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Introduction

Fermat's earliest interest in number theory grew out of the classical concept of

a perfect number, one equal to the sum of all its proper divisors. Book IX of

Euclid's Elements contains a proof that if 2

n

� 1 is prime, then 2

n�1

� (2

n

� 1)

is perfect. The Greeks had, however, only been able to discover four perfect

numbers, 6; 28; 496 and 8128, because it was di�cult to determine the values of

n for which 2

n

� 1 is prime. Fermat discovered three propositions that could

help in this regard, propositions he communicated to Mersenne in a letter of

June 1640. The �rst of these results was that if n is not itself prime, then 2

n

�1

cannot be prime. The proof of this result just exhibited the factors: If n = r � s,

then

2

n

� 1 = 2

r�s

� 1 = (2

r

� 1)(2

r(s�1)

+ 2

r(s�2)

+ � � �+ 2

r

+ 1):

The basic question therefore reduced to asking for which primes p is 2

p

� 1

prime. Such primes are today called Mersenne primes in honor of Fermat's

favorite correspondent (I have quoted this from [Katz] page 458).

De�nition 0.1 Let l 2 N. The number 2

l

� 1 will be denoted by M

l

. If M

l

is

prime we shall call M

l

a Mersenne prime.

The biggest known prime at the moment (March 2002) is the Mersenne prime

2

13466917

� 1. It is no coincidence that the biggest known prime at the moment

is a Mersenne prime, because there is a very easy test, the Lucas-Lehmer test

(see [Beukers] page 44), to check whether a number of the form 2

p

� 1 is prime

or not.

David A. Cox has written a book about primes of the form x

2

+ d � y

2

(see

[Cox]). In this paper we consider this for Mersenne primes, so the fundamental

equation of this paper is

M

l

= x

2

+ d � y

2

; (0.1)

with x; y; d 2Z

�0

and M

l

a Mersenne prime.

De�nition 0.2 We de�ne F

d

to be the quadratic form X

2

+ d � Y

2

2Z[X;Y ].

Let p be a prime. We shall say that p is represented by F

d

if there is a tuple

(x; y) 2Z

2

�0

such that p = x

2

+ d � y

2

.

Proposition 0.3 Let M

l

be a Mersenne prime. Let d 2 Z

�0

. Suppose that

F

d

represents M

l

. Then there is a unique tuple (x; y) 2 Z

2

�0

with the property

M

l

= x

2

+ d � y

2

.

Proof :

If d = 0 then clearly F

d

does not represent M

l

. If d = 1 then x

2

+d�y

2

� 1 mod4,

but since we have M

l

� 3 mod4, we see that F

d

does not represent M

l

. Let

d > 1. We know that M

l

6= 2. If M

l

j d then F

d

does not represent M

l

or

M

l

= d. In the last case it is clear that (x; y) = (0; 1) is the unique tuple

2



in Z

2

�0

with M

l

= x

2

+ d � y

2

. Now we may assume that M

l

- 2d. But then

M

l

does not divide the conductor f of Z[

p

�d], because f obeys the relation

�4d = f

2

�(Q(

p

�d)=Q). Suppose that (x; y) and (x

0

; y

0

) are tuples inZ

2

�0

with

the property that M

l

= x

2

+ d � y

2

= (x

0

)

2

+ d � (y

0

)

2

. Since M

l

does not divide

f we know that M

l

splits uniquely in two principal prime ideals inZ[

p

�d] (see

[Cox] page 144), so we have that the element x

0

+ y

0

p

�d is equal to, let's say,

the element (x+ y

p

�d) �u for a certain u 2Z[

p

�d]

�

= f�1g. We get x = x

0

u,

hence x = x

0

. Therefore we have (x; y) = (x

0

; y

0

). This completes the proof.

De�nition 0.4 We call the unique tuple (x; y) in proposition (0.3) the F

d

-

solution of M

l

.

We will be concerned with two questions. The �rst most natural question

to arise is: Can we decide for a given d 2 Z

>0

and a given Mersenne prime

M

l

whether or not F

d

represents M

l

? Suppose F

d

represents M

l

. Let (x; y)

be the F

d

-solution of M

l

. Our second question is: What can we say about the

divisibility of x or y by small primes (2 or 3)?

An illustration of both questions, which was implicitly the start of this pa-

per, is the following table made by Franz Lemmermeyer.

2

7

� 1 = 127 = 8

2

+ 7 � 3

2

2

13

� 1 = 8191 = 48

2

+ 7 � 29

2

2

19

� 1 = 524287 = 720

2

+ 7 � 29

2

2

31

� 1 = 2147483647 = 43968

2

+ 7 � 5533

2

2

61

� 1 = 2305843009213693951 = 910810592

2

+ 7 � 459233379

2

In this table we see the �rst few nontrivial solutions of the equation M

l

=

x

2

+ 7 � y

2

. Franz Lemmermeyer observed that x is divisible by 8 every time.

That this is true in general was proved by Hendrik Lenstra and Peter Steven-

hagen (see [LenSte]). The idea they used in the proof of their theorem can be

generalized. One generalization leads to the following result.

Theorem 0.5 Let d = 2

n

� 1 be a squarefree integer with 2 - n. Let M

l

be a

Mersenne prime with l � 1 modn. Suppose that (x; y) is the F

d

-solution of M

l

then 8 j x.

De�nition 0.6 Let 0 < n < 38 be an integer. We de�ne A

n

be the set of the

�rst n Mersenne primes. We de�ne s

n

(d) to be fM

l

2 A

n

jF

d

represents M

l

g.

This paper is divided in four chapters. In the �rst chapter we will look at the

F

d

-solution of M

l

for M

l

2 s

10

(d) and d between 0 and 48, and we will look at

the numbers #s

20

(d) for d between 0 and 48. We will observe some structure in

our examples. Some of these structures are easy to prove, see proposition (1.1),

and some are harder to prove, see for example proposition (3.6). In chapter two

we will state a couple of theorems we use in chapter three and four. Keywords in

chapter two are the Artin map, Hilbert class �eld, ray class �eld and ring class

�eld. These class �elds will help us to decide whether or not F

d

represents M

l

.

3



The knowledge of chapter two will be used to explain the numbers #s

20

(d) we

found in chapter one. Take for example d = 14. We get for this d the following

nice result. Suppose that M

l

is a Mersenne prime then

F

14

represents M

l

, l � 1mod3:

The technique we used to prove the above statement will also be used in the

proof of theorem (0.5) in chapter four.

I would like to thank my supervisor Bart de Smit and Peter Stevenhagen for

their advice and suggestions.
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Chapter 1

Numerical results

In this chapter we will look at the F

d

-solution of M

l

for M

l

2 s

10

(d) and d

between 0 and 48, and we will look at the numbers #s

20

(d) for d between 0 and

48.

In Pari/GP, the well known computer algebra package (see [Cohen2] page

525), one can implement the algorithm of Cornacchia (see [Beukers] page 157

or [Cohen] page 34) to calculate the F

d

-solution of M

l

. The �rst ten Mersenne

primes areM

2

;M

3

;M

5

;M

7

;M

13

;M

17

;M

19

;M

31

;M

61

andM

89

. The F

d

-solution

of M

l

for M

l

2 s

10

(d) and d between 0 and 48 are given below.

d = 2

M

2

= (1)

2

+ 2 � (1)

2

d = 3

M

2

= (0)

2

+ 3 � (1)

2

M

3

= (2)

2

+ 3 � (1)

2

M

5

= (2)

2

+ 3 � (3)

2

M

7

= (2 � 5)

2

+ 3 � (3)

2

M

13

= (2 � 23)

2

+ 3 � (3

2

� 5)

2

M

17

= (2 � 181)

2

+ 3 � (3)

2

M

19

= (2 � 149)

2

+ 3 � (3 � 127)

2

M

31

= (2 � 23081)

2

+ 3 � (3

4

� 29)

2

M

61

= (2 � 9697 � 77617)

2

+ 3 � (3

2

� 11 � 13 � 89611)

2

M

89

= (2 � 601 � 14456661997)

2

+ 3 � (3 � 5

3

� 1979 � 13851631)

2

d = 6

M

3

= (1)

2

+ 6 � (1)

2

M

5

= (5)

2

+ 6 � (1)

2

M

7

= (11)

2

+ 6 � (1)

2

M

13

= (29)

2

+ 6 � (5 � 7)

2

M

17

= (5 � 71)

2

+ 6 � (29)

2

M

19

= (349)

2

+ 6 � (7 � 37)

2

5



M

31

= (44029)

2

+ 6 � (3 � 7 � 281)

2

M

61

= (47 � 1321 � 22027)

2

+ 6 � (5 � 7 � 7697863)

2

M

89

= (7 � 43 � 77508521119)

2

+ 6 � (5 � 173 � 11087 � 367867)

2

d = 7

M

3

= (0)

2

+ 7 � (1)

2

M

7

= (2

3

)

2

+ 7 � (3)

2

M

13

= (2

4

� 3)

2

+ 7 � (29)

2

M

19

= (2

4

� 3

2

� 5)

2

+ 7 � (29)

2

M

31

= (2

6

� 3 � 229)

2

+ 7 � (11 � 503)

2

M

61

= (2

5

� 79 � 360289)

2

+ 7 � (3

2

� 11 � 4638721)

2

d = 14

M

7

= (1)

2

+ 14 � (3)

2

M

13

= (71)

2

+ 14 � (3 � 5)

2

M

19

= (13 � 43)

2

+ 14 � (3 � 41)

2

M

31

= (13 � 3557)

2

+ 14 � (3 � 271)

2

M

61

= (5 � 79 � 223 � 10859)

2

+ 14 � (3 � 13 � 47 � 61 � 2819)

2

d = 15

M

5

= (2

2

)

2

+ 15 � (1)

2

M

13

= (2

4

)

2

+ 15 � (23)

2

M

17

= (2

2

� 89)

2

+ 15 � (17)

2

M

61

= (2

5

� 19 � 43 � 47609)

2

+ 15 � (3 � 2477 � 30223)

2

M

89

= (2

3

� 47 � 739 � 4147399)

2

+ 15 � (3

2

� 4339 � 8753 � 18773)

2

d = 19

M

19

= (2 � 257)

2

+ 19 � (3

2

� 13)

2

d = 22

M

5

= (3)

2

+ 22 � (1)

2

M

19

= (3

2

� 5 � 7)

2

+ 22 � (139)

2

M

31

= (7 � 6619)

2

+ 22 � (3 � 61)

2

M

61

= (1518243299)

2

+ 22 � (3 � 5 � 7 � 13 � 4363)

2

M

89

= (53 � 13405371289)

2

+ 22 � (3 � 103 � 17158836061)

2

d = 23

M

89

= (2

4

� 59 � 79 � 6113 � 28813)

2

+ 23 � (3 � 5 � 11 � 16649 � 1603769)

2

d = 27

M

5

= (2)

2

+ 27 � (1)

2

M

7

= (2 � 5)

2

+ 27 � (1)

2

M

13

= (2 � 23)

