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Introduction

The support problem is the following question, asked by Pal Erdos:

Let x and y be positive integers with the property that for all positive in-
tegers n the set of prime numbers dividing ™ — 1 is equal to the set of prime
numbers dividing y™ — 1. Is then x = y?

The name support refers to Supp(m) which is the support of a positive integer m.
This is the set of primes dividing m. One can thus also say that Erdos asked
whether

[Vn € Zso Supp(z" — 1) = Supp(y" —1)] <= ==y

Capi Corrales-Rodrigafiez and René Schoof [1] gave the answer to this question
by proving the following theorem:

Theorem 0.1 Let F' be a number field and let x,y € F*. If for almost all
prime ideals p of the ring of integers of F' and for all positive integers n one
has

y" = 1(mod p) whenever z" = 1(mod p)

then y is a power of x.

In the above, for almost all means for all but for a finite set. We will not give
the proof of this theorem here, but it is this theorem and its proof which are
the main inspiration for this paper. Our main goal is to answer the following
questions:

1) Can we enlarge the set of primes for which the condition of the theorem
does not hold?

2) Does the condition need to hold for every positive integer n?
As a result we will prove the following theorem

Theorem 0.2 Let F' be a number field and let x,y € F*. If for all prime
numbers | and for all positive integers n, one has that for almost all primes g
of F which are completely split in F((r), the following holds:

N(p)—1 N(p)—1

y— = 1(mod p) whenever =™ = 1(mod p)

then y is a power of x. For almost all here means for all but for a set of density

-2
at most R



We refer to this theorem as the main theorem of our paper, because it is mostly
related to the original problem.

The density used here, and throughout this paper, is not the Dirichlet den-
sity. If we were to use Dirichlet density we would have a problem since we can’t
know for sure that it exists for a given set of primes. The density we use here
will be defined in chapter 1. It is a density very similar to Dirichlet density,
with a nice property that it always exists.

We also notice that the statements of theorem 0.1 and theorem 0.2 are ac-
tually “if and only if” statements. That is if there is an integer a such that
y = z® then 2" = 1(mod p) = z*" = 1(mod p) = y" = 1(mod p) holds for
all integers n and all primes p.

We will also prove the following generalization of our main theorem

Theorem 0.3 Let F' be a number field, with ZF its ring of integers, and let
x,y € F*. Let | be a prime number and m and m' two positive integers. Then
the implication:

©) N(p)—1

order ofa:N(l"_1 in(Zp/p)* isl™ = order ofy™ " in (Zp/p)* isl™

is true for all positive integers n and for almost all primes @ of Zp which are
completely split in F((), if and only if either x is a root of unity of order not
divisible by I™, or there are integers a and b > 0 with ged(l,ab) = 1, such that
y'" T = g™ Almost all here means all but a set of density at most ll;—f
We also want to refer to an article written by A. Schinzel [2] where, amongst
several theorems, he also proves the following generalization of theorem 0.1

Theorem 0.4 Let ®,, denote the n-th cyclotomic polynomial, and let k and |
be two positive integers, where | does not have any square factors. Let F be
a number field, and let ©,y € F*, where x is not a root of unity. Then the
implication

ol (z") = o 2(y")

is true for all integers n > 0 and all but a finite number of primes p of F, if
and only if I | k and y = =T with ged(A, 1) = 1.

Notice that p | @4 (x™) is the same as to say that the order of 2™ in Zg/p
is k, provided that k is not contained in the prime ideal p. However the differ-
ences between these two theorems are more interesting to observe. In terms of
theorem 0.4, k£ and [ are allowed to be composite numbers, we are allowing only
the prime powers. On the other hand, in theorem 0.4 [ must divide k£ and can
not have square factors, and in theorem 0.3 we allow m’ > 1 and we are not
assuming that m' < m. Not to mention that the condition and the conclusion
of the two theorems are slightly different. The reason for this is, of course, that
the methods used to prove these two theorems are different. But we do not



want to discuss these differences, we want to prove our theorems.

Beside the basic knowledge of algebra, Galois theory and number theory, the
reader needs to have some knowledge of algebraic number theory. However, in
appendix we summarize the machinery needed for the proofs of our theorems.

As for the notation, if F' is a field, then F* denotes its multiplicative group
of units and Zy the ring of integers of F. A nonzero prime ideal of Zp will
often, simply, be called a prime of F'. Furthermore (, denotes a primitive g-th
root of unity and g, the group of ¢-th roots of unity. As usual we let ¢ = (4.



Chapter 1

Some Tools

This chapter contains the preliminaries needed for our theorems. In the first
section we talk about the density and in the second section we prove three
lemmas.

1.1 Density

As we already mentioned in the introduction we do not want to be bothered by
whether the density of a certain set of primes exists or not. We need a density
which exists for any given set of primes. Now the Dirichlet density, denoted by
4, is defined as a limit and therefore doesn’t always exist. Hence we must define
a new density. For S, a set of primes of a number field we let:

2 Mo
A(S) = limsup 971
s>+ log(s=7)

This is the density which we will use. We call it the sup-density. Some of the
properties of the Dirichlet density also hold for the sup-density, but some don’t.
For example we do have that 0 < A(S) < 1, but if 7" and S are two disjoint
sets we do not necessarily have A(S UT) = A(S) + A(T). Notice that if the
Dirichlet density of a set S exists then §(S) = A(S).

We would like to be able to use the Chebotarev density theorem, but we can
not because this theorem states something about the Dirichlet density. Fortu-
nately we can “adapt” this theorem to our density:

Theorem 1.1 (Chebotarev*). Let K/k be abelian with Galois group G, and
let S be a set of primes of k. Let Gs = {0 € G| Ip € S witho = (p,K/k)}.

