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Introdu
tion

The support problem is the following question, asked by P�al Erd�os:

Let x and y be positive integers with the property that for all positive in-

tegers n the set of prime numbers dividing x

n

� 1 is equal to the set of prime

numbers dividing y

n

� 1. Is then x = y?

The name support refers to Supp(m) whi
h is the support of a positive integerm.

This is the set of primes dividing m. One 
an thus also say that Erd�os asked

whether

[8n 2 Z

>0

Supp(x

n

� 1) = Supp(y

n

� 1)℄ () x = y

Capi Corrales-Rodrig�a~nez and Ren�e S
hoof [1℄ gave the answer to this question

by proving the following theorem:

Theorem 0.1 Let F be a number �eld and let x; y 2 F

�

. If for almost all

prime ideals } of the ring of integers of F and for all positive integers n one

has

y

n

� 1(mod }) whenever x

n

� 1(mod })

then y is a power of x.

In the above, for almost all means for all but for a �nite set. We will not give

the proof of this theorem here, but it is this theorem and its proof whi
h are

the main inspiration for this paper. Our main goal is to answer the following

questions:

1) Can we enlarge the set of primes for whi
h the 
ondition of the theorem

does not hold?

2) Does the 
ondition need to hold for every positive integer n?

As a result we will prove the following theorem

Theorem 0.2 Let F be a number �eld and let x; y 2 F

�

. If for all prime

numbers l and for all positive integers n, one has that for almost all primes }

of F whi
h are 
ompletely split in F (�

l

n

), the following holds:

y

N(})�1

l

n

� 1(mod }) whenever x

N(})�1

l

n

� 1(mod })

then y is a power of x. For almost all here means for all but for a set of density

at most

l�2

2�l

3n

.
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We refer to this theorem as the main theorem of our paper, be
ause it is mostly

related to the original problem.

The density used here, and throughout this paper, is not the Diri
hlet den-

sity. If we were to use Diri
hlet density we would have a problem sin
e we 
an't

know for sure that it exists for a given set of primes. The density we use here

will be de�ned in 
hapter 1. It is a density very similar to Diri
hlet density,

with a ni
e property that it always exists.

We also noti
e that the statements of theorem 0.1 and theorem 0.2 are a
-

tually \if and only if" statements. That is if there is an integer a su
h that

y = x

a

then x

n

� 1(mod }) ) x

an

� 1(mod }) ) y

n

� 1(mod }) holds for

all integers n and all primes }.

We will also prove the following generalization of our main theorem

Theorem 0.3 Let F be a number �eld, with Z

F

its ring of integers, and let

x; y 2 F

�

. Let l be a prime number and m and m

0

two positive integers. Then

the impli
ation:

order of x

N(})�1

l

n

in (Z

F

=})

�

is l

m

=) order of y

N(})�1

l

n

in (Z

F

=})

�

is l

m

0

is true for all positive integers n and for almost all primes } of Z

F

whi
h are


ompletely split in F (�

l

n

), if and only if either x is a root of unity of order not

divisible by l

m

, or there are integers a and b > 0 with g
d(l; ab) = 1, su
h that

y

l

m

0

�1

b

= x

l

m�1

a

. Almost all here means all but a set of density at most

l�2

l

3n

We also want to refer to an arti
le written by A. S
hinzel [2℄ where, amongst

several theorems, he also proves the following generalization of theorem 0.1

Theorem 0.4 Let �

n

denote the n-th 
y
lotomi
 polynomial, and let k and l

be two positive integers, where l does not have any square fa
tors. Let F be

a number �eld, and let x; y 2 F

�

, where x is not a root of unity. Then the

impli
ation

} j �

k

(x

n

) =) } j �

l

(y

n

)

is true for all integers n > 0 and all but a �nite number of primes } of F , if

and only if l j k and y = x

k�

l

with g
d(�; l) = 1.

Noti
e that } j �

k

(x

n

) is the same as to say that the order of x

n

in Z

F

=}

is k, provided that k is not 
ontained in the prime ideal }. However the di�er-

en
es between these two theorems are more interesting to observe. In terms of

theorem 0.4, k and l are allowed to be 
omposite numbers, we are allowing only

the prime powers. On the other hand, in theorem 0.4 l must divide k and 
an

not have square fa
tors, and in theorem 0.3 we allow m

0

> 1 and we are not

assuming that m

0

� m. Not to mention that the 
ondition and the 
on
lusion

of the two theorems are slightly di�erent. The reason for this is, of 
ourse, that

the methods used to prove these two theorems are di�erent. But we do not
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want to dis
uss these di�eren
es, we want to prove our theorems.

Beside the basi
 knowledge of algebra, Galois theory and number theory, the

reader needs to have some knowledge of algebrai
 number theory. However, in

appendix we summarize the ma
hinery needed for the proofs of our theorems.

As for the notation, if F is a �eld, then F

�

denotes its multipli
ative group

of units and Z

F

the ring of integers of F . A nonzero prime ideal of Z

F

will

often, simply, be 
alled a prime of F . Furthermore �

q

denotes a primitive q-th

root of unity and �

q

the group of q-th roots of unity. As usual we let i = �

4

.
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Chapter 1

Some Tools

This 
hapter 
ontains the preliminaries needed for our theorems. In the �rst

se
tion we talk about the density and in the se
ond se
tion we prove three

lemmas.

1.1 Density

As we already mentioned in the introdu
tion we do not want to be bothered by

whether the density of a 
ertain set of primes exists or not. We need a density

whi
h exists for any given set of primes. Now the Diri
hlet density, denoted by

Æ, is de�ned as a limit and therefore doesn't always exist. Hen
e we must de�ne

a new density. For S, a set of primes of a number �eld we let:

�(S) = lim sup

s!1+

P

}2S

1

N(}

s

)

log(

1

s�1

)

This is the density whi
h we will use. We 
all it the sup-density. Some of the

properties of the Diri
hlet density also hold for the sup-density, but some don't.

For example we do have that 0 � �(S) � 1, but if T and S are two disjoint

sets we do not ne
essarily have �(S [ T ) = �(S) + �(T ). Noti
e that if the

Diri
hlet density of a set S exists then Æ(S) = �(S).

We would like to be able to use the Chebotarev density theorem, but we 
an

not be
ause this theorem states something about the Diri
hlet density. Fortu-

nately we 
an \adapt" this theorem to our density:

Theorem 1.1 (Chebotarev*). Let K=k be abelian with Galois group G, and

let S be a set of primes of k. Let G

S

= f� 2 Gj 9} 2 S with � = (};K=k)g.

Then

�(S) �

jG

S

j

jGj

5



Proof We extend S to a set of primes for whi
h the Diri
hlet density exists and

then use the Chebotarev density theorem. De�ne S

0

= f}j 9� 2 G

S

with � =

(};K=k)g. Then by Chebotarev density theorem Æ(S

0

) exists and is equal to

jG

S

j

jGj

, hen
e �(S

0

) = Æ(S

0

) =

jG

S

j

jGj

. We also have the following inequality:

�(S) = lim sup

s!1+

P

}2S

1

N(}

s

)

log(

1

s�1

)

� lim sup

s!1+

P

}2S

0

1

N(}

s

)

log(

1

s�1

)

= �(S

0

)

whi
h proofs the theorem. �

In the proofs of our theorems we will also use the following lemma

Lemma 1.1 Let K=k be Galois of degree n. Let T be a set of primes of k and

T

0

the set of primes of K whi
h are above the primes of T . Then

�(T

0

) � n ��(T )

Proof Per de�nition we have

�(T

0

) = lim sup

s!1+

P

q2T

0

1

N(q

s

)

log(

1

s�1

)

Furthermore, for every prime } in T there are at most n di�erent primes in T

0

lying above }. Also, for every prime q lying above } we haveN(q) = N(})

f(q=})

,

hen
e 1=N(q

s

) � 1=N(}

s

). It follows that

�(T

0

) � n � lim sup

s!1+

P

}2T

1

N(}

s

)

log(

1

s�1

)

= n ��(T )

In parti
ular, if all of the primes in T are 
ompletely split into the primes of

T

0

then for ea
h prime in T there are exa
tly n primes in T

0

and f(q=}) = 1 so

that �(T

0

) = n ��(T ). �

Of 
ourse, if Diri
hlet density of T and T

0

exists then the same is true for Æ.