2

+ 27 � (3 � 5)

2

M

17

= (2 � 181)

2

+ 27 � (1)

2

M

19

= (2 � 149)

2

+ 27 � (127)

2

M

31

= (2 � 23081)

2

+ 27 � (3

3

� 29)

2

6



M

61

= (2 � 9697 � 77617)

2

+ 27 � (3 � 11 � 13 � 89611)

2

M

89

= (2 � 601 � 14456661997)

2

+ 27 � (5

3

� 1979 � 13851631)

2

d = 30

M

5

= (1)

2

+ 30 � (1)

2

M

13

= (89)

2

+ 30 � (3)

2

M

17

= (19

2

)

2

+ 30 � (5)

2

M

61

= (13 � 53522947)

2

+ 30 � (11 � 349 � 64189)

2

M

89

= (24014203778671)

2

+ 30 � (3

5

� 11 � 23 � 19311737)

2

d = 31

M

5

= (0)

2

+ 31 � (1)

2

M

31

= (2

3

� 647)

2

+ 31 � (3

2

� 919)

2

M

61

= (2

4

� 5 � 43 � 435983)

2

+ 31 � (3 � 7 � 2032909)

2

d = 38

M

19

= (683)

2

+ 38 � (3 � 13)

2

d = 39

M

13

= (2

3

� 5)

2

+ 39 � (13)

2

M

19

= (2

2

� 7 � 23)

2

+ 39 � (53)

2

M

31

= (2

3

� 5503)

2

+ 39 � (7 � 331)

2

M

61

= (2

3

� 5 � 21609899)

2

+ 39 � (7 � 11 � 131 � 19819)

2

d = 43

M

13

= (2 � 3 � 13)

2

+ 43 � (7)

2

d = 46

M

7

= (3

2

)

2

+ 46 � (1)

2

M

19

= (271)

2

+ 46 � (3

2

� 11)

2

M

89

= (5 � 23143 � 168841333)

2

+ 46 � (3 � 18229 � 41528533)

2

Some d's give a lot of solutions, for example d = 3; 6; 27, other d's a few and

there are also a lot of d's without a solution. Now take a look at the divisibility

of x or y by 2 or 3. For example take d = 3 then most y's are divisible by 3.

For d = 15 we see that 4 j x. The proposition below explains some of these

observations. We will explain the other observations in chapter three.

Proposition 1.1 Let M

l

6= 3 be a Mersenne prime. If d � 0; 1; 2; 4; 5mod8

then F

d

does not represent M

l

. Suppose that F

d

represents M

l

. Let (x; y) be the

F

d

-solution of M

l

. For the remaining cases of d mod8 we have the following

properties:

dmod8 properties of (x; y)

3 2 k x

6 2 - x � y

7 4 j x

7



For the cases d � 1; 2mod3 we have the following properties:

dmod3 properties of (x; y)

1 either 3 j x or 3 j y

2 3 j y

Proof :

Since we assumed that M

l

6= 3 we have M

l

� �1mod8. Because a square

modulo 8 equals 0; 1; 4mod8, we see from the equivalence M

l

� �1 � x

2

+

d � y

2

mod8, after we have checked all the possible combinations, that we have

no solutions for d � 0; 1; 2; 4;5mod8. For d � 3mod8 we see that 2 k x. If

d � 6mod8 then 2 - x � y. And for d � 7mod8 we see that 4 j x. Suppose that

d � 1mod3, then M

l

� 1 � x

2

+ d � y

2

� x

2

+ y

2

mod3, so either 3 j x or 3 j y.

Suppose d � 2mod3 then M

l

� 1 � x

2

+ d � y

2

� x

2

� y

2

mod3, so 3 j y. This

completes the proof.

With proposition (1.1) we can exclude d � 0; 1; 2; 4; 5mod8, if d 6= 2. For

the case d = 2 we know by proposition (1.1) that F

2

represents M

l

if and only

if M

l

= 3 = 1

2

+ 2 � 1

2

. In the table below we see the numbers #s

20

(d) for each

d between 0 and 48.

d 2 3 6 7 11 14 15 19 22 23

#s

20

(d) 1 20 19 13 1 12 9 2 8 2

d 27 30 31 35 38 39 43 46 47

#s

20

(d) 18 9 5 0 2 7 3 6 1

For d = 3; 7; 15 we see that j#s

20

(d) � #s

20

(2d)j � 1. In chapter three we

will prove for these d's that if M

l

is a Mersenne prime not equal to d then F

d

represents M

l

if and only if F

2d

represents M

l

. In chapter three we will �nd

criteria to decide whether or not F

d

represents M

l

, for d between 0 and 48.

With these criteria we can explain the numbers #s

20

(d) in the table above.

Let's take a look again at the F

d

-solution of M

l

for M

l

2 s

10

(d) and d be-

tween 0 and 48, with the divisibility of x by 8 for d = 7 in mind. For d = 15

we already mentioned that 4 j x. Now 7 = 2

3

� 1 and 15 = 2

4

� 1. The next

odd power of two minus one is 2

5

� 1 = 31 and if we check the divisibility of x

by 2 for d = 31, we see that for our two nontrivial solutions we both have 8 j x.

The next M

l

such that F

31

represents M

l

is M

521

and also 8 j x. After M

521

the next two M

l

's with F

31

represents M

l

are M

4253

and M

11213

. But for both

F

31

-solutions (x; y) of M

4253

and (x; y) of M

11213

we have 8 - x. Next we have

2

7

� 1 = 127. The �rst nontrivial Mersenne prime M

l

such that F

127

represents

M

l

is M

127

.

M

127

= 12831216340765303000

2

+ 127 � 208123802438146401

2

The next one is M

9689

. For both F

127

-solutions (x; y) of M

127

and (x; y) of

M

9689

we have 8 j x. I did not found Mersenne primes which are represented

8



by F

2

9

�1

or F

2

11

�1

. The �rst nontrivial Mersenne prime M

l

such that F

2

13

�1

represents M

l

is M

521

. For the F

2

13

�1

-solution (x; y) of M

521

we have 8 j x.

Theorem (4.2) will explain the divisibility of x by 8 for all these examples.
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Chapter 2

Some class �eld theory

In this chapter we will state the theorems we use in chapter three and four.

We will de�ne Hilbert class �eld, the Artin map, ray class �eld and ring class

�eld. When we have done this, we can build up the conditions, as in [Cox], for

deciding whether a prime is of the form x

2

+ d � y

2

or not.

We will refer a lot to the book of Cox (see [Cox]), therefore we will use

his less usual de�nition of a number �eld. We de�ne a number �eld K to be

a sub�eld of the complex numbers C which has �nite degree over the rational

numbers Q. Let K and L be number �elds. The ring of algebraic integers of K

will be denoted by Z

K

. The disciminant of L=K will be denoted by �(L=K).

The discrimant of a polynomial f will be denoted by �(f). Let � be an element

of L. The minimal polynomial of � over K will be denoted by f

�

K

. We denote

the norm map from the fractional ideals of L to the fractional ideals of K by

N

L=K

.

Rami�cation and discriminant

If you want to use class �eld theory, like we do, it is important to know which

primes ramify. Therefore we will state some useful theorems about rami�cation.

Theorem 2.1 Let L=K be an extension of number �elds. Then a prime � of

K rami�es in the extension Z

K

�Z

L

if and only if it divides �(L=K).

Proof : See [FT] page 126.

Theorem 2.2 Let L=K be an extension of number �elds. Suppose L = K(�)

for an element � 2Z

L

then �(L=K) j �(f

�

K

) �Z

K

.

Proof : See [FT] page 121.

Theorem 2.3 Given a tower of number �elds K � L �M , we have the identity

�(M=K) = N

L=K

(�(M=L)) ��(L=K)

[M :L]

:

Proof : See [FT] page 126.

10



Theorem 2.4 Let L and M be linearly disjoint extensions of a number �eld

K, and suppose that �(L=K) and �(M=K) are coprime in Z

K

. Then we have

Z

LM

=Z

L

�Z

M

and �(LM=K) = �(L=K)

[M :K]

��(M=K)

[L:K]

.

Proof : See [Lang] page 68.

In�nite primes

Finite primes of a number �eld K are just the maximal ideals ofZ

K

, the ring of

algebraic integers of K. The in�nite primes are determined by the embedding

of a number �eld into the complex numbers C . We have two kind of in�nite

primes. A real in�nite prime is an embedding � : K ! Rand a complex in�nite

prime is an unordered pair of complex conjugated embeddings �; �� : K ! C

with � 6= ��. So Q has one prime at in�nity and K = Q(

3

p

2) has two primes at

in�nity.

Let K � L be number �elds and ', � in�nite primes in K, L respectively.

We say � lies above ' if and only if � j

K

= '. If this is the case, we will write

� j'. Each in�nite prime ' of K gives rise to an absolute value on K. Indeed,

let � 2 K and let j � j the Euclidean distance function on C . If ' is a real

in�nite prime, say ' is the imbedding � : K ! C , then we de�ne j�j

'

to be

j�(�)j. If ' is a complex in�nite prime, say ' is the pair of complex conjugated

embeddings �; �� : K ! C , then we de�ne j�j

'

to be j�(�)j. This is well de�ned

since j�(�)j = j��(�)j. Let ' be an in�nite prime then we have the following

absolute value on K

� 7! j�j

'

:

By K

'

we will mean the completion of K induced by the absolute value j � j

'

.

The �eld K

'

will be R, whenever ' is a real in�nite prime, or C , whenever '

is a complex in�nite prime. Now suppose that � j' and K

'

6= L

�

then we say

that ' rami�es in L.

Theorem 2.5 Let K � L be number �elds. Let ' be an in�nite prime of K

and let � be an in�nite prime of L above '. Then

X

�j'

[L

�

: K

'

] = [L : K]:

Proof : See [Lang] page 39.

We give an example of theorem (2.5). Let 1 be the in�nite prime of Q. Let �

be an in�nite prime of K = Q(

3

p

2). Clearly � lies above 1. So we have using

theorem (2.5)

X

�j1

[K

�

: Q

1

] = [R : R]+ [C : R] = 1 + 2 = [K : Q]:

Now we can talk about unrami�ed extensions.
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2.1 Hilbert class �eld

We say that a number �eld L is unrami�ed over a number �eld K � L if every

prime, �nite or in�nite, ofK is unrami�ed in L. We de�ne K to be the algebraic

closure of the number �eld K in C .

Theorem 2.6 For every number �eld K there exist a �nite abelian unrami�ed

extension H(K) in K, such that if L is an unrami�ed abelian extension of K

in K, then we have L � H(K). Furthermore, we have Cl(K) ' Gal(H(K)=K),

where Cl(K) is the class group of K and Gal(H(K)=K) is the Galois group of

H(K) over K.

Proof : See [Cox] page 106 and 109.