Then Gl
A(S) < 51
T



Proof We extend S to a set of primes for which the Dirichlet density exists and
then use the Chebotarev density theorem. Define S" = {p| o € G with o =
(9, K/k)}. Then by Chebotarev density theorem §(S’) exists and is equal to

sl hence A(S") =46(5") = @5l We also have the following inequality:

[q] [q]
1 1
N L N
A(S) = limsup 971 < limsup 2 — = A(S")
s+ log(s=7) s—o1+  log(s=)
which proofs the theorem. a

In the proofs of our theorems we will also use the following lemma

Lemma 1.1 Let K/k be Galois of degree n. Let T be a set of primes of k and
T' the set of primes of K which are above the primes of T. Then

A(T") < n- A(T)

Proof Per definition we have

1
eZT' N(g®)

A(Tl) = lim sup 471
s+ log(5=)

Furthermore, for every prime g in T there are at most n different primes in 7"
lying above p. Also, for every prime g lying above p we have N (g) = N (p)7(¢/9),
hence 1/N(q®) < 1/N(g®). It follows that

2 N
! . pET
A(T") < n-limsup

=n-A(T
S gy AW

In particular, if all of the primes in 7" are completely split into the primes of
T’ then for each prime in T there are exactly n primes in 77 and f(g/p) = 1 so
that A(T") =n-A(T). O

Of course, if Dirichlet density of 7" and T" exists then the same is true for §.
Notice also that if all of the primes of T are completely split in K and we know
that 6(T") exists, then §(7") also exists and it is equal to n - §(T).

1.2 Lemmas

In this section we prove three lemmas which we will need to use in the proofs
of our theorems. They might seem irrelevant at this moment, and if so one can
postpone reading them until they are needed in the proofs.



Lemma 1.2 Let F' be a number field and let q be a power of a prime number [.
Ifl =2, assume that i € F. Then G, = Gal(F((y)/F) is cyclic. Furthermore,
let 0 denote a generator of G4 and let Ny : F((;)* — F* denote the norm
map. Then the following holds:

(i) For ( € py we have that Ny(¢) = 1 if and only if ( = 0(§)/& for some
£ € pg-

(it) The natural map F*[F*1 — F((,)*/F((q)*? is injective.

Proof First we prove that the Galois group G, is cyclic. From the Galois
theorem of cyclotomic extensions we know that G is isomorphic to a subgroup
H of (Z/qZ)*. Now if q is odd then (Z/qZ)* is cyclic and thus H must be
cyclic. If ¢ = 2™ then we need to make some effort since (Z/2"Z)* isn’t cyclic.
We claim that, in this case H is contained in {z € (Z/2"Z)*| x = 1(mod) 4},
where n is an integer which we can take larger then 2. To see this we need to
look at the effect of 0 € G4 on ¢ = (4. Since we assumed that ¢ € F' we know
that we must have o(i) = 4. On the other hand if we write i as C%:_Z then
o 22:_2) = 22:_2'5 = 4* for some s € (Z/2"Z)*. Tt follows that s = 1(mod 4).
We leave it as an exercise to the reader to show that the order of 5 in (Z /2"Z)*
is 2772 and that therefore (5) = {z € (Z/2"Z)*| * = 1(mod 4)} is cyclic.

(i) Let a be the image of o in H, and let d be the order of H. Define
Z={z€e€lZ/gZ|(l+a+-+a¥ Yz =0} and B = {(1 — a)z| = € Z/qZ}.
Then it is clear that B C Z. Furthermore the homomorphism ¢ : Z — {¢ €
pql Nq(€) = 1} given by 9 (x) = (7 induces an isomorphism

¢ Z/B — {C € pg| Ny(C) = 1}/{0()/Cl o € Gy}

It is now sufficient to show that Z = B. We already know that B C Z. For the
other inclusion we distinguish two cases:

1) There is a prime p, different from I, with p | d. Let b = a®?. Then
b? = 1(mod ) but b # 1(mod ). Therefore (1 — b) is a unit in Z/qZ. Since
1-b=(1—a)(14+a+---+a"'T4P) we see that (1 —a) is also a unit in Z/qZ.
But then B = Z/qZ and thus Z C B.

2) The order of H is a power of [, i.e., d is a power of [. Lift a to Z. Let
s = ord(q) and t = ord;(a — 1), where ord,(N) denotes the order of p at N,
i.e., the number of factors p in N. We know that [* | (a? —1). Let A denote the
group generated by a in Z/lqZ. Suppose that [*T! | (a — 1). Then the order
of A in Z/lqZ is also d. This implies that the map 7 : A — H, which is the
reduction modulo /%, is injective. But the map p : (Z/ITZ)* — (Z/I°Z)* is
not injective and the kernel of p, which is therefore not trivial, is contained
in every subgroup of Z/I*T'Z, of order divisible by I. Therefore it is also
contained in A and hence 7 = p|a can not be injective. We conclude that



ord;(a? —1) = 5. Then ord;(1+a+---+a?) =ord;(a?—1) —ord;(a—1) = s —t.
This means that if z € Z then ord;(z) > ¢. But since ord;(1 — a) = t, we see
that ord;((1 — a)x) > t, Vo € Z /qZ. Therefore z € B, and thus Z C B.

(i)  Suppose that ¢ € F* is equal to s? for some s € F((;). Then
o(s)! = o(s?) = o(t) = t = 7 so that (2 ))‘1 = 1, therefore ”(SS) is a ¢-th

root of unity. Furthermore N, (G(s)) = W = 1. Part (i) now implies
that %‘Q’) = % for some & € pu,. It follows that o(£) = ZE‘;; = ¢ and therefore
sé~t € F. Since t = s7 = (s£71)4, the lemma follows. ad

Lemma 1.3 Let F be a number field and let v € F*. Let q be a power of a
prime number [. Let o be a prime ideal of Zr, with 911, and ot nor p {z*
Then the following three statements are equivalent:

) 18 completely split in F, = , v

(i) g is completely split in F, = F(C,, §)

(ii) N(p) = 1(mod q) and x is an g-th power in Zp/p
(iii) N (©)-D/4 = 1 (mod g).