Noti
e also that if all of the primes of T are 
ompletely split in K and we know

that Æ(T ) exists, then Æ(T

0

) also exists and it is equal to n � Æ(T ).

1.2 Lemmas

In this se
tion we prove three lemmas whi
h we will need to use in the proofs

of our theorems. They might seem irrelevant at this moment, and if so one 
an

postpone reading them until they are needed in the proofs.
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Lemma 1.2 Let F be a number �eld and let q be a power of a prime number l.

If l = 2, assume that i 2 F . Then G

q

= Gal(F (�

q

)=F ) is 
y
li
. Furthermore,

let � denote a generator of G

q

and let N

q

: F (�

q

)

�

�! F

�

denote the norm

map. Then the following holds:

(i) For � 2 �

q

we have that N

q

(�) = 1 if and only if � = �(�)=� for some

� 2 �

q

.

(ii) The natural map F

�

=F

�q

�! F (�

q

)

�

=F (�

q

)

�q

is inje
tive.

Proof First we prove that the Galois group G

q

is 
y
li
. From the Galois

theorem of 
y
lotomi
 extensions we know that G

q

is isomorphi
 to a subgroup

H of (Z=qZ)

�

. Now if q is odd then (Z=qZ)

�

is 
y
li
 and thus H must be


y
li
. If q = 2

n

then we need to make some e�ort sin
e (Z=2

n

Z)

�

isn't 
y
li
.

We 
laim that, in this 
ase H is 
ontained in fx 2 (Z=2

n

Z)

�

j x � 1(mod) 4g,

where n is an integer whi
h we 
an take larger then 2. To see this we need to

look at the e�e
t of � 2 G

q

on i = �

4

. Sin
e we assumed that i 2 F we know

that we must have �(i) = i. On the other hand if we write i as �

2

n�2

2

n

then

�(�

2

n�2

2

n

) = �

2

n�2

�s

2

n

= i

s

for some s 2 (Z=2

n

Z)

�

. It follows that s � 1(mod 4).

We leave it as an exer
ise to the reader to show that the order of

�

5 in (Z=2

n

Z)

�

is 2

n�2

and that therefore h

�

5i = fx 2 (Z=2

n

Z)

�

j x � 1(mod 4)g is 
y
li
.

(i) Let a be the image of � in H , and let d be the order of H . De�ne

Z = fx 2 Z=qZj (1 + a + � � � + a

d�1

)x � 0g and B = f(1 � a)xj x 2 Z=qZg.

Then it is 
lear that B � Z. Furthermore the homomorphism  : Z ! f� 2

�

q

j N

q

(�) = 1g given by  (x) = �

x

q

indu
es an isomorphism

 : Z=B �! f� 2 �

q

j N

q

(�) = 1g=f�(�)=�j � 2 G

q

g

It is now suÆ
ient to show that Z = B. We already know that B � Z. For the

other in
lusion we distinguish two 
ases:

1) There is a prime p, di�erent from l, with p j d. Let b = a

d=p

. Then

b

p

� 1(mod l) but b 6� 1(mod l). Therefore (1 � b) is a unit in Z=qZ. Sin
e

1� b = (1�a)(1+a+ � � �+a

�1+d=p

), we see that (1�a) is also a unit in Z=qZ.

But then B = Z=qZ and thus Z � B.

2) The order of H is a power of l, i.e., d is a power of l. Lift a to Z. Let

s = ord

l

(q) and t = ord

l

(a � 1), where ord

p

(N) denotes the order of p at N ,

i.e., the number of fa
tors p in N . We know that l

s

j (a

d

� 1). Let A denote the

group generated by a in Z=lqZ. Suppose that l

s+1

j (a

d

� 1). Then the order

of A in Z=lqZ is also d. This implies that the map � : A ! H , whi
h is the

redu
tion modulo l

s

, is inje
tive. But the map � : (Z=l

s+1

Z)

�

! (Z=l

s

Z)

�

is

not inje
tive and the kernel of �, whi
h is therefore not trivial, is 
ontained

in every subgroup of Z=l

s+1

Z, of order divisible by l. Therefore it is also


ontained in A and hen
e � = �j

A


an not be inje
tive. We 
on
lude that
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ord

l

(a

d

�1) = s. Then ord

l

(1+a+ � � �+a

d

) = ord

l

(a

d

�1)�ord

l

(a�1) = s� t.

This means that if z 2 Z then ord

l

(z) � t. But sin
e ord

l

(1 � a) = t, we see

that ord

l

((1� a)x) � t; 8x 2 Z=qZ. Therefore z 2 B, and thus Z � B.

(ii) Suppose that t 2 F

�

is equal to s

q

for some s 2 F (�

q

). Then

�(s)

q

= �(s

q

) = �(t) = t = s

q

so that (

�(s)

s

)

q

= 1, therefore

�(s)

s

is a q-th

root of unity. Furthermore N

q

(

�(s)

s

) =

�

2

(s)����

d+1

(s)

�(s)����

d

(s)

= 1. Part (i) now implies

that

�(s)

s

=

�(�)

�

for some � 2 �

q

. It follows that �(

s

�

) =

�(s)

�(�)

=

s

�

and therefore

s�

�1

2 F . Sin
e t = s

q

= (s�

�1

)

q

, the lemma follows. �

Lemma 1.3 Let F be a number �eld and let x 2 F

�

. Let q be a power of a

prime number l. Let } be a prime ideal of Z

F

, with } - l, and } - x nor } - x

�1

.

Then the following three statements are equivalent:

(i) } is 
ompletely split in F

x

= F (�

q

;

q

p

x)

(ii) N(}) � 1(mod q) and x is an q-th power in Z

F

=}

(iii) x

(N(})�1)=q

� 1 (mod }).

Proof

\(i)) (ii)": Suppose that } is 
ompletely split in F

x

. Then } must be


ompletely split in F (�

q

) whi
h implies that the Frobenius automorphism of }

in F (�

q

)=F is 1 i.e. �

}

= (}; F (�

q

)=F ) = 1.

Let p be the prime number 
ontained in } and f = f(}=p) the residue 
lass

degree. Consider the following latti
e of �elds:

F (�

q

)

ww
ww

ww
ww

w

CC
CC

CC
CC

Q(�

q

)

HHHHHHHHH
F

zz
zz

zz
zz

z

Q

Then from the properties of the Artin symbol we know that: (}; F (�

q

)=F )j

Q(�

q

)

=

(p;Q(�

q

)=Q)

f

= �

f

p

. But �

f

p

= 1 () �

f

p

(�

q

) = �

q

() �

p

f

q

= �

q

()

p

f

� 1(mod q). Noti
e that the ne
essary 
ondition for the Artin symbol prop-

erty, that p is unrami�ed in Q(�

q

), would not be satis�ed if } j l. Sin
e l is

the only prime that rami�es in Q(�

q

) it is suÆ
ient that we ex
lude only }

dividing l.

8



It remains to prove that x is a q-th power in Z

F

=}. Let 
 be a prime of

F (�

q

;

q

p

x) lying above }. Sin
e } is 
ompletely split in this �eld we have the

following isomorphism between the residue 
lass �elds:

Z

F (�

q

;

q

p

x)

=
 ~=Z

F

=}

Sin
e we assumed that } - x, we know that 
 - x, so that x 6� 0 in Z

F (�

q

;

q

p

x)

=
.

Now x is obviously a q-th power in Z

F (�

q

;

q

p

x)

=
 sin
e we 
an write x = (

q

p

x)

q

.

