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Introdution

The support problem is the following question, asked by P�al Erd�os:

Let x and y be positive integers with the property that for all positive in-

tegers n the set of prime numbers dividing x

n

� 1 is equal to the set of prime

numbers dividing y

n

� 1. Is then x = y?

The name support refers to Supp(m) whih is the support of a positive integerm.

This is the set of primes dividing m. One an thus also say that Erd�os asked

whether

[8n 2 Z

>0

Supp(x

n

� 1) = Supp(y

n

� 1)℄ () x = y

Capi Corrales-Rodrig�a~nez and Ren�e Shoof [1℄ gave the answer to this question

by proving the following theorem:

Theorem 0.1 Let F be a number �eld and let x; y 2 F

�

. If for almost all

prime ideals } of the ring of integers of F and for all positive integers n one

has

y

n

� 1(mod }) whenever x

n

� 1(mod })

then y is a power of x.

In the above, for almost all means for all but for a �nite set. We will not give

the proof of this theorem here, but it is this theorem and its proof whih are

the main inspiration for this paper. Our main goal is to answer the following

questions:

1) Can we enlarge the set of primes for whih the ondition of the theorem

does not hold?

2) Does the ondition need to hold for every positive integer n?

As a result we will prove the following theorem

Theorem 0.2 Let F be a number �eld and let x; y 2 F

�

. If for all prime

numbers l and for all positive integers n, one has that for almost all primes }

of F whih are ompletely split in F (�

l

n

), the following holds:

y

N(})�1

l

n

� 1(mod }) whenever x

N(})�1

l

n

� 1(mod })

then y is a power of x. For almost all here means for all but for a set of density

at most

l�2

2�l

3n

.
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We refer to this theorem as the main theorem of our paper, beause it is mostly

related to the original problem.

The density used here, and throughout this paper, is not the Dirihlet den-

sity. If we were to use Dirihlet density we would have a problem sine we an't

know for sure that it exists for a given set of primes. The density we use here

will be de�ned in hapter 1. It is a density very similar to Dirihlet density,

with a nie property that it always exists.

We also notie that the statements of theorem 0.1 and theorem 0.2 are a-

tually \if and only if" statements. That is if there is an integer a suh that

y = x

a

then x

n

� 1(mod }) ) x

an

� 1(mod }) ) y

n

� 1(mod }) holds for

all integers n and all primes }.

We will also prove the following generalization of our main theorem

Theorem 0.3 Let F be a number �eld, with Z

F

its ring of integers, and let

x; y 2 F

�

. Let l be a prime number and m and m

0

two positive integers. Then

the impliation:

order of x

N(})�1

l

n

in (Z

F

=})

�

is l

m

=) order of y

N(})�1

l

n

in (Z

F

=})

�

is l

m

0

is true for all positive integers n and for almost all primes } of Z

F

whih are

ompletely split in F (�

l

n

), if and only if either x is a root of unity of order not

divisible by l

m

, or there are integers a and b > 0 with gd(l; ab) = 1, suh that

y

l

m

0

�1

b

= x

l

m�1

a

. Almost all here means all but a set of density at most

l�2

l

3n

We also want to refer to an artile written by A. Shinzel [2℄ where, amongst

several theorems, he also proves the following generalization of theorem 0.1

Theorem 0.4 Let �

n

denote the n-th ylotomi polynomial, and let k and l

be two positive integers, where l does not have any square fators. Let F be

a number �eld, and let x; y 2 F

�

, where x is not a root of unity. Then the

impliation

} j �

k

(x

n

) =) } j �

l

(y

n

)

is true for all integers n > 0 and all but a �nite number of primes } of F , if

and only if l j k and y = x

k�

l

with gd(�; l) = 1.

Notie that } j �

k

(x

n

) is the same as to say that the order of x

n

in Z

F

=}

is k, provided that k is not ontained in the prime ideal }. However the di�er-

enes between these two theorems are more interesting to observe. In terms of

theorem 0.4, k and l are allowed to be omposite numbers, we are allowing only

the prime powers. On the other hand, in theorem 0.4 l must divide k and an

not have square fators, and in theorem 0.3 we allow m

0

> 1 and we are not

assuming that m

0

� m. Not to mention that the ondition and the onlusion

of the two theorems are slightly di�erent. The reason for this is, of ourse, that

the methods used to prove these two theorems are di�erent. But we do not
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want to disuss these di�erenes, we want to prove our theorems.

Beside the basi knowledge of algebra, Galois theory and number theory, the

reader needs to have some knowledge of algebrai number theory. However, in

appendix we summarize the mahinery needed for the proofs of our theorems.

As for the notation, if F is a �eld, then F

�

denotes its multipliative group

of units and Z

F

the ring of integers of F . A nonzero prime ideal of Z

F

will

often, simply, be alled a prime of F . Furthermore �

q

denotes a primitive q-th

root of unity and �

q

the group of q-th roots of unity. As usual we let i = �

4

.
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Chapter 1

Some Tools

This hapter ontains the preliminaries needed for our theorems. In the �rst

setion we talk about the density and in the seond setion we prove three

lemmas.

1.1 Density

As we already mentioned in the introdution we do not want to be bothered by

whether the density of a ertain set of primes exists or not. We need a density

whih exists for any given set of primes. Now the Dirihlet density, denoted by

Æ, is de�ned as a limit and therefore doesn't always exist. Hene we must de�ne

a new density. For S, a set of primes of a number �eld we let:

�(S) = lim sup

s!1+

P

}2S

1

N(}

s

)

log(

1

s�1

)

This is the density whih we will use. We all it the sup-density. Some of the

properties of the Dirihlet density also hold for the sup-density, but some don't.

For example we do have that 0 � �(S) � 1, but if T and S are two disjoint

sets we do not neessarily have �(S [ T ) = �(S) + �(T ). Notie that if the

Dirihlet density of a set S exists then Æ(S) = �(S).

We would like to be able to use the Chebotarev density theorem, but we an

not beause this theorem states something about the Dirihlet density. Fortu-

nately we an \adapt" this theorem to our density:

Theorem 1.1 (Chebotarev*). Let K=k be abelian with Galois group G, and

let S be a set of primes of k. Let G

S

= f� 2 Gj 9} 2 S with � = (};K=k)g.

Then

�(S) �

jG

S

j

jGj
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Proof We extend S to a set of primes for whih the Dirihlet density exists and

then use the Chebotarev density theorem. De�ne S

0

= f}j 9� 2 G

S

with � =

(};K=k)g. Then by Chebotarev density theorem Æ(S

0

) exists and is equal to

jG

S

j

jGj

, hene �(S

0

) = Æ(S

0

) =

jG

S

j

jGj

. We also have the following inequality:

�(S) = lim sup

s!1+

P

}2S

1

N(}

s

)

log(

1

s�1

)

� lim sup

s!1+

P

}2S

0

1

N(}

s

)

log(

1

s�1

)

= �(S

0

)

whih proofs the theorem. �

In the proofs of our theorems we will also use the following lemma

Lemma 1.1 Let K=k be Galois of degree n. Let T be a set of primes of k and

T

0

the set of primes of K whih are above the primes of T . Then

�(T

0

) � n ��(T )

Proof Per de�nition we have

�(T

0

) = lim sup

s!1+

P

q2T

0

1

N(q

s

)

log(

1

s�1

)

Furthermore, for every prime } in T there are at most n di�erent primes in T

0

lying above }. Also, for every prime q lying above } we haveN(q) = N(})

f(q=})

,

hene 1=N(q

s

) � 1=N(}

s

). It follows that

�(T

0

) � n � lim sup

s!1+

P

}2T

1

N(}

s

)

log(

1

s�1

)

= n ��(T )

In partiular, if all of the primes in T are ompletely split into the primes of

T

0

then for eah prime in T there are exatly n primes in T

0

and f(q=}) = 1 so

that �(T

0

) = n ��(T ). �

Of ourse, if Dirihlet density of T and T

0

exists then the same is true for Æ.

