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CHAPTER 1

Introduction and overview

The subject of this thesis is the statistical analysis of high-dimensional data. It
is motivated by (and primarily focussed on) problems arising from microarray
gene expression data, a new type of high-dimensional data, which has become
important in many areas of biology and medicine in the last decade.

The thesis is a collection of six articles and a software manual. The articles
are self-contained and they can in principle be read in any order. However, such
random reading of the chapters would not do justice to the close connections
that exist between them, which are partly obscured by the fact that the articles
were written for different journals and therefore for different audiences with
different backgrounds and interests.

The objective of this introduction is to provide the context in which the pa-
pers should be read and to make the connections between the different chapters
more explicit. It is not meant to be a full review of microarray data and their
analysis. These can be found for example in Dı́az-Uriarte (2005), Speed (2003)
and Simon et al. (2003). I give a short introduction to gene expression data and
the biological and clinical questions arising from them in section 1.1. The next
section 1.2 reviews some of the statistical methods that have been developed in
recent years to address these questions. Section 1.3 examines the contribution
of this thesis to the field.

1.1 Biological context

The microarray is a recent technology from molecular biology which was first
developed around 1995 (Schena et al., 1995), and became widely available a-
round the turn of the century (see Ewis et al., 2005, for a short history). The
microarray is designed to measure the activity of gene expression, which is the
process by which the genetic information in DNA is used to make proteins.
The microarray technology gives the biologist the potential to greatly increase
knowledge on the functions of genes and on the biology of disease, as well as
allowing improvements in diagnosis and prognosis of patients.
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Chapter 1. Introduction and overview

Technology

The central dogma of molecular biology says that the information encoded in
the DNA is first transcribed into multiple copies of RNA, which is then trans-
lated into a protein. Graphically:

DNA → RNA → Protein

The genetic information in the DNA is generally the same in all cells of the same
individual and also for the major part between individuals of the same species.
However, the need for proteins varies depending on the type of tissue the cell
belongs to and depending on the condition of that tissue. Therefore the rate of
transcription of each gene also varies and so does the concentration of RNA.

A microarray is a high-throughput measurement device that can simulta-
neously measure RNA concentrations of tens of thousands of genes in a single
biological sample (tissue or cell line). It consists of a small glass slide on which
there are fixed spots, at least one for each gene, consisting of single-strand DNA
from part of the gene. When using the microarray to measure gene expression
in a tissue sample, one extracts the RNA from the tissue, labels it with fluores-
cent dye, and brings it in contact with the glass slide. By the properties of RNA
and DNA, the RNA mostly binds to the DNA of the gene it belongs to. There-
fore, the RNA concentrations of different genes can be compared by comparing
the colour intensity of the spots after the experiment.

Colour intensities for each gene are read off by a laser scanner using spe-
cialized scanning software for microarrays. This produces a single quantitative
measurement per spot on the array, which can be used for statistical analysis.
The result of the experiment is a measure of the RNA concentration of the genes
spotted on the microarray.

These measurements are only indirect, because the colour intensity does not
have a simple and immediate relationship to RNA concentration. Furthermore,
the measures are only relative. As there are factors in each microarray slide
and each tissue sample that cannot be completely controlled, the relationship
between colour intensity and RNA concentration is different for every microar-
ray slide. Therefore, direct comparison of measured values is only possible be-
tween spots on the same slide. To make different slides comparable, the slides
have to be ‘normalized’. The process of normalization also includes removing
systematic biasses and artifacts of the technology and possibly removing genes
whose signal is considered unreliable. The choice of a technique for normaliza-
tion depends very much on the precise microarray technology used, and many
different methods are in use (Bolstad et al., 2003; Huber et al., 2002; Irizarry
et al., 2003; Kerr et al., 2000; Wu et al., 2004; Yang et al., 2002).
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Chapter 1. Introduction and overview

Microarray technology is valuable because it can generate large amounts
of useful data, but the measurements are not extremely accurate. Individual
measurements of the gene expression level of a specific gene in a specific tissue
can be noisy and the arrays suffer from many systematic errors, which have to
be carefully filtered out before the analysis can start. Accuracy has improved,
however, over the few years that the technology has matured.

Research questions

The vast amount of data that can be generated using microarray technology
has proved very attractive to researchers, leading to an explosion of publica-
tions using microarray technology (Ewis et al., 2005). Microarray data are used
in very diverse areas of biology and medicine to answer very diverse research
questions. Most research tries to find relationships between gene expression
measurements and external data. These external data may be different exper-
imental conditions if the microarrays were done on cell lines or tissue from
model organisms. More often they are phenotypic data, especially when the
microarrays were done on tissue samples of patients (e.g. dissected tumours).
Research questions can then be loosely divided into three classes by the three
basic ingredients of a microarray experiment: research questions can be about
genes, about patients or about a phenotype.

Studies with research questions relating to genes are most common in mi-
croarray research in biology. These studies aim at increasing the understanding
of the function of genes. This is usually done by searching for genes whose
expression is correlated to the experimental conditions or to important pheno-
types.

Clinically motivated microarray studies often have research questions relat-
ing to patients. Such studies aim at improving diagnosis and prognosis of pa-
tients, for which microarrays are expected to have great potential (Golub et al.,
1999; Van ’t Veer et al., 2002). Microarrays can be especially valuable in prog-
nosis, as future events such as metastasis which are not yet clinically detectable
may already be detectable in the gene expression activity. Microarrays can also
be used in diagnosis to replace older methods which are more costly or more
damaging to the patient. Patient-oriented studies usually try to find a predic-
tion rule for predicting patient phenotypes from the microarray data.

A third kind of studies has research questions relating to the phenotype
studied, which is usually some aspect of disease. These studies aim at increas-
ing the understanding the biology of disease. They try to find out which bio-
logical processes are related to disease or to certain aspects of a disease. This
information can be used to unravel the biological mechanisms involved in the
disease. This type of phenotype-oriented research can be seen as the inverse of
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Chapter 1. Introduction and overview

gene-oriented research: instead of inferring information on gene function from
knowledge about the phenotype, information about the phenotype is inferred
from knowledge about gene functions. This kind of research relies heavily on
gene annotation, which is used to link genes to biological processes and other
gene functions.

These three types of research questions are not so neatly distinguished in
practice. Many actual experiments are set up with a mixture of research aims,
which may be of all three kinds. The research aims are also strongly related.
Knowing which genes are related to a phenotype can be a step in the direc-
tion of predicting the phenotype and also, by studying known functions of the
genes, a step towards knowing which biological processes are involved. It is
important, however, to distinguish the three types of research questions, as they
are different on a fundamental level and require different statistical methods to
solve.

Annotation and pathways

The vast amount of data generated by microarray experiments is not only chal-
lenging from a statistical point of view. It is also a challenge for the biologist
to interpret the results and to compare the results of his or her experiments to
the literature and to the results of earlier experiments. An important aid for
interpretation is given by the annotation tools that are available in the world of
bioinformatics. Annotation tools link genes to knowledge that has so far been
accumulated about that gene. I will mention a few which are important for this
thesis.

The most widely used gene annotation system is the Gene Ontology (GO,
Ashburner et al., 2000, www.geneontology.org). GO is a structured vocabu-
lary that can be used to systematically describe genes, gene products, biological
processes, cellular components and molecular functions. The GO ontology can
be used as a tool for annotation, because it includes a database that links genes
to terms from the ontology. Evidence for these links is collected in various
ways. The database is generated by automated scanning of the literature, but
part of the database is managed by experts. GO is by far the largest annotation
tool, containing over 18,000 annotation terms.

Alternatives to GO tend to be smaller but more reliable, as they are usually
not automated but fully managed by experts. The Kyoto Encyclopedia of Genes
and Genomes (KEGG, Ogata et al., 1999, www.genome.jp/kegg) is a database
of 267 pathways (July 2005). A pathway is a set of genes related to a specific
function or biochemical process. The pathways in the KEGG database are pre-
dominantly metabolic pathways. They include diagrams of the relationships
between genes in the pathway. The KEGG pathways are created and kept up-
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Chapter 1. Introduction and overview

to-date by experts.

1.2 Statistical context

It has taken some time before biologists and bioinformaticians working with
microarray data realized that they needed statistical methods (Vingron, 2001)
and it has taken some more time before statisticians responded to the call for
good methodology. Since then, however, many interesting new statistical meth-
ods have been developed to answer the various research questions mentioned
above.

Cluster analysis

The first statistical method to become popular in microarray research was hier-
archical cluster analysis (Eisen et al., 1998). Cluster analysis is a visualization
tool which allows biologists to inspect the results of the experiment by divid-
ing the samples and the genes into ‘clusters’ which have similar expression
patterns. Cluster analysis is sometimes also used to infer that patients in the
same cluster have the same subtype of a disease or to infer that genes in the
same cluster have the same function.

Cluster analysis and its associated heat map display are very useful for vi-
sualization. They provide a well-ordered display of data which are otherwise
very difficult to survey. However, hierarchical cluster analysis has two im-
portant drawbacks when used as a method of statistical analysis. In the first
place it is unsupervised, i.e. it does not make use of the phenotype information
of the experiment. It cannot, therefore, answer any of the research questions
listed above, which are all related to a phenotype. Secondly, it is very weak
as a tool for inference. Hierarchical cluster analysis is not based on any model
and has no statistical or probabilistic motivation (although model-based alter-
natives have been developed: McLachlan et al., 2002). There are no accepted
estimation procedures which can be used to determine the number of clusters
and there are no accepted testing procedures which allow one to show that
there is actually more than one cluster. Because of these drawbacks, the pop-
ularity of cluster analysis as the primary analysis tool is slowly declining in
microarray research.

Finding differentially expressed genes

Finding genes that are associated with a phenotype is the most common goal
of a microarray experiment. It is usually solved by multiple hypothesis testing:
testing association of the gene expression measurements with the phenotype
separately for each gene. If the phenotype takes two values, the classical so-
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lution to this multiple testing problem would be to do tens of thousands of
t-tests, one for each gene, and to correct for multiple testing using Bonferroni.
This classical setup has to be amended for the microarray context in several
ways.

The Bonferroni correction for multiple testing controls the family-wise error
rate, which is the probability of making at least one false rejection, or ‘false
discovery’. The 2× 2 table in table 1.1 shows the possible outcome of a multiple
testing procedure. Of m null hypotheses, an unknown number m0 are true. Of

TABLE 1.1: Two-by-two table showing the outcome of a multiple testing procedure of m null
hypotheses of which m0 are true.

not significant significant total
true null U V m0
false null T S m−m0

total m− R R m

these true null hypotheses V are rejected, while U = m0 −V are not. Similarly
of the m−m0 false null hypotheses, T are rejected, while S are not. The family-
wise error, that the Bonferroni procedure controls, is P(V ≥ 1).

The Bonferroni criterion for the family-wise error criterion is considered too
conservative for microarray data analysis. One reason for this conservatism
is that the Bonferroni procedure is not efficient, especially because it does not
take into account dependency between the test statistics. A review of many
proposed improvements is given by Dudoit et al. (2003), who argue for the
resampling-based procedure of Westfall and Young (1989) to control the family-
wise error rate, which takes into account the dependency structure between the
test statistics. A second reason why the Bonferroni adjustment is felt to be too
conservative is because the family-wise error criterion is considered too strict
for use in microarray data analysis. Microarray research that aims at finding
genes associated with a certain phenotype is often largely exploratory. The ex-
periments are meant to generate hypotheses that can later be tested using more
accurate conventional biological techniques. It is therefore not so important
that every discovery is absolutely reliable, but it is more important that a good
proportion of the discoveries can be trusted.

For this reason one often does not control the family-wise error rate in mi-
croarray research, but the false discovery rate (FDR). This concept was formu-
lated by Benjamini and Hochberg (1995) as the expected proportion of false
discoveries V among the discoveries R = V + S. It can be interpreted as the
proportion of genes in the list of declared significant genes that is reliable. This
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proportion is taken to be zero if V and R are both zero. Benjamini and Hoch-
berg (1995) also provide a procedure that controls the FDR in a multiple testing
procedure if all test statistics are independent, as well as when they are posi-
tively correlated (Benjamini and Yekutieli, 2001). Reiner et al. (2003) provide
resampling-based methods to control the FDR more efficiently when the test
statistics are dependent. Other authors prefer to estimate the proportion of
false discoveries V/R instead of controlling its expectation a priori (Efron et al.,
2001; Storey, 2002; Storey and Tibshirani, 2003; Tusher et al., 2001). The differ-
ent approaches to the false discovery rate are compared in detail by Ge et al.
(2003).

When doing multiple testing, some power can be gained by recognizing that
the thousands of tests of a single microarray experiment are in fact highly com-
parable. Therefore, information from all other genes can be used to improve the
power of each individual test. In a multiple t-test procedure, for example, the
genes with the smallest estimated standard errors will probably have under-
estimated standard errors; any significant t-statistics that result are, therefore,
likely to be false positives. Shrinking the estimated standard errors towards
each other can prevent such false positives and therefore gain power. A prim-
itive implementation of this idea can be found in the popular method SAM
(Tusher et al., 2001). More sophisticated methods use empirical Bayes methods
to shrink the estimates of quantities for different genes toward each other in or-
der to ‘borrow strength’ across the genes (De Menezes et al., 2004; Smyth, 2004;
Wright and Simon, 2003).

Prediction methods

Prediction methods aim at predicting a patient phenotype (e.g. a class mem-
bership or a survival time) from the gene expression measurements. The pri-
mary goal is to let the resulting prediction rule help diagnosis or prognosis of
patients. However, there is often a secondary goal of interpreting the resulting
prediction rule in terms of the genes involved and/or their function. Prediction
methods, which are designed to answer the patient-related research questions
described in section 1.1, are typically also used to answer gene- or phenotype-
related research questions.

Prediction methods are perhaps the most active area of statistical microarray
research, as the inability of classical statistics to handle high-dimensional data
is most clearly visible in the prediction context. Many new statistical meth-
ods have been proposed (see Hastie et al., 2001, for an overview). Some of
these methods have their origins in statistics, usually from methods designed
to deal with collinearity in regression, such as principal components regres-
sion (Jolliffe, 2002), Ridge Regression (Hoerl and Kennard, 1970), the LASSO
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(Tibshirani, 1996). Other methods are taken from chemometrics, where high-
dimensional prediction problems are well-known, e.g. in spectroscopy (see
Brown, 1993, for an overview). Most notable among the methods from chemo-
metrics is Partial Least Squares (Wold et al., 1984), but also, more recently, the
model-based maximum likelihood method of Burnham et al. (1999b). Many
other methods have come from machine learning, which is also a very active
field that develops methods for microarray research and slowly becomes more
integrated with statistical methodology. Important methods from machine
learning include k-nearest neighbours and support vector machines (Hastie
et al., 2001). Unlike the methods taken from statistics, which are typically for-
mulated in a regression context, methods from machine learning are typically
exclusively useable in classification problems.

The main problem that prediction methods for high-dimensional data have
to cope with is overfit, because the number of parameters of most prediction
methods grows with the number of predictors. There are various strategies to
reduce this overfit. Each of these strategies effectively reduces the parameter
space to reduce the possibility of overfit. This decreases the prediction variance
at the cost of introducing bias.

One important strategy for reducing overfit is shrinkage. Shrinkage meth-
ods in regression reduce the estimated regression coefficients toward zero. A
typical shrinkage method is Ridge Regression. This has been applied on mi-
croarray data for example by Eilers et al. (2001) for the classification problem
and by Pawitan et al. (2004) and Van Houwelingen et al. (2005) for predict-
ing survival. Ridge regression shrinks all regression coefficients towards zero,
without making them vanish. An alternative shrinkage method is the LASSO
(Tibshirani, 1996) and its generalization Least Angle Regression (Efron et al.,
2004), which sets most of the regression coefficients to zero. This has the ad-
ditional advantage of leading to a sparse predictor. The LASSO has been ap-
plied in microarray data by Shevade and Keerthi (2003). All these shrinkage
methods can be described as empirical Bayesian models (Van Houwelingen,
2001). A LASSO-like shrinkage can also be applied in discriminant analysis,
as in the popular Nearest Shrunken Centroids method (also known as PAM),
which shrinks the centroids of gene expression in each class towards the overall
centroid (Tibshirani et al., 2002).

A second strategy for reducing overfit is to use dimension reduction meth-
ods such as principal components or Partial Least Squares, which reduce the
gene expression measurements to a small number of orthogonal linear combi-
nations, which are subsequently used to predict the phenotype. Partial Least
Squares (PLS) is the standard method for high-dimensional prediction prob-
lems in chemometrics and has quite quickly found its way into microarray
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data analysis. PLS has been applied on microarray data by Nguyen and Rocke
(2002a,b). A model-based variant of PLS by Burnham et al. (1999b) has been
applied by Tan et al. (2005). Bair et al. (2004) proposed ‘Supervised Principal
Components’: principal components regression after a pre-selection of genes
based on their association with the phenotype.

A third strategy for reducing overfit is variable selection. Pure variable se-
lection is not so popular in microarray data analysis, but in combination with
other methods such as shrinkage or dimension reduction it is very popular.
Methods such as the LASSO, Supervised Principal Components and Nearest
Shrunken Centroids all return a sparse prediction rule. For a major part, the
popularity of sparse prediction rules stems from the biological belief that most
of the genes have no predictive value for the phenotype, so that a good predic-
tion rule is expected to be sparse.

Another reason why there is a desire for a sparse prediction rule, is for the
secondary aim of prediction modelling: interpretation. Prediction rules with
thousands of regression coefficients are very difficult to interpret, while a sparse
prediction rule is relatively easily given a causal interpretation. However, it is
highly dangerous to give too much causal interpretation to the genes selected
in a resulting prediction rule, as the set of selected genes is often highly vari-
able (Ein-Dor et al., 2005). This is a general problem in interpretation of high-
dimensional prediction rules: there are invariably many prediction rules which
are very different but still have about the same quality of prediction.

Analysis of pathways

The goal of phenotype-related research is to infer the mechanisms underlying
disease from knowledge about the function of genes whose expression is as-
sociated with the phenotype. For example, if the genes which are known to
be involved in programmed cell death tend to be differentially expressed be-
tween metastasizing tumours and non-metastasizing tumours, one can infer
that the mechanism of metastasis is related to the mechanism of programmed
cell death. Methods that address such phenotype-related research questions
were slow to develop (Dı́az-Uriarte, 2005). One reason for this is that the type
of research question does not have a direct similarity to research questions that
statisticians are familiar with.

Phenotype-related research questions usually focus on pathways, or, more
generally, on (GO) annotation terms. The question is to test the hypothesis that
the expression pattern of a certain pathway is associated with the phenotype.
It can also be more exploratory, asking which pathways (out of a library of
pathways or annotation terms) are associated with the phenotype.

The analysis of such questions is usually performed as a second step after

9
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finding single genes which are associated with the phenotype. Once such a list
is obtained, the researcher searches for significant overlap between the list of
significant genes and a list of genes belonging to a certain pathway. Several au-
thors have described ‘enriched gene set’ methods to assess whether an overlap
is significant (Al-Shahrour et al., 2004; Beissbarth and Speed, 2004; Boyle et al.,
2004; Smid and Dorssers, 2004; Zeeberg et al., 2003; Zhang et al., 2004). These
methods create a 2 × 2 table for each pathway as shown in Table 1.2. Based
on this table, one tests for independence of “being significant” and “being in
the pathway”, typically using Fisher’s exact test because the expected count in
the upper left cell is usually very small. If the test is significant, it means that,
in this experiment, the genes in the pathway have a different (usually higher)
probability of being significant than the genes that are not in the pathway.

TABLE 1.2: Two-by-two table for enriched gene set analysis. The table is filled with counts of
the number genes on the microarray chip based on whether they come out as significantly
associated with the phenotype and whether they belong to a certain pathway.

significant non-significant
in pathway
not in pathway

Enriched gene set analysis is a simple, elegant and useful procedure. How-
ever, it is easy to misinterpret the results. The p-values that come out of the
method are with respect to the experiment of drawing a gene at random from
the genes on the microarray given the data. The p-value does therefore not say
anything directly about whether a result can be expected to be replicated in
future experiments, as an ordinary p-value would. The enriched gene set pro-
cedure is therefore not a method that generalizes testing whether a gene is as-
sociated with the phenotype to testing whether the pathway is associated with
the phenotype.

Some interesting variants of the enriched gene set method are given by
Sohler et al. (2004), who make explicit use of network structures between genes
to find interesting subnetworks. Mootha et al. (2003) do not use a cut-off be-
tween significant and non-significant, but use the p-values as a ranking. They
look for enriched gene sets by testing for departure from a uniform distribution
with a Kolmogorov-Smirnov statistic.

A very different method for testing whether a gene set is associated with
a phenotype was recently proposed by Mansmann and Meister (2005). Unlike
the enriched gene set methods, this method is in line with classical statistical
practice. It is based on a ANCOVA model and can be used for a phenotype that

10
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takes two values. It tests whether the joint distribution of the gene expression
measurements is the same for both values of the phenotype. Their approach is
closely related to the GlobalTest method proposed in Goeman et al. (2005, 2004)
and in this thesis (Chapters 2 and 3), although the analysis is quite different.
The model of Mansmann and Meister considers the distribution of the gene
expressions given the phenotype, where Goeman et al. study the distribution
of the phenotype given the gene expression. Mansmann and Meister show
that under some conditions their ANCOVA approach has more power than the
GlobalTest, but more research is needed to compare the two methods.

The BioConductor project

To make the new statistical methods for normalization and analysis available
to statisticians, biologists and computer scientists, a software project called
BioConductor (www.bioconductor.org) has been set up by Gentleman et al.
(2004). BioConductor is a collection of software packages written for R (www.r-
project.org), a general language and environment for statistical computing (R
Development Core Team, 2005), similar to S.

Since its start in 2001, BioConductor has quickly grown with the addition of
numerous packages from the statistical and bioinformatics community. Part of
the popularity of BioConductor can be explained by the fact that both BioCon-
ductor and R are free and open-source distributions. BioConductor nowadays
has an enormous impact on the way microarray data are analyzed. Only very
few current statistical methods for microarray data analysis are not available
on BioConductor.

1.3 This thesis

This thesis consists of three parts. The first part is the most important one and
consists of Chapters 2 up to 5 and the appendix. It develops a new way of
answering phenotype-related questions, which is very different from the en-
riched gene set methods. The second part consists of Chapter 6, which presents
a model-based way to motivate dimension reduction techniques for prediction
methods. Finally, the third part, Chapter 7, addresses the important subject of
visualization of microarray data. The contributions of the three parts to the
field of microarray data analysis will be briefly reviewed below.

Global Testing of pathways

The first part of this thesis explores how best to answer the phenotype-related
research questions that try to find relationships between a phenotype and
known pathways or gene annotation terms. It presents various aspects the
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GlobalTest methodology designed to answer such questions (see Dı́az-Uriarte,
2005; Mansmann and Meister, 2005, for reviews).

Just like in the enriched gene set method, we define a pathway in the sim-
plest possible way as any pre-defined set of genes. This has the additional
advantage that the resulting methods for the analysis of pathways are quite
generally applicable. They can also be used to test association between a phe-
notype and a set of genes with the same chromosomal location or with a set of
genes that have been marked as interesting by another experimenter.

Otherwise, the approach underlying the GlobalTest method is fundamen-
tally different from the approach of the enriched gene set methods described
above. The test we present generalizes testing for association of a single gene
with a phenotype (e.g. a t-test) to testing for association of a set of genes with a
phenotype. Unlike the enriched gene set methods, this test is based on a clas-
sical statistical model in which patients are the units of observation, not the
genes. The p-values that come out of the test have the regular statistical inter-
pretation.

Although a method for testing, the GlobalTest is closely related to predic-
tion methods. The basic idea behind the method is very simple. The method is
based on an empirical Bayesian regression model for predicting the phenotype
from the gene expression measurements of the genes in the pathway. This is the
same type of model that can be used to motivate prediction methods like ridge
regression or the LASSO. If the pathway is associated with the phenotype, then
the gene expression measurements of the pathway should give some informa-
tion for predicting the phenotype. To test for this association, the GlobalTest
therefore tests whether the gene expression measurements have any predictive
potential for predicting the phenotype. The details of this testing methodology
and its application to microarray data are worked out in Chapters 2 using the
linear and logistic regression models and in Chapter 3 using the Cox propor-
tional hazards model for censored survival data.

It is shown in these chapters that the resulting test is mathematically equiv-
alent to a goodness-of-fit test for regression models. Part of the technical details
of Chapter 2 therefore rely on the goodness-of-fit test developed by Le Cessie
and van Houwelingen (1995) and its improvements by Houwing-Duistermaat
et al. (1995). Similarly, the test of Chapter 3 makes use of the goodness-of-fit test
for the Cox model by Verweij et al. (1998). Many phenotypes of interest in mi-
croarray data are multi-category of nominal scale, however, and would have to
be modelled using a prediction model based on the multinomial logistic regres-
sion model. As there was no goodness-of-fit test available that could be used in
the same way as Le Cessie and van Houwelingen (1995), such a goodness-of-fit
test for multinomial logistic regression has been developed in Chapter 4.
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Finally, Chapter 5 views all the tests of chapters 2, 3 and 4 in a more abstract
way as examples of a general type of locally most powerful test. It creates a
general framework for this type of test, which tests a simple null hypothesis
against a high-dimensional alternative. The power properties of this type of
test are investigated from a purely frequentist point of view.

Model-based Prediction

In Chapter 6 we consider the problem of predicting the phenotype of patients.
As shown in Section 1.2 there are many different prediction methods available.
It is a big practical problem which method to choose for the analysis of a specific
data set.

Ideally, the choice of the prediction method should make use of knowledge
about the data. Each of the methods has restrictions on the parameter space that
reduce overfit, but introduce bias. Whether this bias is serious or not, depends
on the nature of the data. For example, a LASSO that sets most regression
coefficients to zero can be expected to do especially well when most of the genes
are not associated with the phenotype. However, problems arise when trying to
use knowledge of the data when choosing a prediction method, because most
of these methods are not model-based. Therefore, the type of data for which
they perform well is not well-defined.

Chapter 6 attempts to fill this gap by approaching dimension reduction in a
model-based way. It builds a model of the joint distribution of the phenotype
and the gene expression values, in which their distribution depends on a set
of latent variables. It will be shown that the assumption of such a model leads
to a method similar to Supervised Principal Components (Bair et al., 2004) in a
natural way.

Smooth visualization

The sheer quantity of microarray data poses problems by itself. In smaller data
sets, researchers are easily able to inspect the data, observing interesting pat-
terns, searching for outlying observations and formulating hypotheses. All
these things are not possible in a data matrix resulting from a microarray ex-
periment, which easily contains a million entries. However, careful inspection
of the data is all the more important in microarray data, as disturbing outliers
occur frequently and hypothesis generation is a primary goal of many experi-
ments. Good visualization is therefore felt to be important, as can be seen from
the immense popularity of cluster analysis, which is much more an exploratory
visualization tool than an inferential statistical method.

Chapter 7 of this thesis presents a tool for better visualization of scatterplots
of thousands of dots. Drawn in the conventional way, such plots tend to give
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a distorted impression of the true density of points. To amend this, Chapter
7 proposes a simple way of representing the density of the dots as a colour
representation, constructed by smoothing a two-dimensional histogram. An
important advantage of the smoothed histogram method to calculate the den-
sity over other, more sophisticated density estimates is that it can be calculated
very fast, even for millions of dots.
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CHAPTER 2

Testing Association of a Pathway
with a Clinical Variable

Abstract

This paper presents a global test to be used for the analysis of microarray data.
Using this test it can be determined whether the global expression pattern of
a group of genes is significantly related to some clinical outcome of interest.
Groups of genes may be any size from a single gene to all genes on the chip
(e.g. known pathways, specific areas of the genome or clusters from a clus-
ter analysis). The test allows groups of genes of different size to be compared,
because the test gives one p-value for the group, not a p-value for each gene.
Researchers can use the test to investigate hypotheses based on theory or past
research or to mine gene ontology databases for interesting pathways. Multiple
testing problems do not occur unless many groups are tested. Special attention
is given to visualizations of the test result, focussing on the associations be-
tween samples and showing the impact of individual genes on the test result.
An R-package GlobalTest is available from http://www.bioconductor.org.

2.1 Introduction

The popularity of microarray technology has led to a surge of new statisti-
cal methods aimed at finding differentially expressed genes. A sophisticated
methodology has been developed to counter the multiple testing problem that
occurs when testing thousands of genes simultaneously (Benjamini and Hoch-
berg, 1995; Benjamini and Yekutieli, 2001; Dudoit et al., 2003; Storey, 2002;
Tusher et al., 2001).

This is a pre-copy-editing, author-produced version of an article accepted for publication in
Bioinformatics following peer review. The definitive publisher-authenticated version: J. J. Goeman,
S. A. van de Geer, F. de Kort, and J. C. van Houwelingen (2004). A global test for groups of genes:
testing association with a clinical outcome. Bioinformatics 20(1), 93–99 is available online at: http:
//dx.doi.org/10.1093/bioinformatics/btg382
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This paper looks at the problem of finding differentially expressed genes
from a different point of view. It presents a global test that can be used to
determine whether some pre-specified group of genes is differentially expressed.
This allows the unit of analysis to be shifted from individual genes to groupings
of genes. The question addressed is whether the gene expression pattern over
the whole group of genes is related to a clinical outcome. It does not matter
for the test whether the group consists of up- or downregulated genes or is a
mixture of both. The clinical outcome may be a group label or a continuous
measurement.

Often researchers who conduct microarray experiments have one or more
specific groups of genes that they are especially interested in, e.g. certain path-
ways or areas of the genome. Even if this is not the case, many pathways are
at least partially known from the scientific literature and it could sometimes
be more worthwhile to test a limited number of pathways or gene ontology
classes than an enormous number of individual genes. Other potentially inter-
esting groups of genes to be tested include the clusters from a cluster analysis
or all genes on the chip.

The first part of the paper presents the mathematical details, starting with
the empirical Bayesian generalized linear model on which the test is based.
Connections to other methods (especially prediction methods) are elaborated.

In the second part two elaborate applications are presented, showing dif-
ferent aspects of the test. One is the well-known public dataset by Golub
et al. (1999) with Affymetrix arrays of patients with Acute Lymphoic Leukemia
(ALL) and Acute Myeloid Leukemia (AML). Here the test is applied to the set
of all genes to show an enormous difference in overall expression pattern. The
second is a smaller in-house dataset with oligonucleotide arrays of cell lines, of
which some were exposed to a heat shock. The test is applied to two groups of
genes associated with heat shock.

In the applications, special attention is given to visualizations of the test re-
sult which make the results easier to interpret for the researcher. These include
graphs to search for outlying samples and diagnostic plots to judge how much
each individual gene contributes to a significant test result for the group.

2.2 The data

Proper normalization is very important for a meaningful analysis of microarray
data. The problem of normalization generates an enormous amount of litera-
ture (e.g. Dudoit et al., 2002; Huber et al., 2002; Kerr et al., 2000) and is fast
becoming a statistical specialization by itself. In this paper we will simply as-
sume that the data have been normalized beforehand in a way that fits the ex-
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perimental design and that possible confounding effects of array, dye etc. have
been removed as well as the experimental design allows. However, missing
values are allowed (see section 2.8).

We assume we have normalized gene expression measurements of n sam-
ples for p genes. Of these p genes, there is a subgroup of m (1 ≤ m ≤ p) genes,
which we want to test. It is important that the clinical outcome was not used
in the selection of these m genes. Define X = (xij) as the n × m data matrix
containing only of the m genes of interest. Note that we follow the statisti-
cal convention to use the rows for the samples and the columns for the genes,
instead of the transposed notation which is common in microarray literature.
Define Y as the clinical outcome (an n× 1 vector). Usually Y will be a 0/1 group
label (e.g. AML vs. ALL), but it may also be a continuous measurement.

2.3 The model

There is a close connection between finding differentially expressed genes and
predicting the clinical outcome. If a group of genes can be used to predict the
clinical outcome, the gene expression patterns must differ for different clinical
outcomes. This duality will be used to derive the test.

Modelling the way in which Y depends on X, we adopt the framework of
the generalized linear model (McCullagh and Nelder, 1989), which includes
linear regression and logistic regression as special cases. In this model there is
an intercept α, a length p vector of regression coefficients β and a link function
h (e.g. the logit function), such that

E(Yi|β) = h−1(α +
m

∑
j=1

xijβ j
)
. (2.1)

Here β j is the regression coefficient for gene j (j = 1, . . . , m).
Testing whether there is a predictive effect of the gene expressions on the

clinical outcome is equivalent to testing the hypothesis

H0 : β1 = β2 = . . . = βm = 0,

that all regression coefficients are zero. It is not possible to test this hypothesis
in a classical way (with β non-stochastic) because m may be large relative to n.
In this case there are too few degrees of freedom.