The isomorphism from above then implies that x is a q-th power in Z

F

=}.

\(ii) ) (i)": Assume that N(}) = p

f

� 1(mod q) and that x is a q-th power

in Z

F

=}. We 
onsider the following diagram:

F (�

q

;

q

p

x)




F (�

q

)
�

F

}

where 
 j � and � j }. We have already seen that p

f

� 1(mod q) if and only if

} is 
ompletely split in F (�

q

). Therefore we know that } is 
ompletely split in

F (�

q

) whi
h gives us the isomorphism between the residue 
lass �elds:

Z

F (�

q

)

=� ~=Z

F

=}

Next let q̂ be the degree of the extension F (�

q

;

q

p

x)=F (�

q

), where q̂ j q.

Then F (�

q

;

q

p

x) = F (�

q

)[X ℄=(X

q̂

� x

q̂=q

) [see theorem A.2℄. Now x being an

q-th power in Z

F

=} implies that X

q

� x � 0(mod }) has a solution in Z

F

, and

we denote it with x

1=q

. Then x

1=q

is also a solution for X

q̂

� x

q̂=q

� 0(mod }),

hen
e X

q̂

�x

q̂=q

� 0(mod }) has a solution in Z

F

. The isomorphism from above

now implies thatX

q̂

�x

q̂=q

� 0(mod �) has a solution in Z

F (�

q

)

. The polynomial

f(X) = X

q̂

� x

q̂=q

is the moni
 minimal polynomial of F (�

q

;

q

p

x)=F (�

q

), whi
h

is separable modulo �, hen
e the fa
t that X

q̂

�x

q̂=q

� 0(mod �) has a solution

in Z

F (�

q

)

implies that � is 
ompletely split in F (�

q

;

q

p

x) [see proposition A.1℄.

Sin
e we already know that } splits 
ompletely in F (�

q

) we 
an 
on
lude that

} is 
ompletely split in F (�

q

;

q

p

x).

\(ii)) (iii)": We �rst noti
e that the equation in (iii) has meaning if and only

if

p

f

�1

q

2 Z, that is if and only if p

f

� 1(mod q). Now if x is a q-th power in

Z

F

=} then x

1=q

2 Z

F

=}. We also know that �

(p

f

�1)

� 1 (mod }) 8� 2 Z

F

=}

(be
ause Z

F

=}

�

=

F

p

f ). It follows that x

(p

f

�1)=q

� 1 (mod }).

9



\(iii) ) (ii)": Suppose that x

(p

f

�1)=q

� 1 (mod }). The multipli
ative

group (Z

F

=})

�

is isomorphi
 to (F

p

f )

�

, and is thus 
y
li
. Therefore we 
an

write x � �

m

(mod }), where h�i = (Z

F

=})

�

, and m an integer. Then

x

(p

f

�1)=q

� �

m(p

f

�1)=q

� 1 and be
ause the order of � in the group (Z

F

=})

�

is p

f

� 1 we must have that

m

q

2 Z or equivalently that q divides m. Therefore

x is a q-th power in Z

F

=}. �

Lemma 1.4 Let F be a number �eld and let p be a prime number. If p = 2,

assume that i 2 F . For ea
h positive integer n we de�ne W

n

= F

�

\F (�

p

n

)

�p

n

.

Then the following holds:

(i) W

1

�W

2

�W

3

� :::

(ii) \

n�1

W

n

= fx 2 F

�

j order of x is �nite and relatively prime to pg

Proof (i) Let a 2 F

�

and suppose that a 2 F (�

p

n

)

�p

n

. Hen
e a = b

p

n

for

some b 2 F (�

p

n

). From lemma 1.2 we then know that there is a � 2 �

p

n

su
h

that b � �

�1

2 F and a = b

p

n

= (b � �

�1

)

p

n

. It follows that a 2 F

�p

n

, hen
e

W

n

= F

�p

n

. It is now obvious that W

n+1

�W

n

.

(ii) Suppose that a 2 \

n�1

W

n

. Then, as we have seen above, a is trivial

in F (�

p

n

)

�

=F (�

p

n

)

�p

n

for all n � 1. By lemma 1.2 it follows that a is trivial in

F

�

=F

�p

n

for all n � 1.

Next, let S be the set of primes F dividing a or a

�1

, and let U

S

denote the

multipli
ative group of S-units that is U

S

= f� 2 F

�

: j�j

}

= 1 8} =2 Sg =

f� 2 F

�

: }j� or }j�

�1

then } 2 Sg. Noti
e that a 2 U

S

. We 
laim that a is

trivial in U

S

=U

p

n

S

for all n. Consider the following in
lusion diagram:

F

�p

n

� F

�

[ [

U

p

n

S

� U

S

First we show that U

p

n

S

= U

S

\ F

�p

n

. Well it is obvious that U

p

n

S

� U

S

\ F

�p

n

.

For the other in
lusion take t 2 U

S

\ F

�p

n

. Then, sin
e t 2 F

�p

n

, t is a

p

n

-th power of some non-zero element of F

�

, say t = r

p

n

. But t 2 U

S

thus

jtj

}

= jr

p

n

j

}

= jrj

p

n

}

= 1 8} =2 S =) jrj

}

= 1 8} =2 S whi
h means that

r 2 U

S

and thus t = r

p

n

2 U

p

n

S

. Now, F

�p

n

U

S

=F

�p

n

is a subgroup of F

�

=F

�p

n

and is isomorphi
 to U

S

=U

p

n

S

. Sin
e a is trivial in F

�

=F

�p

n

and a 2 U

S

we


an 
on
lude that a is trivial in U

S

=U

p

n

S

. This is true for all n � 1 so that

a 2 \

n�1

U

p

n

S

. Sin
e U

S

is multipli
ative group and �nitely generated, we know

from the Diri
hlet Unit theorem [see appendix℄ that: U

S

�

=

Z=kZ�Z

s

, for some

positive integers k and s; here Z=kZ is isomorphi
 to the group of roots of unity

10



of F . It follows that

\

n

U

p

n

S

�

=

\

n

p

n

(Z=kZ)� \

n

p

n

Z� :::� \

n

p

n

Z

| {z }

s times

�

=

\

n

p

n

(Z=kZ)� 1

U

S

Therefore a is in the torsion of \

n�1

U

p

n

S

, hen
e a is a root of unity. Sin
e the

order of p

n

(Z=kZ) is equal to

k

g
d(k;p

n

)

, we see that the order of a is relatively

prime to p. �

11



Chapter 2

Theorems

In this 
hapter we will prove theorems mentioned in the introdu
tion. In the �rst

se
tion we prove our main theorem, and in se
tion 2 we prove the generalization

of it.

In the following we let S

K=k

denote the set of primes of a number �eld k,

whi
h are 
ompletely split in the �nite extension K of k.

2.1 The Main Theorem

Theorem 2.1 Let F be a number �eld and let x; y 2 F

�

. If for all prime

numbers l and for all positive integers n, one has that for almost all primes }

of S

F (�

l

n

)=F

the following holds:

y

N(})�1

l

n

� 1(mod }) whenever x

N(})�1

l

n

� 1(mod })

then y is a power of x. For almost all here means for all but for a set of

sup-density at most

l�2

[F (i;�

l

n

;

l

n

p

x;

l

n

p

y):F ℄

.

In the proof we deal with two extensions of F , namely F (�

l

n

;

l

n

p

x) and

F (�

l

n

;

l

n

p

y). Sometimes we will denote these �elds simply with F

x

and F

y

. We

also write F

x;y

for the 
omposite of F

x

and F

y

. Basi
ally the proof is done in

three steps. In the �rst step we use lemma 1.3 and a density argument to show

that F (�

l

n

;

l

n

p

y) � F (�

l

n

;

l

n

p

x). In the se
ond step the Kummer theory is used

to 
on
lude that y = x

d

in F (�

l

n

)

�

=F (�

l

n

)

�l

n

. From lemma 1.2 it then follows

that y = x

d

in F

�

=F

�l

n

. In the last step we 
omplete the proof.

