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1 Introduction

In this thesis an overview is given of the recent developments of the use of
topology in DNA research. Apart from this expository feature new results
are given for the mathematical structures of DNA knots.

We start with an introduction discussing relevant parts of knot theory which
are used in this paper. Here we introduce some well-known invariants which
distinguish different knots. One invariant will receive extra attention: the
bridge number. Two subclasses of knots, 2-bridge and torus knots, are es-
pecially relevant for further applications in DNA research and will be dealt
with in more detail.

With these mathematical tools at our disposal we proceed by discussing the
biochemical properties of DNA structures and giving a short introduction
to a field which has received much attention during the last decade from
topologist, the field of site-specific recombination processes. The main goal
of these sections is to show that topology may be used to gain information
about enzyme actions which mediate such recombinations of DNA strands.
Two cases are considered: recombination mediated by an enzyme called Tn3
resolvase, and one called phage ) integrase. Both have different characteris-
tics which can be described with the use of knot theory. The state of the art
in topological enzymology is given.

The model which is presented by previous work in this field is used to prove
a theorem which describes all possible knot structures produced by a site-
specific recombination event in the case of Tn3 resolvase. This proves to be
a useful result providing us with a method to predict where recombination
might take place on the knot. Knowing the various types of product knots
with this classification theorem, we study the effect of site-specific recombi-
nation on the various knot invariants. The genus and graph of a knot are
discussed first. We prove a proposition which states that the genus of the
product knot is a lower bound for the number of times it has been recom-
binated. The other two important invariants are the Alexander and Jones
polynomials. Although the Alexander polynomial is easily computable for a
given knot, the structure between the knot and its Alexander polynomial is
too weak for the study of site-specific recombination processes. We proceed
by giving a general scheme to calculate Jones polynomials for arbitrary 2-
bridge knots. Several subtleties involved in these calculations are discussed.
As with the Alexander polynomial, the Jones polynomial does not have the
right structure to gain much information on site-specific recombination pro-
cesses.

For completeness an up to date account of additional problems in DNA re-
search is given in which topology plays a role or in which it might do so in



the future. One of the most exciting frontiers of DNA topology may be the
recently found structure of the kinetoplasts, DNA rings which form a network
which is very much unlike the forms of DNA found in almost all other living
cells.



2 A knot theory primer

2.1 Introduction

In this chapter we discuss the relevant parts of knot theory needed for this
paper. In knot theory we consider an embedding k: S' — R3 or S3, or
in more general terms embeddings k: S"? — S™. The most important
question one tries to solve is to decide whether two given embeddings are the
same or not, according to a precise mathematical notion of equivalence.
This classification problem dates from the early nineteen hundreds, when
Tait, Kirkmann and Little gave the first tables of knots. The methods in those
days were rather empirical and combinatorial. With Poincaré a new branch of
mathematics, the ideas and methods of algebraic topology, emerged, which
on itself has also been developed to handle problems in knot theory. The
mathematicians associated with the early rise of knot theory in the beginning
of this century are J.W. Alexander, M. Dehn, W. Burau, O. Schreier, E.
Artin, K. Reidemeister, E.R. van Kampen, H. Seifert, J.H.C. Whitehead, H.
Tietze and R.H. Fox.
The basic idea used to classify knots is to define an appropriate equivalence
relation with which one defines which knots are equal and which are not. It
has proved to be useful to introduce quantities which remain invariant under
deformations of a knot within the boundaries of the equivalence relation.
These ideas will be developed in the next sections.

2.2 First definitions

For clarity we review some elementary definitions from topology.

Definition Let R™ be the real n-dimensional space, equipped with the stan-
dard metric, d(z,y) = |z — y|. Then the n-dimensional unit disc D™
is defined to be

D" :={z e R" s.t. |z| < 1}.
The boundary of D", the (n — 1)-dimensional sphere is defined by
Sn~ti={z € D" s.t. |z| =1} C R".

S™ can be seen as a ‘compact version’ of R”, i.e. if we consider R*U{oo},
the result is diffeomorphic to 5™, where the diffeomorphism in question
is a stereographic projection with oo as the centre of projection. S™ is
therefore the one-point compactification of R*. See Figure 1 below for
the identification R? U {oo} & 52,
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Figure 1: Stereographic projection of R?

Definition A subset k of a space X, which can be either R* or S™ is called
a knot if £ is homeomorphic to an (n — 2)-sphere. More generally,
k is called a link of p components, if £ is homeomorphic with a dis-
joint union SP*J]...J1Sy~2 Two knots or links ki, ks are said to
be equivalent if there is a homeomorphism h: X — X, such that
h(k1) = ko. This equivalence-relation divides the set of knots up into

classes of a certain knot type. When two knots are equivalent we write
kl = kg or kl ~ kQ.

For this paper it will be sufficient to consider diffeomorphic images of S™72,
so we assume the knots do not have any singularities. This has some conse-
quences for the types of knots we will study. In the smooth category so called
‘wild knots’ are excluded. An example of such a knot is given in Figure 2.
Although these knots have some remarkable properties they are beyond the
scope of this paper. We will rather limit ourselves to ‘tame knots’. A more
precise definition will be given in a moment.

We often also denote by k the map k: S"~2 — S™, instead of the home-
omorphic image of $"~2 in S™. Then k is an embedding into S™, i.e. k is
a homeomorphism S"~2 — k(S"~2) C S™. In the case that we consider k;
and ky to be maps rather than sets, we have that k; is equivalent to ko if
there exists a homeomorphism such that h o k1 = ks.

Definition Two maps fi, fo: X — Y are called isotopic if there is an

embedding
. F(2,0) = fo(z)
F: X x[0,1] — Y x[0,1] s.t. { Flz.1) = f,()
and F(z,t) = (f(z,1),t), for z € X,t € [0,1]. F is then called an
isotopy.



Figure 2: A wild knot with infinitely many meshes

For the rest of this paper we confine our knots to those living in R® or
S3.

Definition A knot % is called tame if there exists an isotopy to a simple
closed curve in R3 or S3. A knot is called wild if it’s not tame.

We usually visualise knots by drawing pictures on paper, with over- and
undercrossings. A presentation of a knot in a plane P by the orthogonal
projection p: R® — P is called regular if p~'(z),z € P consists of up to
two points in k. It’s a simple exercise to prove that one can always make a
regular projection for a given tame knot in R3. Here we mean that the
knot is projected in such a way that it satisfies the following condition: there
are only finitely many multiple points (points with more than one pre-image),
and all these points are double points. The minimal number of crossings in a
regular projection is called the order of the knot (projection). Such regular
presentations of knots are also called knot diagrams.

We will give some more definitions concerning oriented knots in R® or S3.

Definition Let k¥ be a knot in R® or S3. The knot obtained by inverting
its orientation is called the inverted knot and denoted by —k. The
mirror image of k is obtained by reflection of k in a plane, and denoted
by k*.

A knot is called invertible if ¥ = —k and ampicheiral if £ = k*.

A knot projection is called alternating if under- and overcrossings
alternate while following the orientation of the knot. A knot is called
alternating if it admits an alternating projection.

Another concept in knot theory is the genus of a knot. To introduce this
notion, one first defines the concept of a Seifert surface of a knot. The proof
of the existence of Seifert surfaces can for instance be found in (Burde &
Zieschang 1985).



Proposition 2.1 A simple closed curve k C R® is the boundary of an ori-
entable surface S, embedded in R3. Such a surface is called a Seifert surface
for k. O

From classical geometry one can define the genus of such Seifert surfaces
in the following way: the surface is a compact 2-dimensional manifold with a
disc removed. By closing the Seifert surface by adding a disc we may resort
to the well-known classification theorem for compact surfaces which tells us
that, up to a homeomorphism, this compact surface is a connected sum of
g tori. Now we define the genus of the Seifert surface to be the genus of its
closed 2-manifold.
Since a knot £ usually has more than one of these surfaces with different gen-
era, the genus of one Seifert surface is not an invariant for the knot. But the
minimal number of these genera is, and this number is called the genus of
a knot. Evidently, the genus of a knot does not depend on the choice of the
representative curve in its equivalence class. The genus is our first invariant
for a knot, and was introduced by Seifert in (Seifert 1934).