The �eld H(K) is called the Hilbert class �eld of K. It is the maximal

unrami�ed abelian extension of K in K. A theorem of Minkowski, see [Cohen]

page 195, says that for every number �eldK di�erent fromQwe have j�(K=Q)j,

the absolute value of the discriminant of K over Q, is bigger then 1. From the-

orem (2.6) we get that Cl(Q) ' Gal(Q=Q) ' fidg, so the class number of Q is

1, and we rediscover the well known fact thatZis a unique factorization domain.

2.2 The Artin map

Theorem (2.6) says that there is an isomorphism between the class group Cl(K)

and the Galois group Gal(H(K)=K). In this section we will give a canonical

map. We will follow mainly [Lang].

Let L=K be a Galois extension of number �elds with G = Gal(L=K). Let �

be a �nite prime of K and let �

1

and �

2

be primes of L above �. We know that

there exist �2 G such that �

1

= �(�

2

) (see [Lang] page 12). And if �2 G then

�(�

1

) lies above �. Let � be a prime above � in L. Let G

�

= f�2 Gj�(�) = �g

be the decomposition group of the prime � of L. We have G

�

1

= �G

�

2

�

�1

if

�

1

= �(�

2

). So if the Galois group G is abelian, then we have G

�

1

= G

�

2

. Since

every element � of G

�

leaves � �xed and is the identity on Z

K

=�, the element

� induces an element �� of the Galois group of Z

L

=� over Z

K

=�. This gives us

a surjective group homomorphism (see [Lang] page 16)

G

�

! Gal((Z

L

=�)=(Z

K

=�));

given by

� 7�! ��:

The kernel of the homomorphism is called the inertia group and it is denoted

by I

�

. The �xed �eld of the decomposition group of a prime � is called the

decomposition �eld of �. The �xed �eld of the inertia group of � is called the

inertia �eld of �. These two �elds have very nice properties. The decomposition

12



�eld D of � is the smallest sub�eld of L containing K such that � is the only

prime of L lying above the prime �\D of D. The rami�cation index e(�\D=�)

and the residue index f(� \D=�) are both equal to 1. The inertia �eld I of �

is the smallest sub�eld of L containing K such that the prime � \ I is totally

rami�ed in L. The rami�cation index e(�=�) equals [L : I] and the residue class

degree f(�=�) equals [I : D].

For the rest of this section we assume that � is a �nite prime of K un-

rami�ed in L. By the theory of �nite �elds there exists a unique element �� of

Gal((Z

L

=�)=(Z

K

=�)), called the Frobenius automorphism, that has the e�ect

��(x) � x

N(�)

mod� 8x 2Z

L

:

So every unrami�ed prime � above � of L gives us a unique element �� of

Gal((Z

L

=�)=(Z

K

=�)). And since � is unrami�ed in L, we have I

�

= feg, so

the map from G

�

to Gal((Z

L

=�)=(Z

K

=�)) is an isomorphism. Hence we get

a unique element � of G

�

� Gal(L=K). We denote this unique element � by

(

�

L=K

).

For the rest of this section we assume that K � L is an abelian extension of

number �elds. Since L=K is abelian and (

g(�)

L=K

) = g(

�

L=K

)g

�1

for all g 2 G (see

[Cox] page 107), we see that (

�

L=K

) only depends on �. Hence every unrami�ed

prime � of K induces an element of the Galois group of L=K. We denote this

element by (

�

L=K

). Now we have a map from the prime ideals of K, which do

not ramify in L, to Gal(L=K), given by

� 7�! (

�

L=K

):

We de�ne the decomposition group of �, denoted by G

�

, to be the decompo-

sition group of a prime � in L above �. This is well de�ned since L=K is abelian.

We de�ne the Frobenius of � to be the unique element of G

�

that induces the

Frobenius automorphism of Gal((Z

L

=�)=(Z

K

=�)).

Now in words the map above says: Every prime ideal � of K is send to the

Frobenius of �.

We can extend our map by multiplicativity. Let I

K

(�(L=K)) be the group

of fractional ideals ofZ

K

prime to �(L=K), so every prime ideal in I

K

(�(L=K))

is unrami�ed in L. If i 2 I

K

(�(L=K)) and i =

Q

�

e

�

, then we de�ne

(

i

L=K

) =

Y

(

�

L=K

)

e

�

:

Now we have a map,

I

K

(�(L=K))! Gal(L=K); (2.1)

the Artin map, which is actually a surjective homomorphism (see [Lang] page

199).

We are interested in the kernel of the Artin map. First we de�ne a couple

of important terms.
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De�nition 2.7 Let K be a number �eld. A modules m of K is a formal product

m

0

�m

1

of �nitely many �nite primes m

0

and �nitely many in�nite real primes

m

1

, with the real primes all di�erent from each other.

By I

K

(m) we will mean the group of all fractional ideals of K relative prime to

m

0

.

De�nition 2.8 Let K be a number �eld and m a modulus of K. We de�ne

P

K;1

(m) to be the subgroup of I

K

(m) generated by the principal ideals � �Z

K

,

with �2Z

K

, satisfying � � 1modm

0

and �(�) > 0 for all in�nite primes � of

K dividing m

1

. We de�ne Cl

m

(K) to be the group I

K

(m)=P

K;1

(m).

Let m be a modulus, such that every �nite prime which rami�es in L, divides

m. Then we have the Artin map

I

K

(m)� Gal(L=K): (2.2)

It is not in general true that the kernel of this map contains P

K;1

(m). But if

we make a good choice for the modulus, this will be true. There is a "smallest"

choice.

Theorem 2.9 Let L/K be an abelian extension of number �elds. Then there is

a modulus f = f(L=K) such that:

(i) A prime of K, �nite or in�nite, rami�es in L if and only if it divides f .

(ii) Let m be a modulus divisible by all primes which ramify in L. Then the

kernel of the Artin map I

K

(m) ! Gal(L=K) contains P

K;1

(m) if and only if

f j m.

Proof : See [Cox] page 162.

The f(L=K) in theorem (2.9) is called the conductor of L=K. The following

theorem gives us a good modulus.

Theorem 2.10 Let K � L be an abelian extension of number �elds. Let

�(L=K) be the relative discriminant of L over K. Let m

1

be the formal prod-

uct of all real in�nite primes of K which ramify in L. Set m = �(L=K) �m

1

.

Then the Artin map induces a surjective group homomorphism

Cl

m

(K)� Gal(L=K): (2.3)

Proof : The conductor f(L=K) divides �(L=K) �m

1

(see [Cohen2] page 158).

So by theorem (2.9) the theorem follows.

2.3 Ray class �eld and ring class �eld

In the previous section we started with an extension of number �elds L=K. Now

we will go the other way around and start with a number �eld K and a modulus

m of K.
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Fix m, then we can search for abelian extensions L of K in K, the algebraic

closure of K in C , with the following two properties:

1: Every prime of K, �nite or in�nite, which rami�es in L divides m.

2: P

K;1

(m) is contained in the kernel of the Artin map.

Let 


m

(K) be the set of all abelian �eld extensions L of K which satisfy these

two properties. Let �

m

(K) be the set of all subgroups of I

K

(m) which contain

P

K;1

(m). There is a canonical bijection i between 


m

(K) and �

m

(K) induced

by the Artin map. Indeed, given a �eld L 2 


m

(K) then the kernel of the

Artin map I

K

(m) ! Gal(L=K) is a group H 2 �

m

(K). And given a group

H 2 �

m

(K) then the is a unique �eld L 2 


m

(K) such that the kernel of the

Artin map I

K

(m)! Gal(L=K) is H (see [Cox] page 162). The bijection i has

the following nice property. Let L

1

; L

2

2 


m

(K) then L

1

� L

2

if and only if

i(L

1

) � i(L

2

). Hence we have the following theorem.

Theorem 2.11 There is a �eld R

m

(K) 2 


m

(K) such that for every L 2




m

(K), we have L � R

m

(K). Furthermore, the Artin map induces a group

isomorphism

Cl

m

(K)! Gal(R

m

(K)=K):

Proof : Take R

m

(K) = i(P

K;1

(m)).

The �eld R

m

(K) is called the ray class �eld of K with modulus m. It is the

maximal abelian extension of K in K with the property, that only primes of

K, which divide the modulus m, ramify in R

m

(K) and every prime ideal of K

in P

K;1

(m) is completely split in R

m

(K). The group Cl

m

(K) is called the ray

class group of K with modulusm. A basic result is that the number of elements

of Cl

m

(K) is �nite (see [Cox] page 160), hence R

m

(K) is a �nite extension of

K. If we take m = 1, then R

m

(K) = H(K) and Cl

m

(K) = Cl(K), so we see

that the ray class �eld is a generalization of the Hilbert class �eld.

The most important �eld of chapter three will be the ring class �eld. Let K

be a quadratic number �eld and let O be an order of K. Set m = [Z

K

: O]. We

de�ne P

K;Z

(m) to be the subgroup of I

K

(m) generated by the principal ideals

� �Z

K

, with �2Z

K

, satisfying � � amodm for a number a with gcd(a;m) = 1.

The �eld i(P

K;Z

(m)) is called the ring class �eld of the order O and we will

denoted it by Ri(O). Clearly the Artin map induces an isomorphism between

I

K

(m)=P

K;Z

(m) and Gal(Ri(O)=K).

We have m = [Z

K

: O] = 1; 2; 3; 4; 6 if and only if P

K;1

(m) = P

K;Z

(m). And

we have P

K;1

(m) = P

K;Z

(m) if and only if R

m

(K) = Ri(O). In chapter three

we only need to calculate the ring class �elds of orders O with [Z

K

: O] = 1; 2; 6.

Hence we only need to calculate the ray class �elds R

m

(K).
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2.4 Calculating the ray class �elds

In this section we will concentrate on calculating ray class �elds of imaginary

quadratic �elds K. Our �elds will be imaginary quadratic, therefore we may

assume that our modulus m = m

0

. We will give one way that might lead to the

ray class �eld R

m

(K).

Let K be a number �eld and m a modulus. We want to �nd R

m

(K), the ray

class �eld of K with modulus m. From theorem (2.11) we know that Cl

m

(K)

is isomorphic to G = Gal(R

m

(K)=K). So if we know the number of elements

of Cl

m

(K) then we know [R

m

(K) : K]. We have the following exact sequence

0!Z

�

K

! (Z

K

=m)

�

� Cl

m

(K)� I

K

(m)=P

K

(m)! 0:

Hence we have

#Cl

m

(K) = #(I

K

(m)=P

K

(m)) �#im((Z

K

=m)

�

);

where im((Z

K

=m)

�

) is the image of the homomorphismZ

�

K

! (Z

K

=m)

�

.

Theorem 2.12 Let K be a number �elds and m a modulus of K then

#Cl

K

= #I

K

(m)=P

K

(m):

Proof : See [Janusz] page 112 and 113.

