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1 Introduction

Binary tomography concerns recovering binary images from a finite number of
discretely sampled projections. From given line sums in a finite set of directions,
an image must be constructed that satisfies these line sums. This corresponds
to solving a system of linear equations whose unknowns are the values of the
pixels.

The main problem is to reconstruct a function f : A → {0, 1} where A is a
finite subset of Z

l (l ≥ 2), if the sums of the function values along all the lines in
a finite number of direction are given. Typically, line sums are only available in a
few directions. The corresponding system of equations is very underdetermined
and has a large class of solutions. The structure of this solution class was
studied by Hajdu and Tijdeman in [6]. They showed that the solution set of 0-1
solutions is precisely the set of shortest vector solutions in the set of Z-solutions.
By Z-solutions we mean functions A → Z with given line sums. It is also shown
in [6] that the Z-solutions form a multidimensional grid on a linear manifold
(containing the R-solutions), the dimension of which is the number of elements
in A.

The two results from [6] mentioned above form the basis for an algorithm
for solving the binary tomography problem, proposed in [7]. An important op-
eration in this algorithm is the Projection operation. This operation involves
computing the orthogonal projection of the origin onto a linear manifold. Be-
cause the operation is executed many times and it is very time-consuming on
larger problem instances, we will investigate a method for reducing the time
complexity of the operation.

The main purpose of this paper is to describe several computational aspects
of the algorithm from [7] and present a method for reducing the time complexity
in some cases. We present practical results that show a great improvement
in run time over the original implementation from [7]. The practical results
provide useful insights in how further improvements in the run time may be
accomplished in the future.
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2 Notation and concepts

The binary tomography problem that we consider in this paper can be stated
as follows:

Problem 2.1 Let k, m, n be integers greater than 1. Let

A = {(i, j) ∈ Z
2 : 0 ≤ i < m, 0 ≤ j < n}

and f : A → {0, 1}. Let D = {(ad, bd)}
k
d=1 be a set of pairs of coprime integers.

Suppose f is unknown, but all the line sums

∑

adj=bdi+t

f(i, j)

(taken over (i, j) ∈ A) are given for d = 1, . . . , k and t ∈ Z. Construct a
function g : A → {0, 1} such that

∑

adj=bdi+t

f(i, j) =
∑

adj=bdi+t

g(i, j) for d = 1, . . . , k and t ∈ Z.

We call all pairs (i, j) such that adj = bdi + t for any fixed t a line and the
corresponding sum a line sum. For the theoretical treatment we will restrict
ourselves to the case where A is a two-dimensional array, but generalization
of the presented material to the case where A is an l-dimensional array with
l > 2 is straightforward. In fact, we will show in section 6.3 that the presented
algorithm can be used for the case l > 2 without any major modification. We
will use the definitions of A and D from Problem 2.1 throughout the rest of this
paper.

When trying to solve Problem 2.1 it is sometimes useful to relax the con-
straint that the image of the function f must be binary. Therefore we will
consider a related problem:

Problem 2.2 Let k, m, n, A, D be as in problem 2.1. Let R be a commutative
ring. Suppose f : A → R is unknown, but all the line sums

∑

adj=bdi+t

f(i, j)

(taken over (i, j) ∈ A) are given for d = 1, . . . , k and t ∈ Z. Construct a
function g : A → R such that

∑

adj=bdi+t

f(i, j) =
∑

adj=bdi+t

g(i, j) for d = 1, . . . , k and t ∈ Z.

In particular, the cases R = Z and R = R are both relevant for this study. We
will denote these cases with (2.2a) and (2.2b) respectively. We remark that any
solution to Problem 2.2a is also a solution to Problem 2.2b.
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Throughout this paper let M denote the set of m × n-matrices having real
elements. A matrix M ∈ M corresponds directly to a function f : A → R:

f(i, j) = Mi+1,j+1 for 0 ≤ i < m, 0 ≤ j < n

We will call M the matrix representation of f .
Another representation that we will use is the vector representation. In

order to write the linesum-constraints on a matrix M ∈ M as a system of linear
equations, having the elements of M as its variables, we regard the matrix M
as a vector. Let v ∈ R

mn. We say that M and v correspond if and only if

Mij = v(i−1)n+j for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The vector representation defines an order on the elements of M . From this
point on, we will use the term entry k to denote the kth entry in the vector
representation. Throughout this paper, we will use the function, matrix and
vector representations interchangably.
Let s be the number of given line sums. We define the s × mn-matrix B:

Bt,k =

{

1 if line t contains entry k
0 otherwise

for t = 1, . . . , s; k = 1, . . . , mn

We call B the line sum-matrix. The constraints on the line sums of a solution
M to Problem 2.2b can now be formulated as a system of real linear equations
that the corresponding vector-representation v must satisfy:

Bv = b (1)

We define the l2-norm ‖ · ‖2 on the vector-representation v:

‖v‖2 =

√

√

√

√

mn
∑

k=1

v2
k

In this study our starting point will be the algorithm that is presented in [7].
We summarize the results from [6] on which the algorithm is based.
Let R be a commutative ring. We can regard the set of functions
F = {f : A → R} as a vector space over R. The set of functions that have zero
line sums along all directions of D corresponds to a linear subspace Fz of F .

Theorem 2.3 Let m, n ∈ N and put M =
∑k

d=1 ad, N =
∑k

d=1 |bd|. Put
m′ = m− 1−M, n′ = n− 1−N . Let R be an integral domain such that R[x, y]
is a unique factorization domain. Then for any nontrivial set of directions D
there exist functions

muv : A → R u = 0, . . . , m′, v = 0, . . . , n′

such that
Fz = span{muv : u = 0, . . . , m′; v = 0, . . . , n′}

and any function g : A → R with zero line sums along the lines corresponding
to D can be uniquely written in the form

g =
m′

∑

u=0

n′

∑

v=0

cuvmuv

and has zero line sums along the lines corresponding to D.
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A proof of Theorem 2.3 is given in [6], where an explicit way of constructing
the functions muv is presented. According to this theorem, the functions muv

form a basis of the linear subspace

Fz = {f : A → R : f has zero line sums corresponding to the directions in D}

of F . We see that if g, h are both solutions to Problem 2.2, the difference g − h
can be written as a linear combination of the functions muv, since it has zero
linesums in all given directions.

