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1 Introduction

To understand the effects of a drug and the further response of the body, it is very
important to realize what these effects can be and how they can be measured. Therefore
a thorough study is usually conducted. In general this concerns in vivo experiments on
laboratory animals mostly rats but sometimes domestic cats or other animals [1]. The
effects of the drugs on these animals can be various and are often measured by considering
side-effects such as change in body temperature, contraction of an eye muscle or reflexes
of the tail that occur under the influence of the drug. Furthermore the concentration of
the drug in the blood is being examined regularly to determine data like the half-life of
the drug. However to integrate these data into a dynamic model is not easy. Therefore
lately the use of mathematical models has increased. In general these models consist of
two components: a pharmacokinetic component and a pharmacodynamic one.

1.1 Kinetics

Pharmacokinetics concern the process of the drug in the body, starting with the description
of the drug administration, followed by the course of the drug concentration in the blood.
Drugs often work on a receptor, so we need to consider the effect of the drug and its
concentration on such a receptor. Through regular blood tests the concentration of the
drug is being determined, starting right after the administration, which can occur in
two possible ways: either the drug is administered as a bolus, this means that the whole
quantity enters the body at the same time, for example by taking a pill, or it is administered
by infusion, which means that the dose enters the body over a longer period of time.
However, it is not true that the drug stays in the blood until its elimination. In a more
realistic model the function of organs like the liver should be considered as well. In the
beginning, when the drug concentration in the blood is very high, part of it is absorbed
by the liver, which thus forms another important element of the process. At a later stage,
when the drug concentration in the blood declines, the liver slowly secretes the drugs it is
containing into the bloodstream until the elimination is complete and the situation of the
body goes back to the initial state before the administration of the drug. Furthermore the
effect of the drug on the receptor clearly depends on the concentration.

1.2 Dynamics

Pharmacodynamics concern the dynamic behaviour of the interaction between the recep-
tor and possible body mechanisms, which eventually determine the effect of the body. In
other words: pharmacodynamics consider the response of the body to the drug. Right
after the administration of the drug the body starts to respond through the effect of the
drug on the receptor, which produces a hormone or some other substance. This hormone
then causes a certain response of the body: the Dynamic Response. To measure this res-
ponse we need to choose a so-called marker like for example the body temperature [2], [3]
which changes - depending on the sort of drug administered it goes up or down. After a
certain amount of time the response reaches its peak and starts to decline. Eventually -
after complete elimination of the drug in the body - the response is reduced to zero and
the body returns to its initial state.
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One can distinguish two kinds of models: Direct Response Models and Indirect Res-
ponse Models.
1.Direct Response Model. In this model the administration of the drug is considered, fol-
lowed by a stimulus of the body and a direct response. This means that the drug alerts
a receptor, which causes a stimulus S(c) depending on the concentration c. This stimu-
lus then influences the body and causes a certain effect E(S) which directly depends on
the stimulus S. Hence, the response of the body R depends directly on the concentration c:

R(t) = E(S(c(t))).

2. Indirect Response Model. In this model - formulated by Dayneka, Garg and Jusko [4] -
the process starts with the drug administration, which causes an effect on the secondary
processes in the body like the elimination and the stimulation. Throughout this paper we
will denote the effect by H(c), where c denotes the concentration of the drug in the blood.
Regarding the basic equation for this kind of model

dR

dt
= kin − koutR,

where kin describes the influence of the drug on the production of the response, and kout on
the rate constant for loss of response. The effect H can either influence kin or kout; in other
words it can have a stimulating or an eliminating effect. The function H thus indicates
where the drug operates. The form of H(c) describes the relation between the impact of
the drugs and its concentration. The main difference between the direct and the indirect
response model lies in the delay: in the direct model the drug causes a direct response
without any delay, while in the indirect model H does cause a delay. In the research
process of a drug it is often difficult to know what kind of model to use, direct or indirect.
Therefore the difference in response is an important criterion. The object of this study is
the investigation of the delay and its dependence on the amount of drugs administered, as
well as of the body response and its possible maximum in relation to changing initial drug
doses. It is especially interesting to consider the time at which maximal body response
takes place and to try and discover its dependence on the amount of drugs administered.

The basic model described above, which we will consider further in this paper, is a very
simple one. More recently, variations on this model have been developed. They include a
feed back mechanism. We mention two of them:
I. {

dR
dt = kinH − koutM

dM
dt = ktolR− ktolM

Here ktol denotes the tolerance development [1], while the effect function H can work on
kin, kout or ktol. The function R is counter-regulated by the moderator function M . It is
clear that this system - under influence of the effect function H - will go to an equilibrium
state as R decreases for increasing M and increases for decreasing M , while M increases
for increasing R and decreases for decreasing R. The function M thus keeps the process
close to its equilibrium state, which it will reach eventually. As the function H influences
kin it has a stimulating action on the production of response. The model is developed to
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describe the body response on the hormone adrenocorticotropin (ACTH), with the goal
to obtain a dose-response-time dataset displaying feedback regulation at constant drug
exposure.
II. {

dT
dt = kin − koutTX−γ

dX
dt = a{TSP − T}.

Here T denotes the temperature, which is considered as an indirect response and X de-
notes the thermostat signal [2]. The model describes the effect of 5 −HT1A agonists on
body temperature. As the agonist binds to its receptor, a stimulus is generated. This
stimulus causes certain physiological processes that lower the body temperature. During
the process, the body temperature is compared to a set-point temperature TSP which
depends on the drug concentration c:

TSP = T0[1− f(c)],

where T0 denotes the set-point value in the absence of any drug. The function

f(c) =
Smaxcn

cn
50 + cn

,

with Smax the maximal stimulus the drug can produce, c the drug concentration, cn
50 the

concentration required to produce 50 % of the maximal stimulus, and n a slope vector de-
termining the steepness of the curve, corresponds with our function H(c) and describes the
stimulus, determined by the interaction between the drug and the receptor. The change in
the thermostat signal X is driven by the difference between this set-point temperature TSP

and the body temperature T . When the set-point value is lowered, the body temperature
becomes too high and X is lowered. As body temperature and set-point temperature are
interdependent, a feedback loop is created causing oscillatory behaviour. Under certain
conditions damped oscillations around the equilibrium point occur; for a relatively large
stimulus however no such things take place. It turns out that for a maximal stimulus Smax

close or equal to zero there are no oscillations, while for Smax between 0 and 1 there are.

In this paper we will consider the basic model. In our analysis our main focus will be
on the relation between the time at which the peak in the body response occurs and
the initial dose of the drug. This kind of mathematical modeling is called Modeling of
Dose-Response-Time Data and the model is often referred to as the Turnover Model.

We will consider two different cases of the Turnover model. In the first model the function
H is in the first term, while in the second model the function H is in the second term. In
other words, in the first model H acts as a stimulation, while in the second model H acts
in an eliminating function.
Furthermore we will consider two different forms of the function H: in Chapter 4 we will
discuss a linear one, while in Chapter 5 we will discuss a logistic one. If H(c) is linear, the
effect is linearly dependent on the concentration, what means it increases and decreases
with the amount of drugs in the body. This means the effect function H(c) is unbounded;
the effect thus is unlimited.
In Chapter 5 we discuss a non-linear version of H(c). Especially the lack of a bound of the
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Figuur 1: Linear and nonlinear function H(c).

effect for the linear function is not realistic. It is far more logic to assume that for increasing
concentration the effect will reach a limit. Therefore we choose a logistic function for H(c).
Then the effect will change rapidly with the initial increase of concentration, but for larger
concentrations it will reach its limit.

