a Value-at-Risk Frame-
work

Hürlimann [2001] An alternative Approach to Portfolio Selection

Lucas [1998] Nut, Gebruik, en Beperkingen van Value-at-Risk voor Risicoman-
agement

Lucas [1997] A Note on Optimal Estimation from a Risk Management Perspec-
tive under Possibly Mis-specified Tail Behavior

Tasche [2000] Risk Contributions and Performance Measurement

71





Chapter 6

Maximizing the performance

measures EVA and RAROC

We have studied optimization problems with different objective functions. In
the Markowitz framework, the objective was to maximize the utility function
u = E(Rp) − 1

2γvar(Rp). This function appeared to be a convex curve in
the mean-standard deviation space. In the Telser framework the objective was
to maximize the expected return E(Rp) subject to some shortfall or Value at
Risk constraints. In this chapter we will discuss some models, based on the
Telser criterion, but with other objective functions. These objective functions
are based on the so called Economic Value Added (EVA) and the Risk Adjusted
Return On Capital (RAROC).

6.1 EVA and RAROC

EVA The Economic Value Added is defined as follows

EVA = expected portfolio return − cost of capital

The higher the EVA, the better the performance of the investor. The expected
portfolio return is given by E(Rp). But because there are costs for keeping
capital, the expected return is corrected for this costs. The cost of capital
consists of two parameters. It is the cost of capital rate rcap multiplied by
the amount of capital. It is not generally agreed how the amount of capital is
defined. There are two main streams: some say the amount of capital is the
investors equity capital C0 (or the allocated capital), some say it is the Value
at Risk V aR (or the consumed capital). Note that the EVA is an absolute
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performance measure, because the total cost of capital is subtracted. So it is a
nominal amount, not a percentage.

RAROC There are numerous different definitions of the RAROC performance
measure. The Risk Adjusted Return On Capital we will use in this thesis is
defined as

RAROC =
expected portfolio return

amount of capital

The higher the RAROC, the better the investors performance. The maximum
RAROC gives the highest expected return, relative to the amount of capital, so
RAROC is a relative risk measure. Again, the amount of capital can be defined
as the allocated capital C0, or the consumed capital V aR.

The following table shows the performance measures described above:

allocated capital consumed capital

EVA E(Rp) − rcapC0 E(Rp) − rcapV aRα

RAROC
E(Rp)

C0

E(Rp)
V aRα

Table 6.1: Overview of the performance measures EVA and RAROC

The next sections will solve new models based on the EVA and RAROC per-
formance measures.

6.2 New Telser models

We have seen four new performance measures in the table above. These four
measures can all be implemented in the Telser model with Value at Risk con-
straint, by setting them as the objective function. We solve the four obtained
new Telser models in the next four sections. The fifth section compares some
optimal solution with each other.

6.2.1 EVA with allocated capital

Using the EVA with allocated capital as the objective function, we get the
following optimization problem

Max







E(Rp) = µp = µT θ
E(Rp) − rcapC0 P (Rp ≤ −V aRc) ≤ α

1̄T θ = C0







Because rcapC0 is a constant, and rewriting the shortfall constraint, this problem
is the same as

Max







µp = µT θ
µp V aRα ≤ V aRc

1̄T θ = C0
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which we recognize as the Telser problem of the previous chapter. So the solution
is given by

µopt = µT =
bz2

αC0 + dV aRc − zα

√

d((a− z2
α)C2

0 + 2bV aRcC0 + cV aR2
c)

cz2
α − d

(6.1)
with corresponding standard deviation

σopt = σT =
zα(bC0 + cV aRc) −

√

d((a− z2
α)C2

0 + 2bV aRcC0 + cV aR2
c)

d− cz2
α

(6.2)
and the Value at Risk equals V aRc. The optimal asset allocation θopt is

θopt = θT =
1

d
Σ−1 ((cµ− b1̄)µT + (a1̄ − bµ)C0)

In the mean-VaR space, the graphical reproduction looks like the following.

mean 

VaR(c)

opt

value at risk

A

Figure 6.1: Optimal ”EVA with allocated capital” portfolio

6.2.2 EVA with consumed capital

If the consumed capital is used instead of the allocated capital, in the EVA
objective function, the optimization problem becomes

Max







E(Rp) = µp = µT θ
E(Rp) − rcapV aRα V aRα ≤ V aRc

1̄T θ = C0







The objective function, E(Rp) − rcapV aRα ≡ u is a line in the mean-VaR
framework. The line is given by

µp = u+ rcapV aRα

and maximizing the EVA means maximizing u, or moving the line as high as
possible in the feasible area A, while keeping the slope coefficient rcap constant.
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mean 

VaR(c)

opt

value at risk

A

Figure 6.2: Moving the EVA-line with large rcap

We call this line the EVA-line. The feasible area A is the area between the short-
fall line and the efficient frontier. See the figure below for a possible outcome.

Moving the EVA-line as high as possible gives the optimal portfolio opt. As
we can see in the figure, the optimal portfolio differs from the Telser point. In
this optimum, the slope of the EVA-line (rcap) equals the slope of the efficient
frontier. But this optimal portfolio strongly depends on the value for rcap, the
slope of the EVA-line.

If the slope of the EVA-line is much smaller (which means that rcap is much
smaller), we can get the figure below.

mean 

opt

VaR(c)
value at risk

A

Figure 6.3: Moving the EVA-line with small rcap

Notice the difference from the situation before. Because the feasible area
A is bounded by the shortfall constraint line, the highest EVA-line intersects
the efficient frontier at the Telser point, and the optimum is not at the point of

76



6.2. New Telser models

tangency of the efficient frontier and the EVA-line.
So, the optimal allocation is either at the point where the slope of the EVA-

line and the efficient frontier are the same (see the first figure, situation 1) or
at the Telser point (second figure, situation 2), and it depends on the EVA-
line slope, rcap, in which situation we are. The turning point between the
two situations is where the EVA-line is tangent to the efficient frontier, and the
tangency point is exactly at the Telser point, which is shown in the figure below.

mean 

opt

VaR(c)
value at risk

A

Figure 6.4: The tangency point is the Telser point

We will calculate at which value for rcap this turning point is reached. There-
fore we must equalize the slope of the efficient frontier at the Telser point and
the slope of the EVA-line, or

∂µp

∂V aRα

∣

∣

∣

∣

µp=µT

= rcap ⇐⇒ ∂V aRα

∂µp

∣

∣

∣

∣

µp=µT

=
1

rcap
(6.3)

Remember that the efficient frontier (in mean-VaR space) is given by

V aRα = −µp − zα

√

1

d

(

cµ2
p − 2bC0µp + aC2

0

)

So the derivative of V aRα with respect to µp is given by

∂V aRα

∂µp
= −1− zα(cµp − bC0)

d
√

1
d

(

cµ2
p − 2bC0µp + aC2

0

)

=
−dσp − zα(cµp − bC0)

dσp

Using this derivative in (6.3) and solving for rcap, we get

rcap =
dσT

−dσT − zα(cµT − bC0)
≡ r∗cap

where µT and σT are the mean and standard deviation at the Telser point,
given by (6.1) and (6.2) respectively. So we have situation 1 if rcap > r∗cap, and
situation 2 if rcap ≤ r∗cap.
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We will derive the optimal values. The optimum in situation 2 is the Telser
portfolio, which is already calculated. Let us calculate the optimum in situation
1. In the optimum (see the first figure), the (inverse of the) slope of the efficient
frontier equals (the inverse of) rcap, for which rcap > r∗cap. So

∂V aRα

∂µp
=

1

rcap

−1− zα(cµp − bC0)

d
√

1
d

(

cµ2
p − 2bC0µp + aC2

0

)

=
1

rcap
(6.4)

Solving this for µp gives (after isolating, taking squares and solving the quadratic
problem),

µopt =

(

b+
d√

cK2 − d

)

1

c
C0

where K is a constant defined by K =
zαrcap

rcap+1 . Notice that K < 0. This result

can be achieved also by noticing that (6.4) can be written as

−1 − 1

rcap
− zα(cµp − bC0)

d
√

1
d

(

cµ2
p − 2bC0µp + aC2

0

)

= 0

If we divide this by
rcap+1

rcap
, we get

−1−
zαrcap

rcap+1 (cµp − bC0)

d
√

1
d

(

cµ2
p − 2bC0µp + aC2

0

)

= −1 − K(cµp − bC0)

d
√

1
d

(

cµ2
p − 2bC0µp + aC2

0

)

= 0

This is the same expression as formula (5.11) in the minimum Value at Risk
section, with the difference that zα is replaced by K. So the solution of (6.4)
is given by the solution µmvr of (5.11), with zα replaced by K. This gives the
same optimal mean as derived above.

The corresponding σopt is

σopt =

√

1

d

(

cµ2
opt − 2bC0µopt + aC2

0

)

=
−K√
cK2 − d

C0

and the Value at Risk equals

V aRα = −µopt − zασopt =

(

−b
c

+
czαK − d

c
√
cK2 − d

)

C0

which concludes the optimal portfolio in situation 1.
Summarized we can say the following for the optimal µp when the objective

is to maximize the EVA with consumed capital:

µopt =

{ (

b+ d√
cK2−d

)

1
cC0 if rcap > r∗cap

µT if rcap ≤ r∗cap

with K =
zαrcap

rcap + 1

where µT , the Telser mean, is given by (6.1). The corresponding optimal allo-
cation θopt is on the efficient frontier:

θopt =
1

d
Σ−1 ((cµ− b1̄)µopt + (a1̄ − bµ)C0)
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6.2.3 RAROC with allocated capital

We leave the EVA-based objective function and start looking at the RAROC-
based objective. First we look at the case where we deal with allocated capital.
The RAROC maximizing optimization problem becomes

Max







E(Rp) = µT θ
E(Rp)

C0
P (Rp ≤ −V aRc) ≤ α

1̄T θ = C0







Because C0 is a constant, and rewriting the shortfall constraint, this problem is
the same as

Max







µp = µT θ
µp V aRα ≤ V aRc

1̄T θ = C0







which is identical to the Telser problem and the EVA optimization problem with
allocated capital. So the solutions of this problem are the same as the solutions
in the EVA allocated capital section.