Notie also that if all of the primes of T are ompletely split in K and we know

that Æ(T ) exists, then Æ(T

0

) also exists and it is equal to n � Æ(T ).

1.2 Lemmas

In this setion we prove three lemmas whih we will need to use in the proofs

of our theorems. They might seem irrelevant at this moment, and if so one an

postpone reading them until they are needed in the proofs.
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Lemma 1.2 Let F be a number �eld and let q be a power of a prime number l.

If l = 2, assume that i 2 F . Then G

q

= Gal(F (�

q

)=F ) is yli. Furthermore,

let � denote a generator of G

q

and let N

q

: F (�

q

)

�

�! F

�

denote the norm

map. Then the following holds:

(i) For � 2 �

q

we have that N

q

(�) = 1 if and only if � = �(�)=� for some

� 2 �

q

.

(ii) The natural map F

�

=F

�q

�! F (�

q

)

�

=F (�

q

)

�q

is injetive.

Proof First we prove that the Galois group G

q

is yli. From the Galois

theorem of ylotomi extensions we know that G

q

is isomorphi to a subgroup

H of (Z=qZ)

�

. Now if q is odd then (Z=qZ)

�

is yli and thus H must be

yli. If q = 2

n

then we need to make some e�ort sine (Z=2

n

Z)

�

isn't yli.

We laim that, in this ase H is ontained in fx 2 (Z=2

n

Z)

�

j x � 1(mod) 4g,

where n is an integer whih we an take larger then 2. To see this we need to

look at the e�et of � 2 G

q

on i = �

4

. Sine we assumed that i 2 F we know

that we must have �(i) = i. On the other hand if we write i as �

2

n�2

2

n

then

�(�

2

n�2

2

n

) = �

2

n�2

�s

2

n

= i

s

for some s 2 (Z=2

n

Z)

�

. It follows that s � 1(mod 4).

We leave it as an exerise to the reader to show that the order of

�

5 in (Z=2

n

Z)

�

is 2

n�2

and that therefore h

�

5i = fx 2 (Z=2

n

Z)

�

j x � 1(mod 4)g is yli.

(i) Let a be the image of � in H , and let d be the order of H . De�ne

Z = fx 2 Z=qZj (1 + a + � � � + a

d�1

)x � 0g and B = f(1 � a)xj x 2 Z=qZg.

Then it is lear that B � Z. Furthermore the homomorphism  : Z ! f� 2

�

q

j N

q

(�) = 1g given by  (x) = �

x

q

indues an isomorphism

 : Z=B �! f� 2 �

q

j N

q

(�) = 1g=f�(�)=�j � 2 G

q

g

It is now suÆient to show that Z = B. We already know that B � Z. For the

other inlusion we distinguish two ases:

1) There is a prime p, di�erent from l, with p j d. Let b = a

d=p

. Then

b

p

� 1(mod l) but b 6� 1(mod l). Therefore (1 � b) is a unit in Z=qZ. Sine

1� b = (1�a)(1+a+ � � �+a

�1+d=p

), we see that (1�a) is also a unit in Z=qZ.

But then B = Z=qZ and thus Z � B.

2) The order of H is a power of l, i.e., d is a power of l. Lift a to Z. Let

s = ord

l

(q) and t = ord

l

(a � 1), where ord

p

(N) denotes the order of p at N ,

i.e., the number of fators p in N . We know that l

s

j (a

d

� 1). Let A denote the

group generated by a in Z=lqZ. Suppose that l

s+1

j (a

d

� 1). Then the order

of A in Z=lqZ is also d. This implies that the map � : A ! H , whih is the

redution modulo l

s

, is injetive. But the map � : (Z=l

s+1

Z)

�

! (Z=l

s

Z)

�

is

not injetive and the kernel of �, whih is therefore not trivial, is ontained

in every subgroup of Z=l

s+1

Z, of order divisible by l. Therefore it is also

ontained in A and hene � = �j

A

an not be injetive. We onlude that
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ord

l

(a

d

�1) = s. Then ord

l

(1+a+ � � �+a

d

) = ord

l

(a

d

�1)�ord

l

(a�1) = s� t.

This means that if z 2 Z then ord

l

(z) � t. But sine ord

l

(1 � a) = t, we see

that ord

l

((1� a)x) � t; 8x 2 Z=qZ. Therefore z 2 B, and thus Z � B.

(ii) Suppose that t 2 F

�

is equal to s

q

for some s 2 F (�

q

). Then

�(s)

q

= �(s

q

) = �(t) = t = s

q

so that (

�(s)

s

)

q

= 1, therefore

�(s)

s

is a q-th

root of unity. Furthermore N

q

(

�(s)

s

) =

�

2

(s)����

d+1

(s)

�(s)����

d

(s)

= 1. Part (i) now implies

that

�(s)

s

=

�(�)

�

for some � 2 �

q

. It follows that �(

s

�

) =

�(s)

�(�)

=

s

�

and therefore

s�

�1

2 F . Sine t = s

q

= (s�

�1

)

q

, the lemma follows. �

Lemma 1.3 Let F be a number �eld and let x 2 F

�

. Let q be a power of a

prime number l. Let } be a prime ideal of Z

F

, with } - l, and } - x nor } - x

�1

.

Then the following three statements are equivalent:

(i) } is ompletely split in F

x

= F (�

q

;

q

p

x)

(ii) N(}) � 1(mod q) and x is an q-th power in Z

F

=}

(iii) x

(N(})�1)=q

� 1 (mod }).

Proof

\(i)) (ii)": Suppose that } is ompletely split in F

x

. Then } must be

ompletely split in F (�

q

) whih implies that the Frobenius automorphism of }

in F (�

q

)=F is 1 i.e. �

}

= (}; F (�

q

)=F ) = 1.

Let p be the prime number ontained in } and f = f(}=p) the residue lass

degree. Consider the following lattie of �elds:

F (�

q

)

ww
ww

ww
ww

w

CC
CC

CC
CC

Q(�

q

)

HHHHHHHHH
F

zz
zz

zz
zz

z

Q

Then from the properties of the Artin symbol we know that: (}; F (�

q

)=F )j

Q(�

q

)

=

(p;Q(�

q

)=Q)

f

= �

f

p

. But �

f

p

= 1 () �

f

p

(�

q

) = �

q

() �

p

f

q

= �

q

()

p

f

� 1(mod q). Notie that the neessary ondition for the Artin symbol prop-

erty, that p is unrami�ed in Q(�

q

), would not be satis�ed if } j l. Sine l is

the only prime that rami�es in Q(�

q

) it is suÆient that we exlude only }

dividing l.
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It remains to prove that x is a q-th power in Z

F

=}. Let  be a prime of

F (�

q

;

q

p

x) lying above }. Sine } is ompletely split in this �eld we have the

following isomorphism between the residue lass �elds:

Z

F (�

q

;

q

p

x)

= ~=Z

F

=}

Sine we assumed that } - x, we know that  - x, so that x 6� 0 in Z

F (�

q

;

q

p

x)

=.

Now x is obviously a q-th power in Z

F (�

q

;

q

p

x)

= sine we an write x = (

q

p

x)

q

.

The isomorphism from above then implies that x is a q-th power in Z

F

=}.