However, it is possible to test H0 if it is assumed that β1, . . . , βm are a sample
from some common distribution with expectation zero and variance τ2. Then a
single unknown parameter τ2 determines how much the regression coefficients
are allowed to deviate from zero. The null hypothesis becomes simply

H0 : τ2 = 0.
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Note that the choice of τ2 Im (with Im the m × m identity matrix) as the covari-
ance matrix of the stochastic vector β is not imperative. It is the most conve-
nient choice which will yield a test that treats all genes on an equal footing.
Any other m × m covariance matrix may be used to replace Im, if desired, re-
sulting in a different test with power against different alternatives. For example
a different diagonal matrix can be taken to reflect prior beliefs in the greater re-
liability of certain genes. Assuming positive correlations between the elements
of β results in more power against alternatives where they all coefficients of β

have the same sign.
The model (2.1) with β random may be looked at in various ways. Firstly,

the distribution of β can be seen as a prior, with unknown shape and with a
variance depending on an unknown parameter. Viewed in this way the model
(2.1) is an empirical Bayesian model.

A second interpretation is to view the model as a penalized regression
model, in which the estimated coefficients are shrunk towards a common mean.
The loglikelihood of Y can be written

loglik(Y, β) = loglik(Y|β) + loglik(β),

where the first term on the right is the likelihood of the ordinary generalized
linear model and the second term is known as the penalty. Well-known ex-
amples of penalized regression include ridge regression (Hoerl and Kennard,
1970), which arises when β is normally distributed and the LASSO (Tibshirani,
1996), which is a variant where β has a double exponential distribution. Ridge
regression with a logistic link function has been described by Le Cessie and van
Houwelingen (1992) and applied on microarray data by Eilers et al. (2001) with
promising results.

There is a third interpretation which will be the basis for the test in the next
section. For this we write ri = ∑j xijβ j, i = 1, . . . , n. Then ri is the linear
predictor, the total effect of all covariates for person i. Let r = (r1, . . . , rn), then
r is a random vector with E(r) = 0 and Cov(r) = τ2XX′. The model (2.1)
simplifies to

E(Yi|ri) = h−1(α + ri). (2.2)

This is a simple random effects model, in which each sample has a random ef-
fect that influences its outcome. The covariance matrix between the random
effects is known and is determined by the gene expression levels. If τ2 > 0,
two samples i and j with similar gene expression patterns have correlated ran-
dom effects ri and rj and therefore have a greater probability of having similar
outcomes Yi and Yj than samples with less similar expression patterns.
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2.4 The score test

A test for testing H0 in the model (2.2) is discussed in Le Cessie and van Houwe-
lingen (1995) and Houwing-Duistermaat et al. (1995). The marginal likelihood
of Y in this model depends on only two or three parameters. These are α and
τ2 and sometimes, depending on the specific model, an extra dispersion pa-
rameter (e.g. the residual variance σ2 of the outcome Y in an ordinary linear
regression model).

In this section we first suppose that α and the dispersion parameter are
known (the case where they are unknown is dealt with in section 2.6). In this
case a score test for τ2 = 0 can be calculated by taking the derivative of the
loglikelihood with respect to τ2 at τ2 = 0, divided by the standard deviation of
this derivative under H0. This yields the test statistic

T =
(Y − µ)′R(Y − µ)− µ2trace(R)[

2µ2
2trace(R2) + (µ4 − 3µ2

2) ∑i R2
ii
]1/2 ,

where R = 1
m XX′ is an n × n matrix proportional to the covariance matrix of

the random effects r, µ = h−1(α) is the expectation of Y under H0 and µ2 and
µ4 the second and fourth central moments of Y under H0.

It will be more convenient to use the equivalent, much simpler test statistic

Q =
(Y − µ)′R(Y − µ)

µ2

which has expectation
E(Q) = trace(R) (2.3)

and variance
Var(Q) = 2trace(R2) +

(µ4

µ2
2
− 3

)
∑

i
R2

ii. (2.4)

The statistic Q is a quadratic form which is non-negative, because R is non-
negative definite. It has been argued by Le Cessie and van Houwelingen (1995)
that for a good asymptotic approximation to the distribution of Q is a scaled
chi-squared distribution cχ2

ν, where c is a scaling factor and ν is the number of
degrees of freedom. This has been corroborated using simulations in Le Cessie
and van Houwelingen (1995). Equating the mean and variance of cχ2

ν and Q
yields c = var(Q)/[2E(Q)] and ν = 2[E(Q)]2/var(Q).

Note that the statistic Q and its distribution are easy to calculate for high-
dimensional data because they only involve the small n × n “covariance” ma-
trix R = 1

m XX′ between the samples and never the potentially large m × m
covariance matrix 1

n X′X between the genes. Testing a large number of genes
therefore never gives computational problems.
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2.5 Properties of the test

There are two ways of rewriting the test statistic Q to gain a better intuitive
understanding of the test. The first can be used to show the influences of the
genes, the second the influence of the samples. These two decompositions of
Q will be the basis of various illustrative graphs in sections 2.9 and 2.10. Fur-
thermore, the fact that the test is a score test also gives the test a nice optimality
property.

For the first interpretation rewrite

Q =
1
m

m

∑
i=1

1
µ2

[X′
i(Y − µ)]2

where Xi (i = 1, . . . , m) is the n× 1 vector of the gene expressions of gene i. Note
however that the expression Qi = 1

µ2
[X′

i(Y − µ)]2 is exactly the test statistic
that would have been calculated for a group of genes consisting only of the i-th
single gene in the group of interest. Therefore the test statistic Q for a group
of m genes is just the average of the statistics Q1, . . . , Qm, calculated for the m
single genes that the group consists of.

Each Qi can be written as (a multiple of) the squared covariance between the
expression pattern of the gene and the clinical outcome. Because the averaging
is done at this squared covariance level, genes with large variance have much
more influence on the outcome of the test statistic Q than genes with small vari-
ance. This is a nice property in the context of microarray analysis, because low
variance genes are generally seen as uninteresting. This low variance usually
implies that there is little biological variation in these genes.

For a different look at the test, the statistic Q can be written in the following
way

Q =
1

µ2

n

∑
i=1

n

∑
j=1

Rij(Yi − µ)(Yj − µ) (2.5)

as the sum over all terms of the Hadamard (term-by-term) product of the ma-
trices R and (Y − µ)(Y − µ)′. The matrix R = 1

m XX′ is the “covariance” of the
gene-expression patterns between the samples, and the matrix (Y − µ)(Y − µ)′

is the “covariance” matrix of the clinical outcomes of the samples. The statistic
Q has a high value whenever the terms of these two matrices are correlated.
This happens when the covariance structure of the gene-expressions between
samples resembles the covariance structure between their outcomes. The score
test can therefore be viewed as a test to see whether samples with similar gene-
expression patterns also have similar outcomes.

An interesting property of a score test in general is that it maximizes the
average power against all alternatives where the true value of the parameter is
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small. Equivalently, in this case it has optimal power against the range of alter-
natives Rt = {‖β‖2 ≤ t2} as t2 → 0. As Rt is an m-ball it contains relatively
many alternatives with all β’s nonzero but small, therefore the test is focussed
mostly on detecting alternatives where many genes play a part. This is a desir-
able property, because the test is designed to say something about the group of
genes as a whole.

2.6 Some technical adjustments

In the previous section it was assumed that α (and therefore µ) was known and
that the dispersion parameter (if any) was also known. In practice this is never
true. In this section some adjustments of the test are presented which correct
for using estimated parameters.

First suppose that µ is unknown, but µ2 and µ4 are known. It is easily veri-
fied that

Y − µ̂ = (I − H)(Y − µ),

where H = 1
n 11′ is the hat matrix for estimation of the mean µ of Y and 1 is a

length n column vector of ones. Therefore calculating Q using µ̂ in stead of µ

results in calculating

Q =
1

µ2
(Y − µ̂)′R(Y − µ̂)

=
1

µ2
(Y − µ)′(I − H)R(I − H)(Y − µ).

The mean and variance of Q are therefore simply given by (2.3) and (2.4) with
R replaced by R̃ = (I − H)R(I − H). This is equivalent to centering the genes
so that the average value of each gene over the samples is set to zero.

Correction for estimation of µ2 is not so easy. Simply replacing µ2 by its
estimate µ̂2 would generally lead to a test that is too conservative, because the
numerator (Y − µ̂)′R(Y − µ̂) and the denominator µ̂2 = 1

n (Y − µ̂)′(Y − µ̂) of
Q are positively correlated, so that the variance of Q is overestimated if this
dependency is not taken into account.

Corrections for the variance of Q are available from Houwing-Duistermaat
et al. (1995) for a the linear regression model (continuous clinical outcome) and
for the logistic regression model (two groups). For a linear regression Q =
(Y − µ̂)′R(Y − µ̂)/σ̂2, which has E(Q) = trace(R̃) and variance

Var(Q) =
2

n + 1
[
(n− 1)trace(R̃2)− trace2(R̃)

]
.
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For the logistic regression model Q = (Y − µ̂)′R(Y − µ̂)/[µ̂(1− µ̂)]. This also
has E(Q) = trace(R̃) and its variance can be approximated by

Var(Q) ≈ 1− 6µ + 6µ2

µ(1− µ)

[ n

∑
i=1

R̃2
ii −

1
n

trace2(R̃)
]

+ 2trace(R̃2)− 2
n− 1

trace2(R̃). (2.6)

2.7 Handling small sample size

If the sample size is small the asymptotic formulae used to calculate the p-
value may not be accurate. In this case a different approach could be to find
the p-value using a permutation method. The empirical distribution of Q can
be found by calculating Q for all permutations of the outcome Y or a random
sample from these. The permutation method also works for other distributions
of Y than normal or Bernoulli.

A drawback of the permutation method is that it is hard to demonstrate low
p-values. Showing that a p-value is lower than 10−7 for example, needs at least
107 permutations. Often if the sample size is small, the total number of permu-
tations is not large enough to attain very low significance levels. The minimum
sample size needed to attain α = 0.05 can be calculated as 2 × 4 samples if Y
takes two values and 5 samples if Y is continuous. The permutation method is
illustrated in section 2.9.

It is important to note that using permutations one calculates the distribu-
tion of Q under H0 conditional on the set of observed outcomes in Y. For Y
a group label this means that the sizes of the groups are taken as fixed; for a
continuous outcome each value in the observed vector Y is assumed to occur
exactly once. Therefore the permutation version is strictly speaking a different
test (although asymptotically equivalent). The expectation and variance of Q
under the null hypothesis and the p-value can therefore be systematically dif-
ferent, although in practice the difference is usually small except for very small
samples.

2.8 Handling missing values

Missing values for some genes in the data set are not a problem. If some genes
with missing values are too important to be left out of the analysis, the missing
values can be handled by simply imputing the mean expression value of the
same gene from the other samples (or the K-nearest samples). This allows the
matrix R̃ of covariance between the gene expression patterns of the samples to
be calculated using all available information. A nice property of this imputation
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is that genes or samples with many missing values get a small variance and are
therefore automatically given less weight in the analysis.

2.9 Application: AML/ALL

The first application is the well-known data set by Golub et al. (1999). These
data were collected to for the purpose of distinguishing between Acute Myeloid
Leukemia (AML) and Acute Lymphoic Leukemia (ALL) on the basis of gene ex-
pression. There are microarray data of 7,129 genes from 27 ALL and 11 AML
patients. A preselection of genes was made in the same manner as in earlier
publications on this data set (Eilers et al., 2001; Golub et al., 1999), truncating
very high and very low expression levels and removing genes whose truncated
expression showed no variation. This left 3,571 genes. There were no missing
values. This data set will be used here to illustrate the use of the score test on all
genes. The null hypothesis to be tested here is whether AML and ALL patients
are different with respect to their overall gene expression pattern.

Test result The ALL patients were coded 0 and the AML patients 1. Now
µ̂ = 11/38, which was used to calculate

Q ≈ 13.2.

Under the null hypothesis H0 the distribution has E(Q) ≈ 2.88 and s.e.(Q) ≈
0.78, calculated using (2.6). This results in a rejection of H0 with a p-value ≈
1.6× 10−14, calculated on the cχ2

ν-distribution with c ≈ 0.11 and ν ≈ 27.0.
This shows that AML and ALL patients do indeed differ enormously with

respect to their overall gene expression signature. The extremely low p-value
here can be seen as an explanation why many people using many different
methods have been able to find good discriminating rules between AML and
ALL on the basis of these data.

The permutation method Because the p-value is so extreme, it is prudent to
check the distribution of Q empirically. We do this by randomly taking 100,000
permutations of the vector Y of outcomes, calculating Q and making a his-
togram. The result is given in figure 2.1, with the observed value of Q in the
real data set indicated by an arrow. The empirical mean and standard devia-
tion are Q̄ ≈ 2.96 and s.e.(Q) ≈ 0.80, which are not very far from the theoretical
values.

The empirical p-value is the number of times the Q for the permuted Y
is as least as large as the ‘true’ Q, divided by the number of permutations. In
principle, because there are about 3.3× 1029 possible permutations of Y, this can
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FIGURE 2.1: Histogram of values of the test statistic Q for 100,000 permutations of Y, compared
with the observed value.

be calculated to almost any desired accuracy. But taking only 105 permutations
(about 10 seconds on a normal computer) we can only say that the p-value is
most probably below 10−5, although figure 2.1 suggests that it is much lower
than that.

The Regression and Checkerboard Plots It has already been explained using
(2.5) that the test statistic Q evaluates the resemblance between the covariance
between the gene expressions of all pairs of samples and the covariance be-
tween their clinical outcomes. This comparison might also be done by inspec-

24



Chapter 2. Testing Association of a Pathway with a Clinical Variable

tion. Figure 2.2 is an image of the symmetric matrix R̃, with white denoting
that an entry is larger than the median off-diagonal element and black that it is
smaller.
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FIGURE 2.2: Checkerboard plot for the AML/ALL dataset, showing the matrix R̃ of covariance
between the gene expressions of all pairs of samples. White = above median; black = below
median.

From this image it is easy to recognize that the true outcomes Y have been
sorted, starting with the 27 ALL patients and continuing with the 11 AML pa-
tients. The block-like structure of the matrix R̃ strongly resembles the block
structure of the covariance matrix between the outcomes Y. This can be used as
an illustration of the low p-value that was found.
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This method of visualization works best when the outcome is a group in-
dicator. For continuous outcomes, two images of R̃ and S = (Y − µ̂)(Y − µ̂)′

might be placed side by side for comparison, perhaps with the samples sorted
by their outcomes to simplify the structure of the two matrices. In that case a
multi-color plot might be preferred over a black and white one.

Some interesting things can be learned from the plot in figure 2.2. In the
first place it can be seen from the image that the AML group is much more
homogeneous than the ALL group. Another thing that can be noticed is that
some arrays do not seem to fit very well into the block-like structure. The ALL
arrays #2 and #12 for example (second and twelfth row/column) seem at least
as similar to the AML group as to the ALL group. These arrays could have been
wrongly classified or be of poor quality.

A second way of visualizing the test is by plotting the off-diagonal entries
of R against those of S = (Y − µ̂)(Y − µ̂)′. This is a way of representing Q,
because Q is proportional to the covariance between the plotted entries and can
therefore be represented by the slope of the regression line of the off-diagonal
entries of R on those of S. This type of plot is also very useful when the outcome
Y is continuous.

For the AML/ALL dataset, the plot is shown in figure 2.3. Because Y only
takes the values 0 and 1, the matrix S takes only three values. From left to
right on the x-axis, these are ALL versus AML , ALL versus ALL and AML
versus AML. The AML/AML comparisons have a higher covariance between
outcomes than the ALL/ALL comparisons because there are fewer AML (so
that Yi − µ̂ = 27

38 for the AML and Yi − µ̂ = − 11
38 for the ALL). The large value

of Q is seen from the steep slope of the regression line.
Using this type of plot the possibly outlying arrays can be investigated fur-

ther. In figure 2.4 all points corresponding to pairs of arrays that involve array
#12 have been replaced by crosses. An extra dotted regression line is drawn for
reference, which is the least squares fit only through the crosses. This way it
can be seen that ALL array #12 actually resembles the AML arrays more than it
resembles the other ALL arrays. This is not suggestive of bad data quality (in
which case #12 would resemble none of the arrays very well) so it either indi-
cates a misclassification of #12, or perhaps it might be that ALL is quite diverse
and some forms are genetically closer to AML.

2.10 Application: Heat Shock

The second dataset contains six replicates each of a cell line treated with a
heat shock (hs+) and untreated (hs−). These samples were labelled with two
different fluorescent dyes and co-hybridized in hs+/hs− pairs on six spotted
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FIGURE 2.3: Regression plot I: visualization of Q as a regression between off-diagonal entries
of S and R̃.

oligonucleotide microarrays containing 20,160 genes. Normalization on the 12
samples was carried out using the variance stabilizing method VSN (Huber
et al., 2002).

In this dataset two groups of genes were of specific interest. One was a
group of 27 genes which were classified for biological process as heat shock
response genes by the Gene Ontology Consortium (Ashburner et al., 2000,
www.geneontology.org). Another group of 17 genes belonged to different bio-
logical processes but their gene names referred to heat shock.

The test on the total group of all 20,160 genes gave a non-significant result
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FIGURE 2.4: Regression plot II: visualization of Q as a regression between off-diagonal entries
of S and R̃. Crosses involve array #12

(p = 0.94). Looking at all genes, it could not be proved that any gene was
affected: the overall expression pattern was not notably different between the
hs+ and hs− groups. However, using the global test on the selected genes
gave a different picture. The global test on the 27 genes known to function in
heat shock response had an empirical p-value of 0.017. The expression pattern
of this group of genes was therefore different between the two experimental
conditions. The other group of 17 genes with heat shock’ in the name only had
a non-significant p-value of 0.25.

As an informal comparison, we did an analysis using SAM (Tusher et al.,
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2001). On the optimal false discovery rate, which was 11%, we could only find
a small set of nine differentially expressed genes. This set contained only a
single gene from the group of 27 heat shock genes (Gene NM 002155 in figure
2.5).

A gene diagnostics plot When testing a small group of genes for differential
expression of the group, it is often interesting to look at the single genes, even if
the group is the main focus of interest. A group of genes can yield a significant
test result because a few genes are very much differentially expressed or be-
cause most genes are a little differentially expressed. This can be an interesting
biological difference. In other cases single genes within the group may be of
interest in themselves.

The influence of single genes on the test result can be evaluated in a Gene
Influence Plot, as shown for the group of 27 genes in figure 2.5. The bars in the
figure indicate the values of Qi for each gene (see section 2.5). Each Qi gives
the value of the test statistic for a group of genes consisting only of that single
gene. A line is drawn for reference to indicate the expected length E(Qi) of the
bar under the null hypothesis.

From the figure it can be seen which genes contribute positively to a high
value of the test statistic and which do not contribute. The difference in ex-
pected contribution arises because genes which have greater variance among
all arrays are naturally expected to also have a greater discriminating power. In
this data set we can see that really only a minority of 5 or 6 genes out of 27 is
clearly above the reference line and that the majority of the genes do not show
any effect.

2.11 Discussion

The test presented in this paper is a useful new tool for the analysis of microar-
ray data. It allows researchers to use prior information on groupings of genes
and to specifically investigate groups of genes that interest them from a biolog-
ical point of view.

In cases where there is a single candidate group of interest, the global test
opens the door to real inference: testing hypotheses about biological mecha-
nisms based on theory or past research. In other cases, when researchers have
many candidate pathways available for example from the Gene Ontology data-
base (Ashburner et al., 2000, www.geneontology.org) or programs like GenMAPP
(www.genmapp.org), the global test can be used to find promising pathways. Al-
ternatively, the clusters from a cluster analysis can be assigned a p-value to
mark how much the cluster is co-regulated with the clinical outcome.
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FIGURE 2.5: Gene influence plot for the Heat Shock data. High bars indicate influential genes.
Reference line is the expected influence under the null hypothesis.

Test results for groups of different sizes are fully comparable. However,
when many groups of genes are to be tested, multiple testing procedures come
back into play (Benjamini and Hochberg, 1995). Nested groups may be tested
without adjustments to the α-level. Always keep in mind that groups of genes
may never be chosen with reference to the clinical outcome.

Furthermore, using the test on all genes could be a useful preliminary data
quality check. If the test is not significant, samples with a similar clinical out-
comes do not have very similar gene expression patterns. In this case it is un-
likely that there are many genes highly differentially expressed and it is un-

30



Chapter 2. Testing Association of a Pathway with a Clinical Variable

likely that a good classification rule can be found on the basis of all genes. Be-
cause of the close connection of the global test to penalized regression methods,
the p-value that results from the test can be used as a quality label for the clas-
sification rule found with these methods.
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CHAPTER 3

Testing Association of a Pathway
with Survival

Abstract

A recent surge of interest in survival as the primary clinical endpoint of mi-
croarray studies has called for an extension of the Global Test methodology
(Goeman et al., 2004) to survival. We present a score test for association of the
expression profile of one or more groups of genes with a (possibly censored)
survival time. Groups of genes may be pathways, areas of the genome, clus-
ters from a cluster analysis or all genes on a chip. The test allows one to test
hypotheses about the influence of these groups of genes on survival directly,
without the intermediary of single gene testing. The test is based on the Cox
proportional hazards model and is calculated using martingale residuals. It is
possible to adjust the test for the presence of covariates. We also present a di-
agnostic graph to assist in the interpretation of the test result, visualizing the
influence of genes. The test is applied to a tumour data set, revealing pathways
from the Gene Ontology database that are associated with survival of patients.
The global test for survival has been incorporated into the R-package globaltest
(from version 3.0), available from http://www.bioconductor.org.

3.1 Introduction

A microarray experiment typically results in many thousands of measure-
ments, each relating to the expression level of a single gene. Single genes, how-
ever, are often not the primary theoretical focus of the researcher, who might be

This is a pre-copy-editing, author-produced version of an article accepted for publication in
Bioinformatics following peer review. The definitive publisher-authenticated version : J. J. Goeman,
J. Oosting, A. M. Cleton-Jansen, J. Anninga, and J. C. van Houwelingen (2005). Testing association
of a pathway with survival using gene expression data. Bioinformatics 21(9), 1950–1957 is available
online at: http://dx.doi.org/10.1093/bioinformatics/bti267
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more interested in certain pathways or genomic regions that are suspected to
be biologically relevant.

For this reason we have introduced the Global Test for groups of genes (Goe-
man et al., 2004), which allows the unit of analysis of the microarray experiment
to be shifted from the single gene level to the pathway level, where a “pathway”
may be any set of genes, e.g. chosen using the Gene Ontology database or from
earlier experiments. For every pathway, the Global Test can test (with a single
test) whether the expression profile of that pathway is significantly associated
with a clinical variable of interest. This allows researchers immediately to test
theoretical hypotheses on the clinical importance of certain pathways. Even
when such hypotheses are not directly available from biological theory or past
research, the Global Test can significantly reduce the multiple testing problem,
because there are typically much fewer pathways than genes.

In the original publication of the Global Test, the clinical variable could be
either a continuous measurement or a 0/1 group indicator. Recently, however,
there has been a surge of interest in survival time of patients as the primary
clinical outcome in a microarray experiment. Many studies focus on prediction
of survival, e.g. in breast cancer Van ’t Veer et al. (2002), Van de Vijver et al.
(2002) and Pawitan et al. (2004) and in lung cancer Wigle et al. (2002) and Beer
et al. (2002). Other studies use multiple testing methods to find genes which
are associated with survival (Jenssen et al., 2002).

The present paper extends the Global Test methodology to survival out-
comes. It allows the researcher to test whether the expression profile of a given
set of genes is associated with survival. More precisely, it tests whether individ-
uals with a similar gene expression profile tend to have similar survival times.
A significant pathway may be a mix of genes which are upregulated for pa-
tients with short survival time, genes which are downregulated for the same
patients, and other genes that show no association with survival at all.

The test of the present paper is based on the Cox proportional hazards
model. Therefore, it avoids the requirement of many analysis strategies to
choose an arbitrary cut-off (e.g. five years survival), but uses all survival in-
formation that is present in the data. Technically, the test is derived from the
goodness-of-fit test of the Cox model by Verweij et al. (1998). The original
Global Test was derived in a similar way from a goodness-of-fit test for gen-
eralized linear models (Le Cessie and van Houwelingen, 1995). The two Global
Tests are therefore highly comparable and allow quite similar interpretations.

In this paper we also show how the test can be adjusted for the presence of
covariates (possible confounders or competing risk factors). This allows better
use of the Global Test in observational studies. Furthermore, it allows the re-
searcher to establish that the microarray really adds something to the predictive
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performance of known risk factors, showing that it is not simply an expensive
way to measure risk factors already known. It also allows the test to be used on
more complex designs than a simple one-sample follow up study. The approach
will be illustrated on a data set of 17 osteosarcoma patients, testing pathways
from the Gene Ontology database.

The new Global Test method presented in this paper has been incorporated
into the R-package globaltest, version 3.0, which is available from BioConductor
(Gentleman et al., 2004, www.bioconductor.org).

3.2 The model

The Global Test exploits the duality between association and prediction. By
definition, if two things are associated, knowing one improves prediction of
the other. Hence, if survival is associated with gene expression profile, this
means that knowing the gene expression profile allows a better prediction of
survival than not knowing the expression profile.

With this idea in mind we make a prediction model for prediction of sur-
vival from the gene expression measurements. The most convenient choice for
such a model is the Cox proportional hazards model, which is the most widely
used model for survival data in medical research. The Cox model uses the full
empirical distribution of the survival times and it can handle censored data, i.e.
samples for which the exact survival time is not known, but for which it is only
known that the patient is still alive at a certain moment (Klein and Moeschber-
ger, 1997). The use of the Cox model requires a true follow-up study design,
meaning that patients were not selected on their survival times in any way.
If such a patient selection was made, the methods of this paper may not be
appropriate: in Van ’t Veer et al. (2002), for example, where a selected group
of early metastases was compared to a selected group which was at least five
years metastasis-free, the original Global Test for a 0/1 outcome is preferable
(Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements for the
group of genes of interest is given by the n × m matrix X with elements xij,
where n is the sample size and m the number of genes in the group. Suppose
also that there is a number p ≥ 0 of covariates for each patient, which we put
in an n× p data matrix Z with elements zij. It will be assumed that p < n, but
no such restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997, chapter
8) assumes the hazard function at time t for individual i to relate to the covari-
ates as

hi(t) = h(t)eci+ri , (3.1)
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where h(t) is an unknown baseline hazard function and ci + ri is a linear func-
tion of the covariates, which is split up in our case into ri = ∑m

k=1 βkxik, relating
to the gene expressions, and ci = ∑

p
l=1 γlzil , relating to the covariates. The haz-

ard function determines the survival function Si(t), which gives the probability
that individual i survives up to time t, through

Si(t) = e−Hi(t),

where Hi(t) =
∫ t

0 hi(s) ds is the cumulative hazard up to time t.
In this model showing that the gene expressions are associated with survival

is equivalent to rejecting the null hypothesis

H0 : β1 = . . . = βm = 0,

that all regression coefficients relating to the gene expressions are zero. If m
were always small, we could test H0 using classical tests which were developed
for the Cox model. These tests do not work for general m, however (for an
overview of these classical tests see Klein and Moeschberger, 1997, section 8.2).

To obtain a test that works whatever the value of m, we put an extra as-
sumption on the regression coefficients β1, . . . , βm. We assume that the regres-
sion coefficients of the genes are random and a priori independent with mean
zero and common variance τ2. The null hypothesis now becomes simply

H0 : τ2 = 0,

so that the dimension of H0 does not depend on m anymore. Note that the
coefficients γ1, . . . , γp of the covariates are not assumed to be random.

The Cox model with random coefficients is an empirical Bayesian model
and is closely linked to penalized likelihood methods. It should be noted that
we have not assumed a specific distributional form for the regression coeffi-
cients; the derivation of our test is invariant to the choice of the shape of this
distribution. Choosing a Gaussian distribution results in a Cox ridge regression
model (Pawitan et al., 2004); choosing a double exponential distribution results
in a LASSO model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior distribution of
the regression coefficients as the focus of the power of the test. The test that will
be derived in the next section will be a score test, which has the property that
it has optimal power against alternatives with small values of the parameter
τ2. This property stems from the fact that the score test is equivalent to the
likelihood ratio test in the limit where the alternative τ2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ2 tend to have small values of ∑ β2

i ,
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so that the test can be said to be optimal on average against alternatives with
small values of ∑ β2

i . These alternatives are mainly alternatives which have
all or most regression coefficients non-zero but small. The test can therefore
be said to be optimized against alternatives in which all or most genes have
some association with the outcome. This alternative is precisely the situation in
which we are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coefficients with a more
complex covariance structure. If the vector β = (β1, . . . , βm)′ is assumed a pri-
ori to have mean zero and covariance matrix τ2Σ, the resulting test of H0 would
be optimal against alternative with small values of β′Σβ. The standard choice
of Σ = Im distributes power equally over all directions of β, while a different
choice will have more power against deviations from H0 in directions which
correspond to the larger eigenvalues of Σ. This property could be exploited in
the derivation of a test for a specific purpose or to incorporate prior knowledge.
In this paper we shall restrict ourselves to Σ = Im.

3.3 Derivation of the test

Testing association of a group of genes with survival can therefore be done by
testing H0 in the empirical Bayesian model (3.1) with random regression coef-
ficients. In this section we will derive the test statistic for this test. A score test
for the same model has also been studied by Verweij et al. (1998) in the context
of testing the fit of the Cox model. Their derivation was based on the partial
likelihood of the Cox model. In this paper we give an alternative derivation
based of the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters except τ2

are known, i.e. the regression coefficients γ1, . . . , γp and the baseline hazard
function h(t) are known. In this simplified situation it will be relatively easy to
derive the score test, which can be generalized to the situation with unknown
parameters later in this section.

The basic score test

By definition a score test is based on the derivative of the log-likelihood at the
value of the parameter to be tested. Suppose for each individual i we have
observed a survival time ti and a status indicator di, where di = 1 indicates
death (the patient died at ti) and di = 0 censoring (the patient was lost to follow-
up at ti). The loglikelihood of τ2 in the model (3.1) is

L(τ2) = log
{

Er
[

exp
( n

∑
i=1

fi(ri)
)]}

, (3.2)
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where
fi(ri) = di[log{h(ti)}+ ci + ri]− H(ti)eci+ri

is the contribution to the loglikelihood of individual i for fixed ri, and H(t) =∫ t
0 h(s) ds is the cumulative baseline hazard.

From the assumptions on the distribution of β1, . . . , βm we can derive the
distribution of r = (r1, . . . , rn)′, the vector of the linear effects of the gene ex-
pressions. This r has mean zero and covariance matrix τ2R, where R = XX′.
For the general likelihood (3.2) and an r of this form, Le Cessie and van Houwe-
lingen (1995) have used a Taylor approximation to derive that

∂L(0)
∂τ2 =

1
2

(
∑

i
Rii

∂2 fi(0)
(∂ri)2 + ∑

i,j
Rij

∂ fi(0)
∂ri

∂ f j(0)
∂rj

)
.

For the Cox model this becomes

∂L(0)
∂τ2 =

1
2

(
∑
i,j

Rij(di − ui)(dj − uj)−∑
i

Riiui

)
, (3.3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by individual i up to
time ti. Note that di − ui is the martingale residual of individual i at time ti
(Klein and Moeschberger, 1997, section 11.3).

For known H(t) and known c1, . . . , cn, the expression (3.3) can be standard-
ized to have unit variance and used as the score test statistic. When these para-
meters are unknown, we must plug in maximum likelihood estimates for them
under the null model in which τ2 = 0. Standardizing the score test is tradition-
ally done using the Fisher Information, calculated from the second derivatives
of the loglikelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance of the test
statistic.

Using estimated baseline hazard

We shall first plug in the estimate for the cumulative hazard H(t), but still as-
sume that γ1, . . . , γp and hence c1, . . . , cn are known. As the maximum likeli-
hood estimate of H(t) we can take the Breslow estimator (Klein and Moesch-
berger, 1997, section 8.6)

Ĥ(ti) = ∑
tj≤ti

dj

∑tk≥tj
eck

, i = 1, . . . , n,

and write ûi = eci Ĥ(ti), i = 1, . . . , n.
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Using twice the estimated derivative of the log-likelihood (3.3) as the test
statistic and writing it in matrix notation we get the test statistic

T = (d− û)′R(d− û)− trace(RÛ) (3.4)

where d = (d1, . . . , dn)′, û = (û1, . . . , ûn)′ and Û = diag(û), an n× n diagonal
matrix with Ûii = ûi.

The derivation of estimates for the mean and variance of T is quite technical
and will be given in the separate subsection on page 41. The estimated mean is

Ê(T) = −trace(RPP′), (3.5)

where P is an n× n matrix with i, j-th element

pij = 1{ti≥tj}
djeci

∑k 1{tk≥tj}eck
,

where 1{·} indicates an indicator function. Each pij is the increment of the cu-
mulative hazard incurred by individual i at time tj, so that ∑i pij = dj and
∑j pij = ûi.