We will thus discuss two models with two different functions H(c) each, what means that
altogether we consider four different cases, all this to facilitate the comparison of the ex-
perimental data with the model. For example: does it take more time until the body
response is maximal if the initial dose is increased or does this depend on other circum-
stances as well? This is an important question and we hope that we will be able to answer
it after the construction and examination of the four models which we will introduce in the
following chapters. At the end of the paper we hope to be able to make clear statements
about the existence and uniqueness of a time at which the response is maximal, as well as
the dependence of this time on the initial dose.
The main question however we will discuss in this paper concerns the time at which a
possible maximum in the body response takes place. Therefore we define

Rmax = sup{R(t) : t ≥ 0}.
Rmax will be achieved at some positive time Tmax. For H(c) a monotonous function we
will find that Tmax exists and is unique. We will try and find out whether this function
Tmax(D), with D the initial drug dose, is an increasing or decreasing function.
Where possible we will answer this question in an analytic way - sometimes for all D,
sometimes only for very small and very large values of D. Where needed we will use
numerical computations and plots as well.
Only in one case - H stimulating and linear - we will find that Tmax does not depend on
the initial dose D and we will be able to determine Tmax explicitly.
For the three other cases - H(c) linear and eliminating, H(c) logistic and stimulating and
H(c) logistic and eliminating - we will find that the peaktime Tmax does depend on the
initial dose D and that for very small as for very large initial doses D we have dTmax

dD > 0,
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Figuur 2: In this figure the two functions H(c(t)) = 1 + αc(t) and H(c(t)) = 1 + α c(t)
1+c(t) ,

where c(t) = De−t with which we will work troughout this paper, are plotted for constant
α = 0.3 and initial dose D = 10. Notice that the difference between the two versions
of H(c) at the beginning is quite large: the one corresponding to the Hill function stays
much closer to 1 than the linear version of H. For larger values of t however, they are
not far apart. If we consider the asymptotic behaviour of both functions, we see that for
very small values of t the linear version goes to 1 + αD, while the non-linear one goes to
1 + α D

1+D ; for very large values of t both versions of H(c) go to 1.

what suggests that the peaktime Tmax will increase for increasing dose D. Unfortunately
we will not be able to prove analyticly that dTmax

dD > 0 for all initial doses D, or in other
words that the peaktime Tmax increases for increasing initial dose D. The numerical
results however suggest that this indeed is the case.
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2 Development of the model

We develop the model in two steps. First we give a model for the time course of the
concentration of the drug in the blood, and then we model the response of the body.

2.1 Concentration of the drug in the blood

Let us start with the development of the model by considering the concentration of the
drug in the blood. Time will be denoted by t and the concentration by c(t). We can
assume that right after the administration of the drug its concentration in the blood is
known and we denote it by D. Furthermore the concentration will change in time with a ra-
te proportionate to the drug concentration in the blood. This yields the following relation:

dc

dt
= −kc and c(0) = D, (2.1)

in which k is a proportionality constant. We set t = 0 at the end of the administration of
the drug. The dose in the blood at that time is equal to D. Solving Problem (2.1) we obtain

c(t) = De−kt, t ≥ 0. (2.2)

Figuur 3: In the first plot we see the concentration c(t) = De−kt of the drug in the blood
versus the time t for initial dose D = 4, and constant k = 1. In the second plot the
logarithm of the concentration is plotted versus the time t.

It follows that the drug concentration in the blood c(t) decreases monotonously with time.

If at a later stage we would like to refine this model, it is possible to consider the function
of the liver for example, which absorbs part of the drug. We then have the following si-
tuation: after the administration of the drug into the body its concentration in the blood
is denoted by c1(t). In the first model we only needed to consider the elimination of the
drug with constant k. In this case however we have to deal with the liver as well, the
drug concentration in which we will be denote by c2(t). The change in drug concentration
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in the blood caused by the transportation of the drug from the blood into the liver is
described by the constant k2, the change in drug concentration in the blood caused by
the transportation the other way round, from the liver into the blood, is described by the
constant k2 as well, as we can assume that these constants are equal. The elimination of
the drug is decribed by the constant k1. This leads to the following model:

{
dc1
dt = −k1c1 − k2c1 + k2c2
dc2
dt = k2c1 − k2c2.

The model describing this situation is called the two compartments model. Solving this
differential equation we obtain

φ(t) = av1e
λ1t + bv2e

λ2t,

where

φ(t) =
(

c1(t)
c2(t)

)
,

λ1 = −1
2k1 − k2 + 1

2

√
k2

1 + 4k2
2 and λ2 = −1

2k1 − k2 − 1
2

√
k2

1 + 4k2
2 the eigenvalues of the

matrix

A =
( −k1 − k2 k2

k2 −k2

)
,

v1 and v2 the corresponding eigenvectors and constants a and b that satisfy

av1 + bv2 =
(

D
0

)
.

For k1 = 3 and k2 = 2 for example the solution becomes
{

c1(t) = 1
5De−t + 4

5De−6t

c2(t) = 2
5De−t − 2

5De−6t.

In this paper however we will restrict ourselves to the less complicated one compartment
model.

2.2 Response of the body

We start with the basic indirect response model of Dayneka, Garg and Jusko [4], which
describes the response R(t) by means of the equation

dR

dt
= kin − koutR. (2.3)

In equilibrium, this yields the response

R0 =
kin

kout
.
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Figuur 4: Plot of the two compartment model for the drug concentration in the blood.
Here c1(t) and c2(t) are plotted for k1 = 3 and k2 = 2. The behaviour of c1(t) is not
very different from that of c(t) in the one compartment model. The decay of the drug
in the blood is exponential. From the plot of c2(t) becomes quite clear that at first the
drug concentration in the liver increases largely until it is equal to the drug concentration
in the blood. Then, after a small peak it decreases more slowly then the concentration
in the blood. After quite some time, there is no substantial difference between the drug
concentration in the blood and that in the liver: both are almost reduced to zero.
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However this leaves us with the mechanisms which cause the return of the response to
the initial state. Let us introduce the function H for this purpose. It is obvious that
at t = 0 there is no stimulus, so H(0) = 1. Furthermore the function H(c) can be of
influence during the stimulation process, or during the elimination. For the model this
means that in the first case H influences kin and in the second case the function influences
kout. Therefore it is necessary to rewrite Problem (2.3) into two new problems:

dR

dt
= kinH(c)− koutR, R(0) = R0 (2.4)

and

dR

dt
= kin − koutH(c)R, R(0) = R0. (2.5)

From now on Problem (2.4) will be considered in the section Stimulation of the following
chapters and Problem (2.5) in the section Elimination.
Now we need to consider the function H in itself. Obviously H depends on the drug
concentration c(t) and is equal to 1 when the drug concentration is zero. A logical choice
for H thus are the two functions H+ and H−:

H+(c) = 1 + h(c) (2.6)

in case H is of influence during the admission of the drug, and

H−(c) = 1− h(c) (2.7)

in case H is of influence during its elimination, where h(c) is a function of the drug con-
centration c.
In a first attempt to model the problem we take h(c) as simple as possible:

h(c) = αc, with α ∈ (0, 1) a constant.

Refining the model at a second stage we consider the effect of the drug on the receptor
and we choose a function h(c) that is of a form very common in biopharmeceutical ana-
lysis: it is usual to postulate the so-called Hill function to describe the stimulus of the drug:

S(c) = Smax
cn

cn
50 + cn

in which Smax denotes the maximal value of S(c), c50 the value of c for which S(c) adopts
half of its maximal value and n is a slope factor, which determines the steepness of the
curve. These constants are used to fit the function in a specific model. In our case we fit
the Hill function taking n = 1:

h(c) = α
c

1 + c
.
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2.3 Rescaling

To make the Problems (2.4) and (2.5) a little less complicated, we need to rescale the
functions and variables. Notice that there are two time scales involved in the problem:
(a) from the concentration c(t) = De−kt we deduce that the decay rate of the drug is 1

k ,
(b) from equation (2.3) we deduce that the decay rate of the response term is 1

kout
.