Another concept was introduced by Schubert, in (Schubert 1949): the
product of knots.

Definition Let £ C R® meet a plane F in two points P and @Q. The arc
of k from P to () is closed by an arc in E to obtain a knot k;; the
other arc (from @ to P) is closed in the same way and defines a knot
ko. The original knot £ is called the product of k; and ks, in notation
k = ki#ko. An example is shown in Figure 3.

&
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Figure 3: The product of two trefoils

Definition A knot is called prime if it cannot be written as the product of
two non-trivial knots.



For any given two knots, their product can be defined by the inverse proce-
dure. The product will not depend on the plane E chosen in the construction,
nor on the choice of representatives from the equivalence-classes of £; and k,.
An important result concerning products of knots is the uniqueness of prime
decomposition, which plays much the same role as the prime-factorisation
theorem in number theory. The precise statement is shown below. A proof
can be found in the same article by Schubert.

Theorem 2.2 For any tame knot k we have the following two statements:
(1) k can be decomposed into a finite number of prime knots.

(2) This decomposition is unique up to the order of factors. That is, suppose
we can compose k in two ways, ki# - F#k, and k\F#---#k,,, then n = m
and iof we choose suitable subscripts of the decompositions, we have that ki ~
ki, oo ky ~ kL O

Definition A tubular neighbourhood V (k) of a knot k& C S? is homeomor-

phic to a solid torus. There is a simple closed curve m on the boundary
of V(k), denoted by 0V (k), which is nullhomologous in V' (k) but not
in 0V (k). We call m a meridian of k. Any two meridians of k are
isotopic.
A Seifert surface will meet 9V (k) in a simple closed curve [, if V' is
suitably chosen which is called a longitude of k. This curve is isotopic
to k in V(k). These two curves correspond to the generators of the
fundamental group of the torus.

If we consider a tubular neighbourhood of the trivial knot in S3, and we
take the complement of this neighbourhood, then the result is homeomorphic
to a solid torus S' x D2. In notation: S® — S' x D? & S!' x D% The com-
plement of a knot is then defined by S% — k = S3 — V(k). The study of
complements of knots is an important area of research in knot theory. This
is stimulated by the following theorem:

Theorem 2.3 If two knots k; and ko in S* are equivalent, then their com-
plements S® — ki and S® — ky are homeomorphic. O

Remark The converse is also true, which has been proved by Gordon and
Luecke in the late 1980’s. But unfortunately, non-equivalent links may
have homeomorphic complements. An example is given in Figure 4.

This notion of complements of knots allows us to define the concepts of
companionship and satellites of knots.
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Figure 4: Two non-equivalent links with equivalent complements

Definition Let & be a knot in S, and V an (unknotted) solid torus in S,
such that K C V C S3. Assume that k is not contained in a 3-ball
of V (i.e. k goes at least once around the torus). A homeomorphism
h: V. — W C 83 onto a tubular neighbourhood W of a non-trivial
knot [, which maps a meridian of S® — V onto a longitude of W maps
k onto a knot k' = h(k) C S®. This new knot £’ is called a companion
of k, and k is called a satellite of %'.

Another way of looking at certain types of knots is by interpreting them
as braids. This concept was introduced by Artin in (Artin 1925).

Definition A finite collection of strings which do not have local maxima
or minima is called a braid. One can visualise them by drawing a
rectangle, with at two opposite sides n points. One then draws curves
from one side with points to the other, braiding the strings. The result
is called an n-braid.

Definition The isotopy classes of n-braids form a group called the braid
group *B,. The braid group can be represented by n — 1 generators
0,0 =1,...,n — 1, where the o; are illustrated in the Figure 5.

A braid may be closed with respect to an axis h (cf. Fig 6).

2.3 The bridge number

The concept of the n-braid gives us the opportunity to define the notion most
important in this paper:

Definition Let k be a knot or link in R® which meets a plane E in 2m
points, such that the arcs of k contained in each halfspace (i.e. curves
without any knotting but mere lines joinig two points) are transverse
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Figure 5: The generators of the braid group *B,,.

Figure 6: A closed braid with axis h

to E. Then the pair (k, E) is called an m-bridge representation of £,
and m is called the bridge number for this representation. Of course,
different planes may give a different number of intersection points, and
analogously to the genus of k, we define the bridge number of £,
br(k), to be minimum bridge number in any representation of k.

We can also define the bridge number alternatively:

Definition Let k& be represented by a regular diagram. At each crossing
point, remove a small segment from the diagram that passes over the
crossing point, until you end up with a collection of disjoint curves. The
removed curves are called bridges, and the number of times you have
to remove the small segments to obtain the simple arcs is the bridge
number of the diagram. As before, define the bridge number of the
knot to be the minimal number of these bridge numbers for all regular
diagrams of the knot. It is a knot invariant for &.

An example can be found in Figure 7a.
Hence a regular projection of order n admits an n-bridge representation.

Proposition 2.4 An m-bridge knot k can be represented as a closed m-braid.

11
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a. A 5-bridge presentation 5. The same presentation with
parallel bridges

Figure 7: Proof of Proposition 2.4

Proor Choose 2m points P; in a regular projection of order m of k,
one on each arc between undercrossing and overcrossing. This defines an m-
bridge representation, with arcs s;, 1 <4 < m between P;_; and P; in the
upper half space and arcs £;, 1 < ¢ < m joining FP»; and Py in the lower
half space (cf. Fig. 7a). We may arrange the projection of k£ by performing
an isotopy to form m parallel straight line segments bisected by a staight
perpendicular line A such that all P;, ¢+ odd are contained above h and all
other points below h (cf. Fig. 7b). We may assume that each arc s; or ¢; meets
h only once by adding extra arcs if necessary and subdividing the former arc
into smaller ones. If we now deform the arcs such that they have no local
minima or maxima, going from one side of h to the other, we have a closed
braid with axis h. O

A 2m-braid completed by 2m simple arcs to make a link as in Fig. 8 is

called a plat or 2m-plat. Observe that a closed m-braid can be presented
as a 2m-plat. Hence we know that an m-bridge knot can be presented by a
2m-plat.
A canonical way of drawing an m-bridge knot, is by braiding 2m strands
without local minima or maxima (w.r.t. some height function while drawing
the knot vertically). The 4m ends of all the strings are then glued together
as in the example for a 2-bridge knot in Figure 8.

A regular projection of a knot admits an m-bridge representation, and an
important fact for this paper is that alternating representations yield mini-
mal bridge number for (k, E'), which means, that by drawing an alternating
diagram for k, and finding a way to determine the bridge number of this

12
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Figure 8: A 2-bridge knot regarded as a 4-plat

drawing, one has the bridge number of the knot.
We state some simple results:

By convention, the unknot has bridge number 1.
Proposition 2.5 The only knot with bridge number equal to 1 is the unknot.

PROOF The proof comes from (Schubert 1954). Let E) and E> be two
horizontal planes, with E; the upper one. Let k£ be a knot consisting of line
segments in F; and E3 and orthogonal lines between the two planes which
connect points in E; from k with those in E5 from £, to form a knot. We call
such a representation of k a bridge representation (Briickedarstellung)
and its equivalent to our first definition of the bridge number. A bridge in
this representation is a subset of the line segments of k consisting of one line
segment in F, and the adjoining line segments orthogonal to the planes. The
endpoints of these adjoining line segments in F5 are called the base points
(FuBpunkte) of the bridge.

Now let k£ be a knot with a bridge representation, also denoted by k. Since k
is a 1-bridge knot, we may assume that F; contains one line segment. In Fj
we have one line segment [ with two base points coming from the bridge as
endpoints. [ is contained in a sufficiently large 2-simplex in Es, which can be
extended to a 2-sphere which intersects the bridge only in the base points.
Therefore [ is isotopic to the straight line connecting the base points in S?,
which shows that k is isotopic to the unknot. O

The following goes without proof:
Proposition 2.6 If k is an n-link, then br(k) > n. O

The following theorem gives an idea of the power of the bridge number
as invariant: it’s nearly linear under products of knots:

13



Theorem 2.7 Suppose ki and ky are two knots or links. Then
b’l"(kl#kg) = b’l"(kl) + b’l"(kQ) —1.
O

This theorem has been proved by Schubert, in (Schubert, 1954), the arti-
cle in which also the bridge number has been introduced. It involves a detailed
and rather technical proof so we will not repeat it here.

