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Abstract

Consider the release into the air of a contaminated particle that could be harmful to nearby

wildlife and agriculture. To understand the effect of this particle on the environment, it

becomes important to find out whether it hits the ground and how long it takes to do so.

Mathematically speaking, we are searching for the the exit probability and the expected exit

time. Observations show that the particle doesn’t just move along with the wind. It also

performs some random motion which can cause it to move against the wind. This has to be

taken into account when choosing a model to describe the movement of the particle.

In this thesis we look at the situation described above and also at other practical exam-

ples. Our main focus will be on finding the exit probability and the expected exit time. We

start with an introduction to stochastic differential equations (SDE’s), because the models

we consider will be in that form. Connected with each SDE is a partial differential equation

called the Fokker-Planck (FP) equation. This FP-equation will then lead us to our first means

to obtain the expected exit time. Next, we introduce the numerical simulation of SDE’s and

this will provide us with a second way to obtain the expected exit time. Finally, four ex-

amples are chosen from non-mathematical research areas. Both approaches to finding the

expected exit time will be applied and the results will be compared. The differential equa-

tions that arise in the second approach are approximated using singular perturbations. All

results can be verified with the MATLAB code from the appendix. The examples we look at

are a population model from biology, a membrane voltage model from neurology, a particle

movement model from physics and a model for groundwater pollution from hydrology.

vii



viii



Acknowledgements

I would like to thank my parents for giving me the opportunity of a good education. Also I

want to thank them and the rest of my family for their continuous support. Finally, I would

like to thank my supervisor, Prof. Dr. S.M. Verduyn Lunel, for his advise and guidance.

Martijn Onderwater,

Leiden, the Netherlands

June 13, 2003.

ix



x



Contents

Abstract vii

Acknowledgements ix

List of Figures xiv

List of Tables xv

1 Introduction: What is Noise? 1

2 Stochastic Calculus 7

2.1 Stochastic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The Fokker-Planck Equation and the exit problem . . . . . . . . . . . . . . 16

3 Simulation of Stochastic Differential Equations 23

3.1 Simulation of Brownian motion . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Simulation of SDE’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Error in the Euler-Maruyama method . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Strong convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 The Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Evaluation of the error . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 The expected exit time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Applications of Stochastic Differential Equations 37

4.1 Stochastic Population Dynamics . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Firing of a Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Particle movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Groundwater pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xi



5 Final Remarks 73

A Program Listings 75

A.1 Brownian motion (unvectorized) . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 Brownian motion (vectorized) . . . . . . . . . . . . . . . . . . . . . . . . 77

A.3 Function along a Brownian path . . . . . . . . . . . . . . . . . . . . . . . 77

A.4 Euler-Maruyama method . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.5 Monte Carlo approximation using EM . . . . . . . . . . . . . . . . . . . . 79

A.6 Expected exit time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.7 Stochastic Population Dynamics . . . . . . . . . . . . . . . . . . . . . . . 82

A.8 Firing of a neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.9 Particle movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.10 Groundwater Pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 91

xii



List of Figures

1.1 The result of the coin-tossing game . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The results of the new coin-tossing game . . . . . . . . . . . . . . . . . . . 3

2.1 The mesh used in the proof . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The exit probability (top) and the expected exit time (bottom). . . . . . . . 22

3.1 Three sample paths of Brownian motion . . . . . . . . . . . . . . . . . . . 25

3.2 The function u(t) as in (3.2) along a sample path of Brownian motion. . . . 27

3.3 The true solution (3.6) (blue/upper line) and the EM-approximation (3.5)

(red/lower line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 The exit probability for geometric Brownian motion obtained from (2.25)

and the simulation results from Table 3.3. . . . . . . . . . . . . . . . . . . 36

3.5 The expected exit time for geometric Brownian motion obtained from (2.26)

and the simulation results from Table 3.3. . . . . . . . . . . . . . . . . . . 36

4.1 Phase plane of (4.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Graph of φ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 The SP-approximation (4.17) and the results of a Monte Carlo simulation . 48

4.4 Drawing of a part of the human cortex by Santiago Ramón y Cajal [59] . . 50

4.5 Schema of a neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Membrane potential when a neuron fires. . . . . . . . . . . . . . . . . . . . 52

4.7 Simulation results of the neuron model from Table 4.2 and the SP-

approximation from expression (4.27). . . . . . . . . . . . . . . . . . . . . 56

4.8 Flow parallel to the x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 SP-approximation to u(x, y) as in (4.33) and the simulation results from

Table 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 SP-approximation to T1(x, y) as in (4.35) and the simulation results from

Table 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiii



4.11 Symmetric 2D flow of groundwater in the aquifer . . . . . . . . . . . . . . 64

4.12 SP-approximation to u(x, y) as in (4.41) and the simulation results from

Table 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.13 SP-approximation to T1(x, y) as in (4.44) and the simulation results from

Table 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xiv



List of Tables

3.1 Computation times ( in seconds) for BrownU.m and BrownV.m for different

values of N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Error in the EM approximation to (3.5) to the geometric Brownian motion

at time t = 0.5, for different values of ∆t. . . . . . . . . . . . . . . . . . . 32

3.3 Confidence interval I and exact values for the exit probability and expected

exit time of the geometric Brownian motion. . . . . . . . . . . . . . . . . . 35

4.1 Simulation results of the population dynamics model . . . . . . . . . . . . 48

4.2 Simulation results of a Monte Carlo simulation of the neuron model . . . . 57

4.3 Simulation results for the particle movement model . . . . . . . . . . . . . 63

4.4 Simulation results of the groundwater pollution model . . . . . . . . . . . 70

xv



xvi



Chapter 1

Introduction: What is Noise?

Nature is a wonderful thing. Not only for the family picnicking in the park or for Greenpeace

members, but also for mathematicians. Nature shows us many interesting phenomena which

we would like to explain and predict as good as possible. Take the weather for instance.

For centuries, sailors have used their senses and experience to forecast the coming of bad

weather. It was a necessary skill, since it helped to keep them alive and therefore it was

passed on from father to son. With the development of mathematics, more and more people

tried to grasp the concept of ’weather’ in a set of mathematical equations. Recently, the

discovery of the computer enabled us to make the models more complicated and also a lot

more accurate. But in spite of all the progress we have made, the weather is still able to

reduce our forecasts to toilet paper. This brings us to one of the key aspects of mathematical

modelling : the translation from a physical problem to a set of mathematical equations is

never perfect. This is due to a combination of uncertainties, complexities and ignorance on

our part which inevitably cloud the modelling process.

One way to include these aspects in the model, is by adding a source of randomness (also

called noise). Suppose that we want the quantity X(t) to be the mathematical representation

of some physical phenomenon and that, at some point in the modelling process, we found a

model of the form

dX(t)

dt
= f (t,X(t)) . (1.1)

The addition of a noise term to e.g. one of the parameters changes (1.1) to

dY (t)

dt
= f (t, Y (t)) + g (t, Y (t)) ζ(t) (1.2)

where ζ(t) is the noise term and Y (t) is the new (noise-dependent) quantity describing the

1
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Figure 1.1: The result of the coin-tossing game

phenomenon. This of course leaves us with the question how to model ζ(t). One model

which is often used, comes from a coin-tossing game.

Suppose that we play this coin-tossing game together. Every time you throw a head I give

you e 1, every time you throw a tail you give me e 1. After six tosses (you’re not allowed

more than six), the sequence was THHTHT and we finished even (as illustrated in Fig-

ure 1.1). If I use Ri to mean the random amount, either e 1 or −e 1, you make on the ith

toss then we have

E(Ri) = 1 · P(Ri = 1) + −1 · P(Ri = −1) =
1

2
(1 − 1) = 0, (1.3a)

E(R2
i ) = (1)2 · P(Ri = 1) + (−1)2 P(Ri = −1) =

1

2
(1 + 1) = 1, (1.3b)

E(RiRj) = E(Ri)E(Rj) = 0. (1.3c)

Introduce Si to mean the amount of money you have made up to and including the ith toss,

so that

Si =

i∑

j=1

Rj.

We assume that you start with no money, so S0 = 0. If we now calculate expectations

(before the game started BTW) we find (using (1.3))

E(Si) = 0 and E
(
S2

i

)
= E






i∑

j=1

Rj




2
 =

i∑

j=1

E
(
R2

j

)
= i.

2
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Figure 1.2: The results of the new coin-tossing game

Now I’m going to change the rules. First, I restrict the time to a period t and thus each throw

of the coin takes a time t
6 . Secondly, the size of the bet is changed from e 1 to

√
t
6 . Thus

E(Si) = 0 and E
(
S2

i

)
= i ·

(√
t

6

)2

=
it

6
.

Of course, this game will get boring swiftly and therefore I will speed it up a bit. You may

now throw the coin as often as you like, say n times. The bet size is changed again, this time

to
√

t
n . You still have to be finished after a period t. So we have

E(Si) = 0 and E
(
S2

i

)
= i ·

(√
t

n

)2

=
it

n
. (1.4)

Figure 1.2 shows some results of this game, all lasting for a time 1 with different values of

n. In Section 3.1 we will show that as n → ∞, the Si will behave more and more like a

stochastic process known as Brownian motion. Brownian motion − also called the Wiener

process and denoted in this document by W (t) − will be treated in Section 2.1. The noise

term ζ in (1.2) is then formally modelled as

ζ(t) =
∂W (t)

∂t
.

Later, we will also see that Brownian motion is nowhere differentiable and therefore equa-

tion (1.2) is usually rewritten as

3



dX(t) = f(t,X(t))dt + g(t,X(t))dW (t)

and is called a stochastic differential equation (SDE). SDE’s will play an important role in

this document and will be treated further in Chapter 2.

The history of stochastic differential equations takes us back to the 19th century. In

1827, the Scottish botanist Robert Brown observed that pollen grains suspended in a liquid

performed an irregular motion. Later, at the beginning of the 20th century, Albert Einstein

and Smoluchowsky introduced random equations and showed how the results of random

walk theory could be used to describe the phenomenon. It was about the same time that

Langevin proposed a random equation describing the motion of Brownian particles. A

year or two later, Campbell, dealing with the fluctuations in the emission of rays by a

radioactive substance, proved a couple of theorems relating to the mean square behavior of

the cumulative response due to such emissions. These instances mark the birth of stochastic

integration and stochastic differential equations. Within a short period, Wiener, anticipating

Kolmogorov’s formalization of probability, undertook the mathematical analysis of Brown-

ian motion. Since then, stochastic differential equations have found their way into systems

in physics [34, 35, 36, 37], engineering [38, 39, 40, 41], biology [19, 20, 24, 25, 26, 27]

and economics [5, 12, 13, 14].

This thesis

The aim of this thesis consists of three parts :

1. Show practical examples of stochastic differential equations;

2. Show how simulations of stochastic differential equations can be done on the com-

puter;

3. Show the connection between stochastic differential equations and partial differential

equations.

To achieve these objectives, we will consider a SDE and look for the expected exit time from

an open domain (this is called ’the exit problem’). It will become clear that the expected exit

time can be obtained from a differential equation and also by a simulation of the SDE.

4



I have tried to make this document in such a way that it is suitable for most students who

are in the final stage of their mathematical Masters-education. You will not need any special

probability knowledge ; just basic concepts such as expectation, variance and (normally dis-

tributed) random variables (see e.g. [1] or [2]). Everything you need to know about SDE will

be explained. There will be a lot of differential equations in this thesis, so some experience

in this area will be required.

This thesis is divided into 5 chapters, the first of which you have almost finished. The next

chapter contains all the theory we will be needing in later chapters. It continues with Brow-

nian motion and then introduces stochastic differential equations. The rest of the chapter

is devoted to the Fokker-Planck equation and its use in exit from an open domain. The

ideas for this chapter came mostly from a book by Grasman and Van Herwaarden( [16]).

The third chapter deals with the simulation of SDE. Using the software package ’MAT-

LAB’, it shows how to simulate Brownian motion, functions along Brownian paths, SDE’s

and finally the expected exit time. The simulation of SDE’s is centered around the ’Euler-

Maruyama’ method, which is the stochastic analogue of the deterministic Euler method.

The work in this chapter is very much based upon an article by D. Higham, see [44]. Chap-

ter 4 contains four examples of SDE’s. For each one, we will be looking for the expected

exit time via the Fokker-Planck equation and via a simulation of the system. The solution

to the Fokker-Planck equation is approximated using a technique called singular perturba-

tions which is explained in that same chapter. The final chapter looks back at the thesis and

offers some other interesting areas of research connected to the subjects in this document.
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Chapter 2

Stochastic Calculus

In the introduction it was mentioned that there are two ways to find the expected exit time

from an open domain : via a simulation of the model and via a differential equation. This

chapter will look at the second. To do this, we will first need to find out what stochastic inte-

grals are (Section 2.1). Section 2.2 will then continue with stochastic differential equations.

The final section is about the ’differential equation’ approach to the exit problem.

2.1 Stochastic integrals

The most important thing we need for stochastic integrals is Brownian motion. We already

met it in the introduction and now it is time for a more mathematical formulation. To get

started, we need the following definition :

Definition 2.1.1 A stochastic process is a collection of random variables {Xt}t∈[0,∞) as-

suming values in R
n. In this document, it is denoted by X(t).

Now, one-dimensional Brownian motion W (t) is an example of a random process satisfy-

ing:

1. (a) with probability 1, the mapping t 7→ W (t) is continuous (t ≥ 0);

(b) W (0) = 0;

2. For all 0 ≤ t0 < t1 < t2 < . . . < tk, the increments

W (tk) − W (tk−1), . . . ,W (t1) − W (t0)

are independent;

7



3. for all t > s the increment W (t)−W (s) has the normal distribution with expectation

0 and variance t − s, i.e.

P (W (t) − W (s) ∈ Γ) =
1√

2π(t − s)

∫

Γ
e

−y2

2(t−s) dy, Γ ⊂ R.

For the proof that such a random process exists, we refer the reader to e.g. [6, Ex. 2.18] or

[5, p. 12-14]. One property of Brownian motion that we will need is

1. (c) W (t) is nowhere differentiable with probability 1,

see [3, Thm. 12.25] for the proof. We will only need these properties of Brownian motion

and therefore we will not go into it any deeper. Interested readers are referred to [3, 5, 6].

A typical stochastic integral will look like

∫ T

0
g(t,W (t))dW (t)

where g : [0, T ]×R → R. How do we evaluate this integral? As a first example of a stochas-

tic integral, let us try to find a suitable discretization for
∫ T
0 W (t)dW (t). In the deterministic

setting, one often approximates integrals using either the forward Euler, backward Euler or

the trapezoidal discretization. As the stepsize goes to 0, these approximations converge to

the same value. But this is not the case in the stochastic world, as we will see now. Let

t0, t1, . . . , tN be a discretization of the interval [0, T ]. Then the forward Euler approxima-

tion of our integral is given by

N−1∑

n=0

W (tn) (W (tn+1) − W (tn))︸ ︷︷ ︸
∆Wn

.

Taking expected values yields (using property 3 of the Brownian motion)

E

[
N−1∑

n=0

W (tn)∆W (t)

]
=

N−1∑

n=0

E[W (tn)] E[∆Wn]︸ ︷︷ ︸
=0

= 0.

Doing the same for the backward Euler discretization

N−1∑

n=0

W (tn+1)∆Wn

8



yields

N−1∑

n=0

E[W (tn+1)∆Wn] =

N−1∑

n=0

E[W (tn)∆Wn] + E[(∆Wn)2]

=
N−1∑

n=0

(tn+1 − tn) = T 6= 0.

Moreover, if we use the trapezoidal discretization

N−1∑

n=0

E

[
W (tn+1) + W (tn)

2
∆Wn

]

we find

N−1∑

n=0

E

[
W (tn+1) + W (tn)

2
∆Wn

]
=

N−1∑

n=0

E[W (tn)∆Wn] + E[∆Wn/2]

=
N−1∑

n=0

[
tn+1 − tn

2

]
= T/2 6= 0.

This shows that we need more than just the integral to compute its expected value : we

also need to specify which approximation method to use. The choice of the forward Euler

approximation will lead to so called Itô integrals, while choosing the trapezoidal approxi-

mation will give us Statonovich integrals. We will only concern ourselves with the former.