\(ii) ) (i)": Assume that N(}) = p

f

� 1(mod q) and that x is a q-th power

in Z

F

=}. We onsider the following diagram:

F (�

q

;

q

p

x)



F (�

q

)
�

F

}

where  j � and � j }. We have already seen that p

f

� 1(mod q) if and only if

} is ompletely split in F (�

q

). Therefore we know that } is ompletely split in

F (�

q

) whih gives us the isomorphism between the residue lass �elds:

Z

F (�

q

)

=� ~=Z

F

=}

Next let q̂ be the degree of the extension F (�

q

;

q

p

x)=F (�

q

), where q̂ j q.

Then F (�

q

;

q

p

x) = F (�

q

)[X ℄=(X

q̂

� x

q̂=q

) [see theorem A.2℄. Now x being an

q-th power in Z

F

=} implies that X

q

� x � 0(mod }) has a solution in Z

F

, and

we denote it with x

1=q

. Then x

1=q

is also a solution for X

q̂

� x

q̂=q

� 0(mod }),

hene X

q̂

�x

q̂=q

� 0(mod }) has a solution in Z

F

. The isomorphism from above

now implies thatX

q̂

�x

q̂=q

� 0(mod �) has a solution in Z

F (�

q

)

. The polynomial

f(X) = X

q̂

� x

q̂=q

is the moni minimal polynomial of F (�

q

;

q

p

x)=F (�

q

), whih

is separable modulo �, hene the fat that X

q̂

�x

q̂=q

� 0(mod �) has a solution

in Z

F (�

q

)

implies that � is ompletely split in F (�

q

;

q

p

x) [see proposition A.1℄.

Sine we already know that } splits ompletely in F (�

q

) we an onlude that

} is ompletely split in F (�

q

;

q

p

x).

\(ii)) (iii)": We �rst notie that the equation in (iii) has meaning if and only

if

p

f

�1

q

2 Z, that is if and only if p

f

� 1(mod q). Now if x is a q-th power in

Z

F

=} then x

1=q

2 Z

F

=}. We also know that �

(p

f

�1)

� 1 (mod }) 8� 2 Z

F

=}

(beause Z

F

=}

�

=

F

p

f ). It follows that x

(p

f

�1)=q

� 1 (mod }).
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\(iii) ) (ii)": Suppose that x

(p

f

�1)=q

� 1 (mod }). The multipliative

group (Z

F

=})

�

is isomorphi to (F

p

f )

�

, and is thus yli. Therefore we an

write x � �

m

(mod }), where h�i = (Z

F

=})

�

, and m an integer. Then

x

(p

f

�1)=q

� �

m(p

f

�1)=q

� 1 and beause the order of � in the group (Z

F

=})

�

is p

f

� 1 we must have that

m

q

2 Z or equivalently that q divides m. Therefore

x is a q-th power in Z

F

=}. �

Lemma 1.4 Let F be a number �eld and let p be a prime number. If p = 2,

assume that i 2 F . For eah positive integer n we de�ne W

n

= F

�

\F (�

p

n

)

�p

n

.

Then the following holds:

(i) W

1

�W

2

�W

3

� :::

(ii) \

n�1

W

n

= fx 2 F

�

j order of x is �nite and relatively prime to pg

Proof (i) Let a 2 F

�

and suppose that a 2 F (�

p

n

)

�p

n

. Hene a = b

p

n

for

some b 2 F (�

p

n

). From lemma 1.2 we then know that there is a � 2 �

p

n

suh

that b � �

�1

2 F and a = b

p

n

= (b � �

�1

)

p

n

. It follows that a 2 F

�p

n

, hene

W

n

= F

�p

n

. It is now obvious that W

n+1

�W

n

.

(ii) Suppose that a 2 \

n�1

W

n

. Then, as we have seen above, a is trivial

in F (�

p

n

)

�

=F (�

p

n

)

�p

n

for all n � 1. By lemma 1.2 it follows that a is trivial in

F

�

=F

�p

n

for all n � 1.

Next, let S be the set of primes F dividing a or a

�1

, and let U

S

denote the

multipliative group of S-units that is U

S

= f� 2 F

�

: j�j

}

= 1 8} =2 Sg =

f� 2 F

�

: }j� or }j�

�1

then } 2 Sg. Notie that a 2 U

S

. We laim that a is

trivial in U

S

=U

p

n

S

for all n. Consider the following inlusion diagram:

F

�p

n

� F

�

[ [

U

p

n

S

� U

S

First we show that U

p

n

S

= U

S

\ F

�p

n

. Well it is obvious that U

p

n

S

� U

S

\ F

�p

n

.

For the other inlusion take t 2 U

S

\ F

�p

n

. Then, sine t 2 F

�p

n

, t is a

p

n

-th power of some non-zero element of F

�

, say t = r

p

n

. But t 2 U

S

thus

jtj

}

= jr

p

n

j

}

= jrj

p

n

}

= 1 8} =2 S =) jrj

}

= 1 8} =2 S whih means that

r 2 U

S

and thus t = r

p

n

2 U

p

n

S

. Now, F

�p

n

U

S

=F

�p

n

is a subgroup of F

�

=F

�p

n

and is isomorphi to U

S

=U

p

n

S

. Sine a is trivial in F

�

=F

�p

n

and a 2 U

S

we

an onlude that a is trivial in U

S

=U

p

n

S

. This is true for all n � 1 so that

a 2 \

n�1

U

p

n

S

. Sine U

S

is multipliative group and �nitely generated, we know

from the Dirihlet Unit theorem [see appendix℄ that: U

S

�

=

Z=kZ�Z

s

, for some

positive integers k and s; here Z=kZ is isomorphi to the group of roots of unity

10



of F . It follows that

\

n

U

p

n

S

�

=

\

n

p

n

(Z=kZ)� \

n

p

n

Z� :::� \

n

p

n

Z

| {z }

s times

�

=

\

n

p

n

(Z=kZ)� 1

U

S

Therefore a is in the torsion of \

n�1

U

p

n

S

, hene a is a root of unity. Sine the

order of p

n

(Z=kZ) is equal to

k

gd(k;p

n

)

, we see that the order of a is relatively

prime to p. �

11



Chapter 2

Theorems

In this hapter we will prove theorems mentioned in the introdution. In the �rst

setion we prove our main theorem, and in setion 2 we prove the generalization

of it.

In the following we let S

K=k

denote the set of primes of a number �eld k,

whih are ompletely split in the �nite extension K of k.

2.1 The Main Theorem

Theorem 2.1 Let F be a number �eld and let x; y 2 F

�

. If for all prime

numbers l and for all positive integers n, one has that for almost all primes }

of S

F (�

l

n

)=F

the following holds:

y

N(})�1

l

n

� 1(mod }) whenever x

N(})�1

l

n

� 1(mod })

then y is a power of x. For almost all here means for all but for a set of

sup-density at most

l�2

[F (i;�

l

n

;

l

n

p

x;

l

n

p

y):F ℄

.

In the proof we deal with two extensions of F , namely F (�

l

n

;

l

n

p

x) and

F (�

l

n

;

l

n

p

y). Sometimes we will denote these �elds simply with F

x

and F

y

. We

also write F

x;y

for the omposite of F

x

and F

y

. Basially the proof is done in

three steps. In the �rst step we use lemma 1.3 and a density argument to show

that F (�

l

n

;

l

n

p

y) � F (�

l

n

;

l

n

p

x). In the seond step the Kummer theory is used

to onlude that y = x

d

in F (�

l

n

)

�

=F (�

l

n

)

�l

n

. From lemma 1.2 it then follows

that y = x

d

in F

�

=F

�l

n

. In the last step we omplete the proof.