As an example we consider the integer Problem 2.2a for the case when all
linesums in the horizontal, vertical, diagonal and antidiagonal directions are
given. It is demonstrated in [7] that the matrix representation of muv is obtained
from the matrix representation of

m1,1 =























0 1 −1 0 0 . . . 0
−1 0 0 1 0 . . . 0

1 0 0 −1 0 . . . 0
0 −1 1 0 0 . . . 0
0 0 0 0 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 0























by translating all nonzero elements over (u − 1, v − 1). This construction is in-
dependent of the array-size parameters m, n. We see that for large arrays, the
matrices muv are only nonzero on a small, local group of entries. Because of the
characteristic shape of the set of nonzero entries, we will refer to the matrices
muv by the term mills, even in the general case where the set of directions D is
variable.

The following problem connects Problem 2.2a (the integer case) to Problem 2.1
(the binary case):

Problem 2.4 Construct a function g : A → Z such that g is a solution to
Problem 2.2a and

∑

(i,j)∈A

g(i, j)2 is minimal.

Remark 2.5 Problem 2.4 is a generalization of Problem 2.1, because for any
f : A → {0, 1} that is a solution to Problem 2.2a:

∑

(i,j)∈A

f(i, j)2 =
∑

(i,j)∈A

f(i, j) =
∑

(i,j)∈A

g(i, j) ≤
∑

(i,j)∈A

g(i, j)2

with equality if and only if g : A → {0, 1}. Therefore an algorithm that is
capable of solving Problem 2.4 is also capable of solving Problem 2.1.
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3 Description of the algorithm

3.1 Global description

We will now describe the most important elements of the algorithm that is
proposed in [7]. The original article offers a much greater level of detail than
the material presented here. For a concise description we refer to sections 3 and
4 of [7].

From this point on we will only use the vector representation (as opposed to
the function or matrix representation) for intermediate solutions. We will use
the same notation as introduced in Problem 2.1. At any point in the algorithm
we denote the current solution by x̃.

The algorithm tries to find a solution to Problem 2.4. The first step is to
construct a set of functions

muv : A → R u = 0, . . . , m′, v = 0, . . . , n′

that have zero line sums for all directions in D as described in Theorem 2.3, for
the case R = R. These functions can be stored in the vector representation.

The next step is to compute a solution of the real Problem 2.2b. This
comes down to solving the system of real linear equations that correponds to
the given line sum constraints. Because this system is usually underdetermined
(the number of variables is much greater than the number of line sums) many
solutions may exist.

According to Remark 2.5, the set of solutions to the binary Problem 2.1
is exactly the set of solutions to the integer Problem 2.2a that have minimal
length with respect to the l2-norm. Therefore we use the solution x∗ to the real
Problem 2.2b that has minimal l2-norm as a starting value for x̃. Because ‖y‖2

is the same for all binary solutions y, it follows from the Pythagorean formula
that all binary solutions lie on a hypersphere centered in x∗ in the real manifold
W = {x ∈ R

n : Bx = b}, where B is the line sum-matrix.

Next, the algorithm enters the main loop. The general idea is that we
can modify the current real solution x̃ by adding linear combinations of the
mills muv without changing the line sums. The algorithm tries to add these
linear combinations in such a way that the entries of x̃ become integer values,
preferably 0 or 1. In each iteration, one of the functions muv is fixed. This
means that it will not be used to modify the solution in future iterations.

We say that a mill muv overlaps an entry x̃i if the corresponding entry of
muv is nonzero. When all mills that overlap x̃i have been fixed, the value of
this entry cannot be modified anymore. This influences the choice which mill
to fix in an iteration. In each iteration, a border entry is chosen. The set of
border entries consists of all entries that have only one non-fixed overlapping
mill. From this set an entry x̃i∗ is chosen such that |x̃i∗ − 1/2| is maximal.
Because |x̃i∗ −1/2| is maximal, we can usually predict which of the values 0 and
1 entry i∗ should have in the final solution. By adding a real multiple of the
overlapping mill, the entry is given this value. After the entry has been given
its final value the overlapping mill is fixed. We then call the entry x̃i∗ fixed as
well.
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The property that we can add linear combinations of the mills muv to a
solution x̃ without violating the linesum constraints is also used in the process
of local smoothening. In the process of giving a certain entry its final value,
the values of other entries are affected as well. When the value x̃i becomes
greater than 1 or smaller than 0, an attempt is made to pull the value towards
1 or 0 respectively, by adding a linear combination of the mills muv that over-
lap with x̃i. The decrease (or increase) of the value of x̃i is compensated by
an increase (decrease respectively) of other entries that are near x̃i on the ar-
ray A. Local smoothening is applied in each iteration after a mill has been fixed.

The operations that involve adding a linear combination of mills to the
current solution all have a local effect, because each of the mills is nonzero for
a small, local set of entries. In order to smoothen the solution globally, the
projection operation is used. The set locallyfixed is formed, which is the union
of the set of fixed entries and the set of entries x̃i that are not yet fixed for
which |x̃i − 1/2| ≥ p3 where p3 is a parameter of the algorithm. A natural
choice for this parameter is p3 = 0.5. Next, all entries in the set locallyfixed are
temporarily fixed at binary values:

x̃i =

{

1 if xi ≥ 1/2
0 if xi < 1/2

for i ∈ locallyfixed

The system Bx = b of linesum equations now becomes

Bx = b and xi = x̃i for all i ∈ locallyfixed. (2)

The solution set of this equation is a sub-manifold of the manifold
W = {x ∈ R

n : Bx = b}. Similar to the computation of the start solution,
we now compute the shortest vector in the solution manifold of (2). We repeat
the projection process until either equation (2) no longer has a solution or
a stop criterion is satisfied, indicating that all entries of the current solution
are close to the range [0, 1]. The last valid solution that is found before the
projection procedure finishes is used as the new current solution x̃. We remark
that although a number of entries of x̃ may have been fixed during the projection
operation, all entries that were not fixed before the projection operation can
still be modified afterwards, because there are still overlapping mills that are
not fixed yet.