The precise definition comes from the following theorem:

Theorem 2.1.1 Let g : [0, T ]×Ω → R be adapted (i.e. g(t, ·) only depends on events which

are generated by W (s), s < t) and satisfy the relation

√
E

[
|g(t + ∆t, ω) − g(t, ω)|2

]
≤ C

√
∆t (2.1)

where C is a constant. Consider two different partitions of the time interval [0, T ]

{t}N
n=0 and {t}N

m=0 (2.2)

with the corresponding forward Euler approximations

I =

N−1∑

n=0

g(tn,W (tn))(W (tn+1) − W (tn)),

and

9
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Figure 2.1: The mesh used in the proof

I =

N−1∑

m=0

g(tm,W (tm))(W (tm+1) − W (tm)),

and define the maximum stepsize to be

∆tmax = max

[
max

0≤n≤N−1
tn+1 − tn, max

0≤m≤N−1

tm+1 − tm

]
.

Then

E

[(
I − I

)2
]
≤ O(∆tmax).

Proof:

It is useful to introduce the finer grid made of the union of the nodes of the grids (2.2)

{tk} ≡
{
tn
}
∪
{

tm

}
.

Then in that grid we can write

I − I =
∑

k

∆gk∆Wk,

where ∆gk = g(tn,W (tn)) − g(tm,W (tm)), ∆Wk = W (tk+1) − W (tk) and the indices

m and n satisfy tk ∈
[
tm, tm+1

)
and tk ∈

[
tn, tn+1

)
, as depicted in Figure 2.1.

10



Therefore,

E

[
(I − I)2

]
= E



∑

k,l

∆gk∆gl∆Wk∆Wl




= 2
∑

k>l

E[∆gk∆gl∆Wk∆Wl] +
∑

k

E
[
(∆gk)

2(∆Wk)
2
]

(2.3)

= 0 +
∑

k

E
[
(∆gk)

2(∆Wk)
2
]

=
∑

k

E
[
(∆gk)

2
]
∆tk (2.4)

where we have used (in (2.3)) that E[∆gk∆gl∆Wk∆Wl] = E[∆gk∆gl∆Wk]E[∆Wl] = 0

because of the third property of Brownian motion. Taking squares in (2.1) gives us

|∆gk|2 ≤ C2∆′tk

where ∆′tk = tn − tm ≤ ∆tmax. Substitution of this into (2.4) gives

E

[
(I − I)2

]
≤ C2∆tmax

∑

k

∆tk = C2T∆tmax

which proves the theorem.

Thus if we take a sequence {I∆t} such that ∆t → 0 we see that it converges (in the sense

of result of Theorem 2.2.1). The limit defines the Itô integral

∑

i

gi∆Wi → I ≡
∫ T

0
g(s,W (s))dW (s).

Some basic properties of the Itô integral are

1.
∫ T

0
(c1f(s, ·) + c2g(s, ·))dW (s) = c1

∫ T

0
f(s, ·)dW (s) + c2

∫ T

0
g(s, ·)dW (s),

2. E

[∫ T

0
f(s, ·)dW (s)

]
= 0,

3. E

[(∫ T

0
f(s, ·)dW (s)

)(∫ T

0
g(s, ·)dW (s)

)]
=

∫ T

0
E[f(s, ·)g(s, ·)]ds.

For the proof of these properties, we refer the reader to [11, Thm. 2.15].
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2.2 Stochastic Differential Equations

We now advance to the study of stochastic integral equations. The general form of a stochas-

tic integral equation is

X(t) = X0 +

∫ T

0
f(s,X(s))ds +

∫ T

0
g(s,X(s))dW (s), (2.5)

where the first integral is deterministic and the second integral is a stochastic integral (as

described in the previous section). It is usual to write (2.5) in its differential form

dX(t) = f(t,X(t))dt + g(t,X(t))dW (t), X(0) = X0, 0 ≤ t ≤ T (2.6)

and then it is called a stochastic differential equation. Note that if g(t,X(t)) ≡ 0, then (2.6)

reduces to the deterministic differential equation dX(t)/dt = f(t,X(t)). We do not take

the further step to divide (2.6) by dt, since Brownian motion is nowhere differentiable and

thus the quantity dW (t)/dt has no meaning.

Example : A very simple example is the SDE

dX(t) = f(t)dt + g(t)dW (t).

This can simply be integrated to yield the solution

X(t) = X0 +

∫ t

0
f(s)ds +

∫ t

0
g(s)dW (s).

Of course life is not always this simple. In the deterministic setting, one often uses ’change

of variables’ to find a solution to a differential equation. The same tool is available in the

stochastic world, but it is not completely the same. The following theorem gives Itô’s for-

mula:

Theorem 2.2.1 (Itô’s formula in one dimension) Suppose that the assumptions of Theo-

rem (2.1.1) hold and that X(t) satisfies the SDE (2.6) and let h : (0,∞) × R → R be a

given bounded function in C2((0,∞) × R). Then Y (t) = h(t,X(t)) satisfies the SDE

dY (t) =
∂h(t,X(t))

∂t
dt +

∂h(t,X(t))

∂x
dX(t) +

1

2

∂2h(t,X(t))

∂x2
(dX(t))2. (2.7)

For the proof, we refer the reader to e.g. [5, Thm. 4.1.2] or [11, Thm. 3.9]. The term

12



(dX(t))2 in (2.7) can be evaluated using (2.6) and the rules

[dW (t)]2 = dt, (2.8a)

[dW (t)]i = 0 ∀i > 2, (2.8b)

dW (t)dt = 0, (2.8c)

dti = 0, ∀i > 1. (2.8d)

Note that change of variables in the stochastic setting (2.7) is the same as in the deterministic

setting, except for the addition of the term

1

2

∂2h(t,X(t))

∂x2
(dX(t))2.

Example (Ornstein-Uhlenbeck Process) : Suppose we are looking for the solution of the

SDE

dX(t) = −kX(t)dt +
√

DdW (t) (2.9)

where k and D are constants. We solve this equation directly by making the change of

variables Y (t) = X(t)ekt. Then, by using (2.8), we get

(dX(t))2 = k2(X(t))2(dt)2 − 2k
√

DdtdW (t) + D(dW (t))2 = 0 + 0 + Ddt = Ddt

and we find (using (2.7)) that Y (t) satisfies the SDE

dY (t) = kX(t)ektdt + ektdX(t) +
1

2
· 0 · D · dt

= kX(t)ektdt − kX(t)ektdt +
√

DektdW (t)

=
√

DektdW (t).

Integrating and returning to original variables yields

X(t) = X(0)e−kt +
√

D

∫ t

0
e−k(t−s)dW (s).

The process (2.9) is known as the Ornstein-Uhlenbeck process. It often turns up in applica-

tions of stochastic calculus ([19, 20, 29]).
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Example (geometric Brownian motion) : Consider the SDE

dX(t) = λX(t)dt + µX(t)dW (t) (2.10)

where λ and µ are constants. We set Y (t) = ln (X(t)) and change the variables

dY (t) =
1

X(t)
dX(t) − 1

2

1

X(t)2
(dX(t))2

= λdt + µdW (t) − µ2

2
dt

= (λ − µ2

2
)dt + µdW (t)

so that

Y (t) = Y (0) + (λ − µ2

2
)t + µ

∫ t

0
dW (t) = Y (0) + (λ − µ2

2
)t + µW (t)

or in original variables

X(t) = X(0)e(λ−µ2

2
)t+µW (t)). (2.11)

Equation (2.10) is often called Geometric Brownian motion and has played a key role in the

development of financial mathematics. The well known Black Scholes partial differential

equation (see [12, 14]) can be derived from it.

Until now, we have only seen one-dimensional SDE’s. Of course, there are higher dimen-

sional SDE’s and also a higher dimensional version of Itô’s formula.

Theorem 2.2.2 Let X(t) satisfy the system of SDE’s





dX1(t) = u1dt + v11dW1(t) + . . . + v1mdWm(t)
...

...
...

...

dXn(t) = undt + vn1dW1(t) + . . . + vnmdWm(t)

where ui = ui(t,X(t)) and vij = vij(t,X(t)). Let h(t, x) be a C2-map from [0,∞) × R
n

into R
p. Then the process

Y (t) = h(t,X(t))

14



is again an Itô process given by

dYk =
∂hk(t,X)

∂t
dt +

∑

i

∂hk(t,X)

∂xi
dXi +

1

2

∑

i,j

∂2hk(t,X)

∂xi∂xj
dXidXj

where we can again use the rules (2.8) with (2.8a) replaced by its higher dimensional ver-

sion

dWi(t)dWj(t) =





dt i = j,

0 i 6= j.

The proof of this theorem can be found in [5, Thm. 4.2.1].

Remark : Until now, we have said nothing about uniqueness of solutions. With uniqueness

we mean that for two solutions X1(t) and X2(t) of the SDE (2.6), using the same sample

path of Brownian motion, we have

P

(
sup

0≤t≤T
|X1(t) − X2(t)| > 0

)
= 0.

This is called pathwise (or strong) uniqueness. It is known (see [5, Thm. 5.2.1]) that (2.6)

has a pathwise unique solution if its coefficients satisfy the following relations

1. Lipschitz condition : a constant K exists such that

|f(t, x) − f(t, y)| + |g(t, x) − g(t, y)| ≤ K|x − y|

for all finite t and for all x and y.

2. Growth condition : a K exists such that for all finite t

|f(t, x)| + |g(t, x)| ≤ K(1 + |x|).

This section has only covered the basics of SDE’s. For a more rigorous treatment, we refer

the reader to one of the following textbooks [5, 6, 8, 9, 10].
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2.3 The Fokker-Planck Equation and the exit problem

As we mentioned in the introduction and at the beginning of this chapter, we are interested

in finding a way to obtain the expected exit time from an open domain when the system is

given by a SDE. Now that we know what SDE are, we can investigate this further. We first

have to restrict our attention to systems of the form

dXi = bi(X)dt +

k∑

j=1

σij(X)dWj(t), Xi(0) = X
(0)
i , i = 1, . . . , n (2.12)

where of course X = X(t). Observe that (2.12) is time homogeneous, i.e. bi and σij are

time-independent. The reason why we only look at time homogeneous systems will become

clear later. We denote the open domain by Ω and its boundary bu ∂Ω. In this section, we will

show that the expected exit time of the system (2.12) from the domain Ω can be obtained

from a deterministic differential equation.

The FP-equation

Consider the one dimensional version of (2.12)

dX = b(X)dt + σ(X)dW (t), X(0) = X (0). (2.13)

For an arbitrary function f we have (using Itô’s formula (Theorem 2.2.1)) :

df(X) = f ′(X)dX +
1

2
f ′′(X)(dX)2,

or

df(X) = f ′(X){b(X)dt + σ(X)dW (t)} +
1

2
f ′′(X)σ2(X)dt.

Taking expectations yields (use property 3 of Brownian motion)

∂E[f(X)]

∂t
= E[f ′(X)b(X)] +

1

2
E[f ′′(X)σ2(X)]. (2.14)

Let

P (X(t) = x) (2.15)

be the probability that the system (2.13) is in state x at a given time t. Then the probability
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density corresponding to (2.15), denoted by p(t, x), can be used to rewrite (2.14) as

∫ {
f(x)

∂p(t, x)

∂t

}
dx =

∫ {
f ′(x)b(x) +

1

2
f ′′(x)σ2(x)

}
p(t, x)dx

=

∫
f(x)

{
− ∂

∂x
(b(x)p(t, x)) +

1

2

∂2

∂x2
(σ2(x)p(t, x))

}
dx

where we have used partial integration. Since this result is valid for arbitrary function f , we

find that p(t, x) must satisfy

∂p(t, x)

∂t
= − ∂

∂x
(b(x)p(t, x)) +

1

2

∂2

∂x2
(σ2(x)p(t, x)).

This is the one dimensional form of the Fokker-Planck (FP) equation (also known as the

Kolmogorov forward equation). Observe that this is a deterministic partial differential equa-

tion for a probabilistic quantity! The boundary conditions to this differential equation de-

pend on the domain where (2.13) is defined and on its practical interpretation. The general

form of the FP-equation is

∂p(t, x)

∂t
= −

n∑

i=1

∂

∂xi
(bi(x)p(t, x)) +

1

2

n∑

i,j=1

∂2

∂xi∂xj
(aij(x)p(t, x))

where the aij are the elements of the matrix A = σσT . The coefficient bi(x) is usually

called the drift and aij(x) or σij(x) the diffusion coefficient. As t → ∞, the probability

density p(t, x) tends to the stationary distribution p(s)(x) which satisfies

Mp(s)(x) = 0 (2.16)

with

M = −
n∑

i=1

∂

∂xi
(bi(x)·) +

1

2

n∑

i,j=1

∂2

∂xi∂xj
(aij(x)·). (2.17)

(This is actually only true for time homogeneous systems, that is why we choose (2.12)

time homogeneous.) The formal adjoint of the operator M given by (2.17) is the so-called

backward operator L = M ∗ or

L =

n∑

i=1

bi(x)
∂

∂xi
+

1

2

n∑

i,j=1

aij(x)
∂2

∂xi∂xj
.
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As will be clear from the following, this operator is often used in the ’differential equation’

approach to the exit problem.

The exit problem

Before we can find a differential equation for the expected exit time, we will need to take

a closer look at the probability that the solution to the SDE (2.12) crosses the boundary

(this is mathematically known as the exit probability). We suppose that initial condition for

(2.12) is X(0) = x and that the operator L is elliptic, i.e. the matrix

A = (aij)

is positive definite.

Let u(x) be the solution to the problem

Lu = 0 in Ω

u = f(x) at ∂Ω
(2.18)

and the auxiliary function G(x, y) the solution of

MyG = δ(x − y) x, y ∈ Ω

G(x, y) = 0 x ∈ Ω, y ∈ ∂Ω.

where we have written My for the operator M (see 2.17) to emphasize that differentiation

is w.r.t. y and not x. Evaluating the integral

I =

∫

Ω
u(y)MyG(x, y) − G(x, y)Lu(y)dy

we see that on the one hand

I = u(x) (2.19)

since MyG = δ(x − y) and Lu = 0 in Ω. On the other hand, applying Green’s Formula

(see [61, p. 386]) yields

I =

∫

∂Ω
u(y)

∂G(x, y)

∂ν
− G(x, y)

∂u(y)

∂ν
dy. (2.20)
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Here ν is the outward normal to the boundary ∂Ω. Putting (2.19) and (2.20) together and

using the boundary conditions for G and u, we find

u(x) =

∫

∂Ω
f(y)

∂G(x, y)

∂ν
dy.

Thus, using the auxiliary function G(x, y), we have written the solution to (2.18) in terms

of its boundary condition. The function G(x,y) is better known as a Green’s function and is

often used to solve differential equations, see e.g. [62] or [63].

In [7, §5.4], it is found that ∂G(x,y)
∂ν is a function denoting the distribution at ∂Ω for the

probability of arriving at y ∈ ∂Ω if starting in x ∈ Ω. Now suppose that the boundary ∂Ω

consists of two parts ∂Ω0 and ∂Ω1. If we choose f to be

f(x) =





0 if x ∈ ∂Ω0

1 if x ∈ ∂Ω1

then u(x) can be viewed as the probability of leaving Ω through the part of the boundary

∂Ω1 if starting in x ∈ Ω (i.e. u(x) is the exit probability).

We will need u(x) to find the differential equation for the expected exit time. Define the

function q(t, x) as the probability of leaving Ω through ∂Ω1 after a time t. It satisfies

(see [15, §5.4.2])

∂q

∂t
= Lq in Ω for t > 0

q(0, x) = u(x) in Ω and q(t, x) = 0 at ∂Ω.

Define T (x) as

T (x) =

∫ ∞

0
q(t, x)dt.

Because the probability distribution of the stochastic exit time is given by

− 1

q(0, x)

∂q

∂t
(t, x)

we have for the expected exit time (by partial integration)

T1(x) =

∫ ∞

0
− s

q(0, x)

∂q

∂s
(s, x)ds =

∫ ∞

0

q(s, x)

q(0, x)
ds =

T (x)

u(x)
. (2.21)
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From expression (2.21), stating that T (x) = T1(x)u(x), it follows that T (x) = 0 at ∂Ω

because u(x) = 0 at ∂Ω0 and T1(x) = 0 at ∂Ω1. Also

LT (x) =

∫ ∞

0
Lq(s, x)ds =

∫ ∞

0

∂q

∂s
(s, x)ds = −q(0, x) = −u(x),

and thus the quantity T (x) is completely determined by the boundary value problem

LT (x) = −u(x) in Ω, T (x) = 0 at ∂Ω. (2.22)

Thus if we seek to find the expected exit time from the domain Ω through the part ∂Ω1

of its boundary, then we can proceed by solving T (x) from (2.22) and then extract T1(x)

using (2.21).

Remark: In the above, we have taken Ω0 to be absorbing (i.e. u(x) = 0). We can also

choose the boundary to be reflecting, i.e.