Proof We �rst assume that i 2 F . We do this beause we will need to use

lemma 1.2. Of ourse, after proving the theorem for this ase we will show that

there is no loss of generality due to this assumption, proving the theorem for

any number �eld F . For eah q = l

n

de�ne T

q

to be the set of primes of S

F (�

q

)=F

for whih the ondition of the theorem does not hold. Also, we de�ne

~

T

q

as the

12



set of primes of F ontaining the in�nite primes, those that our in the fator-

ization of x and y and the primes of the set T

q

. Sine the set

~

T

q

� T

q

is �nite,

it has density 0. Therefore the density of

~

T

q

equals the density of T

q

and by

the assumption of the theorem it is less than

l�2

[F (i;�

q

;

q

p

x;

q

p

y):F ℄

=

l�2

[F (�

q

;

q

p

x;

q

p

y):F ℄

.

The last equality follows from the fat that we assumed i 2 F .

STEP 1. Let } 2 S

F (�

q

)=F

with } 62

~

T

q

; notie that } - x, } - y and } - l.

We onsider the following lattie of �elds:

F (�

q

;

q

p

x
;

q

p

y
)

ooooooooooo

OOOOOOOOOOO

F (�

q

;

q

p

x)

OOOOOOOOOOOO
F (�

q

;

q

p

y)

oooooooooooo

F (�

q

)

F

Q

Lemma 1.3 now implies that

x

N(})�1

q

� 1(mod }) () } is ompletely split in F (�

q

;

q

p

x)

Let � be a prime of F (�

q

) lying above }. Then sine we know that } is om-

pletely split in F (�

q

), we have the following equivalenes: } is ompletely split

in F

x

() � is ompletely split in F (�

q

;

q

p

x) () (�; F (�

q

;

q

p

x)=F (�

q

)) =

1 () Frob

F

x;y

=F (�

q

)

�

2 H

x

= Gal(F

x;y

=F

x

). The same is true for the �eld

F

y

and the group H

y

= Gal(F

x;y

=F

y

). This way the ondition of the theorem

beomes equivalent to the following

Frob

�

2 H

x

=) Frob

�

2 H

y

(2.1)

Now ifH

x

is trivial then (2.1) isn't very useful, but then we already know that

F

x;y

= F

x

, hene F

y

� F

x

. Suppose now that H

x

is not empty, and let q

x

denote

its order, whih is a power of the prime number l. We also need to know for

whih primes � the impliation in (2.1) holds. For this matter, let

~

T

0

q

be the set of

primes of F (�

q

) lying above the primes of

~

T

q

, and let S denote the set of primes

of F (�

q

) lying above the primes of S

F (�

q

)=F

. Then (2.1) holds for all � 2 S

with � =2

~

T

0

q

. Furthermore with Chebotarev Density Theorem we know that

13



�(S

F (�

q

)=F

) = Æ(S

F (�

q

)=F

) =

1

[F (�

q

):F ℄

. Lemma 1.1 then implies that �(S) = 1.

The same lemma also implies that �(

~

T

0

q

) � [F (�

q

) : F ℄ � �(

~

T

0

q

) �

l�2

[F

x;y

:F (�

q

)℄

.

We onlude that (2.1) holds for all primes � of F (�

q

) exept for a set of sup-

density at most

l�2

[F

x;y

:F (�

q

)℄

. Theorem 1.1 now implies that 2.1 does not hold

for at most l � 2 di�erent Frob

�

2 G = Gal(F

x;y

=F (�

q

)). Now even if all

of these Frob

�

's are in H

x

then there are still at least q

x

� (l � 2) di�erent

elements in H

x

for whih (2.1) does hold. Let � denote the Euler funtion, then

q

x

� (l � 2) � q

x

� (�(q

x

) � 1). Therefore at least q

x

� �(q

x

) + 1 elements of

H

x

are also in H

y

. Hene at least one of these elements is a generator of H

x

.

Therefore H

x

� H

y

, and thus

F (�

q

;

q

p

y) � F (�

q

;

q

p

x) (2.2)

STEP 2. Let W

x

= hF (�

q

)

�q

; xi and W

y

= hF (�

q

)

�q

; yi. With the Kummer

theory and (2.2) it follows that W

y

� W

x

. Therefore hyi = W

y

=F (�

q

)

�q

�

W

x

=F (�

q

)

�q

= hxi, i.e. y = x

d

in W

x

=F (�

q

)

�q

, for some integer d. Sine

W

x

� F (�

q

)

�

and thus W

x

=F (�

q

)

�q

� F (�

q

)

�

=F (�

q

)

�q

we see that y = x

d

in

F (�

q

)

�

=F (�

q

)

�q

. From lemma 1.2 it then follows that y = x

d

in F

�

=F

�q

.

STEP 3. In the last step of the proof we again need to de�ne a set of primes

of F . Here it is suÆient to de�ne T as the set of those primes whih our in

the fatorization of x and y. Let U

T

denote the multipliative group of T -units

that is U

T

= f� 2 F

�

: j�j

}

= 1 8} =2 Tg = f� 2 F

�

: } j � or } j

�

�1

then } 2 Tg. Notie that x; y 2 U

T

.

We want to show that y = x

d

in U

T

=U

q

T

. Consider the following inlusion

diagram:

F

�q

� F

�

[ [

U

q

T

� U

T

In the proof of lemma 1.4 we have seen that U

q

T

= U

T

\ F

�q

. Furthermore

F

�q

U

T

=F

�q

is a subgroup of F

�

=F

�q

whih is isomorphi to U

T

=U

q

T

. Sine we

have showed that y = x

d

in F

�

=F

�q

and beause x; y 2 U

T

we an onlude

that y = x

d

in U

T

=U

q

T

.

Next we de�ne A = U

T

=hxi. Then

A=A

q

= (U

T

=hxi)=(U

q

T

=(U

q

T

\ hxi))

�

=

(U

T

=hxi)=(hU

q

T

; xi=hxi)

�

=

U

T

=hU

q

T

; xi

�

=

(U

T

=U

q

T

)=(hU

q

T

; xi=U

q

T

)

= (U

T

=U

q

T

)=h�xi

where �x � x(mod U

q

T

). This gives us an isomorphism:  : (U

T

=U

q

T

)=h�xi �!

A=A

q

. Sine y = x

d

in U

T

=U

q

T

, and thus is trivial in (U

T

=U

q

T

)=h�xi, it's image
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by  is in A

q

. This is true for all prime powers q so that the image of y in A is

in \

q

A

q

.

It remains to show that \

q

A

q

is trivial. Well, A is a multipliative group

and sine T is �nite, A is �nitely generated. Therefore A is isomorphi to a

diret produt of yli groups: A

�

=

Z=k

1

Z� � � � �Z=k

r

Z�Z

s

. We see that:

\

q

A

q

�

=

\

q

q(Z=k

1

Z)� � � � � \

q

q(Z=k

r

Z)� \

q

qZ� :::� \

q

qZ

| {z }

s times

= 0

Sine the image of y in A was in \

q

A

q

we see that y is trivial in A i.e. y = x

d

for some d 2 Z. This proves the theorem for a �eld F with i 2 F .

Let us now look at a number �eld F with i =2 F . Let x; y 2 F

�

and let T

q

be the set of primes of F for whih the ondition of the theorem does not hold.