Proof
“)= (ii)”: Suppose that g is completely split in F,. Then p must be
completely split in F'(¢,) which implies that the Frobenius automorphism of p
in F(¢y)/Fis lie. o, = (p,F({)/F) =1

Let p be the prime number contained in p and f = f(p/p) the residue class
degree. Consider the following lattice of fields:

F(Cy)

N
\/

Then from the properties of the Artin symbol we know that: (p, F(¢;)/F)|qoc,) =
(P QG)/Q =0of. Butof =1 = of(()=¢ = ¢ =¢ <=
p/ = 1(mod ¢). Notice that the necessary condition for the Artin symbol prop-
erty, that p is unramified in Q({;), would not be satisfied if ¢ | . Since [ is
the only prime that ramifies in Q(¢;) it is sufficient that we exclude only g
dividing .



It remains to prove that = is a g-th power in Zp/p. Let v be a prime of
F(¢,, ¥x) lying above p. Since g is completely split in this field we have the
following isomorphism between the residue class fields:

Lpc, ym) /1 =Lr[p

Since we assumed that p {2, we know that 1 x, so that  Z 0 in L, oz /7.

Now z is obviously a g-th power in Zp (¢, z)/7 since we can write z = (¢/z)?.
The isomorphism from above then implies that z is a g-th power in Z p/p.

“(ii) = (1)”: Assume that N(p) = pf = 1(mod ¢) and that z is a ¢g-th power
in Zp/p. We consider the following diagram:

F(¢y, /) t
F(¢) B
F 2

where v | 8 and 3 | p. We have already seen that p/ = 1(mod ¢) if and only if
p is completely split in F'(¢;). Therefore we know that p is completely split in
F(¢y) which gives us the isomorphism between the residue class fields:

Lpy/B=12Lr/p

Next let ¢ be the degree of the extension F((,, ¢/x)/F((,), where ¢ | gq.
Then F({,, ¥/x) = F({,)[X]/(X? — 29/7) [see theorem A.2]. Now z being an
g-th power in Zp/p implies that X7 — z = 0(mod g) has a solution in Zp, and
we denote it with /9. Then 2!/ is also a solution for X7 — 9/¢ = 0(mod ),
hence X9 —29/9 = 0(mod g) has a solution in Z ;. The isomorphism from above
now implies that X?—z%/7 = 0(mod ) has a solution in Zp(c,- The polynomial
f(X) = X7 — z/4 is the monic minimal polynomial of F((,, /«)/F((,), which
is separable modulo 3, hence the fact that X7 —29/9 = 0(mod ) has a solution
in Zp(, implies that 3 is completely split in F'((,, /) [see proposition A.1].
Since we already know that g splits completely in F'(¢;) we can conclude that
¢ is completely split in F({,, ¢/x).

“(ii) = (iii)”: We first notice that the equation in (iii) has meaning if and only
if ’{T_l € 7, that is if and only if p/ = 1(mod ¢q). Now if = is a ¢-th power in
Zp/p then z1/9 € Zp/p. We also know that o’ =1 =1 (mod p) Va € Zp/p
(because Zp/p = F,r). It follows that 2 -/a =1 (mod g).



“(iil) = (ii)”: Suppose that z® =1/7 = 1 (mod ). The multiplicative
group (Zp/p)* is isomorphic to (F,s)*, and is thus cyclic. Therefore we can
write x = a™(mod p), where (@) = (Zp/p)*, and m an integer. Then
2@’ =D/1 = om®’=1/1 = 1 and because the order of « in the group (Zp/gp)*
is pf — 1 we must have that % € Z or equivalently that ¢ divides m. Therefore
x is a g-th power in Zp/p. O

Lemma 1.4 Let F' be a number field and let p be a prime number. If p = 2,
assume that i € F'. For each positive integer n we define Wy, = F*N F(Cpn)*pn.
Then the following holds:

(Z) Wiy DWy D W3 D ...

(it) Np>1 Wy, = {x € F*| order of x is finite and relatively prime to p}

Proof (i) Let a € F* and suppose that a € F((,»)*?". Hence a = b?" for
some b € F((p~). From lemma 1.2 we then know that there is a £ € ppn such
that b- (' € Fand a = b?" = (b- & HP". Tt follows that a € F*P", hence
W,, = F*P" . Tt is now obvious that Whot1 CW,.

(ii) Suppose that a € N,>1W,. Then, as we have seen above, a is trivial
in F(Cpn)*/F((pn)*®" for all n > 1. By lemma 1.2 it follows that a is trivial in
F*/F*P" for all n > 1.

Next, let S be the set of primes F dividing a or !, and let Us denote the
multiplicative group of S-units that is Us = {a € F* : |a], =1Vp ¢ S} =
{a € F*: plaor pla~* then p € S}. Notice that a € Us. We claim that a is
trivial in Ugs/U gn for all n. Consider the following inclusion diagram:

n

P  C F*
U U
USp Cc Ug

First we show that U5 = Ug N F*2". Well it is obvious that UL c UsN FP",
For the other inclusion take ¢t € Ug N F*P . Then, sinnce t € F*P | tis a
p"-th power of some non-zero element of F*, say t = r? . But t € Ug thus
Ity = [r?" |, = |r|fé" =1Vp ¢S = |r|, = 1Vp ¢ S which means that
r € Ug and thus t = r?" € Ugn. Now, F*P"Ug/F*P" is a subgroup of F*/F*P"
and is isomorphic to US/USpn. Since a is trivial in F*/F**" and a € Us we
can conclude that a is trivial in US/USpn. This is true for all n > 1 so that

a € Np>1 Ugn. Since Ug is multiplicative group and finitely generated, we know
from the Dirichlet Unit theorem [see appendix] that: Us 22 Z/kZ x Z?, for some
positive integers k and s; here Z /kZ is isomorphic to the group of roots of unity

10



of F. It follows that

U2 =A™ (Z kL) X Nup"Z X ... X Npp"Z

"

s times

=N,p"(Z/kZ) x 1y,

Therefore a is in the torsion of N;,>1 Ugn, hence a is a root of unity. Since the
order of p"(Z/kZ) is equal to m, we see that the order of a is relatively
prime to p. d

11



Chapter 2

Theorems

In this chapter we will prove theorems mentioned in the introduction. In the first
section we prove our main theorem, and in section 2 we prove the generalization
of it.

In the following we let Sk, denote the set of primes of a number field k,
which are completely split in the finite extension K of k.