Lu(x) = 0 in Ω

n∑

i,j=1

νiaij(x)
∂u

∂x
= 0 at ∂Ω0 and u = 1 at ∂Ω1,

admitting the simple solution u(x) ≡ 1. Then T (x) satisfies

LT (x) = −1 in Ω

n∑

i,j=1

νiaij(x)
∂T

∂x
= 0 at ∂Ω0 and T = 0 at ∂Ω1.

The vector ν is the outward normal to the boundary. For more details, see [15, p. 129].

Remark: If the boundary ∂Ω = ∂Ω1, then the solution to the boundary value problem

Lu(x) = 0 in Ω, u(x) = 1 at ∂Ω

is given by u(x) ≡ 1 and thus exit takes place with probability 1. Then also T1(x) = T (x),

denoting the expected exit time through any point of ∂Ω.
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An example

Consider the geometric Brownian motion from Section 2.2 for which the SDE is given by

dX(t) = λX(t)dt + µX(t)dW (t), X(0) = x. (2.23)

Let X(t) ∈ Ω = [1, 9] and set λ = 5, µ = 2. The exit probability u(x) satisfies Lu = 0

which takes the form

λx
∂u

∂x
+

1

2
µ2x2 ∂2u

∂x2
= 0. (2.24a)

We want to know when X(t) is expected to cross the right side of the interval (i.e. x = 9)

and thus we impose boundary conditions

u(1) = 0, u(9) = 1. (2.24b)

The solution to (2.24) is given by

u(x) =
27

26
(1 − x−3/2). (2.25)

The differential equation for the quantity T (x) (LT = −u) now becomes

λx
∂T

∂x
+

1

2
µ2x2 ∂2T

∂x2
= −u

with boundary conditions

T (1) = 0, T (9) = 0.

Solving this yields

T (x) = − 9

26
lnx − x−3/2

(
9

26
lnx +

126

169
ln 3

)
+

126

169
ln 3.

The expected exit time is now obtained via the relation

T1(x) =
T (x)

u(x)
. (2.26)

The exit probability (2.25) and the expected exit time (2.26) are shown in Figure 2.2.
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Figure 2.2: The exit probability (top) and the expected exit time (bottom).
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Chapter 3

Simulation of Stochastic Differential

Equations

In the previous chapter, we saw how we can obtain the exit probability and the expected exit

time from a differential equation. In this chapter, we will show how the same information

can be obtained via a simulation of the SDE. We will need to be able to simulate Brownian

motion and thus we start with that. Then we look at stochastic differential equations, after

which we will look at the exit probability and the expected exit time. All simulations are

done with the software package ’MATLAB’.

3.1 Simulation of Brownian motion

To get started, we consider a discretized version of Brownian motion. We therefore choose

a stepsize ∆t and let Wj denote W (tj) with tj = j∆t. According to the first property

of Brownian motion (see Section 2.1) we have W (0) = 0 and from the second and third

property we find

Wj = Wj−1 + dWj j = 1, 2, . . . , N . (3.1)

Here N denotes the number of steps that we take and dWj is a normally distributed random

variable with zero mean and variance ∆t.

Observe here the relation between the quantity Sj from the introduction and Wj . In the

final version of our ’game’, we found that Sj is a random variable with expectation 0 and

variance jt
n (see (1.4)). Thus we have that
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E (Sj − Sj−1) = 0 , E

(
(Sj − Sj−1)

2
)

=
t

n

i.e. Sj − Sj−1 is a random variable with expectation 0 and variance t
n . If we take ∆t = t

n ,

then the same goes for Wj −Wj−1. The difference that remains is that the Brownian motion

is not just any random variable, but a normally distributed random variable. The proof that

Sj − Sj−1 approaches Wj − Wj−1 as n → ∞ is actually an application of the well known

Central Limit Theorem and can be found in [6, p. 13].

We return now to the discretized version of Brownian motion Wj . Expression (3.1) can be

seen as a numerical recipe to simulate Brownian motion. An implementation of this recipe

can be found in Appendix A.1. We start the simulation by setting the state of MATLAB’s

random generator to 10000. This makes sure that the simulations can be repeated by inter-

ested readers. Next, we define our stepsize dt as 1/500 and set N=500. We will be using

arrays W and dW, which we preallocate with zeros for efficiency. W will hold the simulated

path of Brownian motion and dW will hold the normally distributed increments. The ran-

dom numbers generated by randn are drawn from a normal distribution with zero mean

and unit variance (i.e. from N(0, 1)) and thus have to be multiplied by
√

∆t. The for-loop

performs the actual simulation. Note that MATLAB starts arrays at index 1 and thus we

have to do the first approximation outside the loop. The array W which is thus created is

called a discretized Brownian path (or a sample path).

Remember that Brownian motion is a random process and thus each sample path should

look different. To illustrate this, we simulate 2 more sample paths. The results of these sim-

ulations are plotted in Figure 3.1. It clearly shows the randomness of Brownian motion : the

blue path doesn’t seem to increase much, contrary to the yellow path. The red path started

by increasing, then dramatically decreases and finally starts to increase again. Of course,

this is just what we see in the figure. If we would have continued the simulation to e.g.

t = 10 (instead of t = 1), the situation might be completely different.

Efficiency considerations

From the viewpoint of efficiency, for-loops should be avoided as much as possible. This

can be achieved by using so-called ’vectorized’ commands. Our for-loop can be vectorized

in the following manner. In stead of calling randn with arguments (1,1), we now call it
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Figure 3.1: Three sample paths of Brownian motion

with arguments (1,N). This causes randn to generate an array of random numbers drawn

from N(0, 1). We again store these values in dW. We now use the command cumsum to

calculate the cumulative sum of dW. Thus W(j) becomes dW (1) + dW (2) + . . . + dW (j)

(which is the same as (3.1)). The for-loop can now be replaced by

dW=randn ( 1 ,N ) ;

W=cumsum (dW) ;

This still leaves us with the same two lines written down 3 times (because we had 3 for-

loops). Therefore, we vectorize the commands one level further. We call randn with argu-

ments (3,N), which makes dW a 3 × N matrix of normally distributed random numbers.

Each row of dW now contains the increments for one of the three sample paths. We now

again apply the command cumsum to generate the Brownian paths. Since dW is a matrix,

we have to tell cumsum to calculate cumulative sums over the column (i.e. second) dimen-

sion. Listing BrownV.m (A.2) shows the resulting code. Output of BrownV.m is analogous

to the output of BrownU.m .

The difference in computing time is only slightly noticeable with this example, but as pro-
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N BrownU.m BrownV.m gain
500 0.8023s 0.2267s 354%
5000 1.8762s 0.3952s 475%

50000 14.7858s 0.6975s 2120%
500000 147.9821s 4.7308s 3128%

Table 3.1: Computation times ( in seconds) for BrownU.m and BrownV.m for different
values of N

grams become more difficult the vectorized version can become several orders of magnitude

faster than the unvectorized version. This is illustrated in Table 3.1, where we have listed

computation times for both versions against different values for N . The data in the table

clearly shows the improvement. Another advantage of vectorized commands is that besides

faster, they are also shorter and thus save space in code-listings.

Many MATLAB commands have a vectorized version. Besides the commands randn and

cumsum, we will also use the vectorized version of the multiplication (*) and power (ˆ ). In

vectorized notation, they become .* and .ˆ respectively. There left and right arguments are

arrays or matrices on which they perform their normal operation element-wise. For instance


 1 2

3 4


 . ∗


 5 6

7 8


 =


 5 12

21 32




and


 1 2

3 4


 .ˆ


 5 6

7 8


 =


 1 64

2187 65536


 .

In the rest of this document, we will use vectorized commands wherever it is possible.

Functions along Brownian paths

Now that we know how to simulate Brownian motion, it is fairly easy to simulate a function

along a Brownian path. Consider the function

u(t) = e3t+2W (t), (3.2)

which is a special case of the Geometric Brownian motion (see expression (2.11)) with

λ = 5 and µ = 2). The code in the file BrownF.m (A.3) evaluates the function u(t) along a

path of Brownian motion. The Brownian path is created in the same way as in the previous
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Figure 3.2: The function u(t) as in (3.2) along a sample path of Brownian motion.

section, with the use of vectorized commands. The expression

U=exp(3*t + 2*W)

then fills the array U with the simulated values of u(t) from (3.2). The result is plotted in

Figure 3.2.

3.2 Simulation of SDE’s

Now that we have some experience with simulating Brownian motion, we can get started

with stochastic differential equations. SDE’s are usually approximated using the Euler-

Maruyama method. Consider the SDE

dX = b(X)dt + σ(X)dW (t), X(0) = X0. (3.3)

Then the discretization of (3.3)

Xj = Xj−1 + b(Xj−1)∆t + σ(Xj−1)dWj , j = 1, . . . , N, (3.4)
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is called the Euler-Maruyama (EM) approximation to (3.3). Here Xj is the approximation

to X(j∆t) and, as in the previous section, ∆t is the stepsize, dWj = Wj − Wj−1 and N

is the number of steps we will take. Observe that if σ(X) ≡ 0, then (3.4) reduces to the

deterministic Euler method. Together with MATLAB, (3.4) enables us to simulate sample

paths of the solution to (3.3).

We have actually already seen a simulation of a SDE. The expression (3.1) from Section 3.1

(with Wj and Wj−1 replaced by Xj and Xj−1)

Xj = Xj−1 + dWj

is the EM approximation to the SDE

dX(t) = dW (t).

This SDE admits the simple solution X(t) = W (t) and thus Section 3.1 shows how to

simulate Brownian motion with the EM method.

As a second example, lets consider the geometric Brownian motion process (2.10) from the

previous chapter. Its EM approximation is given by

Xj = Xj−1 + λXj−1∆t + µXj−1dWj j = 1, . . . , N.

Using parameter values λ = 5, µ = 2, this reduces to

Xj = Xj−1 + 5Xj−1∆t + 2Xj−1dWj j = 1, . . . , N (3.5)

with true solution (see (2.11))

X(t) = e3t+2W (t). (3.6)

In the file GBMEM.m (A.4) we perform one simulation using (3.5) and compare the result

with the true solution (3.6). We take N = 500 steps with a stepsize of ∆t = 1/500. The

Brownian path and the true solution are computed first, in the same way as in the previous

section. The true solution is then stored in Xtrue. The for-loop then fills the array Xem

with the EM-approximation. Unfortunately, we can not replace the for loop with vectorized

commands. The result is shown in Figure 3.3. Xtrue is plotted as a blue line and Xem as

28



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

t

X

Figure 3.3: The true solution (3.6) (blue/upper line) and the EM-approximation (3.5)
(red/lower line).

a red line. We see that for small values of t, the approximation matches the true solution

nicely. As t gets larger, the difference between the two grows larger. This makes sense

from a numerical point of view. From (3.4), it is clear that Xj depends on the values of

{Xl|0 ≤ l < j}. A numerical error in one of the Xl’s is thus passed on to Xj . For small j,

Xj will not suffer much from this, since it is based on only a few Xl’s. But as j gets larger,

Xj depends on more Xl’s and thus the numerical error in Xj will become larger. The next

section will take a closer look at these errors.

3.3 Error in the Euler-Maruyama method

3.3.1 Strong convergence

We would like to say something about the error in the EM-approximation. As before, let

X(t) be the solution to (3.3) and Xj the EM-approximation to X(tj). The error is thus

errorEM = |X(tj) − Xj | .

29



Remembering that X(tj) and Xj are random variables, we see that the error is also a random

variable. We use the expectation of this random variable to arrive at the notion of strong

convergence. A method is said to have strong order of convergence equal to γ, if there

exists a constant C (independent of ∆t) such that

E (|X(tj) − Xj |) ≤ C∆tγ (3.7)

for any fixed tj (0 ≤ j ≤ N ).

In the deterministic setting (i.e. when σ ≡ 0), the expectation on the left-hand side of (3.7)

falls out and we are left with the deterministic definition of convergence. It is known that

the deterministic Euler method is convergent of order γ = 1. In the stochastic world, things

are different. From e.g. [42, Thm. 10.2.2], we know that the EM method has strong order

of convergence γ = 1
2 . Thus if we want to decrease the expected value of the error, we can

simply make the stepsize smaller.

Off course we would like to inspect this numerically, but this presents us with a new prob-

lem. Since we have no expression for the distribution of errorEM , we have no way of

determining E(errorEM). We handle this problem by applying a method called the Monte

Carlo (MC) method.

3.3.2 The Monte Carlo method

Consider the quantity

1

M

M∑

r=1

Y (ωr) (3.8)

where Y (ωr) is a sample path of the random variable Y . The Central Limit Theorem states

that (3.8) is approximately normally distributed with parameters µ and σ2/M , where µ =

E(Y ) and σ2 = V AR(Y ). Thus we see that

1

M

M∑

r=1

Y (ωr) → µ = E(Y ) as M → ∞.

The quantity (3.8) can thus be used to approximate E(Y ). This method for approximating

expected values is known as the Monte Carlo method. In simpler terms,( 3.8) computes M

sample paths of Y and returns the sample average as an approximation to the expected value

of Y . It is known (see [66, Thm. 12.4]) that for the approximation (3.8) we have
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∣∣∣∣∣
1

M

M∑

r=1

Y (ωr) − E(Y )

∣∣∣∣∣ = o(
1√
M

)

and thus the MC-method converges with order 1√
M

. More information about the Monte

Carlo method can be found in [64, 65].

3.3.3 Evaluation of the error

We will use the MC-method to evaluate the error (3.7). In computer simulations, it is not

possible to do infinitely many simulations. The best we can do is to take M ’large’. The

approximation to the expectation we will then obtain is thus influence by a so-called sta-

tistical error (besides the numerical error which was already present in (3.7)). For now, we

will suppose that M = 10000 is large enough to make the statistical error invisible. We say

a little bit more about the statistical error in the next section.

We are now finally in a position to numerically investigate the claim that the expected value

of the numerical error decreases as the stepsize is decreased. We will perform a Monte Carlo

simulation of the EM approximation (3.5) to the geometric Brownian motion (2.10), using

M = 10000 sample paths and different values for ∆t. We will look at the error at time

t = 0.5. The code can be found in Appendix A.5. We start by computing M sample paths

of Brownian Motion using a small stepsize (∆t = 1/1600). These sample paths are used

to fill the MATLAB variable Xtrue with the true solution at t = 0.5. We then use a for-

loop to iterate over the stepsizes R · ∆t, for R = 16, 8, 4, 2 and 1. These stepsizes are then

used in the next for-loop to generate M EM-appxoximations. Observe that the Brownian

increments W (jR∆t) − W ((j − 1)R∆t) are obtained from the relation

W (jR∆t) − W ((j − 1)R∆t) =

jR∑

k=jR−R+1

dWk

where dW is the array that we previously filled with increments for the smaller stepsize

∆t = 1/1600.

Then, the command

ErrorEM(i+1)=mean(abs(Xtrue-Xtemp))

is used to compute the mean error, which is our approximation to the expected value of the

error. Having done this, we can continue with the next stepsize. Table 3.2 shows the results.

31



∆t errorEM

1/100 2.0857
1/200 1.4839
1/400 1.0139
1/800 0.7144
1/1600 0.4933

Table 3.2: Error in the EM approximation to (3.5) to the geometric Brownian motion at time
t = 0.5, for different values of ∆t.

The mean of the error clearly decreases as the stepsize is made smaller, supporting the claim

made in expression (3.7).

Remark: Using the data from Table 3.2, we can numerically confirm the strong order of

convergence of the EM-method. If (3.7) holds with equality, then, taking logs,

log (E (|X(tj) − Xj |)) = log C + γ∆t.

We can now make a least squares fit for C and γ using the MATLAB commands

d t = [ 1 / 1 0 0 , 1 / 2 0 0 , 1 / 4 0 0 , 1 / 8 0 0 , 1 / 1 6 0 0 ] ;

e r r = [ 2 . 0 8 5 7 , 1 . 4 8 3 9 , 1 . 0 1 3 9 , 0 . 7 1 4 4 , 0 . 4 9 3 3 ] ;

A=[ ones ( 5 , 1 ) , l o g ( d t ) ’ ] ;

r h s = l o g ( e r r ) ’ ;

s o l =A\ r h s ;

gamma= s o l ( 2 )

r e s =norm (A∗ s o l−r h s )

which gives gamma≈ 0.5215 with least squares residual of 0.0177. These results are con-

sistent with the strong order of convergence of order 1
2 for the EM-method that we claimed

before.

3.4 The expected exit time

Having done all the preliminary work, we can now focus on numerically finding the ex-

pected exit time. As in Section 2.3, we suppose that we are dealing with a system in the

form of a SDE. The SDE is defined on a domain Ω with boundary ∂Ω = ∂Ω0 ∪ ∂Ω1. We

want to know the time at which a sample path crosses the boundary ∂Ω1.