The bridge number of a knot is not an easily computable quantity. In
general, there does not exist an algorithm which determines the bridge num-
ber for a given knot k (Murasugi 1996).

Before we state the next proposition, let & denote 7,(S® — k), the fun-
damental group of the knot complement of k. This group is called the knot
group of k.

Proposition 2.8 If br(k) = n, then the knot group & is a group with n
generators and n — 1 relations. O

We can also combine bridge number and companionship to find for in-
stance:

Proposition 2.9 If k, is a proper companion of ka (i.e. they are not equiv-
alent), then br(k,) < br(ks). O

The proof can be found in (Schubert 1954).

2.4 2-bridge knots

The class of 2-bridge knots has been studied extensively for the last seventy
years. It is the only class of n-bridge knots which has been completely clas-
sified. This makes studying of these knots a great deal easier compared to
studying knots with different bridge number. We will state some important
results from this field.

We first introduce a bit of notation to handle 2-bridge knots. We draw a
knot horizontally as a 4-braid and number the strings from bottom to top
from one to four. We let the ag;,1, ¢ = 0,...,m, denote the crossings be-
tween the second and third string, and the aq;, ¢ = 1,... ,m, the crossings
between the third and fourth string. The ends of the first and second string

14



on the left are glued together, as are all other pairs of strings, to make a knot
or 2-link. See Figure 9.

One can always project a 4-braid in such a way, that the first string does
not contain any crossings. The idea to get rid of the crossings between
the lower two strings is to stretch up the knot such that the crossings
G911, © = 0,...,m between the middle two strings are aligned vertically.
On top of that, the crossings in the lower strings are aligned horizontally,
left of the vertical line of middle-crossings. Analogously, the crossings be-
tween the upper strings are aligned right of the middle-crossings. Now one
can eliminate the crossings between the lower strings by unwinding the outer
half-circle a suitable number of times. This unwinding on the left will result
in a positive contribution of crossings on the right. Every winding on the left
is eliminated in this way, and the result is a knot with no crossings between
the lower string, as depicted in Figure 9 (after transformation to its original
4-braid representation).

2REDC

Figure 9: The canonical projection of the 2-bridge knot < 3,2,1 >

Now one has a 4-plat, with alternating crossings between the middle and
the upper strings. If one has successive crossings of opposite sign one can
locally unwind them until this is no longer the case. By this process all
‘trivial winding’ is eliminated and in the end one has a 2-bridge knot with
all crossings positive or all negative. We can thus represent a 2-bridge knot
by a vector with integer entries of odd length (since both beginning and end
crossings have to be between the middle strings), and the claim is proved, up
to working out the details of the unwinding of the lower crossings. For more
details, see the excellent exposition by Murasugi (1996). We have therefore
proved the following Proposition:

Proposition 2.10 Any 2-bridge knot can be written in a canonical form
denoted by < ay,. .. ,Gomy1 > with a; all strictly positive or strictly negative
integers:

The vector-notation invites new inquiries in 2-bridge knots. For instance,
one can make a continued fraction from the entries of the vector, and create

15



a number

ar+ 1 (1)
- 'an—1+$

such that ged(w, 8) = 1. Conversely, for any fraction p/q one can find a
continued fraction [cy,... ,cp). This presentation is not at all unique: for
instance we have the following identities:

If m is even and ¢, > 1, then

[c1y v yem) = [c1y .- yom — 1,1]
and if ¢,, = 1, we may write
[C1y. v yem] =[c1y vy em + 1]

We can therefore assume m to be odd, and a 2-bridge can be constructed
from the continued fraction. A 2-bridge knot k£ =< ay,... ,a, > is said to be
of type (e, B8), if «/8 = [a1,... ,ay]. This fraction «/F completely classifies
the knot, as stated in the following theorem:

Theorem 2.11 Suppose that k and k' are 2-bridge knots of type (o, 8) and
(o/, B") respectively. Then k and k' are equivalent up to orientation of the
knots if and only if:

(1) a=d, B=4 (mod )

or

(2) a=d, BB =1 (mod «).

Further, the mirror image k* of k is a 2-bridge knot of type (o, —f). There-
fore, a necessary and sufficient condition for k to be ampicheiral is that

(3) 8% = —1 (mod «). O

A proof of this theorem can be found in (Schubert 1956). The following
proposition follows from Prop. 2.5 and Thm. 2.7.

Proposition 2.12 Any 2-bridge knot is prime. O

Let k£ be an n times twisted unknot. If we knot the ends together, we get
something like the knot shown in the figure below. Such a knot is called a
twist knot. We have the following proposition:

16
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Figure 10: A twists knot with 8 twists

Proposition 2.13 Every non-trivial twist knot is a 2-bridge knot. O

We can give a precise characterisation of 2-bridge knots in terms of the
genus. To do this, we first determine the structure of the 2-bridge knot,
seen as a 4-plat. Since we can always project a 4-plat such that one of the
strings does not cross any of the others, the set of 4-plats is generated by
two elements ¢; and o,. In the following proposition we see that there is a
nice relation between the coefficients of the vector < ay,..., a9, > and
the braid-presentation in the generators 01,09 (Burde & Zieschang 1985):

Proposition 2.14 The 2-bridge knot k of type (o, §) has a presentation as
a 4-braid as

(=05'07%... .05
with a; > 0, such that the continued fraction [ay,. .. ,Gomyt1] equals a/F. O

With this bridge-presentation it is possible to state the result on genera
of 2-bridge knots, also proved in (Burde & Zieschang 1985):

Proposition 2.15 Let 6507 ...0,"™"" represent a 2-bridge knot k of type
(a, B). Then the genus of k is

1 m
2D lasl —
j=1
where p s 1 if k is a knot, and 2 if k is a 2-link. O

17



2.5 Torus knots

In this section we discuss another group of knots which has been studied
exhaustively the last decades, since they occur in various branches of science.
They are the torus knots. We begin by defining the concepts of handlebodies
and Heegaard splitting.

Definition A handlebody V of genus g is obtained from a 3-ball B by
attaching g handles D? x [0, 1], such 9V is an orientable closed surface
of genus g. The composition of a closed orientable 3-manifold M?3 into

two handlebodies V, W such that M> =V UW and VNW = V=W
is called a Heegaard splitting of genus g.

For S® we have the following theorem.

Theorem 2.16 Any two Heegaard splittings of of the same genus of S* are
homeomorphic. To be more precise: If (W,W) and (V',W') are two Hee-
gaard splittings of the same genus, then there is an orientation preserving
homeomorphism h: S3 — S® such that h(V) =V’ and h(W) = W'. O

A proof of this can be found in (Waldhausen 1968). We can directly give an
application of this result to knot theory.

Proposition 2.17 Every knot k in S® can be embedded in the boundary of
the handlebodies of a Heegaard splitting of S>.

Although the proof can be found in general textbooks on knot theory, we
repeat it here since we will need it later on.

PROOF We can colour the knot by projecting it onto a plane, and giving
the distinct regions alternatingly black and white colours, in chess board
manner. This is always possible because the projected knot is a closed curve
in the plane (For the links which occur in this paper it’s also possible, since
we only need n-bridge links, which admit an alternating regular diagram,
making the chess board colouring possible). By convention, we mark the
region outside the projected curve with white. Next we put points inside
the white regions, and connect points when their corresponding regions are
separated by a crossing point of the projected knot. For every crossing point
we get an edge of the graph we produce in this manner. The graph which
belongs to the original knot will be denoted by I'; with the set of vertices
of T' denoted by V and the set of edges of I' by E. An example is shown in
Figure 11.