2.1 The Main Theorem

Theorem 2.1 Let F be a number field and let x,y € F*. If for all prime
numbers | and for all positive integers n, one has that for almost all primes p
of Sr(¢in)/F the following holds:

y— ™ = 1(mod p) whenever =™ = 1(mod p)

then y is a power of x. For almost all here means for all but for a set of

i . 1—2
sup-density at most T T T

In the proof we deal with two extensions of F', namely F((r, 4v/z) and
F(Gn, 3/y). Sometimes we will denote these fields simply with F,, and Fy,. We
also write F,, for the composite of F} and F,. Basically the proof is done in
three steps. In the first step we use lemma 1.3 and a density argument to show
that F(Gn, W/y) C F(Gr, "W). In the second step the Kummer theory is used
to conclude that y = z¢ in F((=)*/F((»)*". From lemma 1.2 it then follows
that y = 2¢ in F*/F*'". In the last step we complete the proof.

Proof We first assume that i € F. We do this because we will need to use
lemma 1.2. Of course, after proving the theorem for this case we will show that
there is no loss of generality due to this assumption, proving the theorem for
any number field F'. For each ¢ =" define T} to be the set of primes of Sg(¢ )/r

for which the condition of the theorem does not hold. Also, we define 7}, as the

12



set of primes of F' containing the infinite primes, those that occur in the factor-

ization of x and y and the primes of the set Tj,. Since the set T, — T}, is finite,

it has density 0. Therefore the density of 17 equals the density of T}, and by
; s -2 _ 1—2

the assumption of the theorem it is less than (G Vo, G0 F] — PG o Yo F]

The last equality follows from the fact that we assumed ¢ € F'.

STEP 1. Let p € Sp(¢,)/r With p ¢ T,; notice that p { z, p fy and p 1 I.
We counsider the following lattice of fields:

F(Cq: \q/'Ea

/

F(¢g, /) F(Cys )

\()

\Va

F(¢q
F
Q
Lemma 1.3 now implies that
N(p)—1 . P
z ¢«  =1(mod p) <= pis completely split in F({,;, ¢/z)

Let 3 be a prime of F'(¢;) lying above p. Then since we know that g is com-
pletely split in F'((,;), we have the following equivalences: p is completely split
in F, <= [ is completely split in F((;, ¥z) <= (B,F((y, ¥z)/F({y)) =
1 <~ Frobg’”'y/F(C") € H, = Gal(F, y/F,). The same is true for the field
F, and the group Hy, = Gal(F, ,/F,). This way the condition of the theorem
becomes equivalent to the following

Frobg € H, = Frobs € H, (2.1)

Now if Hy, is trivial then (2.1) isn’t very useful, but then we already know that
F,, = Fy, hence F;, C F,. Suppose now that H, is not empty, and let g, denote
its order, which is a power of the prime number [. We also need to know for
which primes § the implication in (2.1) holds. For this matter, let Té be the set of
primes of F'((;) lying above the primes of Tq, and let S denote the set of primes
of F((,) lying above the primes of Sp(,)/r. Then (2.1) holds for all 8 € S
with 3 ¢ Té. Furthermore with Chebotarev Density Theorem we know that

13



A(Sr(c,)r) = 6(SFr(c,)/r) = m Lemma 1.1 then implies that A(S) = 1.

The same lemma also implies that A(Té) < [F(¢) : F]- A(Té) < [Fw:_in(gq)]
We conclude that (2.1) holds for all primes 3 of F((,) except for a set of sup-
density at most MiFZ(Cq)] Theorem 1.1 now implies that 2.1 does not hold
for at most | — 2 different Frobg € G = Gal(Fy,,/F((;)). Now even if all
of these Frobg’s are in H, then there are still at least ¢, — (I — 2) different
elements in H, for which (2.1) does hold. Let ¢ denote the Euler function, then
gz — (1 —2) > gz — (¢(gz) — 1). Therefore at least g, — ¢(g;) + 1 elements of
H, are also in H,. Hence at least one of these elements is a generator of H,.
Therefore H, C H,, and thus

F(Cqs ¥/y) C F(Cqs V) (2.2)

STEP 2. Let W, = (F((y)*?, x) and W, = (F({;)*?, y). With the Kummer
theory and (2.2) it follows that W, C W,. Therefore (y) = W,/F({,)*? C
W /F(()* = (z), ie. y = x? in W,/F((,)*, for some integer d. Since
W, C F({,)* and thus W, /F((,)*? C F((,)*/F(¢,)*? we see that y = 27 in
F(()*/F(¢y)*. From lemma 1.2 it then follows that y = z¢ in F*/F*7.

STEP 3. In the last step of the proof we again need to define a set of primes
of F. Here it is sufficient to define T as the set of those primes which occur in
the factorization of z and y. Let Uy denote the multiplicative group of T-units
that is Ur = {a € F*: Jalp, =1Vp ¢ T} ={a€ F*: p|laorpg]
a~! then p € T'}. Notice that x,y € Ur.

We want to show that y = z% in Up / U%. Consider the following inclusion
diagram:

1 c F*
U U
Ug« c Ur

In the proof of lemma 1.4 we have seen that U% = Ur N F*?. Furthermore
F*1Up/F*1 is a subgroup of F*/F*? which is isomorphic to Uz /Uf.. Since we
have showed that y = z? in F*/F*¢ and because z,y € Ur we can conclude
that y = z¢ in Up/U%.

Next we define A = Ur/(z). Then

AJAT = (Ur/(x))/(Ur/(Uz N (x)))
(Ur/(=)/((Ug, @)/ (x))
Ur/(Ut, x)

= (Ur/Up)/((Uf,x)/Uf)

= (Ur/Up)/(z)

where Z = z(mod UJ). This gives us an isomorphism: ¢ : (Up/Uf})/(Z) —
AJA%. Since y = 2 in Ur/UY, and thus is trivial in (Ur/Uf)/(z), it’s image

12

1
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by ¢ is in A?. This is true for all prime powers ¢ so that the image of y in A is
in N A9,

It remains to show that NyA? is trivial. Well, A is a multiplicative group
and since 7' is finite, A is finitely generated. Therefore A is isomorphic to a
direct product of cyclic groups: A 2 Z/k\Z x - -+ x Z/k,Z x Z°. We see that:

NGAT = Nq(Z/kZ) x - -+ X Ngq(Z [k L) X NgGZ X ... X NgqZ =0

s times

Since the image of y in A was in N, A9 we see that y is trivial in A i.e. y = a¢

for some d € Z. This proves the theorem for a field F’ with ¢ € F'.