This means there are two possible choices for the rescaling: t∗ = kt and t∗ = koutt. We
choose the first and start by denoting the equilibrium value of R, when c = 0, by R0, i.e.

R0 =
kin

kout
.

We then introduce the dimensionless variables

t∗ = kt, R∗ =
R

R0
,

kout

k
= B.

Here we assume that B = O(1). If B is very large, then we should have chosen the other
possibility t∗ = koutt to prevent that the interesting behaviour of the solution R∗(t∗) all
takes place for very small t∗.
Substituting the new variables gives us

c(t) = De−kt = De−t∗ ,

and for Problem (2.4)

dR∗

dt∗
=

1
kR0

dR

dt
=

kin

kR0
H − kout

kR0
R =

kout

k
H −BR∗ = B(H −R∗).

For Problem (2.5) we obtain analogously

dR∗

dt
= B(1−HR∗). (2.8)

The system starts in the equilibrium state, i.e.

R(0) = R0.

Thus, in terms of the new variable R∗:

R∗(0) = 1. (2.9)

In the rest of the paper we will drop the asterisks when considering the function R∗(t∗).
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3 Basic Properties

In this chapter we will consider the solution R(t) of the two problems we have derived in
the previous chapter concerning
Stimulation:

(I) R′(t) = B{H+(c(t))−R(t)}, R(0) = 1 (3.1)

in case the concentration c(t) influences kin and
Elimination:

(II) R′(t) = B{1−H−(c(t))R(t)}, R(0) = 1 (3.2)

in case the concentration c(t) influences kout.
In both cases B is a positive constant. The functions H+ and H− are defined as follows:

H+(c) = 1 + h(c), and H−(c) = 1− h(c),

with h(c) a continuous function on [0,∞). Furthermore we introduce the following hypo-
theses:

H1: h(0) = 0 and h(c) > 0 for all c > 0.

H2: h′(c) > 0 for all c > 0.

We have assumed as well that
c(t) = De−t.

First of all we will consider the existence and the uniqueness of a solution R(t) for Problem
I and Problem II for all t > 0. Furthermore we will do some qualitative analysis regarding
the slope of the solution, with special attention for a possible maximum or minimum.

3.1 Stimulation

Theorem 3.1 Problem I has a unique solution R(t) attained for all t ≥ 0.

Proof. The differential equation can be written as

(eBtR(t))′ = eBtBH+(c).

Integrating this equation over (0, t) gives us

R(t) = e−Bt + Be−Bt

∫ t

0
eBsH+(c(s))ds. (3.3)

Lemma 3.1 Let R(t) be the solution of Problem I in which H+(c) satisfies hypothesis
H1. Then
(a) R(t) > 1 for all t > 0.
(b) R(t) → 1 as t →∞.
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Proof. (a) Let us define r(t) := R(t)− 1. Then consider the differential equation

r′(t) = B{h(c(t))− r(t)}

or
r′(t) + Br(t) = Bh(c(t)) > 0.

This yields
(eBtr(t))′ = eBtBh(c(t))

and by integration

eBtr(t) = B

∫ t

0
eBsh(c(s))ds > 0,

so for all t ∈ (0,∞)
r(t) > 0 ⇔ R(t) > 1.

(b) Write

R(t) = e−Bt + B

∫ t
0 eBsH+(c(s))ds

eBt
.

As

lim
t→∞

∫ t
0 eBsH+(c(s))ds

eBt
= lim

t→∞
eBtH+(c(t))

BeBt
=

1
B

we obtain the desired result.

As we have already explained earlier, our main interest regarding the first differential
equation goes out to the time Tmax at which the response R(t) reaches its maximum value:

R(Tmax) = Rmax = sup{R(t) : t > 0}.

Lemma 3.2 (a) If H1 holds, then there exists a time Tmax ∈ (0,∞) such that

R′(Tmax(D), D) = 0 and R′′(Tmax(D), D) ≤ 0.

(b) If H1 and H2 hold, then Tmax is unique.

Proof. (a) We know that R(0) = 1 and R′(0) = B{H(c(0))−R(0)} = Bh(D) > 0. As we
have seen in Lemma 3.1, R(∞) = 1 as well, so there has to be a maximum.

(b) Now let T be a critical point of R(t). Then

R′′(T ) = Bh′(c(T ))c′(T ) < 0

i.e. T has to be an isolated maximum. Therefore it has to be unique.
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3.2 Elimination

Theorem 3.2 Problem II has a unique solution R(t) for all t ≥ 0.

Proof. The differential equation can be written as

(eA(t)R(t))′ = BeA(t).

Integrating this equation over (0, t) gives us the solution

R(t) = e−A(t)

{
1 + B

∫ t

0
eA(s)ds

}
, (3.4)

with

A(t) =
∫ t

0
BH−(c(τ))dτ. (3.5)

Lemma 3.3 Let R(t) be the solution of Problem II in which H−(c) satisfies H1. Then
(a) R(t) > 1 for all t > 0,
(b) R(t) → 1 as t →∞.

Proof. (a) We know that R(0) = 1 and

R′(0) = B{1− (1− h(D))R(0)} = Bh(D) > 0

by H1. Hence R(t) > 0 for 0 < t < τ for some τ > 0. Now suppose that R(t) ≤ 1 for
t ≥ t∗ for some t∗ > 0. Then R(t∗) = 1 and R′(t∗) ≤ 0. However, the differential equation
gives us

R′(t∗) = B{1−H−(c(t∗))R(t∗)} = Bh(c(t∗)) > 0

by H1, which is a contradiction.

(b) Write

R(t) = e−A(t) + B

∫ t
0 eA(s)ds

eA(t)
.

As

lim
t→∞

∫ t
0 eA(s)ds

eA(t)
= lim

t→∞
eA(t)

BH−(c(t))eA(t)
=

1
B

,

we obtain

lim
t→∞R(t) = 1.

For this problem as well we are interested in Tmax, the time at which the response R(t)
reaches its maximum value, defined as before.
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Lemma 3.4 (a) If H1 holds, then there exists a time Tmax such that

R′(Tmax(D), D) = 0 and R′′(Tmax(D), D) ≤ 0.

(b) If H1 and H2 hold, then Tmax is unique.

Proof. (a) We know that R(0) = 1 and R(∞) = 1, while R′(0) > 0. This proves the
existence of Tmax. At t = Tmax the function R(t) has a maximum, so that R′′(Tmax) ≤ 0.

(b) We consider the isocline, the line along which R′(t) = 0:

Γ = {t > 0 : R(t) = R∗(t)},
where R∗(t) is given by the equation

H−(c(t))R∗(t) = 1

or

R∗(t) =
1

H−(c(t))
.

We know that Γ(0) > 1 and Γ(∞) = 1. Furthermore it follows from

d

dt
h(c(t)) = h′(c(t))c′(t) < 0

that Γ is a monotone decreasing function.
Now let us consider the two regions Ω− and Ω+ where Ω− is the region under Γ and Ω+

is the region above Γ. As R(0) = 1 the orbit starts in Ω− and increases until it reaches Γ,
so it has to intersect. Then it continues in Ω+, but by the vector field it cannot intersect
Γ a second time. Therefore Tmax is unique.
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4 Linear Function

In this chapter we will consider the situation in which

h(c) = αc, 0 < α < 1

for

H+(c) = 1 + h(c) and H−(c) = 1− h(c).