6.2.4 RAROC with consumed capital

The RAROC optimization problem when we are dealing with consumed capital
is

Max







E(Rp) = µp = µT θ
E(Rp)
V aRα

V aRα ≤ V aRc

1̄T θ = C0







The objective function
µp

V aRα
≡ u can be written as the RAROC-line

µp = uV aRα

so maximizing the RAROC corresponds with finding the maximum slope u of
the line through the origin, which still has overlap with the feasible area A.

opt

VaR(c)

A

mean 

value at risk

Figure 6.5: Maximizing the slope of the RAROC-line

79



Chapter 6. Maximizing the performance measures EVA and RAROC

We see that the optimum is the tangency point in the mean-VaR framework,
as defined in the previous chapter. Remember that this is the same tangency
point as in the mean-standard deviation framework. This means that

µopt =
a

b
C0, σopt =

√
a

b
C0, V aRα = −

√
a

b
(
√
a+ zα)C0

Note that there can occur a problem if the tangency value for V aRα, −
√

a
b (

√
a+

zα)C0, is on the right side of the shortfall line V aRc. Then the tangency V aRα

is not in the feasible area A. Thus we have to reduce the slope of the RAROC-
line till it touches the feasible area. Then the optimum moves to the Telser
point, as can be seen in the figure below. So we can summarize it as follows:

A

VaR(c)

tg

T

Figure 6.6: The situation if the tangency Value at Risk exceeds V aRc

µopt =

{

µT if V aRc < −
√

a
b (

√
a+ zα)C0

µtg if V aRc ≥ −
√

a
b (

√
a+ zα)C0

and again the corresponding optimal allocation θopt is on the efficient frontier:

θopt =
1

d
Σ−1 ((cµ− b1̄)µopt + (a1̄ − bµ)C0)

6.2.5 Comparison EVA-RAROC

A simple comparison can be made between the EVA and RAROC performance
measures. We already have seen that the EVA is a nominal amount and the
RAROC is a percentage. But what is the relationship between the optima?

If allocated capital is used, the optimal portfolios are the same because they
both are the optimal Telser portfolio. It is more interesting to look at the case
where consumed capital is used. We discuss four situations.

Situation 1 Suppose that

rcap ≤ r∗cap and V aRc ≤ −
√
a

b
(
√
a+ zα)C0.

Then in both situations the Telser portfolio is optimal, so the optimum with
the EVA performance measure is identical to the optimum with the RAROC
performance measure. We write µEV A

opt = µRAROC
opt .
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Situation 2 This changes when the following situation appears:

rcap ≤ r∗cap and V aRc > −
√
a

b
(
√
a+ zα)C0.

Then the optimal EVA portfolio remains the Telser optimum, but the RAROC
maximizing portfolio changes into the tangency portfolio. So in this case we
have that µEV A

opt > µRAROC
opt .

Situation 3 The third possible situation is that

rcap > r∗cap and V aRc ≤ −
√
a

b
(
√
a+ zα)C0.

In this case, the EVA maximizing portfolio is smaller than the Telser portfolio,
which is the optimal RAROC portfolio, so µEV A

opt < µRAROC
opt .

Situation 4 The last possibility is that the following occurs:

rcap > r∗cap and V aRc > −
√
a

b
(
√
a+ zα)C0.

Now we have that

µEV A
opt =

(

b+
d√

cK2 − d

)

1

c
C0, µRAROC

opt =
a

b
C0

We calculate for which value of rcap these two optima are the same. Then

(

b+
d√

cK2 − d

)

1

c
C0 =

a

b
C0

which results in the easy expression

K = −
√
a

Because K =
zαrcap

rcap+1 , we see after a little calculation that

rcap =
−√

a

zα +
√
a

So if the cost of capital rate equals this value, we have that µEV A
opt = µRAROC

opt .
If the value for rcap is smaller, the EVA line gets a smaller slope, so the optimal
EVA mean moves to the right. In the other way, if rcap is greater the optimum
moves to the left. Concluding we can say the following for this fourth situation:















µEV A
opt < µRAROC

opt if rcap >
−√

a
zα+

√
a

µEV A
opt = µRAROC

opt if rcap = −√
a

zα+
√

a

µEV A
opt < µRAROC

opt if rcap >
−√

a
zα+

√
a

Remember that in any case we must have in this situation that rcap > r∗cap.
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6.3 Models with risk-free asset

Like with most models, we can add the risk-free asset with constant rate of
return µf . Remember that the efficient frontier changes in the capital market
line, which is given by

µp =
−s

zα + s
V aRα +

zαµf

zα + s
C0 with s =

√

cµ2
f − 2bµf + a

when we are working in the mean-VaR space.

6.3.1 EVA

For maximizing the EVA, when dealing with allocated capital, we can handle the
same as in the previous section without risk-free asset. Because the allocated
capital is a constant, the EVA-maximization problem

Max







E(Rp) = µp = µT θ + µfθf

E(Rp) − rcapC0 P (Rp ≤ −V aRc) ≤ α
1̄T θ + θf = C0







can be written as

Max







µp = µT θ + µfθf

µp V aRα ≤ V aRc

1̄T θ + θf = C0







which solution is exactly the optimal Telser portfolio, as calculated in the pre-
vious chapter. See also the left figure below for a graphical view of the problem
and solution. The optimal values are

µopt =
−sV aRc + C0zαµf

zα + s
, σopt = −C0µf + V aRc

zα + s
, V aRα = V aRc

R(f) 

CML

mean 

A

value at risk

opt

VaR(c)

R(f) 

mean 

CML

A

value at risk
VaR(c)

Figure 6.7: EVA maximization solutions with risk-free asset

If the EVA performance measure deals with consumed capital, the problem
changes. The solution of the problem

Max







E(Rp) = µp = µT θ + µfθf

E(Rp) − rcapV aRα V aRα ≤ V aRc

1̄T θ + θf = C0







82



6.3. Models with risk-free asset

again is finding the maximum u in the EVA-line

µp = u+ rcapV aRα

with slope rcap. But because the efficient frontier is the CML (with slope −s
zα+s

in the mean-VaR space), we see in the right figure above that there are three
possibilities. If the slope of the EVA-line is greater then the CML slope, the
highest EVA-line starts at the risk-free point, which will be the optimum. If the
slope of the CML is greater then the EVA-line slope, the EVA-line will move up
till it reaches the Telser portfolio, which wil be the optimum. If the two slopes
are identical, every point on the CML is optimal, as long as it stays on the left
side of the VaR-constraint line.

It is clear that this situation of maximizing the Economic Value Added with
consumed capital and risk-free asset is not really useful, because the optimal
point is either at the left extremum (investing everything in the risk-free asset)
or it is the Telser portfolio. Thus when there exists a risk-free asset, the EVA
performance measure is not a suitable objective function.

6.3.2 RAROC

For the RAROC maximization problem with allocated capital and risk-free asset,
we get the same result as with the EVA performance measure with allocated
capital. Because the maximization of E(Rp)/C0 (with C0 a constant) is the
same as the maximization of E(Rp), finding the optimum is exactly the Telser
problem with risk-free asset. So the optimal point is the point in the feasible
area with maximum expected return, which is the point of intersection of the
CML and the VaR-constraint line. This is shown in the left figure below.

A

mean 

value at risk

opt

VaR(c)

CML

R(f) opt
A

mean 

value at risk
VaR(c)

CML

R(f) 

Figure 6.8: RAROC maximization solutions with risk-free asset

If we deal with consumed capital, the solution is different. We know that
maximizing the ratio E(Rp)/V aRα means finding the greatest slope of the line
through the origin (we call it the RAROC-line), which still lies in the feasible
area. But, as the right figure below shows, we can rotate the RAROC-line until
it reaches the risk-free point. Notice that it does not stop at the tangency point,
as was the case in the situation without risk-free asset. Because the Value at
Risk goes to zero when moving to the risk-free point, the RAROC ratio tends
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to infinity. So when the risk-free asset is involved, the RAROC with consumed
capital can go to infinity is everything is invested in the risk-free asset, so this
performance measure is not realistic.

Summarized we can say that, if the risk-free asset is added, both the EVA
and RAROC performance measure give the Telser portfolio (with risk-free asset)
as the optimal portfolio if we deal with allocated capital. But if the consumed
capital is used for the performance measures, the optimal solutions are either
the risk-free portfolio or the Telser portfolio.

6.4 Example

We continue our example. Suppose that the portfolio return is distributed
according to a student-t(6) distribution, like we did in the previous chapter,
so the standardized quantile, where the Value-at-Risk confidence level is taken
97,5%, is

z0.025 = −1.998

The cost of capital rate within Rabobank is 10% per year. Because we are
working in a daily context, we take

rcap = 1 − (0.90)(1/250) = 0.421× 10−3

In this example we allow a maximum Value at Risk of 0.05, so

V aRc = 0.05

The EVA allocated capital problem gives the Telser portfolio of the previous
chapter (with V aRc = 0.05) as the optimum. These optimal values are

µT = 0.753× 10−3, σT = 0.0254, θT =





















−0.177
−0.210
−0.102
1.690
0.313
−0.359
−0.154





















and the optimum is given by point s in the figure. If we deal with consumed
capital, the optimum changes. We calculate r∗cap to see which formula gives the
optimum.

r∗cap =
dσT

−dσT − zα(cµT − bC0)
= 0.0105 > rcap

Because rcap < r∗cap, also in this case the optimum is the Telser portfolio with
results as above. Again this is point s in the figure.