18



We now take a tubular neighbourhood W of the graph. We claim that W
is a handlebody. This is seen by taking a tree of I' (i.e. a subset of (V, E)
such that all vertices of I' are in this subset, and there are no loops) and for
every e € E we put a handle D? x [0,1] onto the tubular neighbourhood of
the tree, and by induction we have a handlebody of genus g, where g is the
number of edges in E minus the number of edges of the tree (which is well

defined).
Now we can find our knot k£ back, by drawing twists between the vertices of
E in W as in Figure 12. The result is the knot k. O

Figure 11: Construction of a graph of a 2-bridge knot

Figure 12: Construction of the knot from its handlebody

Let S = VUW be the genus 1 Heegaard splitting of S3. We may assume
that V is an unknotted solid torus in R?, and T := VNW a torus T?. There
are meridians p and v of V and W on T which intersect in a base point with
intersection number 1 (i.e. they intersect once). Any closed curve on T is
homotopic to a curve p® - v°, with a,b € Z. If a and b are relatively prime,
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then the homotopy class of this curve u® - v® contains a simple closed curve.
Such a curve intersects the curve p and v a and b times respectively.

Definition A torus knot of type (a,b), t(a,b), is a simple closed curve on
T =V NW which intersects ;1 and v a and b times respectively.

We can give a simple characterisation of torus knots by their knot groups:

Proposition 2.18 The knot group & of a torus knot of type (a,b) can be
presented as follows:
& =< u,v|u*v~® >, where u,v represent u,v. O

A proof can be found in (Burde & Zieschang 1985). This presentation of
& can be used to give a classification of all torus knots, which is also proved
in (Burde & Zieschang 1985).

Theorem 2.19 Two torus knots t(a,b) and t(a',d') are equivalent if and
only if (a',V) is one of the following: (a,b), (b,a), (—a,=b), (=b,—a). O

Furthermore this result can be used to prove that torus knots are invert-
ible but not ampicheiral. A question which is not often asked in topology is
whether we can obtain insight in the relative position of a subset of objects
to the greater set of objects. In knot theory invariants are often not easily
computable (eg. the bridge number), and being able to decide whether a
given knot belongs to some class of knots is not easy. Fortunately for torus
knots one can give some information concerning this question. Before we can
state the result we review a concept from algebra, the centre of a group.

Definition Let & be a group. Define the centre of & to be the subset

1

{ylzyz™ =y, =,y € &}.

In other words, the centre of & consists of those elements of & which
commute with all elements of &.

Theorem 2.20 A non-trivial knot whose knot group & has a non-trivial
centre s a torus knot. O

We can also give some nice characterisations of torus knots in bridge

numbers, crossing numbers (i.e. the minimum number of crossings one
finds in a regular diagram of the knot, denoted by c(k)). We state the results:
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Proposition 2.21 The bridge number of a torus knot of type (a,b) is

br(t(a,b)) = min{|al, |b|}.

Proposition 2.22 The crossing number of a torus knot of type (a,b) is

c(t(a, b)) = minf|al([b] - 1), [b(la] = 1)}

O

The proofs can be found in (Murasugi 1996). A far deeper result has
been obtained for the unknotting number of a knot, which is defined as
the minimal number of transient breaks one has to perform to obtain the
unknot. A transient break is performed by making a cut in the curve at
some crossing (w.r.t. a projection onto a plane) and transforming it into its
negative counterpart. The unknotting number is denoted by u(k). The proof
of this theorem can be found in (Kronheimer & Mrowka 1993, 1995).

Theorem 2.23 For a,b > 0 and gcd(a,b) =1, we have

u(t(a, b)) = (a_léﬁ.

O

Investigation of the prime factorisation of torus knots gives the following
result:

Theorem 2.24 Torus knots are prime. O

Two proofs can be found in (Burde & Zieschang 1985).

2.6 Knot polynomials

The classification of knots has always been the major problem in knot the-
ory. As we have already seen, many invariants which distinguish certain knots
have been constructed over the years, and methods have become increasingly
sophisticated. Among these invariants there is a group which can be used for
our purposes in DNA topology: the knot polynomials.

Since Alexander has introduced the first polynomial in 1928 (Alexander
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1928), many others have been constructed. Among them are the Jones, Kauff-
man, Conway and HOMFLY"! polynomials. All have their own strengths and
weaknesses and until now no invariant has been found which classifies all
knots up to isotopy. In this paper the two most important polynomials will
be introduced and a discussion on their use in DNA topology will be given
in a later chapter. We start with the more classical invariant of the two: the
Alexander polynomial.

2.6.1 The Alexander polynomial

The Alexander polynomial is generally considered in two rather different
manners: the first is purely algebraic, the second more constructive using lin-
ear algebra. Getting a good grip on the notion of the Alexander polynomial
requires both view points. We begin with the more theoretic approach.

Let A be the ring of Laurent polynomials with integer coefficients, some-
times also denoted by Z[t,t7']. A typical element of A has the form

C ot g ettt

with the ¢; integers. A is a principal ideal ring, which means that for every
ideal J of A there exists an element r € A such that J = rA. In our case r is
a polynomial.

Now consider a knot £ C S3. The knot complement X has an infinite cyclic
covering X .2 We may construct it by the following method: let M be a Seifert
surface for k£ and let N : M x (=1,1) — S° be an open bicollar of the interior
of M. Thus we have M = N(M x 0). Denote:

N = N(M x (-1,1)),
N* = N(M x (0,1)),
N~ = N(M x (-1,0)),
Y =8 - M.

Thus we have two triples (N, NT,N7) and (Y, N*, N7). Take countable
many copies of these triples, denoted (N;, N;t, N;) and (Y;, N;*, N;"), i € Z,

We now form an identification space by identifying N;" C ¥; with N;f C N,
via the identity homeomorphism, and similarly N; C Y; with N;; C Nyy,.

The name HOMFLY is an acronym for the first letters of the six persons who con-
structed the invariant

2Much can be said about coverings of knots in general. For thorough accounts on this
topic, see (Rolfsen 1976, Burde & Zieschang 1985).
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The resulting space, X, is a path-connected 3-dimensional manifold. We have
a regular covering map p: X — X. There is a covering automorphism
7: X — X which takes Y; to Y;11 and N; to N;1, and 7 generates the
group Aut(X), which is isomorphic to Z. The first stage of the method de-
scribed above is also referred to as cutting the knot complement along the
surface .

The next step is to consider the first homology group of X, which is called the
Alezander invariant of k. This group is equal to 7 (X) divided by its commu-
tator subgroup and thus abelian. The covering transformation 7: X — X
induces an automorphism 7,: H;(X) — H;(X) and this 7, will be the key
to the Alexander polynomial.

For a commutative ring with identity L, let A be an m X n matrix with entries
from L. Write L™ for the free module L[z1,...,z,]) and L™ = L{y1, ... , Ym)-
Let f: L™ — L™ be the L-module homomorphism determined by matrix
multiplication by A. and define K to be the quotient module L™/ f(L™). The
matrix A is called a presentation matriz or Alexander matriz for the module
K. Observe that two matrices A, B yield isomorphic L-modules if we can
convert A into B by one of the following steps:

(1) interchange two rows or two columns;

(2) multiply a row or a column by a unit of A;

(3) add any multiple of on row to another row, or a multiple of any
column to another column;

(4) add or remove a column of zeros;

(5) interchange A with
A0
01

Moreover, if A is a square matrix, the determinant of A is an isomorphism
invariant of the module K. By the robservation above this determinant is
determined up to a unit of L.

More concretely, 7, makes H,;(X) into a A-module, since we can define the
product of a polynomial p(t) € A with a homology class [z] € H;(X) by

or vice versa.

p(t)[z] = et 2] + - + am[]

This polynomial functions as a ‘separator’ for the 1-cycles ¢;[z] for each sub-
space Y; of the infinite cyclic covering. The power of the variable in p(t)
determines the place of [z] in the corresponding Y;. Since A is a principal

ideal ring there is a Laurent polynomial A(¢) such that H;(X) = A/A(T)A.
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This polynomial is called the Alexander polynomial, and is uniquely de-
termined up to a unit of A, i.e. up to a factor +¢*, k € Z.

Before we turn to the more constructive approach to determine Alexander
polynomials for given knots, we make an important remark. The existence
of the Alexander polynomial relies on the fact that A is a principal ideal
ring. If we try to construct a similar invariant for links rather than knots, the
corresponding polynomial rings are not principal ideal rings, and ambiguity
in the definition of an Alexander polynomial arises. There is no consensus
which definition is most suitable and in general only the Alexander polyno-
mial of true knots are considered. Studying the Alexander invariant of the
link is still possible though. The universal abelian cover of X is not infi-
nite cyclic however, but a free abelian group on p generators, where p is
the number of components of the link. The ring with Laurent polynomials
now becomes Z[zy, ... ,zx]. For more on the Alexander invariant of links see
(Rolfsen 1976). We now return to the constructive approach to determine
Alexander polynomials of true knots.