These functions will be implemented in equation (3.1) and (3.2) respectively.
We are especially interested in the behaviour of Tmax for varying initial doses D.

4.1 Problem I: Stimulation

We consider the problem

R′(t) = B{H+(c(t))−R(t)}, R(0) = 1, (4.1)

H+(c) = 1 + αc. (4.2)

Lemma 4.1 The solution of problem (4.1) is given by

R(t) =
{

1 + αBD
B−1 (e−t − e−Bt) for B 6= 1;

1 + αDte−t for B = 1.
(4.3)

Proof. We know from (3.3) that the general solution of this differential equation is given by

R(t) = e−Bt + Be−Bt

∫ t

0
eBsH+(c(s))ds.

By substituting expression (4.2) for H+ we obtain the desired solution.

In Chapter 3 we have already seen that Tmax is unique. However we would like to know
as well how it varies with the initial dose D. In Theorem 4.1 we will determine Tmax(D)
explicitly.

Theorem 4.1 Let B > 0 and α > 0 be fixed. Then for all D > 0

Tmax(D) =
{

1
B−1 log B for B 6= 1;
1 for B = 1.

(4.4)

Proof. We know from Lemma 4.1 that

R(t) =
{

1 + αBD
B−1 (e−t − e−Bt) for B 6= 1;

1 + αDte−t for B = 1.
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Figuur 5: Plot of the body response R versus the time t for different initial doses D and
constants α = 0.3 and B = 2 in case of stimulation and with a linear effect function H(c).
Notice that as D increases, the maximal body response increases as well, but it takes the
same time to reach this peak.

By differentiating R′(t) we obtain:

R′(t) =
{

αBD
B−1 {Be−Bt − e−t} for B 6= 1;
αDe−t(1− t) for B = 1.

Now by R′(Tmax) = 0 we find the desired solution for Tmax(D).

Notice that Tmax(D) does not depend on D.

4.2 Problem II: Elimination

We consider the problem

R′(t) = B {1−H−(c(t))R(t)} , R(0) = 1, (4.5)

H−(c) = 1− αc. (4.6)

Lemma 4.2 The solution of problem (4.4) is given by

R(t) = e−A(t){1 + B

∫ t

0
eA(s)ds}, (4.7)

with

A(t) = B
{
t + αD(e−t − 1)

}
. (4.8)
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Figuur 6: Here we see the function Tmax(D) for B = 2 in case of stimulation for H(c) a
linear function. Notice that Tmax obviously does not depend on the initial dose D.

Proof. We know from (3.4) and (3.5) that

R(t) = e−A(t)

{
1 + B

∫ t

0
eA(s)ds

}
,

with

A(t) =
∫ t

0
BH−(c(τ))dτ.

By substituting expression (4.6) for H− we obtain the desired solution.

Our primary focus is on the behaviour of Tmax, the time of maximal response, as the dose
D varies. In Theorem 4.2 we will discuss the behaviour as D is very small: D → 0; in
Theorem 4.3 we will discuss the behaviour as D is very large: D →∞.

Theorem 4.2 Let B > 0 and α ∈ (0, 1) be fixed. Then
(a)

lim
D→0

Tmax(D) =
{

1
B−1 log B for B 6= 1;
1 for B = 1.

(b)

lim
D→0

dTmax

dD
=





α
{
−B+2

B−2e−T0 + B
B−2

}
for B 6= 1, B 6= 2,

α
{

3
e − 1

}
for B = 1,

α
{
3− 2T0 − 3e−T0

}
= α

{
3
2 − 2 log 2

}
for B = 2,

with T0 = limD→0 Tmax(D), which means that

lim
D→0

dTmax

dD
> 0 for all B > 0.
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Figuur 7: Plot of the body response R versus the time t for different initial doses D and
constants B = 2 and α = 0.3 in case of elimination and H(c) a linear function. Notice
that as D increases, the maximal body response increases as well and it takes more time
to reach this peak.

Proof. We expand the solution R(t) into a power series of ε = αD:

R(t) = 1 + εr1 + ε2r2 +O(ε3).

The differential equation then becomes

εr′1(t) + ε2r′2(t) + · · · = B{1− (1− εe−t)}{1 + εr1(t) + ε2r2(t) + · · ·}
= B{ε(e−t − r1(t)) + ε2(e−tr1(t)− r2(t)) + · · ·}

Collecting coefficients of equal powers of ε and equating them to zero, we find that r1

satisfies

r′1 = −Br1 + Be−t, r1(0) = 0

and that r2 satisfies

r′2 = −Br2 + Be−tr1, r2(0) = 0.

Solving these equations we find

r1(t) =
{

B
B−1{e−t − e−Bt} for B 6= 1
te−t for B = 1.

(4.9)

and

r2(t) =





B2

(B−1)(B−2)e
−2t + B2

B−1e−(B+1)t − B2

B−2e−Bt for B 6= 1, B 6= 2,

e−t − (t + 1)e−2t for B = 1,
4(t− 1)e−2t + 4e−3t for B = 2.

(4.10)
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We also expand Tmax = Tε in a power series of ε:

Tε = T0 + εT1 + · · · .

Then, since R′(Tmax) = 0

r′1(T0 + εT1) + εr′2(T0) + · · · = 0.

Collecting equal powers of ε and equating them to zero, gives us
for the zeroth order term:

r′1(T0) = 0

and for the first order term:

r′′1(T0)T1 + r′2(T0) = 0.

This gives us for T0:

B

B − 1
{Be−BT0 − e−T0} = 0

and hence

T0(B) =
{

1
B−1 log(B) for B 6= 1,

1 for B = 1.

For T1 it follows that

T1(B) =




−B+2

B−2e−T0 + B
B−2 for B 6= 1, B 6= 2,

3
e − 1 for B = 1,
3− 2T0 − 3e−T0 = 3

2 − 2 log 2 for B = 2.

It follows from Figure 8 that T1(B) ≥ 0 for all B > 0.

Lemma 4.3 The function T0(B) is continuous on (0,∞).

Proof. The only possible discontinuity is B = 1. Now let us consider

lim
B→1

1
B − 1

log B.

As this results in a so-called 0
0 -limit we use l’Hôpital’s rule:

lim
B→1

1
B − 1

log B = lim
B→1

1
B

= 1.

This means that T0(B) is a continuous function.

Lemma 4.4 The function T1(B) is continuous on (0,∞).
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Figuur 8: From this plot it follows that T1(B) > 0 for all values of B > 0.

Proof. As T0(B) is continuous by Lemma 4.3, the only possible discontinuity is B = 2.
Therefore we examine

lim
B→2

T1(B) = lim
B→2

−(B + 2)e−T0 + B

B − 2
.

As both the numerator and the denominator go to zero for B → 2, we are allowed to use
l’Hôptal’s rule. This gives us

lim
B→2

T1(B) =
3
2
− 2 log 2.

Lemma 4.5 Let α ∈ (0, 1) and B > 0 be fixed. Then

Tmax(D) > log αD.

Proof. Consider the isocline

R∗(t) =
1

1− αDe−t
.

We notice that for t = log αD it has a singularity. Furthermore

R∗(t)
{

< 0 for t < log αD,
> 1 for t > log αD.

As we know that the solution R(t) > 1 for all t > 0, this means that R(t,D) crosses the
isocline R∗(t,D) at a point for which t = Tmax(D) > log αD.
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Figuur 9: Plot of Tmax(D) in case of elimination for H(c) a linear function.

Theorem 4.3 Let B > 0 and α ∈ (0, 1) be fixed. Then

lim
D→∞

Tmax(D)
log D

= 1.