If the objective is to maximize the RAROC, the result when using the al-
located capital is again the Telser portfolio (s in the figure). If the consumed
capital is used, we have to determine the tangency VaR. This is

V aRtg = −
√
a

b
(
√
a+ zα)C0 = 0.0259 < V aRc
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So because V aRc > −
√

a
b (

√
a+ zα)C0, the optimal portfolio is given by































































µopt = a
bC0 = 0.596× 10−3

σopt =
√

a
b C0 = 0.0132

V aRα = −
√

a
b (

√
a+ zα)C0 = 0.0259

θopt = 1
dΣ−1 ((cµ− b1̄)µopt + (a1̄ − bµ)C0) =





















0.036
−0.067
−0.022
0.723
0.089
0.108
0.134





















This is point q in the figure. In the figure we see that the slope of the EVA-line
is quite small. We can calculate what the rcap has to be if we want the optimal
EVA portfolio with consumed capital to be the same as when the consumed
RAROC is used. The we must have that

rcap =
−√

a

zα +
√
a

= 0.0177

at a daily basis, which means a value of

rcap = 1− (1 − 0.0177)250 = 0.989

per year. So if the cost of capital rate is 98.9%, the two optima are equal to
each other. This is an extraordinary high value which will not happen in reality.

If the risk-free asset is added, the solutions for the objectives that deal with
consumed capital become either the portfolio that consists only of the risk-free
asset or the Telser portfolio. In the EVA case, the Telser portfolio is the result,
while in the RAROC case it results in the risk-free portfolio (which gives infinite
RAROC). The optimal portfolios with allocated capital are simply the Telser
portfolios with risk-free asset, which we have seen in the previous chapter. The
solution is given by

µT = 0.770× 10−3, σT = 0.0254, θT =

























−0.075
−0.182
−0.080
1.623
0.262
−0.121
0.023
−0.450

























In the figure, this portfolio is represented by point r. Also shown in the figure
are the efficient frontier(EF), capital market line(CML), Value at Risk line, EVA
line, and the RAROC line.
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Figure 6.9: Optimal EVA and RAROC portfolios.
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Chapter 7

Modeling uncertainty of input

parameters

This chapter deals with the role of parameter uncertainty in the models we have
described. It shows what happens if the chosen parameters µ and Σ are not
certain. This is because in reality, it is very difficult to estimate the correct
values of these parameters and these correct values change every day.

7.1 Overview

There are several techniques proposed in the literature to handle this parameter
uncertainty. Basic thought is to reduce the sensitivity of the optimal portfolios
to input uncertainty. In other words, if the input parameters µ and Σ change a
small amount, the optimal portfolio should not change much.

Frost and Savarino propose to constrain the portfolio weights, so one single
asset doesn’t become too important for the portfolio. Chopra et al. proposes
to use a James-Stein Estimator for means, while Black and Litterman suggest
Bayesian estimation of means and covariances. Jorion researches the Bayes-
Stein estimators. There are also sample-based and scenario-based approaches,
as described in papers of Michaud and Ziemba et al. All these methods reduce
the sensitivity of the portfolio allocation to the input parameters, but do not
provide any hard guarantees on the portfolio performance.

A proposal to model parameter uncertainty in this thesis is as follows.
It arose after many discussions with statisticians and econometricians within
Rabobank. We define a probability distribution function for the uncertain pa-
rameters µ and Σ, and include this in the optimization problem. The objective
function, which is the expected return in the Telser framework, now has to deal
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not only with uncertainty of the returns, which is given by µ and σ, but also
with uncertainty in these last two parameters. So the uncertainty parameters
are uncertain, and a ’second layer’ uncertainty is created. This must result in a
new simultaneous distribution of portfolio returns, which depends asset returns,
means and covariances. There are some difficulties with this method. First the
distribution functions of µ and Σ are very difficult to determine. Second, if
these distribution functions are determined, the new simultaneous distribution
function is even more difficult to find. After this, the optimization has to be
executed with this new simultaneous distribution function which probably will
not be elliptical, which seems to be a hopeless task. Besides this, this method
still doesn’t provide any hard guarantees on the portfolio performance.

That is why, throughout this thesis, I will discuss another approach. The in-
put parameters µ and σ are expected to lie within a confidence interval, and the
optimization problem will be solved for the worst case scenario. The confidence
interval is called the uncertainty set. This means that, for example if we work
with a Value at Risk constraint, in none of the possible input situations the
portfolio VaR will exceed the VaR limit. So the investor is guaranteed a certain
portfolio return, because the worst-case situation is optimized. In the literature
this robust optimization is considered by for instance Ben-Tal and Nerirovski,
and Goldfarb and Iyengar.

7.2 Uncertainty sets

Suppose an investor doesn’t know the exact values for the mean return vector
and covariance matrix, but that he knows a certain interval the parameters are
lying in. The intervals are bounded by a lower bound and an upper bound, so
we can write

µL
i ≤ µi ≤ µU

i ∀i
σL

ij ≤ σij ≤ σU
ij ∀i, j

Instead of using the above notation we will use, with µ0
i = (µL

i + µU
i )/2, βi =

(µU
i − µL

i )/2, σ0
ij = (σL

ij + σU
ij)/2 and δij = (σU

ij − σL
ij)/2, the following:

µ0
i − βi ≤ µi ≤ µ0

i + βi ∀i

σ0
ij − δij ≤ σij ≤ σ0

ij + δij ∀i, j
So the uncertainty sets of the mean return Sm and the covariance Sv can be
written as

Sm = {µ : µ0 − β ≤ µ ≤ µ0 + β, β ≥ 0} (7.1)

Sv = {Σ : Σ0 − ∆ ≤ Σ ≤ Σ0 + ∆,∆ ≥ 0} (7.2)

These are the uncertainty sets we will use in this chapter.

7.3 Second order cone programming

The optimal values for the Markowitz and Telser portfolios (without parameter
uncertainty) in the previous chapters were explicit expressions, obtained by
using either Lagrange’s method or the Kuhn-Tucker conditions. So far, it is
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not possible to find an explicit expression for the optimal values when we are
considering the worst case outcomes for the uncertain parameters. Instead, we
will be able to reduce the problems to a second order cone problem (SOCP),
which can be solved fast using a computer. A SOCP is an optimization problem
of the following form:

Min
{

fTx ‖Aix+ bi‖ ≤ cTi x+ di, i = 1, . . . , N
}

(7.3)

where ‖ · ‖ is the standard Euclidean norm, so ‖u‖ =
√
uTu for a vector u.

Vectors f , x and c are n-dimensional, while x is the decision variable. There
are N constraints.

Second order cone programming is a problem class that lies between linear
programming and semidefinite programming (SDP). SOCPs can be solved far
more efficiently than SDPs, so if a SDP can be written as a SOCP, this is
preferred.

The constraints in (7.3) are called second order cone constraints. This has
the following reason. Note that the standard second order cone of dimension k
is defined as

Ck =

{(

u
t

)}

with ‖u‖ ≤ t (7.4)

where u is a (k − 1)-dimensional vector and t is a scalar. For example, in the
three dimensional space (k = 3) we have that the formula for the standard
second order cone is

z ≥
√

x2 + y2

which has the following graph:

2

4

6

8

10

12

14

–10

10

y
–10–8–6–4–2

46810
x

Figure 7.1: The standard second order cone

Now suppose that we have the following set of points

(

Ai

cTi

)

x+

(

bi
di

)

with Ai a (k−1)×n-matrix, ci and bi vectors of n respectively (k−1) dimensions,
and di a scalar. When this set of points lies in the standard cone of dimension
k, the following must hold

(

Ai

cTi

)

x+

(

bi
di

)

∈ Ck ⇐⇒
(

Aix+ bi
cTi x+ di

)

∈ Ck
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And because of (7.4) we must have

‖Aix+ bi‖ ≤ cTi x+ di

which is the second order cone constraint in (7.3).
A SOCP includes the family of Linear Programs, which can be seen by

taking Ai the zero-matrix and bi the zero-vector, so the constraint transforms
to the linear constraint 0 ≤ cTi x+ di. SOCPs include many more optimization
problems, like quadratic programs, problems with hyperbolic constraints and
problems involving sums and maxima of norms, which is shown in Lobo et al.
(1998).

For solving SOCPs, there are some interior point methods available. This
methods are implemented in computer software like SEDUMI and SDPT3. We
will use the SEDUMI package, which is an optimizer that uses the power of
MATLAB, to solve the problems we will face in the next sections. For making
the implementation of SEDUMI in MATLAB easier we use the program Yalmip.

7.4 Portfolio optimization and SOCP

In this thesis we have optimized the Markowitz portfolio and the Telser port-
folio with a Value at Risk constraint. We used the techniques of Lagrange an
Kuhn-Tucker to get an explicit expression for the optimal portfolio’s. But these
problems can also be written as a SOCP.