The estimated variance of T is

V̂ar(T) =
n

∑
j=1

pj
′ diag(tjt′j), (3.6)

where pj is the j-th column of P and tj = (I − 1pj
′)[diag(R) + 2R(mj − pj)].

The diag of a square matrix is the column vector of its diagonal elements; 1 is
an n-vector of ones, and mj is the j-th column of the matrix M = (D − P)B,
where D = diag(d) is a diagonal matrix with Dii = di and B is an n× n matrix
with elements bij = 1{ti<tj}. The elements mij of M can be interpreted as the
estimated martingale residual of individual i just before time tj.

For purposes of interpretation it is often easier to take

T0 = (d− û)′R(d− û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP′) and
V̂ar(T0) = V̂ar(T), so that it leads to the same standardized test statistic:

Q =
T − ÊT
V̂ar(T)

=
T0 − ÊT0

V̂ar(T0)
.
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Using estimated regression coefficients

In general the regression coefficients γ1, . . . , γp of the covariates are not known
but must be estimated. Replacing γ1, . . . , γp by their maximum likelihood esti-
mates will still give a valid score test for H0, but with a different distribution of
the test statistic. We use the following approximation to this distribution which
is derived by Verweij et al. (1998).

The estimated martingale residuals d− ũ based on the estimated γ̂1, . . . , γ̂p
can be approximated in a first order Taylor approximation by

d− ũ ≈ (I −V)(d− û) (3.7)

with V = WZ(ZWZ′)−1Z′, W = Û − PP′ and Z the n × p data matrix of the
fixed covariates. Therefore the unstandardized test statistic T0 can be approxi-
mated as

T0 ≈ (d− û)′R̃(d− û)

with R̃ = (I − V)′R(I − V). The expectation of T0 can be estimated using the
formulae in section 3.3. They are approximately

ÊT0 ≈ trace(R̃W)

and

V̂ar(T0) ≈
n

∑
j=1

pj
′ diag(t̃j t̃′j),

with t̃j = (I − 1pj
′)[diag(R̃) + 2R̃(mj − pj)]. To evaluate ÊT0 and V̂ar(T0) we

replace the parameter values of γ1, . . . , γp by their estimates. Simulations in
Verweij et al. (1998) show this approximation to be quite accurate.

The distribution of the test statistic

There are two ways to calculate the p-value of the test: by asymptotic theory
and by permutation arguments. We outline both options and their advantages.

In equation (3.3) it will be shown that the centered test statistic T − ÊT can
be written as a linear combination of n martingales. Therefore by the martingale
central limit theorem (Andersen et al., 1993) the distribution of the standardized
Q converges to a standard normal distribution as n → ∞. This fact motivates
the use of a normal approximation to the distribution of Q for calculating the
one-sided p-value (see also simulation results by Verweij et al., 1998).

For small samples the asymptotic distribution may not be reliable enough.
An alternative is to calculate Q for all, or a random sample of many (10,000),
permutations of the martingale residuals of the n samples. This randomly re-
distributes the vectors of gene expression measurements over the individuals,
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while keeping the relationship between the fixed covariates and survival the
same. The resulting distribution is another approximation to the null distribu-
tion of Q, which can be used to find the p-value. Use of the permutation null
distribution requires the assumption that there is no relationship between the
gene expressions on the one hand and the covariates and the censoring mecha-
nism on the other hand: permuting destroys these associations. This makes the
permutation null distribution less useful when covariates are present.

The main advantage of the permutation-based p-value is that it gives an
“exact” p-value, which is guaranteed to keep the alpha level, provided enough
permutations are used. This is especially useful for smaller sample sizes, where
we may not trust the normality of the distribution of Q. The advantage of
the asymptotic theory p-value—aside from being much quicker to calculate—
is that it has more power: the permutation based p-value does not use the full
null distribution, but the null distribution conditional on the set of observed
martingale residuals. With this conditioning the test loses some power, as the
set of observed residuals is informative on the parameter τ2.

Counting process calculations

In this technical section we calculate the mean and variance of the test statistic
T under the null hypothesis for known c1, . . . , cn but estimated H(t), as given
in (3.5) and (3.6). For this we will use a counting process notation (Andersen
et al., 1993; Fleming and Harrington, 1991). The strategy we will use is com-
mon in martingale theory: we write our test statistic T as the limit of a process
T(t) as t → ∞ and decompose T(t) into a martingale and a compensator. The
limit of the compensator is the estimator of the mean of T and the limit of the
predictable variation process is the estimate of the variance. For an alternative
derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))′ be the vector of at-risk processes of indi-
viduals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))′ the vector of their counting
processes. Then N has intensity process Λ = CY(t)H(t), where C is a diag-
onal matrix with Cii = eci , i = 1 . . . , n. Write N(t) = 1′N(t), the total counting
process.

In the counting process notation, d = N(∞) and û = Λ̂(∞) with Λ̂(t) =∫ t
0 V(s)1′ dN(s), where V = CY(1′CY)−1. Wherever possible we will drop the

dependence on time for convenience of notation.
Note that the compensator of Λ̂ is Λ, which is also the compensator of N.

Write M̂ = N − Λ̂. Then d − û = M̂(∞) and M̂(t) =
∫ t

0 (I − V1′) dN is a
martingale vector. Subtracting the intensities and writing M = N−Λ,

M̂(t) =
∫ t

0
(In − Y1′) dM.
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The statistic T is T(∞), with

T(t) = trace[RM̂M̂′ − R diag(Λ̂)].

From the integration by parts formula (Fleming and Harrington, 1991, theorem
A.1.2) it follows that, almost surely,

M̂M̂′ =
∫ t

0
M̂− dM̂′ +

∫ t

0
dM̂ (M̂−)′

+
∫ t

0
(I − 1V′)diag(dN)(I −V1′) (3.8)

where M̂−(s) = M̂(s−) is a predictable process. Using (3.8) and some linear
algebra we can say that, almost surely,

T(t) =
∫ t

0
(diag(R)′ + 2(M̂−)′R−V′R)(I −V1′) dN−

∫ t

0
V′R dN.

Because
∫ t

0 (I − V1′) dN is a martingale and diag(R)′ + 2(M̂−)′R − V′R is
predictable, the compensator of the process T is −

∫ t
0 V′R dΛ, which we can

estimate by

ÊT = −
∫ t

0
V′R dΛ̂ = −

∫ t

0
V′RV1′ dN

The process S = T − ÊT is a martingale. It can be written in the following way

S =
∫ t

0
(diag(R)′ + 2(M̂− −V)′R)(I −V1′) dM (3.9)

as the integral of the predictable process vector

K = (diag(R)′ + 2(M̂− −V)′R)(I −V1′)

over the martingale vector M. The predictable variation process of S is therefore
〈S〉 =

∫ t
0 diag(KK′)′ dΛ, which we can estimate by

V̂ar(T) =
∫ t

0
diag(KK′)′ dΛ̂ =

∫ t

0
diag(KK′)′V1′ dN

To evaluate ÊT and V̂ar(T) we use

pij =
∫ ∞

0

eci Yi
Y

dNj = 1{ti≥tj}
eci dj

∑tk≥tj
eck

.

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj}di −
n

∑
k=1

1{tk<tj}pik

Writing P for the n× n matrix with elements pij and M for the n× n matrix
with elements mij, the results (3.5) and (3.6) follow.
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3.4 Interpretation

When testing a specific pathway for a specific sample of patients, it is usually
not satisfactory to only report the resulting p-value. In this section we will
discuss some issues related to interpretation of the test result. We show how to
calculate and visualize the influence of individual genes on the test result. We
also propose an diagnostic which can be used when many genes are associated
with survival, to assess whether a gene group is exceptional. We only give the
theory here; for an example see section 3.5.

Similarity

The test of this paper is derived from the Cox model in the same way as the
Global Test in Goeman et al. (2004) was derived from the generalized linear
model. The functional form of the test statistic is therefore quite similar, the
martingale residuals taking the place of the residuals from the generalized lin-
ear model in that paper. Much of the interpretation of the test statistic is also
quite similar.

Central to all interpretation of the test outcome is the matrix R = XX′ which
figures prominently in the formula for the test statistic. It is an n × n matrix
which can be seen as describing the similarities in expression profile between
the samples. The entry Rij is relatively large if samples i and j have a relatively
similar expression profile over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized test
statistic T0 as

T0 =
n

∑
i=1

n

∑
j=1

Rij(di − ûi)(dj − ûj),

which is the sum over the term-by-term product of the entries of R and the
entries of the matrix (d − û)(d − û)′. The i, j-th entry of the latter matrix is
large whenever samples i and j have similar martingale residuals. The test
statistic T0 is, therefore, relatively large whenever the entries of the matrices
R and (d − û)(d − û)′ are correlated, which happens when similarity in gene
expressions tends to coincide with similarity in the martingale residual. Hence,
the test statistic is large if individuals who die sooner than expected tend to be
relatively similar in their gene expression profile and, similarly, the individuals
who live longer than expected also tend to be similar in their gene expression
profile.

Gene plot

To investigate the influence of individual genes on the test outcome we can
rewrite R = ∑m

i=1 xix′i, where xi is the i-th column of X (i = 1, . . . , m), contain-
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ing the measurements for the i-th gene. The unstandardized test statistic then
becomes

T0 =
m

∑
i=1

Ti

where Ti = (d − û)′xix′i(d − û) is exactly the unstandardized ‘global’ test sta-
tistic for testing whether the ‘pathway’ containing only gene i is associated with
survival. The test statistic of a pathway is therefore a weighted average of the
test statistics for the m genes in the pathway.

In a plot we can visualize the influence of the individual genes by showing
the values Ti − ÊTi, with their standard deviation under the null hypothesis
(calculated using the methods of section 3.3). An example of such a ‘gene plot’
is given in figure 3.1. In this plot, large positive values indicate genes with
a large (positive or negative) association with survival and hence genes that
make the pathway more significant. As Ti ∝ ‖xi‖2, genes with more expression
variance tend to carry more weight in the pathway.

Note that the visualized values of the gene influences Ti in the gene plot are
essentially univariate: they only depend on the gene i itself. The multivariate
nature of the test statistic Q is therefore not visible in the gene plot. It comes
in because, although T0 is the sum of the Ti and ÊT0 is the sum of the ÊTi, the
variance of T0 is generally not the sum of the variances of the Ti.

The comparative p

The global test tests the null hypothesis that the pathway is not associated with
survival. This null hypothesis only depends on the observed survival and on
the genes in the pathway itself: the result is absolute, not relative to the other
pathways.

However, there are situations in which one would be more interested in a
relative result. If the global test on the set of all genes is very significant, we can
usually expect a sizeable proportion of the genes on the array to be associated
with survival. In that case we can expect many pathways to show association
with survival as well. This will hold especially for the larger pathways, which
will often include some of the genes which are associated with survival.

In such situations we propose a diagnostic called “comparative p”, which
can help interpret the p-value that comes out of the test. The comparative p for
a pathway of size m with p-value p̄ is defined as the proportion of randomly
selected sets of genes of the size m that have an global test p-value smaller than
or equal to p̄. To calculate this comparative p we draw 1,000 or 10,000 random
gene sets from the array without replacement.

The comparative p fulfills a role different from the p-value and should only
be used alongside it. It is a diagnostic, not a p-value in the statistical sense.
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It tells whether the p-value of a group of genes is much lower than could be
expected from a gene group of its size in this data set.

3.5 Application: osteosarcoma data

We applied the above methodology to a data set of 17 osteosarcoma patients
from the Leiden University Medical Center.

Data

A genome wide screen of gene expression in osteosarcoma was done using
Hu133a gene expression chips (Affymetrix, Santa Clara, CA). This chip con-
tains 22,283 genes. A successful hybridization was obtained for 17 osteosar-
coma biopsies. Three of the samples were amplified, labelled and hybridized
in duplicate, one sample in triplicate. These technical replicates were averaged
after gene expression measures were obtained, which was done using gcrma
(Wu et al., 2004). No pre-selection of genes was made.

The 17 patients were followed up to 10 years. Median survival time was 40
months. Available covariates included the presence of metastasis at diagnosis,
histology and response to neo-adjuvant chemotherapy. However, as treatment
was not uniform over all patients, these covariates were not prognostic and we
did not consider them.

Pathway information was obtained from the Gene Ontology (GO Ashbur-
ner et al., 2000) database, using the BioConductor (Gentleman et al., 2004) GO
package (Zhang, 2004). Pathways that were considered of specific interest were
cell cycle (GO: 7049), DNA repair (GO: 6281), Angiogenesis (GO: 1525), Skeletal
development (GO: 1501) and Apoptosis (GO: 6915).

Analysis

When testing pathways of interest, it is advisable to also test the ‘pathway’ of
all genes on the chip for association with survival. This shows whether the
overall gene expression profile is associated with survival. The results for the
pathway of all genes and for the five pathways of primary interest are given in
table 3.1. We calculated the p-value using both the asymptotic theory method
and the permutation method (using 100,000 permutations).

The permutation p-values tend to be somewhat more conservative than the
asymptotic p-values, reflecting both the slight loss of power for the permutation
test and a deviation from asymptotic normality due to the small number of
samples.

In this data set the expression profile over the set of all genes on the chip is
significantly associated with survival. Note that this does not mean that every
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TABLE 3.1: Global Test results for the Osteosarcoma data and the pathways of primary inter-
est. The p-values were calculated using the permutation and asymptotic method. The final
column gives the comparative p (see section 3.4) .

pathway genes Q perm. p asym. p comp. p
All genes 22283 2.446 0.0120 0.0072 —
Cell cycle 1115 2.957 0.0042 0.0016 0.006
DNA rep. 271 3.123 0.0006 0.0009 0.011
Angiogen. 66 0.917 0.1429 0.1795 0.774
Skel. dev. 185 0.002 0.4133 0.4992 0.998
Apoptosis 656 2.533 0.0093 0.0057 0.210

gene on the chip is associated with survival. It means that the patients who die
early are relatively similar to each other in terms of their overall expression pro-
file, while patients who live long are likewise relatively similar. It also means
that there is some potential for prediction of survival based on gene expression,
even before any pre-selection of genes. The cell cycle, DNA repair and apopto-
sis pathways are clearly associated with survival, while there is no evidence for
this association in angiogenesis and skeletal development.

Because the test for all genes was significant, we expect a sizeable propor-
tion of genes to be associated with survival, so that many pathways will be
associated with survival. The comparative p gives a measure whether the p-
value found for the pathway is unusually low given that it is a pathway of its
size from this data set (see section 3.4). For the results in table 3.1 10,000 gene
sets were sampled for each pathway. We used the asymptotic p-values for the
comparative p calculations.

We conclude that cell cycle and DNA repair are more clearly associated than
could be expected from a gene set of its size in this data set: only around 60 out
of 10,000 random gene sets of size 1,115 have a lower p-value than the cell cycle
pathway. The expression profile of the apoptosis pathway is clearly associated
with survival, as can be seen from the p-values; however it is not exceptional in
that: more than 20% of random gene sets have a lower p-value than apoptosis.
The Skeletal development pathway is interesting in its own way: it is clearly not
associated with survival (p = 0.5) and this is quite exceptional for a pathway of
this size in this data set: only around 20 in 10,000 random gene sets had a higher
p-value. The skeletal development pathway seems to include uncommonly few
genes which are associated with survival.

It can occur in some data sets that the set of all genes is not significant, while
some pathways (eg. DNA repair) are significant. This occurs in table 3.1 for
example if we use FDR-adjusted p-values with a threshold of 0.01 (Benjamini
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and Yekutieli, 2001). The result for all genes can be seen as a false negative
test result. However, another valid interpretation is that prediction of survival
without biological pre-selection of genes is uncertain, but if it is known a priori
that the genes in the DNA repair pathway are likely to be informative, some
prediction of survival is possible.

Mining the GO database

If it is not a priori known which pathways are of specific interest, one can also
use a data-mining approach, trying to find those pathways which are most sig-
nificantly associated with survival.

For the osteosarcoma data we explored the Gene Ontology database. Of all
GO terms, 4,032 matched at least one gene on the hu133a chip. We excluded
all terms which matched only one gene, because the interesting single genes
pathways would already have been found in single gene testing. This left 3,080
pathways, which we all tested for association with survival. We used the as-
ymptotic p-value, because due to the randomness in the permutation p-value it
does not give a unique list. Table 3.2 gives the ten GO-terms with the smallest
p-values.

To adjust for multiple testing, one can use the Benjamini and Hochberg FDR
(Benjamini and Yekutieli, 2001). All 10 pathways in table 3.2 are significant on
an FDR of 0.05. The p-values of the pathways tend to have positive correlations
because of pathway overlap and pathways being subsets of other pathways. A
FDR-controlling procedure that would make use of these dependencies would
potentially gain much power in this situation.

TABLE 3.2: Global Test results for the Osteosarcoma data on 3,080 Gene Ontology pathways,
showing the top 10 FDR-adjusted p-values.

pathway # genes Q FDR-adjusted p
GO:0015630 21 4.306 0.016
GO:0019932 8 4.176 0.016
GO:0045192 2 4.148 0.016
GO:0045595 17 4.060 0.016
GO:0042518 7 4.054 0.017
GO:0000158 8 3.993 0.018
GO:0040008 9 3.944 0.018
GO:0010033 10 3.844 0.023
GO:0006479 13 3.791 0.026
GO:0030111 9 3.766 0.026

The literature confirmed the importance of many of these GO-terms in tu-
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morigenesis. For example, both microtubule cytoskeleton (GO:0015630) and
phosphorylation of Stat3 protein (GO:0042518) are known to be involved in
growth and differentiation signaling, processes which are often disturbed in
tumors. Second-messenger mediated signaling (GO:0019932) is a superset of
the Stat3 pathway. Protein amino acid methylation (GO:0006479) is involved
in protein degradation. Alterations in the stability of proteins is often a hall-
mark of tumors and may affect the aggressiveness of a tumor and thereby the
patient’s survival.

A diagnostic plot

To learn more about the outcome of the Global Test than just the p-value one
can use the diagnostic plot described in section 3.4. We illustrate the use of this
plot on the microtubule cytoskeleton pathway, which emerged on top of table
3.2.

The gene plot for the 21 genes in this pathway is given in figure 3.1. Each
bar gives the global test statistic for testing whether the gene set containing
only that single gene is associated with survival. The test statistic for the whole
pathway is a weighted average of the bars of the genes (see section 3.4). The
colour of the bars distinguishes between positive and negative association with
survival.

Figure 3.1 shows that only four out of 21 genes in the microtubule cytoskele-
ton pathway show a significant association with survival on their own. Further,
the pathway is a mix of genes which are positively and negatively associated
with survival. Looking more closely at the gene plot can be a basis for inves-
tigating more deeply into the structure of the pathway, perhaps to formulate
hypotheses on interesting subpathways.

3.6 Discussion

It has often been remarked that the key to successful microarray data analysis
lies in an intelligent integration of advanced statistical methods with the vast
domain of biological knowledge that is already available. The global test for
survival presented in this paper is a step forward in this direction, combining
known biological pathway information with the statistical sophistication of the
Cox proportional hazards model.

Due to its complexity the Cox model has been slow to find its way to mi-
croarray methodology. Most methods require survival to be reduced to a two-
valued variable, using an arbitrary cut-off, resulting in unnecessary loss of in-
formation. By using the Cox model for survival, gene expression analysis can
improve performance and also become better connected to traditional medical
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FIGURE 3.1: Gene plot of microtubule cytoskeleton pathway, showing the sorted global test
statistics for testing the 21 single gene pathways which make up the pathway.

statistics.
Pathway information is available from many databases and is essential for

the understanding of the outcomes of a microarray experiment. The Global
Test methodology allows researchers to look directly for important pathways,
without first having to go through single gene testing. This may lead to a better
use of pathway information and more directly interpretable results.
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CHAPTER 4

A goodness-of-fit test for
multinomial logistic regression

Abstract

This paper presents a score test to check the fit of a logistic regression model
with two or more outcome categories. The null hypothesis that the model fits
well is tested against the alternative that residuals of samples close to each other
in covariate space tend to deviate from the model in the same direction. We
propose a test statistic that is a sum of squared smoothed residuals, and show
that it can be interpreted as a score test in a random effects model. By specifying
the distance metric in covariate space, users can choose the alternative against
which the test is directed, making it either an omnibus goodness-of-fit test or a
test for lack of fit of specific model variables or outcome categories.

4.1 Introduction

The multinomial logistic regression model is a generalization of logistic regres-
sion to outcomes with more than two levels. The model is also known as poly-
tomous or polychotomous logistic regression in the health sciences and as the
discrete choice model in econometrics (Hosmer and Lemeshow, 2000). Two
variants exist: one for nominal and one for ordinal scale outcomes. This paper
considers only the nominal scale version.

When fitting a model it is important to have tools to test for lack of fit. This is
especially important for the multinomial logistic model, whose fit is notoriously
difficult to visualize. The modelling toolbox should include general tests for
the fit of the whole model, but also more specific tests for lack of fit in specific

This chapter will appear as: J. J. Goeman and S. le Cessie (2006). A goodness-of-fit test for
multinomial logistic regression. Biometrics 62, in press. The definitive version will be available at
http://www.blackwell-synergy.com.

51

http://www.blackwell-synergy.com
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covariates or outcome categories. Such tools are remarkably scarce in multino-
mial logistic regression. Hosmer and Lemeshow (2000) suggested looking at
the multinomial model as if it were a set of independent ordinary logistic mod-
els of each outcome against the reference outcome, and testing the fit of each
of these separately. Lesaffre and Albert (1989) give diagnostics for detecting in-
fluential, leverage and outlying samples in multinomial logistic regression, but
provided no explicit goodness-of-fit test. The only actual test for the fit of the
multinomial logistic regression model is given by Pigeon and Heyse (1999). It
is an extension of the test of Hosmer and Lemeshow (2000) for binary regres-
sion, which is well known to have low power for detecting quadratic effects
(Le Cessie and Van Houwelingen, 1991).

In this paper we present an alternative and flexible goodness-of-fit test for
the multinomial logistic regression model. It can be directed against the gen-
eral alternative that the model does not fit or against more specific alternatives.
The test extends the goodness-of-fit test of Le Cessie and Van Houwelingen
(1991) for ordinary logistic regression to the multinomial case. The approach is
to smooth the regression residuals and to test whether these smoothed residu-
als have more variance than expected under the null hypothesis, which occurs
when residuals which are close together in the covariate space are correlated.
This type of test was shown by Le Cessie and van Houwelingen (1995) to be
equivalent to a score test in a random effects model, which tests for the presence
of a pre-specified correlation structure between the residuals. Their approach
to goodness-of-fit testing is quite generally applicable, and has already been
extended to generalized linear models (Le Cessie and van Houwelingen, 1995)
and to the Cox proportional hazards model (Verweij et al., 1998). This paper
extends the methodology to multinomial logistic regression.

The properties of the resulting test are verified using simulated data and
illustrated on a liver enzyme data set (Albert and Harris, 1987). Software in
R for fitting and testing the fit of the model is available on request from the
authors.

4.2 The multinomial logistic regression model

Suppose the multinomial outcome variable Y takes values in the unordered set
{1, . . . , g}. The multinomial logistic regression model assumes that the proba-
bility for observation i to have outcome s depends on i’s covariates xi1, . . . , xip
as

P(Yi = s) =
eηis

∑
g
t=1 eηit

(4.1)
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where ηis = ∑
p
k=1 xikβks is a linear predictor. In this formulation of the model

we have a regression coefficient βks for each combination of covariate k and
outcome category s, and a separate linear predictor ηis for each outcome cate-
gory (for a more detailed description of the model, see Hosmer and Lemeshow,
2000).

The model as defined in (4.1) is overparametrized. Replacing (βk1, . . . , βkg)
with (βk1 + c, . . . , βkg + c), for any c ∈ R and k ∈ {1, . . . , p}, leads to exactly the
same probabilities. The most common way to solve this overparametrization is
to designate one outcome category, say outcome 1, as the “reference” category,
setting all regression coefficients β11, . . . , βp1 to zero. A good choice of the ref-
erence category will usually facilitate interpretation of the resulting parameter
estimates. However, in this paper we are not concerned with estimation but
rather with assessment of the fit, which does not depend on the choice of the
reference category. We will therefore refrain from choosing a reference cate-
gory, but instead treat the outcome categories symmetrically, leaving the model
overparametrized.

Suppose we have sampled outcomes Y1, . . . , Yn and a corresponding n × p
design matrix X. Then let yis be the indicator of the event {Yi = s}, for
i = 1, . . . , n, and s = 1, . . . , g, and call the corresponding probabilities µis =
P(Yi = s). Let µ̂is be the maximum likelihood estimates of µis for all i and
s. The fitted model has n × g residuals r̂is = yis − µ̂is, one for each individ-
ual i and outcome category s. These residuals fulfill ∑

g
s=1 r̂is = 0. It will be

convenient to gather the residuals together in a long vector r̂ = y − µ̂, where
y = (y11, . . . , yn1, . . . , y1g, . . . , yng)′ and µ = (µ11, . . . , µn1, . . . , µ1g, . . . , µng)′.

4.3 Testing goodness-of-fit by smoothing

A goodness-of-fit test tests a model against the alternative that the model ‘does
not fit’. This is an extremely broad class of alternatives: lack of fit comes in
many different shapes and sizes. A linear model, for example, can display lack
of fit when the distribution of the residuals is skewed or heavy-tailed, or when
there are non-linear relationships which fit the data better. Typically, there is
no single goodness-of-fit test which has good power against all kinds of lack of
fit. For better interpretation, a goodness-of-fit test should therefore be specific
about the type of lack of fit is directed against.

The goodness-of-fit test of this paper is directed against the alternative that
any non-linearities or interaction effects have been missed. Such neglected ef-
fects can be detected by looking for patterns in the residuals: observations close
to each other in covariate space which deviate from the model in the same di-
rection. One looks for this same kind of behaviour when making a scatterplot
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of the residuals against a covariate. The test can also detect different kinds of
lack of fit which show up as patterns of correlation in the residuals, such as
over-dispersion.

One can formally test for patterns in the residuals by smoothing the resid-
uals: the smoothed residuals are a weighted average of the residual itself and
the other residuals which are close to it in covariate space. If residuals close to
each other are strongly correlated, the smoothing will not affect the magnitude
of the residuals much, while if they are not correlated smoothing will shrink
the residuals toward zero. The sum of squares of the smoothed residuals is
therefore a good measure of the correlations of residuals close to each other in
covariate space (Le Cessie and Van Houwelingen, 1991).

Based on these arguments we propose to reject for large values of the test
statistic

Q =
g

∑
s=1

n

∑
i=1

[ n

∑
j=1

uij(yjs − µ̂js)
]2

(4.2)

where uij ≥ 0 is the i, j-th entry of a smoothing matrix U, fulfilling ∑n
j=1 uij = 1

for all i. The statistic Q is a sum of squared smoothed residuals, as each r̃is =
∑n

j=1 uij(yjs − µ̂js) is a smoothed version of the residual r̂is. Note that smoothing
of the residual r̂is only involves residuals of the same outcome category s, as the
residuals corresponding to different categories are not expected to be positively
correlated.

There are various possibilities for the choice of the smoothing matrix U.
This choice has two aspects: the choice of a distance measure and the choice
of a smoothing method. Of these two, the choice of distance measure deserves
most consideration. To test globally for lack of fit one could take euclidian
distance using all covariates. As euclidian distance is sensitive to the scaling of
the variables, it is wise to rescale the variables to unit variance to prevent one
covariate dominating the distance measure. If, on the other hand, the interest is
in testing lack of fit for a specific subset of the covariates, one should only use
that subset for constructing the distance measure. The choice of a smoothing
method is less of an issue. Let dij be the chosen distance between observations
i and j. Following Le Cessie and van Houwelingen (1995) one could choose
a kernel smoother based on this distance. A convenient choice is the uniform
kernel which has K(t) = 1 if −1 ≤ t ≤ 1, and K(t) = 0 otherwise. The resulting
smoothing matrix U will have entries

uij =
K(dij/h)

∑n
k=1 K(dik/h)

.

Here h is the bandwidth, which should be chosen carefully: taking h too large
results in oversmoothing, while taking h too small results in undersmoothing.
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Both will lead to low power. The choice of h can be related to the distribution of
the distances dij, i 6= j: our experience is that taking h as the 25-th percentile of
this distribution is a often good choice. Using a kernel smoother, the smoothed
residual r̃is will be the average of all residuals r̂js with dij ≤ h.

4.4 Distribution of the test statistic

To be able to use the test statistic Q for testing we must calculate or approximate
its distribution function.

Write U = Ig ⊗U, where ⊗ denotes the Kronecker product and Ig the g× g
identity matrix, and write R = UU′. Then we can write r̃ = U′ r̂ and

Q = ‖r̃‖2 = (y− µ̂)′R(y− µ̂),

which is a non-negative quadratic form.
There is no exact expression for the null distribution function of Q, but there

are various approaches for finding an approximation. The most promising
approach follows asymptotic arguments. Assuming that as n grows new ob-
servations are added which have the same covariate patterns as those already
present, it can be shown that Q converges in distribution to a linear combina-
tion of chi-squared variables with one degree of freedom. There is no simple
explicit expression for the distribution function of a such a distribution, but
it is known that it can be well approximated by a general scaled chi-squared
(or gamma) distribution. This is often used as an approximate distribution for
quadratic forms (Cox and Hinkley, 1974, p. 462–463), although more accurate
approximations exist (Solomon and Stephens, 1978). The gamma approxima-
tion was also used for the test of Le Cessie and van Houwelingen (1995) which
this paper extends. It should be calibrated to have the same mean and vari-
ance as Q as well as to the fact that Q ≥ 0, resulting in a gamma distribution
with parameters α = (EQ)2/Var(Q) and λ = EQ/Var(Q). The accuracy of this
approximation will be checked with a simulation example in section 4.7.

To use this approximation we have to calculate expectation and variance of
Q. This involves the distribution of the estimated residuals y − µ̂, which can
be related to the easier distribution of the true residuals y − µ through its first
order approximation, using standard theory from generalized linear models
(McCullagh and Nelder, 1989). If n is not too small,

y− µ̂ ≈ (I −H)(y− µ) (4.3)

where H is the asymmetric form of the hat matrix for the multinomial logistic
regression model. It is defined as H = WX(X′WX)−X′, where X = Ig ⊗ X,
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superscript minus denotes a generalized inverse, and W is given by

W =


W11 W12 · · · W1g

W21 W22 ...
...

. . .
Wg1 · · · Wgg

 , (4.4)

where each Wij is an n× n diagonal matrix with

diag(Wst) = diag(Wts) =

{
(−µ1sµ1t, . . . ,−µnsµnt)′ if s 6= t

(µ1s(1− µ1s), . . . , µns(1− µns))′ if s = t

The hat matrix H also plays an important role in the paper of Lesaffre and
Albert (1989), where it is used to detect influential observations. From the ap-
proximation (4.3) it follows that if n is not too small, the distribution of Q is
approximately the same as the distribution of

Q̃ = (y− µ)′R̃(y− µ),

where R̃ = (I −H)′R(I −H).
Under the null hypothesis, E[(y− µ)(y− µ)′] = W, so that

EQ̃ = trace(R̃W).

The variance under H0 of Q is calculated in Section 4.10. It is given by

Var(Q̃) = 2trace(R̃WR̃W) +
g

∑
s=1

g

∑
t=1

g

∑
u=1

g

∑
v=1

n

∑
i=1

R̃st
ii R̃uv

ii κstuv
i (4.5)

In this expression, R̃st
ij is the i, j-th element of the submatrix R̃st of R̃, which is

similarly decomposed as W in (4.4). The value of κstuv
i does not depend on the

order of s, t, u and v: it can be calculated with

κssss
i = µis − 7µ2

is + 12µ3
is − 6µ4

is

κssst
i = −µitµis + 6µitµ

2
is − 6µitµ

3
is

κsstt
i = −µisµit + 2µisµ2

it + 2µ2
isµit − 6µ2

isµ2
it

κsstu
i = 2µisµitµiu − 6µ2

isµitµiu

κstuv
i = −6µisµitµiuµiv, (4.6)

after recoding s, t, u and v to denote unique outcomes.
The mean and variance of Q involve the unknown vector µ, which should

be estimated by its maximum likelihood estimate µ̂ in applications.
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4.5 Testing for the presence of a random effect

The test proposed in Section 4.3 was motivated by heuristic arguments. These
arguments give a good impression of the type of alternative the test can be
expected to have good power against, but the alternative was not yet precisely
specified. In this section we present a fully specified alternative model from
which the goodness-of-fit test proposed in Section 4.3 can be derived as a score
test. This model explicitly lets observations which are close to each other in
covariate space have correlated residuals.