Proof. From Lemma 4.5 we know that

Tmax(D) > log αD,

and hence

lim inf
D→∞

Tmax(D)
log D

> lim inf
D→∞

log α

log D
+ 1 ≥ 1.

Hence, we only need to prove that

lim sup
D→∞

Tmax(D)
log D

≤ 1.

Suppose that

lim sup
D→∞

Tmax(D)
log D

= k > 1. (4.11)

Then, as lim infD→∞
Tmax(D)

log D ≤ 1, for k′ ∈ (1, k) there exists a sequence {Di}, such that
Di →∞ as i →∞:

Tmax(Di) = k′ log Di, i = 1, 2, · · ·
In the rest of the proof D → ∞ will mean convergence along this sequence and we will
drop the prime of k′. For 0 < t < 1

2 log αD

H−(c(t)) = 1− αDe−t < 1− αDe−
1
2

log αD = 1−
√

αD.

Letting D →∞ we obtain

lim
D→∞

H−(c(Tmax(D))) = 1.
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We thus obtain

R′(t) = B{1−H−(c(t))R(t)} > B{1− (1−
√

αD)R(t)} for 0 < t <
1
2

log αD.

Define R̃(t) as the solution of the differential equation

R̃′(t) = B{1 + (
√

αD − 1)R̃(t)}, R̃(0) = 1.

From basic ODE theory we know that R(t) > R̃(t) for all 0 < t < 1
2 log αD. Solving the

differential equation for R̃(t), we obtain

R̃(t) =
{

1 +
1√

αD − 1

}
eB(

√
αD−1)t − 1√

αD − 1
.

Then

R(Tmax) = R(k log D) > R(
1
2

log D) > R(
1
2

log αD) > R̃(
1
2

log αD).

Letting D →∞ we notice that

R̃(
1
2

log αD) =
{

1 +
1√

αD − 1

}
eB(

√
αD−1) log αD − 1√

αD − 1
→∞.

This means that

R(Tmax(D), D) →∞ for D →∞.

It then follows that

R′(Tmax(D), D) = B[1−H−(c(Tmax))R(Tmax)] → −∞ for D →∞,

so that

lim
D→∞

R′(Tmax(D), D) < 0.

This contradicts the fact that R′(Tmax) = 0. Hence, (4.11) cannot hold, so that

lim sup
D→∞

Tmax(D)
log D

≤ 1.

Remark If we consider the behaviour of R(t,D) for very large values of D, we notice
that the time Tmax for the system to reach the maximal body response increases with D,
as well as the value of the peak R(Tmax) in body response. It turns out that there is no
limit for the value of this peak. This we can explain by considering the effect function
H(c) = 1 + αc, with c = De−t. For very large values of D, the effect function becomes
very large as well:

H(c(t,D)) →∞ as D →∞.

Therefore the value of the peak R(Tmax) is not limited.
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5 Logistic Function

In this chapter we will consider the situation in which

h(c) = α
c

1 + c
, 0 < α < 1

for

H+(c) = 1 + h(c) and H−(c) = 1− h(c).

These functions will be implemented in equation (3.1) and (3.2) respectively.

5.1 Problem I: Stimulation

We consider the problem

R′(t) = B{H+(c(t))−R(t)}, R(0) = 1, (5.1)

H+(c) = 1 + α
c

1 + c
. (5.2)

Lemma 5.1 The solution of problem (5.1) is given by

R(t) = 1 + αBDe−Bt

∫ t

0

e(B−1)s

1 + De−s
ds. (5.3)

Proof. We know from (3.3) that

R(t) = e−Bt + Be−Bt

∫ t

0
eBsH+(c(s))ds.

By substituting expression (5.2) for H+(c(t)) we obtain the desired solution.

As in Chapter 4, the primary focus is on the behaviour of Tmax, the time of maximal
response, as the dose D varies. In Theorem 5.1 we will discuss the behaviour as D is very
small: D → 0; in Theorem 5.2 we will discuss the behaviour as D is very large: D →∞.
For both cases we will use analytic methods. Numerical methods will be used for values
of D in between. In Figure 13 we have plotted the function Tmax(D) for various values of
B and we did not notice any relevant change for different values of B.

Theorem 5.1 Let B > 0 and α > 0 be fixed. Then
(a)

lim
D→0

Tmax(D) =
{

1
B−1 log B for B 6= 1;
1 for B = 1.
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Figuur 10: Plot of the body response R versus time t for different initial doses D and
constants α = 0.9 and B = 2 in case of stimulation for H(c) a logistic function. Notice
that for increasing values of D it takes more time until the maximal response is achieved
and the peak in the response increases.

(b)

lim
D→0

dTmax

dD
=

{
1

B−2{2e−T0 − 1} for B 6= 2;
log 2− 1

2 for B = 2,

with T0 = limD→0 Tmax(D), what means that

lim
D→0

dTmax

dD
≥ 0 for all B > 0.

Proof. We expand the solution R(t,D) into a power series of D:

R(t,D) = 1 + Dr1(t) + D2r2(t) + · · ·
The differential equation then becomes:

Dr′1(t) + D2r′2(t) + · · · = B

{
α

De−t

1 + De−t
−Dr1(t)−D2r2(t) + · · ·

}
.

Collecting coefficients of equal powers of D and equating them to zero we find that r1

satisfies

r′1(t) + Br1(t) = αBe−t, r1(0) = 0

and that r2 satisfies

r′2(t) + Br2(t) = αBe−2t, r2(0) = 0.
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Solving these equations we find

r1(t) =
{

αB
B−1{e−t − e−Bt} for B 6= 1;
αte−t for B = 1

(5.4)

and

r2(t) =
{

αB
B−2{e−2t − e−Bt} for B 6= 2;
2αte−2t for B = 2.

(5.5)

We also expand Tmax(D) = TD in a series of powers of D:

TD = T0 + DT1 + · · · .
Then, since R′(Tmax) = 0,

r′1(T0 + DT1) + Dr′2(T0) + · · · = 0.

Collecting equal powers of D and equating them to zero, gives us
for the zeroth order term:

r′1(T0) = 0

and for the first order term:

r′′1(T0)T1 + r′2(T0) = 0.

The first equality gives us
{

αB
B−1{Be−BT0 − e−T0} = 0 for B 6= 1,

αe−T0(1− T0) = 0 for B = 1.

Hence we obtain

T0(B) =
{

1
B−1 log(B) for B 6= 1;
1 for B = 1.

The O(D) term yields

T1 = − r′2(T0)
r′′1(T0)

,

so it follows that

T1(B) =
{

1
B−2{2e−T0 − 1} for B 6= 2;
log 2− 1

2 for B = 2.

In Figure 11 we show that T1(B) > 0 for all B > 0.
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Figuur 11: Plot of T1(B) in case of stimulation for H(c) a logistic function. It follows that
T1(B) ≥ 0 for all values of B > 0.

Lemma 5.2 The function T1(B) is continuous on (0,∞).

As we have seen in the Lemma 4.3 the function T0(B) is continuous. This means that the
only possible discontinuity of T1(B) can occur at B = 2. Now let us consider

lim
B→2

1
B − 2

{2e−T0 − 1}.

We notice that this forms a so-called 0
0 -limit, so we are allowed to use l’Hôpital’s rule:

lim
B→2

2e
log(B)
1−B − 1
B − 2

= lim
B→2

2
{

1
B(1−B)

+
log(B)

(1−B)2

}
e

log(B)
1−B = log 2− 1

2
.

Remark If we compare these results with the linear case we have seen in Chapter 4, we
notice that the function T0(B) is the same in both cases, but the function T1(B) is not.