We still assume that the density of T

q

is at most

l�2

[F

x;y

(i):F ℄

. Let T

0

q

be the set of

primes of F (i) for whih the ondition of the theorem does not hold. We laim

that T

0

q

is exatly the set of primes lying above the primes of T

q

. To prove this

we show that for a prime } of S

F (�

q

)=F

the ondition

y

N(})�1

q

� 1(mod }) whenever x

N(})�1

q

� 1(mod })

holds if and only if the ondition

y

N(�)�1

q

� 1(mod �) whenever x

N(�)�1

q

� 1(mod �)

holds for every prime � 2 F (i) lying above }. It is suÆient to show that for

a = x; y we have

a

N(})�1

q

� 1(mod }) () a

N(�)�1

q

� 1(mod �) (2.3)

First we notie that sine � j } the diagram bellow ommutes

Z

F (i)

! Z

F (i)

=�

" "

Z

F

! Z

F

=}

whih implies that a

n

� 1(mod }) () a

n

� 1(mod �), for all n 2 Z

>0

.

We now need to separate two ases:

1) q is a power of 2: Notie that leaving q = 2 out does not hange the inter-

setion \

q

A

q

. We an therefore take q � 4 so that F (i) � F (�

q

) and sine }

is ompletely split in F (�

q

), } is ompletely split in F (i). Hene N(�) = N(})

and (2.3) follows.

2) q is power of an odd prime: Now if N(�) = N(}) we are done. Otherwise,

N(�) = N(})

2

and we onsider the following lattie of �elds:
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P 2

F (i; �

q

;

q

p

x
)

ppppppppppp

MMMMMMMMMM

 2

F (�

q

;

q

p

x)

F (i; �

q

)

Æ 2

F (�

q

)

OOOOOOOOOOOOO
F (i)

pppppppppppp
3 �

F

Let P ,  and Æ be the primes of F (i; �

q

;

q

p

x); F (�

q

;

q

p

x) and F (�

q

) respetively,

suh that P j  j Æ j }. Then

f(P=}) = f(P=)f(=}) = f(P=)f(=Æ)

= f(P=�)f(�=}) = 2 � f(P=�)

Suppose that a

N(})�1

q

� 1(mod }). Then by lemma 1.3 } is ompletely split in

F (�

q

;

q

p

x). It follows that f(=}) = 1, and thus f(P=) = 2 � f(P=�). Sine

f(P=) is at most 2 it follows that f(P=�) = 1, i.e. � is ompletely split in

F (i; �

q

;

q

p

x). Hene, by lemma 1.3, a

N(�)�1

q

� 1(mod �).

Now suppose that a

N(�)�1

q

� 1(mod �), thus � is ompletely split in F (i; �

q

;

q

p

x).

Then f(P=}) = f(P=)f(=Æ) = 2. Now f(=Æ) an not be equal to 2 beause

[F (�

q

;

q

p

x) : F (�

q

)℄ is odd. Therefore f(P=) = 2 and f(=Æ) = 1. Hene } is

ompletely split in F (�

q

;

q

p

x) and thus a

N(})�1

q

� 1(mod }). This proves our

laim.

Furthermore, by lemma 1.1 it follows that �(T

0

q

) � 2 ��(T

q

) =

l�2

[F

x;y

(i):F (i)℄

.

We an now use theorem 2.1 for x; y 2 F (i) to onlude that y is a power of x

in F (i). Sine x; y 2 F then ertainly y is a power of x in F . This ompletes

the proof of our theorem. �
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2.2 A Generalization

In this setion we prove the following theorem, whih is a generalization of our

main theorem

Theorem 2.2 Let F be a number �eld and let x; y 2 F

�

. Let l be a prime

number and m and m

0

two integers. Then the impliation:

order of x

N(})�1

l

n

in (Z

F

=})

�

is l

m

=) order of y

N(})�1

l

n

in (Z

F

=})

�

is l

m

0

holds for all positive integers n and for almost all primes } 2 S

F (�

l

n

)=F

, if and

only if either x is a root of unity of order not divisible by l

m

, or there are integers

a and b > 0 with gd(l; ab) = 1, suh that y

l

m

0

�1

b

= x

l

m�1

a

. Almost all here

means all but a set of sup-density at most

l�2

[F (�

l

n

;

l

n

p

x

l

m�1

;

l

n

p

y

l

m

0

�1

):F ℄

Basially the proof is done in the same manner as the previous one, and

we will oasionally refer to it. Some steps will require a bit more e�ort.

We will now need more than just two extensions of F . Namely, we will on-

sider the following extensions: F

x

= F (�

l

n

;

l

n

p

x

l

m�1

), F

y

= F (�

l

n

;

l

n

p

y

l

m

0

�1

),

F

x

l = F (�

l

n

;

l

n

p

x

l

m

) and F

y

l = F (�

l

n

;

l

n

p

y

l

m

0

). Again we let F

x;y

denote the

omposite of F

x

and F

y

.

Proof \(" If x is a root of unity, say x = �

w

, with l

m

- w then the

order of x

N(})�1

l

n

in (Z

F

=})

�

is never l

m

, hene the impliation of the theo-

rem always holds. Otherwise, if y

bl

m

0

�1

= x

al

m�1

for some integers a and

b with gd(l; ab) = 1 then: the order of x

N(})�1

l

n

in (Z

F

=})

�

is l

m

()

the order of x

l

m�1

N(})�1

l

n

in (Z

F

=})

�

is l =) the order of x

l

m�1

a

N(})�1

l

n

in (Z

F

=})

�

is l,

where the last impliation holds beause l - a. But x

l

m�1

a

N(})�1

l

n

= y

l

m

0

�1

b

N(})�1

l

n

,

hene the order of y

l

m

0

�1

b

N(})�1

l

n

in (Z

F

=})

�

is l whih again implies that the

order of y

l

m

0

�1

N(})�1

l

n

in (Z

F

=})

�

is l. But then the order of y

N(})�1

l

n

in (Z

F

=})

�

is l

m

0

.

\)" As before we will need to use lemma 1.2, therefore for l = 2 we assume

that i 2 F . After proving the theorem for this ase we will of ourse show that

theorem also holds for a �eld whih does not ontain i. For eah n we de�ne T

n

to be the set of primes of S

F (�

l

n

)=F

for whih the ondition of the theorem does

not hold. Also we de�ne

~

T

n

as the set of primes of F ontaining the in�nite

primes, those that divide x or y, and the primes of the set T

n

. As before we see

that the density of

~

T

n

equals the density of T

n

and by the assumption of the

theorem it is less than

l�2

[F

x;y

:F ℄

.

STEP 1. Let } 2 S

F (�

l

n

)=F

with } 62 T

n

, hene } - x, } - x

�1

, } - y, } - y

�1

and } - l. We onsider the following lattie of �elds:
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F (�

l

n

;

l

n

p

x

l

m�1

;

l

n

p

y

l

m

0

�1

)

jjjjjjjjjjjjjjj

TTTTTTTTTTTTTTT

F (�

l

n

;

l

n

p

x

l

m�1

)

F (�

l

n

;

l

n

p

y

l

m

0

�1

)

F (�

l

n

;

l

n

p

x

l

m

)

TTTTTTTTTTTTTTTTT
F (�

l

n

;

l

n

p

y

l

m

0

)

jjjjjjjjjjjjjjjjj

F (�

l

n

)

F

3 }

Q

3 p

We �rst notie that for all integers r > 0 we have

order of x

r

in (Z

F

=})

�

is l

m

() x

rl

m

� 1(mod }) and x

rl

m�1

6� 1(mod })

Using this and lemma 1.3 we see that:

order of x

N(})�1

l

n

in (Z

F

=})