Because most of the material presented in this paper concerns the projection
operation we will repeat the complete procedure given in [7] in the next section.
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3.2 Pseudo-code of the Projection operation

In this section we repeat the complete Projection procedure described in [7].

procedure Projection

begin

let locallyfixed = fixedentries, B′ = B, b′ = b, project = 1;
while project = 1 do

begin

put all the entries i with |xi − 1/2| ≥ p3 into locallyfixed;
delete all the columns of B ′ corresponding to the entries in locallyfixed;
for every i ∈ locallyfixed do

begin

if xi ≥ 1/2 then

decrease the value of the corresponding entries of b′ by one;

end

calculate the manifold L′ = {x′ : B′ · x′ = b′} by determining

a basis of the nullspace of B ′ and a solution of B′ · x′ = b′;
if L′ is empty then

let project = 0;
else

begin

let P ′ be the projection of the origin onto L′;

for every entry j which is not in fixedentries do

begin

if j ∈ locallyfixed then

if xj ≥ 1/2 then

let xj = 1;
else

let xj = 0;
else

let xj be the corresponding entry of P ′;

end

find an extremal entry xk with k 6∈ locallyfixed;
if |xk − 1/2| ≤ p4 then

let project = 0;
end

end

end

The values p3 and p4 are both parameters of the algorithm. We will describe
the projection computation in greater detail in section 4.
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4 Analysis of the Projection operation

4.1 Introduction

According to Remark 2.5, each binary solution to Problem 2.2a has minimal l2-
norm among all integer solution vectors. When we search for binary solutions
in the real manifold W = {x ∈ R

n : Bx = b}, it seems reasonable to use the
shortest vector in this manifold as a starting point for the algorithm.

Problem 4.1 Compute the vector x∗ ∈ W such that

‖x∗‖2 = min
x∈W

‖x‖2.

If we assume that B has full row rank, then the product BBT is nonsingular
and the orthogonal projection of the origin onto W is given by

x̃ = BT (BBT )−1b.

We will show that in fact x̃ is the solution to Problem 4.1. Let x ∈ W , δ = x−x̃.
Then

‖x‖2
2 = ‖x̃ + δ‖2

2

= ‖x̃‖2
2 + ‖δ‖2

2 + 2x̃T δ

= ‖x̃‖2
2 + ‖δ‖2

2 + 2[bT (BBT )−1B(x − x̃)]

= ‖x̃‖2
2 + ‖δ‖2

2 + 2[bT (BBT )−1 · 0]

= ‖x̃‖2
2 + ‖δ‖2

2 ≥ ‖x̃‖2
2.

We see that x̃ is indeed the solution to Problem 4.1. One may compute x∗ = x̃
by first solving the system

BBT v = b

for v and then computing
x∗ = BT v.

The first system can be solved by using the Cholesky-factorization BBT = LLT ,
where L is lowertriangular. However, as is shown in [1], this method can lead to a
serious loss of accuracy when the matrix BBT is ill-conditioned. In the following
sections we will describe a method for computing the solution to Problem 4.1
that has much better numerical properties.

4.2 Computing the projection

A different approach to solving Problem 4.1 is to use the QR decomposition.
We will call a square matrix Q orthogonal if QQT = I, where I is the identity
matrix.

Definition 4.2 Let m, n be integers greater than 0 with m ≥ n.
Let M ∈ R

m×n. Suppose that M has full column rank. A QR decomposition
of M has the form

M = Q

(

R
0

)

where Q ∈ R
m×m is orthogonal, R ∈ R

n×n is uppertriangular and nonsingular
and 0 corresponds to a (possibly empty) block of rowvectors.
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We remark that the nonsingularity of R is equivalent to R having no zero el-
ements on the main diagonal. From the nonsingularity of R it is easy to see
that the first n columns of Q form a basis for the column space of M . For each
matrix M that has full column rank, there is a QR decomposition such that
R has only positive diagonal elements. This matrix R is uniquely determined
by M (see e.g. section 4.1 of [8]). Efficient algorithms for computing the QR
decomposition are described in section 5.2 of [5] and section 4.1 of [8].

We will solve Problem 4.1 by using the QR decomposition of BT ∈ R
mn×s,

where m, n are the dimensions of the array A and s is the number of given
line sums. The matrix BT however will certainly not have full column rank.
For example, the sum of all line sums in any single direction must equal the
total number of ones, so whenever there are more than two directions there is a
linear dependence between the line sums. Put r = rank(B). We will use a QR
decomposition with column pivoting :

BT Π = Q

(

R11 R12

0 0

)

where Q ∈ R
mn×mn is orthogonal, Π ∈ R

s×s is a permutation, R11 ∈ R
r×r

is uppertriangular and nonsingular. The bottom 0’s correspond to (possibly
empty) rectangular blocks. By applying Π we make sure that the first r columns
of the matrix BT Π are linear independent. In this paper we will denote this
decomposition as the extended QR decomposition. An algorithm for computing
the extended QR decomposition is described in section 5.4.1 of [5]. The time
complexity of computing the extended QR decomposition of a k × s matrix of
rank r is O(k3+ksr). In this case k = mn so the operation is O((mn)3+mnsr).
We remark that the extended QR decomposition is not unique. The first r
columns of BT Π correspond to r rows of B that form a basis of the rowspace
of B. When solving the inhomogenous system Bx = b, these rows completely
determine the solution manifold, unless the equations corresponding to any of
the other rows make the system inconsistent. In the latter case the system
has no solution. Once we have computed the solution to Problem 4.1, using
only the first r columns of BT Π, we can check that the system is consistent by
substituting the solution into the remaining equations:

Let (π1, π2, . . . , πs) be the columns of Π. Define

Π̄ =





| | · · · |
π1 π2 · · · πr

| | · · · |



 .

We now have

BT Π̄ = Q

(

R11

0

)

.

Assume that the system Bx = b has a solution. Then

Bx = b ⇐⇒ xT BT = bT ⇐⇒

xT (BT Π̄) = bT Π̄ ⇐⇒ xT Q

(

R11

0

)

= bT Π̄.
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Let y =

(

y1

y2

)

= QT x where y1 consists of the first r elements of y. Then

xT Q

(

R11

0

)

= bT Π̄ ⇐⇒
(

RT
11 0

)

QT x = Π̄T b ⇐⇒

(

RT
11 0

)

y = Π̄T b ⇐⇒ RT
11y1 = Π̄T b.