Now #Cl

K

is the class number h

K

of K which can be calculated with meth-

ods explained in [Stewart] chapter 10 or looked up in a table (for example [Koch]

page 246). We also get from the exact sequence above

#im((Z

K

=m)

�

) = #(Z

K

=m)

�

=#im(Z

�

K

);

where im(Z

�

K

) is the image of the homomorphismZ

�

K

! (Z

K

=m)

�

. Using the

Chinese remainder theorem and the fact that

#(Z

K

=�

e

�

)

�

= (N(�) � 1) � (N(�))

(e

�

�1)

(see [Cohen2] page 189) we see that the number of elements of (Z

K

=m)

�

is

Q

�

i

(N(�

i

)�1)�(N(�

i

))

(e

�

i

�1)

, with m = �

e

�

1

1

� � ��

e

�

n

n

the prime decomposition

of m. Combining what we have done so far we get:

#Cl

m

(K) = fh

K

�

Y

�

i

jm

(N(�

i

)� 1) � (N(�

i

))

(e

�

i

�1)

g=#(im(Z

�

K

)): (2.4)

Theorem 2.13 Let K be a number �eld and R = R

m

(K) the ray class �eld

of K with modulus m. Let L be an abelian extension of K with conductor

f = f(L=K). If f j m then

L � R
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Proof : See [Cox] page 163.

For the �elds L of theorem (2.13) we know that only primes of K dividing

m may ramify in L. So if we �nd a �eld L which is abelian over K and the only

primes which ramify are primes dividing m, then we only need to check that

f(L=K) j m. This leads us to calculating the conductor. But �rst we remark

that the Hilbert class �eld ofK is contained in R

m

(K). Indeed f(H(K)=K) = 1.

Genus theory gives us a part of the Hilbert class �eld of an imaginary quadratic

�eld.

Theorem 2.14 Let K be an imaginary quadratic �eld with discriminant d

K

.

Let p

1

; : : : ; p

r

be the odd primes dividing d

K

. Set p

�

i

= (�1)

(p

i

�1)=2

� p

i

. Then

K(

p

p

�

1

; : : : ;

p

p

�

r

) � H(K);

with H(K) the Hilbert class �eld of K.

Proof : See [Cox] page 121.

The �eld K(

p

p

�

1

; : : : ;

p

p

�

r

) is called the genus �eld of K.

Let's go back to the conductor. Another very useful theorem is the following.

Theorem 2.15 Let L=K be an abelian extension of number �elds. Suppose

that the prime � of K is tamely rami�ed in L then

� k f(L=K):

Furthermore, if � is a prime of K which is unrami�ed in L then

� - f(L=K):

Proof : See [Cohen2] page 149 and [Janusz] page 188 and 189.

Theorem (2.15) does not tell us what to do if � is wildly rami�ed. There will

be one case in chapter three, namely the case d = 27, where we have to deal with

a wildly rami�ed prime. Fortunately, we �nd in [Janusz] chapter VI a general

method to calculate the conductor. We can use this method in particular in

the case where � is wildly rami�ed. The theorem below is the main key and

it uses local �elds. We will de�ne local �elds �rst. Let � be a �nite prime of

the number �eld K. We denote by K

�

the completion of K with respect to the

absolute value j � j

�

(see [Lang] page 36 for more detail). The �eld K

�

is called

a local �eld.

Theorem 2.16 Let L=K be an abelian extension of number �elds. Let � be a

prime of K which rami�es in L then

�

b

k f(L=K);

where b is the smallest integer such that 1 + �

b

Z

K

�

� N

�

(L

�

�

), with � a prime

of L above � and Z

K

�

the closure of Z

K

in K

�

.
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Proof : See [Janusz] page 188 and 189.

With the theory above we can handle our examples.
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Chapter 3

Criteria for solvability

In this chapter we will give a criterion to decide whether or not F

d

represents p.

When we have done this we will look at the special cases where p is a Mersenne

prime and d lies between 0 and 48. With the criteria we get for these special

cases, we can explain the numbers #s

20

(d), we got in the table of chapter one.

3.1 Primes of the form x

2

+ d � y

2

In [Cox] we �nd a su�cient and necessary condition to know for a �xed d 2Z

>0

when we can write a prime as x

2

+ d � y

2

for certain x; y 2Z

�0

. We will discuss

the idea of how this can be done and state the theorems we use. The most easy

case is the following.

Theorem 3.1 Let d � 1; 2mod4 be a positive squarefree integer. Let p be an

odd prime not dividing d. Suppose that the class number of Q(

p

�d) equals 1,

then

F

d

represents p, (

�d

p

) = 1:

Proof :

")": Because p - d and p = x

2

+ d � y

2

, we get �d � y

2

� x

2

modp so (

�d

p

) = 1.

"(": If (

�d

p

) = 1 and p 6= 2 then p splits in Q(

p

�d), say pZ

K

= ���. Be-

cause h(Q(

p

�d)) = 1, we know that � and �� are principal. And because

d � 1; 2mod4 is a positive squarefree integer, we have Z

Q(

p

�d)

=Z[

p

�d]. So

we have let's say � = (x + y �

p

�d) and �� = (x � y �

p

�d). Hence we have

pZ

K

= ��� = (x+ y �

p

�d)(x� y �

p

�d) = (x

2

+ d � y

2

). From this we see that

p = x

2

+ d � y

2

. This completes the proof.

From the proof of theorem (3.1) it is clear that we need to make sure that

the prime ideals above p in K = Q(

p

�d) are generated by elements of the form

x�y �

p

�d in order to be able to write p as x

2

+d �y

2

for certain x; y 2Z

�0

. In
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theorem (3.1) this was done by two assumptions. From the assumption h

K

= 1

we get that every ideal is a principal ideal. Combining this with the assumption

d � 1; 2mod4 is positive and squarefree, we get that every ideal is generated by

an element in Z[

p

�d].

Note that in theorem (3.1) we can change (

�d

p

) = 1 with p splits completely

in Q(

p

�d). First we will make a generalization of theorem (3.1) by dropping

the assumption h(K) = 1. The Hilbert class �eld of K will be used for this.

Theorem 3.2 Let d � 1; 2mod4 be a positive squarefree integer. Let p be an

odd prime not dividing d. Then we have

F

d

represents p, p splits completely in H(K);

where H(K) is the Hilbert class �eld of K = Q(

p

�d).

Proof :

")": The prime p does not ramify in K, because p does not divide the dis-

criminant of K over Q, which is �d or �4d. And since p = x

2

+ d � y

2

we have

pZ

K

= ��� with let's say (x + y

p

�d) = � 6= �� = (x � y

p

�d). Using theorem

(2.6) we get (

�

H(K)=K

) = (

��

H(K)=K

) = 1, hence � splits completely in H(K) and

�� splits completely in H(K). We conclude that p splits completely in H(K).

"(": Since p splits completely in H(K) we have pZ

K

= ��� with � 6= �� and

(

�

H(K)=K

) = (

��

H(K)=K

) = 1. Using theorem (2.6) we get � and �� are principal

ideals. We have Z

K

= Z[

p

�d], since d � 1; 2mod4 and d > 0 is squarefree.

Therefore we have x; y 2Zwith pZ

K

= � � �� = (x+ y �

p

�d) � (x� y �

p

�d) =

(x

2

+ d � y

2

). From this we see that p = x

2

+ d � y

2

. This completes the proof.

In the theorem below we give a more elementary way of saying that p splits

completely in H(K).

Theorem 3.3 Let d � 1; 2mod4 be a positive squarefree integer. Then there

is a monic irreducible polynomial f = f

�

Q

(x) of degree [H(K) : K] in Z[x], with

K = Q(

p

�d) and H(K) the Hilbert class �eld of K, such that if p is an odd

prime neither dividing d nor �(f), then

F

d

represents p, (

�d

p

) = 1 and f � 0modp has an integer solution :

Furthermore, f may be taken to be the minimal polynomial of a real algebraic

integer � for which H(K) = K(�).

Proof :

We will work in the following �elds Q� K � H(K) and L = R\H(K). Let �

be complex conjugation. Because � (H(K)) is unrami�ed over � (K) = K we see

that � (H(K)) � H(K), by theorem (2.6). Therefore H(K) is Galois over Q.

The �xed �eld of the subgroup generated by � is contained in R, so this �eld is

L and [H(K) : L] = 2. Let � be an algebraic integer such that L = Q(�) and let

f = f

�

L=Q

be the minimal polynomial of � over Q. Because the compositum of
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L and K is H(K), the polynomial f can also be seen as the minimal polynomial

of H(K) over K.

")": Suppose that p = x

2

+ d � y

2

. Since p is an odd prime not dividing d, we

have using (3.2) that p splits completely in H(K) and (

�d

p

) = 1. Thus p splits

completely in L. And with the Kummer-Dedekind theorem (see [Cohen] page

299) we see that f � 0modp has an integer solution.

"(": Suppose that (

�d

p

) = 1 then p splits in K, let's say pZ

K

= ���. Because

(Z

K

=�)

�

=

F

p

we see f � 0mod� has a solution. And because H(K)=K is

Galois and p does not divide �(f), we see that � splits completely in H(K).

With the same argument we get �� splits completely in H(K). We conclude that

p splits completely in H(K). Hence using theorem (3.2) we get F

d

represents p.

This completes the proof.

There are only �nite p's excluded in theorem (3.3). For these p's one can

use the algorithm of Cornacchia to check whether or not p is represented by

F

d

. For all other p's one has to �nd the polynomial f of theorem (3.3). In

[Cox] we �nd a systematic method, which uses modular functions and complex

multiplication, to calculate f .

Next we will drop the assumption d � 1; 2mod4 and d squarefree. The

problem will be that the principal ideals ofQ(

p

�d) do not have to be generated

by an element of the form x+y �

p

�d. We will use the ring class �eld ofZ[

p

�d]

for this problem.

Theorem 3.4 Let d be a positive integer. Let p be an odd prime not dividing

d. Then we have

F

d

represents p, p splits completely in Ri(Z[

p

�d]);

where Ri(Z[

p

�d]) is the ring class �eld of the order Z[

p

�d] of Q(

p

�d).

Proof :

Let K = Q(

p

�d) and let O = Z[

p

�d]. We have Z

K

= Z+ mZ

K

, where

m = [Z

K

: O] (see [Cox] page 133). We also have �(O) = �4d = m

2

�(K=Q).

")": Since �(K=Q(

p

�d)) j 4d we see that p, our odd prime not dividing d,

does not ramify in K. And since p = x

2

+ d � y

2

we have pZ

K

= ��� with let's

say (x + y

p

�d) = � 6= �� = (x � y

p

�d). Because p does not divide m we see

that �; �� 2 P

K;Z

(m). Hence we get (

�

Ri(O)=K

) = (

��

Ri(O)=K

) = 1. So � splits

completely in Ri(O) and �� splits completely in Ri(O). We conclude that p splits

completely in Ri(O).

"(": Since p splits completely in Ri(O) we have pZ

K

= ��� with � 6= �� and

(

�

Ri(O)=K

) = (

��

Ri(O)=K

) = 1. Hence � and �� are elements of P

K;Z

(m). Therefore

we have x; y 2Zwith pZ

K

= � � �� = (x+y �

p

�d) � (x�y �

p

�d) = (x

2

+d �y

2

).

From this we see that p = x

2

+ d � y

2

. This completes the proof.