�

is l

m

() } is ompletely split in F (�

l

n

;

l

n

p

x

l

m

) and

} is not ompletely split in F (�

l

n

;

l

n

p

x

l

m�1

)

Next let � be a prime in F (�

l

n

) whih is above }, and let H

x

= Gal(F

x;y

=F

x

l)

and H

0

x

= Gal(F

x;y

=F

x

). Then, sine } is ompletely split in F (�

l

n

), we have

the following equivalenes:

} is ompletely split in F (�

l

n

;

l

n

p

x

l

m

) and

} is not ompletely split in F (�

l

n

;

l

n

p

x

l

m�1

)

m

� is ompletely split in F (�

l

n

;

l

n

p

x

l

m

) and

� is not ompletely split in F (�

l

n

;

l

n

p

x

l

m�1

)

m

(�; F (�

l

n

;

l

n

p

x

l

m

)=F (�

l

n

)) = 1

and (�; F (�

l

n

;

l

n

p

x

l

m�1

)=F (�

l

n

)) 6= 1

m

Frob

F

x;y

=F (�

l

n

)

�

2 H

x

and

Frob

F

x;y

=F (�

l

n

)

�

=2 H

0

x

18



The same equivalenes are true for the �elds F

y

and F

y

l , and the groups

H

y

= Gal(F

x;y

=F

y

l
) and H

0

y

= Gal(F

x;y

=F

y

). We see that the ondition in

the theorem is equivalent to the following:

Frob

�

2 H

x

nH

0

x

=) Frob

�

2 H

y

nH

0

y

(2.4)

Now it an happen that H

x

nH

0

x

is empty for all integers n. If this is the ase

then we an not dedue muh from (2.4). But we then have F (�

l

n

;

l

n

p

x

l

m

) =

F (�

l

n

;

l

n

p

x

l

m�1

) for all n. When F (�

l

n

;

l

n

p

x

l

m

) = F (�

l

n

;

l

n

p

x

l

m�1

), then sine

F

x

and F

x

l
are yli extensions of F (�

l

n

), we know from Kummer theory [see

appendix℄ that these extensions are of the same degree if and only if they are

trivial. Hene F (�

l

n

;

l

n

p

x

l

m�1

) = F (�

l

n

), so that x

l

m�1

2 F (�

l

n

)

�l

n

. This is

true for all n so that x

l

m�1

2 \

n�1

F (�

l

n

)

l

n

, and by lemma 1.4 it then follows

that x

l

m�1

2 �

k

with gd(k; l) = 1. Therefore x is a root of unity of order not

divisible by l

m

. This gives us one ase of \)".

Furthermore if H

y

nH

0

y

is empty for all n and (2.4) is true, then H

x

nH

0

x

must

be empty for all n. But then both x

l

m�1

and y

l

m

0

�1

are roots of unity of order

not divisible by l, say x

l

m�1

= �

a

and y

l

m

0

�1

= �

b

with gd(l; ab) = 1. Then

obviously x

l

m�1

a

= 1 = y

l

m

0

�1

b

.

We now assume that both H

x

nH

0

x

and H

y

nH

0

y

are not always empty. Let N

be the smallest integer for whih both H

x

nH

0

x

and H

y

nH

0

y

are not empty, thus

[F (�

l

N ;

l

N

p

x

l

m�1

) : F (�

l

N ;

l

N

p

x

l

m

)℄ = [F (�

l

N ;

l

N

p

y

l

m

0

�1

) : F (�

l

N ;

l

N

p

y

l

m

0

)℄ = l.

Then x

l

m�1

and y

l

m

0

�1

are not (l

N

)-th powers in F (�

l

N ). Lemma 1.4 now

implies that for all n > N , x

l

m�1

and y

l

m

0

�1

are not (l

n

)-th powers in F (�

l

n

).

Therefore for all n � N we have that [F (�

l

n

;

l

n

p

x

l

m�1

) : F (�

l

n

;

l

n

p

x

l

m

)℄ =

[F (�

l

n

;

l

n

p

y

l

m

0

�1

) : F (�

l

n

;

l

n

p

y

l

m

0

)℄ = l, and H

x

nH

0

x

and H

y

nH

0

y

are not empty.

From now on we onsider only n � N . Let

~

T

0

n

be the set of primes in F (�

l

n

)

whih are above the primes of

~

T

n

. Then (2.4) is true for all primes � whih

are ompletely split in the extension F (�

q

)=F and are not in

~

T

0

n

. Just as in the

proof of the previous theorem we an dedue that the sup-density of the set of

primes of F (�), for whih (2.4) does not hold, is equal to the sup-density of the

set

~

T

0

n

. Lemma 1.1 implies that �(

~

T

0

n

) � [F (�

l

n

) : F ℄ � �(

~

T

n

) �

l�2

[F

xy

:F (�

l

n

)℄

.

Theorem 1.1 now tells us that (2.4) does not hold for at most (l � 2) di�erent

Frob

�

2 G = Gal(F

xy

=F (�

q

)). In other words,

H

x

nH

0

x

� H

y

nH

0

y

[ S with jSj � l � 2 (2.5)

If we let q

x

= jH

0

x

j and q

y

= jH

0

y

j, then jH

x

nH

0

x

j = q

x

(l� 1) and jH

y

nH

0

y

j =

q

y

(l � 1). The inlusion in (2.5) then implies that q

x

� q

y

. We now need to

separate two ases, namely H

x

is yli or not.

1) Let H

x

be yli. Then every element of H

x

=H

0

x

is a generator of H

x

. From
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(2.5) we know that at least one of these generators is in H

y

=H

0

y

� H

y

. It follows

that H

x

� H

y

and thus H

0

x

= H

l

x

� H

l

y

= H

0

y

. Hene F

y

� F

x

.

2) Suppose now that H

x

is not yli, and that q

y

6= 1. Then H

y

= h�

y

; �

y

i,

H

0

y

= h�

y

i, H

x

= h�

x

; �

x

i and H

0

x

= h�

x

i. Here

�

y

:

l

n

p

x

l

m�1

! �

q

y

l

n

p

x

l

m�1

and �

y

is identity on

l

n

p

y

l

m

0

�1

�

y

:

l

n

p

y

l

m

0

! �

l

l

n

p

y

l

m

0

and �

l

y

= id

�

x

:

l

n

p

y

l

m

0

�1

! �

q

x

l

n

p

y

l

m

0

�1

and �

x

is identity on

l

n

p

x

l

m�1

�

x

:

l

n

p

x

l

m

! �

l

l

n

p

x

l

m

and �

l

x

= id

Now �

x

= �

y

or �

x

= �

q

y

=l

y

�

q

x

=l

x

or �

x

= �

q

y

=l

y

depending on whether �

x

is identity

on

l

n

p

y

l

m

0

�1

or not, and whether �

y

is identity on

l

n

p

x

l

m�1

or not. In the �rst

ase we thus have �

x

= �

y

= � , hene by (2.5), there is an integer j 2 f1; :::; q

y

g

suh that ��

x

= ��

j

y

. But we know that for all j, �

x

6= �

j

y

, hene we an not

have �

x

= �

y

. In the other two ases we have H

x

= h�

x

; �

q

y

=l

y

i. This implies

that X = f(�

q

y

=l

y

)

i

j i = 1:::(l� 1)g � H

x

nH

0

x

. Sine X has l� 1 elements, (2.5)

now tells us that at least one of the elements of X must lie in H

y

nH

0

y

. But

X � h�

y

i = H

0

y

, hene we have reahed a ontradition. Therefore q

y

= 1 and

sine q

x

� q

y

we see that q

x

= q

y

= 1. Hene F

x

= F

y

. In both ases we an

onlude that

F (�

q

;

q

q

y

l

m

0

�1

) � F (�

q

;

q

p

x

l

m�1

) (2.6)