Proof We �rst assume that i 2 F . We do this be
ause we will need to use

lemma 1.2. Of 
ourse, after proving the theorem for this 
ase we will show that

there is no loss of generality due to this assumption, proving the theorem for

any number �eld F . For ea
h q = l

n

de�ne T

q

to be the set of primes of S

F (�

q

)=F

for whi
h the 
ondition of the theorem does not hold. Also, we de�ne

~

T

q

as the

12



set of primes of F 
ontaining the in�nite primes, those that o

ur in the fa
tor-

ization of x and y and the primes of the set T

q

. Sin
e the set

~

T

q

� T

q

is �nite,

it has density 0. Therefore the density of

~

T

q

equals the density of T

q

and by

the assumption of the theorem it is less than

l�2

[F (i;�

q

;

q

p

x;

q

p

y):F ℄

=

l�2

[F (�

q

;

q

p

x;

q

p

y):F ℄

.

The last equality follows from the fa
t that we assumed i 2 F .

STEP 1. Let } 2 S

F (�

q

)=F

with } 62

~

T

q

; noti
e that } - x, } - y and } - l.

We 
onsider the following latti
e of �elds:

F (�

q

;

q

p

x
;

q

p

y
)

ooooooooooo

OOOOOOOOOOO

F (�

q

;

q

p

x)

OOOOOOOOOOOO
F (�

q

;

q

p

y)

oooooooooooo

F (�

q

)

F

Q

Lemma 1.3 now implies that

x

N(})�1

q

� 1(mod }) () } is 
ompletely split in F (�

q

;

q

p

x)

Let � be a prime of F (�

q

) lying above }. Then sin
e we know that } is 
om-

pletely split in F (�

q

), we have the following equivalen
es: } is 
ompletely split

in F

x

() � is 
ompletely split in F (�

q

;

q

p

x) () (�; F (�

q

;

q

p

x)=F (�

q

)) =

1 () Frob

F

x;y

=F (�

q

)

�

2 H

x

= Gal(F

x;y

=F

x

). The same is true for the �eld

F

y

and the group H

y

= Gal(F

x;y

=F

y

). This way the 
ondition of the theorem

be
omes equivalent to the following

Frob

�

2 H

x

=) Frob

�

2 H

y

(2.1)

Now ifH

x

is trivial then (2.1) isn't very useful, but then we already know that

F

x;y

= F

x

, hen
e F

y

� F

x

. Suppose now that H

x

is not empty, and let q

x

denote

its order, whi
h is a power of the prime number l. We also need to know for

whi
h primes � the impli
ation in (2.1) holds. For this matter, let

~

T

0

q

be the set of

primes of F (�

q

) lying above the primes of

~

T

q

, and let S denote the set of primes

of F (�

q

) lying above the primes of S

F (�

q

)=F

. Then (2.1) holds for all � 2 S

with � =2

~

T

0

q

. Furthermore with Chebotarev Density Theorem we know that

13



�(S

F (�

q

)=F

) = Æ(S

F (�

q

)=F

) =

1

[F (�

q

):F ℄

. Lemma 1.1 then implies that �(S) = 1.

The same lemma also implies that �(

~

T

0

q

) � [F (�

q

) : F ℄ � �(

~

T

0

q

) �

l�2

[F

x;y

:F (�

q

)℄

.

We 
on
lude that (2.1) holds for all primes � of F (�

q

) ex
ept for a set of sup-

density at most

l�2

[F

x;y

:F (�

q

)℄

. Theorem 1.1 now implies that 2.1 does not hold

for at most l � 2 di�erent Frob

�

2 G = Gal(F

x;y

=F (�

q

)). Now even if all

of these Frob

�

's are in H

x

then there are still at least q

x

� (l � 2) di�erent

elements in H

x

for whi
h (2.1) does hold. Let � denote the Euler fun
tion, then

q

x

� (l � 2) � q

x

� (�(q

x

) � 1). Therefore at least q

x

� �(q

x

) + 1 elements of

H

x

are also in H

y

. Hen
e at least one of these elements is a generator of H

x

.

Therefore H

x

� H

y

, and thus

F (�

q

;

q

p

y) � F (�

q

;

q

p

x) (2.2)

STEP 2. Let W

x

= hF (�

q

)

�q

; xi and W

y

= hF (�

q

)

�q

; yi. With the Kummer

theory and (2.2) it follows that W

y

� W

x

. Therefore hyi = W

y

=F (�

q

)

�q

�

W

x

=F (�

q

)

�q

= hxi, i.e. y = x

d

in W

x

=F (�

q

)

�q

, for some integer d. Sin
e

W

x

� F (�

q

)

�

and thus W

x

=F (�

q

)

�q

� F (�

q

)

�

=F (�

q

)

�q

we see that y = x

d

in

F (�

q

)

�

=F (�

q

)

�q

. From lemma 1.2 it then follows that y = x

d

in F

�

=F

�q

.

STEP 3. In the last step of the proof we again need to de�ne a set of primes

of F . Here it is suÆ
ient to de�ne T as the set of those primes whi
h o

ur in

the fa
torization of x and y. Let U

T

denote the multipli
ative group of T -units

that is U

T

= f� 2 F

�

: j�j

}

= 1 8} =2 Tg = f� 2 F

�

: } j � or } j

�

�1

then } 2 Tg. Noti
e that x; y 2 U

T

.

We want to show that y = x

d

in U

T

=U

q

T

. Consider the following in
lusion

diagram:

F

�q

� F

�

[ [

U

q

T

� U

T

In the proof of lemma 1.4 we have seen that U

q

T

= U

T

\ F

�q

. Furthermore

F

�q

U

T

=F

�q

is a subgroup of F

�

=F

�q

whi
h is isomorphi
 to U

T

=U

q

T

. Sin
e we

have showed that y = x

d

in F

�

=F

�q

and be
ause x; y 2 U

T

we 
an 
on
lude

that y = x

d

in U

T

=U

q

T

.

Next we de�ne A = U

T

=hxi. Then

A=A

q

= (U

T

=hxi)=(U

q

T

=(U

q

T

\ hxi))

�

=

(U

T

=hxi)=(hU

q

T

; xi=hxi)

�

=

U

T

=hU

q

T

; xi

�

=

(U

T

=U

q

T

)=(hU

q

T

; xi=U

q

T

)

= (U

T

=U

q

T

)=h�xi

where �x � x(mod U

q

T

). This gives us an isomorphism:  : (U

T

=U

q

T

)=h�xi �!

A=A

q

. Sin
e y = x

d

in U

T

=U

q

T

, and thus is trivial in (U

T

=U

q

T

)=h�xi, it's image
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by  is in A

q

. This is true for all prime powers q so that the image of y in A is

in \

q

A

q

.

It remains to show that \

q

A

q

is trivial. Well, A is a multipli
ative group

and sin
e T is �nite, A is �nitely generated. Therefore A is isomorphi
 to a

dire
t produ
t of 
y
li
 groups: A

�

=

Z=k

1

Z� � � � �Z=k

r

Z�Z

s

. We see that:

\

q

A

q

�

=

\

q

q(Z=k

1

Z)� � � � � \

q

q(Z=k

r

Z)� \

q

qZ� :::� \

q

qZ

| {z }

s times

= 0

Sin
e the image of y in A was in \

q

A

q

we see that y is trivial in A i.e. y = x

d

for some d 2 Z. This proves the theorem for a �eld F with i 2 F .

Let us now look at a number �eld F with i =2 F . Let x; y 2 F

�

and let T

q

be the set of primes of F for whi
h the 
ondition of the theorem does not hold.