From the fact that R11 is nonsingular, it follows that the last system has a
unique solution. Because Q is orthogonal, we have ‖x‖2 = ‖y‖2. It follows that
we obtain the unique solution x∗ to Problem 4.1 by setting y2 = 0:

x∗ = Q

(

y1

0

)

= Q(RT
11)

−1Π̄T b (3)

When the extended QR decomposition of BT is known, the vector x∗ can be
computed efficiently by first solving the system

RT
11y1 = Π̄T b

for y1 and then computing

x∗ = Q

(

y1

0

)

.

The first computation can be performed in O(r2) time by forward substitution
(RT

11 is lower-triangular), the second computation is O(mnr). We see that in
this procedure for computing x∗, computing the extended QR decomposition is
by far the operation with the worst time complexity. In the next sections we
will describe a procedure that can avoid this limiting factor in some cases. The
numerical properties of using the QR decomposition for solving Problem 4.1 are
very favourable in comparison to using the Cholesky decomposition (see [1]).

4.3 Updating the projection

In each iteration of the algorithm one of the mills is fixed. As a consequence
the value of certain entries of the solution x̃ becomes fixed as well. Suppose
that when the projection operation is executed the entries in I = {i1, . . . , ik}
are either already fixed or fixed temporarily at integer values. We now project
the origin onto the solution manifold of the system

Bx = b and xi1 = vi1 , xi2 = vi2 , . . . , xik
= vik

(4)

where vit
is the fixed value of the entry it. Solving this system is equivalent to

solving the system

B̃x̃ = b̃ (5)

where B̃ is obtained by removing the columns Bi1 , . . . , Bit
from B and setting

b̃ = b − (
k

∑

t=1

vit
Bit

).

For each solution vector x̃, the corresponding vector x can be computed by
assigning the values vit

(t = 1, . . . , k) to the corresponding fixed entries of x and
assigning the entry values of x̃ to the corresponding unfixed entries of x.
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The projection of the origin onto the solution manifold of (5) can be found
by the procedure that is described in section 4.2. However, this operation is
computationaly very expensive. The operation might have to be executed many
times if between subsequent projections only a few entries have been fixed.
Suppose that, in order to compute the projection of the origin onto the solution
manifold of (5), we have computed the extended QR decomposition of B̃T :

B̃T Π = Q

(

R11 R12

0 0

)

Now suppose that we want to fix one more entry of the solution x. As demon-
strated by (5) this corresponds to deleting a column from B̃. Let r = rank(B̃).
If the system (5) has a solution, we may remove the columns in R12, because
they do not affect the solution manifold. (The corresponding equations are just
linear combinations of the equations that correspond to the columns of R11).
We obtain the decomposition

B̃T Π̃ = Q

(

R11

0

)

where Π̃ is a partial permutation that permutes the columns of B̃T in such a
way that the first r columns of B̃T Π̃ are linear independent. Put C = Π̃T B̃,
c = Π̃T b̃. Then

B̃x = b̃ ⇐⇒ Cx = c

and

CT = Q

(

R11

0

)

.

Deleting a column from B̃ corresponds to deleting a row from CT . The matrix
C̄ that is obtained by removing column ci of C either has rank r or rank r − 1.
In the former case, the QR decomposition of C̄T has the form

C̄T = Q̄

(

R̄
0

)

where R̄ is a nonsingular uppertriangular r × r-matrix. In the latter case the
extended QR decomposition has the form

C̄T Π̄ = Q̄

(

R̄ v
0 0

)

where R̄ is a nonsingular uppertriangular (r − 1) × (r − 1)-matrix and v is a
vector of size r − 1. In the next sections we will present a method for deriving
the extended QR decomposition of the matrix C̄T from the QR decomposition
of CT . In this way we can avoid having to recompute the QR decomposition
each time that we execute the Projection operation.

4.3.1 Givens rotations

Definition 4.3 A plane rotation (also called a Givens rotation) is a matrix of
the form

Q =

(

c s
−s c

)

where c2 + s2 = 1.
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It is easy to see that plane rotations are orthogonal. The matrix Q is called a
rotation, because there is a unique θ ∈ [ 0, 2π) such that c = cos θ, s = sin θ and

for any vector x =

(

a
b

)

∈ R
2 the product

(

c s
−s c

) (

a
b

)

=

(

ca + sb
cb − sa

)

is obtained by rotating x clockwise through the angle θ.

Givens rotations can be embedded in the identity matrix in the following way:
Let n > 1, 1 ≤ i, j ≤ n, θ ∈ [ 0, 2π). We define the Givens-rotation G(i,j,θ) of
θ radians in the (i, j)-plane:

i j

G(i,j,θ) =



































1 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 c · · · s 0 · · · 0
...

...
...

. . .
...

...
...

0 · · · 0 −s · · · c 0 · · · 0
0 · · · 0 0 · · · 0 1 · · · 0
...

...
...

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · 1



































i

j

where c = cos θ, s = sin θ.

Let X ∈ R
m×n, X̃ = XG(i,j,θ). The only columns of X̃ that are different from

the corresponding columns of X are columns i and j:

x̃i = cxi − sxj

x̃j = sxi + cxj

x̃k = xk for k 6= i, j

Thus we can ensure that X̃it = 0 by setting

a = Xit, b = Xjt

c = b√
a2+b2

, s = a√
a2+b2

.

We will denote the matrix G(i,j,θ) by G(i,j) if the angle θ that corresponds to
the pair (c, s) is obvious from the context. Suppose that we want to zero the
element Xit by multiplying X with the Givens rotation G(i,j). We have

(Xki = 0 ∧ Xkj = 0) ⇒ (X̃ki = 0 ∧ X̃kj = 0) for k = 1, . . . , m. (6)

We can use this property to ensure that certain entries remain zero when we
apply a Givens rotation. In the next section, we will use the property to main-
tain upper triangularity of the matrix R in a QR decomposition when applying
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Givens rotations. When we use Givens rotations for updating a QR decompo-
sition after a row is removed, we use the fact that for an orthogonal matrix Q
we have QQT = I. In order to remove a row from a matrix M we repeatedly
insert a Givens-rotation P into the decomposition in the following way:

M = Q

(

R
0

)

= (QP )(P T

(

R
0

)

)

We remark that P T is also a Givens rotation. This operation preserves the
orthogonality of the left factor, while the rotation on the right side may break
the upper-triangularity of R. As we will see, we can preserve upper-triangularity
by applying Givens rotations in a specific order.