To study H,(X) it is necessary to find a presentation matrix A for Hy(X).
We have already seen that the determinant of A is an isomorphism invariant
for H,(X), and it is our primary goal to define a presentation matrix A. This
can be done in several ways, and the equivalence of the definitions relies on
the fact that the different matrices are all presentation matrices for H;(X).
We give two definitions of a presentation matrix A of a knot k. The justi-
fication of these definitions is rather involved and beyond the scope of this
paper. The interested reader may find thorough accounts in (Rolfsen 1976,

Burde & Zieschang 1985).

The first matrix is famous for its many applications throughout knot
theory and is usually called the Seifert matrix of a knot. For a knot % in
S3, choose a Seifert surface M of k and a bicollar N = M x [—1,1] in the
knot complement S® — k. We take a representative of an element in the first
homology group of M, both denoted by z, and denote the 1-cycle zx 1 by z+.
These two 1-cycles z,z" have a well-defined linking number. If we generate
H\ (M) by a basis ey, ... ey, where g is the Seifert genus of M, we may set
up a matrix of linking numbers of the pairs of 1-cycles in the basis in the
following way:

Definition The Seifert matrix associated to a pair (k, M) and its bicollar
N is defined by V' = (vi;)sj, 1 < 4,5 < 2g where vy; = lk(e;, €f).
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Theorem 2.25 IfV is a Seifert matriz for a knot k in S3, then V —tV7T is
an Alezander matriz for k. Its transpose, VT —tV, as well. O

A proof can be found in (Rolfsen 1976). The presentation matrix of the
Alexander invariant of a knot in S® is square and its determinant is thus
defined.

Corollary 2.26 For a knot k in S®, the Alezander polynomial of k, A(t), is
equal to det(V —tV'T).

It’s usually quite easy to write down a Seifert matrix for a given knot us-
ing the algorithm described above. In a later chapter we will give an example
and try to characterize the recombination processes in circular DNA using
the Alexander polynomial. We now turn to another easy method to form a
presentation matrix.

The second constructive approach to form a presentation matrix uses the
concept of knot groups. Unfortunately, by its algebraic nature, the precise
geometric information is not well readible in this second presentation, which
makes a comparison between the two matrices on the geometric level rather
difficult. To set up general methods to determine the knot group for arbitrary
knots is quite envolved, and can be found in (Burde & Zieschang 1985, Fox
1962). In short, we may write & = {xy,...,z,|r1,...,7,}. Here we have
projected the knot and we’ve labeled the overpasses in this projection with
x;. For each crossings we may set up a relation r; which is generally of the
form z,z;z; ‘7). A generator z; comes from an arc &; in the projection. See
Figure 13 for details.

The local situation to get the relation z,z;z; 'z; 1

Figure 13: The relations of the knot group

Let & = m(X) and &” its commutator subgroup. Then we already know

that H, (X) = &'/&" and this last group becomes a A-module by our previous
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discussions. If we abelianise the generators of & they all become equal and
give a generator of Z. By changing to a new set of generators

T =Ty, = xlx_l, v, Oy = xn_lx_l
the elements «,...,a,_; all lie in & and together with all their conjugates
under powers of z they generate &'. The ideals u; = ;®&" generate &'/&" as
a module over A and we have new relations R; corresponding to the r;.
If we want to get the presentation matrix for this module we simply have to
write down the E; in the u; as linear combination and put all these entries
in a (n — 1) x (n — 1) matrix. The determinant of this matrix then is the
desired Alexander polynomial.
A very easy way to write down this matrix is by projecting the oriented knot
onto a plane, and label the overpasses by &i,... ,&,. Now construct an n X n
matrix A by filling all non-zero entries of a column in the following way:
choose a crossing and consider the different overpasses which come together
in that crossing. Then write in the corresponding column of A:

1—1 in place k,

t in place 1,

-1 in place j.

By Proposition 2.8 we know that one of the relations is redundant. Since
the number of generators may be limited to n — 1, we may take any (n —1)-
minor of A. All these minors are polynomials which generate a principal ideal.
The generator of this ideal is the desired Alexander polynomial. Remark that
A is not a presentation matrix for H, (X) but for H,(X) @ A. Therefore if we
denote the pth principal ideal generated by the (n — p)-minors by J,, then
Jp of the former Alexander matrix equals J,;; of the latter Alexander matrix.

Note that the dimensions of the two presentation matrices are different:
in the former case the genus of the Seifert surface determines the number
of closed curves which generate H; (M). More precisely, this number is twice
the genus of M. The number of columns in the latter matrix is determined
by the number of crossings in the chosen regular projection. As we will see
in a later chapter, for 2-bridge knots both these numbers can be determined

precisely.

2.6.2 The Jones polynomial

The Jones polynomial has proved to be a very successful invariant to dis-
tinguish certain types of knots and links. To every knot or link k£ we associate
a polynomial in the variable v/¢, which is calculated inductively in the number
of crossings according to the following scheme: We first choose an orientation
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ks Q ko
Figure 14: The three knots needed to compute the Jones polynomial of the
positive trefoil

and project k£ onto a plane. We can now make a simpler link by choosing a
suitable positive crossing and changing the over- in the undercrossing. We
denote the first knot £ by k£, and the transformed one by k_. We can also
make a third knot by doing a transformation as in Figure 14. This knot will
be denoted by kj. Obviously, also ky has less crossings than k.. We now
calculate the Jones polynomial of £ = k£, from the knots k_ and ky by the
so-called skein relation

Vi, (1) = Vi (1) + t(Vi — —

Vi
This procedure is done until we are left with n unknots, where n is the
number of S'’s from which k is made, i.e. k is an n-link. By convention the

Jones polynomial of the unknot is 1.By induction on the number of unknots,
we can show that the Jones polynomial of n unknots is

L i1
Va(t) = [-(Vi + %)] :

Example Let k£ be the positive trefoil. After having constructed the knots
k_ and kg, cf. Figure 14, we can write down the skein relation for £ and
see this to be:

)Vio (1)

1
Vi(t) = 2 - 1 +t(Vt — —=) Vi,
k() ( \/l_f) ko
If we apply the skein relation once more to ky := ko we obtain
1 1
Vio(t) = 2[-(Vt — )]+ t(Vt— —=) - 1
o) = E1-(Vi= ) +HVE = )

which yields



It can be shown that equivalent knots yield the same polynomial, and one
of the simple but important result is that the Jones polynomial distinguishes
the positive and negative trefoil by the following theorem.

Theorem 2.27 Let k be a knot and k* be its mirror image. Then we have

Vi(t) = Vi (¢71).

Figure 15: Two non-equivalent knots with the same Jones polynomial

A distinction between knots and their mirror images (if non-equivalent)
could not be achieved with the other polynomials or other invariants which
had been devised, although it’s one of the simplest problems one first thinks
of. To show that the classification of knots with Jones polynomials is not
complete is shown by the two knots below in Figure 15: although they are
not equivalent, their polynomials are the same. A paper such as (Kanenobu
& Sumi 1992) shows that such a situation are not unique or rare in any
case. Here we can find a table of 2-bridge knots with up to 20 crossings with
remarks on equivalent Jones polynomials. More often than not two 2-bridge
knots of type («,3) and («,<) share the same Jones polynomial. We will
study the use of Jones polynomials in a later section.

28



NW NE

SW SE
locally knotted rational prime

Figure 16: Different types of tangles

2.7 Tangle calculus and its relation to knot theory

In this section we will survey a part of mathematics which has specifically
been set up to handle site-specific recombination problems. We will first
introduce the concept of tangles, and then review some results in the field of
topological enzymology.

Definition A 2-string tangle is a pair (B,t), where B is a 3-ball and ¢ is
a pair of arcs (with or without orientation) properly embedded in B.