We still assume that the density of T

q

is at most

l�2

[F

x;y

(i):F ℄

. Let T

0

q

be the set of

primes of F (i) for whi
h the 
ondition of the theorem does not hold. We 
laim

that T

0

q

is exa
tly the set of primes lying above the primes of T

q

. To prove this

we show that for a prime } of S

F (�

q

)=F

the 
ondition

y

N(})�1

q

� 1(mod }) whenever x

N(})�1

q

� 1(mod })

holds if and only if the 
ondition

y

N(�)�1

q

� 1(mod �) whenever x

N(�)�1

q

� 1(mod �)

holds for every prime � 2 F (i) lying above }. It is suÆ
ient to show that for

a = x; y we have

a

N(})�1

q

� 1(mod }) () a

N(�)�1

q

� 1(mod �) (2.3)

First we noti
e that sin
e � j } the diagram bellow 
ommutes

Z

F (i)

! Z

F (i)

=�

" "

Z

F

! Z

F

=}

whi
h implies that a

n

� 1(mod }) () a

n

� 1(mod �), for all n 2 Z

>0

.

We now need to separate two 
ases:

1) q is a power of 2: Noti
e that leaving q = 2 out does not 
hange the inter-

se
tion \

q

A

q

. We 
an therefore take q � 4 so that F (i) � F (�

q

) and sin
e }

is 
ompletely split in F (�

q

), } is 
ompletely split in F (i). Hen
e N(�) = N(})

and (2.3) follows.

2) q is power of an odd prime: Now if N(�) = N(}) we are done. Otherwise,

N(�) = N(})

2

and we 
onsider the following latti
e of �elds:
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P 2

F (i; �

q

;

q

p

x
)

ppppppppppp

MMMMMMMMMM


 2

F (�

q

;

q

p

x)

F (i; �

q

)

Æ 2

F (�

q

)

OOOOOOOOOOOOO
F (i)

pppppppppppp
3 �

F

Let P , 
 and Æ be the primes of F (i; �

q

;

q

p

x); F (�

q

;

q

p

x) and F (�

q

) respe
tively,

su
h that P j 
 j Æ j }. Then

f(P=}) = f(P=
)f(
=}) = f(P=
)f(
=Æ)

= f(P=�)f(�=}) = 2 � f(P=�)

Suppose that a

N(})�1

q

� 1(mod }). Then by lemma 1.3 } is 
ompletely split in

F (�

q

;

q

p

x). It follows that f(
=}) = 1, and thus f(P=
) = 2 � f(P=�). Sin
e

f(P=
) is at most 2 it follows that f(P=�) = 1, i.e. � is 
ompletely split in

F (i; �

q

;

q

p

x). Hen
e, by lemma 1.3, a

N(�)�1

q

� 1(mod �).

Now suppose that a

N(�)�1

q

� 1(mod �), thus � is 
ompletely split in F (i; �

q

;

q

p

x).

Then f(P=}) = f(P=
)f(
=Æ) = 2. Now f(
=Æ) 
an not be equal to 2 be
ause

[F (�

q

;

q

p

x) : F (�

q

)℄ is odd. Therefore f(P=
) = 2 and f(
=Æ) = 1. Hen
e } is


ompletely split in F (�

q

;

q

p

x) and thus a

N(})�1

q

� 1(mod }). This proves our


laim.

Furthermore, by lemma 1.1 it follows that �(T

0

q

) � 2 ��(T

q

) =

l�2

[F

x;y

(i):F (i)℄

.

We 
an now use theorem 2.1 for x; y 2 F (i) to 
on
lude that y is a power of x

in F (i). Sin
e x; y 2 F then 
ertainly y is a power of x in F . This 
ompletes

the proof of our theorem. �
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2.2 A Generalization

In this se
tion we prove the following theorem, whi
h is a generalization of our

main theorem

Theorem 2.2 Let F be a number �eld and let x; y 2 F

�

. Let l be a prime

number and m and m

0

two integers. Then the impli
ation:

order of x

N(})�1

l

n

in (Z

F

=})

�

is l

m

=) order of y

N(})�1

l

n

in (Z

F

=})

�

is l

m

0

holds for all positive integers n and for almost all primes } 2 S

F (�

l

n

)=F

, if and

only if either x is a root of unity of order not divisible by l

m

, or there are integers

a and b > 0 with g
d(l; ab) = 1, su
h that y

l

m

0

�1

b

= x

l

m�1

a

. Almost all here

means all but a set of sup-density at most

l�2

[F (�

l

n

;

l

n

p

x

l

m�1

;

l

n

p

y

l

m

0

�1

):F ℄

Basi
ally the proof is done in the same manner as the previous one, and

we will o

asionally refer to it. Some steps will require a bit more e�ort.

We will now need more than just two extensions of F . Namely, we will 
on-

sider the following extensions: F

x

= F (�

l

n

;

l

n

p

x

l

m�1

), F

y

= F (�

l

n

;

l

n

p

y

l

m

0

�1

),

F

x

l = F (�

l

n

;

l

n

p

x

l

m

) and F

y

l = F (�

l

n

;

l

n

p

y

l

m

0

). Again we let F

x;y

denote the


omposite of F

x

and F

y

.

Proof \(" If x is a root of unity, say x = �

w

, with l

m

- w then the

order of x

N(})�1

l

n

in (Z

F

=})

�

is never l

m

, hen
e the impli
ation of the theo-

rem always holds. Otherwise, if y

bl

m

0

�1

= x

al

m�1

for some integers a and

b with g
d(l; ab) = 1 then: the order of x

N(})�1

l

n

in (Z

F

=})

�

is l

m

()

the order of x

l

m�1

N(})�1

l

n

in (Z

F

=})

�

is l =) the order of x

l

m�1

a

N(})�1

l

n

in (Z

F

=})

�

is l,

where the last impli
ation holds be
ause l - a. But x

l

m�1

a

N(})�1

l

n

= y

l

m

0

�1

b

N(})�1

l

n

,

hen
e the order of y

l

m

0

�1

b

N(})�1

l

n

in (Z

F

=})

�

is l whi
h again implies that the

order of y

l

m

0

�1

N(})�1

l

n

in (Z

F

=})

�

is l. But then the order of y

N(})�1

l

n

in (Z

F

=})

�

is l

m

0

.

\)" As before we will need to use lemma 1.2, therefore for l = 2 we assume

that i 2 F . After proving the theorem for this 
ase we will of 
ourse show that

theorem also holds for a �eld whi
h does not 
ontain i. For ea
h n we de�ne T

n

to be the set of primes of S

F (�

l

n

)=F

for whi
h the 
ondition of the theorem does

not hold. Also we de�ne

~

T

n

as the set of primes of F 
ontaining the in�nite

primes, those that divide x or y, and the primes of the set T

n

. As before we see

that the density of

~

T

n

equals the density of T

n

and by the assumption of the

theorem it is less than

l�2

[F

x;y

:F ℄

.