Let us now look at a number field F' with ¢ ¢ F. Let z,y € F* and let T
be the set of primes of F' for which the condition of the theorem does not hold.
We still assume that the density of T}, is at most [ley’% Let T}, be the set of
primes of F'(i) for which the condition of the theorem does not hold. We claim
that Té is exactly the set of primes lying above the primes of T,. To prove this
we show that for a prime p of Sp(c,)/r the condition

N(p)—1 N(p)—1

y ¢ = 1(mod p) whenever z~ ¢« = 1(mod p)

holds if and only if the condition

N(B)—1 N(B)—1

y ¢ = 1(mod 8) whenever = ¢« = 1(mod 5)

holds for every prime S € F(i) lying above p. It is sufficient to show that for
a = z,y we have

N(p)—1 N(B)—1

a” ¢« =1(modp) < a ¢ = 1(modpj) (2.3)

First we notice that since f | p the diagram bellow commutes

Ly — Lpe/B
) )
ZF — Zp/p

which implies that a” = 1(mod p) <= a" = 1(mod f), for all n € Zso.

We now need to separate two cases:

1) ¢ is a power of 2: Notice that leaving ¢ = 2 out does not change the inter-
section Ny A9. We can therefore take ¢ > 4 so that F(i) C F((,) and since p
is completely split in F'((;), g is completely split in F'(¢). Hence N(B) = N(p)
and (2.3) follows.

2) q is power of an odd prime: Now if N(8) = N(p) we are done. Otherwise,
N(B) = N(p)? and we consider the following lattice of fields:

15



(i, Cqr W

v E F(Cyy v/ Cq)

5 € F(¢) F (i) >p

F

Let P, v and ¢ be the primes of F(i,(,, ), F({,;, /) and F((,) respectively,
such that P | v |d | p. Then

f(Plo) =FP/Nf(v/0)=FP[1)f(v/d)
=f(P/B)f(Bp)=2-F(P/B)
Suppose that P 1(mod gp). Then by lemma 1.3 p is completely split in

F((y, ¥x). It follows that f(y/p) = 1, and thus f(P/y) = 2- f(P/B). Since

f(P/v) is at most 2 it follows that f(P/B8) = 1, i.e. B is completely split in
N(g)=1

F(i, ¢y, ¢/x). Hence, by lemma 1.3, ¢ ¢« = 1(mod f).
Now suppose that aN(Bq)i1 = 1(mod f), thus 3 is completely split in F'(i, {,, /).

Then f(P/p) = f(P/v)f(v/d) = 2. Now f(v/d) can not be equal to 2 because
[F (¢, ¥x) : F({,)] is odd. Therefore f(P/v) =2 and f(y/d) = 1. Hence p is

completely split in F((;, /) and thus a He=t = 1(mod p). This proves our
claim.

Furthermore, by lemma 1.1 it follows that A(T,) <2-A(T;) = [F”ZW
We can now use theorem 2.1 for z,y € F(i) to conclude that y is a péwer of z
in F(i). Since z,y € F then certainly y is a power of z in F. This completes

the proof of our theorem. O
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2.2 A Generalization

In this section we prove the following theorem, which is a generalization of our
main theorem

Theorem 2.2 Let F' be a number field and let x,y € F*. Letl be a prime
number and m and m' two integers. Then the implication:

)—1 N(p)—1

order ofa:N(f" in(Zplp)* isl™ = order ofy™ ™ in(Zp/p)* is "

holds for all positive integers n and for almost all primes o € Sp(¢n)/F, if and
only if either x is a root of unity of order not divisible by I™, or there are integers
e

a and b > 0 with gcd(l,ab) = 1, such that ylm,flb = 2" "2, Almost all here
means all but a set of sup-density at most = =2
fsup Y [F(Gn, Ve Wy TT)r)

Basically the proof is done in the same manner as the previous one, and
we will occasionally refer to it. Some steps will require a bit more effort.
We will now need more than just two extensions of F. Namely, we will con-
sider the following extensions: F, = F((n, Y, ™Y, Fy = F((n, Yy,
F, = F(Gr, V2i™) and Fy = F((r, Vy'™"). Again we let F,, denote the
composite of F;, and F),.

Proof “«<” If z is a root of unity, say ¢ = (, with I™ t w then the

order of z* P in (Zr/p)* is never I™, hence the implication of the theo-

rem always holds. Otherwise, if y*" = = 29" ' for some integers a and

b with gcd(l,ab) = 1 then: the order of " in (Zp/p)* is I «—

lm—l N(p)—1

the order of x A= in (Zp/p)* isl = the order of 2" ¢ in (Zp/p)* is
where the last implication holds because [ { a. But z/™ ¢ = 4™ bR

m!/ -1, N(p)—1
b—n

hence the order of y' in (Zp/p)* is I which again implies that the

lm’_1 N(p)—1 | N —1

order of y m— in (Zp/p)* is l. But then the order of y B in (Zp/p)*
is 1.