We propose to add an extra random effect zis to the linear predictor ηis for
each combination of observation i and outcome category s. Given the random
effect, the distribution of Y becomes

P(Yi = s | z) =
eηis+zis

∑
g
t=1 eηit+zit

(4.7)

where z = (z11, . . . , zn1, . . . , z1g, . . . , zng)′ is the vector of all random effects. We
do not specify a distributional form for z, but we specify its first and second
moments as E(z) = 0 and Var(z) = τ2R, where τ2 is an unknown parameter.
The matrix R = UU′ here is the same matrix as defined in section 4.4. It can be
written R = Ig ⊗ R where R = UU′. Let Rst

ij be the element of R corresponding
to the covariance of the random effects zis and zjt. If U is a smoothing matrix,
Rst

ij is positive when s = t and the distance dij is small, and zero otherwise.
For example, when using a uniform kernel with bandwidth h, Rst

ij > 0 if s = t
and there is a k such that dki ≤ h and dkj ≤ h; Rst

ij is zero otherwise. If τ2 >

0, the presence of the random effect causes extra variation in the regression
residuals with a covariance structure similar to R: correlated random effects
cause correlated residuals. Therefore, if τ2 > 0 observations which are close to
each other tend to have correlated residuals.

The null hypothesis that the multinomial logistic regression model fits well
can be phrased in terms of the above random effects model (4.7) as

H0 : τ2 = 0,

which implies z = 0, against the one-sided alternative

HA : τ2 > 0.

We test H0 with a score test. An advantage of score testing is that it only
requires fitting the model under the null hypothesis, not under the alternative
hypothesis. This is an important advantage for our HA, because the random
effects model (4.7) is difficult to fit. Furthermore, the score test is by definition
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a one-sided test, so problems due to a null hypothesis on the boundary of the
parameter space do not arise.

The score test statistic is the derivative of the loglikelihood `(τ2) with re-
spect to τ2 at τ2 = 0. If nuisance parameters are present, as in this case the
model parameters β, the loglikelihood is replaced by the profile loglikelihood
ˆ̀(τ2) = `(τ2, β̂(τ2)). We have

∂ ˆ̀

∂τ2 =
∂`

∂τ2 +
∂`

∂β
· ∂β̂

∂τ2 .

As ∂`/∂β is zero if β = β̂, the score test statistic of the profile likelihood is sim-
ply the score test statistic of the ordinary likelihood with maximum likelihood
estimates of the nuisance parameters under the null plugged in.

The loglikelihood of the general model (4.7) is given by

`(τ2) = log
[
Ez

{
exp

( n

∑
i=1

g

∑
s=1

yis log{νis(z)}
)}]

, (4.8)

where νis(z) = P(Yi = s | z) and Ez denotes taking the expectation over z. In
Section 4.11 we calculate the derivative of this likelihood with respect to τ2 at
τ2 = 0, in the spirit of Le Cessie and van Houwelingen (1995), using a Taylor
approximation of νis(z) with respect to z at z = 0. This results in the score test
statistic

T =
∂ ˆ̀(0)
∂τ2 = 1

2 (y− µ̂)′R(y− µ̂)− 1
2 trace(RŴ). (4.9)

We see that the score test statistic in this model is equivalent to the test sta-
tistic proposed in (4.2), as, ignoring the constants, T is simply Q minus the
estimated expectation of Q.

This alternative construction of Q as a score test statistic gives interesting
insights in the power properties of the test. A score test is a locally most pow-
erful test (Cox and Hinkley, 1974) in the sense that it optimizes the slope of the
power function at the test value of τ2 = 0. It is therefore the optimal test to
use against the alternative model (4.7) when the value of τ2 is small. These al-
ternatives tend to have small, but non-zero values of the random effect z. The
goodness-of-fit test proposed in this paper is therefore the optimal test for de-
tecting a small, but consistent deviation from the model.

The random effects model of this section is interesting in its own right as
a general test for the existence of a random effect with a specified covariance
structure R, which may be any positive semi-definite matrix. This type of test
has many applications outside the context of goodness-of-fit testing, for exam-
ple in variance components analysis in genetics (Houwing-Duistermaat et al.,
1995) and in high-dimensional data analysis in genomics (Goeman et al., 2004).

58



Chapter 4. A goodness-of-fit test for multinomial logistic regression

4.6 Connection to binary logistic regression

Here we show that for g = 2, when multinomial logistic regression becomes
binary logistic regression, the test in this paper is exactly the same as the
goodness-of-fit test of Le Cessie and van Houwelingen (1995), so that it is a
generalization of that test.

Take g = 2. Call R = UU′, W = W11, as defined in (4.4), and H =
WX(X′WX)−1X′. Call y1 = (y11, . . . , yn1)′, µ1 = (µ11, . . . , µn1)′, using the no-
tation of Section 4.2. Then the test statistic of Le Cessie and van Houwelingen
(1995) is given by

Q1 = (y1 − µ̂1)
′R(y1 − µ̂1)

To show that this test statistic is equivalent to the test statistic in this paper for
g = 2, remark that y − µ̂ = f ⊗ (y1 − µ̂1) where f = (1,−1)′. Combining this
with R = Ig ⊗ R, it follows that

Q = f′f⊗ (y1 − µ̂1)
′R(y1 − µ̂1) = 2Q1.

The test statistics are therefore equivalent.
To show that also the approximations to the distribution of the test statistic

are the same, we must show that also Q̃ = 2Q̃1, where

Q̃1 = (y1 − µ̂1)
′(I − H)′R(I − H)(y1 − µ̂1)

This can be shown by remarking that W = F ⊗W, where

F =
(

1 −1
−1 1

)
.

Writing X = I ⊗ X, remarking that F has generalized inverse F− = (1/4)F
and expanding the Kronecker products, we get H = (1/2)F ⊗ H, from which
(I −H)(y− µ) = f⊗ (I − H)(y1 − µ1). Finally, combining this with R = I ⊗ R,
the result Q̃ = 2Q̃1 follows. Therefore the two test statistics and the approxi-
mations to their distribution are completely equivalent in case of binary logistic
regression.

4.7 Simulation results

To check the adequacy of the gamma approximation to the distribution of Q in
a concrete case and to give an illustration of the power of the test, we conducted
a small simulation experiment (compare Le Cessie and van Houwelingen, 1995,
for the case g = 2).

We constructed a data set of 108 observations and three covariates x1, x2
and x3, each taking values 1, 0 and -1. The 108 observations were taken as
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TABLE 4.1: Fraction rejected for the goodness-of-fit test of this paper, based on 10,000 simulated
data sets under the null hypothesis (t = 0) and under alternatives with a quadratic effect
(t > 0).

alternative nominal test size α

0.10 0.05 0.01 0.005 0.001
t = 0 0.125 0.061 0.014 0.007 0.002
t = 1 0.243 0.148 0.046 0.026 0.009
t = 2 0.618 0.487 0.259 0.189 0.088
t = 3 0.882 0.800 0.581 0.485 0.300
t = 4 0.979 0.954 0.844 0.781 0.606

four replicates from each of the 27 possible combinations of the three covariate
values. We modelled the probabilities of three possible outcomes as in (4.1)
with

η1 = 2x1 + tx2
1

η2 = 2x2

η3 = 2x3

By varying the value of t we can generate outcomes both from the null hypoth-
esis that a multinomial logistic regression model in x1, x2 and x3 fits well, and
various alternative hypotheses.

We generated 10,000 multinomial outcome vectors Y from the model, taking
t = 0, 1, 2, 3 and 4. For each realisation of Y we fitted a multinomial logistic
regression model in x1, x2 and x3 and calculated the goodness-of-fit test statis-
tic Q, estimated its expectation and variance, and calculated the p-value using
the gamma approximation. The smoothing matrix U was constructed using a
uniform kernel with a bandwidth at the 25-th percentile of the distance distribu-
tion, which meant that each smoothed residual was the average of all residuals
at most

√
2 distance away. The results are given in table 4.1, rounded to three

decimal places.
Judging from this table, it seems that the gamma approximation to the dis-

tribution of the test statistic performs quite well, although it is slightly anti-
conservative. The rejection rates for t = 0 are close to the nominal α level. It
can also be concluded that the goodness-of fit test has good power for detecting
deviations from the null hypothesis. It would be interesting to look at the effect
of different choices of the bandwidth and to study different alternatives, but we
lack space in this paper.
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TABLE 4.2: The p-values of the goodness-of-fit test for the liver enzyme data, with different
choices of bandwidth (measured as percentiles of the distribution of distances between obser-
vations).

model bandwidth (percentile)
10 20 30 40 50 60 70

non-log-transformed 0.004 0.001 0.000 0.000 0.013 0.022 0.091
log-transformed 0.491 0.576 0.341 0.297 0.579 0.580 0.397

4.8 Application: liver enzyme data

We applied the goodness-of-fit test to a dataset of patients with liver disease
(Albert and Harris, 1987). This data set has 218 patients in four disease cate-
gories: acute viral hepatitis (57 patients), persistent chronic hepatitis (44), ag-
gressive chronic hepatitis (40) and post-necrotic cirrhosis (77). For each patient
the concentrations of three liver enzymes was measured: aspartate aminotrans-
ferase (AST), alanine aminotransferase (ALT) and glutamate dehydrogenase
(GLDH). All these variables had markedly skewed distributions. The data were
analyzed with a multinomial logistic regression model by Albert and Harris
(1987), but Lesaffre and Albert (1989) argued for a multinomial logistic regres-
sion model with log-transformed covariates.

We tested the fit of the model with AST, GLDH and ALT using the goodness-
of-fit test of this paper and kernel smoothing using a uniform kernel with band-
width equal to the 25-th percentile of the distribution of the distances between
observations. We found Q = 8.41 with EQ = 2.78 and sd(Q) = 1.27. On
a scaled chi-squared distribution with 9.52 degrees of freedom (gamma{4.76,
1.71}), this gave a p-value of 0.001, clearly indicating lack of model fit.
Log-transforming the covariates before fitting the model gives a clearly non-
significant p-value of 0.37.

To investigate the sensitivity of this result to the choice of the smoothing
method, we calculated the p-value for different choices of the bandwidth para-
meters (table 4.2). Bandwidth values are given as percentiles of the distribution
of distances between the observations. From table 4.2 it can be seen that the test
is quite robust to the choice of bandwidth.

There are various ways of making use of the flexibility of the goodness-of-fit
test of this paper for looking more closely into a more significant test result. One
is to break down the omnibus test for all variables to see which variables are re-
sponsible for the lack of fit. This can be done by using subsets of the original
covariates AST, ALT and GLDH for constructing the distance measure for use
by the test, testing whether the relationship between that subset of the covari-
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TABLE 4.3: Results of goodness-of-fit test of the liver enzyme data in which the distance measure
between observations depends on different subsets of the covariates. The table gives raw p-
values and multiplicity adjusted p-values from a closed testing procedure.

Distance based on p-value adjusted p-value
AST, ALT and GLDH 0.001 0.001
AST and GLDH 0.003 0.003
AST and ALT 0.001 0.001
GLDH and ALT 0.000 0.001
AST 0.000 0.003
GLDH 0.314 0.314
ALT 0.001 0.001

ates and the outcome has been adequately modelled. Taking all 23 − 1 subsets,
we can set up a closed testing procedure (Marcus et al., 1976) to control for mul-
tiple testing. In this procedure each subset of covariates is only tested when all
its supersets are significant (for example the subset {ALT} is only tested when
tests based on the subsets {AST, ALT}, {GLDH, ALT} and {GLDH, ALT, AST}
are all significant). In that case all tests can be performed at level α, while still
keeping the family-wise error rate at α (Marcus et al., 1976). The multiplicity
adjusted p-values (Dudoit et al., 2003) for this procedure are the maximum of
the p-values of the test itself and all supersets. These multiplicity-adjusted p-
values are never smaller than the p-value for the test for global lack of fit. We
performed these tests using kernel smoothing with a bandwidth at the 25-th
percentile of the distance distribution as above. The raw and multiplicity ad-
justed p-values are given in table 4.3. The lack of fit is most clear in ALT and
AST, while there is no evidence for lack of fit in GLDH. This is in line with the
analysis of Lesaffre and Albert (1989), who concluded that there was no real
need to log-transform GLDH.

Just as the test result can be split up in its component variables, it can be
split into its component outcome categories. The test statistic can be written as

Q =
g

∑
s=1

Qs

where Qs is the sum of the squared smoothed residuals r̃1s, . . . , r̃ns, correspond-
ing to outcome category s. We plotted the Qs, s = 1, . . . , 4 in figure 4.1, stan-
dardized to z-scores. From the plot we can see that the lack of fit is clear in
the residuals of categories 1, 2 and 3 (acute viral, persistent chronic and aggres-
sive chronic hepatitis), but that there is no clear evidence for lack of fit in the
residuals of category 4 (post-necrotic cirrhosis).
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FIGURE 4.1: Influence of the four outcome categories on the goodness-of-fit test result. Depicted
are the sum of squared smoothed residuals Qs of each outcome category s, standardized to
z-scores. The total goodness-of-fit test statistic is the sum of the unstandardized Qs-scores.

4.9 Discussion

Formal goodness-of-fit testing is important in model-building of the multino-
mial logistic regression model, because the fitted model is very difficult to visu-
alize. So far, however, only one goodness-of-fit test was available for this model
(Pigeon and Heyse, 1999), which stands in the tradition of the goodness-of-fit
test of Hosmer and Lemeshow (2000) for binary logistic regression. In this pa-
per we have presented a very different goodness-of-fit test based on a sum of
squared smoothed residuals, extending a test of Le Cessie and Van Houwelin-
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gen (1991). It has power against consistent patterns of non-linearity: observa-
tions close to each other in covariate space which deviate in the same direction.

To illustrate the power properties of the test, we have constructed a random
effects model for which the proposed test is optimal. Such a precise specifica-
tion of the alternative hypothesis against which the test is optimal clarifies the
type of lack of fit the test is directed against and therefore gives some insight
into its power properties. Tools were also provided to look more closely into a
significant test result.

Just like the test of Le Cessie and van Houwelingen (1995), the test pro-
posed in this paper has potential applications outside the goodness-of-fit test-
ing context, for example in genetics (Houwing-Duistermaat et al., 1995) and in
high-dimensional data analysis (Goeman et al., 2004). This paper allows these
applications to be generalized to the case of multinomial outcome variables.

4.10 Variance of the test statistic

We calculate the variance of Q̃ as given in (4.5). Write Q̃ = ∑
g
s=1 ∑

g
t=1 Qst, where

Qst = ∑n
i=1 ∑n

j=1 R̃st
ij (yis − µis)(yjt − µjt) for s, t = 1, . . . g. We will calculate the

g4 covariances of all Qst terms and sum them to find the variance of Q̃.
Define Sst

ij = (yis − µis)(yjt − µjt). Then Cov(Sst
ij , Suv

kl ) = 0 unless i = k and
j = l or i = l and j = k, due to the independence of the samples under the null
hypothesis. Therefore

Cov(Qst, Quv) = ∑
i

R̃st
ii R̃uv

ii Cov(Sst
ii , Suv

ii ) + ∑
i

∑
j 6=i

R̃st
ij R̃uv

ij Cov(Sst
ij , Suv

ij )

+ ∑
i

∑
j 6=i

R̃st
ij R̃uv

ji Cov(Sst
ij , Suv

ji ).

If i 6= j, E(Sst
ij ) = 0, for all s and t, so that

Cov(Sst
ij , Suv

ij ) = E[(yis − µis)(yiu − µiu)] · E[(yjt − µjt)(yjv − µjv)]

= Wsu
ii Wtv

jj ,

while if i = j,

Cov(Sst
ii , Suv

ii ) = E[Sst
ii Suv

ii ]− E[Sst
ii ]E[Suv

ii ] = E[Sst
ii Suv

ii ]−Wst
ii Wuv

ii .

Using these expressions,

Cov(Qst, Quv) =
n

∑
i=1

R̃st
ii R̃uv

ii κstuv
i +

n

∑
i=1

n

∑
j=1

R̃st
ij R̃vu

ji Wsu
ii Wtv

jj

+
n

∑
i=1

n

∑
j=1

R̃st
ij R̃uv

ji Wsv
ii Wtu

jj

64



Chapter 4. A goodness-of-fit test for multinomial logistic regression

where κstuv
i = E(Sst

ii Suv
ii )−Wst

ii Wuv
ii −Wsu

ii Wtv
ii −Wsv

ii Wtu
ii . It is easy to check that

the value of κstuv
i does not depend on the order of s, t, u and v. Calculation of

the values of κstuv
i as given in (4.6) is straightforward but tedious.

Taking all covariances of the Qst terms together, we have

Var(Q̃) =
g

∑
s=1

g

∑
t=1

g

∑
u=1

g

∑
v=1

Cov(Qst, Quv).

The result (4.5) follows by rewriting
n

∑
i=1

n

∑
j=1

R̃st
ij R̃vu

ji Wsu
ii Wtv

jj = trace(R̃stWtvR̃vuWsu)

and
g

∑
s=1

g

∑
t=1

g

∑
u=1

g

∑
v=1

trace(R̃stWtuR̃uvWsv) = trace(R̃WR̃W).

4.11 Derivation of the test statistic

We derive the expression (4.9) for the score test statistic from the random effects
model (4.7). The likelihood L(τ2) = exp{`(τ2)} can be written

L(τ2) = Ez
[ n

∏
i=1

fi(z)
]
,

where fi(r) = exp{li(z)} and

li(z) =
g

∑
s=1

yis log{νis(z)}.

Compare (4.8). Note that fi(z) only depends on (zi1, . . . , zig). Therefore, Taylor
expanding L(τ2) with respect to z at z = 0 gives

L(τ2) = Ez

[ n

∏
i=1

fi(0) +
g

∑
s=1

n

∑
i=1

zis
∂ fi(0)

∂zis
∏
j 6=i

f j(0)

+
1
2

g

∑
s=1

g

∑
t=1

n

∑
i=1

ziszit
∂2 fi(0)
∂zis∂zit

∏
j 6=i

f j(0)

+
1
2

g

∑
s=1

g

∑
t=1

n

∑
i=1

∑
j 6=i

ziszjt
∂ fi(0)

∂zis

∂ f j(0)
∂zjt

∏
k 6=i,j

fk(0) + o(zz′)
]

=
n

∏
i=1

fi(0) +
1
2

τ2
g

∑
s=1

g

∑
t=1

n

∑
i=1

Rst
ii

∂2 fi(0)
∂zis∂zit

∏
j 6=i

f j(0)

+
1
2

τ2
g

∑
s=1

g

∑
t=1

n

∑
i=1

∑
j 6=i

Rst
ij

∂ fi(0)
∂zis

∂ f j(0)
∂zjt

∏
k 6=i,j

fk(0) + o(τ2).
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Using ∂ fi(z)
∂zis

= fi(z) ∂li(z)
∂zis

and ∂2 fi(z)
∂zis∂zit

= fi(z)
[

∂2li(z)
∂zis∂zit

+ ∂li(z)
∂zis

∂li(z)
∂zit

]
, this expres-

sion can be rewritten to

L(τ2) =
n

∏
i=1

fi(0)
[

1 +
1
2

τ2
g

∑
s=1

g

∑
t=1

n

∑
i=1

Rst
ii

∂li(0)
∂zis∂zit

+
1
2

τ2
g

∑
s=1

g

∑
t=1

n

∑
i=1

n

∑
j=1

Rst
ij

∂li(0)
∂zis

∂lj(0)
∂zjt

]
+ o(τ2)

Because ∂`(0)
∂τ2 = 1

L(0)
∂L(0)
∂τ2 , the score function at τ2 = 0 is

∂`(0)
∂τ2 =

1
2

[ g

∑
s=1

g

∑
t=1

n

∑
i=1

Rst
ii

∂2li(0)
∂zis∂zit

+
g

∑
s=1

g

∑
t=1

n

∑
i=1

n

∑
j=1

Rst
ij

∂li(0)
∂zis

∂lj(0)
∂zjt

]

The result (4.9) follows from ∂li(0)
∂zis

= yis − µis and ∂2li(0)
∂ziszit

= −Wst
ii .
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CHAPTER 5

Testing against a high-dimensional
alternative

Abstract

As the dimensionality of the alternative increases, the power of classical tests
tends to diminish quite rapidly. This is especially true for high-dimensional
data in which there are more parameters than observations. In this paper we
discuss a score test on a hyperparameter in an empirical Bayesian model as an
alternative to classical tests. It gives a general test statistic which can be used to
test a point null hypothesis against a high-dimensional alternative, even when
the number of parameters exceeds the number of samples. This test will be
shown to have optimal power on average in a neighbourhood of the null, which
makes it a proper generalization of the locally most powerful test to multiple
dimensions. To illustrate this new locally most powerful test we investigate
the case of testing the global null hypothesis in a linear regression model in
more detail. The score test is shown to have significantly more power than the
F-test whenever under the alternative the large-variance principal components
of the design matrix explain substantially more of the variance of the outcome
than the low-variance principal components. The score test is also useful for
detecting sparse alternatives in truly high-dimensional data, where its power is
comparable to the test based on the maximum absolute t-statistic.

5.1 Introduction

In a linear regression model one traditionally uses the F-test to test the global
null hypothesis that all regression coefficients are zero. However, it is well
known that the F-test has low power when the number of covariates in the

This chapter will appear as: J. J. Goeman, S. A. van de Geer and J. C. van Houwelingen (2006)
Testing against a high-dimensional alternative. Journal of the Royal Statistical Society, Series B 68, in
press. The definitive version will be available at http://www.blackwell-synergy.com.
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model is close to the number of samples. The F-test even breaks down com-
pletely when the number of covariates exceeds the number of samples. Similar
behaviour is known for the likelihood ratio test in generalized linear models.
In general, classical tests tend to perform badly when used against high dimen-
sional alternatives.

This paper explores testing of a simple null hypothesis against a high-
dimensional alternative. We shall formulate a simple test which can be used
in high-dimensional models regardless of the number of parameters. This test
is constructed as a locally most powerful test (score test) on the hyperparame-
ter in an empirical Bayesian model. The same type of test has been introduced
for specific models in the context of microarray gene expression data, where
it is used to generalize a test for association between a clinical variable and a
single gene to a test for association between a clinical variable and a group of
genes. Goeman et al. (2004) have applied this methodology in generalized lin-
ear models with a canonical link function and Goeman et al. (2005) in the Cox
proportional hazards model. For examples of real data applications we refer to
these papers.

In the present paper we explore the general power properties of this type
of test in more detail, adopting a purely frequentist point of view. The test
will be shown to have optimal average power in a neighbourhood of the null
hypothesis, a property which follows as a corollary to the Neyman-Pearson
lemma. This property makes the test a natural generalization of the locally
most powerful test to higher dimensions, and motivates us to refer this high-
dimensional version of the locally most powerful test simply as the locally most
powerful test.

We shall also look more closely into the relatively simple case of a high-
dimensional alternative in a linear model. In this model there are few distract-
ing details and many quantities can be explicitly calculated. We investigate the
regions of the parameter space where the empirical Bayes score test has most
and least power and situations where we may expect good power.

In the linear model it is also relatively easy to investigate links with other
tests, most notably the F-test. It turns out that the F-test can be formulated
as an empirical Bayesian score test with a different prior distribution, a fact
which gives insight into the power properties of the F-test. We also investigate
relationships between our empirical Bayes procedure with principal compo-
nents tests and with a typical multiple testing procedure from microarray data
analysis which uses the maximum of all absolute univariate T-statistics as a test
statistic for the global null. All these comparisons will be illustrated with sim-
ulations based on real microarray data (taken from Van de Vijver et al., 2002).
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5.2 Empirical Bayes testing

Suppose we have observations y (typically an n-vector), the distribution of
which is assumed to depend on a p-vector of parameters β. In this model we
want to test

H0 : β = 0

against HA : β 6= 0. There may also be some nuisance parameters, but we
assume them known for the moment.

If the dimension p of the alternative is large, the alternatives can range over
a huge space and HA typically allows many widely different distributions of
y. Some of the alternatives may even induce the same distribution of y as H0,
especially if p > n. In a generalized linear model, for example, the distribution
of y depends on β only through Xβ, where X is an n× p design matrix. If p > n,
there are many alternatives which have β 6= 0 but Xβ = 0. These alternatives
give rise to the same distribution of y as the null hypothesis, which means we
can never hope to have any power against these alternatives. This is typical for
high-dimensional alternatives: a minimax type approach which tries to have
power against all alternatives is bound to fail.

Therefore it seems a sensible approach to focus the power of the test on
what we choose to be the most interesting alternatives. This can be done in
a Bayesian fashion by assigning the vector β a distribution. This distribution
should give most probability mass to the alternatives which are perceived as
more likely (as in a prior distribution) or simply as more ‘interesting’ to detect.

What this distribution should be depends very much on the model and the
purpose of the test. However, a good choice for such a distribution is usually
one that is ‘unbiased’, i.e. it is symmetric around the null hypothesis and there-
fore has E(β) = 0. This is sensible, because we are usually equally interested in
detecting the alternative that β = β0 as in detecting β = −β0 for every β0. The
covariance matrix of β may then be chosen in general as E(ββ′) = τ2Σ for some
well-chosen positive (semi-)definite p× p matrix Σ. The choice Σ = I deserves
special attention, because it follows from an exchangeability assumption: the
density of all permutations of the vector β is equal (Bernardo and Smith, 1994,
p. 180). Under this exchangeable assumption one is not prejudiced as to which
elements of β are expected to be large or which elements of β are expected to
be similar. This assumption is useful when there is no structure or ordering in
the parameters that can be readily exploited and when the typical range of the
parameter values is similar.

One can complete the specification of the distribution of β by choosing a
value τ2

0 for τ2 and a distributional shape. In the generalized linear model set-
ting, taking the maximum likelihood estimate of β will then result in one of
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many familiar penalized regression methods, depending on the choice of the
distribution of β. Choosing β to have i.i.d. normal entries results in a (gener-
alized) ridge regression (Hoerl and Kennard, 1970). Choosing the regression
coefficients β i.i.d. double exponential results in the LASSO method (Tibshi-
rani, 1996). These methods are frequently used in estimation and prediction
problems in high-dimensional regression models.

We can also use the chosen distribution of β as a tool to rephrase our testing
problem, rewriting it in terms of the marginal distribution of y. Let f (β; y) be
the likelihood of β for given y. The marginal density of y is

f̄ (τ2; y) = Eβ|τ2 [ f (β; y)],

which can be interpreted as the likelihood of τ2 in a new marginal model of
y. In this new model, rejecting the new null hypothesis H̄0 : τ2 = 0 implies
rejecting the old H0 : β = 0, as the two imply the same distribution of y.

The testing procedure based on testing H̄0 : τ2 = 0 against H̄A : τ2 = τ2
1 can

be called “empirical Bayes testing”, because we have put a prior on the para-
meter vector β of the model, which depends on an unknown hyperparameter
τ2, and our inference on β proceeds through inference on τ2. On the other hand
it can also simply be called “Bayesian testing”, because once the shape of the
distribution and the value of τ2

1 are chosen, the model HA is fully Bayesian.
One important use of testing H̄0 in the marginal model of y lies in Lemma

1, a corollary to the Neyman-Pearson Lemma. It says that if we take a specific
distribution of β and construct a likelihood ratio test in the marginal model,
the resulting test has optimal power on average over the chosen distribution of
alternatives.

Lemma 1 (Empirical Bayes version of Neyman-Pearson) Let A1 be the critical
region of a likelihood ratio test of H̄0 : τ2 = 0 against H̄A : τ2 = τ2

1 in the marginal
model f̄ , with associated power function w̄τ2

1
(β) = Py|β[A1]; and let A be the critical

region of any test of H0 : β = 0, with power function w(β) = Py|β[A]. Then

w(0) ≤ wτ2
1
(0)

implies
Eβ|τ2

1
[w(β)] ≤ Eβ|τ2

1
[wτ2

1
(β)].

This is a well-known result. The proof is immediate from the Neyman-
Pearson Lemma when it is observed that Eβ|τ2

1
[w(β)] = Eβ|τ2

1
{Py|β[A]} =

Py|τ2
1
[A].

The result of Lemma 1 could immediately be used in practice if we were
willing to completely specify the distribution of β, or at least to specify the
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shape of the distribution up to a number of parameters which can be estimated.
In most cases, however, we should be reluctant to do this, for two reasons.
In the first place, the marginal likelihood is a complicated p-dimensional in-
tegral, which often makes it difficult to estimate hyperparameters and usually
almost impossible to find the distribution of the test statistic, except in very
special cases. Secondly, specifying the distributional shape of β means speci-
fying whether the interesting alternatives have a β with a few large entries or
many small ones. This is a kind of judgement which is typically very difficult
to make in high-dimensional data. In a high-dimensional regression model, for
example, it is usually not known whether there are few large or many small
regression coefficients. A wrong choice of the distribution of β could mean low
power. How can we avoid specifying the distributional shape of β?

5.3 The locally most powerful test

It turns out that we can design a test for H̄0 in the marginal model which man-
ages to avoid full specification of the distribution of β and avoids evaluation of
the complicated marginal likelihood as well. This can be done by constructing
the test as a score test.

The traditional score test is a one-sided test of H∗
0 : θ = θ0 against H∗

A :
θ > θ0 in a one parameter model with likelihood f ∗(θ; y). It rejects when the
score test statistic S∗(y) = d

dθ log f ∗(θ0; y) ≥ k for some constant k. If θ0 is
on the edge of the parameter space, S∗(y) should be taken as the right-sided
derivative. For typical values of the test size α the critical value k is almost
invariably positive, because, by the properties of the score function, S∗(y) has
zero expectation under the null hypothesis.

The score test is known as the “locally most powerful test” as a consequence
of Lemma 2. This lemma says that the score test has optimal slope of the power
function among all tests of at most the same size, so that it has optimal power
against local alternatives close to the null.

Lemma 2 (Score test property) Suppose that the derivative d
dθ f ∗(θ; y) exists a.e.

and is bounded in a (right-)neighbourhood of θ0. Then for any test of H∗
0 with critical

region A and power function w(θ) = Py|θ [A], the derivative d
dθ w(θ0) exists. More-

over, if w∗(θ) = Py|θ [S∗ ≥ k] is the power function of the score test, then either of

(i) w(θ0) = w∗(θ0)

(ii) w(θ0) ≤ w∗(θ0) and k ≥ 0

implies
d
dθ w(θ0) ≤ d

dθ w∗(θ0).
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The proof of this lemma is given in Section 5.12.
A more extensive treatment of locally most powerful tests in one dimension

is given in Cox and Hinkley (1974). They show that the score test can be in-
terpreted as the limit for θ1 ↓ θ0 of the likelihood ratio test of H∗

0 against the
point alternative H∗

1 : θ = θ1. Score tests are typically useful when testing an
‘easy’ null hypothesis against a ‘complicated’ alternative, because score testing
does not require estimation of θ. Our high-dimensional alternative is a good
example of such a complicated alternative.

We shall apply score testing in the empirical Bayesian setting by testing H̄0 :
τ2 = 0 against H̄A : τ2 > 0 in the marginal model using the score test statistic

S =
d

dτ2 log f̄ (0; y),

which is automatically a right-sided derivative as f̄ is only defined for τ2 ≥ 0.
This test has two very useful properties, which we have formulated as Lemma
3 and Lemma 4.

The first property is important both for computation and for modelling.
Lemma 3 says that the test statistic S can be found with simple matrix oper-
ations from the conditional likelihood f (β; y) and the covariance matrix of β.
This implies that we do not need numerical integration to find the value of the
test statistic and that we do not have to specify the distributional shape of the
distribution of β.

Lemma 3 (Score test statistic) Suppose β = τb, where Eb = 0 and E(bb′) =
Σ and the distribution of b does not depend on τ. Suppose also that loglikelihood
log f (β; y) and its first two derivatives exist a.e. and are bounded in a neighbourhood
of β = 0. Then the empirical Bayes score test statistic S = d

dτ2 log f̄ (0; y) exists and
is given by

S =
1
2

s′Σs− 1
2

trace[ΣI]

where s = ∂
∂β log f (0; y) is the score function and I = ∂2

∂β∂β′
log f (0; y) the observed

Fisher information of β in H0.

The proof of this lemma is a simple calculation, which is given in Section
5.12.

The second and most important property of the score test based on S is given
in Lemma 4. It is again an optimality property, which effectively combines the
statements of Lemmas 1 and 2. Lemma 4 says that the empirical Bayes score
test, which has optimal slope of the power function in the marginal model f̄ ,
has optimal expected slope of the power function in the conditional model f .
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This lemma only holds for the exchangeable version of the test with Σ = I,
although a more general version can also be formulated.

Lemma 4 (Locally Optimal Power) Suppose the conditions of Lemma 3 hold with
Σ = I. Let w̄(β) = Py|β[S ≥ k] be the power function of the exchangeable score test
of H0. Let w(θ) = Py|β[A] be the power function of any test of H0. Then either of

(i) w(0) = w̄(0)

(ii) w(0) ≤ w̄(0) and k ≥ 0

implies
Eξ [ d

dτ2 wξ(0)] ≤ Eξ [ d
dτ2 w̄ξ(0)]

where wξ(τ) = w(τξ), w̄ξ(τ) = w̄(τξ) and ξ has a uniform distribution on the unit
p-ball (p = dim(β)). The same result holds when ξ has any other distribution on the
unit p-ball such that E(ξ) = 0 and E(ξξ′) ∝ I.

