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Figure 1: A typical log-normal density function.

1 Introduction

A few years ago, a new model for valuing interest rate derivatives was intro-
duced by Brace, Ga̧tarek and Musiela (First as a working paper, 1995, School
of Mathematics, University of New South Wales, later as [BGM97].), Jamshid-
ian ([Jam97]) and Miltersen, Sandmann and Sondermann ([MSS97]). Almost
surely, this model had been known and had been used in practice before these
papers were published1.

This model is generally named as “BGM”, “BGM/J”, referring to the above
stated authors, or LIBOR market model, “LMM”. In this thesis it will be re-
ferred to as LMM.

Here LIBOR stands for London Inter-Bank Offer Rate. Within the LMM
the variables that are modeled are the LIBOR forward rates, which are directly
observable from the market. This is in contrast with earlier models, which
modeled unobservable variables (e.g. short rate models). Moreover, the LMM
is engineered in such a way that forward rates are log-normally distributed,
which is in line with current market practice for quoting cap prices using the
Black formula. See also Figure 1.

This thesis presents the theory of the LMM as well as practical issues arising
with a computer implementation. Also, a novel extension is made to incorporate
the market observed so-called “volatility smile” into the LMM, utilizing the
concept of forward rate dependent instantaneous volatility. The thesis ends
with presenting results of some empirical tests to illustrate the performance of
the LMM and smile-adjusted LMM.

2 General workings of the LIBOR market model

The LMM is a tool to price and hedge interest rate derivatives. The LMM does
that by modeling the interest rate market, i.e., the LMM assumes certain market
behavior, thereby creating a hypothetical LMM world. Within this hypothetical
world, interest rate derivatives can be hedged and replicated exactly using the
basic underlying securities, namely bonds. Also, the LMM has to be “fine-
tuned” or so called “calibrated” to prevailing market conditions, i.e., the control

1See the discussion in [Reb98], Section 18.1.
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Figure 2: Implementation structure of the LIBOR market model.

knobs of the LMM have to be set in such a way that the LMM internal model
values match the actual market values as close as possible. This is called the
calibration process. The calibration requires market data.

Let us look at the pricing of an interest rate derivative within a computer
implementation of the LMM. Such an implementation basically consists of three
parts, namely

(i) Calibration. The calibration part adjusts the parameters of the LMM as
to minimize the difference between LMM internal model values and actual
prevailing market values. The user has to specify to which values should
be calibrated. The calibration part requires market data. When finished
optimizing, it will pass its optimal parameters onto the pricer part. Several
different calibrations are available.

The calibration part is described in Section 4.

(ii) Pricer. The pricer part approximates the general formula (2) to compute
prices of interest rate derivatives. It needs the time zero LIBOR forward
rates, the parameters provided by the calibration part and it requires
information from the derivative (The pricer part has to be able to obtain
the payoff of the derivative for any market scenario the pricer part may
wish to specify.). In the case of the LMM, the pricer part is either an
analytic formula or a Monte Carlo (MC) simulation. In other areas (e.g.
equity) numerical solvers for partial differential equations (PDEs) are used
as well for the pricer part, but up to now, PDEs are unsuited for the LMM.

The pricer part is described in Section 6.

(iii) Derivative. The derivative part returns the derivative-payoff given a cer-
tain market scenario specified by the pricer part.

Some derivatives are described in Section 7.

See Figure 2. In general any pricer may be coupled to any calibration and
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any derivative, but there are some derivatives that require specific pricers with
specific calibrations.

3 LIBOR market model theory

Within the LIBOR market model, all pricing is done using LIBOR forward
rates only. For example, payoffs of interest rate derivatives are written in terms
of forward rates and the forward rates themselves are modeled as geometric
Brownian motions.

LIBOR forward rates are not traded in markets; one cannot go out and
buy an amount of LIBOR forward rates. However, arbitrage derivatives pricing
theory is based on hedging with tradable assets, e.g. bonds.

To solve for this, the LMM specifies equations of motion for the bond price
processes. From these, equations are derived for the forward rates. Specifying
the instantaneous volatility for the forward rates will then lead to conditions
on the bond price equations. The resulting bond price dynamics will constitute
the LMM pricing foundation.

Continuing, specific measures (the spot LIBOR measure and the terminal
LIBOR measures) are calculated. The arbitrage pricing theory then tells us that
prices of derivatives are given by the expected value under a particular LIBOR
measure of the discounted payoff of the derivative. Lastly, the driving equations
of the LIBOR forward rates under the various measures are calculated.

This whole exercise will then lead to the following situation: Roughly speak-
ing, prices of derivatives are the expectation of the payoff. The payoff is written
completely in terms of LIBOR forward rates. The equations governing the for-
ward rates (under some LIBOR measure) are known as well. As a result the
bond price processes can be completely forgotten about; the only rates that are
dealt with are the forward rates. One always has to remember though that the
pricing is based on a hedge with the underlying assets: bonds.

In Subsection 3.1 the general theory of pricing derivatives is reviewed. In
Subsection 3.2 the LMM is introduced. Subsection 3.3 contains the no-arbitrage
assumption for the LIBOR market model. In Subsection 3.4 useful measures
and numeraires are defined. It also contains derivations of stochastic differential
equations (SDEs) which the forward rates satisfy under the various measures.
The final Subsection 3.5 gives a brief summary of the LMM.

3.1 Markets and general pricing of derivatives
2 Consider a market M in which N assets are traded continuously from time 0
up to time T . There is uncertainty as to what the future prices of the assets will
be. This uncertainty will be modeled through a d-dimensional Brownian motion
W defined on its canonical probability space (Ω,F ,P). Define the filtration F =
{F(t) : 0 ≤ t ≤ T} to be the augmentation of the natural filtration generated by
the Brownian motion, i.e., F(t) is the σ-field generated by σ(W (s) : 0 ≤ s ≤ t)
and the null-sets of F . Asset i has price Bi(t) at time t, 0 ≤ t ≤ T , and the price
process Bi(·) is assumed to be a positive Itô diffusion, i.e., Bi(·) is assumed to

2This Section has been based upon the first chapter of [Bjö96].
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satisfy the stochastic differential equation

dBi(t)
Bi(t)

= µi(t)dt + βi(t) · dW (t)

= µi(t)dt +
d∑

j=1

βij(t)dWj(t), 0 ≤ t ≤ T,

Bi(0) = b0,i, i = 1, . . . , N.(1)

The processes µi : [0, T ] × Ω → R and βi : [0, T ] × Ω → Rd may be stochastic
and are assumed to be locally bounded and previsible. b0,i is the time zero price
of asset i. The above all for i = 1, . . . , N .

Several investors operate in this market and maintain portfolios of the assets.

Definition 1

(i) A portfolio process π is any locally bounded F-previsible process, π : [0, T ]×
Ω → RN .

(ii) The value process of a portfolio π is the process V π : [0, T ] × Ω → R
defined by

V π(t) def=
N∑

i=1

πi(t)Bi(t), 0 ≤ t ≤ T.

(iii) A portfolio π is said to be self-financing if its value process V π satisfies

dV π(t) =
N∑

i=1

πi(t)dBi(t), 0 ≤ t ≤ T.

(iv) A self-financing portfolio π is called admissible in the market M if the
corresponding value process V π is lower bounded almost surely (abbreviated
a.s.), i.e., if there exists a real number K < ∞ such that

V π(t) ≥ −K ∀t, 0 ≤ t ≤ T, a.s. 2

A portfolio π holds an amount πi(t) of asset i at time t, 0 ≤ t ≤ T , i = 1, . . . , N .
An admissible self-financing portfolio π may be traded in the market M as well
against the price V π(t) at time t, 0 ≤ t ≤ T . Note that πi(t) is allowed to be
negative, i = 1, . . . , N . This amounts to short-selling asset i. Condition (iv) of
Definition 1 excludes portfolios with doubling-up strategies, which make almost
sure profits starting with zero value, see [Øks00], Example 12.1.4.

Definition 2

(i) An arbitrage portfolio π is a self-financing portfolio that has zero value at
time 0 and that has a non-negative value at time T , almost surely, with
positive probability of the value being strictly positive at time T .

(ii) A market M is said to be arbitrage-free if no admissible arbitrage portfo-
lios exist in M.
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(iii) An equivalent martingale probability measure Q of the market M is a
probability measure on (Ω,F), equivalent to P, and such that all assets
are martingales under Q. 2

Theorem 3 (Absence of arbitrage) If an equivalent martingale measure exists
for the market M then M is arbitrage-free.

Proof: Suppose π is an admissible arbitrage portfolio. Then V π is a martin-
gale under Q. From the martingale property (see item (i) of Definition 30 in
Appendix A),

EQ
[
V π(T )

]
= V π(0) = 0,

so EQ[V π(T )] = 0 and V π(T ) ≥ 0 a.s., hence V π(T ) = 0 a.s. which is in contra-
diction with P(V π(T ) > 0) > 0 in item (i) of Definition 2. 2

From here on, any portfolio is assumed to be self-financing and admissible.
The prices of the assets in the market M are denoted in a fixed pricing unit,

say euros. However they may be expressed in terms of their relative value to
any traded asset which has a positive value at all times, i.e., in terms of a so
called numeraire.

Definition 4 A numeraire B is the value process of a portfolio such that B(t) >
0 for all t, 0 ≤ t ≤ T , almost surely. 2

An example of a numeraire is any of the assets Bi, i = 1, . . . , N . If B is a
numeraire, then the assets B1/B, . . . , BN/B together with the filtered proba-
bility space (Ω,F ,P,F) constitute a market as well, say M̃, where prices are
denoted in units of the numeraire asset B. The above-described transformation
of markets is called change of numeraire.

Let X be a set of F(T )-measurable random variables on the probability space
(Ω,F). To each random variable X ∈ X a contingent T -claim will be associated
(which will be denoted by X as well) which pays out the random amount X at
time T .

Definition 5

(i) A portfolio π is said to hedge against the claim X if

V π(T ) = X a.s.

If this is the case, then the claim X is said to be attainable in the market
M.

(ii) If all claims X ∈ X are attainable in the market M then M is said to be
complete with respect to X.

(iii) The price of a claim X is the smallest value x at which there exists a
portfolio π that hedges against X and that has initial value V π(0) equal to
x.

(iv) A portfolio that hedges against a claim X at minimal initial cost is called
a hedging portfolio of the claim X. 2
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Note that if π is a hedging portfolio of a claim X at price x then −π is a hedging
portfolio of the claim −X at price −x. This shows that the price of a hedge is
equal to both a seller or a buyer of the claim, due to the ability of short-selling.
If short-selling is prohibited or restricted, this symmetry breaks3.

Define

X def=
{
X ∈ L1(Ω,F(T ),P) : ∃µ > 1 : E[Xµ] < ∞}

.

The following result is taken from [KaS91], Theorem 5.8.12.

Theorem 6 (Completeness) If there exists an equivalent martingale measure Q
for the market M and if such a measure Q is unique, then every claim X ∈ X
is attainable in the market M. 2

The proof in [KaS91] actually does demonstrate the existence of a replicating
portfolio for any claim X ∈ X, using the Brownian-martingale integral repre-
sentation theorem.

Propositon 7 Suppose there exists an equivalent martingale measure Q for the
market M. Let X be a claim which is attainable in M. Then the price of the
claim X at time t, 0 ≤ t ≤ T , is given by EQ[X|F(t)]. In particular, if Q̃ is an
equivalent martingale measure for a market M̃ that is obtained from M under
a change of numeraire B, then the price of the claim X at time t, 0 ≤ t ≤ T , is
given by

(2) B(t)EQ̃
[ X

B(T )

∣∣F(t)
]
.

Proof: The statement follows from the fact that the time t value of the claim
is equal to the time t value of a hedging portfolio π and from the fact that
the value process of the hedging portfolio is a martingale under Q. Using the
martingale property (item (i) from Definition 30), the time t value of the claim
is then

V π(t) = EQ
[
V π(T )

∣∣F(t)
]

= EQ
[
X

∣∣F(t)
]
, 0 ≤ t ≤ T.