We want to give a more elementary way of saying that p splits completely

in Ri(O) in case where Ri(O) equals R

m

(K).
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Theorem 3.5 Let d be a positive integer. Let R

m

(K) be the ray class �eld of

K = Q(

p

�d) with modulus m = [Z

K

:Z[

p

�d]]. Suppose that the integer m 2

f1; 2; 3; 4; 6g. Then there is a minimal monic irreducible polynomial f = f

�

Q

(x)

of R

m

(K)\R over Q in Z[x], such that if an odd prime p divides neither d nor

the discriminant of f , then

F

d

represents p, (

�d

p

) = 1 and f � 0modp has an integer solution:

Furthermore, f may be taken to be the minimal polynomial of a real algebraic

integer � for which R

m

(K) = K(�).

Proof :

Let O =Z[

p

�d]. Since [Z

K

:Z[

p

�d]] = 1; 2; 3; 4;6 we have Ri(O) = R

K

(m).

We will work in the following �elds Q � K � R

m

(K) and L = R\ R

m

(K).

Let � be complex conjugation. Because � (R

m

(K)) is an abelian extension of K

with conductor � (m) = m we see that � (R

m

(K)) � R

m

(K), by theorem (2.11).

Therefore R

m

(K) is Galois over Q. The �xed �eld of the subgroup generated by

� is contained inR, so this �eld is L and [R

m

(K) : L] = 2. Let � be an algebraic

integer such that L = Q(�) and let f = f

�

L=Q

be the minimal polynomial of �

over Q. Because the compositum of L and K is R

m

(K), the polynomial f can

also be seen as the minimal polynomial of R

m

(K) over K.

")": Suppose that p = x

2

+ d � y

2

. Since p is an odd prime not dividing d, we

have using (3.4) that p splits completely in R

m

(K) and (

�d

p

) = 1. Thus p splits

completely in L. And with the Kummer-Dedekind theorem (see [Cohen] page

299) we see that f � 0modp has an integer solution.

"(": Suppose that (

�d

p

) = 1 then p splits in K, let's say pZ

K

= ���. Because

(Z

K

=�)

�

=

F

p

we see f � 0mod� has a solution. And because R

m

(K)=K is

Galois and p does not divide �(f), we see that � splits completely in R

m

(K).

With the same argument we get �� splits completely in R

m

(K). We conclude

that p splits completely in R

m

(K). Hence using theorem (3.4) we get F

d

repre-

sents p. This completes the proof.

If you want to know how to �nd the polynomial f in theorem (3.5) then you

might want to read the text after the proof of theorem (3.3).

In chapter one we mentioned that for d = 3; 7; 15 we have j#s

20

(d) �

#s

20

(2d)j � 1. For the cases d = 3; 15 the following proposition will be used to

prove that if d 6= M

l

then F

d

represents M

l

if and only if F

2d

represents M

l

.

Proposition 3.6 Let d � 3mod4 be a positive squarefree integer. Suppose

that L = R

2

(Q(

p

�d))(

p

2) = H(Q(

p

�2d)). Let M

l

be a Mersenne prime

unrami�ed in L then

F

d

represents M

l

, F

2d

represents M

l

:

Proof :

We have M

l

= (

p

2

l

� 1) � (

p

2

l

+ 1), so M

l

splits in Q(

p

2). We want to use
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theorem (3.4). The prime M

l

is unrami�ed in L, so we have M

l

- 2d. We

have [Z

Q(

p

�d)

: Z[

p

�d]] = 2, because d � 3mod4 is a positive squarefree in-

teger. Using the fact that M

l

splits in Q(

p

2) and theorem (3.4) we get: F

d

represents M

l

if and only ifM

l

splits completely in R

2

(Q(

p

�d))(

p

2). We have

[Z

Q(

p

�2d)

: Z[

p

�2d]] = 1, so with theorem (3.4) we get: F

2d

represents M

l

if and only if M

l

splits completely in H(Q(

p

�2d)). By assumption we have

R

2

(Q(

p

�d))(

p

2) = H(Q(

p

�2d)), so the theorem follows. This completes the

proof.

The next proposition will be used in the proof of theorem (4.1) and in chapter

three. In the proof of this proposition we will use the following theorem.

Theorem 3.7 Let K be an imaginary quadratic �eld. Then an Abelian exten-

sion L of K is generalized dihedral over Q, if and only if L is contained in a

ring class �eld of K.

Proof : See [Cox] page 191.

So if L is contained in a ring class �eld of K then we know that L over Q is

Galois. And the Galois group Gal(L=Q) is isomorphic to Gal(L=K) o (Z=2Z),

where the nontrivial element � ofZ=2Zacts on Gal(L=K) via conjugation by �

and this action sends every element of Gal(L=K) to its inverse.

Proposition 3.8 Let d � 3mod4 be a squarefree positive integer. Suppose that

there exists a cyclic extension H

4

of S = Q(

p

�2 � d), with [H

4

: S] = 4, H

4

�

H(S) and

p

2 2 H

4

. Let M

l

be a Mersenne prime. Suppose that l � 1mod2n,

where n is equal to the order of 2 in the group (Z=d)

�

, then M

l

splits completely

in H

4

.

Proof :

Let K = Q(

p

�d) and let J = Q(

p

2). Because

p

2 is an element of H

4

, we have

that J is contained in H

4

. From the �nal part of theorem (3.7) it follows that

Gal(H

4

=Q) is isomorphic to the dihedral group with 8 elements. So there are

two conjugated �eld extensions of J , say J

1

and J

2

, contained in H

4

. We have

the following �eld diagram.

H

4

❇❇
❇❇

❇❇
❇❇

PP
PP

PP
PP

PP
PP

PP
P

JK

④ ④
④ ④
④ ④
④ ④

❈❈
❈❈

❈❈
❈❈

J

1

J

2

⑥ ⑥
⑥ ⑥
⑥ ⑥
⑥ ⑥

K

❈❈
❈❈

❈❈
❈❈

S J

④ ④
④ ④
④ ④
④ ④

Q
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The discriminant of JK over J is �d. To see this use theorem (2.4) on the

extensions K and J of Q and the fact that d � 3mod4 to calculate the ring of

algebraic integers Z

JK

. Then one sees that Z

JK

is a free module over Z

J

, so

one can easily calculate the discriminant �(JK=J). The discriminants �(J

1

=J)

and �(J

2

=J) must be relative prime. To see this suppose that the discriminants

were not relative prime. Then we would have a prime of J which would be

rami�ed in J

1

and J

2

. This prime would also be rami�ed in JK, because

�(H

4

=JK) = 1. But then the inertia �eld of this prime equals J , which cannot

be the case since �(H

4

=JK) = 1. Using theorem (2.3) on the extension J �

JK � H

4

and theorem (2.4) on the linearly disjoint extension J

1

and J

2

of

J we get �d = �(J

1

=J)�(J

2

=J). Now take v

l

=

p

2

l

�1

p

2�1

and ~v

l

=

p

2

l

+1

p

2+1

(note

v

l

� ~v

l

= M

l

= 2

l

� 1). Using the fact that l is odd we see that v

l

and ~v

l

are

both elements ofZ

J

. Because l�1mod2n we have

p

2

l

�

p

2mod (d)Z

J

. Hence

v

l

� ~v

l

�1mod(d)Z

J

and also 8�2Gal(J=Q) we have �(v

l

)>0 and �(~v

l

)>0,

because l is odd implies �(

p

2

l

� 1)�(

p

2� 1)>0. In other notation we have:

v

l

� ~v

l

� 1mod(d)Z

J

^ 8� 2Gal(J=Q) we have �(v

l

)>0 and �(~v

l

)>0.

Using the Chinese remainder theorem, �(J

1

=J) and �(J

2

=J) are coprime, we

get:

v

l

� ~v

l

� 1mod(�(J

1

=J))Z

J

^ v

l

� ~v

l

� 1mod (�(J

2

=J))Z

J

^

8�2 Gal(J=Q) we have �(v

l

)>0 and �(~v

l

)> 0:

Now we apply the Artin map and theorem 2:10. This gives:

(

(v

l

)

J

i

=J

) = (

(~v

l

)

J

i

=J

) = e for i 2 f1; 2g,

because v

l

and ~v

l

are in the kernel. The Galois group of H

4

=J is isomorphic to

Gal(J

1

=J)� Gal(J

2

=J). So:

(

(v

l

)

H

4

=J

) = (

(~v

l

)

H

4

=J

) = e.

So M

l

splits completely in H

4

. This completes the proof.

The following proposition will be used for the cases d = 14 and d = 46 in

the next section.

Proposition 3.9 Let p � 3mod4 be a prime. Suppose that Cl(Q(

p

�2p)) is

isomorphic to the cyclic group with four elements. Let M

l

be a Mersenne prime.

Suppose that l � 1mod2n, where n is equal to the order of 2 in the group (Z=p)

�

,

then F

2p

represents M

l

.

Proof :

From proposition (3.8) we know that M

l

splits completely in H(Q(

p

�2p)).

Then we apply theorem (3.2). This completes the proof.
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3.2 The cases with d between 0 and 48.

In this section we will apply the theory of the previous section to decide whether

or not F

d

represents M

l

, where M

l

is a Mersenne prime and where d lies between

0 and 48.

For the cases d � 0; 1; 2; 4; 5mod8, with d 6= 2, we have F

d

doesn't represent

M

l

(see proposition (1.1)). We will deal with the remaining cases below.

The case d = 2.

From proposition (1.1) we get: Suppose that M

l

is a Mersenne prime then F

d

represents M

l

if and only if

l = 2:

The case d = 3.

For d = 3 we have m = 2 (see theorem (3.5)). Because the class number

of K = Q(

p

�3) is 1, we have that the ray class group of K is Cl

2

(K) =

I

K

(2)=P

K;1

(2) = P

K

(2)=P

K;1

(2). Because

1+

p

�3

2

mod2Z

K

is clearly in the

kernel of the surjective group homomorphism (Z

K

=2)

�

� P

K

(2)=P

K;1

(2), we

see that the group P

K

(2)=P

K;1

(2) is trivial. So R

2

(K) = K. Now M

l

= 2

l

� 1,

so M

l

� �1 mod4. If l = 2 then we have the solution 3 = 0

2

+ 3 � 1

2

. Suppose

l 6= 2 then (

�3

M

l

) = (

�1

M

l

)(

3

M

l

) = (�1)(�(

M

l

3

)) = 1. With theorem (3.5) we get:

Suppose that M

l

is a Mersenne prime then F

3

represents M

l

.

The case d = 6.

Suppose d = 6. Then we have K = Q(

p

�6). The class number of K is 2. So

we get [H(K) : K] = 2. Using theorem (2.14) we have that K(

p

�3) = K(

p

2)

is unrami�ed over K, so H(K) = K(

p

2). But now we have R

2

(Q

p

�3)(

p

2) =

H(Q(

p

�6)). Using proposition (3.6) we get the following result: Suppose that

M

l

is a Mersenne prime then F

6

represents M

l

if and only if

l 6= 2:

The case d = 7.