The expected exit time can be approximated in the following manner. We start by simu-
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lating a sample path of the SDE by the means which we developed in Section 3.2. While

simulating this sample path, we observe whether it crosses the boundary. This gives us an

approximation to the exit time of the current sample path. We use a Monte Carlo approach

to finding the expected exit time of the system. Thus we simulate the exit time of M sample

paths and approximate the expected exit time by the sample average.

Of course, not all sample paths necessarily cross the boundary. A sample path can also

cross the boundary ∂Ω0. If this boundary is absorbing then the sample path can no longer

exit through ∂Ω1. We can use this to approximate the exit probability. If we remember the

number of sample paths that don’t exit (say Q), then we can approximate the exit probability

by M
Q+M . The example at the end of this section illustrates how we can find the expected

exit time and the exit probability.

Accuracy

Before we start the example, we need to say something more about the error introduced by

this way of simulating the expected exit time. This error consists of two parts :

• Discretization error : this is a consequence of using the EM-method to simulate the

system;

• Statistical error : this is due to the use of the Monte Carlo method to approximate the

expected value of the exit time.

There is actually a third source of errors : a systematical error due to the representation of

decimal numbers in a computer. In this document we will suppose that systematical errors

are negligible compared to the other two error sources.

We already saw in the previous section that reducing the stepsize makes the EM-method

more accurate and thus the discretization error in our approximation to the expected exit

time can be treated by decreasing the stepsize. Also, the statistical error can be made smaller

by increasing the number of Monte Carlo simulations M . Although these ways our usefull

to reduce the error in our results, they say nothing about the accuracy of the simulation

results. Since we can’t always compare the simulation results to the exact outcome, we

would like to say something about accuracy.

We will deal here with a way to estimate the statistical error. The idea is to do a number of

(L) small Monte Carlo simulations (of size M ) of the expected exit time and use this data

to construct a 100(1-α)% confidence interval (α ∈ [0, 1]). This interval is given by
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(ε̂ − ∆ε̂, ε̂ + ∆ε̂)

where ε̂ is the average of the L MC-simulations and

∆ε̂ = t1−α,L−1

√
σ2

L
.

Here, σ2 is the variance of the L MC-simulations and t1−α,L−1 is obtained from the Student

t-distribution with L − 1 degrees of freedom (see e.g. [2, Sec. 6.9] or [4, Sect. 7.4].

Our approximation to the expected exit time, with the statistical error removed from it, is

with 100(1-α)% certainty within this interval. Thus the size of the confidence interval gives

us some information about the magnitude of the statistical error. In the example below, and

in the rest of this document, we will use 100(1-α)% confidence intervals with α = 0.10.

An example

We want to verify the results of the example from the end of Section 2.3. Therefore, we again

use the geometric Brownian motion (see expression (2.23)) with parameters λ = 5, µ = 2

and take the domain Ω to be the interval [1, 9]. We want to know when the system is expected

to cross the right side of the interval. If it crosses the left side of the interval, we are not

interested in it anymore. The starting value X0 is varied from 2 to 8.

The code can be found in Appendix A.6. We did L=20Monte Carlo simulations with M=50

sample paths to compute the average exit time and a stepsize of dt=0.00025. The listing

contains four for-loops. The first loop is for the different startingpoints, the second is for

the L MC simulations and the third for the M sample paths of one of the MC simulations.

The final loop simulates a single sample path. This loop contains two if-statements, which

monitor whether the sample path has crossed either of the two boundaries. At the end of

each MC simulation, we use the commands

Tsim ( l +1)=mean ( t o t a l ) ;

Usim ( l +1)= s ims / ( s ims +Q ) ;

to compute the mean exit time and the exit probability. Having done this for each MC-

simulation, we use

avg=mean ( Usim ) ;
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d e l t a =1.73∗ s q r t ( v a r ( Usim ) / L ) ;

CIU ( : , Xzero −1)=[ avg−d e l t a , avg+ d e l t a ] ’ ;

to create a 90% confidence interval for the exit probability for the current starting point

(for L=20 and α = 0.10 we have t1−α,L−1 ≈ 1.73). A 90% confidence interval for the

expected exit time is computed in the same way. When the simulation is ready, the matrices

CIU and CIT contain the confidence intervals for all the different starting points. The

first row contains the lower boundary of the confidence interval, the second row the upper

boundary.

Table 3.3 shows the results (I is the confidence interval), together with the true solutions

obtained from (2.25) and (2.26). The same information is shown in Figures 3.4 and 3.5.

We see that the simulation results and the true solution match eachother nicely. Our way of

simulating the expected exit time (and the exit probability) seems to work.

X0 Utrue I Ttrue I

2 0.6713 ( 0.6531 , 0.6994 ) 0.3050 ( 0.3065 , 0.3345 )
3 0.8386 ( 0.8444 , 0.8759 ) 0.2480 ( 0.2466 , 0.2650 )
4 0.9087 ( 0.9043 , 0.9357 ) 0.1946 ( 0.1928 , 0.2129 )
5 0.9456 ( 0.9212 , 0.9467 ) 0.1469 ( 0.1391 , 0.1572 )
6 0.9678 ( 0.9576 , 0.9737 ) 0.1043 ( 0.1016 , 0.1213 )
7 0.9824 ( 0.9687 , 0.9854 ) 0.0661 ( 0.0658 , 0.0813 )
8 0.9926 ( 0.9910 , 0.9993 ) 0.0315 ( 0.0380 , 0.0486 )

Table 3.3: Confidence interval I and exact values for the exit probability and expected exit
time of the geometric Brownian motion.
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Figure 3.4: The exit probability for geometric Brownian motion obtained from (2.25) and
the simulation results from Table 3.3.
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Figure 3.5: The expected exit time for geometric Brownian motion obtained from (2.26)
and the simulation results from Table 3.3.
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Chapter 4

Applications of Stochastic

Differential Equations

In this chapter, we will be looking at applications of SDE in a number of different areas. We

will consider SDE of the form

dXi(t) = bi(X(t))dt + ε
k∑

j=1

σij(X(t))dWj(t), Xi(0) = xi, i = 1, . . . , n (4.1)

where Wj(t) is again Brownian motion and ε > 0 indicates the size of the noise. We will

consider four models, all of which are given by a SDE. The models will come from different

areas of research : biology, neurology, physics and hydrology.

We will be looking for the exit probability and the expected exit time of the system. We

will find these quantities in two different ways : (1) from a differential equation, which we

discussed in Section 2.3 and (2) from a simulation of the SDE as discussed in Section 3.4.

We have already used both approaches on the geometric Brownian motion (2.10), see the

examples at the end of Sections 2.3 and 3.4.

In stead of solving the differential equations exact, we will use a technique called singular

perturbations to approximate their solutions. The singular perturbations method looks at

what happens to the differential equations as the noise-parameter ε in (4.1) is decreased

towards 0. The technique will be explained in the examples.

4.1 Stochastic Population Dynamics

An interesting application of SDE is in the field of stochastic population dynamics. Usually

models are made for the evolution of the size of a population. The model we introduce here
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was obtained from Grasman and Van Herwaarden [16, p. 55].

Suppose that the size of the population is influenced by birth, death and a carrier capacity

of the environment. The carrier capacity is a parameter that models e.g. food problems :

when a population is small in size there is food for everybody, but as it gets larger (towards

the carrier capacity) there emerges a food shortage. The carrier capacity then has a negative

effect on the growth of the population.

Suppose that the size of the population we consider is given by N(t) and suppose that the

birth rate b is such that

N → N + 1 with probability bN∆t

and that the death rate d is such that

N → N − 1 with probability (dN + αK−1N2)∆t.

In this α = b − d > 0 is the intrinsic growth rate and K is the carrier capacity. It is noted

that K � 1 . Furthermore, we suppose that the probability that two of the above events

occur in the same time interval is of O((∆t)2) (and thus we ignore it). We now introduce

the scaled variable

x(t) =
N(t)

K
.

Setting ∆x = x(t + ∆t)− x(t) (the change in x over the time interval (t, t +∆t)), we find

E[∆x] = α(1 − x)x∆t

and

E
[
(∆x)2

]
= K−1(βx + αx2)∆t with β = b + d.

Ignoring terms of O((∆t)2), we obtain for the variance

V ar[∆x] = K−1(βx + αx2)∆t.

Approximating this process with a SDE gives
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Figure 4.1: Phase plane of (4.3)

dX(t) = b(X(t))dt + εσ(X(t))dW (t), X(0) = x, X(t) ∈ [0,∞), (4.2)

with

b(x) = α(1 − x)x,

σ(x) =
√

βx + αx2,

ε =
√

K−1.

Note that X(t) is now a continuous variable and that E[dX] = E[∆x] and E
[
(dX)2

]
=

E
[
(∆x))2

]
. The deterministic (noiseless) version of this SDE is

X ′(t) = α(1 − X(t))X(t), X(0) = x, (4.3)

which is known as the logistic equation. Rewriting this as

X ′(t)
(1 − X(t))X(t)

= α, X(0) = x

and using

1

(1 − X(t))X(t)
=

1

X(t)
+

1

1 − X(t)

we find that it has solution

X(t) =
Ceαt

1 + Ceαt
, with C =

x

1 − x
,

for x 6= 1. The phaseplane of (4.3) is given by Figure 4.1. It illustrates that, in the absence

of noise, X(t) → 1 as t → ∞ and thus the size of the population approaches the carrier

capacity. Also, the drift is away from 0 and thus the population will not become extinct.

For the model with noise, this is not true anymore. The noise term can influence the size

of the population in both a positive and negative way. Mathematically, this means that

X(t) can now move against the drift. Thus the size of the population could become larger
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than the carrier capacity and the population can even become extinct. This raises some

interesting questions : what is the probability that the population becomes extinct and when

is that expected to happen? We address these questions using the approach from Section 2.3.

We saw that the probability of extinction u(x) (the ’exit probability’) satisfies

Lu = 0 (4.4a)

where L is the operator

L = b(x)
∂

∂x
+

ε2

2
a(x)

∂2

∂x2

with b(x) and a(x) = σ(x)2 as in the SDE (4.2). Boundary conditions depend on the

problem at hand. In our population model, we want the population to become extinct if

X(t) = 0 and thus we set

u(0) = 1. (4.4b)

We will allow the population to become infinitely large and still be able to become extinct

and thus we set

u′(∞) = 0 (4.4c)

which is a reflecting boundary (see the remark on page 20). This completes the differential

equation for u(x). From the same section, we know that the expected extinction time (’the

expected exit time’) is given by

T1(x) =
T (x)

u(x)
,

where T (x) satisfies the differential equation

LT = −u (4.5a)

with boundary conditions
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T (0) = 0, T ′(∞) = 0. (4.5b)

The solutions to these differential equations will give us the answer to the questions we

asked. We could of course try to find exact solutions, but we choose to approximate these

solutions using a method called singular perturbations.

Singular Perturbation Analysis

The singular perturbation (SP) method looks at what happens to the differential equations

for u and T when the noise parameter ε vanishes. To do this, we will need to consider

two different cases : (1) the starting value x is far away from the boundary {x = 0}
and (2) x is close to the boundary {x = 0}. This makes sense from a practical point of

view. If the initial size of the population is large, we will not expect the small random

changes due to the noise term to cause the population to become extinct quickly. It will

probably take a long time. But if initially the population is already close to extinction,

the noise term can have much influence even if it is very small. Mathematically this

means that if x is large, we simply let ε → 0. If x is small, we introduce a local coor-

dinate with which we zoom into the area around the boundary (this is usually called a

boundary layer). Both will give a differential equation that we can solve. Of course these

two solutions have to be combined into one global solution. We do this by imposing a

condition that matches the two solutions together. Taking this approach, both for u(x)

and T (x), we find the answer to our questions. The finer details can be found in [56, 57, 58].

In our population model, the situation is a bit easier. The differential equation for

u(x) (4.4) has the simple solution u(x) ≡ 1 (see the remark on page 20) and thus no

SP-approximation is necessary. In terms of the model, this means that the population

becomes extinct with probability 1 and thus we already have the answer to our first

question. We now apply the SP-analysis to the differential equation for the expected exit

time. The expected exit time T1(x) is now the same as the quantity T (x) and thus satisfies

LT = −1, T (0) = 0, T ′(∞) = 0.

Because of the previous considerations, we suppose that T (x) is large if x is far away from

0. We set T (x) = C(ε)τ(x) with C(ε) getting larger as ε → 0. Then τ(x) satisfies
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Lτ = −C(ε)−1, τ(0) = 0, τ ′(∞) = 0. (4.6)

Following the SP analysis, we let ε → 0 and find

b(x)
∂τ

∂x
= 0

or τ(x) =constant. Because C(ε) is still undetermined, we set τ(x) = 1. This is often

called the outer solution.

When we are closer to the boundary x = 0 (i.e. inside the boundary layer), the diffusion

coefficient will play a larger role. T rapidly changes from C(ε) to 0 and thus τ(x) rapidly

changes from 1 to 0. We zoom into this region by introducing the local coordinate

ξ =
x

ερ
.

Substitution into (4.6) yields

αξερ · ε−ρ ∂τ

∂ξ
+

ε2

2
βξερ · ε−2ρ ∂2τ

∂ξ2
= −C(ε)−1

where we’ve used that b(x) ∼ αx and a(x) ∼ βx as x → 0. We choose ρ such that both

terms on the left are of equal order of magnitude in ε (i.e. ρ = 2). Letting ε → 0 and

dividing by ξ gives us the differential equation

α
∂τ

∂ξ
+

1

2
β

∂2τ

∂ξ2
= 0. (4.7)

The boundary condition at ξ = x = 0 is simply inherited from (4.5). The other boundary

condition is chosen such that the solution inside the boundary layer (the inner solution)

matches the outer solution as ξ → ∞, i.e. τ(ξ) = 1 as ξ → ∞.

Dividing by β/2 and integrating (4.7) directly gives

2α

β
τ +

∂τ

∂ξ
= C1. (4.8)

Multiplying (4.8) with the integrating factor e2αξ/β transforms it into

(
e

2αξ
β τ
)′

= C1e
2αξ
β
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which yields for τ(ξ)

τ(ξ) = C1 + C2e
− 2αξ

β .

Using the boundary conditions gives C1 = 1, C2 = −1. Transforming back to x gives us

τ(x; ε) = 1 − e
−2αx

βε2 . (4.9)

This leaves us with the task to find the constant C(ε). In the calculations we will be needing

the stationary distribution p(s)(x) (the probability of being in state x ∈ [0,∞) at t = ∞). It

satisfies (see (2.16) and (2.17))

− ∂

∂x
(b(x)p(s)(x)) +

ε2

2

∂2

∂x2
(a(x)p(s)(x)) = 0.

Integrating from x to ∞ yields

b(x)p(s)(x) − ε2

2

∂

∂x
(a(x)p(s)(x)) = C1

and using apriori information that p(s)(x) and p(s)′(x) are exponentially small at x = ∞,

we find that C1 = 0. Integrating from x to x∗, with x∗ an arbitrarily chosen point in [0,∞),

we obtain

p(s)(x) = a(x∗)p(x∗)
e−2φ(x)/ε2

a(x)
(4.10)

where

φ(x) =

∫ x∗

x

b(s)

a(s)
ds

and the value of a(x∗)p(x∗) is determined from the constraint

∫ ∞

0
p(s)(x)dx = 1

We choose x∗ = x, where x is the equilibrium solution to x′(t) = b(x) (i.e. x = 1). So we

have φ(x) = 0 and φ′(x) = 0. Also φ′(x) = −b(x)/a(x) is negative for x < x and positive

for x > x, see Figure 4.2.

Because φ(x) is smallest in x = x, the function p(s)(x) will have a peak at x = x. In fact,
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0

φ(X)

X

Figure 4.2: Graph of φ(x)

p(s)(x) will decay exponentially fast (w.r.t. ε) away from x = x. We inspect the region

around x = x by looking at the Taylor expansion of p(s)(x)

p(s)(x) =
C2

a(x)
e−2[0+0+ 1

2
φ′′(x)(x−x)2+ 1

6
φ′′′(x)(x−x)3+...]/ε2

and then applying the transformation

x = x + ξε

giving

p(s)(ξ) =
C2

a(x + ξε)
e−φ′′(x)ξ2+ 1

3
φ′′′(x)ξ3ε−....

Letting ε → 0 we find

p(s)(ξ) =
C̃2

a(x)
e−φ′′(x)ξ2

or

p(s)(x; ε) =
C̃2

a(x)
e−φ′′(x)(x−x)2/ε2 .