7.4.1 Markowitz

Remember that the Markowitz optimization problem is

Max
{

µT θ − 1
2γθ

T Σθ 1̄T θ = C0

}

with positive risk-aversion parameter γ. We can rewrite this as

Min
{

θT Σθ − 2
γµ

T θ 1̄T θ = C0

}

and by noticing the following (we add and subtract the same constant and
perform some other operations)

θT Σθ − 2

γ
µT θ

=
(

Σ1/2θ
)T (

Σ1/2θ
)

− 1

γ
θT Σ1/2Σ−1/2µ− 1

γ
µT Σ−1/2Σ1/2θ

+

(

1

γ
Σ−1/2µ

)T (
1

γ
Σ−1/2µ

)

−
(

1

γ
Σ−1/2µ

)T (
1

γ
Σ−1/2µ

)

=

(

Σ1/2θ − 1

γ
Σ−1/2µ

)T (

Σ1/2θ − 1

γ
Σ−1/2µ

)

− 1

γ2
µT Σ−1µ

= ‖Σ1/2θ − 1

γ
Σ−1/2µ‖2 − a

γ2
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we can write the optimization problem as

Min
{

‖Σ1/2θ − 1
γ Σ−1/2µ‖2 − a

γ2 1̄T θ = C0

}

Because, in a SOCP, we must have a linear objective function, we add a variable
t to achieve this, which gives an extra constraint. The result is

Min

{

t ‖Σ1/2θ − 1
γ Σ−1/2µ‖ ≤ t

0 = 1̄T θ − C0

}

which is the SOCP of the form (7.3) belonging to the optimal Markowitz port-
folio.

7.4.2 Telser

We do the same with the Telser optimization problem. We have shown before
that the Telser problem with elliptically distributed returns, maximum Value
at Risk V aRc (which implies the constraint P (Rp ≤ −V aR) ≤ α) and corre-
sponding (negative) quantile zα can be written as

Max

{

µT θ µT θ ≥ −V aRc − zα

√
θT Σθ

1̄T θ = C0

}

which is easy to transform in a SOCP. If we use that
√
θT Σθ = ‖Σ1/2θ‖ we get

Min

{

−µT θ ‖Σ1/2θ‖ ≤ 1
−zα

µT θ + 1
−zα

V aRc

0 = 1̄T θ − C0

}

7.5 Portfolio optimization with uncertainty

Let’s look at the optimization problem with the uncertainty sets for µ and
Σ, as described in (7.1) and (7.2) respectively. We have explained that the
uncertainty will be handled by evaluating the worst case scenario. But what is
the worst case expected return and covariance? If no short sales are allowed (ie.
no borrowing), it is clear that the worst case expected return is the minimal
expected return, which is the lower bound µ − β. But in this thesis we allow
short sales (borrowing), so this is not sufficient. If an investor goes short in
an asset, the worst case expected return for that asset is the highest possible
return, because this costs the investor the most money. Then we have to deal
with the highest expected return for this asset, or the upper bound µi +βi. For
the covariances we can use the same reasoning. Concluding we can say that it
depends on the investment policy if we have to use the upper or lower bound
for both the expected return and covariance matrix.

7.5.1 Markowitz

The Markowitz portfolio optimization problem in the worst case scenario is

Maxθ

{

minµ,Σ

[

µT θ − 1
2γθ

T Σθ
]

1̄T θ = C0

}
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where γ is the parameter of risk aversion. Because γ > 0 we can write the
problem as

Maxθ

{

minµ

[

µT θ
]

− 1
2γmaxΣ

[

θT Σθ
]

1̄T θ = C0

}

(7.5)

First, we find an expression for the minimum expected return:

minµ[µT θ] = minµ

∑

i

µiθi =
∑

i:θi<0

(µ0
i + βi)θi +

∑

i:θi≥0

(µ0
i − βi)θi

=
∑

i

µ0
i θi +

∑

i:θi<0

βiθi −
∑

i:θi≥0

βiθi =
∑

i

(

µ0
i θi − βi|θi|

)

= (µ0)T θ − βT |θ| (7.6)

We can do the same with the maximum variance. This gives

maxΣ

[

θT Σθ
]

= maxΣ

∑

i,j

σijθiθj

=
∑

i,j:θiθj<0

(σ0
ij − δij)θiθj +

∑

i,j:θiθj≥0

(σ0
ij + δij)θiθj

=
∑

i,j

σ0
ijθiθj +

∑

i,j

δij |θiθj | =
∑

i,j

σ0
ijθiθj +

∑

i,j

δij |θi||θj |

= θT Σ0θ + |θ|T ∆|θ| (7.7)

With this results the optimization problem (7.5) becomes a bit simpler:

Maxθ

{

(µ0)T θ − βT |θ| − 1
2γθ

T Σ0θ − 1
2γ|θ|T ∆|θ| 1̄T θ = C0

}

This problem is a SOCP, so it can be solved in an efficient way. To show this, we
have to do some work. We add two variables ρ and τ in the objective function.
We get

Maxθ,ρ,τ







1̄T θ = C0

(µ0)T θ − βT |θ| − 1
2γρ− 1

2γτ ρ ≥ θT Σ0θ
τ ≥ |θ|T ∆|θ|







Note that for any positive definite A, vector x and positive scalar y we can write

xTAx ≤ y ⇔ 4xTAx ≤ 4y ⇔ 4xTAx− 2y + y2 + 1 ≤ 2y + y2 + 1

⇔ 4xTA1/2A1/2x+ (1 − y)2 ≤ (1 + y)2 ⇔
∥

∥

∥

∥

(

2A1/2x
1 − y

)∥

∥

∥

∥

≤ (1 + y)

Using this, we can rewrite two constraints and get the following

Maxθ,ρ,τ























1̄T θ = C0

(µ0)T θ − βT |θ| − 1
2γ(ρ+ τ)

∥

∥

∥

∥

(

2(Σ0)1/2θ
1 − ρ

)∥

∥

∥

∥

≤ 1 + ρ
∥

∥

∥

∥

(

2∆1/2|θ|
1 − τ

)∥

∥

∥

∥

≤ 1 + τ
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which is almost a SOCP as in (7.3). The only problem is the absolute value
sign of θ. We can replace |θ| by a new n-dimensional vector η and adding
the constraints ηi ≥ θi and ηi ≥ −θi for all i, which guarantees ηi ≥ |θi|.
Another way of dealing with the absolute value is replacing θ respectively |θ| by
θ = θ+ − θ− respectively |θ| = θ+ + θ− and adding the positivity constraints
θ+i , θ

−
i ≥ 0 for all i. We use the first transformation, which results in the

following SOCP:

Minθ,ρ,τ,η







































1̄T θ = C0
∥

∥

∥

∥

(

2(Σ0)1/2θ
1 − ρ

)∥

∥

∥

∥

≤ 1 + ρ

−(µ0)T θ + βT η + 1
2γ(ρ+ τ)

∥

∥

∥

∥

(

2∆1/2η
1 − τ

)∥

∥

∥

∥

≤ 1 + τ

ηi ≥ θi for all i
ηi ≥ −θi for all i







































This is the formulation of the Markowitz optimization problem as a SOCP. As
stated before, this can be solves using a computer. The MATLAB program I
use, robustmarkowitz.m, is in appendix C.

7.5.2 Telser

In the worst case scenario, the Telser optimization problem with VaR constraint
becomes

Maxθ

{

minµ

[

µT θ
]

1̄T θ = C0

maxµ,Σ [P (Rp ≤ −V aRc)] ≤ α

}

Since for the robust mean we have

minµ

[

µT θ
]

= (µ0)T θ − βT |θ|

and for the VaR constraint

maxµ,Σ [P (Rp ≤ −V aRc)] ≤ α ⇐⇒ maxµ,Σ
−V aRc − µT θ√

θT Σθ
≤ zα

⇔ −V aRc −minµµ
T θ

maxΣ

√
θT Σθ

≤ zα ⇐⇒ −minµµ
T θ− zαmaxΣ

√
θT Σθ ≤ V aRc

which can be transformed into

−(µ0)T θ + βT |θ| − zα

√

θT Σ0θ + |θ|T ∆|θ| ≤ V aRc

⇐⇒ −zα

∥

∥

∥

∥

(

‖(Σ0)1/2θ‖
‖∆1/2|θ|‖

)∥

∥

∥

∥

≤ (µ0)T θ − βT |θ| + V aRc

So we have the following optimization problem:

Maxθ







1̄T θ = C0

(µ0)T θ − βT |θ| −zα

∥

∥

∥

∥

(

‖(Σ0)
1
2 θ‖

‖∆1/2|θ|‖

)∥

∥

∥

∥

≤ (µ0)T θ − βT |θ| + V aRc
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To make it a SOCP we introduce new variables ρ and τ , so the problem becomes

Maxθ,ρ,τ























1̄T θ = C0

(µ0)T θ − βT |θ| −zα

∥

∥

∥

∥

(

ρ
τ

)∥

∥

∥

∥

≤ (µ0)T θ − βT |θ| + V aRc

‖(Σ0)1/2θ‖ ≤ ρ

‖∆1/2|θ|‖ ≤ τ























The last step is the introduction of the new variable η to remove the absolute
value parameters. This gives us the SOCP

Minθ,ρ,τ,η







































1̄T θ = C0

−zα

∥

∥

∥

∥

(

ρ
τ

)∥

∥

∥

∥

≤ (µ0)T θ − βT η + V aRc

−(µ0)T θ + βT η ‖(Σ0)1/2θ‖ ≤ ρ

‖∆1/2η‖ ≤ τ
ηi ≥ θi for all i
ηi ≥ −θi for all i







































This SOCP can be solved using the MATLAB program robusttelser.m in
appendix C.