We let the trivial tangle be the pair (D? x I, {z,y} x I), where I = [0, 1],
and {z, y} are points interior to D?. We can distinguish three types of tangles
(Lickorish 1981):

1. A tangle (B,t) is rational if there exists a homeomorphism of pairs
from (B, 1) to the trivial tangle.

2. A tangle (B,1) is locally knotted if there exists a local knot in one
of its strands. To be more precise, we can find a 2-sphere in B which
meets ¢ transversely in 2 points, such that the 3-ball bounded by the
2-sphere contains a knot.

3. A tangle is prime if it’s neither rational nor locally knotted.

As in every part of topology we have the classification problem. In order to
distinguish different tangles, one first has to define some equivalence relation
on the set of tangles. Let first B be the 2-disk D?, and take as the four
points which meet the 2-sphere in which D? sits to be four equatorial points
P ={NE,SE,NW,SW}. To get the equivalence relation, we demand that
there exists a homeomorphism ®: (0B,dt) — (52, P). So we now think
of tangles as being triples (B,t, ®). Two tangles (B,t,®) and (B',t, ') are
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Figure 17: Tangle addition A+ B and construction of denominator and numerator
of a tangle A

called equivalent iff there exists a homeomorphism H: (B,t) — (B',t)
such that ® = & o H on JB.

To be able to visualize tangles, we would like to be able to draw pictures in the
plane. Mathematically one then does the following: Let p be the projection of
B onto the equatorial plane D?, and choose a homeomorphism ¥: B —s D?
such that U extends to ® and such that the image of the arcs ¢ under po ¥
is a regular projection in the interior of D2. A tangle diagram is the image
of (B,t) under po V.

We can define a tangle addition in the following manner: Let A and B be
two tangles. Define A+ B to be the object displayed in the figure below. Notice
that A+ B may contain simple closed curves which do not intersect (A+ B),
and therefore A + B doesn’t have to be a 2-string tangle. Furthermore for
some tangle A we can define the denominator D(A) and the numerator
N(A) as in the Figure 17.

From now on we will investigate rational tangles for reasons which will

be made clear a bit later on. We first deal with the classification of these
tangles.
We can classify the rational tangles in much the same way as we have classi-
fied 2-bridge knots. To do this we have to introduce the same kind of notation.
To be more specific we introduce a vector notation and a continued fraction
which yield an (extended) rational number (where extended means that oo
is included in the rational numbers) (Conway 1970, Ernst & Sumners 1987).
Recall that a rational tangle ¢ can be made into the trivial tangle by apply-
ing a suitable homeomorphism. Equivalent to this is the fact that the tangle
can be deformed by moving the arcs inside the interior of the 3-ball, while
keeping the endpoints of the arcs attached to the 2-sphere. Or to put it the
other way around, any rational tangle can be made from the trivial tangle
by performing the inverse moves of the same procedure.We make the precise
statement in the following proposition.
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Proposition 2.28 A rational tangle can be obtained by performing a finite
sequence of alternating vertical and horizontal twists to the trivial tangles (0)
or (0,0), where these two trivial tangles are the ones displayed in the Figure
18. O

Figure 18: The two tangles (0) and (0, 0)

It follows from this proposition that we can completely determine the
rational tangles by giving a vector which describes the vertical and horizon-
tal twists which have to be performed from the trivial tangle. We have to
distinguish two cases:

If the length of the vector (zy,...,z,) is even, we first have to perform z,
vertical twists to (0,0), then z, horizontal ones to (z;), and in the end we
finish with z,, horizontal twists to (z1,... ,Z,_1).

If the length of (z1,...,z,) is odd, we start with z; horizontal twists per-
formed on (0), then zy vertical twists on (z;), etc., until we finish with z,
horizontal twists to get the relevant rational tangle.

If the entries zy,...,z, all have the same sign, then the regular diagram of
the end result is alternating. This is not the case when both signs occur in the
vector (z1,... ,z,). Furthermore we may assume that z; # 0Vi € {1,...,n},
since if we can find an ¢ such that z;, # 0 we might shorten the vector to
the appropriate size by just removing this z;,.

Having introduced this vector notation for rational tangles, we can make
rational numbers from these vectors in a similar way as in the case of the
2-bridge knot, i.e. by using continued fractions. We recall, that we then define
a fraction by setting

=[T1,...,%,) =

. 1
T
N —

.. 1
'wn—1+a

@
Y
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With these preliminaries out of the way we are able to give a full classi-
fication of rational tangles:

Theorem 2.29 There exists a 1-1 correspondence between equivalence classes
of rational tangles and the extended rational numbers % € QU{% = oo}, where
ged(a, B) = 1. O

A proof can be found in (Burde & Zieschang 1985). Another proof, more
elementary than the first, can be found in (Goldman & Kaufmann 1997).

We now investigate the link between rational tangles and 2-bridge knots.
There is a nice relation between the two sets, as described by the following
theorem.

Theorem 2.30 We have the following two correspondences between 2-bridge
knots and rational tangles:

1. A 2-bridge knot (or link) is the denominator of some rational tangle.
2. The denominator of some rational tangle is a 2-bridge knot.

O

The same holds for the numerator of a rational tangle, which will be
needed to handle the topological enzymology problems. A nice proof of this
theorem can be found in (Murasugi 1996). It involves the same argument
with which one proves that a 2-bridge knot can always be projected in such
a way that, regarded as a 4-braid, one of its strings doesn’t contain any cross-
ings.
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3 DNA recombination

In this section we discuss the relevant biochemical background needed for
this paper. We discuss some facts about the structure of DNA first.

3.1 The structure of DN A molecules

The DNA molecule is composed of four bases, Adenine (A), Cytosine (C),

Guanine (G) and Thymine (T), which are attached to one or two backbones
of alternating sugars and phosphorus. In the case of one backbone we call the
DNA single-stranded, and in the other case double stranded. We will focus
on the latter case. At each site on the two backbones, bases are attached,
such that an A in the first backbone fits to a T in the other, and there is
a similar pairing of C’s with G’s. The bases A, T,G and C are covalently
bonded by hydrogen-bridges. This makes a double-stranded DNA molecule
an immense long word written in A, T, G and C, which can be read in the
inverse on the other strand. This ladder of base-pairs is according to the
classical Crick-Watson model a right-handed helix, and the two backbones
are intertwined millions of times, with approximately 10.5 basepairs per full
twist. To be able to store such huge molecules in the nucleus of a cell, it has
to be made more compact. The helical form of double-stranded DNA solves
this problem: in order to minimise the energy of the intertwined strings, the
molecule will supercoil, much the same as a telephone wire will supercoil if
you twist the wire every time you have used the phone. The millions of twists
in DNA molecules will yield four to five levels of supercoiling. The molecule
has to be coiled up in a cell much like 200 km of fishing line would have to
fit in a basketball!

To see whether this neat double stranded helical structure has any implica-
tions on its functionality we have to review the four most important processes
needed to sustain life: replication, transcription, repair and recombination.
We explain these terms very briefly.

Replication is the process where the two strands of a piece of DNA are split
at the replication fork, and new strands are made at each of the two strands
with two complete identical DNA pieces as result. The process in which the
genetic information on the DNA is being ‘read’ and used to make proteins
we refer to it as transcription. DNA repair has to be done since both replica-
tion and transcription tend to be quite ‘sloppy processes’, i.e. many mistakes
are made. Recombination is the interchanging of pieces of DNA, be it within
one piece or between several. Here one generally makes a distinction between
interchanging of almost entire chromosomes, referred to by homologous re-
combination, and relocating small bits of genetic information which is called
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Figure 19: Replication of double stranded DNA

site-specific recombination.

Being heavily supercoiled does not make these tasks much easier. In order to
deal with the problem several enzymes have evolved to mediate these impor-
tant processes of living matter. For instance, to replicate DNA which occurs
in circular form, as all DNA, it has to be locally unwinded. But since the
twists cannot really be removed by unwinding due to the circular shape of the
molecule this gives additional stress to the rest of the molecule. To relieve this
stress a group of enzymes, called topoisomerases, break the strands and let
them unwind as much as needed. For the types of DNA we will discuss, this
will not solve the problem completely. To discuss this matter appropriately
is beyond the cope of this paper. The whole story can be found in (Mathews
& Van Holde 1996).

In site-specific recombination events we also find difficulties arising from the
geometrical properties of DNA. Here either two blocks of DNA are inter-
changed or a piece of DNA is integrated in a host genome. We will see
concrete examples of both processes, in the form of phage A integrase (Int)
and Tn3-resolvase (Tn3).?