The proof of the lemma is given in Section 5.12. In fact, Lemma 4 follows
from Lemma 2 in more or less the same way as Lemma 1 follows from the
Neyman-Pearson Lemma.

By Lemma 4 we see that the score test in the exchangeable empirical Bayes-
ian model has optimal expected slope of the power function, where the expecta-
tion is with respect to taking a random direction in p-space. This is the property
that motivates its name of locally most powerful test. It is an interesting side-
note that even if p = 1, by Lemma 3 the high-dimensional score test based on
S is not the same as the ordinary one-dimensional score test based on S∗, be-
cause the test based on S is a two-sided test, whereas the test based on S∗ is
one-sided. By Lemmas 3 and 4 the test based on S is the proper generalization
of the one-dimensional score test from one-sided to two-sided alternatives.

5.4 Nuisance parameters

The presence of nuisance parameters complicates some of the issues described
above. When nuisance parameters are present, the null hypothesis is not simple
anymore but composite. In that case strict optimality in the sense of Lemma 4
is impossible.

The issue of nuisance parameters is usually tackled by switching to the pro-
file likelihood (Pawitan, 2001). When using a score test, switching to the profile
likelihood is very easy: one can simply plug in the maximum likelihood esti-
mate of the nuisance parameter under the null hypothesis. This can be easily
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seen in a simple two parameter model with loglikelihood g(θ, η) and profile
likelihood ĝ(θ) = g{θ, η̂(θ)}. In this situation

∂ĝ
∂θ

=
∂g
∂θ

+
∂g
∂η

∂η

∂θ
. (5.1)

The second term on the right hand side is zero, because ∂g/∂η is always zero
in η̂.

This simple plugging in of the null estimate of the nuisance parameters can
also be understood by viewing the score test again as a (profile) likelihood ratio
test of θ = θ0 versus θ = θ1 for θ1 ↓ θ0. In the limit the maximum likelihood
estimate of η is the same under the alternative as under the null.

In the empirical Bayes model of this paper the situation is basically the same.
A similar argument to (5.1) can be used to check in the proof of Lemma 3 that
plugging in the estimate under the null is equivalent to using the profile like-
lihood. For this derivation it makes no difference whether one uses the condi-
tional profile likelihood, starting with likelihood f and the maximum likelihood
estimate η̂(β; y) of the nuisance parameter η as a function of β, or whether one
uses the marginal likelihood f̄ and the maximum likelihood estimate η̄(τ2; y)
from the marginal model for given τ2. Both profile likelihoods lead to the same
test.

See section 5.6 for an example of a model with nuisance parameters.

5.5 Distribution of the test statistic

The specification of the locally most powerful test in the previous sections is
not fully complete, as it only provides us with the test statistic to be used. To
be able to use the test in practice, we must also know the distribution of the test
statistic under the null, so as to be able to find the cutoff for significance and/or
the p-value. There is no general method for finding the null distribution, and
this may require some extra work when the concept of the locally most power-
ful test is to be applied in the context of a specific model. We only give some
general comments here. See section 5.6 and Goeman et al. (2004) and Goeman
et al. (2005) for concrete examples.

First, we look at the null distribution of S. It should be noted that, aside from
having zero expectation under the null, the test statistic S is not yet standard-
ized and, in general, should not be expected to follow any standard textbook
distribution. It is usually not easy to directly apply asymptotic results on the
distribution of the score statistic, because the marginal likelihood f̄ , from which
the score statistic was derived, is not generally a product of n contributions of
the individuals. Asymptotic arguments may be used in specific models (as in
Goeman et al., 2005), but we have no general theory yet.
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In many cases, however, one can find a reasonably good approximation to
the distribution of S because the expression for S, as given in Lemma 3, is rel-
atively easy. The mean of S and its variance can often be explicitly calculated.
This allows approximation of the null distribution by moment matching to a
tabulated distribution (this strategy was used in Goeman et al., 2004). Other
practical options for finding the distribution of S include numerical integration
or permutation methods. Exact calculation of the distribution function of S is
possible in special cases, such as testing the global null hypothesis in the linear
model with normal errors, which is the case we shall turn to now.

5.6 The linear model

The optimality property implied in Lemma 4 is very appealing, but it has its
limitations. Good power is guaranteed, but only locally near the null and
on average over many possible alternatives. To investigate more closely what
Lemma 4 is worth for specific alternatives, we shall examine the simplest case
of the linear model in detail.

Assume that y ∼ N (Xβ, σ2 I), where X is an n× p design matrix of full rank
min(n, p). For simplicity we ignore the intercept parameter α which would nor-
mally be included (See Goeman et al., 2004, on how to deal with the nuisance
parameter α). The score vector for this model is s = σ−2X′y and the observed
Fisher information is I = σ−2X′X, so the general empirical Bayes score test
statistic is

S̃Σ = 1
2σ4 y′XΣX′y− 1

2σ2 trace(XΣX′).

It is more convenient to work with the equivalent test statistic σ−2y′XΣX′y,
whose distribution does not depend on σ2. Because σ2 is not known, we plug
in its maximum likelihood estimate σ̂2

0 ∝ y′y under the null hypothesis. The
resulting test statistic is

SΣ =
y′XΣX′y

y′y
, (5.2)

whose distribution also does not depend on the nuisance parameter σ2. We
study the exchangeable case Σ = I, as ‘the’ locally most powerful test statistic

S =
y′XX′y

y′y
.

To find the distribution function of S, we can use the following identity
(Azzalini and Bowman, 1993):

P{S > t} = P{y′(XX′ − tI)y > 0}.
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The distribution function of the quotient S can therefore be found through the
distribution function of a quadratic form in normal variables. We use numeric
methods developed by Imhof (1961) to calculate the latter distribution func-
tion. Reasonably good approximations to the 5% and 1% cutoff values can also
be found by equating the moments of S to those of a gamma distribution, a
strategy which was used in Goeman et al. (2004).

It is interesting to note a connection between the test statistic S and the
method of partial least squares (PLS), which is often used for high-dimensional
data in chemometrics (Brown, 1993). The first component of a partial least
squares regression is XX′y, so the test statistic S can be viewed as a test for
correlation between the first PLS component and y.

5.7 Power of the score test

We want to gain insight in the power of the locally most powerful test in prac-
tice. It has already been said that when the alternatives are high-dimensional,
it is impossible to have power against all alternatives. To see which are the al-
ternatives that our score test cannot detect, we check which alternatives have
an expected test statistic that is smaller than expected under the null. These
alternatives have power below the size α of the test.

Under the null hypothesis, the test statistic S has expectation

Ey|0[S] =
1
n

trace(XX′).

Under the alternative the expectation of S can be well approximated by taking
the expectations of the numerator and the denominator separately

Ey|β[S] ≈ β′X′XX′Xβ + σ2trace(XX′)
β′X′Xβ + nσ2

.

This approximation is not only asymptotically exact, but also for small sample
size if y is either dominated by Xβ or by σ2 (i.e. in any of the limits n → ∞,
σ2 → 0, σ2 → ∞ or β → 0).

The difference between the expectations is

Ey|β[S]− Ey|0[S] ≈
β′X′XX′Xβ− 1

n β′X′Xβ · trace(XX′)
β′X′Xβ + nσ2

.

To interpret this expression we must look at the principal components of X
and the amount of variance of y that each principal component explains. Call

r2 =
β′X′Xβ

β′X′Xβ + nσ2
,
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the fraction of the variance of y explained by the alternative. We use the spec-
tral decomposition. Write X′X = ∑n

i=1 λiQi, where λ1 ≥ . . . ≥ λn ≥ 0 are
eigenvalues of X′X and Qi is the p × p projection matrix that projects onto
the eigenvector of X′X corresponding to the eigenvalue λi. Note that we
can stop the decomposition at the n-th component because the rank of X′X
is min(n, p) ≤ n. Use of the spectral decomposition gives r2 = ∑n

i=1 r2
i , with

r2
i = λiβ

′Qiβ/(β′X′Xβ + nσ2), and

Ey|β[S]− Ey|0[S] =
n

∑
i=1

λir2
i −

1
n

n

∑
i=1

λi

n

∑
j=1

r2
j .

This can be recognized as proportional to the covariance of the vector λ =
(λ1, . . . , λn)′ of variances of the principal components of X and the vector r =
(r2

1, . . . , r2
n)′, which gives the fraction of the variance of y explained by these

components.
This small exercise has a few interesting conclusions. In the first place there

are many alternatives, especially in the p ≥ n case, for which the locally most
powerful test has negligible power. These are the alternatives for which the
low-variance principal components of X explain most of the variance of y.
These undetectable alternatives may have any value of r2, even r2 = 1: an
alternative with Ey|β[S] ≤ Ey|0[S] and r2 = 1 will even have zero power.

Fortunately for the score test, a negative covariance of λ and r occurs only
seldomly in real data, because the measurements in X are often noisy or in-
accurate. The uninformative noise tends be dominant in the small-variance
principal components of X.

How can a test be most powerful on average if it has such low power against
many alternatives? The reason for this lies in the assumption of exchangeability
that underlies the test. By Lemma 4 the power is optimal on a small p-ball
with β′β = c. The alternatives on this ball have very diverse values of r2:
alternatives which have β in directions corresponding to the eigenvectors of the
large eigenvalues of X′X have large r2, others have small r2. It is very difficult
to have much power against alternatives with small r2. Even an ‘oracle’ which
knows the direction of β and only tests whether ‖β‖ = 0 will have low power
if the true β has low r2. Average power will increase, therefore, if some power
on the low-potential alternatives is sacrificed in exchange for a gain in power
for the high-potential alternatives. This is the advantageous trade-off that the
exchangeable empirical Bayes score test makes.

If negative covariance of λ and r leads to Ey|β[S] < Ey|0[S], conversely a pos-
itive covariance of the same λ and r leads to Ey|β[S] > Ey|0[S] and potentially
good power. Against some of these alternatives the score test must even have
very good power, as the test is locally most powerful on average by Lemma 4.
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We come back to this in Sections 5.8 and 5.10, where we compare the locally
most powerful test with the F-test.

It has to be remarked that the problems of lower expectation of the test sta-
tistic S under the alternative than under the null typically disappear when n is
large. If we let n grow to kn by observing k samples from each covariate pat-
tern, Ey|β[S] will eventually become larger than Ey|0[S], because letting n grow
in this setup means augmenting both λ and r with zeros, so that the correlation
between the two increases. Similarly, if we have p < n to begin with, there
are at least n − p zero elements of λ with corresponding zero elements of r, so
that the smallest elements of λ and r automatically coincide and there are few
alternatives with Ey|β[S] ≤ Ey|0[S].

5.8 A new look at the F-test

In the p < n situation it is possible to apply both the locally most powerful
test and the F-test, which makes it interesting to compare the two. The F-test
statistic in our linear model is a constant times

F̃ =
y′X(X′X)−1X′y

y′(I − X(X′X)−1X′)y
.

We find it convenient to transform F̃ by the strictly increasing function
g(x) = (x−1 + 1)−1 to the equivalent test statistic F = g(F̃), which is given
by

F =
y′X(X′X)−1X′y

y′y
.

Under the null the transformed F has a beta distribution with parameters 1
2 p

and 1
2 (n− p).

It is now easy to compare F with the locally most powerful test statistic
S = (y′XX′y)/(y′y). We can immediately notice that, if the design is orthog-
onal (i.e. X′X ∝ I) both tests are equivalent. Note that the design is always
orthogonal if p = 1, so the locally most powerful test for p = 1 is equivalent to
the F-test and hence to the two-sided t-test.

More fundamental insights follow when comparing F with the general
expression for the empirical Bayesian score test statistic given in (5.2): as
SΣ = y′XΣX′y/(y′y), we have F = S(X′X)−1 . It follows that we can look
at the F-test as the empirical Bayes score test based on the prior covariance
E(ββ′) = τ2(X′X)−1 for τ2 very small. By Lemma 1, the F-test therefore opti-
mizes the power on average over this distribution of β. The F-test is therefore
especially directed against alternatives in directions where the variance of the
distribution of β is large. These directions are the directions of the eigenvectors
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of small eigenvalues of X′X. These are also the directions where a large r2 re-
quires a very large ‖β‖. Vice versa, the directions of the eigenvectors of large
eigenvalues of X′X get a small prior variance of β. These are, therefore, of small
importance to the F-test: β is a priori not expected to lie in these directions. The
directions of the eigenvectors of large eigenvalues of X′X are the directions in
which a small investment of ‖β‖ results in a large r2.

We get a similar look at the power properties of the F-test if we orthogonal-
ize the design by taking β̃ = (X′X)1/2β and X̃ = X(X′X)−1/2. This results in
Xβ = X̃β̃ for all β so the distribution of y is unchanged. Unlike the F-test, the
locally most powerful test is not invariant under change of parametrization:
under the assumption of exchangeability E[β̃β̃

′] = τ2 I on β̃ we now get the
F-test as the locally most powerful test for the new parametrization. Applying
the reasoning of Section 5.6 to the new parametrization, we see that the F-test
optimizes power not over small balls with β′β = c, but on small ellipsoids with
β̃
′
β̃ = β′X′Xβ = c, which are ellipsoids of alternatives that have the same

r2. All alternatives with the same r2 have the same potential power, so there is
no trade-off and all alternatives in the ellipsoid are given equal power. The ex-
pected test statistic under the alternative minus the expected test statistic under
the null for the F-test is

Ey|β[F]− Ey|0[F] = r2(1− p
n

),

which only depends on β through r2. It is positive whenever r2 > 0 and p < n.
The main difference between the empirical Bayes score test and the F-test

is therefore that, while for the F-test all alternatives with the same r2 are as
credible and interesting to detect, the score test is explicitly directed at finding
parsimonious alternatives, which can explain y with minimal expenditure of
‖β‖.

There is no easy analytic expression which shows for which alternatives in
the p ≤ n situation the F-test has more power than the score test and vice versa.
However, it can be convincingly argued that for those alternatives in which
the large variance principal components of X explain most of the variance of
y, the score test has more power, while for the alternatives in which the small-
variance principal components explain most of the variance of y, the F-test is
more powerful. This can be seen by writing XX′ in a spectral decomposition as
XX′ = ∑n

i=1 λiPi, where Pi is the n × n projection matrix for projection on the
i-th principal component. Then

S =
n

∑
i=1

λi
y′Piy
y′y

,
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so the test statistic S is a weighted sum of the test statistics y′Piy which test
whether the i-th principal component is associated with y. The weights are
proportional to the variance of the principal components. In the same way

F =
n

∑
i=1

y′Piy
y′y

,

the statistic F is the unweighted sum of the same test statistics. Comparing the
two composite tests, one can argue that one has more power than the other if it
puts heavier weights on the terms with most power. We’ll illustrate this point
with simulations in Section 5.10.

An interesting type of alternative against which the locally most powerful
test can be expected to have more power than the F-test is a factor-analysis type
setup, in which a limited number of latent variables linearly determines both
the covariates X and the outcome variable y, but both are measured with error
(Bartholomew and Knott, 1999). In this case the latent variables tend to show
up in the large-variance principal components of X, while the uninformative
noise tends to dominate the small-variance principal components. This setup
is not unrealistic for many practical problems, especially in high-dimensional
data, as the covariates can often be seen as noisy measurements of more or less
the same underlying mechanisms. In this kind of alternative one would nor-
mally apply principal components testing: reducing the matrix X to its first
few principal components and then applying the F-test. An important advan-
tage of the locally most powerful test over principal components testing is that
there is no need to choose the number of principal components. We come back
to principal components testing in Section 5.10.

5.9 Sparse alternatives

In the previous sections we have established that the locally most powerful
test is especially directed against parsimonious alternatives with small ‖β‖. A
different type of parsimonious alternative is the sparse alternative, in which
only a few entries of β are non-zero. This type of alternative is especially of
interest in regression modelling.

A test which specifically aims to detect this type of sparse alternative in a
regression model is a multiple testing procedure. This type of testing procedure
is often used in microarray data analysis. There are many variants, but the most
basic form is the following: for i = 1, . . . , p a t-test statistic ti is calculated to test
for association of each covariate with the outcome y. The test statistic T̃max =
max(|t1|, . . . , |tp|) is used to test whether there is an association between any
covariate and y. The critical value of Tmax can be found either conservatively
using the Bonferroni adjustment, or using numerical methods.
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Different though this test may seem from the locally most powerful test,
there is still a connection. First, we can transform each |ti| to g(t2

i ), using the
function g(x) = (x−1 + 1)−1 also used in section 5.8. This results in test sta-
tistics with a beta distribution with parameters 1

2 and 1
2 (n − 1). As g(x2) is

increasing in |x|, the test statistic

Tmax = max{g(t2
1), . . . , g(t2

p)}

is equivalent to T̃max. Next, we write xi for the i-th column of X, then g(t2
i ) =

y′xix′iy/(y′y · x′ixi). However, as we can write XX′ = ∑
p
i=1 xix′i, we can say that

S =
p

∑
i=1

x′ixig(t2
i ),

so the locally most powerful test statistic is a weighted sum of the same (trans-
formed) t-test statistics over which Tmax is the maximum. The weights are pro-
portional to the variance of xi.

Perhaps surprisingly, by Lemma 4 the score test is more powerful than the
test based on Tmax in the situation where p is large and r2 is very small, even
when only a single regression coefficient is non-zero. Suppose β is given a sin-
gle non-zero entry at random, of fixed size, but with random sign. This distrib-
ution of β has E(β) = 0 and, if p is large E(ββ′) ≈ τ2 I for some τ2. By Lemma
4, the score test has optimal power on average to detect these alternatives if τ2

is small.
This optimality can again be understood in terms of the principal compo-

nents. If there are few principal components with large variance, it is probable
that the xi with the positive regression coefficient also has a major part of its
variance in the direction of these large-variance principal components. If y is
correlated with xi, it is therefore automatically correlated with these principal
components, and therefore with many other covariates xj, which also tend to
have a large part of their variance in the direction of the large-variance prin-
cipal components. A single regression coefficient may therefore lead to many
significant t-statistics. In this situation there may be more information in the
sum of the t-statistics than in the maximum.

Simulations in section 5.10 illustrate these points.

5.10 Simulations

Many of the points raised in the previous sections require some illustration.
We’ll do this using simulations in the linear model. The simulations are based
on real data in the sense that the design matrix X is a taken as a real biological
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data set: a microarray data set of gene expression measurements of p = 4911
genes, measured for n = 294 breast cancer patients (obtained from Van de Vi-
jver et al., 2002, after removing some genes and patients due to missing values).
The matrix X was normalized to have both row and column means zero. After
this normalization X has rank n − 1 and a ratio of the largest to the smallest
non-zero singular value of 26.6. Using this design matrix X, values of y are
simulated based on the models chosen below.

First we compare the locally most powerful test with the F-test, to illustrate
the statements from Section 5.8 that the score test has more power when the
large variance principal components of X explain most of the variance of y. As
we cannot use the F-test when p > n, we reduce the matrix X to X∗ by selecting
as covariates only the p∗ = 52 genes belonging to the apoptosis pathway.

The simulation setup is as follows. We write X∗ in a singular value de-
composition as X∗ = UΛ1/2V′, with U an n × p∗ semi-orthogonal matrix, V a
p∗ × p∗ orthogonal matrix and Λ a p∗ × p∗ diagonal matrix with diagonal el-
ements λ∗ = (λ1, . . . , λp∗)′, where each λi is the variance of the i-th principal
component. To vary the amount of variance explained by the principal com-
ponents, we choose the regression coefficients as β = VΛ(s/2−1)λ for various
values of s. In this setup the i-th principal component has regression coefficient
λs/2

i and explains a fraction r2
i of the variance of y proportional to λs+1

1 . Hence,
if s > 0, the large variance principal components have larger regression coeffi-
cients and therefore explain more of the variance of y; if −1 < s < 0, the large
variance principal components have smaller regression coefficients, but still ex-
plain more of the variance than the small-variance principal components, while
if s < −1, the small-variance principal components dominate y. By varying σ2

as a function of s we can obtain all values of r2 for every s.
To estimate the power for these alternatives, we generated 10000 y vectors

each from alternatives with various values of s and r2. The cutoff at level α for
the S statistic was found using the methods of Imhof (1961). The results are
given in table 5.1. They show that the power of the score test and the F-test is
comparable for s = −1/2, although the F-test still has a slight advantage here.
The score test is substantially more powerful for larger values of s, the F-test is
more powerful for smaller values. This is in line with the theoretical discussion
in section 5.8.

It is also interesting to compare the locally most powerful test with the test
P1, which is the F-test that tests whether the first principal component of X∗ is
correlated with y. The results are also given in table 5.1. We can see that the
locally most powerful test is comparable in power to the test P1 for high values
of s, but it is consistently better for all the alternatives considered.

In a second simulation experiment we look at sparse alternatives in high-
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TABLE 5.1: Monte Carlo power comparison between the locally most powerful test, the F-test
and the test P1, which uses only the first principal component for testing. The tests use
α = 0.05. The various alternatives are given by their r2 and a coefficient s: s > 0 means
that large-variance principal components get larger regression coefficients, s < 0 vice versa.

r2 = 0.02 r2 = 0.05
alternative F S P1 F S P1
s = 1.5 0.14 0.52 0.52 0.35 0.92 0.90
s = 1 0.14 0.46 0.44 0.35 0.88 0.82
s = 0.5 0.14 0.36 0.31 0.34 0.79 0.66
s = 0 0.13 0.24 0.19 0.34 0.58 0.39
s = −0.5 0.14 0.13 0.10 0.35 0.32 0.18
s = −1 0.14 0.08 0.06 0.34 0.14 0.08
s = −1.5 0.14 0.06 0.05 0.35 0.07 0.05

r2 = 0.10 r2 = 0.15
alternative F S P1 F S P1
s = 1.5 0.76 1.00 1.00 0.96 1.00 1.00
s = 1 0.76 1.00 0.99 0.96 1.00 1.00
s = 0.5 0.76 0.99 0.92 0.96 1.00 1.00
s = 0 0.75 0.92 0.67 0.96 0.99 0.86
s = −0.5 0.76 0.65 0.31 0.96 0.89 0.43
s = −1 0.76 0.27 0.10 0.96 0.44 0.13
s = −1.5 0.75 0.10 0.05 0.96 0.13 0.05

dimensional data. We compare the power of the locally most powerful test
with the power of the test based on Tmax, the maximum absolute t-statistic, as
discussed in Section 5.9.

For this we reverted back to the original high-dimensional data set with p =
4911 genes. We generated alternatives βm,j for j = 1, . . . , p and m = 1, 3, 10, 30,
such that each alternative βm,j has the m regression coefficients β j, . . . , β j+m−1
equal to 1 and all others equal to zero (taking βi = βi−p if i > p). Table 5.2
shows the power of the tests based on S and Tmax on average against the al-
ternatives βm,1, . . . , βm,p with m non-zero regression coefficients. In the simula-
tions the value of σ2 was taken to be equal for all alternatives βm,1, . . . , βm,p and
was chosen to get a certain average r2 over these alternatives. We generated 2
replicates for each of the alternatives, so that each power calculation is based
on 2p ≈ 10000 Monte Carlo samples of y.

A complicating factor in this simulation is the lack of a simple and accu-
rate method to find the distribution function of the statistic Tmax, because of
the dependence of the t-statistics. We used simulation to find the α cutoff of
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Tmax for the design matrix X. The 0.05-cutoff was found at 0.062, using 20000
simulations of y under the null. Note that this is only slightly below the crude
Bonferroni corrected cutoff for p beta( 1

2 , 1
2 (n− 1)) variables, which is at 0.064.

TABLE 5.2: Monte Carlo power comparison between the locally most powerful test and the test
based the maximum of p absolute t-statistics using α = 0.05. The reported power values
are on average over p different sparse alternatives with m non-zero regression coefficients.

alter- r2 = 0.01 r2 = 0.02 r2 = 0.05 r2 = 0.10 r2 = 0.20
native S Tmax S Tmax S Tmax S Tmax S Tmax

m = 1 0.12 0.10 0.17 0.16 0.33 0.40 0.54 0.74 0.76 0.97
m = 3 0.11 0.09 0.17 0.14 0.34 0.32 0.55 0.61 0.80 0.90
m = 10 0.11 0.09 0.17 0.14 0.35 0.29 0.58 0.54 0.83 0.84
m = 30 0.11 0.09 0.17 0.13 0.34 0.28 0.55 0.51 0.80 0.79

The table confirms the theoretical result of Section 5.9 that for sparse alter-
natives close to the null the score test is slightly superior to the test based on
Tmax. This superiority disappears quite quickly, however, when the single co-
variate explains a large portion of the variance of y. Looking at decreasingly
sparse alternatives, the Tmax statistic loses power, as can be expected, but the
score test remains more or less stable. What is perhaps most surprising about
table 5.2, is that even though the tests are constructed in a very dissimilar way,
the average power is still quite similar. The Tmax still has good power against
not-so-sparse alternatives, while the locally most powerful test has good power
against sparse alternatives far from the null.

5.11 Discussion

For testing against a multi-dimensional alternative there are no uniformly most
powerful tests. Tests may only be optimal locally for some alternatives, or op-
timal on average over a region of alternatives. When choosing a test against
multi-dimensional alternatives, it is therefore important to consider against
which alternatives the chosen test has good power. When constructing such
a test, one can use empirical Bayes modelling to design a test which has opti-
mal power on average against a chosen region of alternatives. Thinking about
these issues is especially relevant when the data are high-dimensional, because
the power of often-used classical tests tends to diminish rapidly when the di-
mensionality increases.

A drawback of empirical Bayes design of hypothesis tests, is that the con-
struction of the test requires integration over complicated distributions in pos-
sibly high-dimensional space. In this paper we have shown in general how to
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avoid this problem by using a score test. This test has the property that it is
locally most powerful: it has optimal average power in a well-defined neigh-
bourhood of the null hypothesis.

In the linear model, we have shown that this test has good power for many
important alternatives, even in the classical low-dimensional situation. The em-
pirical Bayes score test often has better power than the F-test in the situations
where there are errors in variables in the design matrix X, when a small set of
latent variables influences both the covariates in X and the outcome variable y,
or more generally when the large-variance principal components of X explain
more of the variance of y than the small-variance ones. We have also shown
that the empirical Bayes score test has good power in truly high-dimensional
situations, even against sparse alternatives. If the fraction of variance of y ex-
plained by the covariates is low, the test even outperforms the test based on the
maximum absolute t-statistics of all covariates, a test which is designed to find
sparse alternatives.

As high-dimensional data become more and more common, so will the need
for testing against high-dimensional alternatives. This paper has given a gen-
eral theoretical outline and presented a concrete example of a model in which
the test has good power. But locally most powerful testing in high dimensions
has many more potential applications, both in generalized linear models and
more generally.

5.12 Proofs of the lemmas

Proof of Lemma 2: To prove Lemma 2, we have to adopt a slightly more for-
mal notation. Shorthand fθ for the density of y and let µ be a dominating mea-
sure, so that we can write Py|θ(y ∈ A) =

∫
A fθ dµ. Also, let 1{·} denote an

indicator function.
To prove the existence, we write w(θ) =

∫
A fθ dµ, so by the dominated

convergence theorem d
dθ w(θ0) =

∫
A

d
dθ fθ0dµ < ∞.

Furthermore, noting that d
dθ fθ0 = S∗ fθ0 , and using 1A − 1B = 1A\B − 1B\A

twice, we can calculate

d
dθ w(θ0)− d

dθ w∗(θ0) =
∫

A
d
dθ fθ0 dµ−

∫
S∗≥k

d
dθ fθ0 dµ

=
∫

A,S∗<k
S∗ fθ0 dµ−

∫
Ac ,S∗≥k

S∗ fθ0 dµ

≤ k
∫

A,S∗<k
fθ0 dµ− k

∫
Ac ,S∗≥k

fθ0 dµ

= k
∫

A
fθ0 dµ− k

∫
S∗≥k

fθ0 dµ

= k{w(θ0)− w∗(θ0)}.
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The latter term is at most zero whenever condition (i) or (ii) holds. 2

Proof of Lemma 3: The assumptions of bounded derivatives combined with
the assumption that the distribution of b is free of τ allows us to interchange
limits and integrals in the following calculations. For simplicity we suppress
the dependence on y in the notation.

S = lim
τ2↓0

d
dτ2 Eb[ f (τb)]

Eb[ f (τb)]
= lim

τ2↓0

Eb[ d
dτ2 f (τb)]

Eb[ f (τb)]
= lim

τ2↓0

Eb[(d f (τb)
dβ )′b]

2τEb[ f (τb)]
.

The limit evaluates to 0/0, so we use l’Hôpital’s rule to get

S = lim
τ2↓0

Eb[b′ ∂2 f (τb)
∂β∂β′

b]

2Eb[ f (τb)] + 2τ ∂
∂τ2 Eb[ f (τb)]

=
Eb[b′ ∂2 f (0)

∂β∂β′
b]

2Eb[ f (0)]
.

Now it only remains to rewrite ∂2 f (0)
∂β∂β′

= f (0) · {ss′ − I}. 2

Proof of Lemma 4: Assume w(0) = w̄(0). By Lemma 3 every distribu-
tion of β with E(β) = 0 and E(β′β) ∝ τ2 I leads to the same test statistic
and therefore to the same power function. Without loss of generality we can
therefore assume that w̄ is the power function of the score test in the empir-
ical Bayesian model in which β is distributed as τξ. By Lemma 2 we have

d
dτ2 Eβ|τ2 [w(β)] ≤ d

dτ2 Eβ|τ2 [w̄(β)] in τ2 = 0. The boundedness assumptions of
Lemma 3 allow interchanging differentiation and integration, so we get

d
dτ2 Eβ|τ2 [w(β)] =

d
dτ2 Eξ [w(τξ)] = Eξ

[ d
dτ2 w(τξ)

]
,

both for w and for w̄, from which the result follows. 2
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CHAPTER 6

Model-based dimension reduction
for high-dimensional regression

Abstract

This paper considers the problem of predicting an outcome variable using high-
dimensional data. To control the overfit arising from the high-dimensionality
one can use dimension reduction methods, which try reduce the set of predic-
tors to a small set of orthogonal linear combinations of the predictor variables,
which are subsequently used to predict the outcome. Examples are principal
components regression and partial least squares. These methods are usually
not motivated by a model and have strictly separated dimension reduction and
prediction steps.
This paper looks at dimension reduction for high-dimensional regression from
a modelling point of view. We propose a very general model for the joint distri-
bution of the outcome and the predictor variable. This model is based only on
the assumption that a set of latent variables exists such that outcome and the
predictor variables are conditionally independent given the latent variables.
We do not assume that the number of latent variables is known and we allow a
very general error structure in the predictor variables. This model allows us to
study the dimension reduction and prediction steps jointly.
In this model, we study parameter estimation and prediction in the situation
where the number of predictor variables goes to infinity, while the number of
samples remains fixed. Based on this analysis, we argue for a doing principal
components regression with a relatively small number of components and us-
ing only a subset of the predictor variables, selected for their correlation with
the outcome variable. This is a variant of the supervised principal components
method proposed by Bair et al. on the basis of a much more restrictive model.

This chapter has been submitted as: J. J. Goeman and J. C. van Houwelingen. Model-based
dimension reduction for high-dimensional regression.
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6.1 Introduction

In recent years high-dimensional data have become increasingly common in
many fields of science. This has attracted the attention of the statistical commu-
nity, resulting in a surge of novel and interesting methodology.

In this paper we consider the basic high-dimensional prediction problem of
predicting an outcome y from a vector x = (x1, . . . , xp)′ of predictors. The goal
is to predict a new observation ynew from an observed data vector xnew. The
prediction rule for predicting ynew from xnew is to be constructed using a train-
ing sample of size n from the joint distribution of x1, . . . , xp and y. The training
data are gathered in an n × p data matrix X and an n × 1 vector y. The pre-
diction problem is high-dimensional when the number of predictors p is very
large, typically larger than the size n of the training sample. The overfit arising
from the high number of predictors makes most classical statistical methods
unusable.

Many different strategies have been proposed to counter the problem of
overfit due to high dimensionality (Hastie et al., 2001). For example, variable
selection methods reduce the dimensionality directly by selecting a subset of
the predictors to be used for prediction. Shrinkage methods restrain the para-
meter estimates to prevent overfit (Hoerl and Kennard, 1970; Tibshirani, 1996;
Van Houwelingen, 2001). Dimension reduction methods reduce the dimension-
ality of the prediction problem by using only a small number of orthogonal lin-
ear combinations of the original predictor variables (Jolliffe, 2002; Wold et al.,
1984). All methods that control overfit in high-dimensional prediction share the
property that they reduce the variance of the prediction while introducing bias.
The methods differ mainly in the kind of bias introduced.