The next d is d = 7. The class number of K = Q(

p

�7) is 1 and m = 2. So

Cl

2

= P

K

(2)=P

K;1

(2). Again we have the surjective homomorphism (Z

K

=2)

�

�

P

K

(2)=P

K;1

(2). But 2 splits in K so (Z

K

=2)

�

has only one element. Therefore

R

2

(K) = K. TakeM

l

= 2

l

�1 with l 6= 2; 3. Then (

�7

M

l

) = (

�1

M

l

)(�(

M

l

7

)) = (

M

l

7

).

Now (

M

l

7

) = 1 if and only if l � 1mod3. With theorem (3.5) we get: Suppose

that M

l

is a Mersenne prime then F

7

represents M

l

if and only if

l � 1mod3 or l = 3:
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The case d = 11.

Take d = 11. Then K = Q(

p

�11). The class number of K is 1 and 2 is inert

in K. So using (2.4) we get that [R

2

(K) : K] = 3. From the discriminant

�(K=Q) = �11 and the modulus 2 we know that only the primes 2 and 11 of

Q ramify in R

2

(K). Let's take a look at the �eld L = R

2

(K) \ R of degree

3 over Q. We know that only 2 is totally rami�ed in L, because the modulus

of R

2

(K) over K is 2 and R

2

(K) over K is Galois. From theorem (3.7) we

get that the Galois group of R

2

(K) over Q is the S

3

, therefore R

2

(K) is the

Galois closure of L over Q. Suppose that 11 is unrami�ed in L, then 11 would

be unrami�ed in all the conjugates of L and therefore unrami�ed in R

2

(K),

which is not the case. From this we see that the di�erent of L=Q only has

the factors �

2

2

and �

11

, with �

2

the prime above 2 and �

11

the rami�ed prime

above 11 (see [Koch] page 33 for the theory about di�erent and rami�cation).

Because K is contained in R

2

(K) and we know the factors of the di�erent, we

get �(L=Q) = �44. In [Cohen] page 509 we �nd an irreducible polynomial

of degree 3 with discriminant �44, namely f(x) = x

3

� x

2

� x � 1. Let �

be a zero of f(x). Then S = Q(�)(

p

�11) is the Galois closure of Q(�) over

Q. Only the prime 2 of K rami�es totally in S. The conductor of S=K is

therefore 2, see theorem (2.15). So from theorem (2.13) we get S = R

2

(K).

We have (

�11

M

l

) = (

M

l

11

). Because M

l

= 2

l

� 1 is prime we have l is prime so

l � 1; 3; 7; 9mod10. This implies that M

l

� 1; 7; 6; 5mod11 respectively. But

only 1; 5mod11 are square. From theorem (3.5) we get: Suppose that M

l

is a

Mersenne prime then F

11

represents M

l

if and only if

l � �1mod5 ^ 9x 2Zwith x

3

� x

2

� x� 1 � 0modM

l

:

The case d = 14.

The next d is d = 14. The class group of K = Q(

p

�14) is cyclic of degree

four. We want to use proposition (3.9). The order of 2 in (Z=7)

�

is three. From

(

�14

M

l

) = (

2

M

l

)(

�7

M

l

) = (

�7

M

l

) = 1 we get that l � 1mod3 assuming that F

14

represents M

l

(see d = 7). But since l 6= 2 is prime we have l � 1mod6. So

with proposition (3.9) we get: Suppose that M

l

is a Mersenne prime then F

14

represents M

l

if and only if

l � 1mod3:

The case d = 15.

Take d = 15. Then the class number of K = Q(

p

�15) is 2 and 2 splits in K.

Using 2:4 we get [I

K

(2) : P

K;1

(2)] = 2. Now we can use theorem (2.14) to see

that R

2

(K) = K(

p

5). From (

�15

M

l

) = (

M

l

5

), we see that l has to be equivalent

to 1 modulo 4 assuming that F

15

represents M

l

. And because the minimal

polynomial of R

2

(K)=K is x

2

� 5 we see that this condition is enough to write

M

l

as x

2

+15 �y

2

. So with theorem (3.5) we get: Suppose that M

l

is a Mersenne
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prime then F

15

represents M

l

if and only if

l � 1mod4:

The case d = 19.

Take d = 19. This one looks just like d = 11. Now h

K

= 1 and 2 is inert

in K = Q(

p

�19). So we have to �nd a irreducible polynomial f(x) with

discriminant �4 � 19. In [Cohen] page 509 we �nd f(x) = x

3

� 2x� 2. From the

other condition (

�19

M

l

) = (

�1

M

l

)(�(

M

l

19

)) = (

M

l

19

) = 1, we get l � �1mod18 after

some calculations. This gives: Suppose that M

l

is a Mersenne prime then F

19

represents M

l

if and only if

l � �1mod9 ^ 9x 2Zwith x

3

� 2x� 2 � 0modM

l

:

The case d = 22.

Take d = 22. The class number of K = Q(

p

�22) is 2. By theorem (2.14)

we have that H(K) = K(

p

�11) = K(

p

2). Because M

l

� �1mod8 we have

(

2

M

l

) = 1, so the polynomial x

2

�2 � 0modM

l

has an integer solution. By the-

orem (3.3) we only need to check (

�22

M

l

) = (

�1

M

l

)(

2

M

l

)(

11

M

l

) = (�1)(1)(�(

M

l

11

)) =

(

M

l

11

). Because M

l

= 2

l

� 1 is prime we have l is prime so l � 1; 3; 7; 9mod10.

This implies that M

l

� 1; 7; 6; 5mod11 respectively. But only 1; 5mod11 are

square. This gives use: Suppose that M

l

is a Mersenne prime then F

22

repre-

sents M

l

if and only if

l � �1mod5 or l = 5:

The case d = 23.

Take d = 23. Then h

K

= 3 and 2 splits in K = Q(

p

�23). So R

2

(K) = H(K).

We can use the same arguments of d = 11. We have to �nd an irreducible

polynomial of degree 3 with discriminant �23. Now f(x) = x

3

+ x

2

� 1 is

such a polynomial (see [Cohen] page 509). From (

�23

M

l

) = (

M

l

23

) = 1 we get

l � 1; 2; 5; 7;8mod11. This gives us: Suppose that M

l

is a Mersenne prime

then F

23

represents M

l

if and only if

l � 1; 2; 5; 7;8mod11 ^ 9x 2Zwith x

3

+ x

2

� 1 � 0modM

l

:

The case d = 27.

Take d = 27. Then m = 6 and h

K

= 1, with K = Q(

p

�3). The units of Z

K

are f�1;�!;�!

2

g, with ! =

�1+

p

�3

2

. Because we have an isomorphism from

Z

�

K

to (Z

K

=3Z

K

)

�

and the prime 2 of Q is inert in K, we get #(Cl

6

(K)) = 3

(see (2.4)). So we have to �nd an abelian extension L of K with conductor 6

and [L : K] = 3. Take L = K(

3

p

2), then clearly L is an abelian extension of

K and [L : K] = 3. Because the discriminant of x

3

� 2 is �108 = �2

3

� 3

3
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we have that only 2 and 3 ramify in L. Now we will calculate the conductor

f of L over K. Using theorem (2.15) we get 2 k f . Now

p

�3 is not tamely

rami�ed so we have to use theorem (2.16). The ring of algebraic integers of L

is Z

L

= Z[

1+

p

�3

2

;

3

p

2]. So the ring of integers of the local �eld Q

3

(

p

�3;

3

p

2)

is B = Z

3

[

p

�3;

3

p

2]. Let � = a + b

3

p

2 + c

3

p

2

2

2 B

�

with a; b; c 2 A then

N (�) = a

3

�2b

3

�6abc+4c

3

2 A

�

with A =Z

3

[

p

�3] the ring of integers of the

local �eldQ

3

(

p

�3) and N = N

p

�3

the local norm. So we have (A

�

)

3

� N (B

�

).

We will show that (A

�

)

3

= �1 +

p

�3

4

A. Let � 2 A

�

then � = �1 +

p

�3n

with n 2 A. Now �

3

= (�1) + (n

3

� n)

p

�3

3

+(�1)n

2

p

�3

4

, but

p

�3 j n

3

� n

because n

3

� nmod

p

�3. So (A

�

)

3

� �1 +

p

�3

4

A. Let x 2 �1 +

p

�3

5

A.

We will use Hensel's lemma (see [Lang] page 42) to show that x 2 (A

�

)

3

.

Therefore we have to prove that the polynomial f(X) = X

3

� x has a zero

in A. But jf(1)j � j

p

�3

5

j < j3 � 2j

2

= jf

0

(1)j

2

, so with Hensel's lemma we get

�1 +

p

�3

5

A � (A

�

)

3

� �1 +

p

�3

4

A. But 2

3

= �1 +

p

�3

4

=2 �1 +

p

�3

5

A

and [�1 +

p

�3

4

A : �1 +

p

�3

5

A] = 3, hence (A

�

)

3

= �1 +

p

�3

4

A � N (B

�

).

Let (a; b; c) = a

3

� 2b

3

� 6abc + 4c

3

. Take (a; b; c) = (�1;�

p

�3; 0) then we

see that �1 +

p

�3

3

+

p

�3

5

and �1 �

p

�3

3

�

p

�3

5

are elements of N (B

�

),

so �1 �

p

�3

3

2 N (B

�

), hence �1 +

p

�3

3

A � N (B

�

). Taking (0; 0;�1) and

(0;�1; 0) we see that �1 �

p

�3

2

2 N (B

�

), hence �1 +

p

�3

2

A � N (B

�

).

Because �1 +

p

�3A = A

�

and

p

�3 is rami�ed in L we get �1 +

p

�3

2

A =

N (B

�

) so (

p

�3

2

) k f , thus f = 6. So L = R

6

(K). If M

l

> 27, which must be

the case if F

27

represents M

l

, then we have (

�3

M

l

) = 1. For cyclic groups of order

n we know that there is a unique subgroup of order d if d j n. Let l 6= 2; 3. Then

3 j M

l

� 1 so there exist a unique subgroup of index 3 in F

�

M

l

, namely (F

�

M

l

)

3

.

The order of the subgroup generated by 2 is l. Because l 6= 3 we have 3 j

p�1

l

so 2 2 (F

�

M

l

)

3

. Hence x

3

� 2 � 0modM

l

always has a solution if l 6= 2; 3. From

theorem (3.5) we get: Suppose that M

l

is a Mersenne prime then F

27

represents

M

l

if and only if

l 6= 2; 3:

Now we are able to prove the following observation made in chapter one.

Theorem 3.10 Let M

l

> 7 be a Mersenne prime. Let (x; y) be the F

3

-solution

of M

l

then 3 j y.

Proof :

If M

l

> 7 then l > 3 so F

27

represents M

l

, see case d = 27. Let (x

0

; y

0

) be

the F

27

-solution of M

l

then (x

0

; 3y

0

) is the F

3

-solution of M

l

. From proposition

(0.3) we get that (x

0

; 3y

0

) = (x; y). Hence we have 3 j y. This completes the

proof.