The latter equality because π hedges against X, i.e., V π(T ) = X a.s. 2

3.2 LIBOR market model
4 The LIBOR marketM consists of N+1 assets, namely N+1 bonds. Regarding
these bonds, a set of N + 1 bond maturities {Ti}N+1

i=1 is given, with

(3) 0 < T1 < · · · < TN+1

and the maturity of the ith bond is Ti, i = 1, . . . , N + 1. Define T0 = 0. The
horizon time T of the LIBOR market is defined as the maturity date TN of the
Nth bond. The price process of the ith bond is denoted by Bi(·). Bond i is

3For further reading on this subject, see [CvK93] and [KaK96].
4Sections 3.2–3.4 have been based upon [Jam96].
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Figure 3: Example of an LMM forward rate structure for six month LIBOR
with a horizon of two years. Such a structure has three forwards. Each forward
rate is “alive” until the start of its borrowing/lending period.

traded from time 0 till time Ti. At time Ti, bond i matures and pays out 1
euro. The above all for i = 1, . . . , N +1. The bond price processes are assumed
to satisfy (compare with equation (1))

dBi(t)
Bi(t)

= µi(t)dt + βi(t) · dW (t)

= µi(t)dt +
d∑

j=1

βij(t)dWj(t), 0 ≤ t ≤ Ti,

Bi(0) = bMarket
0,i , i = 1, . . . , N + 1,(4)

where bMarket
0,i is the bond price observed in the market at time 0.

A LIBOR forward rate agreement (FRA) for time Ti (i = 1, . . . , N) is an
agreement to borrow (or lend) 1 euro from time Ti till time Ti+1. The accrual
period δi of the ith forward is defined to be δi = Ti+1 − Ti, for i = 1, . . . , N .
The lending/borrowing rate which is agreed upon is called the LIBOR forward
rate for lending/borrowing from time Ti till time Ti+1. By convention, this rate
is quoted as follows: The return at time Ti+1 of 1 euro borrowed out at time
Ti is equal to 1 plus the rate multiplied by the accrual period. To be precise,
define the LIBOR forward rate Li : [0, Ti]× Ω → R by

(5) 1 + δiLi(t) =
Bi(t)

Bi+1(t)
, 0 ≤ t ≤ Ti, i = 1, . . . , N.

See Figure 3 for an example of an LMM forward rate structure.
We want to be able to specify the instantaneous volatility of the LIBOR

forward rates. If σi : [0, Ti] × Ω → Rd are locally bounded previsible processes
for i = 1, . . . , N , then the bond price processes need to be specified in such a
way that the following holds

(6)
dLi(t)
Li(t)

= · · ·+ σi(t) · dW (t), 0 ≤ t ≤ Ti, i = 1, . . . , N.

In the following, conditions on the βi, i = 1, . . . , N + 1, will be calculated
such that equation (6) holds.

To this end define the process si : [0, Ti] × Ω → Rd by sij(t) = Li(t)σij(t),
0 ≤ t ≤ Ti, j = 1, . . . , d, i = 1, . . . , N . Equation (6) then becomes

(7) dLi(t) = · · ·+ si(t) · dW (t), 0 ≤ t ≤ Ti, i = 1, . . . , N.

From equation (5) follows

dLi(t) =
1
δi

d
( Bi(t)
Bi+1(t)

)

(∗)
=

1
δi

Bi(t)
Bi+1(t)

( (
µi(t)− µi+1(t)−

(
βi(t)− βi+1(t)

) · βi+1(t)
)

dt

+
(
βi(t)− βi+1(t)

)
· dW (t)

)
,

0 ≤ t ≤ Ti, i = 1, . . . , N.(8)

Equality (∗) is achieved by applying Corollary 35 of Appendix A. Comparing
equations (7) and (8), it may be concluded that the following condition needs
to be satisfied by the βis:

(9) βi(t)− βi+1(t) =
δi

1 + δiLi(t)
si(t), 0 ≤ t ≤ Ti, i = 1, . . . , N.

Definition 8 For t ∈ [0, T ], define i(t) as the unique integer i which satisfies

Ti−1 < t ≤ Ti. 2

i(t) denotes the index of the bond which is first to expire at time t. It follows

βi(t)(t)− βi+1(t) =
i∑

j=i(t)

(
βj(t)− βj+1(t)

)

=
i∑

j=i(t)

δj

1 + δjLj(t)
sj(t), i = i(t), . . . , N, 0 ≤ t ≤ T.(10)
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Let β : [0, T ]×Ω → Rd be any locally bounded F-previsible process, continuous
on (Ti, Ti+1), i = 1, . . . , N + 1. It is seen that if the βis satisfy

(11) βi(t) =

{
β(t)−∑i−1

j=i(t)
δj

1+δjLj(t)
sj(t), 0 ≤ t ≤ Ti−1,

β(t), Ti−1 < t ≤ Ti,

then equation (7) is satisfied. This concludes our calculations of necessary and
sufficient conditions on the βis for (7) to hold.

Remark 9 The conditions on the βis are to ensure that equation (6) holds.
Now (6) is a condition on Bi(t)/Bi+1(t), for 0 ≤ t ≤ Ti, i = 1, . . . , N . Thus
(6) does not specify conditions on Bi(t) for Ti−1 < t ≤ Ti, i = 1, . . . , N + 1,
i.e., the LIBOR forward rates do not care about a bond that is first to expire.
This freedom is reflected in the formulas through the ability to fully specify the
βi(·)(·) function through β(·). 2

Specifying the bond price dynamics using (11) ensures that the LIBOR forward
rates satisfy equation (7) and thus also equation (6). The bond price dynamics
using (11) will subsequently be defined as

dBi(t)
Bi(t)

= µi(t)dt + βi(t) · dW (t)(12)

=

{
µi(t)dt +

(
β(t)− (∑i−1

j=i(t) δj
Bj+1(t)
Bj(t)

sj(t)
) )

· dW (t), 0 ≤ t ≤ Ti−1,

µi(t)dt + β(t) · dW (t), Ti−1 < t ≤ Ti.

3.3 No-arbitrage assumption

The no-arbitrage condition for the LIBOR market model on the drift terms µ
is stated below.

Assumption 10 (No-arbitrage assumption for the LIBOR market model) As-
sume that there exists a locally bounded F-previsible process ϕMPR : [0, T ]×Ω →
Rd such that

(13) µi(t) = βi(t) · ϕMPR(t),

for t, 0 ≤ t ≤ Ti, i = 1, . . . , N + 1. 2

The process ϕMPR may be used to construct an equivalent martingale mea-
sure for the LIBOR market model. This will be done explicitly for the spot
LIBOR measure and the terminal LIBOR measure, see Subsections 3.4.1 and
3.4.2, respectively, but we will omit the construction for the euro-denoted mea-
sure. Having constructed such an equivalent martingale measure then guaran-
tees no-arbitrage, cf. Theorem 3. Hence the name “no-arbitrage assumption”.
If moreover the process ϕMPR is almost surely uniquely defined by (13) at all
times, then the LIBOR market will be complete as well, see Theorem 6.

MPR stands for “market price of risk”. Component j of ϕMPR(t) denotes
the market price of risk for the source of uncertainty Wj at time t ∈ [0, T ],
j = 1, . . . , d. The market price of risk is the quotient of expected rate of re-
turn over the amount of uncertainty. Assumption 13 requires that the market
price of risk per factor at a particular point in time is the same for all bonds i,

12



i = 1, . . . , N + 1.

Remark 11 For any portfolio price process V : [0, T ]× Ω → R write

dV (t)
V (t)

= µV (t)dt + βV (t) · dW (t), 0 ≤ t ≤ T,

for locally bounded previsible processes µV : [0, T ]×Ω → R and βV : [0, T ]×Ω →
Rd. Due to the self-financing property it follows that at each time t ∈ [0, T ],
µV (t) and βV (t) are linear combinations of the µi(t) and βi(t), i = 1, . . . , N +1.
Therefore it follows that the no-arbitrage assumption will hold for any portfolio
process V :

(14) µV (t) = βV (t) · ϕMPR(t), 0 ≤ t ≤ T. 2

3.4 Measures and numeraires

In this Section, several numeraires are introduced and their martingale measures
are computed. The SDEs satisfied by the forward rates under the respective
measures are computed as well.

3.4.1 Spot LIBOR measure

The spot LIBOR portfolio invests in the bonds using the following strategy

(i) At time 0, start with 1 euro, buy (1)/B1(0) T1-bonds.

(ii) At time T1, receive 1
B1(0)

euro, buy ( 1
B1(0)

)/B2(T1) T2-bonds.

(iii) At time T2, receive 1
B1(0)B2(T1)

euro, buy ( 1
B1(0)B2(T1)

)/B3(T2) T3-bonds.

(.) Etc. . .

In general, between times Ti and Ti+1, the spot LIBOR portfolio holds an
amount of 1/

∏i+1
j=1 Bj(Tj−1) of Ti+1-bonds. Therefore the value B(t) at time t,

0 ≤ t ≤ T , of the spot LIBOR portfolio is

B(t) =
Bi+1(t)∏i+1

j=1 Bj(Tj−1)
, Ti ≤ t < Ti+1.

Note that the spot LIBOR portfolio is self-financing. The stochastic differential
of the spot LIBOR price process is

dB(t)
B(t)

= µi(t)(t)dt + βi(t)(t) · dW (t), 0 ≤ t ≤ T.

Quotients of asset price processes over the spot LIBOR portfolio price process
have to become martingales under the spot LIBOR measure. Therefore, the
stochastic differential of a bond price over the numeraire price is calculated –
this is done in the same way in which equation (8) was derived.

d(Bi(t)/B(t))
(Bi(t)/B(t))

=
(

µi(t)− µi(t)(t)−
(
βi(t)− βi(t)(t)

) · βi(t)(t)
)
dt

+
(

βi(t)− βi(t)(t)
) · dW (t), 0 ≤ t ≤ Ti, i = 1, . . . , N + 1.
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In the following the spot LIBOR measure will be constructed explicitly, given
the existence of the process ϕMPR mentioned in Assumption 10.

Define the process ϕSpot : [0, T ]× Ω → Rd,

ϕSpot(t) def= ϕMPR(t)− βi(t)(t), 0 ≤ t ≤ T.

As ϕMPR satisfies (14) this will translate through elementary manipulations into
ϕSpot satisfying

(15) µV1(t)− µV2(t)−
(
βV1(t)− βV2(t)

) · βi(t)(t) =
(
βV1(t)− βV2(t)

) · ϕSpot(t),

for V1, V2 portfolio price processes and for t, 0 ≤ t ≤ T . Define the local
martingale M : [0, T ]× Ω → R by

M(t) def=
∫ t

0

ϕSpot(s) · dW (s), 0 ≤ t ≤ T,

and define the process WQSpot : [0, T ]× Ω → Rd by

WQSpot(t) def= W (t) + 〈W,M〉(t)

= W (t) +
∫ t

0

ϕSpot(s)ds, 0 ≤ t ≤ T,(16)

where the second equality follows from Kunita-Watanabe. From Girsanov’s
theorem (Theorem (36), appendix A) it then follows that WQSpot is a local mar-
tingale under the measure QSpot determined by its Radon-Nikodým derivative

dQSpot

dP
(t) def= eM(t)− 1

2 〈M〉(t)

= e
R t
0 ϕSpot(s)·dW (s)− 1

2

R t
0 ‖ϕSpot(s)‖2ds, 0 ≤ t ≤ T.(17)

Since
∫ ·
0
ϕSpot(s)ds is a finite variation process, WQSpot has the same quadratic

variation structure as a Brownian motion. Moreover, WQSpot is a local martin-
gale under QSpot. Lévy’s characterization of Brownian motion (Theorem (37),
appendix A) subsequently yields that WQSpot is a Brownian motion under QSpot.

The SDEs for the bond price processes over the spot LIBOR price process
are expressed in terms of the QSpot-Brownian motion WQSpot ;

d(Bi(t)/B(t))
(Bi(t)/B(t))

=
(

µi(t)− µi(t)(t)−
(
βi(t)− βi(t)(t)

) · βi(t)(t)
)
dt

+
(

βi(t)− βi(t)(t)
) · (dWQSpot(t)− ϕSpot(t)dt

)

=
(
βi(t)− βi(t)(t)

) · dWQSpot(t),

for t, 0 ≤ t ≤ Ti, i = 1, . . . , N + 1, the latter equality in virtue of equation (15).
It immediately follows that the above quotients are martingales under QSpot.

So QSpot is the measure that was looked for. QSpot will be called the spot LI-
BOR measure.