“=” As before we will need to use lemma 1.2, therefore for [ = 2 we assume
that ¢ € F'. After proving the theorem for this case we will of course show that
theorem also holds for a field which does not contain i. For each n we define T,
to be the set of primes of Sp(¢,,.),r for which the condition of the theorem does

not hold. Also we define T,, as the set of primes of F' containing the infinite
primes, those that divide = or y, and the primes of the set T),. As before we see
that the density of 7;, equals the density of T}, and by the assumption of the

s 1—2
theorem it is less than T F

STEP 1. Let p € Sp(¢in)/r With p ¢ T;,, hence ptz, ptz!, pty, pty !
and p 11. We consider the following lattice of fields:
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F(Gn, VN e

/ \ -

F(Gn, V™)

F(Gn, Val™)

V)

V')

F (G,
F Sp
Q o3P
We first notice that for all integers » > 0 we have
order of z" in (Zp/p)* is ™ <= z""" = 1(mod p) and " Z 1(mod p)

Using this and lemma 1.3 we see that:

order of ™ 1 in (Zp/p)*isI™ < @ is completely split in F((n, V™) and
p is not completely split in F'((j, v ™)

Next let 8 be a prime in F'({;») which is above p, and let H, = Gal(Fy y/F,1)
and H, = Gal(F, ,/F;). Then, since p is completely split in F({;»), we have
the following equivalences:

p is completely split in F'((jn, W z!™) and
p is not completely split in F'((j, Y, )
T
B is completely split in F((n, ™ ) and
A is not completely split in F((n, 'Val™ ")

(3
(B8, F (G, Val™)[F(Gn)) = 1
and (8, F(Gr, Val™ ") /F(Gn)) # 1

Frobgm,y/F(Cw) € H, and
Frobgm,y/F(Cln) Q_SH;
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The same equivalences are true for the fields F), and F;, and the groups
Hy, = Gal(Fy,/F,) and H, = Gal(Fy,y/F,). We see that the condition in
the theorem is equivalent to the following:

Frobs € H,\H., = Frobs € H,\H] (2.4)

Now it can happen that H,\H! is empty for all integers n. If this is the case
then we can not deduce much from (2.4). But we then have F((n, 'Va!™) =
F(Gn, V™) for all n. When F((n, Va™) = F(Gn, V™), then since
F, and F,: are cyclic extensions of F((;»), we know from Kummer theory [see
appendix] that these extensions are of the same degree if and only if they are
trivial. Hence F((n, 'Val™ ") = F((n), so that 2" e F(¢n)*". This is
true for all n so that 2" € ﬁnle(Qn)l", and by lemma 1.4 it then follows
that =/ € pr with ged(k,1) = 1. Therefore z is a root of unity of order not
divisible by . This gives us one case of “=".

Furthermore if H,\H, is empty for all n and (2.4) is true, then H,\H; must

be empty for all n. But then both 27" and ylm’_1 are roots of unity of order
not divisible by [, say 2" = (, and y'" = = ¢, with ged(l,ab) = 1. Then

obviously z!" ¢ =1 = ylm,flb.
We now assume that both H,\H; and H,\H, are not always empty. Let N
be the smallest integer for which both H,\H, and H,\H, are not empty, thus

[F (G, V™) ¢ B, Va™)] = [FGr, Vo™ ) Flaw, Vo™ )] =1
Then 2™ " and y'™ ' are not (IN)-th powers in F((~). Lemma 1.4 now
implies that for all n > N, 2™ " and y'™ ' are not (I")-th powers in F((n).
Therefore for all n > N we have that [F(Gn, Val™ ) : F(Gn, Val™)] =
[F (G, VY™ ™) F(Gn, 'Vy'™)] =1, and H,\H}, and H,\H} are not empty.

From now on we consider only n > N. Let T! be the set of primes in F/(()
which are above the primes of 7). Then (2.4) is true for all primes # which
are completely split in the extension F((;)/F and are not in T},. Just as in the
proof of the previous theorem we can deduce that the sup-density of the set of
primes of F'((), for which (2.4) does not hold, is equal to the sup-density of the
set T'. Lemma 1.1 implies that A(T") < [F(Gn) : F] - A(T,) < [mel;%
Theorem 1.1 now tells us that (2.4) does not hold for at most (I — 2) different
Frobg € G = Gal(Fyy/F((;))- In other words,

H,\H., C H\H,US with |S| <1 -2 (2.5)
If we let g, = |H}| and q, = |H,|, then |H,\H,| = q.(l — 1) and |H,\H,| =
¢y(l = 1). The inclusion in (2.5) then implies that ¢, < g,. We now need to

separate two cases, namely H, is cyclic or not.
1) Let H, be cyclic. Then every element of H,/H! is a generator of H,. From
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(2.5) we know that at least one of these generators is in H,/H, C H,. It follows
that H, C Hy, and thus H), = H, C H, = H,,. Hence F, C F,.

2) Suppose now that H, is not cyclic, and that ¢, # 1. Then Hy, = (oy, 1),
H) =(oy), Hy = (04,7,) and H,, = (0,). Here

y
V™ —>qu Val™ ' and o, isidentity on V/y!™
V™ = ¢ Vy™  and Té =1id
PR ylm’_1 = Gy Vy'™ ' and o, isidentity on V™'
T VE™ = ¢ V™ and rl =id

Now 1, = Ty or 7, = o /t o or Ty = og 4/l depending on whether 7, is identity

on '\ y!™ ~* or not, and whether T, is identity on V2™ or not. In the first
case we thus have 7, = 7, = 7, hence by (2.5), there is an integer je{l,...,qy}
such that 7o, = TJJ But we know that for all j, o, # o7, hence we can not

/1
q/>

have 7, = 7,. In the other two cases we have H, = (0,,0,”""). This implies
that X = {(¢%/")|i=1..(1- 1)} C H,\H". Since X has [ — 1 elements, (2.5)
now tells us that at least one of the elements of X must lie in H,\H,. But
X C (oy) = Hy, hence we have reached a contradiction. Therefore ¢, = 1 and
since ¢, < ¢, we see that ¢, = ¢, = 1. Hence F, = F,. In both cases we can

conclude that
F(Cqy Y™ ™) CF(Cy, V™) (2.6)

STEP 2. We write # = /" * and § = 4" . Define W; = (F((n)™", )
and Wy = (F(G»)*"",§). With the Kummer theory and (2.6) it follows that
Wy C W;. Therefore () = Wy /F((n)*" C Wi JF(Gn)*" = (2), ie., § =& in
Wz /F(Gn)*"", for some integer d. Slnce Wi C F((n)* and thus Wi /F(Gn)*" C
F(Gn)*JF(Gn )" we see that y'" S L T F(Gn)*/F(Gn)™" . From