The case d = 30.

Take d = 30. The class number of K = Q(

p

�30) is 4. With theorem (2.14) we

get H(K). But H(K) = R

2

(Q(

p

�15)(

p

2) so from proposition (3.6) we get:
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Suppose that M

l

is a Mersenne prime then F

30

represents M

l

if and only if

l � 1mod4:

The case d = 31.

Take d = 31. Then h

K

= 3 and 2 is splits in K = Q(

p

�31). The number of

elements of Cl

2

(K) is 3. So R

2

(K) = H(K). So we have to �nd an irreducible

polynomial of degree 3. The polynomial f(x) = x

3

+x

2

+1 is such a polynomial.

Hence we get: Suppose that M

l

is a Mersenne prime then F

31

represents M

l

if

and only if

l � 1; 3mod5 ^ 9x 2Zwith x

3

+ x

2

+ 1 � 0modM

l

or l = 5:

The case d = 35.

Take d = 35. Then h

K

= 2 and 2 is inert in K = Q(

p

�35). The number of

elements of Cl

2

(K) is 6. To �nd R

2

(K) we �nd two sub�elds of R = R

2

(K).

First using theorem (2.14) we get H(K) = K(

p

5) � R. Using the same argu-

ments as with d = 11 we �nd the other �eld. Hence we get: Suppose that M

l

is

a Mersenne prime then F

35

represents M

l

if and only if

l � 1mod12 ^ 9x 2Zwith x

3

+ 2x� 2 � 0modM

l

:

The case d = 38.

Take d = 38. Then h

K

= 6 withK = Q(

p

�38). We have to �nd two unrami�ed

abelian extensions of K of degree 2 and 3. The �rst one K(

p

2) we �nd using

theorem (2.14). The second one is an extension of K of degree three. The

polynomial f(x) = x

3

�x

2

� 2x� 2 has discriminant �152 = �2

3

� 19. Let � be

a zero of f . The Galois closure of Q(�) over Q is L = K(�) because it contains

p

�152 = 4 �

p

�38. Only 2 and 19 ramify in L. We know from the discriminant

of f that 2 and 19 are not totally rami�ed in Q(�), else 2

2

k �(Q(�)=Q) and/or

19

2

k �(Q(�)=Q). Because L=K is Galois we have e(�=�) = 1; 3, with � a

prime in L above a prime � in K. Hence L over K is unrami�ed. So L is our

�eld. From d = 19 we know that (

�38

M

l

) = 1 if and only if l � �1mod9. Hence

we get: Suppose that M

l

is a Mersenne prime then F

38

represents M

l

if and

only if

l � �1mod9 ^ 9x 2Zwith x

3

� x

2

� 2x� 2 � 0modM

l

:

The case d = 39.

Take d = 39. Then Cl(K) is the cyclic group with four elements and 2 splits

in K = Q(

p

�39). So R

2

(K) = H(K). By theorem (3.5) we know that

Gal(H(K)=Q) is the dihedral group with eight elements. We will use the

idea of proposition (3.8). So we have to �nd two irreducible polynomials in

Q(

p

13)[x] such that the product of there discriminants is �3. Take f

1

(x) =

29



x

2

+ (1 + (

1+

p

13

2

))x + (1 + (

1+

p

13

2

)) and f

2

(x) = x

2

+ (

1+

p

13

2

)x + 1. Then

�(f

1

)�(f

2

) = �(

1+

p

13

2

) � �(

1�

p

13

2

) = �3. From (

�39

M

l

) = (

M

l

13

) = 1 we get

l � 1mod3. So if l � 1mod3 then M

l

splits in Q(

p

13). But we also want

that the primes above M

l

, say � and ��, split in H(K). Because H(K) over

Q is Galois we have: M

l

splits in H(K) if and only if l � 1mod3 and both

equivalence relations x

2

� �(

1�

p

13

2

)mod� have solutions. A homomorphism

from Z[

p

13] to F

2

l

�1

has as kernel � or ��. The element

p

13 can be mapped

to �x, with x

2

� 13modM

l

. So �

1�

p

13

2

will be mapped to �

1�x

2

, no matter

which map we choose. It follows that x

2

� �(

1�

p

13

2

)mod� have solutions is

equivalent with (

�

1�x

2

M

l

) = 1. Since (

�

1�x

2

M

l

)(

�

1+x

2

M

l

) = (

�3

M

l

) = (

M

l

3

) = 1 if and

only if l � 1 mod3, we get: Suppose that M

l

is a Mersenne prime then F

39

represents M

l

if and only if

l � 1mod3 ^ (

�1 +

p

13

M

l

) = 1:

Note that

p

13 2 F

M

l

since l � 1mod3 implies (

13

M

l

) = 1.

The case d = 43.

Take d = 43. Then h

K

= 1 and 2 is inert in K = Q(

p

�43). Using the same

arguments as with d = 11 we get: Suppose that M

l

is a Mersenne prime then

F

43

represents M

l

if and only if

l � �1;�2mod7 ^ 9x 2Zwith x

3

+ x

2

� x� 3 � 0modM

l

:

The case d = 46.

Take d = 46. Then Cl(K) is the cyclic group with four elements,K = Q(

p

�46).

Clearly

p

2 2 H(K) so we can use proposition (3.9). So we already have:

Suppose that M

l

is a Mersenne prime then F

46

represents M

l

if

l � 1mod11:

We will construct the two distinct conjugated sub�elds of H(K) containing

Q(

p

2). With the proof of proposition (3.8) in mind we need to �nd two poly-

nomials in Q(

p

2)[x] such that the product of there discriminants is �23. Take

f

1

(x) = x

2

+(1�

p

2)x+(�1+

p

2) and f

2

(x) = x

2

+(1+

p

2)x+(�1�

p

2). Now

�(f

1

)�(f

2

) = (7�6

p

2)(7+6

p

2) = �23. We know thatM

l

= x

2

+46 �y

2

if and

only if M

l

splits completely in H(K). Clearly M

l

splits in Q(

p

2), sayM

l

= ���.

Because H(K) over Q is Galois we have: M

l

= x

2

+ 46 � y

2

if and only if � and

�� split in J

1

and J

2

(J

1

and J

2

the two �eld extensions of Q(

p

2) corresponding

to f

1

and f

2

) if and only if both equivalence relations x

2

� 7� 6

p

2mod� have

solutions. A homomorphism from Z[

p

2] to F

2

l

�1

has as kernel � or ��. The

element

p

2 can be mapped to �2

l+1

2

. The element 7� 6

p

2 will be mapped to

7�6 �2

l+1

2

, no matter which map we choose. It follows that x

2

� 7�6

p

2mod�
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have solutions is equivalent with (

7�6�2

l+1

2

M

l

) = 1. From (

�46

M

l

) = 1 we get

l � 1; 2; 5; 7; 8mod11 (see d = 23). Because (

�23

M

l

) = (

7�6�2

l+1

2

M

l

)(

7+6�2

l+1

2

M

l

) we

get: Suppose that M

l

is a Mersenne prime then F

46

represents M

l

if and only if

l � 1; 2; 5; 7; 8mod11 ^ l 6= 2 ^ (

7� 6 �

p

2

M

l

) = 1:

Note that

p

2 2 F

M

l

since l 6= 2 implies (

2

M

l

) = 1.

The case d = 47.

Take d = 47. Then h

K

= 5 and 2 splits in K = Q(

p

�47). In [Cohen2] page

539 we �nd our polynomial f(x) = x

5

�2x

4

+2x

3

�x

2

+1. Further (

�47

M

l

) = 1 if

and only if l � 1; 2; 3; 6; 10;12;14;15;16;18;19mod23. Hence we get: Suppose

that M

l

is a Mersenne prime then F

47

represents M

l

if and only if

l � 1; 2; 3; 6; 10; 12; 14; 15;16;18;19mod23 ^

9x 2Zwith x

5

� 2x

4

+ 2x

3

� x

2

+ 1 � 0modM

l

:

Discussion

If we look at the numbers #s

20

(d), for d between 0 and 48 (see the table in chap-

ter one), and the polynomials, which occur in the criteria for these d's, then it

seems to be possible to predict more or less the degree of these polynomials when

the numbers #s

20

(d) are given. In the table below we compare the numbers

#s

20

(d), for d between 0 and 48, and the degree of polynomials, which occur in

the criteria for these d's. We have excluded all d's with d � 0; 1; 2; 4; 5 mod8.

The d's and the numbers #s

20

(d) are ordered in such a way that the �rst d

appearing corresponds with the �rst #s

20

(d) appearing, the second d appearing

corresponds with the second #s

20

(d) appearing, and so on.

d degree of polynomial #s

20

(d)

3,6,7,14,15,22,27,30 1 20,19,13,12,9,8,18,9

39,46 2 7,6

11,19,23,31,35,38,43 3 1,2,2,5,0,2,3

47 5 1

The number #s

20

(31) = 5 in the table above is large compared with the

other numbers #s

20

(d) that have a polynomial degree of 3. Of course if d is a

Mersenne prime then F

d

represents d, since d = 0

2

+ d � 1

2

. So for d = 31 we

get the Mersenne prime M

5

in s

20

(31) for free. We also get another Mersenne

prime in s

20

(31) for free, namely M

31

. The following theorem, proved by Peter

Stevenhagen, explains why M

31

2 s

20

(31).

Theorem 3.11 Let M

l

be a Mersenne prime with l � 3mod4. Then F

l

repre-

sents M

l

.
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Proof :

We have M

3

= 2

2

+ 3 � 1

2

, so we may assume that l 6= 3. Because M

l

is prime

we have l is prime. Let �

l

be a primitive l

th

root of unity. Let S = Q(�

l

) and

let K = Q(

p

�l). We know that there is only one prime, namely l, of Zthat

rami�es in S, and it is totally rami�ed (see [Lang] page 73). The Galois group

of S over Q is isomorphic to Z=(l� 1)Z, hence S contains a unique quadratic

extension of Q. The discriminant of this extension over Q can only be divisible

by l. Since l � 3mod4 we get K � S. The minimal polynomial of �

l

over Q is

f(x) =

x

l

� 1

x� 1

=

l�1

Y

i=1

x� �

i

l

:

So M

l

= f(2) is equal to the norm N

S=Q

(2 � �

l

). Hence we have M

l

Z

K

= ���

with let's say � = (N

S=K

(2� �

l

)) and �� = (N

S=K

(2� �

l

)). From

N

S=K

(2� �

l

) � N

S=K

(�

l

) � �

i

l

mod2Z

K

for a certain integer i and the fact that K does not contain any l

th

root of unity

unequal to 1 (here we use l 6= 3), we get N

S=K

(2� �

l

) � 1 mod2Z

K

. And since

Z[

p

�l] =Z+2Z

K

we get N

S=K

(2� �

l

) 2Z[

p

�l]. With the same argument we

see N

S=K

(2� �

l

) 2Z[

p

�l]. Hence we have x; y 2Zwith

M

l

Z

K

= ��� = (x

2

+ l � y

2

):

We conclude that F

l

represents M

l

. This completes the proof.
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Chapter 4

Main theorem

In this chapter we will prove the main theorem. It will be an consequence of

the following theorem.