7.6 A more realistic approach

As we will see in the example, the approach described above is a very conser-
vative approach. Main reason for this is the definition of worst case portfolio
variance ((σ2

p)wc) we used. When deriving this worst case portfolio variance
(7.7), we took for every element σij of the covariance matrix the worst case
element. In formulas:

(σ2
p)wc = (θT Σθ)wc =

∑

i,j

σwc
ij θiθj

This means the worst case covariance matrix Σwc can be represented as

Σwc =













σwc
11 σwc

12 · · · σwc
1n

σwc
21

. . .
...

...
σwc

n1 · · · σwc
nn













But is it likely that this special case will occur? No is the answer. This is
because this particular worst case covariance matrix is composed of covariances
which do not belong to each other. The covariances are taken out of different
covariance matrices, and so the correlation between the covariances is disturbed.

That is why it is more logic to compose the worst case portfolio variance as
follows:

(σ2
p)wc = (θT Σθ)wc =





∑

i,j

σijθiθj





wc
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So the worst case covariance matrix is given by

Σwc =













σ11 σ12 · · · σ1n

σ21
. . .

...
...
σn1 · · · σnn













wc

Suppose an investor knows (for example from studying the past) that there are
m possible covariance matrices Σ1,Σ2 . . . ,Σm. Then the worst case covariance
matrix in the first meaning is the matrix that consists of all the worst case
elements σk

ij for all i, j = 1, . . . , n and k = 1, . . . ,m. The worst case covariance

matrix in the second meaning is the worst case matrix Σk for all k = 1, . . . , n.
In this new situation we do not model parameter uncertainty in µ. This is

because according to the experts within Rabobank the uncertainty in the covari-
ances is much more important than the uncertainty in the means. Furthermore
the uncertainty in µ is very difficult to measure.

7.6.1 Markowitz

This new way of modelling uncertainty can be applied to the optimal Markowitz
portfolio. Assume there are m possible covariance matrices Σ1,Σ2 . . . ,Σm and
that the mean vector is ’certain’. Then the robust Markowitz problem

Maxθ

{

minµ,Σ

[

µT θ − 1
2γθ

T Σθ
]

1̄T θ = C0

}

can be transformed to

Maxθ

{

µT θ − 1
2γmaxk[θT Σkθ] 1̄T θ = C0

}

⇐⇒ Maxθ

{

µT θ − 1
2γρ 1̄T θ = C0

ρ ≥ maxk[θT Σkθ]

}

⇐⇒ Maxθ

{

µT θ − 1
2γρ 1̄T θ = C0

ρ ≥ θT Σkθ for all k

}

⇐⇒ Minθ







−µT θ + 1
2γρ 1̄T θ = C0

∥

∥

∥

∥

(

2(Σk)1/2θ
1 − ρ

)∥

∥

∥

∥

≤ 1 + ρ for all k







This is a SOCP. Note that this expression is simpler than the previously cre-
ated version of the uncertain Markowitz problem. The corresponding MATLAB
program robustmarkowitz2.m is in appendix C.

7.6.2 Telser

For the Telser problem with VaR constraint we can do the same. The robust
VaR constraint is

maxΣ [P (Rp ≤ −V aRc)] ≤ α ⇐⇒ maxk
−V aRc − µT θ√

θT Σkθ
≤ zα

⇐⇒ −V aRc − µT θ

maxk

√
θT Σkθ

≤ zα ⇐⇒ −zαmaxk

√
θT Σkθ ≤ µT θ + V aRc
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⇐⇒ −zα

√
θT Σkθ ≤ µT θ + V aRc for all k

⇐⇒ −zα‖(Σk)1/2θ‖ ≤ µT θ + V aRc for all k

So the robust Telser optimization problem becomes

Minθ

{

−µT θ 1̄T θ = C0

−zα‖(Σk)1/2θ‖ ≤ µT θ + V aRc for all k

}

This is the another version of the uncertain Telser optimization problem. The
MATLAB program for solving this has the name robusttelser2.m and can be
found in appendix C.

7.7 Example

The programs of this chapter will be implemented in our example. First we will
find the uncertainty sets of µ and Σ. When this is done, we run the MATLAB
programs of appendix C to see what the results are.

7.7.1 Uncertainty sets

An important question is how to determine the uncertainty sets. Tütüncü
and Koenig [2002] propose two methods. The first method is a bootstrapping
method, where time series are bootstrapped from the available data. The second
method is a moving window method. A window of 60 days is taken and within
this window the means and covariances are determined. The window is moved
back in time to get lower and upper bounds for the means and covariances.

I will use a variant of the last method. Also a window of 60 days is taken,
and means and covariances are calculated for this window. Then the window is
moved 60 days back in time to calculate the second mean vector and covariance
matrix. This is done 60 times (because we have 3609 observations), so at the end
we have 60 possible mean vectors and 60 possible covariance matrices. Notice
that the first 9 observations (this are observations in the year 1990!) are ignored.
From these data the uncertainty sets are determined.

The data give the following lower and upper bounds for means and covari-
ances (see the tables).

×10−3 µL
i µU

i

Elsevier -4.79 4.86
Fortis -6.37 8.35

Getronics -32.79 29.21
Heineken -3.28 6.26

Philips -12.00 7.59
Royal Dutch -3.19 4.71

Unilever -4.88 4.71

Table 7.1: Lower and upper bounds for means

With this lower and upper bounds it is easy to determine the vectors µ0 and β,
and the matrices Σ0 and ∆. With the means for example, we use

µ0
i =

µL
i + µU

i

2
∀i and βi =

µU
i − µL

i

2
∀i
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×10−3 Els For Get Hei Phi RDu Uni
Elsevier 0.057 -0.009 -0.017 -0.049 -0.045 -0.065 -0.035

1.721 1.300 2.109 0.448 1.060 0.549 0.528
Fortis -0.009 0.065 -0.171 -0.029 -0.219 -0.006 0.000

1.300 2.508 2.185 0.532 1.830 1.340 0.994
Getronics -0.017 -0.171 0.059 -0.175 -0.048 -0.222 -0.430

2.109 2.185 29.715 0.707 1.977 0.990 1.127
Heineken -0.049 -0.029 -0.175 0.039 -0.166 -0.030 -0.005

0.448 0.532 0.707 1.024 0.525 0.420 0.352
Philips -0.045 -0.219 -0.048 -0.166 0.081 -0.065 -0.556

1.060 1.830 1.977 0.525 3.049 1.242 0.838
Royal Dutch -0.065 -0.006 -0.222 -0.030 -0.065 0.029 -0.022

0.549 1.340 0.990 0.420 1.242 1.156 0.758
Unilever -0.035 0.000 -0.430 -0.005 -0.556 -0.022 0.031

0.528 0.994 1.127 0.352 0.838 0.758 0.986

Table 7.2: Lower and upper bounds for covariances

to determine the wanted vectors. This gives the following vectors:

µ0 =





















0.036
0.988
−1.793
1.493
−2.204
0.760
−0.088





















× 10−3 β =





















4.826
7.358
31.002
4.771
9.791
3.952
4.796





















× 10−3

For covariances the same properties hold. So the matrices Σ0 and ∆ are:

Σ0 =





















0.889 0.645 1.046 0.200 0.508 0.242 0.247
0.645 1.287 1.007 0.252 0.806 0.667 0.497
1.046 1.007 14.887 0.266 0.965 0.384 0.348
0.200 0.252 0.266 0.532 0.180 0.195 0.173
0.508 0.806 0.965 0.180 1.565 0.589 0.141
0.242 0.667 0.384 0.195 0.589 0.592 0.368
0.247 0.497 0.348 0.173 0.141 0.368 0.509





















× 10−3

∆ =





















0.832 0.654 1.063 0.249 0.553 0.307 0.282
0.654 1.221 1.178 0.281 1.024 0.673 0.497
1.063 1.178 14.828 0.441 1.012 0.606 0.778
0.249 0.281 0.441 0.493 0.346 0.225 0.178
0.553 1.024 1.012 0.346 1.484 0.653 0.697
0.307 0.673 0.606 0.225 0.653 0.564 0.390
0.282 0.497 0.778 0.178 0.697 0.390 0.478





















× 10−3

For our second way of dealing with uncertainty, described in section 7.6, we
have to use the 60 covariance matrices that are already determined.

97



Chapter 7. Modeling uncertainty of input parameters

7.7.2 Calculations

We calculate the optimal Markowitz portfolio, with consideration of parame-
ter uncertainty, using robustmarkowitz.m. We take for the parameter of risk
aversion γ = 2. This gives the optimal portfolio

θopt =





















0
0
0

0.5168
0

0.4832
0





















with expected portfolio return µp = 0.380× 10−3 and standard deviation σp =
0.0122. If the investor is more risk averse (we take γ = 10), the optimum is

θopt =





















0.059
0
0

0.498
0

0.375
0.067





















, µp = 0.379× 10−3, σp = 0.0117

It is possible to check the computer algorithm by using β = 0̄7×1 and ∆ = 0̄7×7,
and running the program with parameters µ and Σ. This should give the nor-
mal optimal Markowitz portfolio of chapter 2, without parameter uncertainty.
Checking this learns that this gives the correct answer.