This completes the analysis of the behaviour of Tmax for small doses D.

We will now continue by discussing the limiting behaviour of the solution R(t,D) for large
values of D and we will try and find the asymptotics of Tmax for large D as well.

Lemma 5.3 We have

R(t,D) → 1 + α(1− e−Bt) as D →∞
uniformly on bounded intervals [0, t0].

Proof. We know from Lemma 5.1 that

R(t) = 1 + αBDe−Bt

∫ t

0

De(B−1)s

1 + De−s
ds.
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Taking the limit for D →∞ we obtain

lim
D→∞

R(t) = 1 + αBe−Bt lim
D→∞

∫ t

0

De(B−1)s

1 + De−s
ds = 1 + αBe−Bt lim

D→∞

∫ t

0

e(B−1)s

e−s + 1
D

ds.

Because of uniform convergence we can interchange the limit and the integration sign,
what gives us

1 + αBe−Bt

∫ t

0
lim

D→∞
e(B−1)s

e−s + 1
D

ds = 1 + αBe−Bt

∫ t

0
eBsds

= 1 + α(1− e−Bt).

Corollary 5.1 We have

Tmax(D) →∞ as D →∞ (5.6)

for all B > 0, α ∈ (0, 1).

Proof. We have

R′(t) = B

{
1 +

αDe−t

1 + De−t
−R(t)

}
= B

{
1 + α

e−t

e−t + 1
D

−R(t)

}
.

Letting D →∞ this becomes

B{1 + α− 1− α + αe−Bt} = Bαe−Bt > 0 for all 0 < t < t0, t0 < ∞.

This implies that

Tmax(D) →∞ as D →∞.

Notice that in the integral in the expression for R(t) we find the term De−s. In search of
new variables to facilitate our calculations we consider this term more closely:

De−s = e−selog D = elog D−s.

Therefore it would not be a strange idea to write

t = log D + τ

and

Tmax(D) = log(D) + τmax(D).
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Lemma 5.4 Write R(t,D) = R∗(τ,D). Then

R∗(τ, D) → φ(τ) as D →∞
uniformly on bounded intervals [−M, M ], with

φ(τ) = 1 + αBe−Bτ

∫ τ

−∞

e(B−1)σ

1 + e−σ
dσ

a strictly decreasing function such that

φ(−∞) = 1 + α and φ(+∞) = 1.

Proof. Let us start with substituting t = log(D) + τ . We then obtain

c = De−t = e−t+log(D) = e−τ ,

H(c(τ)) = 1 + α
e−τ

1 + e−τ
.

As

R(t,D) = e−Bt + Be−Bt

∫ t

0
eBsH+(c(s))ds,

R∗(τ, D) becomes

R∗(τ, D) = D−Be−Bτ + BD−Be−Bτ

∫ τ

− log(D)
DBeBσ

{
1 + α

e−σ

1 + e−σ

}
dσ

= D−Be−Bτ + 1 + αBe−Bτ

∫ τ

− log(D)

e(B−1)σ

1 + e−σ
dσ.

Then

lim
D→∞

R∗(τ, D) = φ(τ).

Letting τ → −∞ we obtain

φ(−∞) = lim
τ→−∞ 1 + αBe−Bτ

∫ τ

−∞
eBσdσ = 1 + α.

Letting τ →∞ we obtain

φ(∞) = lim
τ→∞ 1 + αBe−Bτ

∫ τ

−∞
e(B−1)σdσ = 1.

Corollary 5.2 We have

τmax(D) → −∞ as D →∞. (5.7)
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Figuur 12: Behaviour of R(t) for increasing values of D in case of stimulation for H(c) a
logistic function.

Remark From (5.7) we readily see that

εeTmax = eTmax−log(D) = eτmax → 0 as D →∞.

Remark In Figure 10 we already noticed that for increasing values of D the time Tmax for
the body response R(t,D) to reach its peak increases as well. In Figure 12 we have plotted
the graph of R(t,D) for very large values of D. We can see that Tmax increases with D
and that the value of the body response at the peak R(Tmax(D), D) increases as well, but
not unlimited. This can be explained by considering the effect function H(c) = 1 + α c

1+c
with c = De−t. For vary large values of D the effect function is limited:

lim
D→∞

H(c(t,D)) = lim
D→∞

1 + α
De−t

1 + De−t
= 1 + α.

Hence, the value of the maximal response R(Tmax(D), D) is limited as well. We see that
for D very large the function R(t,D) forms a wave. The function φ(τ) from Lemma 5.4
describes this wave.

Lemma 5.5 Let B > 0 and α > 0 be fixed. Then for all D > 0

lim
D→∞

Tmax(D)
log D

=
1

B + 1
.

Proof. We know that for the peaktime Tmax(D)

R(Tmax) = H(c(Tmax)).

This means that

1 + αBDe−BTmax

∫ Tmax

0

e(B−1)s

1 + De−s
ds = 1 + α

De−Tmax

1 + De−Tmax
,
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or

e−BTmax

∫ Tmax

0

e(B−1)s

1 + De−s
ds =

1
B

e−Tmax

1 + De−Tmax
.

Using the subsitution x = εes, y = εeTmax with ε = 1
D we obtain

y−B

∫ y

ε

xB−1

1 + x
dx =

1
B

1
1 + y

,

or
∫ y

ε

xB−1

1 + x
dx =

1
B

yB

1 + y
.

Recall that

1
1 + z

= 1− z + z2 − z3 + · · · for |z| < 1.

Our equality then becomes

1
B
{yB − εB} − 1

B + 1
{yB+1 − εB+1}+ · · · = 1

B
{yB − yB+1 + · · ·},

or

yB+1 = (B + 1)εB + · · ·
what means that

y(ε) ∼ (B + 1)
1

B+1 ε
B

B+1 as ε → 0.

Now returning to our initial variables it follows that

Tmax(D) =
1

B + 1
log(D) for D →∞.

Remark The velocity of the wave we saw in Figure 12 is equal to 1
B+1 .

5.2 Problem II: Elimination

We consider the problem

R′(t) = B {1−H−(c(t))R(t)} , R(0) = 1, (5.8)

H−(c) = 1− α
c

1 + c
0 < α < 1. (5.9)
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Figuur 13: Plot of Tmax(D) in case of stimulation for H(c) a logistic function, α = 0.3,
B = 2. Notice that it is quite clear that dTmax

dD > 0 for all values of D > 0.

Lemma 5.6 The solution of Problem (5.6) is given by

R(t) = e−A(t)

{
1 + B

∫ t

0
eA(s)ds

}
, (5.10)

with

A(t) = Bt− αB

∫ t

0

De−s

1 + De−s
ds. (5.11)

Proof. We know from (3.4) and (3.5) that

R(t) = e−A(t)

{
1 + B

∫ t

0
eA(s)ds

}
,

with

A(t) =
∫ t

0
BH−(c(τ))dτ.

By substituting the expression (5.9) for H−(c) into (5.8) we obtain the desired solution.

Again our primary focus is on the behaviour of Tmax, the time of maximal response, as
the dose D varies. We will start by discussing the behaviour of Tmax as D is very small
in Theorem 5.3: D → 0; in Theorem 5.4 we will then discuss the behaviour as D is very
large: D →∞. For both cases we will use analtic methods for the asymptotic behaviour
and numeric methods for finite values of D. The plots included in this paper are all for
one value of B, but we have seen in our research that for varying values of B there are no
significant changes in the graph of Tmax(D).
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Figuur 14: Body response R(t) for different initial doses D in case of elimination for H(c)
a logistic function. Notice that for increasing values of D the peak in the body response
increases as well, and it takes more time for the system to reach this peak.