Since site-specific recombination is from the topological point of view the

3The recombination enzymes which have been discussed in the literature are Hin, Gin,
Cre, Tn3 and Int. For the first three, which will not be dealt with in this paper see on the
Cre enzyme: Abremski et al. 1986; on the Hin enzyme: Heichman & Johnson 1990; on the
Gin enzyme: Kanaar et al. 1988, 1990.
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most interesting process we will give a more detailed account of its proper-
ties and in the subsequent sections.

3.2 Circular DNA and site-specific recombination

Although in most textbooks DNA is visualised in linear fashion, a substantial
part of DNA in living cells is found in circular form. They are formed from
the linear ones by gluing together both ends of the double-stranded string.
Topologically the result is a strip which is winded a great number of times.
A priori one would expect a mixture of orientable and non-orientable bands
in samples of DNA-circles. In nature only the orientable bands are found. To
explain this phenomenon, we have to look a bit better at the precise structure
of DNA-backbones.

= £ >
“0-P-OCH, o, Hase
O KH H
H b
0 H
“0-POCH, o Fase
0 H H
H H
o ¢ H
0-P-OCH, o, Ease
v R B
H H
Q H

Figure 20: 3"-ends and 5’ends of the backbone of DNA

Recall that the backbone of DNA strands are alternating sequences of
sugars and phosphorus. The sugars are rings of four carbon atoms and one
oxygen atom. If we number the ring positions from one to five, by convention
the first position is a C-atom with a base attached to it. Then we find three
more C’s and the fifth position is occupied by the O-atom. At position four,
a C'Hy-group, and the phosphate-group are attached in linear fashion. This
phosphate-group then is attached to the sugar-phosphorus-group below it,
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to the 3’-carbon in the ring. See Figure 20. In effect, the 3’-carbon and the
fifth C from the CH, (denoted by 5’-carbon, although it’s not in the ring)
are the links to the sugar-phosphorus-groups below and above.

They are the key to the orientability problem of the circular DNA: if we look
at a straight segment of double-stranded DNA, we will find that at the ends
we have an anti-symmetrical situation: the two strands both terminate with
3’-C’s or with 5’-C’s, but by the explanation above a 3’-C will only fit to
a 5’-C' with a phosphate-group inbetween them. Now the problem is solved
by the observation that one string ends with a 3’-C on one side and a 5’-C
on the other, and both strands’ ends are inverse to each other. So if we find
a 3’-C of one strand at one side we will find a 5’-C' of the other strand at
the same side. Now the two ends will only fit together to form a circle if the
number of twists of the two strands is even, since we can only bind 3’-C’s to
5’-C’s. This will induce the orientability needed to explain the phenomenon.

Having settled this little problem we can discuss the mechanisms of site-
specific recombination of circular DNA. Characteristic of these processes is
the local nature of the events when it comes to gene-exchange, whereas the
global geometry of the DNA has to be altered before this can take place. We
will first explain the type of recombination involved in Tn3-resolvase.

In this situation we have two recombination sites on the circular DNA, which
are identical pieces of DNA. The action performed by the enzyme, is breaking
the DNA at the ends of these sites (after having given the DNA an orienta-
tion), and crossing the two sites to exchange them. Two situations can occur:
the recombination sites have the same orientation or the opposite on the ori-
ented DNA. The first case is called direct repeats and the latter inverted
repeats. We now look at the recombination event in a bit more detail.

To exchange the two recombination sites on the DNA-circle, the enzymes
has to align them in order to perform the action. The enzyme has to per-
form a global move on the DNA to achieve this, which results in bringing
the sites close together to be able to exchange them. The end of this move
is called synapsis, and this intermediate stage of enzyme-DNA-complex is
called the synaptic complex. The part of the DNA which is really bound
to the enzyme, including the sites, together with the enzyme is called the
synaptosome. Having formed this synaptic complex, the enzyme performs
the recombination and lets the DNA go. In nature we find that enzymes
may perform recombination more than once. Either the action is performed
several times before releasing the DNA, an event which is called processive
recombination, or the enzyme may act in multiple encounters, which is
called distributive recombination. Both forms may be found for the one
enzyme.
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It is evident that the recombination events induce topological changes to
the DNA-substrates (i.e. the DNA which will be recombinated). One way of
trying to understand the actions which are performed by an enzyme is just
looking at the event under a microscope (or take pictures of the stages). This
is possible to some extent, as is illustrated by the photograph below, but the
crucial part where the actual exchange of sites takes place can not be revealed
with this method. The synaptosome is only visible as a small blob, and no
further analysis of it can be made. A rather recent development to attack
the problem is the topological approach to enzymology introduced by
Wasserman & Cozzarelli (Wasserman & Cozzarelli 1986). In this protocol
data from biochemical analyses of DNA recombination events are translated
into topological facts, and the machinery from topology is then applied to
analyse them. In this indirect manner one can learn more about the actual
moves the enzyme has to perform to achieve the recombination. In the next
section we will discuss the first case of site-specific recombination: that of
Tn3-resolvase.
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Figure 21: Supercoiled circular DNA

3.3 Tn3-resolvase and its topological behaviour

In the early 1990’s C. Ernst and D.W. Sumners have made a calculus for
rational tangles to investigate the problem of enzyme activity (Ernst & Sum-
ners 1990, Ernst 1996, Ernst 1997). The idea is as follows: to investigate the
topological performance of a particular enzyme a circular DNA substrate is

37



incubated with such an enzyme. The reaction products are then analyzed by
a method called gel electrophoresis. During gel electrophoresis the reaction
products can be analyzed by size and shape. An electric current pulls the
negatively charged DNA slowly through through agarose or polyacrylamide
(the gel), which contains a microscopic network of pores. The speed with
which the molecules are being transported through the gel depends on the
structure of the DNA. More compact (supercoiled) DNA, will experience
less friction, and will go faster than voluminous DNA. In a similar manner
products with high catenation are faster than trivial knot DNA molecules.
After some time the solution will be divided into neat strips in which the
molecules of the same form are accumulated. One then coats the individual
strips with a protein called recA, which relaxes the DNA, in order to make
single molecules visible under the microscope. See Figure 22 for examples.
This yields the biological data needed to get the mathematical model started.

Figure 22: DNA knots in vitro

In several studies biochemists have analyzed the structure of reaction
products made by Tn3-resolvase.

Tn3-resolvase is an enzyme which reacts circular duplex DNA substrates
with directly repeated recombination sites (Wasserman & Cozzarelli 1985a,
Wasserman et al. 1985). In most cases resolvase will mediate one round of
recombination and releases the product knot. This is the principle product of
the reaction and is known as the Hopf link < 2 >. One in twenty encounters
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will produce more complex DNA links and knots: additional rounds of pro-
cessive recombination are mediated in these cases and subsequent products
are found after each round. The sequence of knots is

<1l> =<2> =<2,J11>=<1,1,1,],1>=<1,1,1,2,1>.