4.3.2 Updating to uppertriangular form

In this section we will show how to update the QR decomposition of a matrix
M when a row from this matrix is removed. We assume that the number of
rows of M is greater than the number of columns. We can then write the QR
decomposition as

M = Q





R
0
0





where the bottom 0 is a rowvector and the 0 above this row corresponds to a
possibly empty block of rowvectors. In our application the assumption that M
has more rows than columns will always be satisfied. The matrix M corresponds
to the matrix B̃T , defined in (5). If at any point in the algorithm the matrix B̃T

has as least as many independent columns as independent rows, the solutions
of (5) is unique and no further updating is necessairy.

We will only consider the removal of the last row from M . To remove any
other row, first move this row to the last row (shifting all subsequent rows one
row up). By performing the same operation on Q, the QR decomposition will
remain valid. We will implicitly construct an orthogonal matrix P such that

QP =











0

Q̄
...
0

0 · · · 0 1











and

PT





R
0
0



 =





R̄
0
v





where v is a row vector and R̄ is uppertriangular. It then follows that

M̄ = Q̄

(

R̄
0

)

where M̄ is obtained from M by deleting the last row. We choose P to be a
product of Givens rotations. The product QP is formed by repeatedly multi-
plying the matrix Q on the right by a Givens rotation:
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Q∗ := Q; S :=





R
0
0



;

r := rank(S);
for i := (n - 1) downto 1 do

begin

let Pi be the Givens rotation G(i,n) that zeroes Q∗
n,i;

Q∗ := Q∗ · Pi;

if i ≤ r then

S := PT
i · S;

end

Q̄ := Q∗;

This procedure subsequently sets Q∗
n,n−1, Q

∗
n,n−2, . . . , Q

∗
n,1 to 0. From the

preserved orthogonality of Q∗ it follows that the last row and the last column of
the resulting matrix Q̄ = QP both have the desired form. Left-multiplication
of S with Pi has no effect if i > r. Therefore the if-condition has no effect on
the end result. Its purpose is to increase efficiency.

The reason that zeroing the bottom row elements should occur from right
to left lies in the corresponding Givens rotations that are applied to S. Because
the original matrix R is uppertriangular it follows from (6) that in each iteration
i we have Sij = 0 for all j < i. The Givens rotation that is applied to S in
iteration i only affects row i, so when the loop ends we have

S =





R̄
0
v





where R̄ is uppertriangular.
The procedure is best illustrated by a sequence of Wilkinson diagrams. A

Wilkinson diagram shows which entries of a matrix are guaranteed to be 0 and
which entries might have a nonzero value. The possibly nonzero entries are
marked by the character ×.

















× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0
0 0 0 0

















G5,6

→

















× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0
0 0 0 0

















G4,6

→

















× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0
0 0 0 ×

















G3,6

→

















× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0
0 0 × ×

















G2,6

→

















× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0
0 × × ×

















G1,6

→

















× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0
× × × ×

















Figure 1: Illustration of the sequence of Givens rotations

15



4.3.3 Dealing with singularity

The updating procedure from the previous section leaves us with a decomposi-
tion

M̄ = Q̄

(

R̄
0

)

but this might not be a valid QR decomposition. If the rank of M̄ is smaller
than the rank of M , the matrix R̄ will be singular: it will contain a 0 on the
main diagonal. Suppose that i is the smallest index such that R̄ contains a 0
on the main diagonal in column i. We denote the nonzero part of this column
by v. Because the columns R̄1, . . . , R̄i−1 are linear independent, R̄i must be a
linear combination of these columns.

We will now construct a valid extended QR decomposition of M̄ . First, we
apply a permutation Π to M̄ that moves column i to the last position (shifting
subsequent columns one position to the left):

M̄Π = Q̄

(

R̂ v
0 0

)

Because rank(M̄) ≥ rank(M)−1, the columns of R̂ are linear independent. The
matrix R̂ is not guaranteed to be uppertriangular, because the band directly
below the main diagonal may contain nonzero elements. This type of matrix is
known as Upper Hessenberg. By performing a sequence of Givens rotations we
can reduce the decomposition to the desired extended QR decomposition:

Q̃ := Q̄; S :=

(

R̂ v
0 0

)

;

for i := 1 to r - 1 do

begin

let Pi be the Givens rotation G(i,i+1) that zeroes R̂i+1,i;

Q̃ := Q̃ · Pi;

S := PT
i · S;

end

We remark that the Givens rotations that are used zero a certain matrix el-
ement when the matrix is multiplied on the left by the rotation.
This procedure ends with a decomposition

M̄ = Q̃S = Q̃

(

R̃ w
0 0

)

where R̃ is uppertriangular and nonsingular.

4.3.4 The complete process

In order to use the update procedure in the projection operation we have to
perform the following algorithmic steps:

• When the start solution is computed, store the QR decomposition of BT

for later use.
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• Every time an entry xi is fixed because all overlapping mills are fixed,
remove the row corresponding to xi from the QR decomposition. Here we
use the update procedure that we described.

• Store a copy of the QR decomposition at the beginning of the projection
operation. In this way, all row removals that result from entries that
are fixed temporarily can be undone after the projection operation has
finished.

• Treat temporarily fixed entries in a projection operation in the same way
that permanently fixed entries are treated. We remark that all row re-
movals from the QR decomposition which are the result of entries being
fixed temporarily will be undone after the projection operation has fin-
ished.
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5 Implementation

The algorithm from [7] has been implemented in C++. In comparison to the
MATLAB-implementation of which the results are described in [7], the current
implementation in C++ has been optimized in several ways some of which are:

• The mills muv are represented as a list of entries instead of a vector or
matrix. Because the mills are very sparse, the new representation is much
more efficient.

• Our own specially tuned matrix- and vector-libraries are used, which are
very efficient in terms of both memory usage and execution speed.

• At several points in the original algorithm from [7], an entry xi must be
found for which a certain function f(xi) is maximal. Because the number
of entries can be large this process can be time-consuming, especially
when it is performed in the inner loop of the algorithm. The current
implementation uses a priority queue implemented as a binary heap for this
type of search operations, see e.g. chapter 7 of [2]. This is a datastructure
that has very favourable time complexities for the supported operations.
Building the datastructure is O(n), where n is the number of elements.
Next, the operations of finding an element with maximal value, deleting
an element and updating the value of an element are all O(log n).