Notation 12 The norm ‖ · ‖ used in equation (17) always denotes the L2

norm ‖ · ‖2, unless explicitly stated otherwise. 2
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An SDE is derived for the LIBOR forward rates expressed in terms of WQSpot .
Substituting (16) into equation (8) and using (15), gives

dLi(t) =
1 + δiLi(t)

δi

( (
βi(t)− βi+1(t)

) · (βi(t)(t)− βi+1(t)
)
dt

+
(
βi(t)− βi+1(t)

) · dWQSpot(t)
)

=
i∑

j=i(t)

δjsj(t) · si(t)
1 + δjLj(t)

dt + si(t) · dWQSpot(t),

for t, 0 ≤ t ≤ Ti, i = 1, . . . , N , where the latter equality uses equations (9) and
(10). Note that the drift terms µ disappear in the above equation; the pricing
of derivatives is independent of the real-world expected return of the underlying
assets. Finally, recalling σi(·) ≡ Li(·)si(·),

(18)
dLi(t)
Li(t)

=
i∑

j=i(t)

δjLj(t)σj(t) · σi(t)
1 + δjLj(t)

dt + σi(t) · dWQSpot(t),

for t, 0 ≤ t ≤ Ti, i = 1, . . . , N .

3.4.2 Terminal LIBOR measure

Here the numeraire will be one of the bonds, say Bn+1, for some n, n ∈
{1, . . . , N}. A portfolio that contains one bond is automatically self-financing.

Quotients of asset price processes over the bond price process have to be-
come martingales under the terminal measure n. In particular, Bn/Bn+1 will
become a martingale. Thus the nth LIBOR forward rate, which is an affine
transformation of Bn/Bn+1, will become a martingale under the terminal mea-
sure n. This will prove to be useful when computing the price of a caplet within
the LIBOR market model (a caplet is some type of interest rate derivative and
will be described in Section 4.1.1).

The stochastic differential of a bond price over the numeraire price is calcu-
lated – this is done in the same way in which equation (8) was derived.

d(Bi(t)/Bn+1(t))
(Bi(t)/Bn+1(t))

=
(

µi(t)− µn+1(t)−
(
βi(t)− βn+1(t)

) · βn+1(t)
)
dt

+
(

βi(t)− βn+1(t)
) · dW (t),

0 ≤ t ≤ min(Ti, Tn+1), i = 1, . . . , N + 1.

Exactly as in the case of the spot LIBOR measure, processes ϕTn+1 : [0, Tn+1]×
Ω → Rd and WQTn+1 : [0, Tn+1]× Ω → Rd are defined together with a measure
QTn+1 such that WQTn+1 is a d-dimensional Brownian motion under QTn+1 . To
be precise, ϕTn+1 , WQTn+1 and QTn+1 are defined by

ϕTn+1(t) def= ϕMPR(t)− βn+1(t), 0 ≤ t ≤ Tn+1,

(19) WQTn+1 (t) def= W (t) +
∫ t

0

ϕTn+1(s)ds, 0 ≤ t ≤ Tn+1,
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dQTn+1

dP
(t) def= e

R t
0 ϕTn+1 (s)·dW (s)− 1

2

R t
0 ‖ϕTn+1 (s)‖2ds, 0 ≤ t ≤ Tn+1.

Here ϕTn+1 will satisfy

(20) µV1(t)−µV2(t)−
(
βV1(t)−βV2(t)

) ·βn+1(t) =
(
βV1(t)−βV2(t)

) ·ϕTn+1(t),

for V1, V2 portfolio price processes and for t, 0 ≤ t ≤ Tn+1.
The SDEs for the bond price processes over the (n+1)th bond price process

are expressed in terms of the QTn+1-Brownian motion WQTn+1 ;

d(Bi(t)/Bn+1(t))
(Bi(t)/Bn+1(t))

=
(

µi(t)− µn+1(t)−
(
βi(t)− βn+1(t)

) · βn+1(t)
)
dt

+
(

βi(t)− βn+1(t)
) · (dWQTn+1 (t)− ϕTn+1(t)dt

)

=
(
βi(t)− βn+1(t)

) · dWQTn+1 (t),

for t, 0 ≤ t ≤ min(Ti, Tn+1), i = 1, . . . , N + 1, the latter equality in virtue of
equation (20).

It immediately follows that the above quotients are martingales under QTn+1 .
So QTn+1 is the measure that was looked for. QTn+1 will be called the nth
terminal measure or the Tn+1-terminal measure.

An SDE is derived for the LIBOR forward rates expressed in terms of
WQTn+1 where n ∈ {1, . . . , N}. Substituting (19) into equation (8) and using
(20), gives

dLi(t) =
1 + δiLi(t)

δi

( (
βi(t)− βi+1(t)

) · (βn+1(t)− βi+1(t)
)
dt

+
(
βi(t)− βi+1(t)

) · dWQTn+1 (t)
)

= −
n∑

j=i+1

δjsj(t) · si(t)
1 + δjLj(t)

dt + si(t) · dWQTn+1 (t),(21)

for t, 0 ≤ t ≤ min(Ti, Tn+1), i = 1, . . . , N , where the latter equality uses
equation (9). Here the summation convention is taken to be

n∑

j=i

xj
def=





∑n
j=i xj , i < n,

0, i = n,

−∑i
j=n xj , i > n,

for integers i and n and for summands {xj}n
j=i. Note that again the drift terms

µ disappear in (21). Finally, recalling σi(·) ≡ Li(·)si(·),

(22)
dLi(t)
Li(t)

= −
n∑

j=i+1

δjLj(t)σj(t) · σi(t)
1 + δjLj(t)

dt + σi(t) · dWQTn+1 (t),

for t, 0 ≤ t ≤ min(Ti, Tn+1), i = 1, . . . , N .

3.5 LIBOR market model summary

The LIBOR market model requires the following input:
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(i) A set of bond maturities as in (3).

(ii) The time zero LIBOR forward rates L1(0), . . . , LN (0).

(iii) The instantaneous volatilities of the forward rates σi(·) for i = 1, . . . , N .

σi(·), i = 1, . . . , N form the parameters of the LIBOR market model. In the
process of calibration, these parameters are chosen in such a way that the LMM
correctly prices certain securities that are traded actively in the markets. The
calibration procedure is discussed in Section 4.

Prices of interest rate derivatives are given by the general pricing formula
(2), i.e., prices are the expected value under a certain measure of the discounted
payoff of the derivative. The payoff of the derivative is completely written in
terms of the LIBOR forward rates. The SDEs that the LIBOR forward rates
satisfy under the appropriate measures are known, cf. SDEs (18) and (22).

4 Calibration

The calibration is the computation of the parameters of the LIBOR market
model, σi(·), i = 1, . . . , N , so as to match as closely as possible model de-
rived prices/values to market observed prices/values of actively traded securi-
ties. Typically, a calibration procedure in a computer implemented LMM can
take a few seconds up to fifteen minutes.

In Subsection 4.1 the model implicit prices/values given the parameter func-
tions are derived. Several ways in which to specify the instantaneous volatility
are discussed in Subsection 4.2. Subsection 4.3 presents issues arising with a
computer implementation of a calibration.

4.1 Calibration theory

For now, the instantaneous volatility is assumed to be a deterministic function
σi : [0, Ti] → Rd for i = 1, . . . , N .

There are three security prices/market variables to which the LMM may be
calibrated in reasonable time. These are:

(i) Caplet prices.

(ii) Forward rate correlations.

(iii) Swaption prices.

In the following Sections, the model derived values of these securities/market
values are calculated and expressed in terms of the parameter functions σi(·)
for i = 1, . . . , N .

4.1.1 Caplets

A caplet is a call option on a LIBOR forward rate. (Caplets that are discussed
here have European-style exercise features.) A caplet gives its owner the right,
but not the obligation, to borrow money over the forward accrual period at the
pre-negotiated strike rate of the caplet. The caplet payoff is paid out at the end
of the forward accrual period. Consider a loan for the nth forward period, with
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a notional amount M . A caplet on this loan will be called a caplet on the nth
forward rate. Suppose the strike rate is K. The price of such a caplet will be
denoted by Cn(Tn,K). The payoff of the caplet is then

Mδn

(
Ln(Tn)−K

)
+
,

paid out at time Tn+1. Here the function (·)+ : R → R is defined by (x)+ =
max(x, 0) for x ∈ R. If the notional amount M is taken to be 10, 000 euro, then
the payoff is said be quoted in basispoints (bps).

Using [Bla76] a closed form formula for the price of a caplet may be derived,
assuming that the forward rates are log-normally distributed and have constant
volatility. For caplet n, n ∈ {1, . . . , N}, and volatility σ > 0 the formula reads

CBlack
n (σ) = MδnBn+1(0)

(
Ln(0)N(d1)−KN(d2)

)
,

d1 =
log(Ln(0)

K ) + 1
2σ2Tn

σ
√

Tn

,

d2 =
log(Ln(0)

K )− 1
2σ2Tn

σ
√

Tn

= d1 − σ
√

Tn,(23)

where N : R → [0, 1] is the standard normal distribution function, N(x) =∫ x

−∞(1/
√

2π)e−
1
2 y2

dy, for x ∈ R. The Black formula has since become so popu-
lar that in the financial markets, prices of caplets are actually quoted in terms
of so called Black implied volatilities. The Black implied volatility of a caplet is
the volatility with which the Black formula returns the market quoted price of
the caplet.

In practice, caplets are not traded; they are always traded in the form of
caps. A cap consists of multiple (different) caplets. Brokers quote prices of caps
which again are expressed in terms of Black implied volatilities. The caplet
volatilities may be obtained from the cap volatilities quoted in the markets
using a boot-strapping algorithm.

The LIBOR market model was constructed in such a way that the LIBOR
forward rates are log-normally distributed, cf. condition (6). As such, it may
then be expected that the model-internal Black implied volatility for the nth
caplet is some average of the instantaneous volatility σn(·). This is indeed the
case, as will be shown next.

To compute the price CModel
n (Tn, K) of the nth caplet within the LMM,

n ∈ {1, . . . , N}, the nth terminal measure QTn+1 will be used. Under this
measure, the nth LIBOR forward rate becomes a martingale, since from SDE
(22),

dLn(t)
Ln(t)

= σn(t) · dWQTn+1 (t),

for t, 0 ≤ t ≤ Tn. This SDE has solution

Ln(t) = Ln(0)e
R t
0 σn(s)·dW

QTn+1 (s)− 1
2

R t
0 ‖σn(s)‖2ds, 0 ≤ t ≤ Tn,

which can be verified using Itô’s formula. Therefore, Ln(Tn) = Ln(0)eZ where
Z is an F(Tn)-measurable random variable which is normally distributed under
QTn+1 , Z ∼ N (− 1

2τ2, τ2), where

τ2 def=
∫ Tn

0

‖σn(s)‖2ds.
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The LMM price CModel
n (Tn, K) is now given by formula (2), i.e., the LMM price

of the nth caplet is

CModel
n (Tn,K) = MδnBn+1(0)EQTn+1

[(
Ln(Tn)−K

)
+

Bn+1(Tn+1)

]

= MδnBn+1(0)EQTn+1

[(
Ln(Tn)−K

)
+

]
(24)

since Bn+1(Tn+1) = 1. This expectation can be calculated using basic manipu-
lations of integration calculus. The actual calculation may be found in appendix
B; the result is given here

(25) CModel
n (Tn,K) = MδnBn+1(0)

(
Ln(0)N(d1)−KN(d2)

)
,

where

d1 =
log(Ln(0)

K ) + 1
2τ2

τ
,

d2 =
log(Ln(0)

K )− 1
2τ2

τ
= d1 − τ.

The LMM price of a caplet may also be quoted in terms of its Black implied
volatility. Denote by σBlack,Model

n the Black implied volatility within the LMM
for the nth caplet. Comparing formula (25) with the Black formula (23) the
following Corollary is obtained.

Corollary 13 The Black implied volatility of caplet n, n ∈ {1, . . . , N}, within
the LIBOR market model is given by

(26) σBlack,Model
n =

√
1
Tn

∫ Tn

0

‖σn(s)‖2ds. 2

4.1.2 Forward rate correlations

Definition 14 The instantaneous correlation ρModel
ij : [0, min(Ti, Tj)] × Ω →

[−1, 1] between two forward rates i and j, i, j ∈ {1, . . . , N}, is defined as the
instantaneous cross-variation of the two rates divided by the square root of the
instantaneous quadratic variation of both rates. The instantaneous quadratic
variation (cross-variation) at time t is the derivative with respect to time of the
total quadratic variation (cross-variation) process at time t. In the form of a
formula;

ρModel
ij (t) def=

d
dt 〈Li, Lj〉(t)√(

d
dt 〈Li〉(t)

)(
d
dt 〈Lj〉(t)

) , 0 ≤ t ≤ min(Ti, Tj).
2

Propositon 15 The time t correlation ρModel
ij (t), i, j ∈ {1, . . . , N}, within the

LIBOR market model is given by

(27) ρModel
ij (t) =

σi(t) · σj(t)
‖σi(t)‖‖σj(t)‖ , 0 ≤ t ≤ min(Ti, Tj).
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Proof: An application of Corollary 32 of Appendix A together with equation
(6). 2

Remark 16 Firstly, note that the LMM internal forward rate correlations
are deterministic, because the instantaneous volatility σ·(·) is deterministic.