Theorem 4.1 Let d � 7mod24 be a squarefree positive integer. Suppose that

there exists a cyclic extension H

4

of S = Q(

p

�2 � d), with [H

4

: S] = 4, H

4

�

H(S) and

p

2 2 H

4

. Let M

l

= 2

l

� 1 be a Mersenne prime. Suppose that

l > 3 and l � 1mod2n, where n is equal to the order of 2 in the group (Z=d)

�

.

Suppose that (x; y) is the F

d

-solution of M

l

then 8 j x.

Proof :

From theorem (3.5) we know that the Galois group of H

4

=Q is the dihedral

group with 8 elements. After we have calculated some discriminants we get the

following diagram.

H

4

♠ ♠
♠ ♠
♠ ♠
♠ ♠
♠ ♠
♠ ♠
♠ ♠
♠

④ ④
④ ④
④ ④
④ ④

1

❇❇
❇❇

❇❇
❇❇

PP
PP

PP
PP

PP
PP

PP
P

K

1

(2;!)

3 ❈❈
❈❈

❈❈
❈❈

K

2

(2;�!)

3

JK

8

③ ③
③ ③
③ ③
③ ③

1

�d

❈❈
❈❈

❈❈
❈❈

J

1

J

2

⑥ ⑥
⑥ ⑥
⑥ ⑥
⑥ ⑥

K

�d ❉❉
❉❉

❉❉
❉❉

S

�8�d

J

8

④ ④
④ ④
④ ④
④ ④

Q

The numbers between the �eld extensions are the relative discriminants. With

K = Q(

p

�d), S = Q(

p

(�d)2), J = Q(

p

2), ! =

1+

p

�d

2

, �! =

1�

p

�d

2

. Note

that 2 splits in K as (2; !)(2; �!).

Now we will calculate the relative discriminants.

All the discriminants of the sub�elds of JK are easy to be found. Using theorem

(2.3) on the extensions K � JK � H

4

, we get �(H

4

=K) = 8

2

. Also from the-

orem (2.3) we know that �(K

i

=K) j 8

2

for i 2 f1; 2g. Suppose that �(K

1

=K)
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and �(K

2

=K) aren't coprime then there is a prime � of K dividing both dis-

criminants. But � will also divide �(JK=K), so the inertia �eld of a prime inM

above � will be K. This means that � has rami�cation index 4 inM , which can-

not be the case, cause �(M=JK) = 1. So �(K

1

=K) and �(K

2

=K) are coprime.

Now we can use theorem (2.4). We get �(K

1

=K) � �(K

2

=K) = 8. But since

they were coprime and K

1

and K

2

are conjugated, we have �(K

1

=K) = (2; !)

3

and �(K

2

=K) = (2; �!)

3

. Let � = �(K

1

=K).

Now using theorem 2:10 we have the surjective homomorphism:

Cl

�

(K)� Gal(K

2

=K).

The group P

K

(�)=P

K;1

(�) is a subgroup of Cl

�

(K) and contains the principal

prime ideal � = (x +

p

�d � y) of K. Because d � 1mod3 we have that the

prime 3 of Q is inert in J and K and splits in S, so the decomposition �eld of a

prime � in H

4

above 3 is S. We conclude that the prime 3Z

K

of K doesn't split

in K

1

. And therefore P

K

(�)=P

K;1

(�) maps surjective on Gal(K

1

=K). Clearly

the map from (Z

K

=�)

�

to P

K

(�)=P

K;1

(�) is surjective. The group (Z

K

=�)

�

is isomorphic to the group (Z=8Z)

�

. To see this, note that (2; !)

3

(2; �!)

3

= (8).

Now we have the following group homomorphisms:

(Z=8Z)

�

�

=

(Z

K

=�)

�

� P

K

(�)=P

K;1

(�)� Gal(K

1

=K).

Because (�) = (��), it follows that f�1g is contained in the kernel of the �rst

arrow. But #((Z=8)

�

) = 4 = #((Z

K

=�)

�

) and the �rst arrow is surjective, so

the kernel of the �rst arrow equals f�1g. Therefore P

K

(�)=P

K;1

(�) has two

elements. So:

(Z=8Z)

�

�

=

(Z

K

=�)

�

� P

K

(�)=P

K;1

(�)

�

=

Gal(K

1

=K).

We know from proposition (3.8) that M

l

is completely split in H

4

, so (

(�)

K

1

=K

) =

e. Hence we get that � = (x+y

p

�d) is the identity element in P

K

(�)=P

K;1

(�),

thus x + y

p

�d � �1mod�. Because d � �1mod8 we see using proposition

(1.1) that 4 j x. We have assumed that l > 3, so M

l

� �1 � x

2

+ d � y

2

mod32.

But since 4 j x we have

d � y

2

� �1 mod16) (y �

p

�d)

2

� 1 mod16)

y �

p

�d � �1 mod8) y �

p

�d � �1 mod�.

Using the isomorphism (Z=8Z)

�

�

=

(Z

K

=(�)

�

we see that there is � 2 f�1g such

that x�1 � � mod8. We know that 4 j x, hence 8 j x. This completes the proof.

To prove the main theorem we have to construct the �eld H

4

.

Theorem 4.2 Let d = 2

n

� 1 be a squarefree integer with 2 - n. Let M

l

be a

Mersenne prime with l � 1 modn. Suppose that (x; y) is the F

d

-solution of M

L

then 8 j x.
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Proof :

The case n = 1 gives d = 1 and by proposition (1.1) we have no solution. If

we take n = 3 then we take H

4

= H(Q(

p

�14)), because Cl(Q(

p

�14)) is the

cyclic group with four elements, and use theorem (4.1).

Now we may assume that n > 3. We only need to check that we can

satisfy the assumptions of theorem (4.1). From d = 2

n

� 1 and n > 3 we get

d � �1mod8 and l > 3. And from d = 2

n

� 1 and 2 - n we get d � 1mod3.

The order of 2 in (Z=(2

n

� 1))

�

is n and also 2 - n so we have l � 1mod2n. We

only need to prove that H

4

exist. We will construct H

4

. First we will build up

the following �eld diagram and calculate the relative discriminant between the

�elds. Our result will be:

M

♠ ♠
♠ ♠ ♠

♠ ♠ ♠
♠ ♠ ♠

♠ ♠
♠ ♠ ♠

③ ③
③ ③
③ ③
③ ③

1

❈❈
❈❈

❈❈
❈❈

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

K

1

❈❈
❈❈

❈❈
❈❈

K

2

JK

8

③ ③
③ ③
③ ③
③ ③

1

�d

❈❈
❈❈

❈❈
❈❈

J

1

�

J

2

��

⑥ ⑥
⑥ ⑥
⑥ ⑥
⑥ ⑥

K

�d ❉❉
❉❉

❉❉
❉❉

S

�8�d

J

8

④ ④
④ ④
④ ④
④ ④

Q

With � = 1+

p

2

n

, �� = 1�

p

2

n

,M = Q(

p

�;

p

��), J = Q(

p

2), S = Q(

p

(�d)2),

J

1

= J(

p

�), J

2

= J(

p

��), ! =

1+

p

�d

2

, �! =

1�

p

�d

2

, K = Q(!), K

1

= K(

p

!)

and K

2

= K(

p

�!).

Now we construct this �eld diagram.

Take K = Q(!), with ! =

1+

p

�d

2

. This is an extension of Q with discriminant

�d, cause d � 1mod4 and d is squarefree. Now we make K

1

= K(

p

!). The

norm of ! equals

d+1

4

= 2

n�2

. Because 2

n�2

is not a square we see that K

1

is a quadratic extension of K. The element

p

! is a root of the polynomial

f(x) = x

4

�x

2

+2

n�2

, hence f(x) is irreducible. But also �! is a root of f(x), so

K

2

is also quadratic extension ofK. All the roots of f(x) are in the compositum

of K

1

and K

2

, so N = K

1

K

2

is Galois over Q. We have

p

! �

p

�! =

p

2 �2

(n�3)=2

,

with

n�3

2

2 N, cause 2 - n and n > 4. So we have J = Q(

p

2) � N . Therefore

the compositum of J and K is contained in N and S = Q(

p

(�d)2) is contained

in N . The discriminant of J over Q equals 8, so we know that only 2 rami�es

in J . Now take J

1

= J(

p

�). Clearly there is a prime dividing d which rami�es

in J

1

, so J  J

1

. With the same argument we have J  J

2

. The compositum

M = J

1

J

2

contains (

p

��

p

��

2

)

2

, which equals ! or �!. So we get M = N .

All �elds in the picture are now constructed. Now we will calculate the

relative discriminants.

The discriminant of S over Q equals �d � 8. Using theorem (2.4) we �nd the

ring of algebraic integers of JK. Then we see thatZ

JK

is a free module overZ

J

and Z

K

. This gives us the relative discriminant of JK over K and the relative
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discriminant of JK over J .

The �eld J has class number 1. The elements � and �� are coprime in J , be-

cause if there were not coprime then there would exist a prime � dividing both

and also 1+

p

2

n

+1�

p

2

n

= 2, but this can not be the case as gcd(2

n

�1; 2) = 1.

So the rami�cation index of a prime of J inM is at most 2. From the polynomi-

als x

2

�x�

p

2

n�4

, with discriminant � (corresponding to �) and discriminant

�� (corresponding to +), we get using theorem (2:2) that �(J

1

=J) j 1+

p

2

n

and

�(J

2

=J) j 1�

p

2

n

. Now we see that every prime of J which rami�es in M will

do this already in JK. So we have �(M=JK) = 1. Hence we can take H

4

= M .

This completes the proof.

The case n = 3 is treated in a paper of H.W. Lenstra, Jr. and P. Steven-

hagen (see [LenSte]). The proof above is a generalization of their idea, but the

construction is distinct in the sense that it doesn't apply for n = 3. For n = 3

our �eld M will be Q(

q

�1 +

p

2

3

;

q

�1�

p

2

3

). If we would take that M ,

so M = Q(

p

�1 +

p

2

n

;

p

�1�

p

2

n

), then 2 will totally ramify in the corre-

sponding J

1

of M if n > 3. So we could not use theorem 2:10 with the nice

discriminant 1 +

p

2

n

of J

1

=J .

Another possible theme for further investigation is the following. We look at

Mersenne primes of the form x

2

+d�y

2

. More generally one might look at primes

n

l

�1

n�1

of the form x

2

+ d � y

2

. Such a prime splits in Q(

p

n) as

p

n

l

�1

p

n�1

�

p

n

l

+1

p

n+1

.

Now one can use the argument of proposition (3.8) to prove that

n

l

�1

n�1

splits

completely in the �eld H

4

, if such a �eld exists. With the same kind of argu-

ments used in the proof of theorem (4.1) one might be able to prove that x (or

y) is always in the same congruence class modulo �(Q(

p

n)=Q).
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