The optimal Telser portfolio with VaR constraint with parameter uncer-
tainty is calculated with robusttelser.m. We take V aRc = 0.05 and assume a
student-t distribution, so zα = −1.998 for α = 0.025, and calculate the optimal
Telser portfolio. This gives

θopt =





















0.119
−0.001
−0.001
0.415
−0.001
0.157
0.311





















, µp = 0.368× 10−3, σp = 0.0115

If we apply the less rigorous way of dealing with uncertainty, as described in
section 7.6, we use the program robustmarkowitz2.m for the optimal Markowitz
portfolio with parameter uncertainty. For γ = 2, this results in

θopt =





















0.353
−0.054
0.019
0.367
−0.077
0.111
0.283





















, µp = 0.346× 10−3, σp = 0.0121
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If γ = 10, the results are

θopt =





















0.349
−0.049
0.017
0.247
−0.123
0.232
0.327





















, µp = 0.306× 10−3, σp = 0.0120

For the Telser robust optimal portfolio (use robusttelser2.m), the results are

θopt =





















0.319
−0.077
−0.064
0.634
0.019
−0.096
0.266





















, µp = 0.441× 10−3, σp = 0.0139, V aRα = 0.0272

The optimal points can be plotted in the next figure. The figure is in mean-
standard deviation framework. The crossed points belong to the first way of
dealing with uncertainty, the boxed points belong to the second.
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Figure 7.2: The optimal portfolios with uncertainty

Notice that the optimal points are not on the efficient frontier. Because we
are dealing with parameter uncertainty the investor is investing more safe. In
fact, the efficient frontier changes, because the efficient frontier is not efficient
anymore. New efficient points can be calculated by repeatedly calculate the
efficient standard deviation for a given mean. Running this simulation gives
the following new frontier, where the second way of dealing with uncertainty is
used. The frontier that is closest to the old efficient frontier, is the expected
new frontier. This frontier arises when the uncertain covariance matrix appears
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to be the expected covariance matrix, based on all the data of the past thirteen
years. This frontier is different from the old one (although the covariance matrix
is the expected one), because the parameter uncertainty is taken into account,
and thus it is more safe. The boxed portfolios are on this frontier, as can be
seen in the figure. The new frontier on the inside of the other frontiers is the
efficient frontier that arises when the worst case covariance matrix appears. It
is clear that, when this worst case scenario occurs, the investor must be very
reserved.

standard deviation
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0.0008
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Figure 7.3: The new efficient frontiers
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Chapter 8

Conclusion

This thesis presents the results of a study to different portfolio optimization
models in a mathematical way. It starts with the theory of Markowitz, which
is extended throughout the thesis to some different Telser models based on a
Value at Risk constraint. Each Telser model works not only with normally
distributed returns, but also with each distribution from the elliptical family.
If an investor prefers to maximize his EVA or RAROC, this is no problem and
the existing framework can be used. Finally, a proposal is done for modelling
uncertainty in the input parameters, which can be solved using second order
cone programming.

The next concluding example shows that the learnt theory can be helpful in
practice.

8.1 Concluding example

We have used an example with seven members of the Dutch AEX index, and
have shown how the different optimal portfolio allocations are when different
optimization methods are used. We conclude this example by answering the
question if we can outperform the AEX index with our seven securities, without
taking more risk than the AEX takes.

We took AEX data of log-returns from the same period as we did for the
securities, from the 1st of January 1990 up to and including the 31st of October
2003, in total 3609 observations. From these data, the following parameters are
defined:

µaex = 0.245× 10−3

σaex = 0.0134
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V aRaex = 0.0286 (with α = 0.025)

The Value at Risk is determined by sorting all 3609 returns from low to high,
and taking the 0.025 ·3609 = 90th observation for the VaR with confidence level
97,5%.

Suppose we have 100 euro to invest. If we would have invested this in the
AEX (so θaex = 100), we would have had an expected portfolio return of

µp = µaexθaex = 0.245× 10−3 · 100 = 0.0245.

The standard deviation would be

σp =
√

θaexσ2
aexθaex =

√
100 · 0.01342 · 100 = 1.34

The VaR for the portfolio is still the 90th observation, so it is

V aRα = 2.86

Let’s see if we can improve the expected return without taking more risk, by
using our seven securities. We first take the Markowitz point of view, so the
standard deviation is the risk measure. We maximize the expected portfolio
return subject to a standard deviation constraint and the budget constraint.

Max

{

µT θ
√
θT Σθ = 1.34
1̄T θ = 100

}

This gives as solution

θopt =





















3.12
−7.02
−2.38
74.30
9.39
9.80
12.79





















, µopt = 0.0466, σopt = 1.34

We see we can almost get a two times higher expected return by using the above
investment of the 100 euro. The standard deviation (risk) stays the same.

If we optimize subject to the VaR constraint, we have to solve

Max

{

µT θ V aRc = 2.86
1̄T θ = 100

}

which has optimal solution

θopt =





















0.45
−8.81
−3.39
86.40
12.19
3.96
9.19





















, µopt = 0.0502, σopt = 1.46, V aRα = 2.86
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So using this VaR constraint, we can get an even higher expected return while
the risk stays the same. Note that the two optimal portfolios do not differ much.
They both rely very strong on the good performance of Heineken.

Will this work in practice? A well known warning is that results achieved
in the past do not give any guarantees for the future. Since all our data are
obtained from the past, we can not say anything about what will happen in
reality. The future will teach us.

8.2 Future research

This thesis gives a broad overview of possible optimization models. Although,
I only studied the one-period case. It is interesting to study the multi-period
case and see what happens with the optimal solutions if a longer horizon is
chosen. It appears to me that if an optimal solution is linearly dependent on
the invested capital C0, the optimal invested fractions do not change so the
optimal multi-period solution is the myopic one-period one. This is the case for
most of the discussed portfolios. However, both the optimal Markowitz portfolio
and the optimal Telser portfolio with Value at Risk constraint do not satisfy
this property, and the multi-period optimal portfolio does not have to be the
myopic optimum.

I have modelled parameter uncertainty in a way that arose during some
knowledge meetings during my internship. It seemed the most efficient and per-
formable way of modelling the uncertainty in input parameters. I can imagine
that the results can be improved by looking at this subject in a more statistical
way, for example with Bayes-Stein estimators.

My last recommendation for future research is to examine whether or not an
implementation in an Excel environment is possible for solving SOCP’s. I tried
to find a suitable Excel program, but have not succeeded. MATLAB stayed the
most effective by far. For a mathematician this is no problem, but if a computer
program has to be written for a trader who invests in securities and has to know
in a few seconds what happens with his portfolio risk if he makes a buy, the
MATLAB environment is not user-friendly enough.
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Some large calculations

This appendix contains some computations of large calculations in this thesis.

A.1 The market portfolio

The market portfolio is calculated by solving the following equation:

σp =

√

1

d
(cµ2

p − 2bµpC0 + aC2
0 ) =

µp − µfC0

s

with s =
√

cµ2
f − 2bµf + a. Taking squares on both sides gives

1

d
(cµ2

p − 2bµpC0 + aC2
0 ) =

µ2
p − 2µpC0µf + C2

0µ
2
f

s2
.

Bringing each term to the left side results in

cs2 − d

d
µ2

p +
−2bs2 + 2dµf

d
C0µp +

as2 − dµ2
f

d
C2

0 = 0.

This is a quadratic equation, so the solution can be determined using the abc-
formula. Because d > 0, we first multiply the equation with d to make it easier.
The discriminant D is

D = (cs2 − d)(as2 − dµ2
f )C2

0 − (−2bs2 + 2dµf )2C2
0

= C2
0

(

4b2s4 + 4µ2
fd

2 − 8bs2µfd− 4acs4 + 4cds2µ2
f + 4ads2 − 4d2µ2

f

)

= 4s2C2
0

(

−(ac− b2)s2 − 2bdµf + cdµ2
f + ad

)

.
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Remember that d = ac− b2, so

D = 4s2C2
0

(

−ds2 − 2bdµf + cdµ2
f + ad

)

= 4ds2C2
0

(

−s2 + cµ2
f − 2bµf + a

)

= 4ds2C2
0

(

−s2 + s2
)

= 0.

So the discriminant is zero and there is one solution. This means that the
solution indeed is a point of tangency, and that the CML is a tangency line. We
continue the calculation of µp with the abc-formula:

µp =
2bs2 − 2µfd

2(cs2 − d)
C0

=
bs2 − dµf

cs2 − d
C0

=
b(cµ2

f − 2bµf + a) − (ac− b2)µf

c(cµ2
f − 2bµf + a) − (ac− b2)

C0

=
bcµ2

f − b2µf + ab− acµf

c2µ2
f − 2bcµf + b2)

C0

=
(cµf − b)(bµf − a)

(cµf − b)2

=
a− bµf

b− cµf

The corresponding value for the standard deviation can be fount by using this
value for the mean in the efficient frontier formula. This gives

σp =

√

1

d

[

cµ2
p − 2bC0µp + aC2

0

]

=

√

√

√

√

1

d

[

c

(

a− bµf

b− cµf
C0

)2

− 2bC0

(

a− bµf

b− cµf
C0

)

+ aC2
0

]

=

√

cµ2
f − 2bµf + a

b− cµf
C0

=
s

b− cµf
C0

This result can also be achieved by using the CML formula:

σp =
µp − µfC0

s

=
(a− bµf ) − (b− cµf )µf

s(b− cµf )
C0

=
s

b− cµf
C0

So the market portfolio is given by

µm =
a− bµf

b− cµf
C0, σm =

s

b− cµf
C0
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A.2 The Telser portfolio

The equation that has to be solved to calculate the optimal Telser portfolio is

1

d

(

cµ2
p − 2bC0µp + aC2

0

)

=

(−C0 − µp

kα

)2

.

Because d > 0, this can be written as

k2
α

(

cµ2
p − 2bC0µp + aC2

0

)

= d
(

C2
0 + 2C0µp + µ2

p

)

.

Bring all factors to the left side gives

(ck2
α − d)µ2

p − (2d+ 2bk2
α)C0µp + (ak2

α − d)C2
0 = 0.