1

lemma 1.2 it then follows that yZMI_ =2/ "din F*|F*",

STEP 3. From the previous step we know that § = &% in F*/F*" for some
integer d. We define the set T' to be the set of those primes which divide Z or .
We let Ur be the multiplicative group of T-units and define A = Uz /(Z). Then
following the same argument as in the proof of the main theorem we deduce
that j = 2 in Uz /UL’ and we have the following isomorphism:

¢ (Ur/UL ) [(F) — AJA"

Since § = #? in Ur /UL, and thus is trivial in (Ur/UL")/{(Z), it’s image by v
isin A", This is true for all n > N, so that the image of § in A is in ﬂnZNAln
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Now again we have:

ﬂnZNAln = ﬁnZNln(Z/k1Z) X o0 X ﬁnZNln(Z/kTZ) X Dlnan X oo X N I"Z

e

s times

= ﬁnZNln(Z/k1Z) X o+ X ﬁnZNln(Z/kTZ) x 0
so that the image of § in A is in the torsion of N, >N A!", i.e., 1(§)" = w(ylmul”) =

14 for some b € N = ylm’_lb € (#) = ('™7"). Since the order of I"(Z/k;Z) is
equal to m, we see that b is not divisible by [. We conclude that:
lm’—1b _m—l, .
y =z for some a,b € Z, with b > 0andltb

To show that ! 1 a we will go back to the condition of the theorem. The assump-
tion we made that H,\ H., isn’t always empty implies that there is an integer n >

m and a prime o € Sg(¢,.)/r for which the order of ™ F in (Zp/p)*isl™. By
the condition of the theorem we also have that the order of y B in (Zp/p)*is ™.

But then the order of y'” TR (Zp/p)* is | and it is equal to the order
lmfla N(;on)—l

of © , hence a can not be divisible by [.

Let us now look at the case when [ = 2 and i ¢ F'. For each ¢ = 2" let T, be
the set of primes of F' for which the condition of the theorem does not hold. We
still assume that the density of 17, is at most [Fi;fF] Also, let T} be the set of
primes of F'(i) for which the condition of the theorem does not hold. We claim
that T} is exactly the set of primes lying above the primes of 7). To prove this
we need to show that for a p € Sp(¢,)/r the condition

N(p)—1

orderofz™ ¢« in (Zp/p)" isl™ = order ony(qu1 in (Zp/p)*is ™

holds if and and only if

N(B)—1 N(B)—1

order of #™ < in (Zp(;)/B)" is ™ = order of y™ <« in (Zp(;/B)" is "
holds for every prime € F(i) lying above p. In the previous section we have
already seen that for a = x,y and for ¢ = I" we have

N(p)—1 N(B)—1

a ¢« =1l(modp) < a <« = 1(modp)

for all 5 | p. Then for M <n

( o T = 1(mod p) and > — ( a e M= 1(mod f) and )

aN(pq)illMil Z 1(mod p) aN(Bq)illMil Z 1(mod p)

or equivalently

order ofa” ¢ in (Zp)p)*is 1M <= order ofa" @ in (Zp@y)/B)" is ™M
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holds for all B | p. This proves our claim.

Next, just as in the previous proof we notice that the intersection N, A%"
does not change if we leave n = 2 out. We then have that i € F((,) and by
lemma 1.1 it follows that

-2

AT < F G

g
We can now use theorem 2.2 to conclude that 4/ ® = 2!™ @ in F(i), for some

a,b € Z, with b > 0 and [ { ab. Since z,y € F* it follows that ylm,flb =" e
in F. O
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Appendix A

Appendix

In this appendix, we summarize the basic terms and theorems needed for this
paper. We are not going to give any proofs, but one can find these, and much
more, for example in [3] and [4].

A.1 Prime Ideals in Number Fields

Let k£ be a number field and K a finite extension of k. Let g be a prime of k
and 8 a prime of K. We say that 3 lies above g, or that p is contained in S,
if BN Zy = p. If this is the case we write § | p and we have a commutative
diagram

ZK — ZK/B
T T
Ly — Zk/p

The fields Zy/p and Z /B are finite and are called the residue class fields.
With f(8/p) we denote the degree of the residue class field extension Z /8
over Zy/p and call it the residue class degree. We define N5 (), the norm
of B over k, to be pf(6/9),

Furthermore pZ g is an ideal of Z g and has a factorization

oL = BP0 . ger(Be/9) (e > 1)

into primes of Z k. A prime 8 of Z g occurs in the factorization of p if and only
if it lies above p. Each e;(8;/p) is called the ramification index of f; over
p. We also have the following basic relation between the ramification index and
the residue class degree

(K k] =) e(B/p)f(B/p)

Ble

Also if k C K C F is a tower of finite extensions, and p, # and ¢ are primes of
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k, K and E respectively, such that g | 8 | p, then

e(q/p) = elq/B)e(B/p)
fla/p) = 1a/B)(B])

Furthermore we say that @ is completely split in K if there are exactly
[K : k] different primes of K lying above p. This is the case if and only if
e(B/p) = f(B/p) = 1 for all f | p. A prime is ramified in K if any of the
ramification indices e;(8;/g) is greater than 1. It can be proved that only a
finite number of primes of k ramify in K. If a prime p of k is neither split nor
ramified in K then it is said to be inert in K. In this case there is only one
prime f of K lying above p and e(f/p) =1 and f(8/p) = [K : k].

When the extension K/k is Galois, and all the extensions we deal with are,
then all the els are equal to the same number e and all the f/s are equal to the
same number f.

We now want to define the Frobenius automorphism and the Artin symbol.
Before doing so we need to know little more about when a prime is ramified in
an extension. Now all the extensions we deal with in this paper are made by
adjoining a primitive ¢g-th root of unity to a number field k£ and/or adjoining
a ¢-th root of an element a € k*, where ¢ is a power of a prime number. It
is now sufficient to know that if a prime p of k does not divide ¢ or a, then it
is unramified in k(¢;, ¥a). Also the only prime ramified in k((,) is the prime
dividing gq.