STEP 2. We write x̂ = x

l

m�1

and ŷ = y

l

m

0

�1

. De�ne W

x̂

= hF (�

l

n

)

�l

n

; x̂i

and W

ŷ

= hF (�

l

n

)

�l

n

; ŷi. With the Kummer theory and (2.6) it follows that

W

ŷ

�W

x̂

. Therefore hŷi =W

ŷ

=F (�

l

n

)

�l

n

�W

x̂

=F (�

l

n

)

�l

n

= hx̂i, i.e., ŷ = x̂

d

in

W

x̂

=F (�

l

n

)

�l

n

, for some integer d. SineW

x̂

� F (�

l

n

)

�

and thusW

x̂

=F (�

l

n

)

�l

n

�

F (�

l

n

)

�

=F (�

l

n

)

�l

n

we see that y

l

m

0

�1

= x

l

m�1

d

in F (�

l

n

)

�

=F (�

l

n

)

�l

n

. From

lemma 1.2 it then follows that y

l

m

0

�1

= x

l

m�1

d

in F

�

=F

�l

n

.

STEP 3. From the previous step we know that ŷ = x̂

d

in F

�

=F

�l

n

for some

integer d. We de�ne the set T to be the set of those primes whih divide x̂ or ŷ.

We let U

T

be the multipliative group of T -units and de�ne A = U

T

=hx̂i. Then

following the same argument as in the proof of the main theorem we dedue

that ŷ = x̂

d

in U

T

=U

l

n

T

and we have the following isomorphism:

 : (U

T

=U

l

n

T

)=h

�

x̂i �! A=A

l

n

Sine ŷ = x̂

d

in U

T

=U

l

n

T

, and thus is trivial in (U

T

=U

l

n

T

)=h

�

x̂i, it's image by  

is in A

l

n

. This is true for all n � N , so that the image of ŷ in A is in \

n�N

A

l

n

.
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Now again we have:

\

n�N

A

l

n

�

=

\

n�N

l

n

(Z=k

1

Z)� � � � � \

n�N

l

n

(Z=k

r

Z)� \

l

n

l

n

Z� :::� \

l

n

l

n

Z

| {z }

s times

�

=

\

n�N

l

n

(Z=k

1

Z)� � � � � \

n�N

l

n

(Z=k

r

Z)� 0

so that the image of ŷ in A is in the torsion of \

n�N

A

l

n

, i.e.,  (ŷ)

b

=  (y

l

m

0

�1

b

) =

1

A

for some b 2 N =) y

l

m

0

�1

b

2 hx̂i = hx

l

m�1

i. Sine the order of l

n

(Z=k

i

Z) is

equal to

k

i

gd(k

i

;l

n

)

, we see that b is not divisible by l. We onlude that:

y

l

m

0

�1

b

= x

l

m�1

a

for some a; b 2 Z; with b > 0 and l - b

To show that l - a we will go bak to the ondition of the theorem. The assump-

tion we made thatH

x

nH

0

x

isn't always empty implies that there is an integer n �

m and a prime } 2 S

F (�

l

n

)=F

for whih the order of x

N(})�1

l

n

in (Z

F

=})

�

is l

m

. By

the ondition of the theorem we also have that the order of y

N(})�1

l

n

in (Z

F

=})

�

is l

m

0

.

But then the order of y

l

m

0

�1

b

N(})�1

l

n

in (Z

F

=})

�

is l and it is equal to the order

of x

l

m�1

a

N(})�1

l

n

, hene a an not be divisible by l.

Let us now look at the ase when l = 2 and i =2 F . For eah q = 2

n

let T

q

be

the set of primes of F for whih the ondition of the theorem does not hold. We

still assume that the density of T

q

is at most

l�2

[F

x;y

:F ℄

. Also, let T

0

q

be the set of

primes of F (i) for whih the ondition of the theorem does not hold. We laim

that T

0

q

is exatly the set of primes lying above the primes of T

0

q

. To prove this

we need to show that for a } 2 S

F (�

q

)=F

the ondition

order of x

N(})�1

q

in (Z

F

=})

�

is l

m

=) order of y

N(})�1

q

in (Z

F

=})

�

is l

m

0

holds if and and only if

order of x

N(�)�1

q

in (Z

F (i)

=�)

�

is l

m

=) order of y

N(�)�1

q

in (Z

F (i)

=�)

�

is l

m

0

holds for every prime � 2 F (i) lying above }. In the previous setion we have

already seen that for a = x; y and for q = l

n

we have

a

N(})�1

q

� 1(mod }) () a

N(�)�1

q

� 1(mod �)

for all � j }. Then for M � n

 

a

N(})�1

q

l

M

� 1(mod }) and

a

N(})�1

q

l

M�1

6� 1(mod })

!

()

 

a

N(�)�1

q

l

M

� 1(mod �) and

a

N(�)�1

q

l

M�1

6� 1(mod �)

!

or equivalently

order of a

N(})�1

q

in (Z

F

=})

�

is l

M

() order of a

N(�)�1

q

in (Z

F (i)

=�)

�

is l

M
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holds for all � j }. This proves our laim.

Next, just as in the previous proof we notie that the intersetion \

n

A

2

n

does not hange if we leave n = 2 out. We then have that i 2 F (�

q

) and by

lemma 1.1 it follows that

�(T

0

q

) �

l � 2

[F

x;y

: F (i)℄

We an now use theorem 2.2 to onlude that y

l

m

0

�1

b

= x

l

m�1

a

in F (i), for some

a; b 2 Z; with b > 0 and l - ab. Sine x; y 2 F

�

it follows that y

l

m

0

�1

b

= x

l

m�1

a

in F . �
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Appendix A

Appendix

In this appendix, we summarize the basi terms and theorems needed for this

paper. We are not going to give any proofs, but one an �nd these, and muh

more, for example in [3℄ and [4℄.

A.1 Prime Ideals in Number Fields

Let k be a number �eld and K a �nite extension of k. Let } be a prime of k

and � a prime of K. We say that � lies above }, or that } is ontained in �,

if � \ Z

k

= }. If this is the ase we write � j } and we have a ommutative

diagram

Z

K

! Z

K

=�

" "

Z

k

! Z

k

=}

The �elds Z

k

=} and Z

K

=� are �nite and are alled the residue lass �elds.

With f(�=}) we denote the degree of the residue lass �eld extension Z

K

=�

over Z

k

=} and all it the residue lass degree. We de�ne N

K

k

(�), the norm

of � over k, to be }

f(�=})

.

Furthermore }Z

K

is an ideal of Z

K

and has a fatorization

}Z

K

= �

e

1

(�

1

=})

1

� � ��

e

r

(�

r

=})

r

(e

i

� 1)

into primes of Z

K

. A prime � of Z

K

ours in the fatorization of } if and only

if it lies above }. Eah e

i

(�

i

=}) is alled the rami�ation index of �

i

over

}. We also have the following basi relation between the rami�ation index and

the residue lass degree

[K : k℄ =

X

�j}

e(�=})f(�=})

Also if k � K � E is a tower of �nite extensions, and }, � and q are primes of

23



k, K and E respetively, suh that q j � j }, then

e(q=}) = e(q=�)e(�=})

f(q=}) = f(q=�)f(�=})

Furthermore we say that } is ompletely split in K if there are exatly

[K : k℄ di�erent primes of K lying above }. This is the ase if and only if

e(�=}) = f(�=}) = 1 for all � j }. A prime is rami�ed in K if any of the

rami�ation indies e

i

(�

i

=}) is greater than 1. It an be proved that only a

�nite number of primes of k ramify in K. If a prime } of k is neither split nor

rami�ed in K then it is said to be inert in K. In this ase there is only one

prime � of K lying above } and e(�=}) = 1 and f(�=}) = [K : k℄.