For representing solutions and mills, the vector-representation is used exclu-
sively. The vector representation is still valid when the array A has dimension
l with l > 2. As a consequence the algorithm is not limited to the case l = 2.
It can be used for higher dimensional arrays without any modification. For a
higher dimensional array the set of mills is different, but we consider this set
to be a parameter of the algorithm. The procedure for computing this set is
described in [6].

The algorithm from [6] is not deterministic. At several points in the algo-
rithm an entry xi is chosen for which some function f(xi) is maximal. In the
case that the set of optima contains more than one entry, the selection mech-
anism is undefined. When we change the order in which entries from this set
are chosen the result of the algorithm is likely to change as well. This prop-
erty is useful for solving problems for which the algorithm has trouble finding
a binary solution. We can run the algorithm multiple times, each time with a
different outcome. We remark that we used a single ordering criterium for all
test problems in section 6.

For the implementation of the basic linear algebra routines, such as the
extended QR decomposition, we use the linear algebra package LAPACK [3].
LAPACK is a programming library written in Fortran that has been optimized
for working with large matrices. Using Fortran routines involves some extra
work, since matrices in Fortran are stored column-by-column, whereas matrices
in C++ are stored row-by-row. We have implemented a C++ matrix library
that also stores matrices in column-by-column order.

The implementation uses the object-oriented features of the C++ language.
The projection operation has been delegated to a separate base class. Subclasses
of this base class correspond to implementations of the projection operation.
In this way, the algorithm does not have to be modified when the projection
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implementation changes: the projection implementation is simply a parameter
of the algorithm. For an indepth treatment of the object-oriented programming
features of C++ we refer to [9].
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6 Experimental results

We have tested the algorithm with various types and sizes of matrices. We used
three different versions of the algorithm:

• A The optimized original algorithm from [7]. The QR decomposition of
the matrix B̃, defined in equation 5 (section 4.3), is computed from scratch
in each iteration of the main loop of the projection operation.

• B The optimized original algorithm from [7] with projection updating as
described in section 4.3.4.

• C A hybrid implementation. When the number of new fixed variables
in a projection operation is small (≤ 100), projection updating is used,
otherwise the projection is recomputed.

Algorithm C is intended to combine the best properties of the first two al-
gorithms. It was implemented after some experimental results showed that
projection updating is only faster than recomputing the projection when the
number of new fixed variables is small.

In order to allow for a good comparison between the results presented here
and the results presented in [7], we have used similar test data. We used an
AMD Athlon 700MHz PC for all tests. We remark that this PC is faster than
the Celeron 566 MHz PC used in [7], so the comparison of run times is not
completely fair.

For the two-dimensional test cases all linesums in the horizontal, vertical,
diagonal and antidiagonal directions are given.

6.1 Random examples

The first set of test cases consists of random binary matrices of various sizes
and densities. By density we mean the relative number of 1’s. For the sizes
25 × 25 and 35 × 35 and for each of the densities 0.05, 0.10 and 0.5 of 1’s, we
have performed ten test runs. The results are summarized in Table 1, 2 and 3.
These tables contain the following characteristics:

• #binary output
Number of cases when the outcome is a binary matrix

• av. run time
Average run time

In the 25× 25 case, the average run time reported in [7] (denoted as old) is also
given.
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problem size 25 × 25 35 × 35

algorithm old A B C A B C

#binary output (of 10) 7 6 5 7 0 0 0

av. run time (s) 1312 7 45 19 96 2460 181

Table 1: Results for random test cases with density 0.05

problem size 25 × 25 35 × 35

algorithm old A B C A B C

#binary output (of 10) 4 4 2 2 2 1 2

av. run time (s) 10661 34 165 37 1217 5205 609

Table 2: Results for random test cases with density 0.10

problem size 25 × 25 35 × 35

algorithm old A B C A B C

#binary output (of 10) 10 10 10 10 10 10 10

av. run time (s) 12350 211 69 69 3101 606 606

Table 3: Results for random test cases with density 0.50

The algorithm is not able to find a binary solution for many of the low-
density test cases. For most test cases it finds either a binary solution or an
integer solution that has only a small number (< 15) of nonbinary entries and
those nonbinary entries have small absolute values. For some of the test cases
however the algorithm finds integer solutions with many nonbinary entries, some
of which have high absolute values.

The results that we have presented so far indicate that the projection oper-
ation is of major importance to the run time. The three implementations of the
projection operation result in very different run time patterns. For the random
examples of size 35 × 35 from section 6.1 we analyzed several properties of the
projection operation:

• #projection iterations
Total number of iterations of the while-loop in the projection operation.
This is the number of times the projection of the origin must be computed.

• av. #new fixed entries in first iteration
Average number of entries that are fixed in the first iteration of the while-
loop, that were not yet fixed definitively. The average is taken over all
executions of the complete projection operation.

• av. #new fixed entries per iteration
Average number of entries that are fixed in an iteration of the while-loop
and were not fixed in the previous iteration.
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• av. #added fixed entries between consec. 1st iterations
Average number of entries that are fixed in the first iteration of the while-
loop, that were not yet fixed in the first iteration of the previous projection
operation.

• av. #removed fixed entries between consec. 1st iterations
Average number of entries that were fixed in the first iteration of the
previous projection operation and are no longer fixed in the first iteration
of the new projection operation.

For the details concerning the control flow of the projection operation we refer to
Section 3.2. We have included the last two items because we observed a pattern
in the execution of the projection operation when solving the random test cases
with small densities. In the first iteration of the while-loop a large number of
entries is fixed. In the iterations that follow the number of new fixed variables
is much smaller. In the next call to the projection operation the changes in
the set of variables that are fixed in the first iteration – in comparison to the
first iteration of the previous projection operation – are very limited. Table 4
shows the results for the random 35×35 examples. We will further discuss these
results in Section 7.

density 0.05 0.10 0.50

av. #projection iterations 309 824 348

av. #new fixed entries in 1st iteration 632 480 12

av. #new fixed entries per iteration 169 126 15

av. #added fixed entries between consec. 1st iterations 14 15 3

av. #removed fixed entries between consec. 1st iterations 12 15 1

Table 4: Characteristics of the projection operation for random 35 × 35 test
cases of various densities