Secondly, note that the above formula gives the LMM-internal forward rate
correlations at all times t, 0 ≤ t ≤ T . If a trader has a view on some future
forward rate correlation, he could choose to calibrate the LMM to his particular
anticipated future correlation. In practice however, the LMM is only calibrated
to time zero forward rate correlations (if at all), where the market time zero
forward correlation ρMarket

ij (0) is taken to be the observed historic correlation.2

4.1.3 Swaptions

A swap agreement is an agreement between two parties to swap fixed for floating
interest rate payments on some notional loan amount. The floating interest
may for example be the LIBOR rate. A swap agreement consists of a number of
swaplets. Each swaplet prescribes the swap of fixed for floating interest rate over
a certain accrual time. The floating rate is determined (set) at the beginning of
the accrual period, the actual payment is made at the end of the accrual period.
The rate of the fixed leg at which the swap agreement has zero value is called
the swap rate.

Consider a swap agreement consisting of a number of swaplets, the first
swaplet being set at time Ti and paying out at time Ti+1, the last swaplet being
set at time Tj−1 and paying out at time Tj , for some i < j, i, j ∈ {1, . . . , N}.
The swap thus consists of j − i swaplets. The pre-negotiated rate of the fixed
leg at which the swap has zero value, i.e., the swap rate, will be denoted by Si:j .
To be precise, it may be shown (for example [Reb98], equation (1.25′)) that the
swap rate Si:j : [0, Ti]× Ω → R is equal to

Si:j(t) =
Bi(t)−Bj(t)∑j−1
k=i δkBk+1(t)

,

0 ≤ t ≤ Ti, j = i + 1, . . . , N + 1, i = 1, . . . , N,(28)

and it is thus defined that way.
A swaption could be called an option on the swap rate. (Swaptions that are

discussed here all have European-style exercise features.) A swaption gives its
owner the right, but not the obligation, to enter into a certain swap agreement
at the pre-negotiated strike rate. The swaption provides a cash flow at the
end of each swaplet period. Consider a swap as described above with notional
amount M . Suppose the strike rate is K and the swaption expiry time is Ti.
The cash flow emanating from the swaption at time Tk, k = i +1, . . . , j, is then

Mδk

(
Si:j(Ti)−K

)
+
.

Using [Bla76], as in the case for options on forward rates, again a closed
form formula may be derived for swaption prices, given the assumption that
swap rates are log-normally distributed and have constant volatility. For the
above described swaption with instantaneous volatility σ(t) at time t, 0 ≤ t ≤ Ti,
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σ : [0, Ti] → [0,∞), the Black price of a swaption is

MA
(

Si:j(0)N(d1)−KN(d2)
)
,

d1 =
log(Si:j(0)

K ) + 1
2

∫ Ti

0
σ2(s)ds√∫ Ti

0
σ2(s)ds

,

d2 =
log(Si:j(0)

K )− 1
2

∫ Ti

0
σ2(s)ds√∫ Ti

0
σ2(s)ds

= d1 −
√∫ Ti

0

σ2(s)ds,

A =
j∑

k=i+1

δkBk(0).(29)

A is called the present value of a basis point (PVBP). The Black formula for
swaptions has since become so popular as well, that in the financial markets,
prices of swaptions are actually quoted in terms of Black implied volatilities,
alike the case for caplets.

So it is standard market practice to assume that both forward rates and swap
rates are log-normally distributed5. To examine this simultaneous assumption
more closely, the swap rate defined in equation (28) is written in terms of forward
rates (divide through by Bi(t)),

Si:j(t) =
1−∏j−1

k=i
1

1+δkLk(t)∑j−1
k=i δk

∏k
m=i

1
1+δmLm(t)

,

0 ≤ t ≤ Ti, j = i+1, . . . , N+1, i = 1, . . . , N . From the above equation it may be
seen that the simultaneous assumption of log-normal distributed forward rates
and log-normal distributed swap rates is not consistent. Conclusively, within a
LIBOR market model, swaptions cannot be priced using Black’s model.

But as it turns out, swap rates are actually very close to being log-normally
distributed within the LIBOR market model (as within any model assuming
log-normality of forward rates). Namely, a good approximation of the volatility
of the logarithm of the swap rate will follow from the following procedure:

(i) Determining the instantaneous volatility of the logarithm of the swap rate.
This instantaneous volatility will in general be stochastic since swap rates
are not log-normally distributed. It will be expressed in terms of swap
rates, bond prices and forward rates.

(ii) Approximate the instantaneous volatility of the swap rate by evaluating any
stochastic terms at time zero. As a result a deterministic instantaneous
volatility of the swap rate is obtained. The model-internal approximate
swaption Black implied volatility will then be some average of that deter-
ministic instantaneous volatility.

Next the formula for the instantaneous volatility of a swap rate within the
LMM is stated. A proof may be found in Section III of [HuW00].

5A discussion on this topic may be found in [Reb99b].
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Propositon 17 (Swap rate instantaneous volatility expressed in terms of for-
ward rate instantaneous volatility) Within the LMM, the swap rate Si:j, for
i < j, i, j ∈ {1, . . . , N}, satisfies the following SDE, where the terms that only
contribute to the finite variation part of Si:j have been left out;

(30)
dSi:j(t)
Si:j(t)

= · · ·+ σi:j(t) · dW (t), 0 ≤ t ≤ Ti,

where σi:j : [0, Ti]× Ω → Rd is defined by

(31) σi:j(t)
def=

j−1∑

k=i

δkLk(t)γi:j
k (t)

1 + δkLk(t)
σk(t)

with γi:j
k : [0, Ti]× Ω → R,

γi:j
k (t) def=

∏j−1
l=i

(
1 + δlLl(t)

)
( ∏j−1

l=i

(
1 + δlLl(t)

) )
− 1

−
∑k−1

l=i δl

∏j−1
m=l+1

(
1 + δmLm(t)

)
∑j−1

l=i δl

∏j−1
m=l+1

(
1 + δmLm(t)

) ,

for t, 0 ≤ t ≤ Ti, k = i, . . . , j − 1. 2

Denote by σBlack,Model,Approx
i:j the approximate Black implied volatility within

the LMM for the above described swaption. The approximation is achieved by
evaluating the stochastic terms occurring in the instantaneous volatility of the
swap rate at time zero.
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Corollary 18 The approximate Black implied volatility of the above described
swaption within the LIBOR market model is given by

(
σBlack,Model,Approx

i:j

)2 =
1
Ti

∫ Ti

0

‖
j−1∑

k=i

δkLk(0)γi:j
k (0)

1 + δkLk(0)
σk(s)‖2ds

=
1
Ti

j−1∑

k=i

j−1∑

l=i

δkLk(0)γi:j
k (0)

1 + δkLk(0)
δlLl(0)γi:j

l (0)
1 + δlLl(0)

∫ Ti

0

ρModel
kl (s)‖σk(s)‖‖σl(s)‖ds.(32)

Proof: Evaluating the stochastic terms in the instantaneous volatility σi:j(·) at
time zero leaves us with a deterministic instantaneous volatility. Classic Black
theory then gives us the above formula. Equation (27) has been used to write
the vector product of the σ·(·) in terms of the correlation ρModel. 2

Remark 19 Note that a swaption is a security whose price is sensitive to
the future forward rate correlations, cf. the appearance of ρModel(·) in the above
approximating formula. In a sense, it may be said that the market expresses its
views on the future forward rate correlations through the prices of swaptions.
Calibrating the LMM to a range of swaption volatilities could thus be viewed
as obtaining the implied future forward rate correlation matrix. 2

4.2 Ways in which to specify the instantaneous volatility

Several ways in which to specify the instantaneous volatility will be discussed.
The various forms of instantaneous volatility serve two purposes.

(i) Separating the influence of the parameters on the model values.
A way of specifying the instantaneous volatility will lead to certain model
values being only dependent on certain parameters, thereby enabling more
robust minimization or even enabling a minimization over two sets of
parameters, each set having an independent influence on the model values
(see Section 4.2.1).

(ii) Parameter control.
Sometimes the most general form of instantaneous volatility will yield too
many LMM parameters when calibrating only to a small number of cal-
ibration objects. Specifying the instantaneous volatility in a less general
form will then lead to a reduction of the number of parameters and ul-
timately to a more stable calibration procedure (see Sections 4.2.2 and
4.2.3).

For an overview of the various ways in which to specify the instantaneous volatil-
ity, see Figure 4.

4.2.1 Spherical coordinates vs. Euclidean coordinates

Spherical coordinates may be used to denote the instantaneous volatility. Using
spherical coordinates will make some minimization schemes more robust, see
the remark at the end of this Section.
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Figure 4: Overview of ways in which to specify the instantaneous volatility.

Definition 20 Given a vector of angles θ = (θ1, . . . , θd−1) ∈ Rd−1 (which will
be called spherical coordinates), we associate to it Euclidean coordinates f(θ)
of a point on the (d − 1)-dimensional unit sphere Sd−1 = {x ∈ Rd : ‖x‖ = 1}
where the mapping f : Rd−1 → Sd−1 is given by

fj(θ)
def=

{
cos(θj)

∏j−1
k=1 sin(θk), if j = 1, . . . , d− 1,∏d−1

k=1 sin(θk), if j = d. 2

Definition 21 Let Σi : [0, Ti] → [0,∞) and θi : [0, Ti] → Rd−1 be functions.
The instantaneous volatility structure σi : [0, Ti] → Rd, i = 1, . . . , N , is said to
be written in terms of spherical coordinates if

(33) σij(t) = Σi(t)fj(θi(t)), j = 1, . . . , d, 0 ≤ t ≤ Ti, i = 1, . . . , N.

Σi is named the total instantaneous volatility of the ith forward. 2

Note that Σ2
i (t) =

∑d
j=1 σ2

ij(t), fj(θi(t)) = σij(t)/Σi(t), j = 1, . . . , d, 0 ≤ t ≤ Ti,
i = 1, . . . , N . See also Figure 5.

Remark 22 After specifying the instantaneous volatility in terms of spherical
coordinates, the LMM parameters will be Σ·(·) and θ·(·). Looking at formula
(26) reveals that the model caplet prices are only dependent on Σ·(·). Likewise,
looking at formula (27) shows that the model forward rate correlations are only
dependent on θ·(·). This presents the opportunity for a separated minimization
whenever the LMM is calibrated to caplet prices and forward rate correlations
only. 2
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Figure 5: Spherical coordinates in three dimensions. Here the point P denotes
the point f(θ1, θ2). s denotes Σ.

4.2.2 Time homogeneity

Definition 23 A LIBOR market model is said to be time homogeneous if there
exists a function λ : [0, T ] → Rd such that

σi(t) = λ(Ti − t), 0 ≤ t ≤ Ti, i = 1, . . . , N. 2

4.2.3 The Bell form

Definition 24 Let a, b, c and d be real numbers. The instantaneous volatility
structure σi : [0, Ti] → Rd, i = 1, . . . , N , is said to be of the Bell form6 if it is
written in terms of spherical coordinates and if

Σi(t) = a(Ti − t) + be−c(Ti−t) + d, 0 ≤ t ≤ Ti, i = 1, . . . , N,

where Σi is the total volatility of σi as given in Definition 21.

4.3 Calibration in practice

For practical purposes, the instantaneous volatility σi : [0, Ti] → Rd is taken
to be constant on the intervals [Tj−1, Tj), j = 1, . . . , i, for i = 1, . . . , N (except
for the Bell form). This will reduce the parameter set of the LMM to matrices
and vectors, depending on the form that has been chosen for the instantaneous
volatility. In any case the parameters of the LMM are reduced to a finite number
of variables. Abstractly, denote the parameters of the LMM by σ.