Furthermore, p(s)(x; ε) can be written as
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p(s)(x; ε) =
C̃2

√
2πω2

a(x)
· 1√

2πω2
e−

(x−x)2

2ω2 (4.11)

where

ω2 =
ε2

2φ′′(x)
= −a(x)ε2

2b′(x)

and
1√

2πω2
e−

(x−x)2

2ω2 ∼ N(x, ω2)

(i.e. the quantity on the left is normally distributed with mean x and variance ω2). Now

we are ready to return to our quest to find the constant C(ε). We do this by evaluating the

integral

∫ ∞

δε2
p(s)LT − TMp(s)dx. (4.12)

Filling in the operators L and M ,

L = b(x)
∂

∂x
+

ε2

2
a(x)

∂2

∂x2

M = − ∂

∂x
(b(x)·) +

ε2

2

∂2

∂x2
(a(x)·)

we find that (4.12) becomes

ε2

2

∫ ∞

δε2

{
a(x)p(s)(x)

}
T ′′(x) −

{
a(x)p(s)(x)

}′′
T (x)dx

+

∫ ∞

δε2
b(x)p(s)(x)T ′(x) + (b(x)p(s)(x))′T (x)dx.

Using Green’s Formula (see [61, p. 386]), the first term reduces to

ε2

2

{
(a(x)p(s)(x))T ′(x) − (a(x)p(s)(x))′T (x)

}∣∣∣∣
∞

x=δε2

Partial integration transforms the second term to

b(x)p(s)(x)T (x)
∣∣∣
∞

x=δε2
.

45



Thus our integral (4.12) becomes

∫ ∞

δε2
p(s)LT − TMp(s)dx =

[
ε2

2 a(x)
{
p(s)(x)T ′(x) − T (x)p′(s)(x)

}

+ (b(x) − ε2

2 a′(x))p(s)(x)T (x))
]∣∣∣

∞

x=δε2
.

(4.13)

Note that we couldn’t start integration at x = 0, because p(s)(x) is singular at that point.

We will let δ → 0 afterwards. As before, we have LT = −1, Mp(s) = 0, at x = ∞ p(s)(x)

and p(s)′(x) are exponentially small and finally T (δε2) → 0 as δ → 0. Thus formula (4.13)

reduces to

−
∫ ∞

δε2
p(s)(x)dx = −ε2

2
a(δε2)p(s)(δε2)T ′(δε2).

At the left-hand side, we use that the integral gets its largest contribution around x = x and

thus

−
∫ ∞

δε2
p(s)(x)dx ≈ −

∫ ∞

δε2
p(s)(x; ε)dx = − eC2

√
2πω2

a(x)

∫ ∞

δε2

1√
2πω2

e−
(x−x)2

2ω2 dx

= − eC2

√
2πω2

a(x) = − eC2

√
2πω2

α+β .

(4.14)

At the right-hand side we find

−ε2

2
a(δε2)p(s)(δε2)T ′(δε2)

(a)
= −ε2

2
a(δε2)p(s)(δε2)C(ε)τ ′(δε2)

(b)
= −ε2

2
a(δε2)p(s)(δε2)C(ε)

2α

βε2
e

−2αδε2

βε2

(c)
= −ε2

2
a(δε2)C2

e−2φ(δε2)/ε2

a(δε2)
C(ε)

2α

βε2
e

−2αδε2

βε2

(d)
= −C2α

β
e−2φ(0)/ε2C(ε) (4.15)

where we’ve used

(a) T (x) ≈ C(ε)τ(x; ε), with τ(x; ε) as in (4.9);

(b) the expression (4.9) for τ(x; ε);

(c) the expression (4.10) for the stationary distribution p(s)(x);
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(d) δ → 0 and some cleaning up.

Putting the left-hand side (4.14) and the right-hand side (4.15) together gives us

− C̃2

√
2πω2

α + β
≈ −C2α

β
e−2φ(0)/ε2C(ε)

and thus (observe that C2 → C̃2 as ε → 0)

C(ε) ≈ β
√

2πω2

(α + β)α
e2φ(0)/ε2 . (4.16)

Note that indeed C(ε) gets larger as ε gets larger, as we required before. So finally, we come

to point where we can write down the approximated expression of the expected extinction

time T (x) (using (4.16) and (4.9)):

T (x; ε) = (1 − e
−2αx
βε2 )

β
√

2πω2

(α + β)α
e2φ(0)/ε2 (4.17)

where

ω2 =
ε2

2φ′′(x)
= −a(x)ε2

2b′(x)
= −(α + β)ε2

2 · −α
=

(α + β)ε2

2α
.

The result can be seen as the solid red line in Figure 4.3, where we have plotted T against

K . We used parameter values b = 30, d = 29 and x = 1. We will now attempt to verify this

result with a simulation of the system.

Simulation

The listing A.7 shows the code for the Monte Carlo simulation of the SDE (4.2). Its EM-

approximation is given by

Xj+1 = Xj + α(1 − Xj)Xj∆t +
1√
K

√
βXj + αX2

j dWj , j = 0, 1, . . . .

where K = ε−2 as before. The parameters are again b = 30, d = 29 and X0 = 1 and we

chose to perform simulations with K = 10, 15, . . . , 60. The stepsize is set to dt=0.01

and we performed L=20 MC-simulations with M=50 sample paths of the SDE. The code

is analogous to the code from the example of Section 3.4. We recognize the four while-

loops. The if-statement in the inner loop checks whether the SDE has crossed X = 0 (i.e.

whether the population has become extinct). The array CIT finally contains the required
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K I

10 ( 0.6844 , 0.7738 )
15 ( 1.0069 , 1.1171 )
20 ( 1.3231 , 1.4692 )
25 ( 1.5599 , 1.7138 )
30 ( 1.9386 , 2.1644 )
35 ( 2.2786 , 2.5221 )
40 ( 2.6497 , 2.9195 )
45 ( 3.1882 , 3.4497 )
50 ( 3.5489 , 3.8257 )
55 ( 3.9817 , 4.3578 )

Table 4.1: Simulation results of the population dynamics model

0 10 20 30 40 50 60
−1

−0.5
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0.5
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g
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(1
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Figure 4.3: The SP-approximation (4.17) and the results of a Monte Carlo simulation

confidence intervals. These intervals are shown in Table 4.1 as I and plotted in Figure 4.3.

Conclusion

We see from the data in Figure 4.3 that the expected extinction time of the population be-

comes larger as ε gets smaller. This is in agreement with what we said before since, in the

absence of noise, the population won’t become extinct and thus the expected extinction time

should be infinitely large. The simulation results have the same behavior : as K gets larger,

the confidence intervals move upward.

Remember that both ways of obtaining the expected exit time are not exact : they are ap-

proximations. How do we expect the graph of the true expected exit time to look? We know

that the SP-approximation becomes more accurate as K gets larger. The simulation results
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are influenced by discretization errors and thus will become more inaccurate. Thus for small

values of K , we trust the simulation results and we expect the graph of the true expected

exit time to run through the confidence intervals. For larger values of K , we trust the SP-

approximation.

The model we treated in this section, was chosen because it could be derived from scratch

and because it could be used to illustrate the theory in this document. Population dynamics

is a popular subject with mathematical modelers and thus many other models can be found,

see e.g. [17, 18, 21, 22, 23].

4.2 Firing of a Neuron

Setting

Over the past hundred years, a lot of research has been done on the structure and function

of the brain. The elementary processing units of the central nervous system are called ’neu-

rons’. Every neuron is connected to many other neurons and together they form a complex

network. A tiny piece of this network can be seen in Figure 4.4. The drawing shows some

triangular shapes A, B, C, D, E (the cell-bodies of the neurons) and a lot of wires inter-

connecting the neurons. In reality, a region of one cubic millimeter contains over 104 cell

bodies and kilometers of wire. Besides neurons, there are also other elements in the cortex.

For instance, there are supportercells (called glia cells) which are used for energy supply

and structural stabilization of braintissue. The cortex also contains different types of neu-

rons, but one type is by far the most common. It is the spiking neuron or firing neuron and

it is the one we will consider in this section.

A neuron consists of three parts : the dendrites, the soma (also called cell-body) and the

axon (see Figure 4.5). Roughly speaking, the dendrites are the input devices that deliver in-

formation from other neurons to the soma. The soma is the ’central processing unit’ which

performs some processing step and then produces output. This output is then taken over by

the axon and passed on to dendrites of other neurons. Neurons send their information us-

ing an electrochemical process. The most important electrically charged chemicals (called

’ions’) are Sodium (Na+) and Potassium (K+). There are also some negatively charged

molecules and ions present. The soma is surrounded by a membrane which lets through

some ions and blocks others. This passing and blocking of ions is done by opening and

closing so-called ’ion channels’. Besides these channels, there is also a pump in the mem-
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Figure 4.4: Drawing of a part of the human cortex by Santiago Ramón y Cajal [59]

brane which pushes out three Na+ ions for every two K+ ions it pushes in.

When all these forces balance and when the neuron receives no input signals, then it is said

to be at rest. Its situation is then characterized by the following statements:

• The inside of the membrane is negatively charged relative to the outside. This neg-

ative potential across the membrane is called resting potential and is about -70 mV.

Although the different ions try to settle this balance, they cannot because the mem-

brane only allows some ions to pass;

• There are relatively many K+ ions on the inside of the membrane and relatively many

Na+ ions on the outside.

• K+ ions can easily pass through the membrane whilst the Na+ ions cannot.

Inputsignals to the neuron can be both positive (excitory) and negative (inhibitory). When

the input is positive, the Na+-channels open and the Na+ ions rush in (see Figure 4.6). This

causes the membrane potential to become less negative (’depolarized’). When the mem-

brane is depolarized to about -50mV (this is called the firing threshold), all Na+ channels
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Figure 4.5: Schema of a neuron

open and the inside suddenly becomes positive relative to the outside. The neuron is said to

be firing (therefore it is called a ’firing neuron’). By this time the K+-channels open (and

the Na+-channels start to close) and the K+ ions rush out to balance the difference in volt-

age. The K+-channels actually stay open a bit to long causing the membrane potential to

fall below the resting potential (the membrane is then ’hyperpolarized’). The channels and

the pump now gradually reset the concentrations of the ions back to their original values

and the membrane returns to rest. During the period that the membrane is returning to rest,

there can be no firing of the neuron. This time is called the refractory period. Meanwhile,

the axon has taken over the high potential and delivers it to the place where it makes contact

with the dendrite of another neuron. The size of the signal and the state of the other neuron

then decide whether to pass the signal as a positive or a negative input signal.

Similarly, negative signals cause the membrane to be hyperpolarized. It is not so that the

membrane can become endlessly hyperpolarized. At a certain value, called the inhibitory

reversal potential, the negative signals no longer hyperpolarize the membrane but depolarize

it. There is also an excitory reversal potential for positive pulses, but it plays a less important

role because the firing threshold is usually far below the excitory reversal potential.

The aspect of a firing neuron that is usually modelled is the difference of the membrane

potential from the resting potential, see e.g. [19, 29, 30]. We took a model that is due to

Kallianpur [28]. The SDE found there takes the form
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Figure 4.6: Membrane potential when a neuron fires.

dX(t) =
[
−X(t)

ν + λα(V E − X(t)) + ωβ(X(t) − V I)
]
dt+

√
λα2(V E − X(t))2 + ωβ2(X(t) − V I)2dW (t), X(0) = x,

where ν is the refractory period, λ is the size of excitory signals, ω is the size if inhibitory

signals, V E is the size of the excitory reversal potential and V I the size of the inhibitory

reversal potential. Finally α ∈ (0, 1) and β ∈ (−1, 0) are parameters. We consider the

excitory and inhibitory signals to be of the same magnitude and thus we set λ = ω := ε2.

This gives us

dX(t) =
[
−X(t)

ν + ε2α(V E − X(t)) + ε2β(X(t) − V I)
]
dt+

ε
√

α2(V E − X(t))2 + β2(X(t) − V I)2dW (t), X(0) = x.

(4.18)

We are interested in finding the probability that the membrane potential is depolarized to the

firing threshold and when this is expected to happen. We will call this the firing probability

and the expected firing time respectively. Of course this depends on the initial value of

the membrane potential (x). We will again use the differential equations from Section 2.3

and the singular perturbations technique from the previous section to approximate their

solutions.
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Singular perturbation analysis

Before we can get started with the SP-analysis, we rewrite the SDE (4.18) in the form

dX(t) = b(X(t); ε)dt + ε
√

a(X(t))dW (t),

with

b(x; ε) =
−x

ν
+ ε2α(V E − x) + ε2β(x − V I) (4.19)

and

a(x) = α2(V E − x)2 + β2(x − V I)2. (4.20)

This will make the differential equations a lot easier to read.

The starting value x can be chosen anywhere from −∞ to the firing threshold. We denote

the firing threshold by S. The firing probability u(x) now satisfies

Lu = 0, (4.21a)

where the operator L takes the form

L = b(x)
∂

∂x
+

1

2
a(x)

∂2

∂x2

with b(x) and a(x) = σ(x)2 as in (4.19) and (4.20). Of course, we want the firing probabil-

ity to be 1 if we start in x = S and thus we set

u(S) = 1. (4.21b)

The boundary condition at −∞ is chosen to be reflecting, i.e.

u′(−∞) = 0. (4.21c)

The solution to (4.21) is simply given by u ≡ 1 (see again the remark on page 20). This

means that the neuron will always fire. How long it is expected that it takes the neuron to

fire, can be found from the differential equation for the expected firing time T (x). It satisfies

LT = −1
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with

T ′(−∞) = 0, T (S) = 0.

As in the previous example, we set T (x) = τ(x)C(ε). We again find an outer solution

τ(x) ≡ 1. Now we zoom into the area around x = S by using the coordinate stretching

x = S + ξε2.

We find that τ(x) satisfies

b(S; ε) · ε−2 ∂τ

∂ξ
+

ε2

2
ε−4 ∂2τ

∂ξ2
a(S) = −C(ε)−1,

with boundary condition

τ(0) = 0 (4.22)

and matching condition

τ(−∞) = 1. (4.23)

After multiplying by ε2 and letting ε → 0, we obtain for τ

b(S; 0)
∂τ

∂ξ
+

a(S)

2

∂2τ

∂ξ2
= 0

which together with (4.22) and (4.23) yields

τ(ξ) = 1 − e
−2b(S;0)

a(S)
ξ
,

or in original coördinates

τ(x; ε) = 1 − e
−2b(S;0)

a(S)
x−S
ε2 .

The constant C(ε) is again obtained from the integral

∫ S

−∞
p(s)LT − TMp(s)dx
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which takes the form

∫ S

−∞
p(s)LT − TMp(s)dx =

[
ε2

2 a(x)
{
p(s)(x)T ′(x) − T (x)p′(s)(x)

}

+ (b(x) − ε2

2 a′(x))p(s)(x)T (x)
]∣∣∣

S

x=−∞
.

This reduces to

−
∫ S

−∞
p(s)(x)dx =

ε2

2
a(S)p(s)(S)T ′(S). (4.24)

Here, p(s)(x) is again given by (see (4.10))

p(s)(x) = C2
e−2φ(x)/ε2

a(x)
, C2 =constant (4.25)

and its approximation around x = x (see 4.11)

p(s)(x; ε) =
C̃2

√
2πω2

a(x)
· 1√

2πω2
e−

(x−x)2

2ω2 (4.26)

where

ω2 =
ε2

2φ′′(x)
= − a(x)ε2

2b′(x; 0)

and x is again the equilibrium solution to x′(t) = b(x; 0) (i.e. x = 0).

At the left-hand side of (4.24) we use that the integral gets its largest contribution around

x = x and thus we use the approximation (4.26) to arrive at

−
∫ S

−∞
p(s)(x)dx ≈ − C̃2

√
2πω2

a(x)
.

At the right-hand side we obtain as before

ε2

2 a(S)p(s)(S)T ′(S) = ε2

2 a(S) · C2
e−2φ(S)/ε2

a(S) · 2b(S;0)
a(S)ε2 C(ε)

= C2b(S;0)
a(S) e−2φ(S)/ε2C(ε).

Putting the left-hand side and right-hand side together gives us the constant C(ε):

C(ε) ≈ a(S)
√

2πω2

−b(S; 0)a(x)
e2φ(S)/ε2 .

The SP-approximation of T (x) then becomes
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Figure 4.7: Simulation results of the neuron model from Table 4.2 and the SP-approximation
from expression (4.27).