There is not one strategy or method that is known to be overall superior
to all the others. As each method introduces bias, it will tend to perform well
especially when the bias introduced is bias ‘towards the truth’. For example,
a variable selection method can be expected to work best when most of the
true regression coefficients are virtually zero. A ridge regression (Hoerl and
Kennard, 1970) would most likely work well when most true regression co-
efficients are in reality small, but not zero. The choice of the method should
therefore depend on knowledge or ideas about the underlying ‘truth’. Notions
about the true relationships between the predictor variables and the outcome
can help determine which method is best for which type of data. For a major
part, the choice of method should be a modelling issue.

In this paper we investigate high-dimensional regression from a modelling
perspective. We formulate a very general model for the joint distribution of the
predictors x1, . . . , xp and the outcome y. This model can support the reasoning
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behind most methods of the dimension reduction type, such as principal com-
ponents regression (Jolliffe, 2002), partial least squares (Wold et al., 1984) and
more recent methods by Burnham et al. (1999a,b) and Bair et al. (2004).

The joint model we propose is a generalization of factor analysis, a latent
variable model often used in psychometry (Bartholomew and Knott, 1999). In
this model a set of unobserved latent variables f1, . . . , fm linearly determines
both the predictors x and the outcome y, although both are also subject to error.
We assume that the error in x is independent from the error in y, so that y is
conditionally independent of x given f = ( f1, . . . , fm)′. Graphically:

x1, . . . , xp y
↖ ↗

f1, . . . , fm

(6.1)

We explicitly do not assume that the dimension m of the latent space is known,
but only that it is smaller than the sample size n. Furthermore, our model is
more general than the factor analysis model in the sense that we do not assume
that the error in x1, . . . , xp are independent or identically distributed.

In this model we show how to estimate parameters and how to construct
a prediction rule for predicting y from x. We also calculate the mean squared
error of prediction for the resulting prediction rule. Based on these calculations,
we argue for a prediction rule that first weights the predictors x1, . . . , xp based
on their correlation with y and then applies a principal components analysis
based on this weighting, using only few components. Essentially, this is a gen-
eralization of the method proposed by Bair et al. (2004), which was derived on
the basis of a very different and much more restrictive model.

To keep the technicalities limited, we have chosen to limit the discussion
in this paper to the linear model, in which the outcome y is continuous and
the desired prediction rule is linear. However, the approach is extendable to
generalized linear models and we keep the possibility of this extension always
in mind.

Before going into the details of the model in section 6.3, in the next section
we first investigate some general issues involved in methods of the dimension
reduction type and discuss some familiar and less well known methods.

6.2 Bias and variance

Dimension reduction methods combat overfit by replacing the original set of
predictor variables x1, . . . , xp with a small set of orthogonal linear combinations
of these variables. These linear combinations, sometimes confusingly called
‘latent variables’, are subsequently used to predict the outcome y.
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The most basic dimension reduction method is Principal Components Re-
gression (PCR), which uses the first few principal components of the matrix X
for prediction (Jolliffe, 2002, Chapter 8). Other important examples of dimen-
sion reduction methods include partial least squares (Wold et al., 1984), various
types of continuum regression (Abraham and Merola, 2005; Burnham et al.,
1996; Stone and Brooks, 1990) and, more recently, methods proposed by Burn-
ham et al. (1999a,b) and by Bair et al. (2004). There are many more examples.
All these methods differ from PCR mainly because they also use the training
outcomes y to determine the principal components, and they differ from each
other in the way they use y.

There is a general motivation for all methods of the dimension reduction
type. This motivation is best explained through the example of PCR, the me-
chanics of which are very well known. PCR reduces the matrix X to only
its large-variance principal components, ignoring the small-variance principal
components for the prediction of y. This will always reduce the variance of
the prediction, because the regression coefficients of the small-variance princi-
pal components are difficult to estimate accurately. However, it may introduce
bias, because the small-variance principal components of X might be impor-
tant predictors of y. This is the well-known trade-off between bias and variance
(Hwang and Nettleton, 2003).

It follows that PCR has best predictive performance when the bias intro-
duced is small, which happens when the small-variance principal components
have little or no predictive value for y. A main concern when using PCR is
therefore the choice of the number of components: using too many components
does not reduce the variance enough, while using too few components may re-
sult in missing out those principal components that are important for prediction
(Jolliffe, 2002, pp. 173–177). This dilemma is usually solved using methods like
cross-validation or AIC, which use the y data to judge which number of com-
ponents has the best predictive performance. This ‘estimation’ of the number of
components reintroduces some variance from y in order to reduce the potential
bias.

Other dimension reduction type methods typically introduce the depen-
dence of the choice of the latent variables on y at an earlier stage. They let the
latent variables themselves directly depend on the outcome vector y, so that
the important principal components are more likely to be among the first few
latent variables selected. Partial Least Squares (Wold et al., 1984) chooses latent
variables that have maximum covariance with y instead of maximum variance.
Burnham et al. (1999a,b) choose the latent variables as the eigenvectors corre-
sponding to the largest eigenvalues of the matrix XX′ + λyy′ for some value of
λ, instead of those of XX′ (see also Tan et al., 2005, for an interesting applica-
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tion). Bair et al. (2004) propose a pre-selection of the predictor variables based
on their correlation with y, prior to doing principal components. By using y
to choose the latent variables, all these methods essentially reintroduce some
variance in order to control the bias.

Ideally, it should follow from a model which method best controls the bias
with least reintroduction of variance. Unfortunately, there is little theoretical
guidance as to which dimension reduction method is optimal in which situ-
ation. The most popular methods of PCR and Partial Least Squares are not
based on any model, while the more recent methods of Burnham et al. and Bair
et al. are based on relatively restrictive ones (Bair et al., 2004; Burnham et al.,
1999a,b).

It is to aid the theoretical discussion on the question which dimension re-
duction method to use that we formulate our model in section 6.3. This model
is the most general model that can motivate a dimension reduction approach.
Basically, the only thing it assumes is that a set of latent variables truly exists.

6.3 A basic joint model

The basis of our joint model is the graphical model (6.1), which states that a set
of latent variables f1, . . . , fm exists, such that y is conditionally independent of
x1, . . . , xp given f1, . . . , fm. This assumption implies that prediction of y from
x = (x1, . . . , xp)′ should proceed via ‘prediction’ of the vector f = ( f1, . . . , fm)′

of latent variables. This property makes it the basic model underlying methods
of the dimension reduction type.

To keep the model simple, we only make a few simple extra assumptions.
Firstly, like most dimension reduction methods we assume linearity.

y = µy + β′f + ε

x = µ + A′f + e (6.2)

Here, µy and µ (a p-vector) are the marginal means of y and x, respectively. The
parameters β and A are an m-vector and an m × p matrix of loadings, which
determine the relationship between the observed and latent variables. For the
error terms e (a p-vector) and ε we assume zero mean and variance E(ee′) =
Ψ and E(ε2) = σ2. By (6.1), e and ε are uncorrelated. Further, for deriving
maximum likelihood results we shall assume that the distribution of the errors
e and ε is normal. This normality assumption is convenient, but not strictly
necessary. The results of this paper can also be rephrased in terms of best linear
unbiased prediction (BLUP) under mild conditions. As to the distribution of f,
we only assume that it has finite mean and covariance matrix, which can then
be taken as 0 and I without loss of generality.
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It should be remarked that the model, as presented here, is slightly over-
parametrized if m > 1. If W is an m × m orthogonal matrix, replacing A with
WA and β with Wβ results in the same joint distribution of x and y. This means
that single parameter values or estimates of A and β cannot immediately be
interpreted, but only functions of A and β that are invariant to multiplication
by W. As our prime purpose is prediction, there is no real need to resolve this
overparametrization (see Bartholomew and Knott, 1999, for various methods
to choose a rotation W).

The terms µy and µ can easily be extended to linear regression functions to
incorporate predictors that do not fit in the latent variable structure. The esti-
mation of µy and µ (or their regression extensions) and their use in prediction
is straightforward, however, and only complicates notation. For simplicity, we
shall therefore assume in the rest of the paper that both µy and µ are known.
They can then be taken as zero without loss of generality.

The model presented here is very similar to the factor analysis model fre-
quently used in psychometry. The main difference in the model formulation is
that we do not require the matrix Ψ to be diagonal. In psychometry the model is
exclusively used in the p < n situation (Bartholomew and Knott, 1999; Magnus
and Neudecker, 1999).

We have formulated the above model in terms of the joint distribution of
the predictors x and the outcome y, because this is much more flexible than a
model in terms of the conditional distribution of y given x, such as a regression
model. One aspect of this flexibility is that the fitted joint model can also be
used for prediction when there are missing data in xnew. Another flexible as-
pect of joint modelling is that it is easier to incorporate theoretical knowledge
about relationships between variables into a joint model than in a conditional
model. This can already be seen in the assumption (6.1) about the existence
of latent variables, which can be directly translated into statements about the
joint distribution, but not in statements about the conditional distribution. One
may also, for example, have knowledge that certain predictors are uncorrelated
with the outcome y. This can be immediately incorporated in the joint model as
the statement that the corresponding entries of A′β are zero. Such a statement
cannot be similarly incorporated into a regression model, because the regres-
sion coefficient of a predictor that is uncorrelated with y does not have to be
zero. In general, extending the simple joint model with detailed knowledge
about dependency relationships of predictors can be easily done using theory
on graphical models. In many cases, however, there is only the vague and im-
plicit, but nevertheless important, assumption that the model has a ‘simple’
structure, which can be translated as the statement that the matrix A′A and
the vector A′β have many zero elements. We come back to this vague model
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structure assumption in Section 6.8.
We shall derive most of the results in this paper using “reverse asymptot-

ics”, in which the number of predictors p goes to infinity, while the number
of samples n remains fixed or goes to infinity at a much slower rate. We need
a few additional assumptions to make these reverse asymptotics well-defined.
Essentially, we shall let p grow by simply adding new predictor variables to the
vector x. This means that as the parameter space grows, the dimensions of the
matrices A and Ψ grow. We impose the following two restrictions:

1. There are constants 0 < k ≤ K < ∞ such that all eigenvalues of Ψ are
between k and K for all p.

2. The limit limp→∞
1
p AA′ exists and is of full rank m.

First note that by assumption 2 the number of latent variables m does not
grow with p. The value of m is therefore assumed to be small relative to p. For
simplicity of notation, we also assume that m < n throughout this paper, but
this is not a very critical assumption.

The usefulness of the two assumptions 1 and 2 is that they neatly separate
the covariance matrix A′A + Ψ of x into structural covariance (A′A) and local
covariance (Ψ). The structural covariance is caused by a limited number of
latent variables, but each affects a number of the predictors that grows with p.
The local covariance is caused by a vector of errors that grows with p, but each
independent error term affects only a limited number of predictors.

6.4 Regression

From the model equations (6.2) we can easily derive the joint distribution of
the observable variables x and y. From this joint distribution we can derive
any conditional distribution we like. The conditional distribution that is most
interesting for prediction is the conditional distribution of y given the whole
vector x.

The joint vector z = (y, x′)′ has mean zero and covariance matrix

Σz =
(

β′β + σ2 β′A
A′β A′A + Ψ

)
.

The distribution of z is normal if the distributions of x and y are. Therefore,
under normality assumptions it follows that y given x is again normal with a
mean that is linear in x:

E[y | x] = γ′x (6.3)
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where γ = (A′A + Ψ)−1 A′β is a vector of regression coefficients. If normal-
ity is not assumed, the equation (6.3) gives the best linear unbiased prediction
(BLUP) of y given x.

Using a singular value decomposition on AΨ−1/2 we can also write the re-
gression coefficients γ as

γ = Ψ−1 A′(AΨ−1 A′ + I)−1β. (6.4)

This expression will turn out to be more useful. It is computationally easier, as
it does not involve inversion of the complicated p× p matrix A′A + Ψ.

6.5 Easy prediction

We solve the prediction problem in stages. In the previous section we have seen
that in the trivial situation that all parameters are known we should simply
use equation (6.3) to predict ynew from xnew. In this section we study the still
relatively easy situation in which the structural parameters A and β are known
(and hence m is known), but only the error covariance Ψ is not known.

The great difficulty in this situation is that it is almost impossible to estimate
Ψ accurately enough from the training data. This can already be inferred from
the fact that estimating Ψ means estimating p2 parameters, while only n(p + 1)
degrees of freedom are available in the training set. All commonly used esti-
mates of a covariance matrix therefore result in extremely ill-conditioned esti-
mates of Ψ. This ill-conditionedness causes great problems because prediction
involves the inverse of the matrix Ψ.

Ledoit and Wolf (2004) studied the general problem of estimating covari-
ance matrices with high-dimensional data. They proposed an estimate that is
a linear combination of the naive maximum likelihood estimate and a chosen
matrix Θ (typically the identity matrix). This biases the estimated covariance
matrix towards the chosen matrix Θ. It also shrinks the eigenvalues of the esti-
mate towards each other and forces them all to be positive, so that the resulting
estimate is always invertible. However, as the dimension p of the covariance
grows relative to the sample size n, the bias becomes dominant in the estimate
of Ledoit and Wolf. In the limit p → ∞, for fixed n, the optimal estimate is all
bias and no variance. This essentially means that it is hopeless to try to estimate
the covariance matrix Ψ in the p → ∞, n fixed situation that we are interested
in.

It does not mean, however, that prediction of ynew from xnew is hopeless.
We can simply use the limiting estimate of Ledoit and Wolf, which is all bias
and no variance and take any fixed matrix Θ as an ‘estimate’ for Ψ−1. Such a
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Θ is not truly an estimate so we shall refer to it as a surrogate. It should have
similar properties for p → ∞ as Ψ−1. The properties we need are

1. There are constants 0 ≤ l ≤ L < ∞ such that all eigenvalues of Θ are
between l and L for all p.

2. The limit
G = lim

p→∞

1
p

AΘA′

exists and
( 1

p AΘA′ − G
)2 = O(p−1).

3. The limit
τ2 = lim

p→∞

1
p

trace(ΨΘ)

exist and
( 1

p trace(ΨΘ)− τ2)2 = O(p−1).

Note that we allow l = 0 in property 1, which is importantly different from
assumption 1: unlike Ψ−1, the matrix Θ is allowed to be singular. Properties 2
and 3 only serve to rule out some very exotic or degenerate choices of Θ.

Plugging in the surrogate Θ for Ψ−1 in the prediction rule (6.3) results in
a prediction rule with regression coefficients ΘA′(AΘA′ + I)−1β instead of γ.
As the identity matrix I is negligible next to AΘA′ if p is large, we can replace
this by the simpler expression

γΘ = ΘA′(AΘA′)−1β. (6.5)

This vector of regression coefficients γΘ will usually be drastically different
from the vector γ of ‘true’ regression coefficients. But, surprisingly, the result-
ing predictions will be precisely the same if p is large enough. This is stated in
Theorem 1.

Theorem 1 If the matrix G has full rank m, we have

E[(γ′Θx− β′f)2 | f] = O(p−1).

for every f.

The theorem says that in the limit p → ∞ using any surrogate Θ for Ψ−1 will
give perfect predictive performance, as β′f is the expectation of y given f. We
can say that the prediction γ′Θx gives a p-consistent estimate of the mean of y,
where p-consistency is defined completely analogously to ordinary consistency.
By the property of the best linear unbiased prediction, using the true Ψ−1 for
Θ would still give a prediction with least variance for finite p, but the extra
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variance caused by using a ‘wrong’ Θ disappears when p grows to infinity.
The difference will therefore be negligible relative to many other sources of
estimation and prediction error that we will encounter later.

The easiest way to understand the role of the surrogate Θ is view it as a
weighting matrix. In the setup (6.1) almost every predictor variable in x carries
information on f (and through f on y). Most of this information is redundant,
however, if p is much larger than m: a good choice of m predictor variables with
small error would be enough to summarize almost all information in x on y. If
we do use all predictor variables, we are free to choose our own weighting to
aggregate their information on f. The optimal weighting for finding f from x is
Ψ−1, by (6.3), which weights each predictor variable inversely to its error vari-
ance. However, by Theorem 1 any other weighting which spreads the weight
over many predictor variables will do equally well. The intuitive reason for this
is the abundance of information on f in x if p is large.

The interpretation of Θ as a weighting will be useful throughout this paper.
Consequently, all estimates and predictors involving Θ proposed in this paper
will be invariant to multiplication of Θ by a constant. Hence only the relative
magnitudes of the entries of Θ are important, as is appropriate in a weighting
matrix.

The fact that different methods may have very different regression coeffi-
cients and still result in very similar predictions has been noted before (Burn-
ham et al., 2001). It should be seen as a warning against using regression co-
efficients as a basis for modelling or interpretation, and another argument for
modelling in terms of the joint distribution.

6.6 Estimation

There is a big difference between estimation of Ψ and estimation of A, the other
large matrix of parameters. Estimation of Ψ is difficult, even when A is known,
but estimation of A is relatively easy, even if Ψ is unknown. We show this in
this section.

Estimation and finding the prediction rule will be based on a training sam-
ple: an n× p matrix X of predictor variables and a corresponding n-vector y of
outcome variables. Call F the n×m matrix of the realizations of the unobserved
latent variables f for the individuals in the training sample.

We first look at the situation in which both Ψ and m are known. In that
situation we can use a standard theorem from factor analysis, formulated by
Magnus and Neudecker (1999, Chapter 17, Section 12), which we rephrase here
as Theorem 2.
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Theorem 2 (Magnus and Neudecker) Let Λ̃ be the m × m diagonal matrix of the
m largest eigenvalues of the matrix S̃ = 1

p+1{XΨ−1X′ + σ−2y′y} and let Ũ be the
n×m orthogonal matrix with the corresponding eigenvectors.
If Ψ and m are known and the distribution of f is normal, maximum likelihood estimates
of A and β are given by

Ã = n−1/2Υ̃1/2Ũ′X

β̃ = n−1/2Υ̃1/2Ũ′y

where Υ̃ is the m×m diagonal matrix with Υ̃ii = max(0, 1− n
p Λ̃−1

ii ).

Note that the maximum likelihood estimate is not unique if m > 1, due to
the overparametrization metioned in Section 6.3. If W is an m × m orthogonal
matrix, then WÃ and W β̃ are also maximum likelihood estimates.

The proof of Theorem 2 is given in Magnus and Neudecker (1999, Chap-
ter 17, Section 12). Their Theorem and its proof are phrased in the context of
traditional factor analysis. Consequently, they use the additional implicit as-
sumptions that p < n and that Ψ is diagonal. However, it is a simple exercise
to show that their proof also holds for p ≥ n and general positive definite Ψ.

The maximum likelihood estimates of Theorem 2 are not immediately use-
able as they involve the matrix Ψ−1, which cannot be estimated in high-
dimensional data. The standard techniques used in factor analysis to estimate
A, β and Ψ simultaneously (Magnus and Neudecker, 1999, Chapter 17, Sections
12–14) cannot therefore be used. However, we can use the same trick that was
used in Section 6.5, simply replacing Ψ−1 by a well-conditioned surrogate Θ.

The estimates Ã and β̃ also involve the unknown σ2. The influence of σ2

on the estimate disappears very quickly, however, when p becomes large. In
the p → ∞, n fixed situation, there is no loss when we simply replace σ−2 by
zero, just as we replace Ψ−1 by Θ. This neglect of y in the estimation of A
stands in sharp contrast the method of Burnham et al. (1999b), which makes
σ−2 an important tuning parameter. Burnham’s method is very sensible in the
applications it was designed for, where both x and y are high-dimensional. It
is also a sensible strategy when p is small (Wall and Li, 2003). However, in
applications with high-dimensional x but univariate y, the influence of y on the
estimate Ã should always disappear when p → ∞ and σ2 > 0.

Aside from the unknown Ψ, there is also the unknown value of m. Just like
estimation of Ψ, accurate estimation of the true value of m is very difficult, if
not impossible. The solution we propose to the problem of the unknown m is
similar to the problem of the unknown Ψ. We simply replace the unknown m
with a chosen q ≥ 0. This q is not trying to estimate the true number of latent
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variables; it is the number of latent variables we use for prediction. We shall
assume that q ≤ m, but this is only to keep notation and proofs simple.

We propose to estimate A and β as

Â = n−1/2Û′X

β̂ = n−1/2Û′y (6.6)

Where Û and is defined as the n × q orthogonal matrix with the eigenvectors
corresponding to the q largest eigenvalues of the matrix

S =
1
p

XΘX′.

The motivation for these estimates of A and β will come from asymptotic argu-
ments very similar to the arguments used in Section 6.5. Theorem 3 shows that
when p → ∞ it makes no difference whether we use the matrix S̃ involving the
true Ψ and σ2 or the matrix S involving the surrogate Θ.

Because the matrix S does not involve y, the estimates Â and β̂ can easily
be adapted to the situation where y does not have a normal distribution, but
depends on f through a generalized linear model. In that case β is estimated
as the regression coefficients of the Generalized Linear Model with outcome y
and n1/2Û as the design matrix (see also Bair et al., 2004).

By ‖ · ‖ we denote the Frobenius norm: ‖C‖ = trace(C′C)1/2.

Theorem 3 If q ≤ rank(G), there is an m× q semi-orthogonal matrix V, depending
on Â and Ã, such that, almost surely in F,

E
[
‖β̂−V′ β̃‖2 | F

]
= O(p−1)

p−1E
[
‖Â−V′ Ã‖2 | F

]
= O(p−1)

If q = m or if the q-th and q + 1-th eigenvalues of G = limp→∞ p−1 AΘA′ are distinct,
the result holds uniformly in n.

Theorem 3 states that if p is large enough and q = m, the estimates β̂ and
β̃ and Â and Ã differ only by a rotation. As a rotation of Ã is also a maximum
likelihood estimate of A, this means that if q = m, the estimates (6.6) are as-
ymptotically equivalent (for p → ∞) to the maximum likelihood estimates of A
and β. The formulae of (6.6) thus give a good complementary estimation proce-
dure to the traditional iterative estimation procedure for A and β used in factor
analysis models (Magnus and Neudecker, 1999). The procedure is complemen-
tary because it works precisely in the high-dimensional situation in which the
traditional procedure does not.
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When interpreting Theorem 3 one must keep in mind that estimates which
differ only by a q × q rotation matrix can be considered as equivalent because
they lead to the same estimated joint distribution. If q = m, therefore, estimates
Â and β̂ for different surrogates Θ are all asymptotically equivalent because
in the limit p → ∞ they only differ by a q × q rotation matrix V. However, if
q < m, estimates Â and β̂ for different surrogates are different even in the limit
p → ∞, because then the m× q matrices V differ from each other by more than
a q× q rotation.

The effect of the surrogate Θ on the estimate is best understood in terms of
weighted principal components. The matrix Û is the standardized matrix of
the first q principal components of the weighted data matrix XΘ1/2. If p → ∞
the principal components of XΘ1/2 will be the same as those of FAΘ1/2 (see the
proof of Theorem 3). The combined span of the first m principal components of
FAΘ1/2 does not depend on Θ, as it is simply the column span of F. However,
the principal component variances do depend on Θ. Therefore the span of the q
principal components with largest variance does depend on Θ. For finite p, the
minimum variance estimate still remains the estimate with Θ = Ψ−1 (Wentzell
et al., 1997).

We have so far only proved that we can define alternative estimates of A and
β which are non-iterative and are as good as the maximum likelihood estimates
for known Ψ if p → ∞. Of course, this only shows that the proposed estimate is
good if the maximum likelihood estimate itself is good, which may not be the
case if m is close to n. However, in the next section we show that the estimate
Â has good properties when used for prediction.

6.7 Prediction

We want to predict the outcome y from the predictors x in the model (6.2) in
which all parameters are unknown. We propose to combine the results from the
previous sections by plugging the estimates of Section 6.6 into the prediction
rule of Section 6.5.

This would lead to the prediction rule predicting ynew with γ̃′xnew where
the regression coefficients are

γ̃ = ΘÂ′(ÂΘÂ′)−1β̂.

Compare (6.5). Note that if we take Θ = I the regression coefficients γ̃ are
exactly the regression coefficients from a principal components regression. This
can be seen by writing γ̃′xnew = y′ÛÛ′(XX′)−1ÛÛ′Xxnew. If we take Θ 6=
I, the vector γ̃ is the vector of regression coefficients of a weighted principal
components regression.
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This prediction rule needs an adjustment for the large p, small n situation
that we are interested in. It turns out that when n is small, the prediction γ̃′xnew

tends to induce too much shrinkage. This excessive shrinkage is caused by
overfit of Â to the noise in X. This overfit causes ÂΘÂ′ to be systematically
larger than AΘA′: we have

lim
p→∞

1
p

ÂΘÂ′ =
1
p

AΘA′ +
1
n

τ2 I,

where τ2 = limp→∞ p−1trace(ΘΨ). We propose to remedy this overfit in the
small n situation by subtracting an estimate of τ2 I. This leads to the following
prediction rule:

ŷnew = γ̂′xnew (6.7)

with regression coefficients

γ̂ = ΘÂ′(ÂΘÂ′ − p
n

τ̂2 I)−1β̂. (6.8)

The difference between the prediction based on γ̂ and on γ̃ disappears very
quickly when n becomes large, but can be important in the small n situation. It
is essential for the asymptotic p → ∞ result in Theorem 4.

The adjusted prediction rule (6.7) involves a new quantity τ̂2, which is an
estimate of τ2. We define τ̂2 as

τ̂2 =
1

n− r
trace(SQ̂)

where Q̂ is the rank n − r projection matrix for projection on the eigenvectors
corresponding to the n− r smallest eigenvalues of S. It is shown in the appen-
dix that τ̂2 → τ2 as p → ∞ uniformly in n whenever r > m, so that τ̂2 is a good
estimate of τ2 when p is large, even when n is small. It is easily checked that
the matrix ÂΘÂ′ − p

n τ̂2 I in (6.8) is always positive (semi-)definite.
The most important property of the prediction ŷnew is Theorem 4.

Theorem 4 If p → ∞,

E[ (ŷnew − ỹnew)2 | F] = O(p−1)

almost surely, where

ỹnew = y′F(F′F)−1/2VV′(F′F)−1/2fnew

and V is the m× q semi-orthogonal matrix of the eigenvectors of the q largest eigenval-
ues of the matrix (F′F)1/2G(F′F)1/2. If q = m or if the q-th and q + 1-th eigenvalues
of G = limp→∞ p−1 AΘA′ are distinct, the result holds uniformly in n.
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Note that if q = m, the ỹnew in Theorem 4 is simply the least squares pre-
diction of ynew in the situation where F and fnew are observed variables instead
of latent variables. If q < m, the projection matrix VV′ introduces bias into the
prediction, because not all latent variables are used for prediction.

The prediction based on ỹnew is not perfect: it has bias if q < m, and it also
has a prediction variance. The bias and the prediction variance of ỹnew do not
vanish when p → ∞. By Theorem 4, therefore, the prediction error of ŷnew will
be dominated by the prediction error of ỹnew if p is large and n is small, while
the difference between ŷnew and ỹnew will be negligible. We must therefore
study the prediction error of our prediction ŷnew through the prediction error
of ỹnew

The variance and bias of the prediction ỹnew are easy to calculate conditional
on F and fnew. The variance v2 = Var[ỹnew | F, fnew] is

v2 = σ2
y‖V′(F′F)−1/2 fnew‖2 (6.9)

and the bias b = E[ỹnew − β′fnew | F, fnew] is

b = β′(F′F)1/2(I −VV′)(F′F)−1/2fnew. (6.10)

These results would be easier to interpret if we could take the expectation of
the variance and of the squared bias over F and fnew. However, there is no an-
alytical solution for these expectations for finite n, mainly because of the com-
plicated dependence between V and F. However, the small n behaviour of the
bias and variance of ỹnew is very similar to the large n behaviour. As n → ∞,

nE[v2] → qσ2

E[b2] → β′(I −VV′)β (6.11)

where V is now a matrix of eigenvectors of G.
A trade-off between v2 and b determines the performance for different q and

Θ of the prediction rule (6.7) proposed above. Some interesting conclusions can
be drawn.

In the first place it is not always optimal to take q = m, even if m is known.
Reducing q below m will usually increase the squared bias b2, but it will always
decrease the prediction variance v2. If the decrease in variance is larger than the
increase in bias, the prediction rule with smaller q will be the better one. This
shows that it is often not worthwhile to try to estimate m, as knowledge of m
does not necessarily lead to improved prediction accuracy.

There is a value of q somewhere between 0 and m where the trade-off be-
tween bias and variance leads to optimal prediction error. The location of this
optimum depends on n: larger n means smaller prediction variance v2, but not
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a smaller bias b. Therefore the optimal trade-off will be different. Typically,
a larger n will lead to a larger optimal q. The location of the optimal q also
depends on Θ, as the choice of Θ also affects the size of the bias.

Unlike the choice of q, the choice of Θ does not involve a trade-off between
bias and variance. The reason for this is that, as remarked above, the choice of
Θ only influences the distribution of the bias b of the prediction, but not of the
variance v2. Therefore, we can choose a Θ that makes the bias small, without
automatically incurring a large prediction variance. Furthermore, if we can find
a Θ that produces small bias even for small values of q, we can choose q small,
thereby indirectly reducing the variance v2.

The prediction rule (6.7) therefore has a predictive performance that is as
good, if p → ∞, as the prediction ỹnew of an ‘oracle’ that observes the unob-
servable latent variables. We get this predictive performance for any Θ when
we choose q = m. A smart choice of Θ and q may even result in a better predic-
tive performance than ỹnew. However, whereas finding the optimal q for fixed
Θ is doable, finding an optimal Θ is a daunting task even for fixed q, due to the
enormously large search space. We discuss one promising strategy in the next
section.

6.8 Supervised Principal Components

The model of this paper seemed to be especially designed for supporting Princi-
pal Components Regression. In the previous section, however, we have already
shown that even when m is known, Principal Components Regression with m
components is not necessarily the optimal prediction rule. In this section we
show that there are good arguments in favour of a data-driven way to choose
Θ, which leads to a variant of the Supervised Principal Components method
recently proposed by Bair et al. (2004). Due to the increased complexity of a
having a random Θ, exact statements are difficult to prove and this section will
be more informal than the previous sections.

Which choice of Θ induces the smallest bias? This is easiest to see in the
large n situation of equation (6.11), but it holds similarly for the more complex
situation of equation (6.10). The bias is small if β′(I − VV′)β is small, which
happens if β is in the span of the eigenvectors of the q largest eigenvalues of
G = limp→∞ p−1 AΘA′. If Θ is diagonal, with i-th diagonal element θi, we have

G =
1
p

p

∑
i=1

θiαiα
′
i

where αi is the i-th column of A (an m-vector). To push the eigenvectors of the
large eigenvalues of G in the direction of β, we should give a large weight θi to
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predictor variables which have a large correlation between αi and β, and vice
versa give a small weight θi to variables which have a low correlation.

As A and β are not known, a suitable proxy to the correlation between αi
and β is the correlation between xi and y, where xi is the i-th column of X.
Predictor variables which have a large correlation between xi and y tend to have
a large correlation between αi and β, combined with a small error variance.

This suggests a very simple method for choosing Θ, which can be expected
to lead to a small bias b even when q is small. This method finds a limited num-
ber of predictors which have the largest correlation with the outcome. It gives
these predictors equal weight (θi = 1), and all other predictors zero weight
(θi = 0). Using this Θ in combination with a small value of q in the prediction
rule (6.7) gives precisely the Supervised Principal Components method pro-
posed by Bair et al. (2004), except for the improvement based on τ̂2 that we
proposed in equation (6.7). Variants of Supervised Principal Components can
easily be thought of, for example taking θi equal to the squared correlation be-
tween xi and y. But these variants are not essentially different, so we study the
original proposal by Bair et al. (2004).

For such a “supervised” data-driven choice of a surrogate the discussion on
variance and bias in Section 6.7 is not strictly valid, because due to the data-
dependent construction of Θ the matrix V is not independent of the error in
the outcomes y. Therefore the distinction between bias and variance is not the
same as it is for fixed Θ. The data-dependent choice of Θ will, therefore, usually
not just reduce the bias but also increase the variance of the prediction. There
is no explicit expression for bias and variance in this case.

Similarly, Theorem 4 does not hold for a Θ that depends on X. However,
we can conclude from Theorem 4 that the prediction result is extremely ro-
bust against the choice of Θ, because that theorem holds for every fixed Θ. If
Θ spreads the weight over many predictor variables, the first few principal
components are principal components of a large subset of the columns of the
matrix X. By Theorem 4, prediction based on the principal components of any
such large subset is indistinguishable from prediction based on the true latent
variables f. Because this result is result holds for all fixed Θ, we can also ex-
pect it to hold for a data-dependent Θ, as long as Θ is not ‘too data-dependent’,
but still selects a large subset of the predictors. We can therefore expect good
prediction results if we combine a data-dependent Θ as in Supervised Princi-
pal Components regression, provided Θ does not put all its weight on a small
subset of the predictors.