Theorem 5.2 Let B > 0 and α > 0 be fixed. Then
(a)

lim
D→0

Tmax(D) =
{

1
B−1 log B for B 6= 1,

1 for B = 1.

(b)

lim
D→0

dTmax

dD
=





α{B−1
B−2 − B

B−2e−T0} for B 6= 1, B 6= 2,
α
e for B = 1,
α(1− log 2)) for B = 2,

with T0 = limD→∞ Tmax(D), what means that

lim
D→0

dTmax

dD
> 0 for all B > 0.

Proof. We start by using the power series of ex to expand H−:

H(c(t)) = 1− αDe−t + αD2e−2t + · · ·
Next we expand R(t,D) into a power series of D:

R(t,D) = 1 + Dr1(t) + D2r2(t) + · · ·
Substituting this into the differential equation gives us

Dr′1(t) + D2r′2(t) + · · · = B{1− (1−αDe−t + αD2e−2t + · · ·)[1 + Dr1(t) + D2r2(t) + · · ·]}.
Collecting coefficients of equal powers of D and equating them to zero we find that r1

satisfies

r′1 + Br1 = αBe−t, r1(0) = 0
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and r2 satisfies

r′2 + Br2 = αBe−tr1 − αBe−2t, r2(0) = 0.

Solving these equations we find

r1(t) =
{

αB
B−1{e−t − e−Bt} for B 6= 1,

αte−t for B = 1.
(5.12)

and

r2(t) =





α2B
(B−1)(B−2)e

−2t − α2B(B−1)
B−2 e−Bt + α2B2

B−1 e−(B+1)t for B 6= 1, B 6= 2,

−α2te−2t for B = 1,
2α2te−2t + 4α2e−3t − 4α2e−2t for B = 2.

(5.13)

We also expand Tmax(D) = TD in a series of powers of D. Then, since R′(Tmax) = 0,

Dr1(TD) + D2r′2(TD) + · · · = 0,

or

r′1(T0) = 0, and r′1(T0 + DT1) + Dr′2(T0) = 0.

The first equality gives us

α

B − 1
{Be−BT0 − e−T0} = 0 for B 6= 1

and

αe−T0(1− T0) = 0 for B = 1.

This yields

T0(B) =
{

1
B−1 log(B) for B 6= 1,

1 for B = 1.

For the second equality we have

T1 = − r′2(T0)
r′′1(T0)

,

so we obtain

T1(B) =





α
{

B−1
B−2 − B

B−2e−T0

}
for B 6= 1, B 6= 2,

α
e for B = 1,
α(1− log 2)) for B = 2.

From figure 15 we see that T1 ≥ 0 for all B > 0 for all values of B.
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Figuur 15: Plot of T1(B) in case of elimination for H(c) a logistic function. We can see
clearly that for all values of B > 0 we have T1(B) ≥ 0. Furthermore limB→∞ T1(B) =
α limB→∞

{
B−1
B−2 − B

B−2e−T0(B)
}

= α(1− e0) = 0.

Lemma 5.7 The function T1(B) is continuous on (0,∞).

Proof. As T0 is a continuous function, it follows that the only possible discontinuity is at
B = 2. Now let us consider

lim
B→2

{
B − 1
B − 2

− B

B − 2
e−T0

}
.

Notice that this is a so-called 0
0 -limit, so we are allowed to use l’Hôpital’s rule:

lim
B→2

{
B − 1
B − 2

− B

B − 2
e−T0

}
= lim

B→2

{
1− e

log(B)
1−B

{
1 + B

{
log(B)

(1−B)2
+

1
B(1−B)

}}}

= 1− log 2.

Hence

lim
B→2

T1(B) = α(1− log 2).

Remark Again the function T0(B) is the same as in sections 4.2 and 5.1, but T1(B) is
not.

Lemma 5.8 We have

R(t) → 1
1− α

{
1− αe−(1−α)Bt

}
as D →∞

uniformly on bounded intervals [0, t0].
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Proof. We know from (3.4) and (3.5) that

R(t) = e−A(t){1 + B

∫ t

0
eA(s)ds},

with

A(t) = Bt− αB

∫ t

0

De−s

1 + De−s
ds.

Taking the limit for D →∞ we obtain

lim
D→∞

A(t) = (1− α)Bt

and

lim
D→∞

R(t) = e−(1−α)Bt

{
1 + B lim

D→∞

∫ t

0
e(1−α)Bsds

}

= e−(1−α)Bt

{
1 +

1
1− α

(e(1−α)Bt − 1)
}

.

This gives us the desired result.

Corollary 5.3 We have

Tmax(D) →∞ as D →∞ (5.14)

for all B > 0, α ∈ (0, 1).

Proof. We have

R′(t) = B

{
1−

{
1− α

De−t

1 + De−t

}
R(t)

}
= B

{
1−

{
1− α

e−t

e−t + 1
D

}
R(t)

}
.

Letting D →∞ this becomes

B

{
1− (1− α)

1
1− α

(1− αe−(1−α)Bt)
}

= αBe−(1−α)Bt > 0.

This yields that

Tmax(D) →∞ as D →∞.

As in section 5.1 we write t = log D + τ and Tmax(D) = log(D) + τmax(D).
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Lemma 5.9 Write R(t) = R∗(τ). Then

R∗(τ) → φ(τ) as D →∞
uniformly on bounded intervals [−M, M ], with

φ(τ) =
Be−Bτ

(1 + e−τ )αB

∫ τ

−∞
eBσ(1 + e−σ)αBdσ

a strictly decreasing function so that

φ(−∞) =
1

1− α
and φ(+∞) = 1

.

Proof. Let us start with substituting t = log(D) + τ . We then obtain

c(t) = De−t = e−t+log(D) = e−τ ,

H = 1− α
e−τ

1 + e−τ

and

A(t) = B

∫ t

0
ds + αB

∫ t

0
h(c(s))ds = Bt− αB

∫ τ

− log(D)

e−σ

1 + e−σ
dσ

= B(τ + log(D)) + αB log(1 + e−τ )− αB log(1 + D).

This gives us

R∗(τ, D) = D−Be−Bτ

{
1 + D

1 + e−τ

}αB
{

1 + B

∫ τ

− log D
DBeBσ

{
1 + e−σ

1 + D

}αB

dσ

}
.

Then

lim
D→∞

R∗(τ, D) = φ(τ).

Letting τ → −∞ we obtain

φ(−∞) = lim
τ→−∞Be−(1−α)Bτ

∫ τ

−∞
e(1−α)Bσdσ =

1
1− α

.

Letting τ →∞ we obtain

φ(∞) = lim
τ→∞Be−Bτ

∫ τ

−∞
eBσdσ = Be−Bτ{ 1

B
eBτ} = 1.

Remark In Figure 16 we plotted some graphs of R(t,D) for large values of D and we
notice that they form a wave. The function φ(τ) describes this wave. For increasing values
of D the values of the peak R(Tmax(D), D) increase as well, just like the time Tmax at
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Figuur 16: Plot of the body response R(t) for large values of D in case of elimination for
H(c) a logistic function.

which it is achieved. However, for D →∞ the value of the peak seems to be limited. This
is caused by the effect function H(c) which is limited itself:

lim
D→∞

H(c(t,D)) = lim
D→∞

1− α
De−t

1 + De−t
= 1− α.

This explains the asymptotic behaviour of R(Tmax(D), D) for D →∞.

Corollary 5.4 We have

τmax(D) → −∞ as D →∞. (5.15)

Remark From (5.15) we ready see that

εeTmax = eTmax−log D = eτmax → 0 as D →∞.