6.2 Structured examples

In the original paper [7] the results for several test cases that originate from
[4] are presented. According to the authors of [4] these cases represent crystal
structures. To allow for a good comparison between the implementation from
[7] and the current implementation we have used two of these test cases, denoted
by T1 and T2. We added a third example, T3, which consists of two large areas
of 1’s such that there are very few lines that contain only 0’s or only 1’s. We
will refer to the examples T1, T2 and T3 by the term structured examples. All
structured test cases are presented in Appendix A. The results for the cases T1

and T2 are summarized in Table 5. Each of the new implementations was able
to find a binary solution for these test cases. These solutions were not equal
to the original matrices, but the visual resemblance was very clear. The results
from [7] are labeled old.
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problem T1 T2

problem size 29 × 46 36 × 42

algorithm old A B C old A B C

run time (s) 463 26 97 68 2901 45 174 111

Table 5: Results for the test cases T1 and T2, which represent crystal structures

As described in section 5 we can produce different results by modifying the
order in which solution entries that have equal values are considered. For the
problem T3 we had to run each of the algorithms A, B and C multiple times
with different random seeds before we obtained satisfactory results. Still, only
algorithm C found a binary solution. Table 6 shows the best results of five runs
for each of the algorithms.

problem size 40 × 40

algorithm A B C

run time (s) 111 1693 286

#nonbinary entries 7 8 0

Table 6: Best results of five test runs for the test case T3

6.3 Three-dimensional example

Because all functions A → R in the current implementation are stored in the
vector representation, the algorithm is capable of handling three-dimensional
instances just as it can handle the two-dimensional case. We have performed
an experiment with a three-dimensional instance. The only modification to the
program concerns the input- and output-routines and the choice of the set of
mills. We studied the case where the projections in the three directions parallel
to the axes are given. In this case the collection of mills consists of the translates
of the block

(

−1 1
1 −1

) (

1 −1
−1 1

)

where the second 2 × 2-matrix is stacked on top of the first one.
We tested the algorithm with a problem which has the property that very

few lines contain only 0’s or only 1’s. Because the purpose of this test is to show
if the algorithm is capable of solving three-dimensional instances we only used
implementation A. The test problem is presented in appendix A. The output of
the algorithm is presented as well. Table 7 shows the results for this test case.

problem size 10 × 10 × 10

run time (s) 1603

Table 7: Results for problem T4
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7 Discussion

All computational results indicate that the current implementation of the algo-
rithm is much faster than the original implementation used in [7]. A great part
of the speed improvement is due to the fact that the original implementation
was written in MATLAB whereas the current implementation was written in
C++. In MATLAB the programmer has only high-level control. By implement-
ing the algorithm in C++ we gained the performance benefit of being able to
implement many low-level optimizations at the expense of increased program
complexity.

The random examples show that for density 0.5, the algorithm that uses
projection updating is much faster than the algorithm that repeatedly computes
the projection from scratch. From the results in table 4 we conclude that this is
due to the fact that for large densities a small number of new entries is fixed in
each iteration of the projection operation. For the smaller densities however the
projection updating strategy is slower than repeating the complete projection
computation. When solving these problems – that contain many zeros – the
algorithm fixes many entries each time the projection operation is called. When
a great number of new entries is fixed, recomputing the QR decomposition
becomes faster than updating.

The random examples expose a weakness of the algorithm. For most of the
large random problems with low densities the algorithm was unable to find a
binary solution. Problems with density 0.5 appear to be much easier to solve.
This is probably due to the fact that for these problems many solutions usually
exist.

Although random examples can be very useful for the algorithm analysis,
they bear little practical value. The structured examples are expected to have
more practical relevance. In [7] it was already shown that the algorithm is
capable of solving the test problems T1 and T2. The new implementation is
much faster on these instances. For this type of problem, projection updating
does not result in shorter run times. Problem T3 is harder, because very few lines
contain only 0’s or 1’s. Although the algorithm did not find a binary solution in
most test runs, it found solutions with just a small number of nonbinary entries.

The three-dimensional example demonstrates that the algorithm is not lim-
ited to the two-dimensional case. We solved a 10 × 10 × 10 instance with very
few lines that contain only 0’s or 1’s.

All test results clearly show that concerning the run time the projection
operation is the performance bottleneck of the algorithm. Although projection
updating performs very well on some examples it is slower than recomputing the
projection on most of the examples. We oberve a clear pattern in the projec-
tion operations that were executed for these examples. The average number of
new fixed entries in each iteration of the main loop of the projection operation
is relatively high when the density of 1’s is low. Most entries are fixed in the
first iteration. According to the results from table 4, the set of entries that are
fixed in the first iteration does not vary much between successive calls to the
projection operation. This suggests that even when projection updating is used,
a lot of repeated work is still performed. An approach to increase performance
might be to store the end result of a projection operation. When the projection
operation is invoked again, the algorithm would only have to consider the differ-
ence between the set of entries that was fixed in the previous operation and the
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current set of fixed entries. In order to implement this approach, a new updat-
ing procedure must be added that enables the algorithm to undo the fixation of
an entry. The QR decomposition does not only allow for efficient row deletion,
we can also add a row efficiently (see e.g. section 12.5.3 of [5], section 4.3.5
of [8]). Guided by the call patterns that we observed we expect that this new
updating procedure will make projection updating faster than recomputing the
QR decomposition for all test cases. Therefore we think that this is certainly a
direction for future research.

Because typically the number of binary variables is far greater than the
number of line sum equations the system Bx = b is very underdetermined.
Still, the dimension of the matrix Q in the QR decomposition of BT equals
the square of the number of binary variables. For large problem instances this
matrix becomes huge. When looking at the method of computing the projection
that was presented in section 4.2, we see that the only columns of Q that are
actually used are the first r columns, where r = rank(B). However we need the
full matrix Q to perform the update procedure of section 4.3. In section 4.3.6
of [8] a procedure is described for removing a row from a QR factorization. The
term QR factorization is used to denote a QR decomposition of which only the
first r columns are stored. Using the QR factorization instead of the full QR
decomposition would reduce the time and space requirements of the projection
operation significantly. In the case of a two-dimensional n × n array A, the
number of line sums is linear in n, whereas the number of binary variables is
quadratic in n. By storing only the first r columns of Q, the size of Q would
be reduced from O((n2)2) = O(n4) to O(n2n) = O(n3), since we have r ≤ n.
Because fewer columns of Q are stored, the time complexity of recomputing the
QR factorization is roughly a factor n lower than the complexity of recomputing
the QR decomposition. The reduction of the number of columns from O(n2)
to O(n) would also decrease the time complexity of the update procedure from
O(n4) to O(n3). We expect that using the QR factorization can reduce the
time complexity of the projection operation, roughly by a factor n, regardless
of whether projection updating is used or not.