Using a data-dependent weighting Θ becomes even more attractive if n is
large, because the variance of Θ will disappear as n grows. For large n the
approximations (6.11) of bias and variance are asymptotically still valid. For
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large n, the Supervised Principal Components choice of Θ combined with a
small value of q will lead to a small prediction variance and a small bias.

Supervised principal components uses the information in y to choose a
weighting of the predictor variables to be used to calculate principal compo-
nents, but does not let y influence these components directly. Therefore it has
the desirable tendency to choose those principal components that have a rela-
tionship with y. However it is relatively robust against pushing the principal
components into the directions of the error of y, because only a small number of
predictors will have their errors correlated with the error of y. These will typ-
ically be too few in number to have a large influence on the first few principal
components.

In many applications, for example in microarray data, there is the implicit
assumption that many of the predictor variables are not correlated with the out-
come y. This can be translated as the assumption that many entries of A′β are
exactly zero. Predictors with α′iβ zero should ideally be given zero weight when
doing the principal components calculations, because they only add weight to
unimportant principal component directions. A good way to filter out the pre-
dictors with α′iβ = 0 is to remove the predictors with low correlation with the
outcome. This assumption that the model is structured in the sense that many
predictor variables are uncorrelated with the outcome therefore also gives an
argument in favour of using Supervised Principal Components.

6.9 Application

In this section we present a simulation study to illustrate the findings above. To
make the simulations realistic, they are based on a microarray gene expression
data set of breast cancer patients by Van de Vijver et al. (2002).

Our simulations complement the extensive simulation and data analysis
presented by Bair et al. (2004). In their analysis they compare Supervised Prin-
cipal Components to several other commonly used methods, showing that Su-
pervised Principal Components has good performance relative to other meth-
ods. In these simulations they always chose q = 1, but chose the number of
selected genes using cross-validation.

Our simulation setup is as follows. We used the data by Van de Vijver et al.
(2002) in order to obtain realistic values for the parameters A and Ψ. In the
original data there were 295 patients and 24,481 predictors, of which 293 pa-
tients and 23,862 predictors remained after removing some of the patients and
predictors due to missing values. We took 10 as the true value of m and esti-
mated A using the procedures described in Section 6.6. To obtain more highly
structured relationships between the latent variables f and the observed x, as
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is biologically expected for microarray data, we applied hard thresholding to
A, setting all but the 10% largest absolute values of Â to zero. We took Ψ as
a diagonal matrix, the standard method-of-moments estimate of a diagonal Ψ
given A:

Ψ̂ =
1

n−m
diag(X′X − nÂ′ Â).

These values of A and Ψ were subsequently used as the true values in the sim-
ulation experiments that follow.

In our simulation experiment we compared the performance of our version
of the Supervised Principal Components method for all values of q and for vari-
ous choices of the number s of selected predictors. We investigated what values
of q and s tend to do well in prediction. We also investigated how this answer
depends on β. We generated datasets based on different choices of β, each
letting y depend on a different latent variable. In the simulation k, we define
βk = ek, the k-th standard basis vector. Depending on the choice of k, between
5,742 (k = 2) and 989 (k = 10) predictors were correlated with the outcome
y. We always chose σ2 = 1, so that at most 50% of the variance of y can be
predicted from x.

Based on the A and Ψ values chosen above, we generated a training data
set of X and y of n = 20 patients and p = 23,862 predictors using a matrix F
of latent variables and based on the model equations (6.2). The performance of
the prediction rules created on this data-set was evaluated using an indepen-
dently generated test set of n = 100 patients. The performance of the method
depends on the realized values of the latent variables F in the training and test
set. Therefore we repeated the whole procedure of generating training and test
sets 100 times to be able to average out the effects of F. The construction of Θ
for the pre-selection of genes was done for each data set separately.

In the tables we give the results of the simulations for the five different
choices of β. It has to be remarked that due to the thresholding the rows of
A are not orthogonal anymore and that the ordering of the norms of the rows
may have changed. However, the value of k still gives a good indication how
much of the variance of x is explained by the latent variable f′β: the larger k,
the more variance f′β explains.

The results of the simulations are given in Tables 1–5. From these simu-
lations we see clearly that it is highly worthwhile to make a pre-selection of
predictors prior to doing Principal Components Regression. The lowest predic-
tion error of the methods that select fewer than 23,862 predictors is in all cases
lower than the prediction error of the ‘plain’ Principal Components Regression.
Furthermore, this optimum is attained at much lower values of q. However,
taking a too small subset to do the Principal Components Regression leads to
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TABLE 6.1: Mean squared prediction error for Supervised Principal Components for various
choices of the number of components used and of the number op predictors selected. Simu-
lated data in which the first latent variable is related to y and to 4,201 predictor variables.

# pred. # components q
1 2 3 4 5 6 7 8 9 10

23,862 0.44 0.28 0.24 0.23 0.22 0.22 0.22 0.22 0.22 0.22
10,000 0.18 0.17 0.18 0.19 0.21 0.22 0.23 0.24 0.24 0.25
5,000 0.14 0.16 0.18 0.20 0.22 0.23 0.23 0.24 0.25 0.25
1,000 0.12 0.14 0.16 0.18 0.20 0.20 0.21 0.21 0.22 0.22
200 0.13 0.14 0.16 0.17 0.18 0.20 0.21 0.22 0.22 0.24
50 0.18 0.19 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32

TABLE 6.2: Mean squared prediction error for Supervised Principal Components for various
choices of the number of components used and of the number op predictors selected. Simu-
lated data in which the second latent variable is related to y and to 5,742 predictor variables.

# pred. # components q
1 2 3 4 5 6 7 8 9 10

23,862 0.80 0.43 0.35 0.33 0.31 0.31 0.31 0.31 0.31 0.31
10,000 0.31 0.25 0.26 0.28 0.29 0.30 0.31 0.32 0.33 0.33
5,000 0.22 0.23 0.26 0.28 0.29 0.30 0.31 0.32 0.32 0.32
1,000 0.14 0.22 0.24 0.26 0.26 0.27 0.27 0.28 0.28 0.29
200 0.14 0.19 0.21 0.23 0.24 0.25 0.26 0.27 0.28 0.28
50 0.19 0.22 0.23 0.24 0.25 0.27 0.28 0.30 0.31 0.33

TABLE 6.3: Mean squared prediction error for Supervised Principal Components for various
choices of the number of components used and of the number op predictors selected. Simu-
lated data in which the third latent variable is related to y and to 2,718 predictor variables.

# pred. # components q
1 2 3 4 5 6 7 8 9 10

23,862 0.98 0.86 0.61 0.51 0.47 0.46 0.45 0.44 0.44 0.43
10,000 0.60 0.46 0.38 0.39 0.40 0.41 0.42 0.43 0.43 0.44
5,000 0.45 0.39 0.36 0.38 0.40 0.41 0.42 0.43 0.43 0.43
1,000 0.33 0.32 0.33 0.35 0.38 0.38 0.39 0.40 0.40 0.41
200 0.31 0.31 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40
50 0.37 0.35 0.36 0.37 0.38 0.40 0.40 0.43 0.44 0.46

inflated prediction error, because the selected data set cannot be called high-
dimensional anymore. This is all precisely as expected from the discussion in
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TABLE 6.4: Mean squared prediction error for Supervised Principal Components for various
choices of the number of components used and of the number op predictors selected. Simu-
lated data in which the sixth latent variable is related to y and to 1,731 predictor variables.

# pred. # components q
1 2 3 4 5 6 7 8 9 10

23,862 1.04 1.05 1.00 0.93 0.87 0.80 0.75 0.72 0.70 0.69
10,000 0.96 0.86 0.75 0.70 0.67 0.66 0.65 0.65 0.66 0.66
5,000 0.82 0.72 0.66 0.64 0.63 0.63 0.63 0.64 0.64 0.64
1,000 0.63 0.59 0.58 0.58 0.58 0.59 0.59 0.60 0.60 0.60
200 0.58 0.57 0.56 0.56 0.57 0.58 0.58 0.58 0.59 0.59
50 0.62 0.60 0.60 0.61 0.62 0.63 0.63 0.65 0.65 0.66

TABLE 6.5: Mean squared prediction error for Supervised Principal Components for various
choices of the number of components used and of the number op predictors selected. Simu-
lated data in which the tenth latent variable is related to y and to 989 predictor variables.

# pred. # components q
1 2 3 4 5 6 7 8 9 10

23,862 1.05 1.06 1.07 1.06 1.04 1.00 0.94 0.90 0.87 0.85
10,000 1.11 1.05 0.98 0.92 0.88 0.85 0.83 0.82 0.82 0.82
5,000 1.03 0.96 0.92 0.87 0.84 0.82 0.81 0.81 0.81 0.81
1,000 0.92 0.88 0.85 0.82 0.82 0.81 0.81 0.80 0.80 0.80
200 0.90 0.88 0.87 0.86 0.86 0.85 0.85 0.85 0.85 0.84
50 0.96 0.94 0.94 0.94 0.94 0.94 0.96 0.96 0.97 0.97

Section 6.8. It is interesting to note, however, that even when a pre-selection of
genes gives better results, it is not always at very low values of q. This can be
seen in table 6.5. The differences between methods are small here, however.

A first recommendation from these simulations is that a supervised version
of Principal Components Regression is always preferable to a non-supervised
one, because the optimal prediction error was never attained without pre-
selection of genes. It is already common practice in microarray research to do
a pre-selection of genes based on the variance of genes. A pre-selection that
also takes correlation with the outcome into account may increase predictive
accuracy. A second recommendation is that, when using Supervised Principal
Components, it is not advisable to only look at the case q = 1 as Bair et al. do.
Often a better prediction error can be found at slightly larger values of q, so it
can be worthwhile to also search for an optimum among these values. Cross-
validation can be a good strategy for that.
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6.10 Discussion

We have constructed a basic joint model of the predictor variables x and the
outcome y, in which both x and y depend on a set of m latent variables. This
model is very general because it assumes a general error structure for x and it
does not assume that number of latent variables is known.

We have shown that assuming this model and constructing a prediction rule
which has good properties in the p → ∞, n fixed, situation leads to weighted
principal components regression in a natural way. The ideal weighting is one
that puts most weight on those predictor variables that are correlated with the
outcome y. This gives good arguments for using a variant of the method of
Supervised Principal Components (Bair et al., 2004), which puts all weight on a
subset of the predictor variables that is correlated with the outcome.

This result may be considered surprising, because the method of Super-
vised Principal Components was originally motivated using a very different
and much more restrictive model and its good properties were proved in this
model using traditional n → ∞ asymptotics. Furthermore, the model of this pa-
per is actually very similar to the method presented by Burnham et al. (1999a,b)
to motivate their method.

The essential assumption for the construction of the method in this paper
are that the number of predictors p is very large, specifically much larger than
the sample size n, and that the unpredictable part of y is not negligible. These
assumptions are very realistic in many statistical applications in modern sci-
ence, where extremely high-dimensional data are become the rule rather than
the exception.

The model presented in this paper also makes a few other assumptions
which are not strictly essential, but merely serve to keep the subject matter
from becoming too technical. Examples of such assumptions are the normal-
ity of the errors, the assumptions that m < n and that q ≤ m. We expect that
these assumptions can be dropped without leading to important difficulties. Of
greater practical relevance is to investigate what happens when the surrogate
Θ used for estimation of A and β is different from the surrogate that is used
for prediction. This allows more flexibility in the prediction process, for exam-
ple when there are missing data in xnew. Another important extension of the
model would allow y to depend on f through a generalized linear model. As
Supervised Principal Components is also advocated for these situations, it is
interesting to check whether the arguments presented in this paper still apply.
At what cost all the above assumptions can be dropped may be an interesting
subject for further research.
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6.11 Proofs of the theorems

Theorem 1

Proof: Recall that x = A′f + e, so

γ′Θx = β′(AΘA′)−1 AΘA′f + γ′Θe

= β′f + γ′Θe,

so the mean of γ′Θx is β′f. The variance is

Var(γ′Θe) = β′(AΘA′ + I)−1 AΘΨΘA′(AΘA′ + I)−1β.

This latter expression is O(p−1) by Assumptions 1 and 2 and the properties of
the surrogate Θ. 2

Theorem 3

The proofs of Theorem 3 requires the following three Lemmas, which relate the
matrix S to its limiting expectation

Σ = FGΘF′ + τ2 I

where GΘ = limp→∞ p−1 AΘA′ and τ2 = limp→∞ p−1trace(ΘΨ). The matrix Σ
exists and is finite by the properties of Θ.

Lemma 1 As p → ∞,

1
n2 E

[
‖S− Σ‖2 | F

]
= O(p−1).

The statement holds almost surely in F uniformly in n.

This lemma is modification of Lemma 1 in Van Houwelingen and Schipper
(1981).

Proof: We first prove this lemma under slightly different assumptions. We
shall assume that Θ = I and Ψ is diagonal, but not necessarily invertible. Let
ψ2

i ≥ 0 be the i-th diagonal element of Ψ, xi the i-th column of X (an n-vector)
and αi the i-th column of A (an m-vector).

Call R = S− E(S | F). Then we have

R =
1
p

p

∑
i=1

(
xix′i − Fαiα

′
iF
′ − σ2

i I
)
.
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Given F, R is an average of independent zero mean random variables, so by the
law of large numbers and the fact that E(S | F) = Σ +O(p−1/2), by Assumption
2 on page 95, the statement of the lemma follows for fixed n.

To prove uniformity in n we will show that

1
n2 E

[
‖R‖2 | F

]
=

1
n2 p2

p

∑
i=1

trace{E[R2
i | F]}

is bounded in n, where Ri = xix′i − Fαiα
′
iF
′ − σ2

i I. For each i we can write
xi = Fα + ei with ei an n-vector of independent normal errors with fourth
moment κi < ∞. Then

1
n2 trace{E[R2

i | F]} =
1
n2 trace{(Fαiei + eiα

′
iF
′ + eie′i − σ2

i I)2}

=
4
n

σ2
i α′iF

′Fαi + 2σ4
i .

For every i this expression converges a.s. to a limit as n → ∞, because by the
strong law of large numbers n−1F′F → I (a.s.). This proves the lemma for Θ = I
and Ψ diagonal.

For general Θ and Ψ, we write Ψ1/2Θ1/2 in a singular value decomposition
as Ψ1/2Θ1/2 = QD1/2T′, where Q and T are p × p orthogonal matrices and
D is diagonal. Transform the data matrix X to X̃ = XΘ1/2T. Then X̃ and y
conform to the general model (6.2) with parameters Ã = AΘ1/2T and Ψ̃ = D.
For this model we can take Θ̃ = I and apply this lemma on S̃ = p−1X̃Θ̃X̃′ and
its corresponding Σ̃. This immediately proves the statement of the lemma for
X, as S̃ = S and Σ̃ = Σ. 2

For the next lemma, define P̂ = ÛÛ′ and, analogously, define P as the pro-
jection matrix for projection on the space spanned by the eigenvectors of the q
largest eigenvalues of Σ. Let U be an n × q semi-orthogonal matrix such that
P == UU′.

Lemma 2 If q ≤ rank(G), the matrix P exists a.s. and is given by

P = F(F′F)−1/2VV′(F′F)−1/2F′,

where V is the m× q semi-orthogonal matrix of the eigenvectors of q largest eigenvalues
of (F′F)1/2G(F′F)1/2.

Proof: Note that T = F(F′F)−1/2 is a.s. an n×m semi-orthogonal matrix and
that Σ a.s. has distinct q-th and q + 1-th eigenvalues. Decompose

Σ = T(F′F)1/2G(F′F)1/2T′ + τ2 I.
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Diagonalize (F′F)1/2G(F′F)1/2 = VDV′. Then the diagonalization of Σ is

Σ = TVDV′T′ + τ2 I.

The eigenvectors of the largest eigenvalues of Σ are the same as those of
TVDV′T′, and these are therefore given by U = TV. Hence P = TVV′T′.

2

Lemma 3 If q ≤ rank(G), as p → ∞,

E
[
‖P̂− P‖2 | F

]
= O(p−1).

almost surely. Furthermore, if q = m or if the q-th and q + 1-th eigenvalues of G are
distinct, the statement holds uniformly in n.

This lemma is a generalization of Lemma 2 in Van Houwelingen (1984).
Proof: By definition P̂ maximizes trace(SP̂) among all projection matrices of

rank q. Call R = S− Σ. We have

trace{Σ(P− P̂)} = trace{S(P− P̂)}+ trace{R(P̂− P)}
≤ trace{R(P̂− P)}
≤ ‖R‖ · ‖P̂− P‖, (6.12)

the last statement being an application of the Schwartz inequality. Let λq and
λq+1 be the q-th and q + 1-th largest eigenvalues of Σ. Then

trace{Σ(P− P̂)} = trace{PΣP(P− P̂)}
+ trace{(I − P)Σ(I − P)(P− P̂)}

= trace{(I − P̂)PΣP(I − P̂)}
− trace{P̂(I − P)Σ(I − P)P̂}

≥ λqtrace(P− PP̂)− λq+1trace(P̂− PP̂)

=
1
2
(λq − λq+1)‖P− P̂‖2. (6.13)

The final equation uses trace{(P − P̂)2} = trace(P) − 2trace(PP̂) + trace(P̂)
and trace(P) = trace(P̂). Combining (6.12) and (6.13) yields

‖P− P̂‖ ≤ 2
λq − λq+1

‖R‖.

By the randomness of F and the assumption that q ≤ rank(G), the first
q + 1 eigenvalues of Σ are almost surely distinct, so λq − λq+1 > 0 and the first
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statement of this lemma for fixed n follows directly from Lemma 1 by squaring
and taking expectations.

To prove the uniformity we again remark that n−1F′F → I (a.s.) as n →
∞. Hence n−1(F′F)1/2G(F′F)1/2 → G and consequently n−1(λq − λq+1) tends
to a non-zero limit almost surely, by the assumption on the eigenvalues of G.
Therefore the upper bound

2n
λq − λq+1

‖n−1R‖.

remains bounded in n almost surely. 2

Lemma 4 If q ≤ rank(G), there is a q × q rotation matrix W, depending on U and
Û, such that as p → ∞,

E
[
‖Û −UW‖2 | F

]
= O(p−1)

almost surely. Furthermore, if q = m or if the q-th and q + 1-th eigenvalue of G are
distinct, the statement holds uniformly in n.

Proof: First remark that PP̂ almost surely has rank q, so that U′Û also has
rank q and is invertible. Choose W = U′Û(Û′UU′Û)−1/2, which is a q × q
orthogonal matrix. Then

‖Û −UW‖2 = trace(ÛÛ′)− 2trace(UWÛ′) + trace(UU′)

= trace(P)− 2trace{(Û′UU′Û)1/2}+ trace(P̂)

The eigenvalues of (Û′UU′Û)1/2 are the singular values of the matrix PP̂ and
therefore the square roots of the eigenvalues of the matrix PP̂P. The eigenval-
ues of the latter matrix are between zero and one, so the square roots of these
eigenvalues are larger than the eigenvalues themselves. Hence

trace{(Û′UU′Û)1/2} ≥ trace(Û′UU′Û) = trace(PP̂),

so that

‖Û −UW‖2 ≤ trace(P)− 2trace(PP̂) + trace(P̂)

= ‖P− P̂‖2

The statements of the lemma now follow immediately from their counterparts
in Lemma 3. 2
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Proof of Theorem 3: First we apply Lemma 4 both to the matrix Ũ. There is an
m × m rotation matrix W̃ such that E

[
‖Ũ −UmW̃‖2 | F

]
= O(p−1), where Um

is (a rotation of) the n×m semi-orthogonal matrix of the eigenvectors of the m
largest eigenvalues of Σ̃ = FG̃F′ + τ̃2 I. As G̃ is full rank, we can take Um as
Um = F(F′F)−1/2.

Next we apply Lemma 4 to the matrix Û. There is a q × q matrix W such
that E

[
‖Û −UqW‖2 | F

]
= O(p−1), where Uq is (a rotation of) the n × q semi-

orthogonal matrix of the eigenvalues of the q largest eigenvalues of Σ̃ = FGF′ +
τ2 I. As the matrix of the eigenvectors of the m largest eigenvalues is a rotation
of Um, the matrix of the eigenvectors of the q largest eigenvalues is a UmV0 for
some m× q semi-orthogonal matrix V0.

Remark that Λ̃ = Ũ′S̃Ũ < ∞ as p → ∞, so it is easily checked that Υ̃ =
I + OP(p−1) uniformly in n.

Define V = W̃V0W. Then

1
p

E
[
‖Â−V′ Ã‖2 | F

]
=

1
np

E
[
‖(Û′ −V′Υ̃1/2Ũ′)X‖2 | F

]
≤ 1

np
E
[
‖X‖2 | F

]
· E

[
‖Û′ −V′Υ̃1/2Ũ′‖2 | F

]
by the Schwartz inequality. The first factor on the right hand side of the in-
equality converges to a finite limit as p → ∞, a.s. uniformly in n. The second
factor can be bounded further by

E
[
‖Û′ −V′Υ̃1/2Ũ′‖2 | F

]
≤ E

[
‖Û′ −WV′

0U′
m‖2 | F

]
+ E

[
‖V′Υ̃1/2Ũ′ −WV′

0U′
m‖2 | F

]
Both terms are O(p−1) (a.s.) uniformly in n by Lemma 4, which proves the
statement about Â and Ã. The proof of the statement about β̂ and β̃ is com-
pletely analogous. 2

Theorem 4

We first formulate and prove a lemma on τ̂2

Lemma 5 If r > m, as p → ∞,

E
[
(τ̂2 − τ2)2 | F

]
= O(p−1)

almost surely and uniformly in n.
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Proof: We have

τ̂2 − τ2 = 1
n−r trace(SQ̂)− 1

n−r trace(τ2Q̂)

= 1
n−r trace{Q̂(S− Σ)}+ 1

n−r trace{Q̂(Σ− τ2 I)}.

Construct P̂ and P from S and Σ for q = rank(G). Then P(Σ − τ2 I) = Σ − τ2 I
and trace(Q̂T) ≤ trace{(I − P̂)T} for any positive semi-definite T. We have

|τ̂2 − τ2| ≤ 1
n−r |trace(S− Σ)|+ 1

n−r trace{(I − P̂)P(Σ− τ2 I)}
≤ 1

n−r‖S− Σ‖+ 1
n−r‖(I − P̂)P‖ · ‖Σ− τ2 I‖.

The result follows when we remark that ‖P − PP̂‖2 = 1
2‖P − P̂‖2 and apply

Lemmas 1 and 3. 2

Proof of Theorem 4: Write xnew = Afnew + enew and X = FA + E . We have

γ̂′xnew = y′Û(Û′XΘX′Û + pτ̂2 I)−1Û′XΘAfnew + γ̂enew

=
1
p

y′ P̂(S− τ̂2 I)−1P̂FAΘAfnew (6.14)

+
1
p

y′ P̂(S− τ̂2 I)−1P̂EΘAfnew (6.15)

+
1
p

y′ P̂(S− τ̂2 I)−1P̂XΘenew, (6.16)

which is a sum of three complicated-looking terms, which we shorthand t1
(6.14), t2 (6.15) and t3 (6.16) in the order they appear above. We study the
behaviour of the three terms when p → ∞. The calculations are tedious but
straightforward. They mainly involve repeated application of Lemmas 1 and 3.

We have

E[(t1 − ỹnew)2 | F] = O(p−1)

E[t2
2 | F] = O(p−1)

E[t2
3 | F] = O(p−1),

all uniformly in n under the conditions given. This proves the theorem. 2
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CHAPTER 7

Enhancing Scatterplots with
Smoothed Densities

Abstract

Scatterplots of microarray data generally contain a very large number of dots,
making it difficult to get a good impression of their distribution in dense areas.
We present a fast an simple algorithm for two-dimensional histogram smooth-
ing to visually enhance scatterplots. Functions for Matlab and R are available
from the authors.

7.1 Introduction

The scatterplot is a simple but effective tool in microarray analysis. It is one
of the best ways to visualize expressions of two arrays (or of two dye colours
on one array). Still the scatterplot leaves much to be desired. Because of the
large number of dots, up to ten thousand or more, large parts of the picture
can become completely black. Then it is hard to get a good impression of the
distribution of the spots. Figure 7.1 shows an example. When the plotting
symbols are large, as in the left panel, the center of the graph gets completely
filled with ink. As the right panel shows, it helps to use very small symbols,
but then isolated dots can easily be missed.

A solution is to move from plotting of the individual dots to a presentation
of their empirical distribution. An obvious choice is the two-dimensional his-
togram. Unfortunately, either one has to use rather wide bins, or to accept a
rather choppy histogram. Figure 7.2 shows examples.

This is a pre-copy-editing, author-produced version of an article accepted for publication in
Bioinformatics following peer review. The definitive publisher-authenticated version: P. H. C. Eilers
and J. J. Goeman (2004). Enhancing scatterplots with smoothed densities. Bioinformatics 20(5), 623–
628 is available online at: http://dx.doi.org/10.1093/bioinformatics/btg454.
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Chapter 7. Enhancing Scatterplots with Smoothed Densities

We can achieve large improvements if we use a histogram with narrow bins
and additional smoothing, as is shown in Figure 7.3, which is based on his-
tograms with 200 bins in both directions. In this paper we present an algorithm
for fast and effective smoothing of two-dimensional histograms. Speed is im-
portant, because in everyday work many scatterplots are made on a computer
screen to help in exploratory data analysis.
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FIGURE 7.1: Two scatterplots of log-expressions of a pair of microarrays. Left: large symbols,
right: small symbols.

7.2 Algorithm

The two-dimensional histogram is a natural generalization of the well-known
histogram. The x-y domain is cut into rectangles and the number of observa-
tions in each rectangle is counted. As Figure 7.2 shows, a graphical display of
this raw histogram is not a great succes. We can make it more informative (and
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FIGURE 7.2: Two-dimensional histograms, derived from the scatterplots in Figure 1. Left: 50
by 50 bins, right: 200 by 200 bins.

attractive) with a simple smoothing algorithm.
Let H be the matrix of counts resulting from a two-dimensional histogram.

Consider smoothing of one column of H, we will call it the vector y, to get a
vector z. The distance from z to y can be measured as the sum of squares of the
residuals y− z:

S = ∑
i
(yi − zi)2 = |y− z|2.

The roughness of z can be measured by first computing differences,

∆zi = zi − zi−1,

and then summing their squares:

R = ∑
i
(∆zi)2 = |D1z|2.
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FIGURE 7.3: Smoothed two-dimensional histograms, derived from the scatterplots in Figure 1,
using 200 by 200 bins. Left: λ = 1, right: λ = 10.

Here D1 is a first-order difference matrix such that D1z = ∆z:

D1 =

 −1 1 ∅
. . . . . .

∅ −1 1

 .

We combine S and R in one penalized least squares function Q:

Q = S + λR = |y− z|2 + λ|D1z|2, (7.1)

and compute the vector ẑ that minimizes Q. By changing λ we can balance our
preference between fit to the data y (the first term) and roughness of z (the sec-
ond term). The higher λ, the more the roughness of z will be penalized, leading
to a smoother result, at the cost of the fit to y getting worse. The minimizer of
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Q is the solution to the following linear system of equations:

(I + λD′
1D1)ẑ = y, (7.2)

where I is the identity matrix. For moderate lengths of y, say 200 or less, it can
be solved very quickly on modern computers.

A refinement uses second order differences:

∆2zi = ∆(∆zi) = (zi − zi−1)− (zi−1 − zi−2) = zi − 2zi−1 + zi−2.

The only change to the system (7.2) is that D1 is changed to a second order
difference matrix

D2 =

 1 −2 1 ∅
. . . . . . . . .

∅ 1 −2 1

 .

and λ changed to λ2.
Figure 7.4 shows one column of H and the effect of smoothing with differ-

ent values of λ, using first or second order differences. The latter choice gives
a somewhat smoother result and follows the peaks better. However, there is
a slight problem: we can get negative values if we use second order differ-
ences, especially with strong smoothing. The explanation is shown in Fig-
ure 7.5, where the impulse response of the smoothers is displayed. Imagine
a degenerate histogram with zeroes in all cells but one, which contains a one.
Smoothing this impulse shows what happens to one count. Any histogram can
be interpreted as a sum of many of these impulses, with different positions of
the single count. Because the smoother is linear, the smoothed histogram is the
sum of the corresponding smoothed impulses. With first-order differences the
impulse response has the shape of decaying exponentials in both directions and
it cannot become negative. With second-order differences, each branch of the
impulse response consists of two exponentials, in a combination that leads to a
negative minimum.

For visual display, negative values of the smoothed histogram are not re-
ally a problem. But it is inelegant and it can be harmful when results are used
for further computations that expect non-negative probabilities. A solution is
to use both a first and second-order penalty (Eilers, 1994). We use the penalty
λ2|D2z|2 + αλ|D1z|2 and search for (a “pleasant” number) α that keeps the im-
pulse response from becoming non-positive; α = 2 is a round number that
works well. The penalized least squares function becomes.

Q = |y− z|2 + λ2|D2z|2 + 2λ|D1z|2. (7.3)
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FIGURE 7.4: Smoothing of a one-dimensional histogram. Top: using first-order differences,
bottom: using second-order differences.

The impulse response of this smoother is also shown in Figure 7.5. The peak is
rounded like that of the second-order smoother and the tails are like that of the
first-order smoother.

The idea of using differences in a penalty goes back at least to Whit-
taker (1923). Extensions and fast algorithms for one-dimensional smoothing
have been presented elsewhere (Eilers, 1994, 2003). An attractive property of
this smoother is that it respects boundaries. This is unlike a kernel density
smoother, which computes a weighted local mean and implicitly assumes zero
counts past the boundaries of a histogram. This can do little harm on densities
with tails that gradually slope down. But it is when a density has its peak at, or
near, zero. The peak will be rounded too much by a kernel smoother. This type
of density frequently occurs with when one studies squares of absolute values
of data, to get an impression of variance or standard deviation.
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Impulse response; penalties of order 1, 2, and combined Impulse response; penalties of order 1, 2, and combined

FIGURE 7.5: Impulse response of the smoother (arbitrary scales). Peaked curve: first-order dif-
ferences; rounded broken-line curve with negative lobe: second-order differences; thick-line
curve: combined differences. Left panel: equal values of λ; right panel: λ/2 for combined
differences.

Once we have a good smoother for vectors, it is trivial to apply it to all
columns of a matrix. The standard algorithms in Matlab, R or S-plus for the
solution of linear equations accept a matrix as the right-hand side and return
the solution as a matrix. Thus we can write the smoothing of a matrix Y, to get
Z as a simple modification of (7.2):

(I + 2λD′
1D1 + λ2D′

2D2)Ẑ = Y. (7.4)

This is the basis for fast smoothing of a two-dimensional histogram H: first
smooth the columns of H to get, say, G and then smooth the columns of G′

(which are the rows of G) to get F′, the transpose of the desired result. It is easily
checked that the result is invariant to the order of the smoothing operations:
smoothing the rows of H before the columns leads to the same result.

Only a few lines of Matlab are needed to apply the smoother to a histogram
given in a matrix H: F = expsm(expsm(H, lambda)’, lambda)’;, where expsm
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is a function defined as

function Z = expsm(Y, lambda)

m = size(Y, 1);

E = eye(m);

D1 = diff(E);

D2 = diff(D1);

P = lambda ^ 2 * D2’ * D2 + 2 * lambda * D1’ * D1;

Z = (E + P) \ Y;

An implementation in S-plus or R would look very similar. Note that Matlab
can speed up the computations (about 3 times) by exploiting the sparseness of
the system of equations in a very simple way, using the sparse identity matrix
speye instead of the full eye.

7.3 Implementation

Figure 7.6 shows the application to four different displays of one pair of arrays
with 12625 expressions. The NW panel shows a scatterplot derived from 12625
log-expressions (base 10). The NE panel shows mean and difference. The SW
panel displays mean and absolute value of the difference. This is an example of
a skew density with a peak near the origin (for each column of the histogram).
The logarithms of the absolute differences (plus a shift of 0.01 to accommodate
zeroes) are shown in the SE panel. In each graph a random selection of 1000
data points is also plotted.

The choice of λ partly is a matter of taste. The user should play with it to
get a visual appearance to his/her taste. It also depends on the number of bins
and the number of data pairs. Our personal experience is that λs in the range
from 1 to 100 work well with 100 or 200 bins per dimension and approximately
104 data pairs.

The colour scale is also a matter of taste. Using white for zero values and
a dark colour for the maximum seems attractive (and saves expensive ink or
toner). We advice to take the colour for the maximum not too dark, so that
black symbols for the data points will be clearly visible.