T (x; ε) = (1 − e
−2b(S;0)

a(S)
x−S
ε2 )

a(S)
√

2πω2

−b(S; 0)a(x)
e2φ(S)/ε2 (4.27)

where

b(S; 0) = −S/ν

a(S) = α2(V E − S)2 + β2(S − V I)2

a(x) = α2V E2 + β2V I2

ω2 = − a(x)ε2

2b′(x;0) = (α2V E2+β2V I2)ε2

2/ν .

The solid line in Figure 4.7 shows log(T (S)) as in expression (4.27) plotted against

K = 1
ε2

. We used parameters ν = 0.1, α = 0.9, β = −0.9 and x = 0. We set the excitory

and inhibitory reversal potential at 50 and −7 respectively. The firing threshold S is set

at 2. The blue vertical lines are confidence intervals for the expected exit time, which we

obtained from a simulation of the system. The code corresponding to this simulation can be

found in Appendix A.8.

Conclusion

If the neuron receives no input, then it should not fire (i.e. the expected firing time is in-

finitely large). In expression (4.27), we can see that T (x; ε) is exponential in K and thus

the expected firing time gets exponentially larger as the input ε decreases to 0. Thus the

SP-approximation behaves the way we expect it to.
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K = 1
ε2 Tsim

10 ( 0.1021 , 0.1202 )
15 ( 0.1359 , 0.1526 )
20 ( 0.1643 , 0.1904 )
25 ( 0.2123 , 0.2422 )
30 ( 0.2628 , 0.2885 )
35 ( 0.2980 , 0.3226 )
40 ( 0.3030 , 0.3328 )
45 ( 0.3559 , 0.3952 )
55 ( 0.3876 , 0.4295 )

Table 4.2: Simulation results of a Monte Carlo simulation of the neuron model

As we observed in the previous section, we expect the true graph of the expected firing time

to go through the confidence intervals coresponding to the small values of K . As K gets

larger, we should trust the SP-approximation more than the simulation results. It is not clear

where exactly we switch from the one to the other. It seems that the confidence interval

corresponding to K = 40 is to low compared to the others and the interval corresponding

to K = 55 to high. We probably have to trust the SP-approximation after K = 50.

A downside to the approach we took is that we had to put the firing threshold at the low

value of 2. Since the neuron fires if the membrane potential is depolarized from −70mV to

−50mV, the firing threshold should have been set to 20. We had to lower it, because other-

wise simulations would have taken to long. However, it does not stop this from being a nice

illustration of the theory in this thesis.

4.3 Particle movement

In this section we will consider a model for the movement of a particle in the air. Contrary

to the models in the previous two sections, the model in this section is two-dimensional. We

suppose that the particle can only move left/right and up/down. We also suppose that move-

ment of the particle is influenced by a constant wind to the right. Due to the collision of the

particle with molecules in the air, the particle doesn’t just move along with the wind. It also

performs a random motion. A model from the book by Grasman and Van Herwaarden [16,

p. 76] is

dX(t) = νdt +
√

2DLdWL(t) , X(0) = x

dY (t) =
√

2DT dWT (t) , Y (0) = y
(4.28)
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Figure 4.8: Flow parallel to the x-axis

where X(t) is the movement in the horizontal direction, Y (t) is the movement in the vertical

direction and ν indicates the speed of the wind. The random movement is modelled via a

Brownian motion in the longitudinal (horizontal) direction (WL(t)) and a Brownian motion

in the transversal (vertical) direction (WT (t)). The magnitude of these random motions is

indicated by DL and DT respectively.

We want to know the probability that the particle reaches the ground and how long that

would take. This could be interesting if e.g. the particle is polluted. We suppose that the

ground ∂Ω1 is given by {(X,Y )|X < 0, Y = 0}. The particle can freely move in the area

Ω = {(X,Y )|X < 0, Y > 0}. If the particle crosses the line ∂Ω0 = {(X,Y )|X = 0, Y >

0}, then we are not interested in its movement anymore. All this is illustrated in Figure 4.8.

We will use the same approach that was used in the previous two sections.

For the model (4.28), the operator L takes the form

L = ν
∂

∂x
+

(
DL

∂2

∂x2
+ DT

∂2

∂y2

)
.

The probability that the particle reaches the ground (u(x, y)) is thus given by the differential

equation

Lu = 0. (4.29a)

The boundary conditions are obtained from the practical considerations above and are
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u(x, y) = 0 for (x, y) at ∂Ω0 and u(x, y) = 1 for (x, y) at ∂Ω1. (4.29b)

The time that it is expected to take the particle to reach the ground (T1(x, y)) is then given

by T (x,y)
u(x,y) with T (x, y) the solution to

LT = −u (4.30a)

with boundary conditions

T (x, y) = 0 for (x, y) at ∂Ω0 and T (x, y) = 0 for (x, y) at ∂Ω1. (4.30b)

Having stated the differential equations, we can get started to find the SP-approximations to

their solutions.

Singular perturbations

First we set DL = DT = ε2

2 in order to have the same notation as in the previous two

sections. Inserting this into (4.29) yields

ν
∂u

∂x
+

ε2

2

(
∂2u

∂x2
+

∂2u

∂y2

)
= 0 (4.31a)

with boundary conditions

u(x, y) = 0 for (x, y) at ∂Ω0 and u(x, y) = 1 for (x, y) at ∂Ω1. (4.31b)

Looking at this differential equation, we see that it no longer has a simple solution and thus

we will make an SP-approximation. Letting ε → 0 and using the first boundary condition,

we find that u ≡ 0 for y away from ∂Ω1. To inspect the boundary layer around ∂Ω1, we

introduce the local coordinate

ξ =
y

ε
. (4.32)

Substitution into (4.31) and letting ε → 0 gives

ν
∂u

∂x
+

1

2

∂2u

∂ξ2
= 0
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with boundary conditions

u(x, 0) = 1, u(0, ξ) = 0

and matching condition

lim
ξ→∞

u(x, ξ) = 0.

With the aid of the transformation ξ√
−x/ν

, we find the solution

u(x, ξ) =

√
2

π

∫ ∞

ξ√
−x/ν

e−
1
2
s2

ds.

Returning to original variables, we find

u(x, y; ε) =

√
2

π

∫ ∞

y

ε
√

−x/ν

e−
1
2
s2

ds. (4.33)

We now turn our attention to the quantity T (x, y). Inserting ε into (4.30) yields

ν
∂T

∂x
+

ε2

2

(
∂2T

∂x2
+

∂2T

∂y2

)
= −u (4.34a)

with boundary conditions

T (x, y) = 0 for (x, y) at ∂Ω0 and T (x, y) = 0 for (x, y) at ∂Ω1. (4.34b)

In the same way as we did for u, we find the outer solution T ≡ 0. We again zoom into the

boundary layer by introducing the local coordinate ξ (as in (4.32)). Substitution into (4.34)

gives

ν
∂T

∂x
+

1

2

∂2T

∂ξ2
= −u(x, ξ)

with boundary conditions and matching condition

T (x, 0) = 0, T (0, ξ) = 0, lim
ξ→∞

T (x, ξ) = 0.

The solution is given by
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Figure 4.9: SP-approximation to u(x, y) as in (4.33) and the simulation results from Table
4.3

T (x, ξ) =

√
2

π

∫ ∞

ξ√
−x/ν

ξ2

s2
e−

1
2
s2

ds.

or in original variables

T (x, y; ε) =

√
2

π

∫ ∞

y

ε
√

−x/ν

y2

ε2s2
e−

1
2
s2

ds.

Thus T1(x, y; ε) is given by

T1(x, y; ε) = u(x, y; ε)−1

√
2

π

∫ ∞

y

ε
√

−x/ν

y2

ε2s2
e−

1
2
s2

ds. (4.35)

The quantities u(x, y; ε) and T (x, y; ε) have been plotted in Figures 4.9 and 4.10 respec-

tively. The blue vertical lines are 90% confidence intervals obtained from a simulation of

the system (which we will discuss next).

Simulation

Listing A.9 gives the code for the Monte Carlo simulation. The parameter values we used

are y = 0.12, x = −1.5, ν = 1, and as before M = 50, L = 20. The value of ε is varied

from 0.05 to 0.30, which is done by the outer while-loop. The inner while loop uses the

EM-approximation to (4.28), given by
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Figure 4.10: SP-approximation to T1(x, y) as in (4.35) and the simulation results from Table
4.3





Xj = Xj−1 + νdt +
√

2DLdWLj

Yj = Yj−1 +
√

2DT dWTj

to approximate a sample path of the system (4.28). The two if-statements check whether

it exits through one of the two boundaries. If it exits through ∂Ω1 (first if), then we record

its exit time as before. If it exits through ∂Ω0 (second if), then we are not interested in it

anymore and we mark it as not-exiting (i.e. we increase Q). At the end of each Monte Carlo

simulation, we use Q in the command

Usim ( l +1)= s ims / ( s ims +Q ) ;

to approximate the probability that the particle hits the ground ∂Ω1 (as we explained in

Section 3.4).

At the end, the arrays CIU and CIT are filled with the 90% confidence intervals for u and

T1. The resulting intervals, denoted by Iu and IT respectively, can be found in Table 4.3.

They are also plotted in Figures 4.9 and 4.10.

Conclusion

We seen from Figure 4.9 that as the noise gets smaller, the probability that the particle hits

the ground becomes smaller. This makes sense, since in the absence of noise the particle

will follow the wind and will thus not hit the ground. If the magnitude of the noise is
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ε Iu IT

0.30 ( 0.6355 , 0.6811 ) ( 0.4219 , 0.4665 )
0.25 ( 0.5808 , 0.6160 ) ( 0.4876 , 0.5285 )
0.20 ( 0.5385 , 0.5676 ) ( 0.5585 , 0.6013 )
0.15 ( 0.4441 , 0.4760 ) ( 0.6375 , 0.6815 )
0.10 ( 0.2736 , 0.2960 ) ( 0.8092 , 0.8424 )
0.05 ( 0.0380 , 0.0426 ) ( 1.1236 , 1.1508 )

Table 4.3: Simulation results for the particle movement model

small and the particle does hit the ground, than it has probably taken a long time to do so.

This is confirmed by Figure 4.10, where we see that the SP-approximation to the expected

exit time becomes larger as ε gets smaller. The same observations can be made about the

simulation results and thus both approximations behave as we would expect from their

practical interpretation.

4.4 Groundwater pollution

In this section, we consider the flow of groundwater that is confined in a layer called

’aquifer’. We suppose that the thickness of the aquifer is small and thus that we can view the

groundwaterflow as a two-dimensional problem. We are interested in the path followed by

a single particle, which we consider to be contaminated. We assume that the flow is given

by the differential equation


 X ′(t)

Y ′(t)


 = v(X(t), Y (t)), (4.36)

with

v(x, y) =

(−x

y

)
. (4.37)

We assume that the contaminated particle starts in the point P = (x, y), i.e. the initial

condition is


 X(0)

Y (0)


 =


 x

y


 . (4.38)

Observe that the solution of (4.36)-(4.38) is given by
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Figure 4.11: Symmetric 2D flow of groundwater in the aquifer


 X(t)

Y (t)


 =


 xe−t

yet




and thus, for a particle following the flow, X(t)Y (t) = xy =constant. The lines in Fig-

ure 4.11 symbolize the flow for different values of x and y. Observe that if a particle that

follows the flow starts in the upper halfplane, then it will always remain there. A simi-

lar statement goes for particles that start in de lower halfplane. The line {Y = 0}, which

separates the two halfplanes, is often called the separating streamline.

As in the previous example, it is not sufficient to model the movement simply by the flow.

The particle exhibits a random motion which sometimes causes the particle to cross the sep-

arating streamline (which is impossible if it would follow the flow). One model describing

this behavior is due to Van Herwaarden [31, p. 29] and is given by

dX(t) =
(
vx + ∂Dxx

∂x +
∂Dxy

∂y

)
dt +

√
2aL|v| vx

|v|dWL(t) +
√

2aT |v| vy

|v|dWT (t)

dY (t) =
(
vy +

∂Dxy

∂x +
∂Dyy

∂y

)
dt +

√
2aL|v| vy

|v|dWL(t) −
√

2aT |v| vx
|v|dWT (t)

(4.39)
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where v(x, y) = (vx, vy) is given by (4.37) and

Dxx = aT |v| + (aL−aT )x2

|v|

Dxy = −(aL−aT )xy
|v|

Dyy = aT |v| + (aL−aT )y2

|v| .

The parameters aT and aL indicate the magnitude of the random motion in the transversal

(vertical) and longitudinal (horizontal) direction respectively. We are interested in the

probability that a contaminated particle reaches the boundary ∂Ω1 and the expected arrival

time at that boundary. There could for instance be a drinkwater pump or a farm at this

boundary, which makes the arrival of a contaminated particle worth looking at. We continue

in the same way as in the previous example.

The operator L now takes the form

L =

(
vx +

∂Dxx

∂x
+

∂Dxy

∂y

)
∂

∂x
+

(
vy +

∂Dxy

∂x
+

∂Dyy

∂y

)
∂

∂y
+

1

2

(
2Dxx

∂2

∂x2
+ 4Dxy

∂2

∂x∂y
+ 2Dyy

∂2

∂y2

)
.

which can be simplified to

L = −x
∂

∂x
+ y

∂

∂y
+

∂

∂x

(
Dxx

∂

∂x
+ Dxy

∂

∂y

)
+

∂

∂y

(
Dxy

∂

∂x
+ Dyy

∂

∂y

)
.

As before, the probability that the particle reaches the boundary ∂Ω1 (u(x, y)) satisfies

Lu = 0, u(x,−R) = 1 and lim
y→∞

u(x, y) = 0. (4.40)

The boundary conditions are obvious from the practical interpretation. The time that we

expect the particle to reach the boundary T1(x, y) uses the quantity T (x, y) which is the

solution to

LT = −u, T (x,−R) = 0 and lim
y→∞

T (x, y) = 0.

We are now ready to find the SP-approximations to u(x, y) and T (x, y).
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Singular Perturbations

We consider the magnitudes of the noise-terms (aL and aT ) to be small and therefore we set

aL = aT = ε2. Away from the separating streamline, the particle will follow the flow and

thus we let ε → 0. Since Dxx, Dxy, Dyy → 0, the differential equation (4.40) for u(x, y)

becomes

−x
∂u

∂x
+ y

∂u

∂y
= 0.

From the boundary conditions, we now see that u(x, y) = 1 if starting in the lower halfplane

and u(x, y) = 0 if starting in the upper half plane. So if the particle starts in the upper

halfplane, then it will not hit the boundary (u = 0) and if it starts in the lower halfplane then

it will hit the boundary (u = 1). Looking at Figure 4.11, we see that this is exactly what we

would expect from a particle that follows the flow.

We now concentrate on what happens inside the boundary layer. We only consider the case

x > 0, because of symmetry considerations. In our analysis, we have to exclude a small

region around the origin where our approximation is not valid. Since this approximation

has only local importance, we will not treat it further. Substitution of the local coordinate

ξ = y
ε into (4.40) gives

−x
∂u

∂x
+ ξ

∂u

∂ξ
+

∂

∂x

(
Dxx

∂u

∂x
+ Dxy

1

ε

∂u

∂ξ

)
+

1

ε

∂

∂ξ

(
Dxy

∂u

∂x
+ Dyy

1

ε

∂u

∂ξ

)
= 0

Letting ε → 0, we find

−x
∂u

∂x
+ ξ

∂u

∂ξ
+ x

∂2u

∂ξ2
= 0

with matching conditions

u(x, ξ) → 0 for ξ → ∞
u(x, ξ) → 1 for ξ → −∞.

Setting η = ξ/
√

2
3x yields

η
∂u

∂η
+

∂2u

∂η2
= 0
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which has as a solution

u(η) = C1 + C2

∫ ∞

η
e−

1
2
s2

ds

Returning to local coordinates and using the matching conditions gives

u(x, ξ) =
1√
2π

∫ ∞

ξ/
q

2
3
x
e−

1
2
s2

ds.

or, in original variables

u(x, y; ε) =
1√
2π

∫ ∞

y/(ε
q

2
3
x)

e−
1
2
s2

ds. (4.41)

The quantity T (x, y) satisfies LT = −u. For starting points in the upper halfplane and

outside the boundary layer, this becomes

−x
∂T

∂x
+ y

∂T

∂y
= 0

since u ≈ 0 there. Together with the boundary condition

lim
y→∞

T (x, y) = 0

this gives T ≡ 0. For starting points in the lower halfplane and outside the boundary layer,

we find for T (x, y)

−x
∂T

∂x
+ y

∂T

∂y
= −1

with boundary condition

lim
y→−R

T (x, y) = 0.

This gives (using the transformation z = −y
2x )

T (x, y) = − ln(−y) + ln(R).