STEP 1. Let } 2 S

F (�

l

n

)=F

with } 62 T

n

, hen
e } - x, } - x

�1

, } - y, } - y

�1

and } - l. We 
onsider the following latti
e of �elds:

17



F (�

l

n

;

l

n

p

x

l

m�1

;

l

n

p

y

l

m

0

�1

)

jjjjjjjjjjjjjjj

TTTTTTTTTTTTTTT

F (�

l

n

;

l

n

p

x

l

m�1

)

F (�

l

n

;

l

n

p

y

l

m

0

�1

)

F (�

l

n

;

l

n

p

x

l

m

)

TTTTTTTTTTTTTTTTT
F (�

l

n

;

l

n

p

y

l

m

0

)

jjjjjjjjjjjjjjjjj

F (�

l

n

)

F

3 }

Q

3 p

We �rst noti
e that for all integers r > 0 we have

order of x

r

in (Z

F

=})

�

is l

m

() x

rl

m

� 1(mod }) and x

rl

m�1

6� 1(mod })

Using this and lemma 1.3 we see that:

order of x

N(})�1

l

n

in (Z

F

=})

�

is l

m

() } is 
ompletely split in F (�

l

n

;

l

n

p

x

l

m

) and

} is not 
ompletely split in F (�

l

n

;

l

n

p

x

l

m�1

)

Next let � be a prime in F (�

l

n

) whi
h is above }, and let H

x

= Gal(F

x;y

=F

x

l)

and H

0

x

= Gal(F

x;y

=F

x

). Then, sin
e } is 
ompletely split in F (�

l

n

), we have

the following equivalen
es:

} is 
ompletely split in F (�

l

n

;

l

n

p

x

l

m

) and

} is not 
ompletely split in F (�

l

n

;

l

n

p

x

l

m�1

)

m

� is 
ompletely split in F (�

l

n

;

l

n

p

x

l

m

) and

� is not 
ompletely split in F (�

l

n

;

l

n

p

x

l

m�1

)

m

(�; F (�

l

n

;

l

n

p

x

l

m

)=F (�

l

n

)) = 1

and (�; F (�

l

n

;

l

n

p

x

l

m�1

)=F (�

l

n

)) 6= 1

m

Frob

F

x;y

=F (�

l

n

)

�

2 H

x

and

Frob

F

x;y

=F (�

l

n

)

�

=2 H

0

x

18



The same equivalen
es are true for the �elds F

y

and F

y

l , and the groups

H

y

= Gal(F

x;y

=F

y

l
) and H

0

y

= Gal(F

x;y

=F

y

). We see that the 
ondition in

the theorem is equivalent to the following:

Frob

�

2 H

x

nH

0

x

=) Frob

�

2 H

y

nH

0

y

(2.4)

Now it 
an happen that H

x

nH

0

x

is empty for all integers n. If this is the 
ase

then we 
an not dedu
e mu
h from (2.4). But we then have F (�

l

n

;

l

n

p

x

l

m

) =

F (�

l

n

;

l

n

p

x

l

m�1

) for all n. When F (�

l

n

;

l

n

p

x

l

m

) = F (�

l

n

;

l

n

p

x

l

m�1

), then sin
e

F

x

and F

x

l
are 
y
li
 extensions of F (�

l

n

), we know from Kummer theory [see

appendix℄ that these extensions are of the same degree if and only if they are

trivial. Hen
e F (�

l

n

;

l

n

p

x

l

m�1

) = F (�

l

n

), so that x

l

m�1

2 F (�

l

n

)

�l

n

. This is

true for all n so that x

l

m�1

2 \

n�1

F (�

l

n

)

l

n

, and by lemma 1.4 it then follows

that x

l

m�1

2 �

k

with g
d(k; l) = 1. Therefore x is a root of unity of order not

divisible by l

m

. This gives us one 
ase of \)".

Furthermore if H

y

nH

0

y

is empty for all n and (2.4) is true, then H

x

nH

0

x

must

be empty for all n. But then both x

l

m�1

and y

l

m

0

�1

are roots of unity of order

not divisible by l, say x

l

m�1

= �

a

and y

l

m

0

�1

= �

b

with g
d(l; ab) = 1. Then

obviously x

l

m�1

a

= 1 = y

l

m

0

�1

b

.

We now assume that both H

x

nH

0

x

and H

y

nH

0

y

are not always empty. Let N

be the smallest integer for whi
h both H

x

nH

0

x

and H

y

nH

0

y

are not empty, thus

[F (�

l

N ;

l

N

p

x

l

m�1

) : F (�

l

N ;

l

N

p

x

l

m

)℄ = [F (�

l

N ;

l

N

p

y

l

m

0

�1

) : F (�

l

N ;

l

N

p

y

l

m

0

)℄ = l.

Then x

l

m�1

and y

l

m

0

�1

are not (l

N

)-th powers in F (�

l

N ). Lemma 1.4 now

implies that for all n > N , x

l

m�1

and y

l

m

0

�1

are not (l

n

)-th powers in F (�

l

n

).

Therefore for all n � N we have that [F (�

l

n

;

l

n

p

x

l

m�1

) : F (�

l

n

;

l

n

p

x

l

m

)℄ =

[F (�

l

n

;

l

n

p

y

l

m

0

�1

) : F (�

l

n

;

l

n

p

y

l

m

0

)℄ = l, and H

x

nH

0

x

and H

y

nH

0

y

are not empty.

From now on we 
onsider only n � N . Let

~

T

0

n

be the set of primes in F (�

l

n

)

whi
h are above the primes of

~

T

n

. Then (2.4) is true for all primes � whi
h

are 
ompletely split in the extension F (�

q

)=F and are not in

~

T

0

n

. Just as in the

proof of the previous theorem we 
an dedu
e that the sup-density of the set of

primes of F (�), for whi
h (2.4) does not hold, is equal to the sup-density of the

set

~

T

0

n

. Lemma 1.1 implies that �(

~

T

0

n

) � [F (�

l

n

) : F ℄ � �(

~

T

n

) �

l�2

[F

xy

:F (�

l

n

)℄

.

Theorem 1.1 now tells us that (2.4) does not hold for at most (l � 2) di�erent

Frob

�

2 G = Gal(F

xy

=F (�

q

)). In other words,

H

x

nH

0

x

� H

y

nH

0

y

[ S with jSj � l � 2 (2.5)

If we let q

x

= jH

0

x

j and q

y

= jH

0

y

j, then jH

x

nH

0

x

j = q

x

(l� 1) and jH

y

nH

0

y

j =

q

y

(l � 1). The in
lusion in (2.5) then implies that q

x

� q

y

. We now need to

separate two 
ases, namely H

x

is 
y
li
 or not.

1) Let H

x

be 
y
li
. Then every element of H

x

=H

0

x

is a generator of H

x

. From
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(2.5) we know that at least one of these generators is in H

y

=H

0

y

� H

y

. It follows

that H

x

� H

y

and thus H

0

x

= H

l

x

� H

l

y

= H

0

y

. Hen
e F

y

� F

x

.

2) Suppose now that H

x

is not 
y
li
, and that q

y

6= 1. Then H

y

= h�

y

; �

y

i,

H

0

y

= h�

y

i, H

x

= h�

x

; �

x

i and H

0

x

= h�

x

i. Here

�

y

:

l

n

p

x

l

m�1

! �

q

y

l

n

p

x

l

m�1

and �

y

is identity on

l

n

p

y

l

m

0

�1

�

y

:

l

n

p

y

l

m

0

! �

l

l

n

p

y

l

m

0

and �

l

y

= id

�

x

:

l

n

p

y

l

m

0

�1

! �

q

x

l

n

p

y

l

m

0

�1

and �

x

is identity on

l

n

p

x

l

m�1

�

x

:

l

n

p

x

l

m

! �

l

l

n

p

x

l

m

and �

l

x

= id

Now �

x

= �

y

or �

x

= �

q

y

=l

y

�

q

x

=l

x

or �

x

= �

q

y

=l

y

depending on whether �

x

is identity

on

l

n

p

y

l

m

0

�1

or not, and whether �

y

is identity on

l

n

p

x

l

m�1

or not. In the �rst


ase we thus have �

x

= �

y

= � , hen
e by (2.5), there is an integer j 2 f1; :::; q

y

g

su
h that ��

x

= ��

j

y

. But we know that for all j, �

x

6= �

j

y

, hen
e we 
an not

have �

x

= �

y

. In the other two 
ases we have H

x

= h�

x

; �

q

y

=l

y

i. This implies

that X = f(�

q

y

=l

y

)

i

j i = 1:::(l� 1)g � H

x

nH

0

x

. Sin
e X has l� 1 elements, (2.5)

now tells us that at least one of the elements of X must lie in H

y

nH

0

y

. But

X � h�

y

i = H

0

y

, hen
e we have rea
hed a 
ontradi
tion. Therefore q

y

= 1 and

sin
e q

x

� q

y

we see that q

x

= q

y

= 1. Hen
e F

x

= F

y

. In both 
ases we 
an


on
lude that

F (�

q

;

q

q

y

l

m

0

�1

) � F (�

q

;

q

p

x

l

m�1

) (2.6)