6The Bell form for the instantaneous volatility is due to Rebonato, [Reb98].
Yet another way of specifying the instantaneous volatility in order to control the number of
parameters is the use of constant volatility or mean-reversion, see [JDP01].
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Before starting a calibration, a list of “calibration objects” should be given.
A calibration object can be either a caplet price, a forward rate correlation
or a swaption price; see Section 4.1. Each of the entries in the list requires a
description of the object itself (e.g. for a caplet; which forward period the caplet
is associated with and what the expiry date is) together with the observed market
value of the security price/correlation number. Note that caplet and swaption
prices are quoted here in implied volatilities. Say a calibration has M calibration
objects, with market values xMarket

k , k = 1, . . . ,M . Given a set of parameters
σ, it is possible to compute the model values of the M calibration objects,
cf. formulas (26), (27) and (32). This will yield M model values xModel

k (σ), k =
1, . . . , M . Suppose for each calibration object k, a sense of error Errk(·; xMarket

k )
is given for the model value xModel

k , i.e., Errk(xModel
k ;xMarket

k ) is a measure for
how far away the model value is from the market value for the kth calibration
object. See Section 4.3.1 for specific Err functions. Note that for different
calibration objects, different error functions may be used. Adding the errors for
all the calibration objects, a sense of error is obtained as to how far the LIBOR
market model with parameter set σ is away from the market. The calibration
procedure is the minimization of this error over the parameter set σ so as to
get the LMM to resemble the market as close as possible. The whole calibration
procedure will thus be the following minimization

min
σ

M∑

k=1

Errk(xModel
k (σ); xMarket

k ).

4.3.1 Minimization of metric vs. principle components analysis

Three senses of error are discussed in this Section.

(i) (Metric type of error)

If xMarket and xModel are the market respectively model values of a cali-
bration object, then an error sense is readily given by

Err(xModel; xMarket) = w|xModel − xMarket|γ ,

where w > 0 is a weight and γ > 0 is an appropriately chosen constant.

(ii) (Zero error if within spread)

If a calibration object is a caplet price or a swaption price, the market
will quote bid and offer prices. Any price that is in between the bid and
offer prices is said to be within the spread. A possible natural way then
to assign a sense of error is to assign zero if the model price is within the
spread and to assign some positive number if the model price is outside
of the spread. Concretely, for a market spread xMarket,Bid, xMarket,Offer,
define an error function by

Err(xModel;xMarket,Bid, xMarket,Offer) =




0, if xMarket,Bid ≤ xModel ≤ xMarket,Offer,
xMarket,Bid − xModel, if xModel ≤ xMarket,Bid,
xModel − xMarket,Offer, if xModel ≥ xMarket,Offer.
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(iii) (Error minimization using principle components analysis)7

Suppose the LMM is calibrated to the caplet prices and the complete time
zero forward rate correlation matrix only. In this method, the calibration
to the caplets and to the forward correlation can be done separately, so
suppose the total instantaneous volatility Σi(·), for i = 1, . . . , N , has al-
ready been calculated. A principle components analysis on the correlation
matrix will yield a model in which approximately

∆Li =
N∑

j=1

αijxj∆t.

Here ∆t > 0 is a small time step. xj is a random variable with mean 0
and variance s2

j . xj is called the jth factor. The factors themselves are
independent of each other. The variances of the factors are assumed to
be in descending order, so s2

1 ≥ · · · ≥ s2
N . αij measures the influence

of the jth factor on the ith forward rate. The influence on the forward
rates of one factor is independent of another factor (

∑N
i=1 αijαik = 0,

j, k ∈ {1, . . . , N}, j 6= k) and the relative influence on the forward rates
of a factor is 1 (

∑N
i=1 α2

ij = 1, j ∈ {1, . . . , N}). The above all for i, j ∈
{1, . . . , N}.
Actually, if {Covij}N

i,j=1 is the market observed historic forward rate co-
variation matrix, then the α matrix and s vector are determined by an
eigenvalue decomposition Cov = αSα>. Here α is the orthogonal matrix
{αij}N

i,j=1 containing eigenvectors of Cov. S is a diagonal matrix with the
eigenvalues of Cov on its diagonal, in descending order. s2

j is then equal
to the jth entry on the diagonal of S, j = 1, . . . , N .

It now seems natural to set the instantaneous volatility σij(t) propor-
tional to sjαij , i = 1, . . . , N , j = 1, . . . , d, restricted by the total instanta-
neous volatility

∑d
j=1 sjαij equaling Σi(t). Therefore, set σij(t) equal to

Σi(t)sjαij/
√∑d

j=1 s2
jα

2
ij , i = 1, . . . , N , j = 1, . . . , d. Note that σij(t) can

be set in a time homogeneous way or in a way that keeps the correlation
structure constant over time.

Having done this, the market correlation matrix is not entirely replicated
within the model, unless the number of factors d is equal to the number
of forwards N . The error that has been minimized is unclear from the
construction; there is only an intuitive idea that the first d factors account
for the most variance, so that the resulting model correlation matrix will
largely resemble the market correlation matrix.

4.3.2 A useful result when calibrating to caplet volatilities and for-
ward rate correlations only

8 Suppose the LMM is calibrated to caplet prices and forward rate correla-
tions only and that spherical coordinates are used. Assume for simplicity that
the instantaneous volatility is constant, say σik(·) = Σibik, where the total in-
stantaneous volatility Σi equals σBlack,Market

i , for the LMM to price the caplets
7This method is due to Hull and White, [HuW00].
8This result is due to Rebonato, [Reb99a].
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correctly, and bik = fk(θi), θi ∈ Rd−1, k = 1, . . . , d, i = 1, . . . , N . Using formula
(27) for the model forward rate correlation, it follows that ρModel

ij (t) = bi · bj ,
0 ≤ t ≤ min(Ti, Tj), i, j ∈ {1, . . . , N}. Denote by ρMarket = {ρMarket

ij }N
i,j=1 the

(N × N) market observed forward rate correlation matrix, denote by B the
(N × d) matrix {bik}N

i=1
d
k=1. From the above statement, ρModel = BB>. Note

that B may be regarded as dependent on the θs, so write B(θ) for this depen-
dence. Calibrate the LMM to the forward rate correlation matrix by minimizing

min
θi∈Rd−1,i=1,...,N

‖ρMarket −B(θ)B>(θ)‖,

where ‖ · ‖ is some norm, possibly fitted out with weights.
Note that the resulting optimal (N×d) matrix B has the following properties:

(i)
d∑

k=1

b2
ik = 1, i = 1, . . . , N.

(ii) The discrepancies between BB> and ρMarket have been minimized in the
above described way.

Rebonato provides an algorithm that calculates an (N × d) matrix A which has
the above stated properties plus an additional property:

(iii)
N∑

i=1

aikaik′ = 0, k, k′ ∈ {1, . . . , d}, k 6= k′.

The matrix B may thus be replaced by the matrix A to obtain the extra feature
that the influence of the Brownian motions on the forward rates are independent
of each other.

The matrix A is constructed as in the following Lemma from elementary
linear algebra. A proof may be found in for example [Reb99a], Theorem 2.

Lemma 25 Let B be an (N × d) real matrix of full rank, N > d. Then, since
the matrix BB> is real and symmetric, it may be diagonalized, so

BB> = PSP>.

Here P is an orthogonal (N × N) matrix, i.e., PP> is the (N × N) identity
matrix. S is a diagonal (N × N) matrix that has the eigenvalues of BB> on
its diagonal. Note that rank(BB>) = rank(B) = d, therefore BB> has d non-
zero eigenvalues. The entries of the diagonal of S may be assumed to be in
descending order, obtaining

S =




s2
1

. . . ∅
s2

d

0

∅
. . .

0




.
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Let Ci be the ith column vector of P , i = 1, . . . , N , and write P = (C1 . . . CN ).
Define the (N × d) matrix A by

A
def=

(
s1C1 . . . sdCd

)
.

Then
BB> = AA>. 2

Having constructed A as in the above Lemma, it is checked here that A in-
deed satisfies the above stated conditions (i), (ii) and (iii). The orthogonality
condition (iii) is satisfied by A due to the orthogonality of the column vectors
C1, . . . , CN . Conditions (i) and (ii) are satisfied by A due to the conclusion of
the Lemma, BB> = AA>. This is readily seen for condition (ii). Regarding
condition (i), note that the diagonal of BB> consists of ones, i.e., (BB>)ii = 1
for i = 1, . . . , N , which ensures that A satisfies the unitary norm condition (i).

5 Extending the LIBOR market model to cali-
brate to the volatility smile

Within the plain vanilla LMM, all cap prices have the same Black implied volatil-
ity regardless of the strike rate K of the cap. This follows from equation (26).

In interest rate markets, caps are quoted at different volatilities for different
strikes. The volatility shows a smile-like dependency with respect to the strike
rate. This phenomenon is called the volatility smile.

As mentioned above, the plain vanilla LMM cannot account for the volatility
smile. This Section presents an extension of the LMM which will enable it to
reproduce the volatility smile. The extended LMM will be called forward rate
dependent local volatility (FRDLV) LMM. Local volatility here means the same
as instantaneous volatility.

The extension is based on assuming that the instantaneous volatility of the
forward rates is not only a function of time, but also of the forward rate it-
self. Such an instantaneous volatility structure will be referred to as forward
rate dependent local volatility. FRDLV is a novel application of the so-called
“spot dependent local volatility” developed for equity derivatives by Dupire,
see [Dup93b].

5.1 Forward rate dependent local volatility LMM

Suppose continuous functions σi : [0, Ti] × [0,∞) → Rd are given, for i =
1, . . . , N . We want to be able to specify the instantaneous volatility of the
forward rates as (compare with equation (6))

dLi(t)
Li(t)

= · · ·+ σi(t, Li(t)) · dW (t), 0 ≤ t ≤ Ti, i = 1, . . . , N.

Therefore we continue from equation (6) and repeat the whole theory developed
there exactly. All the results obtained in Section 3 will remain valid when σi(t)
is replaced by σi(t, Li(t)), for i = 1, . . . , N .
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The FRDLV-equivalent of equation (12) should be given some care though.
The bond price dynamics should be written completely in terms of the bond
prices themselves. Therefore, the FRDLV equivalent equation for (12) becomes

dBi(t)
Bi(t)

= µi(t)dt + βi(t) · dW (t)

=





µi(t)dt

+
(

β(t)−
( ∑i−1

j=i(t)(1− Bj+1(t)
Bj(t)

)σj

(
t, 1

δj
( Bj(t)

Bj+1(t)
− 1)

)) )
· dW (t),

0 ≤ t ≤ Ti−1,
µi(t)dt + β(t) · dW (t), Ti−1 < t ≤ Ti.

This concludes the theoretical justification of the FRDLV LIBOR market
model.

5.2 Determining the instantaneous volatility to incorpo-
rate smile

In this Section the instantaneous volatility function σi(·, ·), i = 1, . . . , N , will be
determined such that the FRDLV LMM prices caplets correctly for all strikes.

To this end, caplets are considered for each forward i = 1, . . . , N , with fixing
time S, 0 ≤ S ≤ Ti, and payment time Ti+1. To say that a caplet has fixing
time S means that the rate at which the payoff is calculated is taken to be the
rate observed at time S. The time-Ti+1 payoff of such a caplet with strike rate
K will be

Mδi

(
Li(S)−K

)
+
.

Denote the FRDLV LMM price of such a caplet by CModel
i (S,K). Similar to

result (24),

(34) CModel
i (S,K) = MδiBi+1(0)EQTi+1

[(
Li(S)−K

)
+

]
,

for 0 ≤ S ≤ Ti, K ≥ 0, i = 1, . . . , N . Also

(35)
dLi(t)
Li(t)

= σi(t, Li(t)) · dWQTi+1 (t), 0 ≤ t ≤ Ti, i = 1, . . . , N.

The following theorem shows that the model caplet prices satisfy a par-
tial differential equation (PDE) together with appropriate boundary conditions.
Later on, it will be shown that this PDE with initial value specification deter-
mines the model caplet prices uniquely.

Theorem 26 Assume that the instantaneous volatility functions σi : [0, Ti] ×
[0,∞) → Rd are such that the QTi+1-transition measure of Li(·), induced by
equation (35), has a transition density pi : Di → [0,∞) on domain Di =
{(s, y; t, x) ∈ [0,∞)4 : 0 ≤ s < t ≤ Ti}, i.e.,

EQTi+1
[
f(Li(t))

∣∣Li(s) = y
]

=
∫ ∞

0

f(x)pi(s, y; t, x)dx,

for continuous functions f : [0,∞) → R and 0 ≤ s < t ≤ Ti, y ∈ [0,∞),
such that the function which maps (S,K) onto pi(0, Li(0);S, K) is of class
C1,2((0, Ti] × [0,∞)), for i = 1, . . . , N . Then the model caplet prices Ci :
[0, Ti]× [0,∞) → [0,∞) given by equation (34) are continuous and satisfy
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(i) CModel
i is of class C1,2((0, Ti)× (0,∞)) and satisfies the PDE

(36)
∂CModel

i

∂S
(S,K) =

1
2
‖σi(S,K)‖2K2 ∂2CModel

i

∂K2
(S, K),

for 0 < S < Ti, K > 0,

(ii) with boundary conditions

CModel
i (0,K) = MδiBi+1(0)

(
Li(0)−K

)
+
, K ≥ 0,

(iii) and
CModel

i (S, 0) = MδiBi+1(0)Li(0), 0 ≤ S ≤ Ti,

(iv) furthermore, CModel
i is bounded on [0, Ti]× [0,∞),

for i = 1, . . . , N .