For starting points inside the boundary layer, we have (ξ = y
ε )
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−x
∂T

∂x
+ ξ

∂T

∂ξ
+ x

∂2T

∂ξ2
= −u(x, ξ)

with matching conditions

T (x, ξ) = 0 for ξ → ∞
T (x, ξ) = − ln(−ξ) + ln(R) − ln(ε) for ξ < 0 outside the boundary layer.

Set T (x, ξ) = Tp(x, ξ) + Th(x, ξ) where Tp(x, ξ) is a particular solution and Th(x, ξ) a

homogeneous solution. We easily find a particular solution

Tp(x, ξ) = u(x, ξ) ln(x).

Thus Th(x, ξ) satisfies

−x
∂Th

∂x
+ ξ

∂Th

∂ξ
+ x

∂2Th

∂ξ2
= 0. (4.42)

Using new coordinates

τ =
1

3
x3 and η = xξ

transforms (4.42) into

∂Th

∂τ
=

∂2Th

∂2η
. (4.43)

Observe that Tp(x, ξ) → 0 as ξ → ∞ and Tp(x, ξ) → ln(x) as ξ → ∞. Thus the matching

conditions for (4.43) are

Th(0, η) = 0 for η > 0

Th(0, η) = − ln(−η) + ln(R) − ln(ε) for η < 0.

This is satisfied by

Th(τ, η) =
1√
2π

∫ ∞

η/
√

2τ

(
− ln(ε) + ln(R) − ln(−η + s

√
2τ)
)

e−
1
2
s2

ds

or in local coordinates
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Th(x, ξ) =
1√
2π

∫ ∞

ξ/
q

2
3
x

(
− ln(ε) + ln(R) − ln(−xξ + sx

√
2

3
x)

)
e−

1
2
s2

ds.

Thus we have for T (x, ξ)

T (x, ξ) = ln(x)u(x, ξ) + (− ln(ε) + ln(R) − ln(x)) u(x, ξ)+

1√
2π

∫ ∞

ξ/
q

2
3
x

(
− ln(−ξ + s

√
2

3
x)

)
e−

1
2
s2

ds

or

T (x, y; ε) = (− ln(ε) + ln(R))u(x, y)+

1√
2π

∫ ∞

y/(ε
q

2
3
x)

(
− ln(−y

ε
+ s

√
2

3
x)

)
e−

1
2
s2

ds.

The time that we expect the particle to take to reach the boundary (T1(x, y)) is thus approx-

imated by

T1(x, y; ε) = − ln(ε) + ln(R)+

{∫ ∞

y/(ε
q

2
3
x)

e−
1
2
s2

ds

}−1 ∫ ∞

y/(ε
q

2
3
x)

(
− ln(−y

ε
+ s

√
2

3
x)

)
e−

1
2
s2

ds.

(4.44)

Simulation

Listing A.10 shows the code that performs L=20 MC-simulations of size M=50. We used

stepsize dt=0.01 and startingpoint (x, y) = (4, 0.2). Simulation of the time that we expect

the particle to take to reach the boundary is done in the same way as in the previous sections.

For the simulation of the probability that the particle reaches the boundary, we have to be a

bit carefull.

A sample path doesn’t exit through the boundary ∂Ω1, if it passes the line {Y = ∞}. Of

course, when simulating the SDE with MATLAB, we can not check if the sample path

passes that line. Therefore we ’lower’ the boundary at Y = ∞ to Y = 10. A sample path is

now marked as not-exiting if it passes this boundary (i.e. Q is incremented). The quantity Q
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Figure 4.12: SP-approximation to u(x, y) as in (4.41) and the simulation results from Table
4.4

is then used in the same way as before to simulate the probability that the particle reaches

the boundary.

Table 4.4 shows the resulting confidence intervals for different values of ε.

ε Iu IT1

0.40 ( 0.1020 , 0.1116 ) ( 3.6859 , 3.8102 )
0.35 ( 0.2003 , 0.2129 ) ( 3.0611 , 3.1798 )
0.30 ( 0.2635 , 0.2825 ) ( 2.7129 , 2.8075 )
0.25 ( 0.2921 , 0.3240 ) ( 2.4172 , 2.5649 )
0.20 ( 0.3240 , 0.3531 ) ( 2.1706 , 2.2946 )
0.15 ( 0.3559 , 0.3928 ) ( 1.9492 , 2.0879 )
0.10 ( 0.3865 , 0.4201 ) ( 1.7967 , 1.9145 )

Table 4.4: Simulation results of the groundwater pollution model

Conclusion

The SP-approximations (4.41) and (4.44) are plotted in Figures 4.12 and 4.13, together

with the simulation results. From the figures it is clear that as ε → 0, the probability that the

particle reaches the pumps decreases. This indicates that in the absence of noise, the particle

will simply follow the flow. The expected arrival time at the boundary increases as ε → 0,

which is what we wanted it to do. The simulation results verify the SP-approximations,

although they seem to deviate from the SP-approximation more as ε gets larger. This is not

very strange, since the SP-approximation becomes less accurate as ε gets larger.
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Figure 4.13: SP-approximation to T1(x, y) as in (4.44) and the simulation results from Table
4.4

Readers who want to know more about the applications of SDE in hydrology can read e.g.

[32, 33] and the references therein.
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Chapter 5

Final Remarks

The examples from Chapter 4 are just a few applications of SDE. There are many other

examples to be found, see the references in the Introduction and Chapter 4. Before we look

at what lies beyond this thesis, we have to make two comments. The first is about our way

of simulating the expected exit time. We used the EM-method to simulate SDE’s and then

used this simulation to find an approximation to the expected exit time. As we said in Sec-

tion 3.4, this approximation is influenced by a discretization error and a statistical error. We

used confidence intervals to get an idea of the magnitude of the statistical error, but said

nothing about the size of the discretization error. There is not much literature dealing with

the discretization error and thus there is still some work to be done. Interested readers can

perhaps use [54, 55] as a starting point.

The second comment is about the singular perturbations, which we used in Chapter 4 to

approximate the differential equations. Singular perturbations are a popular way of ap-

proximating differential equations, although they can become rather complex. In Chapter

7 of [16] there are two examples which approximate the stationary distribution p(s)(x) by a

WKB-expansion

p(s)(x) ≈ ω(x)e−Ψ(x).

The coefficients ω(x) and Ψ(x) have to be found using numerical integration, seriously

complicating the calculations. In these situations, it is easier to approximate the differential

equations using numerical techniques. This approach is used in [51, 52].
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Further reading

An interesting topic, of which we have only touched the surface, is the numerical analysis

of SDE. Our work was focused on introducing the Euler-Maruyama method (3.4) [43],

but there are other numerical methods for approximating SDE’s. There is for instance the

stochastic theta method (also called semi-implicit Euler method), the Millstein scheme

and Taylor schemes. For a complete treatment of these (and many other) schemes, we

refer the reader to [42]. The main property of these methods that is usually studied is their

convergence behavior, but some also look at stability [45, 46]. There are also stochastic

versions of Runge Kuta schemes. More about these can be found in [48, 49, 53]. An

overview of recent literature is given in [50].

In Chapter 2, when dealing with the geometric Brownian motion, we already men-

tioned the world of financial mathematics. Besides SDE’s, this area of research also uses

partial differential equations and numerical analysis and could therefore be worth looking

at for people who read this document. A nice introduction can be found in e.g. [12, 13, 14].

Finally, I should mention the existence of the Maple package ’Stochastic’ [60]. The

package includes routines useful for finding explicit solutions of SDE, routines for finding

or constructing numerical schemes and many others. The symbolic power of Maple

combined with the computing and graphical possibilities of MATLAB are ideal for dealing

with SDE (see e.g. [47]).
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Appendix A

Program Listings

A.1 Brownian motion (unvectorized)

%BrownU .m

%P l o t s 3 sample p a t h s o f Brownian mot ion

%See s e c t i o n 3 . 1 .

c l e a r ;

randn ( ’ s t a t e ’ , 1 0 0 0 0 ) ; %s e t t h e s t a t e o f t h e randn

%%%%f i r s t s im%%%%

d t = 1 / 5 0 0 ;

N=500;

dW= z e r o s ( 1 ,N ) ; %p r e c a l l o c a t e a r r a y s . . .

W= z e r o s ( 1 ,N ) ; %f o r e f f i c i e n c y

dW( 1 ) = s q r t ( d t )∗ randn ( 1 , 1 ) ; %f i r s t a p p r o x i m a t i o n . . .

W(1)=0+dW( 1 ) ; %because W( 0 ) i s n o t a l l o w e d

f o r j =2 :N

dW( j )= s q r t ( d t )∗ randn ( 1 , 1 ) ;

W( j )=W( j −1)+dW( j ) ;

end

p l o t ( [ 0 : d t : d t ∗N] , [ 0 ,W] , ’ r−’ ) , hold on %p l o t f i r s t s im

%%%%second sim%%%%

dW= z e r o s ( 1 ,N ) ; %p r e c a l l o c a t e a r r a y s . . .

W= z e r o s ( 1 ,N ) ; %f o r e f f i c i e n c y

dW( 1 ) = s q r t ( d t )∗ randn ( 1 , 1 ) ; %f i r s t a p p r o x i m a t i o n . . .
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W(1)=0+dW( 1 ) ; %because W( 0 ) i s n o t a l l o w e d

f o r j =2 :N

dW( j )= s q r t ( d t )∗ randn ( 1 , 1 ) ;

W( j )=W( j −1)+dW( j ) ;

end

p l o t ( [ 0 : d t : d t ∗N] , [ 0 ,W] , ’b−’ ) , hold on %p l o t second sim

%%%%t h i r d s im%%%%

dW= z e r o s ( 1 ,N ) ; %p r e c a l l o c a t e a r r a y s . . .

W= z e r o s ( 1 ,N ) ; %f o r e f f i c i e n c y

dW( 1 ) = s q r t ( d t )∗ randn ( 1 , 1 ) ; %f i r s t a p p r o x i m a t i o n . . .

W(1)=0+dW( 1 ) ; %because W( 0 ) i s n o t a l l o w e d

f o r j =2 :N

dW( j )= s q r t ( d t )∗ randn ( 1 , 1 ) ;

W( j )=W( j −1)+dW( j ) ;

end

p l o t ( [ 0 : d t : d t ∗N] , [ 0 ,W] , ’y−’ ) , hold o f f %p l o t t h i r d s im

x l a b e l ( ’ t ’ , ’ F o n t s i z e ’ , 1 6 )

y l a b e l ( ’W( t ) ’ , ’ F o n t s i z e ’ , 1 6 , ’ R o t a t i o n ’ , 0 )
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A.2 Brownian motion (vectorized)

%BrownV .m

%P l o t s 3 sample p a t h s o f Brownian mot ion u s i n g v e c t o r i z e d commands .

%See s e c t i o n 3 . 1 .

c l e a r

randn ( ’ s t a t e ’ , 1 0 0 0 0 ) ; %s e t t h e s t a t e o f t h e randn

d t = 1 / 5 0 0 ;

N=500;

dW= s q r t ( d t )∗ randn ( 3 ,N ) ; %The Brownian i n c r e m e n t s

W=cumsum (dW, 2 ) ; %The Brownian p a t h s

p l o t ( [ 0 : d t : d t ∗N] , [ 0 ,W( 1 , : ) ] , ’ r−’ ) , hold on %p l o t t h e r e s u l t

p l o t ( [ 0 : d t : d t ∗N] , [ 0 ,W( 2 , : ) ] , ’b−’ ) , hold on %p l o t t h e r e s u l t

p l o t ( [ 0 : d t : d t ∗N] , [ 0 ,W( 3 , : ) ] , ’y−’ ) , hold o f f %p l o t t h e r e s u l t

x l a b e l ( ’ t ’ , ’ F o n t s i z e ’ , 1 6 )

y l a b e l ( ’W( t ) ’ , ’ F o n t s i z e ’ , 1 6 , ’ R o t a t i o n ’ , 0 )

A.3 Function along a Brownian path

%BrownF .m

%p l o t s t h e f u n c t i o n u ( t )= exp (3∗ t +2∗W( t ) ) a long a sample pa th

% o f Brownian mot ion

%See s e c t i o n 3 . 1 .

c l e a r ;

randn ( ’ s t a t e ’ , 1 0 0 0 0 ) ;

d t = 1 / 5 0 0 ; %s t e p s i z e

N=500; %number o f s t e p s

t =[ d t : d t : 1 ] ;

dW= s q r t ( d t )∗ randn ( 1 ,N ) ; %The Brownian i n c r e m e n t s

W=cumsum (dW) ; %The Brownian pa th

U=exp (3∗ t + 2∗W) ; %F u n c t i o n a long t h e Brownian pa th

p l o t ( [ 0 , t ] , [ 1 ,U] , ’ r−’ ) ;

x l a b e l ( ’ t ’ , ’ F o n t s i z e ’ , 1 6 )

y l a b e l ( ’U( t ) ’ , ’ F o n t s i z e ’ , 1 6 , ’ R o t a t i o n ’ , 0 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ r i g h t ’ )

l egend ( ’ The f u n c t i o n u ( t ) a l o n g a p a t h o f Brownian mot ion ’ , 2 )
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A.4 Euler-Maruyama method

%GBMEM.m

%S i m u l a t e s one sample pa th o f t h e SDE dX ( t )= lambda∗X( t )∗ d t+mu∗X( t )∗dW( t )

%See s e c t i o n 3 . 2 .

c l e a r

randn ( ’ s t a t e ’ , 1 0 0 0 0 ) ;

lambda =5 ;mu=2 ; Xzero =1 ;

d t = 1 / 5 0 0 ;N=500;

dW= s q r t ( d t )∗ randn ( 1 ,N ) ; %Brownian i n c r e m e n t s

W=cumsum (dW) ; %Sample p a t h s

t =[ d t : d t : d t ∗N ] ;

Xt rue =Xzero∗exp ( ( lambda −1/2∗muˆ 2 )∗ t +mu∗W) ; %t r u e s o l u t i o n

Xem= z e r o s ( 1 ,N ) ;

Xtemp=Xzero ;

f o r j =1 :N %s t a r t s i m u l a t i o n

Xtemp=Xtemp+lambda ∗Xtemp∗ d t +mu∗Xtemp∗dW( j ) ;

Xem( j )= Xtemp ;

end

p l o t ( [ 0 : d t : d t ∗N] , [ Xzero , Xt rue ] , ’b−’ ) , hold on %p l o t r e s u l t s

p l o t ( [ 0 : d t : d t ∗N] , [ Xzero , Xem] , ’ r−’ ) , hold o f f

x l a b e l ( ’ t ’ , ’ F o n t S i z e ’ , 1 6 ) ;

y l a b e l ( ’X’ , ’ F o n t S i z e ’ , 1 6 , . . .