Let now k be a number field and K/k a Galois extension with group G. Let
p be a prime of k£ unramified in K, and let 3 be a prime of K lying above p.
The decomposition group of 3 is defined by

Dg ={o € Glo(f) =5}

To each o € Dg we can associate an automorphism & of Zx/f over Zy/p. Let
G denote the Galois group of Zk/ B over Z/p. Then the map o — & induces a
isomorphism between Dg and G (if p is ramified then we only have a surjective
homomorphism). By the theory of finite fields we know that G is cyclic with
canonical generator given by the Frobenius automorphism z — zN(¥). Hence
there is a unique element of Dg which maps to this generator (if p is ramified
then this is not a unique element but a coset in Gg). This element of Dg is
called the Frobenius automorphism of § and is denoted by (3, K/k) or just

Frobg = Frobg/ ¥ It has the following property

Frobs(a) = o™ ¥ (mod B), Va € Zg

Also, a prime p is completely split in K if and only if for all 8 | p we have
(B,K/k) = 1.

When K/k is abelian and g is unramified in K then (8, K/k) is the same
for all | p. We then denote this element with (p, K/k) and call it the Artin
symbol of p in G.
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Let now E/k be a finite extension, not necessarily Galois, so that we have
the following lattice of fields

/\
\/

Here K/k is still assumed abelian. Let gp be a prime of k& unramified in K and
let ¢ be a prime of E lying above p. Then

resi (¢, KE[k) = (p, K/k)f(q/p)

To conclude the subject of splitting we state a part of a proposition [4,
proposition 5.11].

Proposition A.1 Let k C K be a Galois extension, where K = k(a) for some
a € Zk. Let f(x) be the monic minimal polynomial of a over k, so that f(z) €
Zilz]. If p is a prime of k and f(x) is separable modulo p, then o splits
completely in K if and only if f(z) = 0(mod p) has a solution in Zy.

So far we were talking about the prime ideals of the ring of integers of a
number field k. These primes are sometimes called the finite primes to distin-
guish them from the infinite primes. An infinite prime is determined by the
embedding of k into C. A real infinite prime is an embedding ¢ : k¥ — R, and
a complex infinite prime is a pair of embeddings ¢, : kK — C. Furthermore,
given an extension K /k, an infinite prime o of k is ramified in K if o is real but
it has an extension to K which is complex.

Another thing we must mention is the Dirichlet Unit Theorem. Without
going to deep into the subject of this theorem it will be sufficient to define Ug,
the set of S-units. Let S be a finite set of primes of a number field k. Then
Us={a€ek*: |al, =1Vp ¢ S} ={a€k*: plaorp|a?then pe S}
We will not actually need the unit theorem but the following corollary of it.

Corollary A.1 (Unit Theorem) Let k be a number field and S a finite set
of primes of k. Then Us modulo the group of roots of unity in k is a finitely
generated, free abelian group.
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A.2 Density

Definition A.1 Let S be a set of primes of a number field K. The Dirichlet
density of S (if it exists) is defined to be

Some basic properties of the Dirichlet density are:
1. If 6(S) exists then 0 < 0(S) <1
2. If S is finite then §(S) =0
3. If S and T are disjoint and 6(S) and §(T') exist, then §(SUT') = §(S)+d(T)

Theorem A.1 (Chebotarev). Let K/k be Galois with Galois group G. Let
o €G. Let [K : k] = N, and let ¢ be the number of elements in the conjugacy
class of o in G. Then those primes p of k which are unramified in K and for
which there exists B | o such that

o =(B,K/k)
have a density, and this density is equal to c¢/N.

A.3 Kummer Theory

For a positive integer n we let (,, denote a primitive n-th root of unity and u,
the group generated by (,. We begin with a field K and assume that (, € K
for some integer n prime to the characteristic of K.

Let a € K*. Now the symbol {/a (or a'/™) is not well defined but we will
use it to denote any root of X™ — a. Since the n-th roots of unity are in K the
extension K ({/a) of K is the same no matter which root of X" — a we take.

Let W be a subgroup of K* containing K*" (the n-th powers of non-zero
elements of K). Let K(W?'/™) denote the composite of all the fields K (a'/™)
for which @ € W. One can check that the extension K(W'/")/K is Galois
and abelian of exponent n (exponent n means that the Galois group, Gw =
Gal(K(W'/™)/K), is annihilated by n i.e. ¢ =1 Vo € Gw).

We have the following diagram:




The Kummer theorem states that the map W + K (W/") gives a bijection be-
tween of the set of subgroups of K* containing K*™ and the abelian extensions
of K of exponent n.
Furthermore K (W'/")/K is finite if and only if (W : K*") is finite (in par-
ticular we then have [K(W'/") : K] = (W : K*")). In this case we have an
isomorphism:
0:W/K* — Hom(Gw, itn)

given by 8(w) = ¢, where ¢, (o) = ”(+/Ew)

In the proof of our theorems we will actually need only the first statement,
that is the existence of the bijection between the set {W| K** C W C K*} and
the set of abelian extensions of K of exponent n.

We will also use the following special case of Kummer Theory, concerning
the determination of the cyclic extensions [3, chapter IV, §6]:

Theorem A.2 Let k be a field. Let n be a positive integer prime to the char-
acteristic of k, and assume that there is a primitive n-th root of unity in k.

(i) Let K be a cyclic extension of k of degree n. Then there exists @ € K such
that K = k(«), and « satisfies an equation X™ —a =0 for some a € k.

(ii)  Conversely, let a € k, and let o be a root of X™ —a = 0. Then k(a) is
cyclic over k of degree n/d, where d is the greatest divisor of n for which a is a
d-th power in k.

27



Bibliography

[1] Capi Corrales-Rodrigafniez and René Schoof, The Support Problem and its
Elliptic Analogue, Journal of Number Theory 64, (1988), 276-290

[2] A. Schinzel, Une caractérisation arithmétique de suites récurrentes
linéaires, J. reine angew. Math. 494 (1998), 73-84

[3] Serge Lang, Algebraic Number Theory, Springer-Verlag

[4] David A. Cox, Primes of the Form z? + ny*, Wiley-Interscience

28