When the extension K=k is Galois, and all the extensions we deal with are,

then all the e

0

i

s are equal to the same number e and all the f

0

i

s are equal to the

same number f .

We now want to de�ne the Frobenius automorphism and the Artin symbol.

Before doing so we need to know little more about when a prime is rami�ed in

an extension. Now all the extensions we deal with in this paper are made by

adjoining a primitive q-th root of unity to a number �eld k and/or adjoining

a q-th root of an element a 2 k

�

, where q is a power of a prime number. It

is now suÆient to know that if a prime } of k does not divide q or a, then it

is unrami�ed in k(�

q

;

q

p

a). Also the only prime rami�ed in k(�

q

) is the prime

dividing q.

Let now k be a number �eld and K=k a Galois extension with group G. Let

} be a prime of k unrami�ed in K, and let � be a prime of K lying above }.

The deomposition group of � is de�ned by

D

�

= f� 2 Gj �(�) = �g

To eah � 2 D

�

we an assoiate an automorphism �� of Z

K

=� over Z

k

=}. Let

~

G denote the Galois group of Z

K

=� over Z

k

=}. Then the map � 7! �� indues a

isomorphism between D

�

and

~

G (if } is rami�ed then we only have a surjetive

homomorphism). By the theory of �nite �elds we know that

~

G is yli with

anonial generator given by the Frobenius automorphism x 7! x

N(})

. Hene

there is a unique element of D

�

whih maps to this generator (if } is rami�ed

then this is not a unique element but a oset in G

�

). This element of D

�

is

alled the Frobenius automorphism of � and is denoted by (�;K=k) or just

Frob

�

= Frob

K=k

�

. It has the following property

Frob

�

(�) � �

N(})

(mod �); 8� 2 Z

K

Also, a prime } is ompletely split in K if and only if for all � j } we have

(�;K=k) = 1.

When K=k is abelian and } is unrami�ed in K then (�;K=k) is the same

for all � j }. We then denote this element with (};K=k) and all it the Artin

symbol of } in G.
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Let now E=k be a �nite extension, not neessarily Galois, so that we have

the following lattie of �elds

KE

CC
CC

CC
CC

zz
zz

zz
zz

K

DD
DD

DD
DD

E

{{
{{

{{
{{

k

Here K=k is still assumed abelian. Let } be a prime of k unrami�ed in K and

let q be a prime of E lying above }. Then

res

K

(q;KE=k) = (};K=k)

f(q=})

To onlude the subjet of splitting we state a part of a proposition [4,

proposition 5.11℄.

Proposition A.1 Let k � K be a Galois extension, where K = k(�) for some

� 2 Z

K

. Let f(x) be the moni minimal polynomial of � over k, so that f(x) 2

Z

k

[x℄. If } is a prime of k and f(x) is separable modulo }, then } splits

ompletely in K if and only if f(x) � 0(mod }) has a solution in Z

k

.

So far we were talking about the prime ideals of the ring of integers of a

number �eld k. These primes are sometimes alled the �nite primes to distin-

guish them from the in�nite primes. An in�nite prime is determined by the

embedding of k into C . A real in�nite prime is an embedding � : k ! R, and

a omplex in�nite prime is a pair of embeddings �; �� : k ! C . Furthermore,

given an extension K=k, an in�nite prime � of k is rami�ed in K if � is real but

it has an extension to K whih is omplex.

Another thing we must mention is the Dirihlet Unit Theorem. Without

going to deep into the subjet of this theorem it will be suÆient to de�ne U

S

,

the set of S-units. Let S be a �nite set of primes of a number �eld k. Then

U

S

= f� 2 k

�

: j�j

}

= 1 8} =2 Sg = f� 2 k

�

: } j � or } j �

�1

then } 2 Sg.

We will not atually need the unit theorem but the following orollary of it.

Corollary A.1 (Unit Theorem) Let k be a number �eld and S a �nite set

of primes of k. Then U

S

modulo the group of roots of unity in k is a �nitely

generated, free abelian group.
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A.2 Density

De�nition A.1 Let S be a set of primes of a number �eld K. The Dirihlet

density of S (if it exists) is de�ned to be

Æ(S) = lim

s!1+

P

}2S

1

N(}

s

)

log(

1

s�1

)

Some basi properties of the Dirihlet density are:

1. If Æ(S) exists then 0 � Æ(S) � 1

2. If S is �nite then Æ(S) = 0

3. If S and T are disjoint and Æ(S) and Æ(T ) exist, then Æ(S[T ) = Æ(S)+Æ(T )

Theorem A.1 (Chebotarev). Let K=k be Galois with Galois group G. Let

� 2 G. Let [K : k℄ = N , and let  be the number of elements in the onjugay

lass of � in G. Then those primes } of k whih are unrami�ed in K and for

whih there exists � j } suh that

� = (�;K=k)

have a density, and this density is equal to =N .

A.3 Kummer Theory

For a positive integer n we let �

n

denote a primitive n-th root of unity and �

n

the group generated by �

n

. We begin with a �eld K and assume that �

n

2 K

for some integer n prime to the harateristi of K.

Let a 2 K

�

. Now the symbol

n

p

a (or a

1=n

) is not well de�ned but we will

use it to denote any root of X

n

� a. Sine the n-th roots of unity are in K the

extension K(

n

p

a) of K is the same no matter whih root of X

n

� a we take.

Let W be a subgroup of K

�

ontaining K

�n

(the n-th powers of non-zero

elements of K). Let K(W

1=n

) denote the omposite of all the �elds K(a

1=n

)

for whih a 2 W . One an hek that the extension K(W

1=n

)=K is Galois

and abelian of exponent n (exponent n means that the Galois group, G

W

=

Gal(K(W

1=n

)=K), is annihilated by n i.e. �

n

= 1 8� 2 G

W

).

We have the following diagram:

�

K

K(W

1=n

)

G

W

K
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The Kummer theorem states that the map W 7! K(W

1=n

) gives a bijetion be-

tween of the set of subgroups of K

�

ontaining K

�n

and the abelian extensions

of K of exponent n.

Furthermore K(W

1=n

)=K is �nite if and only if (W : K

�n

) is �nite (in par-

tiular we then have [K(W

1=n

) : K℄ = (W : K

�n

)). In this ase we have an

isomorphism:

� :W=K

�n

�! Hom(G

W

; �

n

)

given by �(w) = �

w

where �

w

(�) =

�(

n

p

w)

n

p

w

In the proof of our theorems we will atually need only the �rst statement,

that is the existene of the bijetion between the set fW j K

�n

�W � K

�

g and

the set of abelian extensions of K of exponent n.

We will also use the following speial ase of Kummer Theory, onerning

the determination of the yli extensions [3, hapter IV, x6℄:

Theorem A.2 Let k be a �eld. Let n be a positive integer prime to the har-

ateristi of k, and assume that there is a primitive n-th root of unity in k.

(i) Let K be a yli extension of k of degree n. Then there exists � 2 K suh

that K = k(�), and � satis�es an equation X

n

� a = 0 for some a 2 k.

(ii) Conversely, let a 2 k, and let � be a root of X

n

� a = 0. Then k(�) is

yli over k of degree n=d, where d is the greatest divisor of n for whih a is a

d-th power in k.
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