Lemma 5.10 Let B > 0 and α ∈ (0, 1) be fixed. Then

lim
D→∞

Tmax(D)
log D

= γ

with

γ =
1

1 + B(1− α)
.

Proof. From (3.4) and (3.5) we know that

R(t,D) = e−A(t)

{
1 + B

∫ t

0
eA(s)ds

}
,

38



with

A(t) = Bt− αB

∫ t

0

De−s

1 + De−s
ds.

Writing D = 1
ε we obtain

A(t) = Bt− αB

∫ t

0

ds

1 + εes
.

Let us then introduce the substitution y = εet, x = εes. This gives us

A(t) = Bt− αB

∫ y

ε

dx

x(1 + x)
= Bt + αB

{
log

(1 + y

y

)
− log

(1 + ε

ε

)}
.

Hence,

eA(t) = ε−ByB
(1 + y

y

αB)(1 + ε

ε

)−αB

= yB(1−α)(1 + y)αBε−B(1−α)(1 + ε)−αB.

Furthermore, at t = Tmax we have

R(Tmax) =
1

H(c(Tmax))
.

As

H(c(t)) = 1− α
De−t

1 + De−t
= 1− α

1
1 + y

=
1− α + y

1 + y
,

this means

R(Tmax) =
1 + y

1− α + y
,

for y = y(Tmax), or

eA(t)R(Tmax) = eA(t) 1 + y

1− α + y
.

Using the expression for eA(t) we found earlier, this equality becomes

1 + F0(y)ε−B(1−α)(1 + ε)−αB = G(y)ε−B(1−α)(1 + ε)−αB,

with

G(y) =
yB(1−α)(1 + y)αB+1

1− α + y

and

F0(y) = B

∫ y

ε
xB(1−α)−1(1 + x)αBdx.
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This gives us

F (y) = F0(y) + ψ(ε) = G(y), (5.16)

with

ψ(ε) = εB(1−α)(1 + ε)αB.

Using Newton’s Binomial Theorem we can write G(y) as

G(y) = yB(1−α)(1 + (αB + 1)y + · · ·) 1

(1− α)
(
1 + y

1−α

) .

Recall that

1
1 + z

= 1− z + z2 − z3 + · · · for |z| < 1.

G(y) then becomes

G(y) =
1

1− α
yB(1−α)(1 + (αB + 1)y + · · ·)

{
1− y

1− α
+ · · ·

}

=
1

1− α
yB(1−α)

{
1 +

(
αB − α

1− α

)
y + · · ·

}
.

Analogously we can rewrite F0(y):

F0(y) = B

∫ y

ε
xB(1−α)−1(1 + x)αBdx = B

∫ y

ε
xB(1−α)−1(1 + αBx + · · ·)dx

=
1

1− α
{yB(1−α) − εB(1−α)}+

αB2

B(1− α) + 1
{yB(1−α)+1 − εB(1−α)+1}.

Hence, (5.16) becomes

α

1− α

{
B − 1

1− α

}
yB(1−α)+1 =

αB2

B(1− α) + 1
yB(1−α)+1 − α

1− α
εB(1−α) + h.o.t.,

where h.o.t. means terms of O(yB(1−α)+2) and O(εB(1−α)+1). Then
{

αB − α2B − α

(1− α)2
− αB2

B(1− α) + 1

}
yB(1−α)+1 = − α

1− α
εB(1−α) + h.o.t.

or

yB(1−α)+1 = {B(1− α)2 + 1− α}εB(1−α) + h.o.t. ≈ KεB(1−α).

This means that

εeTmax = y ∼ K
1

B(1−α)+1 ε
B(1−α)

B(1−α)+1 ,
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Figuur 17: Plot of Tmax(D) for α = 0.3, B = 2 in case of elimination for H(c) a logistic
function. It becomes quite clear from this picture that dTmax

dD > 0 for all values of D > 0.

such that

eTmax ∼ Cε−γ ,

for

C = {B(1− α)2 + 1− α} 1
B(1−α)+1

and

γ =
B(1− α)

B(1− α) + 1
− 1 =

1
B(1− α) + 1

.

Then

Tmax ∼ −γ log ε = γ log D.

Remark The constant γ is the velocity of the wave in Figure 16.
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6 Conclusion

In this paper we have considered the so-called Turnover model, in our case defined by the
problems

dR

dt
= kinH(c)− koutR, R(0) = R0

and
dR

dt
= kin − koutH(c)R, R(0) = R0,

where the effect function H(c) thus either works as a stimulus or influences the elimina-
tion. In the previous chapters we have studied two possible functions H(c), the first one
simple and linear, the second one based on the Hill-function. In case of stimulation we
took H(c) = 1+h(c) and in case of elimination H(c) = 1−h(c). We have seen that indeed
there is a unique solution R(t) for all four models we have thus considered. It seems that
R(t) > 1 for all t > 0 and limt→∞R(t) = 1, which means that the body response on the
drug administered at time t = 0 only completely dies out after an infinit amount of time.
Furthermore we proved that in all four cases there is exactly one time Tmax at which the
body response is maximal. The time at which this peak occurs depends on the initial
dose D in the blood at time t = 0. In Chapters 4 and 5 we have studied the behaviour
of this peak with changing initial dose D, with special interest for very large and very
small dose. The results however were not really surprising. We found that in three of the
four cases the maximal body response occurs right after the administration of the drugs
if the initial dose D becomes very small. Analogously the maximal body response occurs
only after a great amount of time for a very large initial dose D. In other words we see that

lim
D→0

Tmax(D) = 0

and

lim
D→∞

Tmax(D)
log(D)

= K

for K > 0 some constant.
Only in case of stimulation, when the function H(c) is linear, the time Tmax at which the

body response is maximal turns out to be independent of the initial dose D. This situation
is discussed in the first section of Chapter 4 of this paper. However, in the other three
cases the situation thus is quite similar. This means there is no great difference between a
stimulating and a eliminating function H(c), a quite surprising result. Furthermore both
a simple linear version of H(c) as a more refined one corresponding to the Hill-function
give the same general results. However, the results we found concerning the time Tmax at
which the maximal body response R(Tmax) occurs in relation with the amount of drugs
D in the blood at time t = 0 suggests it would be interesting to consider the behaviour of
this peak with varying initial dose D. We would like to know whether it takes ever more
time for the peak to take place if the initial dose is being increased, or if there exists a cer-
tain boundary value for D for which the time needed to reach the peak does not increase
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anymore or perhaps even decreases. Therefore we needed to consider the derivative of the
function Tmax(D) which describes the time Tmax at which the peak occurs depending on
the initial dose D. Unfortunately, it was impossible to compute this derivative explicitly,
therefore we decided to study its behaviour, again for very large and very small values of
D. Clearly, if dTmax

dD < 0 for small D and dTmax
dD > 0 for large D or the other way round,

this would have implied that there is a minimum, or a maximum, of the time it takes
to reach the peak in the body response. Our analysis however did not result in such a
conclusion. We found that in all three cases in which Tmax depends on the initial dose D
that for very small initial dose the time at which the peak occurs increases for increasing
dose, while for very small initial dose the time at which the peak occurs does not change
for increasing initial dose. In other words

lim
D→0

dTmax

dD
≥ 0,

and

lim
D→∞

dTmax

dD
= 0.

Unfortunately it is not possible to conclude anything about the possible existence of a
maximum or minimum of Tmax from these data. However it seems plausibel to suggest
that there is no such extremum of the time at which the peak occurs, so that it indeed
takes ever more time for the body response to reach its maximum if the initial dose D is
increased. Numerically we can indeed show that this is the case.
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