STEP 2. We write x̂ = x

l

m�1

and ŷ = y

l

m

0

�1

. De�ne W

x̂

= hF (�

l

n

)

�l

n

; x̂i

and W

ŷ

= hF (�

l

n

)

�l

n

; ŷi. With the Kummer theory and (2.6) it follows that

W

ŷ

�W

x̂

. Therefore hŷi =W

ŷ

=F (�

l

n

)

�l

n

�W

x̂

=F (�

l

n

)

�l

n

= hx̂i, i.e., ŷ = x̂

d

in

W

x̂

=F (�

l

n

)

�l

n

, for some integer d. Sin
eW

x̂

� F (�

l

n

)

�

and thusW

x̂

=F (�

l

n

)

�l

n

�

F (�

l

n

)

�

=F (�

l

n

)

�l

n

we see that y

l

m

0

�1

= x

l

m�1

d

in F (�

l

n

)

�

=F (�

l

n

)

�l

n

. From

lemma 1.2 it then follows that y

l

m

0

�1

= x

l

m�1

d

in F

�

=F

�l

n

.

STEP 3. From the previous step we know that ŷ = x̂

d

in F

�

=F

�l

n

for some

integer d. We de�ne the set T to be the set of those primes whi
h divide x̂ or ŷ.

We let U

T

be the multipli
ative group of T -units and de�ne A = U

T

=hx̂i. Then

following the same argument as in the proof of the main theorem we dedu
e

that ŷ = x̂

d

in U

T

=U

l

n

T

and we have the following isomorphism:

 : (U

T

=U

l

n

T

)=h

�

x̂i �! A=A

l

n

Sin
e ŷ = x̂

d

in U

T

=U

l

n

T

, and thus is trivial in (U

T

=U

l

n

T

)=h

�

x̂i, it's image by  

is in A

l

n

. This is true for all n � N , so that the image of ŷ in A is in \

n�N

A

l

n

.
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Now again we have:

\

n�N

A

l

n

�

=

\

n�N

l

n

(Z=k

1

Z)� � � � � \

n�N

l

n

(Z=k

r

Z)� \

l

n

l

n

Z� :::� \

l

n

l

n

Z

| {z }

s times

�

=

\

n�N

l

n

(Z=k

1

Z)� � � � � \

n�N

l

n

(Z=k

r

Z)� 0

so that the image of ŷ in A is in the torsion of \

n�N

A

l

n

, i.e.,  (ŷ)

b

=  (y

l

m

0

�1

b

) =

1

A

for some b 2 N =) y

l

m

0

�1

b

2 hx̂i = hx

l

m�1

i. Sin
e the order of l

n

(Z=k

i

Z) is

equal to

k

i

g
d(k

i

;l

n

)

, we see that b is not divisible by l. We 
on
lude that:

y

l

m

0

�1

b

= x

l

m�1

a

for some a; b 2 Z; with b > 0 and l - b

To show that l - a we will go ba
k to the 
ondition of the theorem. The assump-

tion we made thatH

x

nH

0

x

isn't always empty implies that there is an integer n �

m and a prime } 2 S

F (�

l

n

)=F

for whi
h the order of x

N(})�1

l

n

in (Z

F

=})

�

is l

m

. By

the 
ondition of the theorem we also have that the order of y

N(})�1

l

n

in (Z

F

=})

�

is l

m

0

.

But then the order of y

l

m

0

�1

b

N(})�1

l

n

in (Z

F

=})

�

is l and it is equal to the order

of x

l

m�1

a

N(})�1

l

n

, hen
e a 
an not be divisible by l.

Let us now look at the 
ase when l = 2 and i =2 F . For ea
h q = 2

n

let T

q

be

the set of primes of F for whi
h the 
ondition of the theorem does not hold. We

still assume that the density of T

q

is at most

l�2

[F

x;y

:F ℄

. Also, let T

0

q

be the set of

primes of F (i) for whi
h the 
ondition of the theorem does not hold. We 
laim

that T

0

q

is exa
tly the set of primes lying above the primes of T

0

q

. To prove this

we need to show that for a } 2 S

F (�

q

)=F

the 
ondition

order of x

N(})�1

q

in (Z

F

=})

�

is l

m

=) order of y

N(})�1

q

in (Z

F

=})

�

is l

m

0

holds if and and only if

order of x

N(�)�1

q

in (Z

F (i)

=�)

�

is l

m

=) order of y

N(�)�1

q

in (Z

F (i)

=�)

�

is l

m

0

holds for every prime � 2 F (i) lying above }. In the previous se
tion we have

already seen that for a = x; y and for q = l

n

we have

a

N(})�1

q

� 1(mod }) () a

N(�)�1

q

� 1(mod �)

for all � j }. Then for M � n

 

a

N(})�1

q

l

M

� 1(mod }) and

a

N(})�1

q

l

M�1

6� 1(mod })

!

()

 

a

N(�)�1

q

l

M

� 1(mod �) and

a

N(�)�1

q

l

M�1

6� 1(mod �)

!

or equivalently

order of a

N(})�1

q

in (Z

F

=})

�

is l

M

() order of a

N(�)�1

q

in (Z

F (i)

=�)

�

is l

M
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holds for all � j }. This proves our 
laim.

Next, just as in the previous proof we noti
e that the interse
tion \

n

A

2

n

does not 
hange if we leave n = 2 out. We then have that i 2 F (�

q

) and by

lemma 1.1 it follows that

�(T

0

q

) �

l � 2

[F

x;y

: F (i)℄

We 
an now use theorem 2.2 to 
on
lude that y

l

m

0

�1

b

= x

l

m�1

a

in F (i), for some

a; b 2 Z; with b > 0 and l - ab. Sin
e x; y 2 F

�

it follows that y

l

m

0

�1

b

= x

l

m�1

a

in F . �
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Appendix A

Appendix

In this appendix, we summarize the basi
 terms and theorems needed for this

paper. We are not going to give any proofs, but one 
an �nd these, and mu
h

more, for example in [3℄ and [4℄.

A.1 Prime Ideals in Number Fields

Let k be a number �eld and K a �nite extension of k. Let } be a prime of k

and � a prime of K. We say that � lies above }, or that } is 
ontained in �,

if � \ Z

k

= }. If this is the 
ase we write � j } and we have a 
ommutative

diagram

Z

K

! Z

K

=�

" "

Z

k

! Z

k

=}

The �elds Z

k

=} and Z

K

=� are �nite and are 
alled the residue 
lass �elds.

With f(�=}) we denote the degree of the residue 
lass �eld extension Z

K

=�

over Z

k

=} and 
all it the residue 
lass degree. We de�ne N

K

k

(�), the norm

of � over k, to be }

f(�=})

.

Furthermore }Z

K

is an ideal of Z

K

and has a fa
torization

}Z

K

= �

e

1

(�

1

=})

1

� � ��

e

r

(�

r

=})

r

(e

i

� 1)

into primes of Z

K

. A prime � of Z

K

o

urs in the fa
torization of } if and only

if it lies above }. Ea
h e

i

(�

i

=}) is 
alled the rami�
ation index of �

i

over

}. We also have the following basi
 relation between the rami�
ation index and

the residue 
lass degree

[K : k℄ =

X

�j}

e(�=})f(�=})

Also if k � K � E is a tower of �nite extensions, and }, � and q are primes of
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k, K and E respe
tively, su
h that q j � j }, then

e(q=}) = e(q=�)e(�=})

f(q=}) = f(q=�)f(�=})

Furthermore we say that } is 
ompletely split in K if there are exa
tly

[K : k℄ di�erent primes of K lying above }. This is the 
ase if and only if

e(�=}) = f(�=}) = 1 for all � j }. A prime is rami�ed in K if any of the

rami�
ation indi
es e

i

(�

i

=}) is greater than 1. It 
an be proved that only a

�nite number of primes of k ramify in K. If a prime } of k is neither split nor

rami�ed in K then it is said to be inert in K. In this 
ase there is only one

prime � of K lying above } and e(�=}) = 1 and f(�=}) = [K : k℄.