This quadratic equation is solved using the abc-formula. The discriminant D is

D = (−(2d+ 2bk2
α)C0)

2 − 4(ck2
α − d)(ak2

α − d)C2
0

= C2
0

[

4d2 + 4b2k4
α + 8bdk2

α − 4ack4
α + 4cdk2

α + 4adk2
α − 4d2

]

= 4k2
αC

2
0

[

−(ac− b2)k2
α + 2bd+ cd+ ad

]

.

We use that d = ac− b2, and get

D = 4C2
0

[

dk2
α(a+ 2b+ c− k2

α)
]

.

Applying the abc-formula gives

µp =
2d+ 2bk2

α + 2
√

dk2
α(a+ 2b+ c− k2

α)

2(ck2
α − d)

C0

=
d+ bk2

α +
√

dk2
α(a+ 2b+ c− k2

α)

ck2
α − d

C0

which is the desired optimal value for µT .

A.3 The Value at Risk efficient frontier

This is a sub-calculation for the derivation of the VaR efficient frontier. We
have the following three equations to solve the unknown λ3:







V aR2
α + 2V aRαµ

T θ + θT Ψθ = 0
θ = (λ3 − V aRα)Ψ−1µ+ λ4Ψ

−11̄

λ4 = C0−b̂(λ3−V aRα)
ĉ

(A.1)

We first calculate θT Ψθ. This gives

θT Ψθ =

=
(

(λ3 − V aRα)µT Ψ−1 + λ41̄
T Ψ−1

)

Ψθ

= (λ3 − V aRα)µT θ + λ41̄
T θ.
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One of the constraints is the budget constraint, which states that 1̄T θ = C0.
Applying this, the result is

θT Ψθ = (λ3 − V aRα)µT θ + λ4C0.

If we use this expression in the first equation of (A.1), we get

V aR2
α + 2V aRαµ

T θ + (λ3 − V aRα)µT θ + λ4C0 = 0

which can be rewritten as

V aR2
α + (λ3 + V aRα)µT θ + λ4C0 = 0. (A.2)

We derive an expression for µT θ. This is

µT θ = µT
(

(λ3 − V aRα)Ψ−1µ+ λ4Ψ
−11̄
)

= (λ3 − V aRα)â+ λ4b̂.

We use the expression for λ4 to get

µT θ = (λ3 − V aRα)
âĉ

ĉ
+
b̂C0 − b̂2(λ3 − V aRα)

ĉ

=
d̂(λ3 − V aRα) + b̂C0

ĉ
.

Using this, and the expression for λ4, in equation (A.2), the result is

V aR2
α +

d̂(λ3 + V aRα)(λ3 − V aRα)

ĉ
+
b̂C0(λ3 − V aRα)

ĉ

+
C2

0 − b̂(λ3 − V aRα)C0

ĉ
= 0

⇐⇒ ĉV aR2
α

ĉ
+
d̂

ĉ
(λ2

3 − V aR2
α) +

b̂

ĉ
λ3C0 +

b̂

ĉ
V aRαC0

+
C2

0

ĉ
− b̂

ĉ
λ3C0 +

b̂

ĉ
V aRαC0 = 0

and this can be written as

(ĉ− d̂)V aR2
α + d̂λ2

3 + 2b̂V aRαC0 + C2
0 = 0.

So the for λ3 we have

λ2
3 =

1

d̂

(

(d̂− ĉ)V aR2
α − d̂λ2

3 − 2b̂V aRαC0 + C2
0

)

which is the desired expression.
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Telser portfolio analytical

B.1 No risk-free asset

This appendix calculates the optimal Telser portfolio with no risk-free, in an
rigorous analytical way. The results appear to be the same as the results derived
in the regular Telser section.

To make things easier it is useful to define the following parameters:

Ψ ≡ (1 + µ)(1 + µ)T − k2
αΣ

and
a′ ≡ µT Ψ−1µ
b′ ≡ µT Ψ−11̄ = 1̄TT−1µ
c′ ≡ 1̄T Ψ−11̄
d′ ≡ a′c′ − b′2

Ψ is an (N ×N)-matrix. We assume it is invertible. Note that

ΨT = [(1̄ + µ)(1̄ + µ)T − k2
αΣ]T = [(1̄ + µ)T ]T (1̄ + µ)T − k2

αΣT

= (1̄ + µ)(1̄ + µ)T − k2
αΣ = Ψ

so Ψ is symmetric.
There is a relationship between parameters a′, b′, c′, d′ and the previous de-

fined a, b, c, d. This relationship can be seen as follows. Multiply Ψ on the left
by Σ−1 and on the right by Ψ−1. We get

Σ−1ΨΨ−1 = Σ−1(1̄ + µ)(1̄ + µ)T Ψ−1 − k2
αΣ−1ΣΨ−1

So
Σ−1 = Σ−1(1̄ + µ)(1̄ + µ)T Ψ−1 − k2

αΨ−1
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= Σ−1(1̄1̄T + 1̄µT + µ1̄T + µµT )Ψ−1 − k2
αΨ−1

With this expression for Σ−1 we see the following:

a = µT Σ−1µ = µT Σ−1(1̄1̄T + 1̄µT + µ1̄T + µµT )Ψ−1µ− k2
αµ

T Ψ−1µ

= bb′ + ba′ + ab′ + aa′ − k2
αa

′ = (a+ b)(a′ + b′) − k2
αa

′

In a similar way we can get expressions for b and c:

b = 1̄T Σ−1µ = cb′ + ca′ + bb′ + ba′ − k2
αb

′ = (b+ c)(a′ + b′) − k2
αb

′

or, if we use the other definition for b′:

b = µT Σ−11̄ = bc′ + ac′ + bb′ + ab′ − k2
αb

′ = (a+ b)(b′ + c′) − k2
αb

′

c = cc′ + bc′ + cb′ + bb− k2
αc

′ = (b+ c)(b′ + c′) − k2
αc

′

which gives the system (we used the first expression for b′):






a+ k2
αa

′ = (a+ b)(a′ + b′)
b+ k2

αb
′ = (b+ c)(a′ + b′)

c+ k2
αc

′ = (b+ c)(b′ + c′)
(B.1)

This system has three equations for the three unknowns a′, b′, c′, so it can be
solved. After some straightforward calculations it follows that

a′ =
ak2

α − d

k2
α(a+ 2b+ c− k2

α)

b′ =
bk2

α + d

k2
α(a+ 2b+ c− k2

α)

c′ =
ck2

α − d

k2
α(a+ 2b+ c− k2

α)

and by using that d′ = a′c′ − b′2 it can be shown that

d′ =
−d

k2
α(a+ 2b+ c− k2

α)

Later on it will be clear that, if an optimal solution of (3.2) exists, the factor d′

must be negative. This means that the denominator of the above expressions
k2

α(a+ 2b+ c− k2
α) must be positive (because −d < 0). Written in another way

this gives that an optimal solution exists if

|kα| <
√
a+ 2b+ c

Look again at system (3.2). By combining some constraints we can simplify the
system. The first constraint gives

µp + C0 ≥ −kασp ⇒ µ2
p + 2µpC0 + C2

0 ≥ k2
ασ

2
p

Making use of the last three constraints (expressions for µp, σp, C0) we can
transform the above constraint in

θTµµT θ + 2θTµ1̄T θ + θT 1̄1̄T θ ≥ k2
αθ

T Σθ
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θT [(µ+ 1̄)(µ+ 1̄)T − k2
αΣ]θ ≥ 0

θT Ψθ ≥ 0

So system (3.2) can be simplified to

Max

{

µT θ −θT Ψθ ≤ 0
1̄T θ − C0 = 0

}

(B.2)

This system can not be solved using Lagrange’s method, as we did many times
before. This is because the first constraint is an inequality which is not allowed
in the solving method of Lagrange. When the constraints contain an inequality
we use the Kuhn-Tucker conditions. This is an extension of Lagrange’s method
and it works practically the same. Although for each inequality gi(x) ≤ 0 we
add the conditions that λigi(x) = 0 and λi ≤ 0.

For (B.2) the Kuhn-Tucker conditions are






















µ− 2λ1Ψθ + λ21̄ = 0 (a)
−θT Ψθ ≤ 0 (b)
1̄T θ − C0 = 0 (c)
−λ1θ

T Ψθ = 0 (d)
λ1 ≤ 0 (e)

(B.3)

Suppose λ1 = 0. Then (a) gives

µ+ λ21̄ = 0

from which no feasible solution of λ2 can be determined because we assume that
µ is not a constant vector (so our assumption means that it is not possible that
all the expected returns are the same, which is quite plausible). So λ1 6= 0 and
from (e) we see that λ1 < 0. Equation (a) gives us an expression for θ:

θ =
1

2λ1

(

λ2Ψ
−11̄ + Ψ−1µ

)

(B.4)

Then from (d) we have, because λ1 6= 0, that θTTθ = 0, which gives

1

4λ2
1

(

λ21̄
T Ψ−1 + µT Ψ−1

)

Ψ
(

λ2Ψ
−11̄ + Ψ−1µ

)

= 0

⇒ 1

4λ2
1

(

c′λ2
2 + 2b′λ2 + a′

)

= 0

So this gives the quadratic expressions

c′λ2
2 + 2b′λ2 + a′ = 0 ∧ λ1 6= 0

The latter is true by assumption, the first equation gives the following solution
by using the abc-formula:

λ2 = −b
′

c′
± 1

c′
√
−d′

which only has a solution if d′ < 0 (this result is used before). If not, problem
(B.2) is infeasible and there is no solution. From (c) and the expression for θ
we have

1

2λ1

(

λ21̄
T Ψ−11̄ + 1̄T Ψ−1µ

)