Proof: Part (i)9:
The statements made on the continuity and differentiability of the model

caplet prices follow from the assumption of existence and sufficient differentia-
bility of the transition density function. Since Li has a transition density under
QTi+1 , then in particular,

CModel
i (S,K) = MδiBi+1(0)EQTi+1

[
(Li(S)−K)+

]

= MδiBi+1(0)
∫ ∞

K

(x−K)+pi(0, Li(0); S, x)dx,

for 0 < S ≤ Ti, K ≥ 0, i = 1, . . . , N . Differentiating the above stated equation
twice with respect to the strike rate K yields

∂2CModel
i

∂K2
(S,K) = MδiBi+1(0)pi(0, Li(0);S,K),

0 < S ≤ Ti, K ≥ 0, i = 1, . . . , N.(37)

The function which maps (S, K) onto pi(0, Li(0);S, K) is of class C1,2((0, Ti]×
[0,∞)), for all i = 1, . . . , N , by assumption. Thus according to the forward
Kolmogorov equation 39 in appendix C, pi satisfies the PDE

∂pi

∂S
(S,K) =

1
2

∂2
(‖σi‖2K2pi

)

∂K2
(S, K),

for 0 < S ≤ Ti, K ≥ 0, i = 1, . . . , N . Integrating the latter equation twice with
respect to K, then using (37) and multiplying through by MδiBi+1(0) produces

∂CModel
i

∂S
(S, K) =

1
2
‖σi(S, K)‖2K2 ∂2CModel

i

∂K2
(S,K) + A(S) + B(S)K,

for 0 ≤ S ≤ Ti, K ≥ 0, i = 1, . . . , N . Here A : [0,∞) → R and B : [0,∞) → R
are arbitrary functions. As K →∞, CModel

i (S, K) → 0 uniformly in S (follows

9The derivation for Part (i) followed here is a modification of the calculations made in
Section 2 of [ABR97].
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from equation (34)). Therefore the functions A and B are identically zero.
Resultingly, the model caplet prices will satisfy PDE (36).

Part (ii) is a special case of equation (34).
Part (iii): Consider

CModel
i (S, 0) = MδiBi+1(0)EQTi+1

[
Li(S)

]

= MδiBi+1(0)Li(0),

the latter equality since Li is a martingale under QTi+1 , i = 1, . . . , N .
Part (iv): For 0 ≤ K1 ≤ K2, (x − K1)+ ≥ (x − K2)+ for all real x ≥ 0.

Using the previous statement with K1 equal to 0 and K2 equal to K yields

CModel
i (S, K) = MδiBi+1(0)EQTi+1

[
(Li(S)−K)+

]

≤ MδiBi+1(0)EQTi+1
[
Li(S)

]

= MδiBi+1(0)Li(0),

for 0 ≤ S ≤ Ti, K ≥ 0, i = 1, . . . , N .
Conclusively, CModel

i is bounded by MδiBi+1(0)Li(0), i = 1, . . . , N . 2

Reversing the reasoning, suppose that we are equipped with market caplet
prices CMarket

i (S, K), for 0 ≤ S ≤ Ti, K ≥ 0, i = 1, . . . , N . The instanta-
neous volatility σi(·, ·) needs to be specified in such a way that the model caplet
prices CModel

i (·, ·) equate the market caplet prices CMarket
i (·, ·), for i = 1, . . . , N .

Proceed by defining the instantaneous volatility in such a way that (baring in
mind (36))

(38) ‖σi(t, x)‖2 def= 2
∂CMarket

i

∂S (t, x)

x2 ∂2CMarket
i

∂K2 (t, x)
, 0 ≤ t ≤ Ti, x ≥ 0, i = 1, . . . , N.

By construction, the market caplet prices CMarket
i , i = 1, . . . , N , will then satisfy

the PDE and boundary conditions of Theorem 26. Equality of model and market
caplet prices will follow if uniqueness is proven for the PDE/initial value prob-
lem. Because of linearity of PDE (36) it will be sufficient to prove uniqueness
for homogeneous boundary conditions. This is done in the following theorem,
which is a standard result from PDE theory. A proof may be found in [ReR93],
Theorem 4.25. The proof uses the maximum principle.

Theorem 27 (Uniqueness of PDE (36)) Let the continuous function σ : [0, T ]×
[0,∞) → R be given. Consider the following conditions on a continuous function
C : [0, T ]× [0,∞) → R.

(i) C is of class C1,2((0, T )× (0,∞)) and satisfies the PDE

(39)
∂C

∂S
(S, K) =

1
2
σ(S,K)2K2 ∂2C

∂K2
(S,K),

for 0 < S < T , K > 0,

(ii) with homogeneous boundary conditions

C(0,K) = 0, K ≥ 0, C(S, 0) = 0, 0 ≤ S ≤ T,
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(iii) furthermore, C is bounded on [0, T ]× [0,∞).

Then C is identically zero on [0, T ]× [0,∞). 2

Summarizing, the FRDLV LMM will price caplets at different strikes and expiry
times correctly if the total instantaneous volatility satisfies equation (38).

5.3 Writing the instantaneous volatility in terms of im-
plied volatilities

In this Subsection, it is assumed that the market caplet price functions CMarket
i

are given in terms of their Black implied volatilities, i.e.,

CMarket
i (S, K) = CBlack

i (σBlack,Market
i (S,K); S, K),

where CBlack
i is the Black formula (23) and σBlack,Market

i (S, K) is the market
observed Black implied volatility for caplet i with strike K and fixing time S,
i = 1, . . . , N . From there on, the total instantaneous volatility defined by equa-
tion (38) is written completely in terms of the market observed Black implied
volatility. This will have three advantages.

(i) Computing the total instantaneous volatility will become numerically more
stable.

(ii) In practice, caplet prices are boot-strapped from cap implied volatilities
and are thus already expressed in terms of implied volatilities.

(iii) The caplets occurring within caps all expire at the starting time of the
corresponding forward accrual period. So the only information on the price
of an ith caplet available in the market is on those caplets expiring at time
Ti, for i = 1, . . . , N . As a result an educated guess has to be made for
the caplet prices CMarket

i (S, ·) for 0 ≤ S < Ti, i = 1, . . . , N . Having fitted
a curve σBlack,Market

i (Ti, ·), it will then be natural to set σBlack,Market
i (S, ·)

equal to σBlack,Market
i (Ti, ·) for 0 ≤ S < Ti, i = 1, . . . , N .

The instantaneous volatility expressed in terms of the implied volatility is stated
in the following proposition, which is without proof. It may be found as formula
(22.7) in [Wil98] and as formula (16) in [ABR97].

Propositon 28 The total instantaneous volatility ‖σi‖ : [0, Ti] × [0,∞) →
[0,∞), i = 1, . . . , N , expressed in terms of the implied volatility σBlack,Market

i :
[0, Ti]× [0,∞) → [0,∞) is, writing σ̂ for σBlack,Market

i (t, x),

(40) ‖σi(t, x)‖ =

√
σ̂2 + 2tσ̂ ∂σ̂

∂T

(1 + xd1(t, x)
√

t ∂σ̂
∂K )2 + x2tσ̂( ∂2σ̂

∂K2 − d1(t, x)
√

t( ∂σ̂
∂K )2)

for (t, x) ∈ [0, Ti]× [0,∞). Here d1 : [0, Ti]× [0,∞) → R is defined by

d1(t, x) def=
log(Li(0)

x ) + 1
2 σ̂2t

σ̂
√

t
, (t, x) ∈ [0, Ti]× [0,∞). 2
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5.4 Calibration issues

The FRDLV LMM is only studied here for a Monte Carlo pricer. The instan-
taneous volatility may be expressed in terms of spherical coordinates. For the
FRDLV LMM, the instantaneous volatility thus becomes

(41) σij(t) = Σi(t, Li(t))fj(θi(t)), 0 ≤ t ≤ Ti, j = 1, . . . , d, i = 1, . . . , N,

compare with equation (33). Σi : [0, Ti] × [0,∞) → [0,∞), i = 1, . . . , N , is
determined by expression (40). This leaves us with the freedom of specifying
the θ-functions as (i) constant (ii) time homogeneous or (iii) constant in between
forward start and end dates.

The FRDLV LMM may also be calibrated to the three calibration object
types described in Subsection 4.1. Each of these types is discussed below.

(i) (Caplet prices)

The FRDLV LMM automatically prices the caplets correctly for the whole
range of strikes, due to its forward rate dependency feature. This was what
the FRDLV LMM was engineered for.

(ii) (Forward rate correlations)

Equation (27) still holds, may it be that σi(t) has to be replaced by
σi(t, Li(t)). Using this in conjunction with specification (41) gives

ρModel
ij (t) = f(θi(t)) · f(θj(t)), 0 ≤ t ≤ min(Ti, Tj), i, j ∈ {1, . . . , N}.

Note that the correlation structure is again deterministic whereas the in-
stantaneous volatility itself is stochastic. This is due to the fact that only
the total instantaneous volatility is stochastic/forward rate dependent. In
particular, it follows that Remark 16 also applies to the FRDLV LMM.

(iii) (Swaption prices)

The instantaneous volatility of a swap rate within the FRDLV LMM, see
equation (31), is no longer only stochastic through its dependence on the
λ-functions, but now also through the forward rate dependency of the
instantaneous volatility of the forward rates. So for approximation pur-
poses the forward rate volatility appearing in the swap rate instantaneous
volatility will be evaluated at time zero as well, yielding

(42)
(
σBlack,Model,Approx

i:j

)2 =

1
Ti

j−1∑

k=i

j−1∑

l=i

δkLk(0)γi:j
k (0)

1 + δkLk(0)
δlLl(0)γi:j

l (0)
1 + δlLl(0)

‖σk(0, Lk(0))‖‖σl(0, Ll(0))‖
∫ Ti

0

ρModel
kl (s)ds.

for i, j, k, l ∈ {1, . . . , N}, i < j and k < l.
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6 Pricer methods

For the computational pricer part of the LIBOR market model (see the block
marked with “2” in Figure 2) several methods exist. All these methods approx-
imate formula (2) numerically. For the LIBOR market model, Monte Carlo
simulation is commonly used.

Remark 29 Another valuation method would be to solve a certain partial dif-
ferential equation (PDE) which is associated to (2). This method is frequently
used for e.g. equity derivatives. Due to the high-dimensionality of the LIBOR
market model, such a PDE method is (currently) not practically executable.
However, if in the future such a method would become practical, then such an
algorithm could simply be plugged into block “2” of Figure 2, and the LMM
would be ready to price derivatives using the new pricer method.

This remark shows how flexible the LIBOR market model general workings
are. 2

6.1 Monte Carlo

In a Monte Carlo simulation, the processes log(Li(·)), i = 1, . . . , N , are sim-
ulated instead of the forward rates themselves; this is to ensure positivity of
the simulated forward rates. The SDE for the logarithm of the LIBOR forward
rates is, using Itô’s formula,

d log(Li(t)) =
dLi(t)
Li(t)

− 1
2

d〈Li〉(t)
L2

i (t)
, 0 ≤ t ≤ Ti, i = 1, . . . , N.

This equation may be written in terms of e.g. WQSpot . Using d〈Li〉(t)/L2
i (t) =

‖σi(t)‖2dt, 0 ≤ t ≤ Ti, i = 1, . . . , N , together with SDE (18), gives

d log(Li(t)) =
( ( i∑

j=i(t)

δjLj(t)
1 + δjLj(t)

σj(t)
)− 1

2
σi(t)

)
·σi(t)dt+σi(t) ·dWQSpot(t),

for t, 0 ≤ t ≤ Ti, i = 1, . . . , N . A discretized version of the above SDE with
time step ∆t > 0 will read

∆ log(Li(t)) =
( ( i∑

j=i(t)

δjLj(t)
1 + δjLj(t)

σj(t)
)− 1

2
σi(t)

)
· σi(t)∆t + σi(t) · ε

√
∆t,

for t, 0 ≤ t ≤ Ti, i = 1, . . . , N . Here ε is a d-dimensional standard normally
distributed random variable, i.e., ε ∼ N (0, I), where 0 is the d-dimensional
zero vector and I is the (d× d)-identity matrix. A discretized equation for the
logarithm of the forward rates may be obtained in a similar fashion for any
terminal measure as well.