’ R o t a t i o n ’ , 0 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ r i g h t ’ ) ;
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A.5 Monte Carlo approximation using EM

%GBMMC.m

%Per forms a Monte Carlo s i m u l a t i o n o f t h e SDE

% dX ( t )= lambda∗X( t )∗ d t + mu∗X( t )∗dW( t )

%u s i n g d i f f e r e n t v a l u e s f o r d t . The e r r o r a t t i m e t = 0 . 5 i s computed f o r

%each s t e p s i z e . See s e c t i o n 3 . 3 .

c l e a r

randn ( ’ s t a t e ’ , 1 0 0 0 0 ) ;

lambda =5 ;mu=2 ; Xzero =1 ; %some p a r a m e t e r s

M=10000; %10000 sample p a t h s

ErrorEM= z e r o s ( 1 , 5 ) ; %w i l l ho ld e r r o r s f o r

d t = 1 / ( 1 0 0∗ 2 ˆ 4 ) ; %s t e p s i z e f o r t r u e s o l u t i o n

N=50∗2ˆ4 ; %number o f s t e p s

dW= s q r t ( d t )∗ randn (M,N ) ; %Brownian i n c r e m e n t s

W=cumsum (dW, 2 ) ; %Brownian p a t h s

Xtrue =Xzero ∗exp ( ( lambda−mu∗mu / 2 )∗ d t ∗N+mu∗W( : , end ) ) ; %True s o l u t i o n a t t =0.5

f o r i =0:4

R=2ˆ(4− i ) ;

Dt=R∗ d t ; %i n c r e a s e s t e p s i z e

L=N/ R ; %d e c r e a s e s t e p s

Xtemp=Xzero ; %EM−a p p r o x i m a t i o n

f o r j =1 :L

Winc=sum (dW( : , R∗ ( j −1)+1:R∗ j ) , 2 ) ;

Xtemp=Xtemp+lambda ∗Xtemp∗Dt+mu∗Xtemp .∗ Winc ;

end

ErrorEM ( i +1)=mean ( abs ( Xtrue−Xtemp ) ) ; %f i n d e r r o r a t t =0.5

end
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A.6 Expected exit time

%GBM.m

%Find c o n f i d e n c e i n t e r v a l s f o r t h e e x p e c t e d e x i t t i m e o f t h e SDE

% dX ( t )= lambda∗X( t )∗ d t + mu∗X( t )∗dW( t )

%See s e c t i o n 3 . 4 .

c l e a r ;

randn ( ’ s t a t e ’ , 1 0 0 0 0 ) ;

lambda =5 ;mu=2 ; %some p a r a m e t e r s

a =1 ; b =9 ;

M=50; %s i z e o f a MC−s im

L=20; %number o f MC−s ims

Xzero =2 ;

d t = 0 . 0 0 0 2 5 ; %s t e p s i z e

CIU= z e r o s ( 2 , 7 ) ; %c o n f i d e n c e i n t e r v a l f o r U

CIT= z e r o s ( 2 , 7 ) ; %c o n f i d e n c e i n t e r v a l f o r T

whi l e Xzero <9 %t h e d i f f e r e n t s t a r t i n g p o i n t s

l =0 ;

t o t a l = z e r o s ( 1 ,M) ; %e x i t t i m e f o r each sample pa th

Tsim= z e r o s ( 1 , L ) ; %mean e x i t t i m e f o r each MC−s im

Usim= z e r o s ( 1 , L ) ; %e x i t prob . f o r each MC−s im

whi l e l<L %loop f o r MC−s ims

s ims =0 ;

Q=0 ;

whi l e sims<M %loop f o r sample p a t h s o f a MC−s im

f l a g =0 ;

Xtemp=Xzero ;

c o u n t =0 ;

whi l e f l a g ==0 %loop f o r a s i n g l e sample pa th

Xtemp=Xtemp+lambda ∗Xtemp∗ d t + . . . %EM−a p p r o x i m a t i o n

mu∗Xtemp∗ s q r t ( d t )∗ randn ( 1 , 1 ) ;

c o u n t = c o u n t +1 ;

i f Xtemp<=a %e x i t t h r o u g h l e f t s i d e o f t h e domain

Q=Q+1;

f l a g =1 ;

end

i f Xtemp>=b %e x i t t h r o u g h r i g h t s i d e o f t h e domain

s ims= s ims +1 ;

t o t a l ( s ims )= d t ∗ c o u n t ;

f l a g =1 ;

end
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end

end

Tsim ( l +1)=mean ( t o t a l ) ; %mean e x i t t i m e f o r t h i s MC−s im

Usim ( l +1)= s ims / ( s ims+Q ) ; %e x i t prob . f o r t h i s MC sim

l = l +1 ; %n e x t MC−s im

end

avg=mean ( Usim ) ; %c o n s t r u c t c o n f i d e n c e i n t e r v a l f o r Usim

d e l t a =1.73∗ s q r t ( v a r ( Usim ) / L ) ;

CIU ( : , Xzero −1)=[ avg−d e l t a , avg+ d e l t a ] ’ ;

avg=mean ( Tsim ) ; %c o n s t r u c t c o n f i d e n c e i n t e r v a l f o r Tsim

d e l t a =1.73∗ s q r t ( v a r ( Tsim ) / L ) ;

CIT ( : , Xzero −1)=[ avg−d e l t a , avg+ d e l t a ] ’ ;

Xzero =Xzero +1 ; %n e x t s t a r t i n g p o i n t

end
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A.7 Stochastic Population Dynamics

%popdynMC .m

%p e r f o r m s L Monte Carlo s i m u l a t i o n s o f s i z e M t o f i n d a c o n f i d e n c e

% i n t e r v a l f o r t h e e x p e c t e d e x i t t i m e o f t h e SDE from s e c t i o n 4 . 1 .

c l e a r ;

b =30; d =29; %some p a r a m e t e r s

a l p h a =b−d ; beta=b+d ;

Xzero =1 ;

randn ( ’ s t a t e ’ , 1 0 0 0 0 ) ;

L=20; %L MC−s ims

M=50; %M sample p a t h s

K=10; %v a l u e o f parame ter K

d t = 0 . 0 1 ; %s t e p s i z e

CIT= z e r o s ( 2 , 8 ) ; %w i l l ho ld t h e c o n f i d e n c e

% i n t e r v a l s

whi l e K<60 %loop f o r K

Tsim= z e r o s ( 1 , L ) ;

l =0 ;

whi l e l<L ; %L MC−s ims

s ims =0 ;

t o t a l = z e r o s ( 1 ,M) ;

whi l e sims<M, %each MC sim u s e s M p a t h s

f l a g =0 ;

Xtemp=Xzero ;

c o u n t =1 ;

whi l e f l a g ==0 , %s i m u l a t e a sample pa th

Xtemp=Xtemp+ a l p h a ∗(1−Xtemp )∗Xtemp∗ d t . . .

+ s q r t ( ( beta∗Xtemp+ a l p h a ∗Xtemp∗Xtemp ) / K)∗ s q r t ( d t )∗ randn ( 1 , 1 ) ;

i f Xtemp<=0, %e x i t ?

s ims= s ims +1 ;

t o t a l ( s ims )= d t ∗ c o u n t ;

f l a g =1 ;

end

c o u n t = c o u n t +1 ;

end

end

Tsim ( l +1)=mean ( t o t a l ) ;

l = l +1 %n e x t MC sim

end
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avg=mean ( Tsim ) ;

d e l t a =1.73∗ s q r t ( v a r ( Tsim ) / L ) ;

CIT ( : ,K/5 −1)=[ avg−d e l t a , avg+ d e l t a ] ’ ; %s t o r e c o n f i d e n c e i n t e r v a l

K=K+5 %n e x t K

end
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A.8 Firing of a neuron

%neuronMC .m

%

%Per forms L Monte Carlo s i m u l a t i o n s o f s i z e M f o r t h e s y s t e m i n s e c t i o n 4 . 2 ,

% t o f i n d a c o n f i d e n c e i n t e r v a l o f t h e e x p e c t e d e x i t t i m e .

c l e a r

nu = . 1 ; a l p h a = . 9 ; beta =− .9;VE=50; VI=−7;S =2 ; %some p a r a m e t e r s

Xzero =0 ; %s t a r t i n g v a l u e

randn ( ’ s t a t e ’ , 1 0 0 0 0 ) ;

K=10; %f i r s t v a l u e o f K

M=50; %number o f MC−s ims

L=20; %number o f sample p a t h s

CIT= z e r o s ( 2 , 7 ) ; %w i l l c o n t a i n t h e c o n f i d e n c e

% i n t e r v a l s

t o t a l = z e r o s ( 1 ,M) ; %w i l l c o n t a i n e x i t t i m e o f

% each sample pa th

Tsim= z e r o s ( 1 ,L ) ; %w i l l c o n t a i n mean e x i t t i m e s

% o f each MC−s im

d t = 0 . 0 0 1 5 ; %t h e s t e p s i z e

whi l e K<65 %Loop f o r K

e p s i l o n =1 / s q r t (K ) ;

l =0 ;

whi l e l<L %L MC−s ims

s ims =0 ;

whi l e sims<M %each MC−s im u s e s M sample p a t h s

Xtemp=Xzero ;

f l a g =0 ;

c o u n t =0 ;

whi l e f l a g ==0 %s i m u l a t e 1 sample pa th

bx=−Xtemp / nu + e p s i l o n ˆ2∗ a l p h a ∗ (VE−Xtemp )+ e p s i l o n ˆ2∗ beta ∗ ( Xtemp−VI ) ;

s igmax= e p s i l o n ∗ s q r t ( a l p h a ˆ 2∗ ( VE−Xtemp ) ˆ 2 + beta ˆ 2∗ ( Xtemp−VI ) ˆ 2 ) ;

Xtemp=Xtemp+bx∗ d t + s igmax∗ s q r t ( d t )∗ randn ( 1 , 1 ) ;

c o u n t = c o u n t +1 ;

i f Xtemp>=S %F i r e ?

f l a g =1 ;

s ims= s ims +1 ;

t o t a l ( s ims )= d t ∗ c o u n t ;
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end

end

end

Tsim ( l +1)=mean ( t o t a l ) ; %mean e x i t t i m e f o r t h i s MC−s im

l = l +1 %n e x t MC−s im

end

avg=mean ( Tsim ) ;

d e l t a =1.73∗ s q r t ( v a r ( Tsim ) / L ) ;

CIT ( : ,K/5 −1)=[ avg−d e l t a , avg+ d e l t a ] ’ ; %c o n f i d e n c e i n t e r v a l f o r c u r r e n t K

K=K+5 %n e x t K

end
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A.9 Particle movement

%PM.m

%Per forms L Monte Carlo s i m u l a t i o n s o f s i z e M f o r t h e s y s t e m i n s e c t i o n 4 . 3 ,

% t o f i n d a c o n f i d e n c e i n t e r v a l o f t h e e x p e c t e d e x i t t i m e .

c l e a r

e p s i l o n = 0 . 0 5 ; %some p a r a m e t e r s

v =1 ; Xzero =−1.5; Yzero = 0 . 1 2 ;

randn ( ’ s t a t e ’ , 1 0 0 0 0 ) ;

d t = 0 . 0 5 ; %t h e s t e p s i z e

M=50; %M sample p a t h s f o r

% a MC−s i m u l a t i o n

L=20; %L MC−s i m u l a t i o n s

CIU= z e r o s ( 2 , 6 ) ; %c o n f i d e n c e i n t e r v a l s

% f o r u

CIT= z e r o s ( 2 , 6 ) ; %c o n f i d e n c e i n t e r v a l s

% f o r T1

whi l e e p s i l o n <0.35; %loop f o r e p s i l o n

DT= e p s i l o n ˆ 2 / 2 ; DL= e p s i l o n ˆ 2 / 2 ;

l =0 ;

Usim= z e r o s ( 1 , L ) ;

Tsim= z e r o s ( 1 , L ) ;

whi l e l<L %L MC−s ims

s ims =0 ;

Q=0 ;

t o t a l = z e r o s ( 1 ,M) ;

whi l e sims<M, %M p a t h s per MC−s im

f l a g =0 ;

Xtemp=Xzero ;

Ytemp=Yzero ;

c o u n t =1 ;

whi l e f l a g ==0 , %s i m u l a t e one sample pa th

Xtemp=Xtemp+v∗ d t + s q r t (2∗DL∗ d t )∗ randn ( 1 , 1 ) ;

Ytemp=Ytemp+ s q r t (2∗DT∗ d t )∗ randn ( 1 , 1 ) ;

i f Ytemp<=0 & Xtemp<=0, %e x i t t h r o u g h h o r i z o n t a l a x i s

s ims= s ims +1 ;

t o t a l ( s ims )= d t ∗ c o u n t ;

f l a g =1 ;

end

i f Xtemp>0, %e x i t t h r o u g h v e r t i c a l a x i s
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f l a g =1 ;

Q=Q+1;

end

c o u n t = c o u n t +1 ;

end

end

Usim ( l +1)= s ims / ( s ims+Q ) ; %e x i t p r o b a b i l i t y

Tsim ( l +1)=mean ( t o t a l ) ; %e x i t t i m e f o r c u r r e n t MC−s im

l = l +1 %n e x t MC−s im

end

avg=mean ( Usim ) ;

d e l t a =1.73∗ s q r t ( v a r ( Usim ) / L ) ;

CIU ( : , round ( e p s i l o n / 0 . 0 5 ) ) = [ avg−d e l t a , avg+ d e l t a ] ’ ;%c o n f . i n t . f o r U

avg=mean ( Tsim ) ;

d e l t a =1.73∗ s q r t ( v a r ( Tsim ) / L ) ;

CIT ( : , round ( e p s i l o n / 0 . 0 5 ) ) = [ avg−d e l t a , avg+ d e l t a ] ’ ;%c o n f . i n t . f o r T

e p s i l o n = e p s i l o n +0 .05

end
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A.10 Groundwater Pollution

%GP.m

%

%Per forms L Monte Carlo s i m u l a t i o n s o f s i z e M f o r t h e s y s t e m i n s e c t i o n 4 . 4 ,

% t o f i n d a c o n f i d e n c e i n t e r v a l o f t h e e x p e c t e d a r r i v a l t i m e a t t h e

% boundary {Y=−R} .

c l e a r ;

randn ( ’ s t a t e ’ , 1 0 0 0 0 ) ;

Xzero =4 ; Yzero = 0 . 2 ; %s t a r t i n g p o i n t

R=2; %lower boundary

d t = 0 . 0 1 ; %s t e p s i z e

M=50; %M sample p a t h s

L=20; %L MC−s ims

t o t a a l = z e r o s ( 1 ,M) ; %w i l l ho ld e x i t t i m e s

% o f sample p a t h s

Usim= z e r o s ( 1 ,L ) ; %w i l l ho ld e x i t prob .

% f o r each MC−s im

Tsim= z e r o s ( 1 ,L ) ; %w i l l ho ld e x i t t i m e s

% f o r each MC−s im

CIU= z e r o s ( 2 , 6 ) ; %c o n f . i n t . f o r U

CIT= z e r o s ( 2 , 6 ) ; %c o n f . i n t . f o r T 1

whi l e e p s i l o n <0.4 %loop f o r e p s i l o n

a l = e p s i l o n ˆ 2 ; a t = e p s i l o n ˆ 2 ;

l =0 ;

whi l e l<L %L MC−s ims

Q=0;

s ims =0 ;

whi l e sims<M, %M p a t h s f o r each MC−s im

f l a g =0 ;

Xtemp=Xzero ;

Ytemp=Yzero ;

c o u n t =1 ;

whi l e f l a g ==0 , %loop f o r one sample pa th

hu lp = s q r t ( Xtemp ˆ2+ Ytemp ˆ 2 ) ;

Xtemp2=Xtemp ;

%s i m u l a t e x

Xtemp=Xtemp + . . .

(−Xtemp+ a t ∗Xtemp / hu lp +( a l−a t )∗Xtemp / hulp −( a l−a t )∗Xtemp ˆ 3 / ( hu lp ˆ 3 ) + . . .

( a l−a t )∗Xtemp∗Ytemp ˆ 2 / ( hu lp ˆ 3 ) ) ∗ d t . . .

−s q r t (2∗ a l / hu lp )∗Xtemp∗ s q r t ( d t )∗ randn ( 1 , 1 ) + . . .
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s q r t (2∗ a t / hu lp )∗Ytemp∗ s q r t ( d t )∗ randn ( 1 , 1 ) ;

%s i m u l a t e y

Ytemp=Ytemp + . . .

( Ytemp+ a t ∗Ytemp / hu lp +( a l−a t )∗Ytemp / hulp −( a l−a t )∗Ytemp ˆ 3 / ( hu lp ˆ 3 ) + . . .

( a l−a t )∗Ytemp∗Xtemp2 ˆ 2 / ( hu lp ˆ 3 ) ) ∗ d t + . . .

s q r t (2∗ a l / hu lp )∗Ytemp∗ s q r t ( d t )∗ randn ( 1 , 1 ) + . . .

s q r t (2∗ a t / hu lp )∗Xtemp2∗ s q r t ( d t )∗ randn ( 1 , 1 ) ;

i f Ytemp<=−R , %e x i t t h r o u g h Y=−R

s ims= s ims +1 ;

t o t a a l ( s ims )= d t ∗ c o u n t ;

f l a g =1 ;

end

i f Ytemp>=10, %e x i t t h r o u g h ’ i n f i n i t y ’

f l a g =1 ;

Q=Q+1;

end

c o u n t = c o u n t +1 ;

end

end

Tsim ( l +1)=sum ( t o t a a l ) / s ims ; %compute mean e x i t t i m e

Usim ( l +1)= s ims / ( s ims+Q ) ; %compute e x i t prob .

l = l +1

end

avg=mean ( Usim ) ;

d e l t a =1.73∗ s q r t ( v a r ( Usim ) / L ) ;

CIU ( : , round ( e p s i l o n / 0 . 0 5 ) −1 ) = [ avg−d e l t a , avg+ d e l t a ] ’ ; %c o n f . i n t . f o r u

avg=mean ( Tsim ) ;

d e l t a =1.73∗ s q r t ( v a r ( Tsim ) / L ) ;

CIT ( : , round ( e p s i l o n / 0 . 0 5 ) −1 ) = [ avg−d e l t a , avg+ d e l t a ] ’ ; %c o n f . i n t . f o r T 1

e p s i l o n = e p s i l o n +0 .05

end
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