− C0 =
1

2λ1
(λ2c

′ + b′) − C0 = 0
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⇒ λ1 =
c′λ2 + b′

2C0

And by filling in the value for λ2 we are getting

λ1 =
c′(− b′

c′ ± 1
c′

√
−d′) + b′

2C0
= ± 1

2C0

√
−d′

Because we know by (e) and λ1 6= 0 that λ1 < 0, only the negative value of λ1

is valid. This implies that the ± sign in λ2 must also have the negative sign. So

λ1 = − 1

2C0

√
−d′ , λ2 =

−b′ −
√
−d′

c′

Since we have expressions for both λ1 and λ2 we can continue with expression
(B.4) for θ. This gives

θT =
C0√
−d′

(

b′ +
√
−d′

c′
Ψ−11̄ − Ψ−1µ

)

So the (maximized) value for µp is

µT = µT θT =
C0√
−d′

(

b′ +
√
−d′

c′
µT Ψ−11̄ − µT Ψ−1µ

)

=
C0√
−d′

(

b′ +
√
−d′

c′
b′ − a′

)

=
b′ +

√
−d′

c′
C0

The last step is to fill in the values for b′, c′ and d′ in the above formulas. When
doing this, we get the following results

µT =
bk2

α + d+
√

dk2
α(a+ 2b+ c− k2

α)

ck2
α − d

C0

and

θT =
1

d
Σ−1 ((a1̄ − bµ)C0 + (cµ− b1̄)µT )

And it is clear that these results are the same as the results from the intuitive
calculations.

B.2 With risk-free asset

Taking a more analytical approach for solving the maximization problem with
risk-free asset gives the following system

Max















µp ≥ −C0 − kασp

µp Θm + Θf = 1
µp = Θmµm + ΘfC0µf

σp = Θmσm















(B.5)

where the objective is to find the proportions which should be invested in the
market portfolio (Θm) and risk-free asset (Θf ) to maximize the expected return.
This system differs from system (3.2) in a way that it is adjusted to the fact
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that the presence of the risk-free asset implies that only combinations of the
market portfolio and the risk-free asset will be chosen. We can simplify (B.5)
by substituting the expressions for µp and σp, so the shortfall constraint becomes

Θmµm+ΘfC0µf ≥ −C0−kαΘmσm ⇒ ΘfC0µf +Θm(µm+kασm)+C0 ≥ 0

Using this, the maximization problem becomes

Max

{

Θmµm ΘfC0µf + Θm(µm + kασm) + C0 ≥ 0
+ΘfC0µf Θm + Θf = 1

}

(B.6)

which can be solved with the Kuhn-Tucker conditions. The K-T conditions are






























C0µf + λ1C0µf + λ2 = 0 (a)
µm + λ1(µm + kασm) + λ2 = 0 (b)
ΘfC0µf + Θm(µm + kασm) + C0 ≥ 0 (c)
Θm + Θf = 1 (d)
λ1(ΘfC0µf + Θm(µm + kασm) + C0) = 0 (e)
λ1 ≥ 0 (f)

(B.7)

Suppose λ1 = 0. Then (a) and (b) together give

C0µf = µm

which cannot be true because µm =
a−bµf

b−cµf
C0, so

C0µf =
a− bµf

b− cµf
C0 ⇒ cµ2

f − 2bµf + a = 0

which only has solutions for positive discriminant 4b2 − 4ac = −4d < 0, which
clearly contradicts. So it has no solutions and λ1 6= 0. But then follows from
(e) that

ΘfC0µf + Θm(µm + kασm) + C0 = 0

which results, together with (d), in

Θm =
−(1 + µf )C0

µm + kασm − C0µf
, Θf =

µm + kασm + C0

µm + kασm − C0µf

Now only condition (f) has to be checked. Because λ1 6= 0 we must have that
λ1 > 0. From (a) and (b) it follows that

λ1 =
C0µf − µm

µm + kασm − C0µf

and after substituting µm and σm:

λ1 = −

√

cµ2
f − 2bµf + a

kα +
√

cµ2
f − 2bµf + a

= − s

kα + s

So (f) is valid if λ1 > 0 =⇒ (−kα) > s. If not, there is no solution of (B.6).
This constraint is quite logic, because it says that the slope of the shortfall line
must be greater than the slope of the CML. If it is not, there can not be a point
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of intersection because the CML lies above the shortfall line (see the figure in
the regular section). Now the expected return is

µT = ΘfC0µf + Θmµm =
−µm + kασmµf + C0µf

µm + kασm − C0µf
C0

=
kαµf − s

kα + s
C0

and the standard deviation

σT = Θmσm =
−(1 + µf )σm

µm + kασm − C0µf

=
−1 − µf

kα + s
C0

which are the same results as when the intuitive solution was obtained. So the
optimal Telser allocation is given by (3.5).

116



Appendix C

MATLAB programs

This appendix shows the MATLAB programs I used for calculating optimal
portfolios using second order cone programming. The SEDUMI package should
be installed at the computer for solving the SOCP. The Yalmip package should
be installed for successfully implementing the SUDUMI package. With this
packages installed, the following programs should work.

C.1 robustmarkowitz.m

function theta = robustmarkowitz(m,S,b,D,ra)

% robustmarkowitz(m,S,b,D,z) calculates optimal investment policy

% with uncertainty when we use the Markowitz criterion.

% b is the deviation vector where for mean vector c we have

% uncertainty structure m-b < c < m+b

% D is the deviation matrix where for covariance matrix C we have

% uncertainty structure S-D < C < S+D

% ra=parameter of risk aversion

[n,n]=size(S);

A=eye(n+1,n); % hulpmatrix

b=ones(n+1,1)-eye(n+1,n)*ones(n,1); % hulpvector

B=2*S^(1/2); % hulpmatrix

C=2*D^(1/2); % hulpmatrix

x=sdpvar(n,1); % theta

y=sdpvar(n,1); % eta

r=sdpvar(1,1); % rho
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t=sdpvar(1,1); % tau

mt=m’;

bt=b’;

F=lmi(’||A*B*x+(1-r)*b||<1+r’); % define constraints

F=F+lmi(’||A*C*y+(1-t)*b||<1+t’); % constraint

F=F+lmi(’ones(1,n)*x==1’); % constraint

F=F+lmi(’y-x>0’)+lmi(’y+x>0’) % constraint

solvesdp(F,[],-mt*x+bt*y+0.5*ra*r+0.5*ra*t) % solve

theta=double(x); % the optimal allocation

C.2 robusttelser.m

function theta = robusttelser(m,S,b,D,z,VaR)

% robusttelser(m,S,b,D,z,VaR) calculates optimal investment

% policy with uncertainty.

% b is the deviation vector where for mean vector c we have

% uncertainty structure m-b < c < m+b

% D is the deviation matrix where for covariance matrix C we

% have uncertainty structure S-D < C < S+D

% z = quantile of VaR constraint

% VaR = limit Value at Risk

[n,n]=size(S);

mt=m’;

bt=b’;

x=sdpvar(n,1); % theta

y=sdpvar(n,1); % phi

r=sdpvar(1,1); % rho

t=sdpvar(1,1); % tau

B=S^(1/2); % hulpmatrix

C=D^(1/2); % hulpmatrix

F=lmi(’||B*x||<r’); % define constraints

F=F+lmi(’||C*y||<t’); % constraint

F=F+lmi(’||[1;0]*r+[0;1]*t||<1/(-z)*(mt*x-bt*y+VaR)’);

F=F+lmi(’ones(1,n)*x==1’); % constraint

F=F+lmi(’y-x>0’)+lmi(’y+x>0’) % constraints

solvesdp(F,[],-mt*x + bt*y); % solve

theta=double(x);
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C.3. robustmarkowitz2.m

C.3 robustmarkowitz2.m

function theta = robustmarkowitz2(m,S,g)

% robustmarkowitz2(m,S,g)

% calculates the optimal Markowitz portfolio with

% parameter uncertainty in the covariance matrix.

% S = all covariance matrices pasted below each other

% m = mean vector

% g = parameter of risk aversion

[rows,n]=size(S);

A=eye(n+1,n); % hulpmatrix

b=ones(n+1,1)-eye(n+1,n)*ones(n,1); % hulpvector

number_matrices=rows/n; % number of cov. matrices

mt=m’;

x=sdpvar(n,1); % theta

r=sdpvar(1,1); % rho

F=lmi(’ones(1,n)*x==1’); % budget constraint

for k=1:number_matrices

T=S((k-1)*n+1:k*n,1:n); % m covariance matrices

B=2*T^(1/2); % hulpmatrix

F=F+lmi(’||A*B*x+(1-r)*b||<1+r’); % m constraints

end

solvesdp(F,[],-mt*x+0.5*g*r) % solve

theta=double(x);

C.4 robusttelser2.m

function theta = robusttelser2(m,S,z,VaR)

% robusttelser2(m,S,z,VaR) calculates optimal investment policy

% with uncertainty.

% S = all possible covariance matrices pasted below each other

% m = mean vector

% z = standardized quantile of (elliptical) distribution of

% VaR constraint.

% VaR = VaR limit

[rows,n]=size(S);

number_matrices=rows/n; % number of covariance matrices

mt=m’;

119



Appendix C

x=sdpvar(n,1); % theta

F=lmi(’ones(1,n)*x==1’); % budget constraint

for k=1:number_matrices

T=S((k-1)*n+1:k*n,1:n); % m covariances

B=T^(1/2); % hulpmatrix

F=F+lmi(’||B*x||<1/(-z)*(mt*x+VaR)’); % m constraints

end

solvesdp(F,[],-mt*x); % solve

theta=double(x);
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