The discretized SDE may be used to sample forward rate paths in a computer
implementation.

35



7 Interest rate derivatives

This Section describes various exotic interest rate derivatives which can be val-
ued with the LIBOR market model. Caps and swaptions have already been
described in Sections 4.1.1 and 4.1.3, respectively.

7.1 Spread options

The spread between two rates is simply the difference between the rates. Here
the two rates may be any LIBOR or swap rate or even the same rate observed
at different times. A spread option is an option on the spread. If R1 and R2 are
two rates, a spread call option with strike K and fixing times T1 and T2 pays
out an amount proportional to

(
R1(T1)−R2(T2)−K

)
+
.

Lower correlation between rates will lead to higher spreads. So intuitively,
a spread option will be more expensive if the correlation between the rates is
lower.

7.2 Discrete barrier caps and floors

A barrier option is an option of which the payoff is contingent on some price or
market value hitting some level, called the barrier. An example is a down-and-
out barrier, which pays out normally until some process has come below the
barrier. Other examples are down-and-in, up-and-out and up-and-in barriers.
If the barrier is hit, the barrier option is said to be knocked in (in case of a
down-and-in or up-and-in barrier) or knocked out (in case of a down-and-out or
up-and-out barrier).

For a discrete barrier option, only a predesignated set of fixing times matters.
The discrete barrier may knock in or out only if at one of the fixing times, the
underlying market value has surpassed the barrier.

A discrete barrier cap is then a cap with a discrete barrier feature.
Consider a skewed interest rate market, i.e., higher volatilities for lower

strike. Assume that this skew is caused by higher volatility if the LIBOR forward
rate goes down and a lower volatility if the LIBOR forward rate goes up. (In
equity markets, this concept of deviation from the Black-Scholes world is referred
to as “vol-by-money”ness and is modeled by for example spot dependent local
volatility. FRDLV is the fixed income market equivalent to spot dependent local
volatility.) Consider the price of a down-and-out barrier cap in the presence of
such a skewed interest rate market compared to a flat Black-Scholes world. If
LIBOR goes up, the volatility will go down, and hence the cap is more likely to
end up lower in-the-money. If LIBOR goes down, the volatility will go up, so
the option will be knocked out by the barrier more likely. Thus intuitively, it is
expected that such a barrier option is cheaper in the presence of a skew.

8 Results

As an illustration of the capabilities of the LMM and FRDLV LMM, several
interest rate products are priced for various scenarios using different calibration
techniques. Results and performances are compared.
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Horizon 5.5 Years
Accrual Period 6 Months
Number of Forwards 10
Number of Factors 2
Yield Curve/Volatility Curve EURO, Taken from 01/09/00
Number of Monte Carlo runs 100,000
Steps per Forward Period in MC Simu-
lation

4

Table 1: Specification of Deal 1.

Expiry
(Years)

Tenor
(Years)

Approximate
Price of
Swaption
(Bp)

MC Price
of Swaption
(Bp)

MC Stan-
dard Error
(Bp)

1 1 60.73 59.16 0.20
1 2 123.68 123.58 0.41
1 3 181.63 182.95 0.56
1 4 241.28 240.99 0.68
2 1 75.64 74.92 0.28
2 2 146.51 147.29 0.54
2 3 212.88 213.40 0.73
3 1 82.66 82.73 0.33
3 2 160.75 161.14 0.61
4 1 88.21 87.84 0.35

Table 2: Results for Deal 1.

8.1 Deal 1: Accuracy of swaption approximation

The purpose of this Deal is to test the accuracy of the swaption price approxi-
mation formula (32). To this end, swaption prices were calculated for a LIBOR
market model both with the approximating formula (32) and through Monte
Carlo simulation. The results were compared.

The specification of Deal 1 is summarized in Table 1. The instantaneous
volatility had been written in terms of spherical coordinates. Both the total
and per-factor instantaneous volatility were taken to be time homogeneous, see
Section 4.2.2. The LMM was calibrated to the caplet volatilities and time zero
forward rate correlations only. The total instantaneous volatilities may then be
obtained inductively from the market caplet volatilities. The market time zero
forward rate correlation structure was taken to be

(43) ρMarket
ij (0) = e−β(Ti−Tj), i, j = 1, . . . , N,

where β equaled 0.85. The per-factor instantaneous volatilities were subse-
quently computed using the Hull and White method outlined in Subsection
4.3.1, item (iii).

The results may be found in Table 2. This was for a scenario in which
rates and volatilities were approximately 5% and 15%, respectively. Next, the
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Volatility (%)
Rate (%) 15 30 60
1 0.92 1.35 1.93
5 0.96 1.38 1.75
10 0.05 0.27 0.92

Table 3: Maximum relative error (in %) for all swaptions (except the 1 into 1
year swaption) under different scenarios.

Volatility (%)
15 30 60

Rate
(%)

Appr.
Price

MC
Price

Error Appr.
Price

MC
Price

Error Appr.
Price

MC
Price

Error

1 13.95 13.62 0.33 20.12 19.39 0.73 33.15 31.76 1.39
5 60.73 59.16 1.57 89.75 86.39 3.36 150.19 143.77 6.42
10 495.70 495.59 0.11 496.33 496.52 0.19 518.99 516.65 2.34

Table 4: Comparing approximating and Monte Carlo swaption prices (Bp) for
the 1 into 1 year swaption.

whole yield and volatility curves where proportionally increased/decreased to
give rate scenarios of about 1%, 5% and 10% and volatility scenarios of about
15%, 30% and 60%. All the above swaptions were Monte Carlo-priced (the
1% rates scenario at strike rate 0.01, the other scenarios at strike rate 0.05)
and approximated. The maximum relative error for each scenario of all the
swaptions except for the 1 into 1 year swaption is reported in Table 3. This was
done except for the 1 into 1 year swaption as this particular swaption proved
to present the largest relative errors. The results for the 1 into 1 year swaption
are stated in Table 4.

The above stated results show that (for the examined scenarios) the swap-
tion price approximation formula works really well and that it may be used to
calibrate the LMM toward the swap market. The results in [HuW00] show the
same.

8.2 Deal 2: Factor dependency of spread options

The purpose of this Deal is to examine the influence of the number of factors
used in the LMM on the price of spread options. To this end, a spread option
was priced using Monte Carlo simulation while varying the number of factors.

The specification of Deal 2 is summarized in Table 5. The instantaneous
volatility had been written in terms of spherical coordinates. Both the total
and per-factor instantaneous volatility were taken to be constant over time.
The LMM was calibrated to

(i) all caplet volatilities,

(ii) swaption volatilities of swap rates 1 and 2.

The total instantaneous volatilities were set equal to the market observed caplet
volatilities (in order to price all caplets correctly). The per-factor volatilities
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Horizon 13 Years
Accrual Period 6 Months
Number of Forwards 25
Number of Factors Variable
Yield Curve/Volatility Curve/Swaption
Surface

EURO, Taken from 14/02/01

Number of Monte Carlo runs 100,000
Steps per Forward Period in MC Simu-
lation

4

Spread Option
Rate 1 1 Year into 10 Year Swap
Rate 2 1 Year into 1 Year Swap
Strike Rate 0.01
Expiry Date 14/02/03
Number of Fixings 1
Number of Payments 10
Market Volatility Swap Rate 1 0.1036
Market Volatility Swap Rate 2 0.1541

Table 5: Specification of Deal 2.

Number of Factors MC Price of Spread
Option (Bp)

MC Standard Error
(Bp)

1 34.69 0.27
2 51.32 0.34
3 50.29 0.34
4 50.84 0.34
5 51.74 0.36
7 50.22 0.33
10 52.14 0.36

Table 6: Results for Deal 2.

were adjusted to calibrate to the two swaption volatilities and their correlation.
Whenever the number of factors was larger than one, these fits were very close.
In the case of only one factor, there will be a model instantaneous correlation of
1, at all times, which means that the model fits will be nothing like the market
values.

The results may be found in Table 6. As expected, see Subsection 7.1, the
one-factor spread option price makes no sense. Ignoring the one-factor case,
the spread option price proves to be unaffected by the number of factors. This
is contrary to results presented by Sidenius ([Sid00]), who reports of a serious
increase in the price of a spread option when moving from 3 to 10 factors.
He points out that this increase is due to differences in the calibration when
varying the number of factors. Our results however show that if the LMM is
calibrated to the relevant calibration objects, the influence of the number of
factors is negligible. The relevant calibration objects for a spread option are the
volatilities of the two rates.
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Horizon 3 Years
Accrual Period 6 Months
Number of Forwards 5
Number of Factors 3
Yield Curve EURO, Taken from 14/02/01
Number of Monte Carlo runs 100,000
Steps per Forward Period in MC Simu-
lation

2,000

Table 7: Specification of Deal 3.

On the other hand, for risk management purposes one would like to value all
interest rate derivatives in some portfolio using only one particular calibration.
In such a case, the factor dependency in the prices of exotic derivatives will be
inevitable, as Sidenius’ results show.

This also illustrates that one should pay due attention as to how the LMM
is calibrated when pricing interest rate derivatives.

8.3 Deal 3: Calibration of FRDLV LMM

Whereas spot dependent local volatility has been successfully applied in practice
for equity derivatives, forward rate dependent local volatility for LMM will
unlikely be applied in practice, according to our empirical results. The reason
for the failure of the FRDLV LMM is twofold:

(i) The smile and skew in fixed income markets is not as pronounced as within
equity markets.

(ii) The spreads in equity markets are relatively much higher than in fixed
income markets. Much more precision is needed for interest rate deriva-
tives.

As introducing forward rate dependency of local volatility is a very subtle change
to the whole LMM, very small time steps have to be taken with a Monte Carlo
simulation in order for the influence of forward rate dependency to kick in and
become noticeable. Since the smile is more flawed than in equity markets (item
(i)) and because higher precision is needed (item (ii)), for simulated prices to
be sufficiently in range with their fitted prices, a severely small time step has
to be taken leading to exorbitant amounts of computational time. This renders
the FRDLV LMM useless for any practical applications.

For the purpose of showing that FRDLV LMM works at least in theory,
market conditions were specified with smile and skew phenomena alike those
observed in equity markets. A range of twelve strikes was chosen together with
five forwards, yielding in total an amount of sixty distinct caplets to which the
FRDLV LMM was fitted to. All sixty caplets were then priced using Monte
Carlo. The outcomes were compared to Monte Carlo prices of the caplets ob-
tained by an ordinary LMM that had only been calibrated to the caplets for
one particular strike. Performances were compared.

The specification of Deal 3 is summarized in Table 7. The instantaneous
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Discrete Barrier Cap
Type Down and Out
Number of Fixings 5
Barrier Rate 0.4
Strike Rate 0.5

Table 8: Specification of discrete barrier cap.

Price of Discrete
Barrier Cap (Bp)

MC Standard Error
(Bp)

With FRDLV 115.12 0.63
Without FRDLV 119.67 0.67

Table 9: Results for Deal 4.

volatility had been written in terms of spherical coordinates. The total instan-
taneous volatility was determined by formula (40). The per-factor volatility
was taken to be constant over time. The FRDLV LMM was calibrated to the
caplet volatilities (including strike dependency) and the time zero forward rate
correlations only. The market forward rate correlation structure was taken to
be the same as in Deal 1, see equation (43). The per-factor volatilities were
calibrated toward this correlation structure. The local volatility surfaces were
pre-sampled and an interpolator was subsequently used whenever a local volatil-
ity was needed during the actual Monte Carlo simulation.

The results may be found in Figures 6 and 7.
The results show that the FRDLV LMM correctly prices caplets at different

strikes, as opposed to the plain vanilla LMM, for which it is impossible to do
so.

8.4 Deal 4: Skew dependency of barrier caps

The purpose of this Deal is to empirically illustrate the intuitive argument made
in Subsection 7.2 about discrete down-and-out barrier caps being cheaper in the
presence of a skewed interest rate market. To this end, a skewed interest rate
market was considered and a discrete down-and-out barrier cap was priced with
and without forward rate dependency (without forward rate dependency here
means that for any evaluation of the instantaneous volatility, the forward rate
was simply taken to be the time zero forward rate). The prices of the barrier
caps with and without forward rate dependency are compared.

The specification of Deal 4 is the same as for Deal 3. The specification of
the discrete barrier cap may be found in Table 8. All time zero LIBOR forward
rates were in between the barrier and strike rate.

The result may be found in Table 9. The expected difference in prices for
with or without FRDLV is small; this may be due to the fact that only a short
maturity barrier cap was looked at.
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Figure 6: Results for Deal 3 with FRDLV. For caplets with various strike rates
and expiry times, the absolute error is plotted between market observed and
MC simulated prices for the LMM with FRDLV.