When the extension K=k is Galois, and all the extensions we deal with are,

then all the e

0

i

s are equal to the same number e and all the f

0

i

s are equal to the

same number f .

We now want to de�ne the Frobenius automorphism and the Artin symbol.

Before doing so we need to know little more about when a prime is rami�ed in

an extension. Now all the extensions we deal with in this paper are made by

adjoining a primitive q-th root of unity to a number �eld k and/or adjoining

a q-th root of an element a 2 k

�

, where q is a power of a prime number. It

is now suÆ
ient to know that if a prime } of k does not divide q or a, then it

is unrami�ed in k(�

q

;

q

p

a). Also the only prime rami�ed in k(�

q

) is the prime

dividing q.

Let now k be a number �eld and K=k a Galois extension with group G. Let

} be a prime of k unrami�ed in K, and let � be a prime of K lying above }.

The de
omposition group of � is de�ned by

D

�

= f� 2 Gj �(�) = �g

To ea
h � 2 D

�

we 
an asso
iate an automorphism �� of Z

K

=� over Z

k

=}. Let

~

G denote the Galois group of Z

K

=� over Z

k

=}. Then the map � 7! �� indu
es a

isomorphism between D

�

and

~

G (if } is rami�ed then we only have a surje
tive

homomorphism). By the theory of �nite �elds we know that

~

G is 
y
li
 with


anoni
al generator given by the Frobenius automorphism x 7! x

N(})

. Hen
e

there is a unique element of D

�

whi
h maps to this generator (if } is rami�ed

then this is not a unique element but a 
oset in G

�

). This element of D

�

is


alled the Frobenius automorphism of � and is denoted by (�;K=k) or just

Frob

�

= Frob

K=k

�

. It has the following property

Frob

�

(�) � �

N(})

(mod �); 8� 2 Z

K

Also, a prime } is 
ompletely split in K if and only if for all � j } we have

(�;K=k) = 1.

When K=k is abelian and } is unrami�ed in K then (�;K=k) is the same

for all � j }. We then denote this element with (};K=k) and 
all it the Artin

symbol of } in G.
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Let now E=k be a �nite extension, not ne
essarily Galois, so that we have

the following latti
e of �elds

KE

CC
CC

CC
CC

zz
zz

zz
zz

K

DD
DD

DD
DD

E

{{
{{

{{
{{

k

Here K=k is still assumed abelian. Let } be a prime of k unrami�ed in K and

let q be a prime of E lying above }. Then

res

K

(q;KE=k) = (};K=k)

f(q=})

To 
on
lude the subje
t of splitting we state a part of a proposition [4,

proposition 5.11℄.

Proposition A.1 Let k � K be a Galois extension, where K = k(�) for some

� 2 Z

K

. Let f(x) be the moni
 minimal polynomial of � over k, so that f(x) 2

Z

k

[x℄. If } is a prime of k and f(x) is separable modulo }, then } splits


ompletely in K if and only if f(x) � 0(mod }) has a solution in Z

k

.

So far we were talking about the prime ideals of the ring of integers of a

number �eld k. These primes are sometimes 
alled the �nite primes to distin-

guish them from the in�nite primes. An in�nite prime is determined by the

embedding of k into C . A real in�nite prime is an embedding � : k ! R, and

a 
omplex in�nite prime is a pair of embeddings �; �� : k ! C . Furthermore,

given an extension K=k, an in�nite prime � of k is rami�ed in K if � is real but

it has an extension to K whi
h is 
omplex.

Another thing we must mention is the Diri
hlet Unit Theorem. Without

going to deep into the subje
t of this theorem it will be suÆ
ient to de�ne U

S

,

the set of S-units. Let S be a �nite set of primes of a number �eld k. Then

U

S

= f� 2 k

�

: j�j

}

= 1 8} =2 Sg = f� 2 k

�

: } j � or } j �

�1

then } 2 Sg.

We will not a
tually need the unit theorem but the following 
orollary of it.

Corollary A.1 (Unit Theorem) Let k be a number �eld and S a �nite set

of primes of k. Then U

S

modulo the group of roots of unity in k is a �nitely

generated, free abelian group.
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A.2 Density

De�nition A.1 Let S be a set of primes of a number �eld K. The Diri
hlet

density of S (if it exists) is de�ned to be

Æ(S) = lim

s!1+

P

}2S

1

N(}

s

)

log(

1

s�1

)

Some basi
 properties of the Diri
hlet density are:

1. If Æ(S) exists then 0 � Æ(S) � 1

2. If S is �nite then Æ(S) = 0

3. If S and T are disjoint and Æ(S) and Æ(T ) exist, then Æ(S[T ) = Æ(S)+Æ(T )

Theorem A.1 (Chebotarev). Let K=k be Galois with Galois group G. Let

� 2 G. Let [K : k℄ = N , and let 
 be the number of elements in the 
onjuga
y


lass of � in G. Then those primes } of k whi
h are unrami�ed in K and for

whi
h there exists � j } su
h that

� = (�;K=k)

have a density, and this density is equal to 
=N .

A.3 Kummer Theory

For a positive integer n we let �

n

denote a primitive n-th root of unity and �

n

the group generated by �

n

. We begin with a �eld K and assume that �

n

2 K

for some integer n prime to the 
hara
teristi
 of K.

Let a 2 K

�

. Now the symbol

n

p

a (or a

1=n

) is not well de�ned but we will

use it to denote any root of X

n

� a. Sin
e the n-th roots of unity are in K the

extension K(

n

p

a) of K is the same no matter whi
h root of X

n

� a we take.

Let W be a subgroup of K

�


ontaining K

�n

(the n-th powers of non-zero

elements of K). Let K(W

1=n

) denote the 
omposite of all the �elds K(a

1=n

)

for whi
h a 2 W . One 
an 
he
k that the extension K(W

1=n

)=K is Galois

and abelian of exponent n (exponent n means that the Galois group, G

W

=

Gal(K(W

1=n

)=K), is annihilated by n i.e. �

n

= 1 8� 2 G

W

).

We have the following diagram:

�

K

K(W

1=n

)

G

W

K
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The Kummer theorem states that the map W 7! K(W

1=n

) gives a bije
tion be-

tween of the set of subgroups of K

�


ontaining K

�n

and the abelian extensions

of K of exponent n.

Furthermore K(W

1=n

)=K is �nite if and only if (W : K

�n

) is �nite (in par-

ti
ular we then have [K(W

1=n

) : K℄ = (W : K

�n

)). In this 
ase we have an

isomorphism:

� :W=K

�n

�! Hom(G

W

; �

n

)

given by �(w) = �

w

where �

w

(�) =

�(

n

p

w)

n

p

w

In the proof of our theorems we will a
tually need only the �rst statement,

that is the existen
e of the bije
tion between the set fW j K

�n

�W � K

�

g and

the set of abelian extensions of K of exponent n.

We will also use the following spe
ial 
ase of Kummer Theory, 
on
erning

the determination of the 
y
li
 extensions [3, 
hapter IV, x6℄:

Theorem A.2 Let k be a �eld. Let n be a positive integer prime to the 
har-

a
teristi
 of k, and assume that there is a primitive n-th root of unity in k.

(i) Let K be a 
y
li
 extension of k of degree n. Then there exists � 2 K su
h

that K = k(�), and � satis�es an equation X

n

� a = 0 for some a 2 k.

(ii) Conversely, let a 2 k, and let � be a root of X

n

� a = 0. Then k(�) is


y
li
 over k of degree n=d, where d is the greatest divisor of n for whi
h a is a

d-th power in k.
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