7.4 Discussion

We have presented an algorithm for visual enhancement of a scatterplot, using
a smoothed histogram. The algorithm is fast: computing and plotting Figure 7.6
takes less than a second, using Matlab 6.5 on a 1000 MHz Pentium III PC. So it
can be used in a routine way when exploring scatterplots and one can nearly
instantaneously see the effects of changing the amount of smoothing. Even
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FIGURE 7.6: Four different displays of a pair of microarrays, using histogram smoothing and
plotting of 1000 (of 12625) data points.

one million data points are handled in less than 10 seconds. R is several times
slower; the bottleneck there is the computation of the histogram.

We investigated the performance of the R function kde2d() for kernel esti-
mation of two-dimensional densities. With 2000 data points or less it has the
same performance as the our algorithm. With 104 data points it is over five
times slower and above 3× 104 data points too much memory is needed (on a
256 Mb PC). Either swapping to the hard disk slows done the process, or the
computations stop with an error message.

In our experience it is useful to plot part of the dots, to give a good im-
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Chapter 7. Enhancing Scatterplots with Smoothed Densities

pression of the spread of the raw data. Their number should not be too small,
to be representative enough, but also not too large, to not fill the graph with
too much ink. A subject for further research is to use the estimated density to
determine the probability of plotting a point.

There exist good algorithms for density smoothing, like kernels and local
likelihood and they will produce results that look much like ours. Our method
is also not very original: penalized likelihood has been used before. But the
algorithm presented here has a number of specific advantages:

1. It does not use any special smoothing libraries, but only a few lines of
straightforward linear algebra computations, which are easily implemen-
ted in high-level languages like Matlab, S-plus or R.

2. It works directly on the two-dimensional histogram matrix, avoiding
translation to triples (row, column, count) that other algorithms demand.

3. It respects domain boundaries, which is important when smoothing den-
sities of very skewly distributed data, like variance estimates.

4. It is fast.

5. It can handle extremely large (106 or more) numbers of data points.

The four displays of the “scatterquad” in Figure 7.6 help to better understand
systematic and random differences between two microarrays. Further refine-
ments seem possible. One could use a smoothing algorithm to estimate and
display trends in the upper panels and use trend-corrected differences for the
displays of spread in the lower panels and possibly add trends to these plots
as well. We will not pursue this issue here further, as it would carry us too far
away from the main theme of the paper.

Our approach to visualization of scatterplots is in essence a simplification of
density smoothing in two dimensions. Because visual display is the only goal, a
refined algorithm is unnecessary. Simonoff (1996) discusses kernel estimation,
while Loader (1999) presents algorithms and software for local likelihood.
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CHAPTER 8

Conclusion

The existence of a curse of dimensionality is manifest in the analysis of microar-
ray data. It shows itself when researchers are trying to find genes which are
correlated with a certain phenotype: the sheer quantity of seemingly correlated
genes makes it difficult to find the truly correlated ones. It appears even more
strongly in prediction problems: the enormous variety of possible prediction
rules completely obscures the underlying biology. In this confusing situation,
biologists look to statisticians for guidance, while statisticians look to the bi-
ologists. In reality, both parties carry half of the solution, which lies in the
incorporation of biological knowledge into the statistical methodology.

Statistical analysis of microarray data started out with explorative methods,
which approach the data impartially and try to let the data ‘speak for them-
selves’. Most methods of microarray data now in use are still highly exploratory
in nature. This is most notable in unsupervised methods like cluster analysis,
but also in prediction methods and methods for finding differentially expressed
genes; only rarely do they make any use of biological knowledge. Methods for
the analysis of microarray data are mainly directed at generating interesting
new hypotheses, which are to be confirmed or disproved at a later stage. Only
few of the many hypotheses generated in this way turn out to be meaningful,
however, and the task of sifting these out is left to the biologists.

Much can be gained, therefore, by switching to a more knowledgeable way
of looking at the microarray data, incorporating biological knowledge into
the analysis instead of reserving its use for the interpretation stage only. As
learning about genes accumulates, blindly searching for new hypotheses with-
out making use of the knowledge already gained will prove increasingly un-
satisfactory. Furthermore, hypotheses about biological mechanisms that arise
from exploratory data analysis have to be tested somehow. This requires non-
explorative statistical methodology to be developed for microarray data analy-
sis.

This thesis has explored ways of making use of biological information to
improve the analysis of microarray data. In the GlobalTest methodology it has
provided methods for non-explorative hypothesis-driven research, allowing re-
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Chapter 8. Conclusion

searchers to test hypotheses about the involvement of biological processes in a
certain phenotype. The same methodology can be used as a more informed
type of exploratory data analysis, by incorporating the extensive knowledge
about pathways into the data analysis. Similarly, in the factor analysis model
for prediction in Chapter 6 it was shown how basic knowledge about the na-
ture of microarray data can be used as guidance for the choice of a dimension
reduction method.

The use of biological knowledge to improve statistical methods for analyz-
ing microarray data is a promising new development, whose potential has not
yet been exhausted. Intelligent use of this information can lead both to more
powerful statistical methodology and to more interpretable results. Much work
is still to be done. The pathway information which has been exploited for use
in testing procedures in this thesis also has good potential for use in predic-
tion methods. A similar challenge is to combine analysis of microarray data
analysis with information from linkage studies or proteomics data. It is obvi-
ous that close cooperation with biologists is essential for the success of this line
of research.
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APPENDIX A

Manual of the GlobalTest package

A.1 Introduction

This document shows the functionality of the R-package globaltest, whose main
function tests whether a given group of genes is significantly associated with a
clinical variable. The demonstration in this appendix focuses on practical use
of the test. To understand the idea and the mathematics behind the test, and for
more details on how to interpret a test result, we refer to the papers (Goeman
et al., 2005, 2004).

In recent years there has been a shift in focus from studying the effects of
single genes to studying effects of multiple functionally related genes or path-
ways (Al-Shahrour et al., 2004; Beissbarth and Speed, 2004; Boyle et al., 2004;
Mootha et al., 2003; Smid and Dorssers, 2004; Zeeberg et al., 2003; Zhang et al.,
2004). Most of the current methods for studying pathways involve looking at
increased proportions of differentially expressed genes in pathways of interest.
These methods do not identify pathways where many genes have altered their
expression in a small way. The package globaltest was designed to address this
issue.

The globaltest package tests whether a group of genes is associated with a
clinical variable. A group of genes can be any pre-defined set, for example
based in function (KEGG, GO) or location (chromosome, cytogenetic band).
The clinical variable may be a phenotypic variable or an experimental condi-
tion. It may take the form of a 0/1 group indicator, of a continuous measure-
ment or of a survival time.

The null hypothesis to be tested is that the expression pattern of the genes
in the group is not related to the clinical variable. A significant test result has
three parallel interpretations.

This chapter is the manual of the R package globaltest, that has been published on BioConductor
as: J. J. Goeman and J. Oosting (2005). Globaltest: testing association of a group of genes with a
clinical variable. R package, version 3.2.0. www.bioconductor.org.
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• If a pathway is significantly associated with the clinical variable, the genes
in the pathway are, on average, more associated with the clinical variable
than would be expected if the null hypothesis were true. One can expect
a sizeable proportion of genes to be associated with the clinical variable,
but these associations might not be individually significant.

• If a pathway is significantly associated with the clinical variable, samples
which have similar values of the clinical variable tend also to have similar
expression pattern over the pathway.

• If a pathway is significantly associated with the clinical variable, there is
good potential for predicting part of the variance of the clinical variable
using the genes in the pathway.

In the examples below we use data sets that are available through the Bio-
Conductor web site. All the packages necessary to repeat the examples be-
low are available from www.bioconductor.org. We use the AML/ALL data set
(Golub et al., 1999) for illustration.

> library(globaltest)

> library(golubEsets)

> library(hu6800)

> library(vsn)

> data(golubMerge)

> golubM <- update2MIAME(golubMerge)

> golubX <- vsn(golubM)

This gives us a data set golubX, which is of the format exprSet, the standard
format for gene expression data in BioConductor. It has 7,129 genes for 72 sam-
ples. We used vsn (Huber et al., 2002) to normalize the data. Any other normal-
ization method may be used instead. Several phenotype variables are available
with golubX, among them “ALL.AML”, the clinical variable that interests us.

In this document we use the globaltest based on BioConductor exprSet in-
put. For examples using simple vector or matrix input, see help(globaltest).

A.2 Global testing of a single pathway

Suppose we are interested in testing whether AML and ALL have a different
gene expression pattern for certain pathways from the KEGG database.

First we load all KEGG pathways. We will use the rest in the next section.

> kegg <- as.list(hu6800PATH2PROBE)

> cellcycle <- kegg[["04110"]]
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This creates a sorted list kegg of 140 pathways, each a vector of gene names.
The vector cellcycle is one of them. It corresponds to the Cell Cycle path-
way, “04110” in the KEGG database, which corresponds to 94 probe sets on
the hu6800 chip. Suppose we are predominantly interested in this pathway.
We want to know whether this group of genes is associated with the clinical
outcome AML versus ALL.

It is advisable to always first test all genes to see if the overall gene expres-
sion pattern is different for different clinical outcomes. We can do this by saying

> gt.all <- globaltest(golubX, "ALL.AML")

The first input X should be the exprSet object, the second input Y the name
of the clinical variable in pData(X). Alternatively we can give a matrix of ex-
pressions as X and a vector as Y.

The test result is stored in a gt.result object, which also contains all the infor-
mation needed to draw the plots.

> gt.all

Global Test result:

Data: 72 samples with 7129 genes; 1 pathway tested

Model: logistic

genes tested Statistic Q Expected Q sd of Q p-value

1 7129 7129 53.992 10 1.9035 5.1616e-35

We conclude that there is ample evidence that the overall gene expression
profile for all 7,129 genes is associated with the clinical outcome: samples with
similar AML/ALL status tend to have similar expression profiles. In cases such
as this one, in which the overall expression pattern is associated with the clinical
variable, we can expect most pathways (especially the larger ones) also to be
associated with it.

Because golubX is an exprSet, we could simply give the name of the pheno-
type variable “AML.ALL” as our Y input. Alternatively, we can give a vector
here.

The Global Test allows three different kinds of clinical variables to be tested.

• A clinical variable defining two groups, i.e. having two values (using the
logistic model). For a multi-valued clinical variable, the option levels can
be used to set which groups are to be tested against each other.

• A continuously distributed measurement (using the linear model).
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• A survival time (using the Cox model). In that case Y should contain the
last observation time of each individual, and an extra argument d should
be supplied which contains the event indicator, which has value event if
an event occurred.

The function globaltest will automatically choose an appropriate model
based on Y. To override the automatic choice, use the option model.

Now we test the Cell Cycle pathway that interests us:

> gt.cc <- globaltest(golubX, "ALL.AML", cellcycle)

> gt.cc

Global Test result:

Data: 72 samples with 7129 genes; 1 pathway tested

Model: logistic

genes tested Statistic Q Expected Q sd of Q p-value

1 94 94 69.443 10.312 3.2901 1.0166e-18

We conclude that the expression pattern of the cellcycle pathway is notably
different between AML and ALL samples. However, as the test on all genes was
significant we can generally expect most pathways to be significant as well. To
get an impression of how “special” this pathway is, one can use the function
sampling.

> gt.cc <- sampling(gt.cc)

> gt.cc

Global Test result:

Data: 72 samples with 7129 genes; 1 pathway tested

Model: logistic

genes tested Statistic Q Expected Q sd of Q p-value comp. p

1 94 94 69.443 10.312 3.2901 1.0166e-18 0.285

This gives an extra output column “comparative p”, which is the fraction
of random genesets of the same size as the cell cycle pathway (94 genes) which
have a lower p-value than cell cycle itself. In this case around 28 % of 1,000
random ‘pathways’ of size 94 have a lower p-value than the Cell Cycle pathway.
By default 1,000 random sets are sampled; this number can be changed with the
option ndraws.

By default the p-value of globaltest is calculated using approximate formu-
las which are accurate for large sample size, but may be inaccurate for very
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small sample size. For 72 arrays they should be accurate enough. For very
small sample sizes an alternative is to use the permutation version of global-
test. This recalculates the p-value on the basis of 10,000 permutations of the
clinical variable.

> permutations(gt.cc)

Global Test result:

Data: 72 samples with 7129 genes; 1 pathway tested

Model: logistic

Using 10000 permutations of Y

genes tested Statistic Q Expected Q sd of Q p-value

1 94 94 69.443 10.533 3.3604 0

The permutation p-value is not so accurate in the lower range as it is always
a multiple of one over the number of permutations and also has some sam-
pling variance. If desired, the number of permutations can be changed with the
option nperm to get more accurate p-values.

It is also possible to adjust the globaltest for confounders or for known risk
factors. For example in the Golub Data set we may be afraid for a disturbance
due to that the fact that some samples were taken from peripheral blood while
others were taken from bone marrow. We can correct for this using the option
adjust. The option adjust can also be used when the study design is different
from the simple ‘two independent samples’ design of the standard global test.
In a paired design, for example, put the pair-identifier (as factor) in adjust.

The user may supply one or more names of covariates in the option adjust
or supply adjust as a data.frame. The easiest way of adjustment, however, is by
using a formula object as input for Y, as follows:

> globaltest(golubX, ALL.AML ~ BM.PB, cellcycle)

Global Test result:

Data: 72 samples with 7129 genes; 1 pathway tested

Model: logistic, ALL.AML ~ BM.PB

Adjusted: 99.8 % of variance of Y remains after adjustment

genes tested Statistic Q Expected Q sd of Q p-value

1 94 94 69.811 10.25 3.3189 1.6258e-18

The test result now also gives the percentage of the variance in Y that was
left after the adjustment. It is a crude measure like 1− R2. If the percentage is
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low, the adjustment already explained most of the variance of the outcome Y
and there was not much residual variance left to test the influence of the genes.
To see an example, adjust for “Source” instead of “BM.PB”.

The option adjust may again be combined with the function sampling, but
not with permutation.

A.3 Multiple global testing

It is also possible to test many pathways at once. To test all KEGG pathways
we proceed as follows:

> gt.kegg <- globaltest(golubX, "ALL.AML", kegg)

The result gt.kegg can be displayed and prints a matrix whose rows corre-
spond to the KEGG pathways. It gives the test results for each pathway. We
can also display only some of them:

> gt.kegg[1:10]

Global Test result:

Data: 72 samples with 7129 genes; 10 pathways tested

Model: logistic

genes tested Statistic Q Expected Q sd of Q p-value

00271 10 10 10.103 8.0539 5.7226 2.8564e-01

00272 11 11 51.496 16.9070 12.0600 1.6643e-02

00628 2 2 18.066 22.5560 29.5330 3.8852e-01

00330 51 51 30.768 9.2072 2.9245 6.5854e-07

00920 6 6 12.558 6.5985 4.6089 1.0505e-01

05060 13 13 35.394 8.3092 4.4675 1.1091e-04

00450 14 14 39.648 9.8767 5.3131 2.2772e-04

04010 244 244 43.726 10.2410 2.3327 1.6381e-17

00510 26 26 39.145 10.2670 4.6621 4.5571e-05

04070 82 82 32.255 7.5731 2.0705 9.8340e-13

> gt.kegg["04110"]

Global Test result:

Data: 72 samples with 7129 genes; 1 pathway tested

Model: logistic

genes tested Statistic Q Expected Q sd of Q p-value

04110 94 94 69.443 10.312 3.2901 1.0166e-18
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The same options described above for the single pathway globaltest can
be applied to the multiple pathway version of globaltest as well.

Two functions allow further processing to be done on the test results. The
function result extracts the whole matrix of test results, while the function
p.value only extracts the vector of p-values. The latter function can be used for
example when a correction for multiple testing is to be done. Note however that
due to the extremely high correlations between the tests for different pathways,
many multiple testing procedures are inappropriate for the Global Test. See the
multtest package for details.

We might want to sort the pathways by their p-value, and show the top five.
This can be done as follows

> sort.gt.kegg <- sort(gt.kegg)

> sort.gt.kegg[1:5]

Global Test result:

Data: 72 samples with 7129 genes; 5 pathways tested

Model: logistic

genes tested Statistic Q Expected Q sd of Q p-value

04060 246 246 77.853 9.9558 2.7046 1.4526e-30

04610 82 82 112.110 8.8155 3.3998 2.0881e-29

04510 169 169 61.849 9.2011 2.3298 2.4397e-28

04020 205 205 37.144 7.6385 1.6212 2.1932e-24

00590 31 31 213.070 13.5480 6.7527 1.5357e-23

A.4 Diagnostic plots

There are various types of diagnostic plots available to help the user inter-
pret the globaltest result. The plot permutations can serve as a check
whether the sample size was large enough not to use the permutation version
of globaltest. The geneplot visualizes the influence of individual genes on
the test result. The three plots sampleplot, checkerboard and regressionplot

all visualize the influence of individual samples. Of these three, sampleplot is
probably the most useful.

Permutations histogram

The permutations histogram plots the values of the test statistic Q calculated
for permutations of the clinical outcome in a histogram. The observed value of
Q for the true values of the clinical outcome is marked with an arrow.

> hist(permutations(gt.cc))
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Values of Q for permuted Y
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FIGURE A.1: Histogram of values of the GlobalTest statistic Q for 10,000 permutations of the
outcome variable, compared to the value of Q for the observed data.

The output can be interpreted as a plot of the distribution of the test statistic
under the null hypothesis that the pathway is not associated with the clinical
variable. Strictly speaking, however, the permutation version of the Global Test
is a different test with different properties (especially for survival data). It may
give different p-values for small samples.

The function permutations may not be used when the adjusted version of
globaltest was used.
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Gene plot

The second diagnostic plot is the Gene Plot, which can be used to assess the
influence of each gene on the outcome of the test. The Gene Plot gives a bar
and a reference line for each gene tested. The bar indicates the influence of each
gene on the test statistic.

A reference line for each bar gives the expected height of the bar under the
null hypothesis that the gene is not associated with the clinical outcome (except
in a survival model, where the expected height is zero). Marks indicate with
how many standard deviations (under the null) the bar exceeds the reference
line. Finally the bars are coloured to indicate a positive or a negative association
of the gene with the clinical outcome.

The geneplot bars have two interpretations. In the first place, the bars are
the Global Test statistic for the single gene pathway containing only that gene.
A positive bar that is many standard deviations above the reference line there-
fore indicates a gene that is significantly associated with the clinical variable
in Y. Secondly, the bars indicate the influence of the gene on the test result of
the whole pathway (the test statistic for the group is the average of the bars for
the genes). Removing a gene with a low bar (relative to the reference line) or a
negative bar from the pathway will result in a lower p-value for the pathway,
removing a gene with a tall positive bar will have the opposite effect.

To plot the geneplot, use any of the commands below:

> geneplot(gt.cc)

> geneplot(gt.kegg, "04110")

> geneplot(gt.kegg["04110"])

For a large number of genes the plot might become overcrowded. Use the
option genesubset to plot only a subset of the genes, labelsize to resize the gene
labels or drawlabels = FALSE to remove them. Alternatively, we can plot part of
the geneplot later, as follows

> gp.cc <- geneplot(gt.cc)

> plot(gp.cc[1:40])

This allows one to look at subsets of a large pathway more closely. The
return of the geneplot is an object of type gt.barplot containing the numbers
and names appearing in the plot:

> gp.cc[1:10]

influence expected sd z-score

U07563_cds1_at 179.10159883 26.469792 36.932786 4.13269143
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X16416_at 8.49445145 7.459717 10.377423 0.09971017

U33841_at 30.67349290 6.143978 8.543243 2.87121827

U67092_at 0.06648514 4.909773 6.697347 -0.72316514

U67092_s_at 0.03786093 4.317985 5.653305 -0.75710132

X91196_s_at 3.61779645 2.516948 3.409389 0.32288738

U49844_at 73.44818990 6.217861 8.665433 7.75844974

HG4433-HT4703_at 21.67168778 9.114009 12.659503 0.99195670

X59798_at 1.09258726 7.284671 8.735287 -0.70885864

X51688_at 54.98210529 14.400044 20.094406 2.01957013

The option scale can be used to rescale the bars to have unit standard devia-
tion.

Sample plot

The Sample Plot looks very similar to the Gene Plot and visualizes the influ-
ence of the individual samples on the test result. It has a bar and a reference
line for each sample tested. The bar indicates the influence of each sample on
the test statistic, similar to the geneplot. The direction of the bar (upward or
downward) indicates evidence against or in favour of the null hypothesis. If
a sample has a positive bar, its expression profile is relatively similar to that of
samples which have the same value of the clinical variable and relatively unlike
the profile of the samples which have a different value of the clinical variable.
If the bar is negative, it is the other way around: the sample is more similar in
expression profile to samples with a different clinical variable. A small p-value
will therefore generally coincide with many positive bars. If there are still tall
negative bars, these indicate deviating samples: removing a sample with a neg-
ative bar would result in a lower p-value.

If the null hypothesis is true the expected influence is zero. Marks on the
bars indicate the standard deviation of the influence of the sample under the
null hypothesis. Finally the bars are coloured to distinguish the samples. In
a logistic model the colours differentiate between the original groups, in an
unadjusted linear model they differentiate the values above the mean from the
values below the mean of Y. In an adjusted linear or the survival model they
distinguish positive from negative residuals after fitting the null model.

Again, either of the commands below gives the same output.

> sampleplot(gt.cc)

> sampleplot(gt.kegg, "04110")

> sampleplot(gt.kegg["04110"])

The options of sampleplot and the resulting gt.barplot object are be handled
in the same way as described under “geneplot”.
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FIGURE A.2: Gene Plot of 40 genes from the cell cycle pathway in the AML/ALL data. The
height of the bar measures association of the expression of that gene with the outcome vari-
able.

Checkerboard plot

The fourth and fifth diagnostic plot can both also be used to assess the influence
of each of the samples on the test result. The checkerboard plot visualizes the
similarity between samples. It makes a square figure with the samples both on
the X and on the Y-axis, so that it contains all comparisons between the samples.
Samples which are relatively similar are coded white and samples which are
relatively dissimilar are coded black.

For easier interpretation the samples are sorted by their clinical outcome. If
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FIGURE A.3: Sample Plot of the samples in the AML/ALL data set, based on the expression
profile of the cell cycle pathway. Positive bars indicate samples whose expression profile
is similar to the other samples in the same group; Negative bars indicate samples whose
expression profile is similar to samples in the opposite group.

the test was (very) significant and the clinical outcome has two values, a typical
block-like structure will appear. If the clinical outcome was continuous and the
test is significant, the black squares will tend to stick together around the upper
left and lower right corners. By looking at these patterns some things can be
learned about the structure of the data. For example, by looking at samples
which deviate from the main pattern, outlying samples can be detected.

> checkerboard(gt.cc)
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> checkerboard(gt.kegg, "04110")

The function checkerboard also has options labelsize and drawlabels. It re-
turns a legend to link the numbers appearing in the plot if drawlabels = FALSE
to the sample names.
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FIGURE A.4: Checkerboard plot of the samples in the AML/ALL data set, based on the cell cycle
pathway. White blocks indicate that samples have similar expression profile, black indicates
dissimilar expression profile.

Regression plot

Using the regression plot an assessment can be made of the influence of
each sample on the result of the test. It is an alternative visualization of the
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sampleplot.
The regression plot plots all pairs of samples, just like the checkerboard plot,

but now showing the covariance between their clinical outcomes on the X-axis
and the covariance between their gene expression patterns on the Y-axis. The
comparisons of each sample with itself have been excluded.

The test statistic of the Global Test can be seen as a regression-coefficient
for this plot, so it is visualized by drawing a least squares regression line. If
this regression line is steep, the test statistic has a large value (and is possibly
significant).

The influence of specific samples can be assessed by drawing a second re-
gression line through only those points in the plot, which are comparisons in-
volving the sample of interest. For example if we are interested the sample
with sample name "1", we take the points corresponding to the pairs (1,2) up
to (1,72). If the regression line drawn through only these points deviates much
from the general line, the sample deviates from the general pattern. This is es-
pecially the case if this line has a negative slope, which means that the sample
is more similar in its gene expression pattern to the samples with a different
clinical outcome than to samples with a similar clinical outcome.

If we want to test sample "1", we say:

> regressionplot(gt.cc, sampleid = "1")

> regressionplot(gt.kegg, "04110", sampleid = "1")

We can also use this plot for a group of samples, saying for example:

> regressionplot(gt.cc, sampleid = c("1", "2"))
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FIGURE A.5: Regression Plot of the AML/ALL data set, based on the cell cycle pathway, show-
ing the regression of covariance in expression profile on covariance of outcome measure. The
dotted line is based only on pairs of samples involving samples “1” and “2”.
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Samenvatting

In dit proefschrift worden statistische methoden ontwikkeld voor het analyse-
ren van microarray-data. De microarray is een nieuwe technologie uit de mo-
leculaire biologie, die onderzoekers in staat stelt metingen te doen aan gen-
expressie. Dit is het proces waarmee de informatie die in de genen ligt opge-
slagen wordt gebruikt voor de productie van eiwitten. De activiteit van gen-
expressie kan worden gemeten via het RNA, de belangrijke tussenstap tussen
gen en eiwit. Een microarray meet de concentratie van RNA behorend bij ie-
der specifiek gen en doet dit tegelijkertijd voor tienduizenden genen. Met een
microarray is dus het patroon te zien van de gen-expressie van grote aantallen
genen in een weefsel of een opgekweekte cellijn.

Door microarrays te vergelijken tussen verschillende typen weefsel, tussen
weefsels van verschillende patienten of tussen cellijnen die verschillend behan-
deld zijn, kunnen allerlei wetenschappelijke vragen beantwoord worden. Inte-
ressante vragen zijn er bijvoorbeeld op het gebied van diagnose en prognose.
Het vinden van gen-expressiepatronen die onderscheid maken tussen ernstige
en minder ernstige vormen van ziekte kan de kwaliteit van diagnoses verbe-
teren, en daarmee de kwaliteit van de behandeling laten toenemen. Als de
microarray bijvoorbeeld gebruikt kan worden om de overleving van borstkan-
kerpatiënten nauwkeuriger te voorspellen zou een groot aantal patiënten een
onnodige chemotherapie bespaard kunnen worden. Andere onderzoeksvra-
gen die mogelijk worden gemaakt door microarrays gaan over de functie van
genen: door uit te vinden van welke genen de gen-expressie verandert als cellij-
nen een bepaalde behandeling krijgen, kan iets worden afgeleid over de functie
van die genen.

Een statistisch probleem bij het beantwoorden van deze vragen is de hoge
dimensionaliteit van de microarray, gekoppeld aan de kleine steekproefgroot-
te. In een typisch klinisch onderzoek worden microarrays gemaakt van enkele
tientallen tot hoogstens enkele honderden patiënten, terwijl voor iedere patiënt
de gen-expressie gemeten is van tienduizenden genen. Deze hoge dimensio-
naliteit leidt tot problemen bij het toepassen van klassieke statistische metho-
den. Bij het zoeken naar genen die een verschillende gen-expressie hebben on-
der verschillende experimentele condities moet een zo groot aantal statistische
toetsen worden uitgevoerd, dat bekende methoden om te corrigeren voor meer-
voudig toetsen niet meer goed functioneren. Bij het zoeken naar voorspelregels
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om kenmerken van patienten te voorspellen, treedt het verschijnsel van overfit
op: er zijn vele voorspelregels te vinden die de kenmerken van de onderzochte
patiënten perfect voorspellen, maar waarvan de prestaties op nieuwe gevallen
allerminst gegarandeerd zijn. De uitdaging die het oplossen van deze proble-
men biedt, heeft al geleid tot een groot aantal nieuwe statistische methoden.

De statistische methoden die in dit proefschrift ontwikkeld worden, maken
zoveel mogelijk gebruik van inhoudelijke kennis uit de biologie, in het bijzon-
der annotatie van genen, om de kwaliteit en interpreteerbaarheid van de con-
clusies the verhogen. Annotatie koppelt genen aan de informatie die reeds over
deze genen in de literatuur bekend is, bijvoorbeeld in welke celprocessen het
gen betrokken is, met welke functies, organen of ziekten het gen is geassocieerd
of op welk chromosoom het gen gelokaliseerd is. Een belangrijk concept hierbij
is het begrip pathway: een pathway is een groep genen die met dezelfde functie
geassocieerd wordt.

De belangrijkste nieuwe methode in dit proefschrift is de GlobalTest-
methodologie. Deze wordt uiteengezet in de hoofdstukken 2 tot en met 5. Deze
methode biedt een statistische toets die onderzoekers in staat stelt om microar-
ray data te analyseren op het niveau van pathways, in plaats van op het niveau
van individuele genen. De onderzoeker gaat dan niet op zoek naar genen waar-
van de expressie geassocieerd is met bepaalde kenmerken van patiënten, maar
naar pathways waarvan de expressie met deze kenmerken geassocieerd is. Dit
is een andere manier van werken, die vaak een tegengestelde onderzoeksvraag
heeft. Methoden die zoeken naar individuele genen hebben meestal tot doel de
functie van het gen af te leiden uit het kenmerk waarmee de expressie van dat
gen associatie vertoont. Als bijvoorbeeld de expressie van genen in gekweekte
cellen sterk verandert na kortdurend verhitten van deze cellen, zullen die genen
waarschijnlijk een functie hebben bij het herstellen van celschade na hitte. Om-
gekeerd probeert een methode die zoekt naar pathways juist iets te leren over
biologie achter een geobserveerd kenmerk, vanuit de bekende functies van de
pathways. Als bijvoorbeeld blijkt dat de expressie van de apoptose-pathway
(die de geprogrammeerde celdood regelt) in tumorweefsel dat zich heeft uit-
gezaaid duidelijk anders is dan in tumorweefsel dat zich niet heeft uitgezaaid,
kan geconcludeerd worden dat een storing in de apoptose een stap is in het
proces van uitzaaien van tumoren.

Hoofdstuk 2 introduceert de GlobalTest-methodologie die kan toetsen of het
gen-expressiepatroon van een bepaalde pathway geassocieerd is met een be-
paalde responsvariabele. De details van de methode worden uitgewerkt voor
het geval de respons ofwel twee mogelijke waarden aanneemt, ofwel een nor-
maal verdeelde grootheid is.

Hoofdstuk 3 geeft een uitbreiding van dezelfde methodologie naar de si-
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tuatie waarin gezocht wordt naar pathways die geassocieerd zijn met overle-
vingsduur. Het introduceert bovendien de mogelijkheid te corrigeren voor de
effecten van verstorende variabelen, wat van groot belang is bij observationeel
onderzoek.

Hoofdstuk 4 werkt de wiskunde uit die nodig is om de GlobalTest-methode
toe te passen op een responsvariabele die meer dan twee ongeordende waar-
den aanneemt. De toets die dit artikel presenteert, wordt niet beschreven als
een toets voor microarray data, maar in de vorm van een goodness-of-fit toets
voor het mutinomiale logistische regressiemodel. Dit is een toets waarmee kan
worden onderzocht of een dergelijk multinomiaal logistisch model een dataset
adequaat beschrijft. Wiskundig gezien is deze toets dezelfde als de toets die no-
dig is om de GlobalTest-methode te generaliseren naar responsvariabelen met
meerdere uitkomstcategorieën.

Hoofdstuk 5 plaatst de toetsen van de vorige drie hoofdstukken in een al-
gemener kader door te laten zien dat ze deel uitmaken van een brede klasse
van toetsen die een eenvoudige nulhypothese toetsen tegen een hoogdimensi-
onaal alternatief. Het laat bovendien zien dat dit soort toetsen gemiddeld in
een omgeving van de nulhypothese een optimaal onderscheidend vermogen
heeft.

Hoofdstuk 6 staat buiten de GlobalTest-methodologie. Het behandelt het
probleem hoe een klinische variabele van een patiënt te voorspellen uit de
microarray data van die patiënt. Ook hier wordt zoveel mogelijk gebruik
gemaakt van kennis over de microarray-data om een goede voorspelregel te
construeren. Hiertoe wordt een model van de simultane verdeling van de
gen-expressiemetingen en de te voorspellen uitkomstvariabele geconstrueerd.
Dit model is gebouwd op de aanname dat er een klein aantal onobserveerba-
re onderliggende variabelen bestaat, dat zowel de gen-expressiemetingen be-
invloedt als de uitkomstvariabele, en dat alle gemeten waarden gepaard gaan
met ruis. Op basis van deze eenvoudige aannamen wordt een voorspelregel
geconstrueerd die goede eigenschappen heeft in dit model.

Hoofdstuk 7, tenslotte, gaat in op het belangrijke onderwerp van visualisa-
tie van microarray data. Een veelgebruite visualisatiemethode als de punten-
wolk geeft al snel een vertekend beeld als er duizenden punten in één diagram
weergegeven moeten worden. Het is dan beter om in plaats van een punten-
wolk een kleurenweergave van de dichtheid te presenteren, omdat een der-
gelijke weergave veel duidelijker aangeeft waar de massa van de punten zich
bevindt. In het hoofdstuk wordt een snel algoritme gegeven om een dergelijke
visualisatie te genereren.
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