Figure 7: Results for Deal 3 without FRDLV. For caplets with various strike
rates and expiry times, the absolute error is plotted between market observed
and MC simulated prices for the LMM without FRDLV.
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9 Conclusion

The LIBOR market model is a state of the art tool for pricing and hedging
interest rate derivatives. It is flexible; the LMM is able to price many different
kinds of interest rate derivatives.

Care should be taken though when calibrating the LMM as an inappropriate
calibration may affect prices of interest rate derivatives considerably.

Extending the LMM with forward rate dependent local volatility to enable
the LMM to replicate the volatility smile observed in markets is theoretically
sound but impractical due to the high amount of computational time needed.
Future research on incorporating the volatility smile into the LMM will need to
be on CEV10, stochastic volatility11 or jumps12.

10 Summary

The LIBOR market model (LMM) is a state of the art tool for pricing and hedg-
ing interest rate derivatives. This thesis presents the theory of the LMM as well
as practical issues arising with a computer implementation. Also, a novel exten-
sion is made to incorporate the market observed so-called “volatility smile” into
the LMM, utilizing the concept of forward rate dependent instantaneous volatil-
ity, a concept that has already been successfully applied for equity derivatives.
The smile-adjusted LMM proves to be theoretically sound but practically not
useful due to the high amount of computational time needed. The thesis ends
with presenting results of some empirical tests to illustrate the performance of
the LMM and smile-adjusted LMM.

10The Constant Elasticity of Variance (CEV) model was proposed by [CoR76].
11See [Dup93a].
12For an overview of modeling the smile, see Chapter 17 in [Hull00].
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A Tools from stochastic calculus

Throughout this paper, several theorems from stochastic calculus have been
used. Those theorems are stated in this appendix. Consider a filtered probabil-
ity space (Ω,F ,P,F) on which a d-dimensional Brownian motion W : [0, T ] ×
Ω → Rd is given. The filtration F is the augmentation of the natural filtration
generated by the Brownian motion.

Definition 30

(i) A martingale X is an F-adapted process, X : [0, T ] × Ω → R, such that
X(t) is integrable for all t ∈ [0, T ] and such that

E
[
X(t)

∣∣F(s)
]

= X(s) a.s., 0 ≤ s ≤ t ≤ T.

(ii) A local martingale X is a process, X : [0, T ] × Ω → R, such that there
exists a sequence {Ti}∞i=1, Ti ↗ ∞ as i → ∞ a.s., such that XTi is a
martingale for all i.

(iii) Let X and Y be continuous local martingales. Then there is a unique (up
to indistinguishability) adapted, continuous process of bounded variation
〈X, Y 〉 : [0, T ] × Ω → R starting from zero such that XY − 〈X, Y 〉 is a
continuous local martingale. 〈X,Y 〉 is called the cross-variation of X and
Y .

(iv) Write 〈X〉 = 〈X,X〉. 〈X〉 is called the quadratic variation of X and will
be non-decreasing. 2

A proof of the following result may be found in for example [ReY91], Proposition
2.7.

Theorem 31 (Kunita-Watanabe identity) Let M : [0, T ]×Ω → R, N : [0, T ]×
Ω → R be continuous local martingales and let H : [0, T ] × Ω → R be a locally
bounded previsible process. Then

〈
∫ ·

0

H(s)dM(s), N〉(t) =
∫ t

0

H(s)d〈M, N〉(s), 0 ≤ t ≤ T. 2

Corollary 32 (The cross-variation between two processes) Let X : [0, T ]×Ω →
R and Y : [0, T ]× Ω → R be F-adapted continuous semi-martingales satisfying

(44)
dX(t)
X(t)

= µX(t)dt + βX(t) · dW (t),

(45)
dY (t)
Y (t)

= µY (t)dt + βY (t) · dW (t),

0 ≤ t ≤ T , for F-previsible locally bounded processes µX , µY : [0, T ] × Ω → R,
βX , βY : [0, T ]× Ω → Rd. Then

d〈X,Y 〉(t) = X(t)Y (t)βX(t) · βY (t)dt, 0 ≤ t ≤ T.
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Proof: Apply Kunita-Watanabe twice. 2

A proof of the following result may be found in for example [KaS91], Theo-
rem 3.3.3.

Theorem 33 (Itô’s formula) Let f : Rn → R be a function of class C2(Rn)
and let X : [0, T ] × Ω → Rn be an F-adapted continuous n-dimensional semi-
martingale. Then

df(X(t)) =
n∑

i=1

∂f

∂xi
(X(t))dXi(t) +

1
2

n∑

i=1

n∑

j=1

∂2f

∂xi∂xj
(X(t))d〈Xi, Xj〉(t),

for t, 0 ≤ t ≤ T . 2

Corollary 34 (The product rule for stochastic differentiation) Suppose X,Y :
[0, T ]× Ω → R are F-adapted continuous semi-martingales. Then

d(XY )(t) = X(t)dY (t) + Y (t)dX(t) + d〈X, Y 〉(t), 0 ≤ t ≤ T.

Proof: Apply Itô’s formula to the function u : R2 → R, u(x, y) = xy for
(x, y) ∈ R2. 2

Corollary 35 (The stochastic differential of the quotient of two processes) Let
X and Y be as in Corollary 32. Then

d(X/Y )(t)
(X/Y )(t)

=
(

µX(t)− µY (t)− (
βX(t)− βY (t)

) · βY (t)
)
dt

(
βX(t)− βY (t)

) · dW (t), 0 ≤ t ≤ T.(46)

Proof: Firstly apply the product rule for stochastic differentiation to get

(47)
d(X/Y )(t)
(X/Y )(t)

=
1

X(t)
dX(t) + Y (t)d(

1
Y

)(t) +
Y (t)
X(t)

d〈X,
1
Y
〉(t),

0 ≤ t ≤ T . Secondly, apply Itô’s formula to the function f : R \ {0} → R,
f(x) = 1

x for x ∈ R \ {0}, to get

d(1/Y )(t)
(1/Y )(t)

= − 1
Y (t)

dY (t) +
1

Y (t)
d〈Y 〉(t)

=
(− µY (t) + ‖βY (t)‖2)dt− βY (t) · dW (t),(48)

0 ≤ t ≤ T . Thirdly apply Kunita-Watanabe to get

(49)
Y (t)
X(t)

d〈X,
1
Y
〉(t) = −βX(t) · βY (t)dt, 0 ≤ t ≤ T.

Fourthly and lastly substitute equations (44), (45), (48) and (49) into (47) to
obtain (46). 2

For a proof of the following theorem see [ReY91], Proposition 1.4.
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Theorem 36 (Girsanov’s theorem) Let M : [0, T ] × Ω → R be a continuous
local martingale such that the process Z : [0, T ]× Ω → [0,∞) defined by

Z(t) def= eM(t)− 1
2 〈M〉(t), 0 ≤ t ≤ T,

is a uniformly integrable martingale and let X : [0, T ] × Ω → Rd be a contin-
uous local martingale, i.e., each of the components of X is a continuous local
martingale. Define the process X̃ : [0, T ]× Ω → Rd by

X̃j(t)
def= Xj(t)− 〈Xj ,M〉(t), 0 ≤ t ≤ T, j = 1, . . . , d.

Then the process X̃ is a d-dimensional continuous local martingale on (Ω,F ,Q)
where the probability measure Q is defined by

Q(A) def= E
[
Z(T )1A

]
for A ∈ F(T ).

Q is mutually absolutely continuous with respect to P. 2

The process Z is called the Radon-Nikodým derivative of Q with respect to P
and is denoted by dQ

dP .
For a proof of the following theorem, see [ReY91], Theorem 3.6, or also

[GiS79], Theorem 3 in Chapter 1, §3.

Theorem 37 (Lévy’s characterization of Brownian motion) Let X : [0, T ] ×
Ω → Rd be a continuous local martingale starting from the origin, which satisfies

〈Xj , Xk〉(t) = δjkt, 0 ≤ t ≤ T, 1 ≤ j, k ≤ d,

then X is a d-dimensional Brownian motion. 2

Here δjk equals 1 if j = k and 0 otherwise.

B Calculation of a caplet price within the LMM

In this appendix the derivation of (25) from (24) will be presented. To this end
we compute C = MδnBn+1(0)E[(Ln(Tn)−K)+] with Ln(Tn) = Ln(0)eZ where
Z is normally distributed, Z ∼ N (− 1

2τ2, τ2). A Lemma will be used13.

Lemma 38 Let (Ω,P) be a probability space and suppose Z : Ω → R is a
normally distributed random variable, Z ∼ N (β, τ2). Let f : R → R be a
Lebesgue integrable function. Then

E
[
eZf(Z)

]
= eβ+ 1

2 τ2
E

[
f(Z + τ2)

]
.

Proof: Substitute y = x− τ2 when calculating the integral

E
[
eZf(Z)

]
=

∫ ∞

−∞
exf(x)

1√
2πτ2

e−
(x−β)2

2τ2 dx

to get the desired result. 2

13Lemma 38 has been taken from [Ken99]. For another interesting application of this
Lemma, see [KAP00].
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Using the above Lemma on the function f defined by f(x) = 1{Ln(0)ex≥K}
for x ∈ R yields,

C = MδnBn+1(0)
(

Ln(0)E
[
eZ1{Ln(0)eZ≥K}

]−KE
[
1{Ln(0)eZ≥K}

] )

= MδnBn+1(0)
(

Ln(0)E
[
1{eτ2Ln(0)eZ≥K}

]−KE
[
1{Ln(0)eZ≥K}

] )
.(50)

Note that

{ eτ2
Ln(0)eZ ≥ K } =

{−Z − 1
2τ2

τ
≤ log(Ln(0)

K ) + 1
2τ2

τ

}

and (−Z − 1
2τ2)/τ is standard normally distributed, ∼ N (0, 1). Subsequently,

E[1{eτ2Ln(0)eZ≥K}] = N(d1), where d1 = (log(Ln(0)/K) + 1
2τ2)/τ . Likewise,

E[1{Ln(0)eZ≥K}] = N(d2), where d2 = (log(Ln(0)/K) − 1
2τ2)/τ . Substituting

this into equation (50) gives the desired result (25).

C Forward Kolmogorov equation

A theorem from diffusion theory is stated. In this Theorem, a statement is
made about the generator of an Itô diffusion. For a proof of this statement see
[Øks00], Theorem 7.3.3. For a proof of the forward Kolmogorov equation, see
Exercise 8.3 in the same book.

Theorem 39 (Forward Kolmogorov equation or Fokker-Planck equation) Let
X : [0,∞)× Ω → R be an Itô diffusion in R, i.e., suppose X satisfies

dX(t) = µ(t,X(t))dt + σ(t,X(t)) · dW (t), t ≥ 0,

where µ : [0,∞) × R → R and σ : [0,∞) × R → Rd are continuous functions.
If f : [0,∞) × R → R is in the domain of the generator A of X and if f is of
class C1,2([0,∞)× R), then

(Af)(t, x) =
∂f

∂t
(t, x) + µ(t, x)

∂f

∂x
(t, x) +

1
2
‖σ(t, x)‖2 ∂2f

∂x2
(t, x),

for (t, x) ∈ [0,∞)×RN . Assume that the transition measure of X has a transi-
tion density p : D → [0,∞) on domain D = {(s, y; t, x) ∈ R4 : 0 ≤ s < t} such
that

E
[
f(X(t))

∣∣X(s) = y
]

=
∫ ∞

0

f(x)p(s, y; t, x)dx,

for continuous functions f : R → R, 0 ≤ s < t, y ∈ R, and assume that
the function which maps (t, x) onto p(s, y; t, x) for (t, x) ∈ (s,∞) × R is of
class C1,2((s,∞) × R) for all (s, y) ∈ [0,∞) × R. Then p satisfies the forward
Kolmogorov equation

∂p

∂t
(s, y; t, x) = (A∗p)(s, y; t, x), 0 ≤ s < t, x, y ∈ R,

where A∗ is the adjoint operator to A, defined by 〈Af, φ〉 = 〈f, A∗φ〉 for f in the
domain of A, φ of class C1,2([0,∞)× R). Here 〈·, ·〉 denotes the inner product
in L2([0,∞)×R,B,L) (B is the Borel σ-field – L is Lebesgue measure). Finally,

(A∗φ)(t, x) =
∂2(‖σ‖2φ)

∂x2
(t, x)− ∂(µφ)

∂x
(t, x),

for (t, x) ∈ [0,∞)× R, φ of class C1,2([0,∞)× R). 2
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