The computation of the first projection, where no variables are fixed, takes
considerable time in all large test cases. In the next projection operation either
many variables are fixed (yielding a much smaller matrix B) or we can use
projection updating efficiently. Because the matrix B is independent of the
given linesums we may precompute the QR decomposition of this matrix and
reuse it for multiple problem instances, lowering the run time by a large constant
term.

The peeling operation that is described in [7] is not very sophisticated. It
removes rows or columns that contain only zeros or ones and are at the border
of the array A. Through careful reasoning one can often deduce the value of
many more entries in advance. These entries could then be fixed in each of
the projection operations to increase performance. It might also prevent the
algorithm from fixing some entries at a wrong value.

In the current implementations the projection operation concerns computing
the projection of the origin onto the solution manifold of the system (5) from
Section 4.3. This choice is motivated by Remark 2.5 in Section 2, which states
that the binary solutions have minimal l2-norm among the integer solutions. As
an alternative approach, the projection operation could compute the projection
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of the current solution onto the solution manifold of the system (5). In this way
the result of the projection operation will probably be much closer to the solution
before the projection operation, compared with the current implementation. We
intend to explore this approach in future research.

The results presented here show clearly that although a large improvement in
run time has been achieved there is still a great variety of possible improvements.
Further investigation of the suggested improvements is likely to yield another
significant reduction in run time.

We have not attempted to improve the solution quality. The random results
show that the algorithm is unable to find a solution for many of the larger
instances. In practice a solution that satisfies the line sums approximately is
often sufficient. There can also be additional constraints on the solution, such
as connectivity constraints. We consider the current algorithm to be a starting
point on the path towards a more robust algorithm that can cope better with
practical constraints.
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8 Conclusion

The current implementation of the algorithm from [7] is much faster than the
implementation used in the original paper regardless of whether projection up-
dating is used or not. The new implementation has the added advantage that it
can be used for higher-dimensional arrays without any significant modification.

We have described how projection updating can lead to a reduction in the
time complexity of the projection operation in some cases. For random test
cases with density 0.50 projection updating leads to a significant decrease in
run time in comparison to recomputing the projection from scratch. For smaller
densities however recomputation outperforms projection updating. This is due
to the fact that for small densities the number of new variables that is fixed in
each iteration of the projection operation is relatively large. Most new variables
are fixed in the first iteration of the main loop of the projection operation. The
difference between the set of fixed entries in the first iteration of consecutive
projection operations is very small. This fact can probably be used to further
optimize the projection operation.

Although random examples are useful for the algorithm analysis, the struc-
tured examples bear more practical value. For this type of problem projection
updating does not lead to a decrease in run time, for the same reasons that
apply to the random examples of low density.

We have presented several ideas about how to further reduce the time com-
plexity of the projection operation:

• Using the QR factorization instead of the QR decomposition can reduce
the run time as well as memory requirements.

• Storing the result after the first iteration of the main loop of the projection
operation can greatly increase the effectiveness of projection updating.

• Precomputing the QR decomposition of the start matrix B can decrease
the run time by a large constant term.

• Replacing the peeling operation from [7] by a more sophisticated operation
can lead to both a decrease in run time and an improvement of the solution
quality.

The random examples show that for large instances with low densities the al-
gorithm does not find a binary solution. We consider the current algorithm to
be a starting point on the path towards a more robust algorithm that can cope
better with practical constraints.
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A Appendix: Structured examples

















































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

















































T1. 29 × 46 structured example































































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0































































T2. 36 × 42 structured example
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0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0







































































T3. 40 × 40 structured example

1 :











1 1 1 1 0 0 0 0 0 1
1 1 1 1 0 0 1 1 1 1
1 1 1 1 0 0 1 1 1 1
1 1 1 1 0 0 0 0 0 0
0 1 1 0 0 0 1 1 0 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1
1 1 0 0 0 1 1 1 1 1











2 :











0 1 1 1 1 0 0 0 1 0
0 1 1 1 1 0 0 1 1 1
0 1 1 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0 1 1
0 0 1 1 0 0 0 1 1 0
0 0 0 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1 1 0
1 0 0 1 1 1 1 1 1 0
1 0 0 0 1 1 1 1 0 0











3 :











0 0 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 1 1
0 1 1 1 1 1 0 0 1 1
0 0 1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 1 1 0
0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
1 0 1 1 1 1 1 1 0 0
1 0 1 0 0 1 1 1 0 0











4 :











0 0 0 1 1 1 1 0 0 0
1 0 0 1 1 1 1 0 0 1
1 0 1 1 1 1 1 0 0 1
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 0 0 1 1 0
0 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0 0 1
0 1 1 0 0 0 0 0 0 1











5 :











0 0 0 0 1 1 1 1 0 0
1 1 0 0 1 1 1 1 0 0
1 1 0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 0 0 1 1











6 :











0 0 0 0 1 1 1 1 0 0
1 1 1 0 1 1 1 1 0 0
1 1 1 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 1 1 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 0 0 1 1 1











7 :











0 0 0 1 1 1 1 0 0 0
1 1 0 1 1 1 1 0 0 1
1 1 0 1 1 1 1 0 0 1
0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 0 1 1
0 1 1 1 1 0 0 0 1 1











8 :











0 0 1 1 1 1 0 0 0 0
1 0 1 1 1 1 0 0 1 1
1 0 1 1 1 1 0 0 1 1
0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 0 0 1 0 0











9 :











0 1 1 1 1 0 0 0 0 0
0 1 1 1 1 0 0 1 1 1
0 1 1 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 1 1 1 0
0 0 0 1 1 1 1 1 1 0
1 0 0 1 1 1 1 1 1 0
1 0 0 1 1 1 1 1 1 0
0 0 0 1 1 1 1 1 1 0











10 :











1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 1 1 1 1
1 1 1 1 0 0 1 1 1 1
1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1











T4. 10 × 10 × 10 structured example
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