Observe that all product knots are 2-bridge knots. Therefore, by Theorem

2.30 we know that there are rational tangles such that their numerator or
denominator are the known 2-bridge knots. We now review a model for site-
specific recombination from (Ernst & Sumners 1990) which enables us to set
up the required set of tangle-equations.
By the local nature of site-specific recombination events, we may assume
that we may subdivide the substrate knot in two parts. More specifically, we
can find rational tangles O and T such N(O + T') equals the unknot. The
O tangle is the outside tangle, and the T' tangle refers to the recombination
sites on the substrate unknot. We now suppose that the enzyme performs
a tangle surgery, i.e. it removes 7' and substitutes a new tangle, R say.
Then the product knot is equal to N(O + R) and we already know this to be
the Hopf link. Multiple rounds of processive recombination are modeled by
tangle additions of the identical reaction tangle R. Thus the second round
will yield a product knot N(O + R+ R) and so on. We may now set up a set
of equations with O, T and R as unknowns:

NO+P)=<1>
NO+R) =T,
N(O+R+R) =T,

: (2)
N(©O +mR) =Ty,

where the 7; are reaction products known from experiments. Ernst and Sum-
ners have devised a calculus to solve such equations in more general context
than Tn3-resolvase and have established the following theorem, proved in
(Ernst & Sumners 1990):

Theorem 3.1 Suppose that tangles O, T and R satisfy the following equa-
tions: (i) N(O+T)=<1>; (ii)) NO+R) =< 2>; (iti) NNO+R+R) =
< 2,1,1 >; (iv) NO+R+ R+ R) =< 1,1,1,1,1 >. Then {O,R} is
{(-3,0),()} and NO+R+R+R+R)=<1,1,1,2,1 >. O

One might ask how many rounds of processive recombination are needed
to uniquely determine the rational tangles O, T and R. This has been an-
swered by Ernst to be maximally four (Ernst 1997).
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With the Theorem the analysis of the Tn3-resolvase enzyme is complete.
We precisely know what the topological moves are performed by the enzyme
to perform the recombination: first it makes a triple twists in the unknot
to align the recombination sites, and performs a recombination. In further
steps Tn3 either introduces 1 twists before recombination (from < 2 > tp
< 2,1,1 >) or merely introduces one extra crossing (all other steps).
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3.4 Torus knots and DNA recombination

In this section the applications of torus knots in DNA recombination are
discussed. We will first review results which have been obtained in the phage
A integrase recombination experiments.

Recall that site-specific recombination has mainly been studied in two
classical examples, Tn3-resolvase and phage )\ integrase (Int) recombinations.
Int-mediated reactions are far more versatile than Tn3-recombinations. In
concert with other proteins, Int can recombine direct and inverse repeats in
circular or linear substrates, supercoiled or not. We will simplify the situation
a bit to make it more accessible. For those who want to read a more detailed
account, see (Crisona et al. 1999).

Rather than performing an intramolecular exchange of genes, Int recombi-
nates the DNA between two molecules, thereby integrating the DNA of the
bacteriophage A, a virus, into the genome of the bacteria Escherichia coli.
The genes which are identified by Int on E. coli and on phage A are called
attB and att P respectively. attB is some 240 base pairs (bp) long, while attP
measures only 30 bp. On attB we can find the precise sites where Int will
break the DNA to perform recombination. They will be denoted by C and
C'. Analogously, the sites on phage A will be called B and B’, which con-
trary to E. coli’s attB happen to be the very ends of the attP. The regions
attB and attP are both parts of circular DNA-sequences. We denote attB
by ———C -0 —C"——— and attP by B— O — B’. The actual crossover oc-
curs between the homologous core regions, denoted by O. Now the first step
involves making two new gene fragments called attL and attR. attL consists

of B—0O—-C"——— and attR of — — —C — O — B'. In a diagram we have
attB — — —C-0-C' — —— . B-0-C'— —— attL
att P B-0-B' ———-C-0-FB attR

An illustration of the recombination is given in Figure 23.

The integration of the phage A is called the Int PB reaction. Contrary
to the integration we can also distinguish the reverse reaction, which excises
the phage A genome out of the bacteria. This reaction is denoted by the Int
LR reaction. We will focus on the Int PB reaction.

The purpose of the integration is solely benefiting the virus: it cannot
replicate its own DNA. When the bacteria with integrated virus DNA repli-
cates, automatically the virus DNA will be copied as well, and these will then
form new viruses, making the circle of life complete.
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Figure 23: The Int mediated recombination
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Figure 24: Helical vs. plectonemic supercoiling

The genome of the bacteria is circular, so the tangle calculus may be applied
to study the topological characteristics of the Int enzyme. Due to the great
variety of possible reactions, it has been difficult to unravel the precise mech-
anisms responsible for the experimental observations. A lot of work has been
done on the subject, culminating in a paper which has just been published
this year (Crisona et al. 1999). We will give a short tour through the experi-
mental results. These can be reviewed in (Spengler et al. 1985, Cozzarelli et
al. 1984, Crisona et al. 1999).

To be able to examine the topological activity induced by the Int PB
reaction, one doesn’t look at the original bacteria-phage complex, but instead
one takes ordinary circular substrate, with the appropriate binding sites. The
actions then are directly translated into knotting of the substrates. We will
now review the results.

The substrates have been plectonemically supercoiled, which is showed in the
figure below.

The reaction products where then run through a gel, and the separated
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knots and links where coated with recA protein to relax the superhelical
structure and allow electron microscopy. This way a list was made with all
knots and links occurring in the product solution. The list with all the knots
is given below.

Knots made by Int-mediated recombination

c(k) | number of molecules | number of knot types | observed type
3 1 2 | Torus
) 2 4 | Torus
7 5 16 | Torus
9 5 122 | Torus
11 4 1,527 | Torus
13 7 20,992 | Torus
15 7 300,000 | Torus
17 p 3,000,000 | Torus
19 p 50,000,000 | Torus

From: Spengler et al. 1985

A similar kind of table can be set up for the links, but no precise data can
be found in the literature. It is known, however, that a similar distribution of
torus links is found in recombination products (Spengler et al. 1985, Crisona
et al. 1999). We make some remarks on these distributions.

In the second column of the table we have placed the number of molecules
observed in the reaction product. We can directly see that the distribution
of the number of molecules over the crossing number of the knots is quite
different than with Tn3-experiments. Recall that in that case, we saw a great
decrease in numbers when crossing number increased, which reflected the fact
that there were less DNA-products resulting from multiple processive recom-
bination. But in the Int-case we see, that even for higher crossing numbers
there are still quite a few product molecules with that crossing number. An-
other observation is the consistent appearance of torus knots, which is most
remarkable in the case of 19 crossings, since there are some 50 million knot
types with 19 as their crossing number, of which only one is a torus knot.* We
can conclude from these observations, that we have a different mechanism
for Int-recombination compared with Tn3-mediated processes: It is shown in
(Spengler et al. 1986) that the plectonemic supercoiling of the substrate con-
tributes directly to the product knot. If a substrate molecule is supercoiled a

4That there is only one torus knot among the 50 million is seen using Prop. 2.22, and
the fact that 19 is prime
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Figure 25: A torus knot of type (2,8)

number of times, and the ‘ends’ of the molecules are recombined (see the fig-
ure for explanation), then the result is a torus knot of type (2,2n+ 1), where
n runs over the positive integers (why they have to be positive is explained
by looking at the orientations of the crossings, see below).

Similar results were obtained by (Crisona et al. 1999).

In the literature nothing can be found on processive recombination in
Int-mediated reactions. This is probably due to the complexity of the reac-
tions, which will probably not reveal any side products between the array of
different ‘first order’ products that can be found, through gel electrophoresis.
Another reason might be, that since Int is certainly not the only enzyme at
work in the reactions, multiple recombinations will not be very probable to
happen. A third reason for the lack of processive recombination might be the
fact that supercoiling is needed for Int to recombinate. Once products like
torus knots have formed the supercoiling can not occur any more, at least
not on the same level. If one would like to coil a torus knot, it’s the torus in
which the knot can be embedded that will be coiled, whereas in the case of
supercoiled substrate, the strands will be coiled. This will probably hinder
another round of recombination.

Some mathematical remarks on the Int-reactions.

There are two classes of torus knots which are found in the Int PB reac-
tion. For knots we find £(2,2n + 1),n € N, and for links we find the torus
links with an even number of crossings.® The crossings do not have equal
signs in both cases: recall that Int PB needs negatively supercoiled substrate
in order to perform its action. When the number of supercoils is —2n,n € N,

5In (Crisona, et al. 1999) the list of links found consists with 2-links with > 4 crossings.
For clarity of mathematical exposition we include the 2-link < 2 >.
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the recombination product will be a torus knot #(2,2n — 1) which has posi-
tive crossings instead of negative. On the other hand, from a —2n + 1 times
supercoiled substrate is recombinated, a —2n link with negative supercoiling
is produced. This is explained by following orientations during recombination.

The bridge number of the torus knots #(2,2n+ 1),n € N is by Prop. 2.22
equal to 2 whenever n > 1, which is always the case. For the links we can
also see this to be true. We can give a general description of all the product
knots and links that have been found.

If we look at the set of 2-bridge knots of the form {< n > |n € Z}, then it’s
easy to see that the set {< 2i+1 > |i € N} represents the subset of the torus
knots found in the Int PB reaction. The subset of positively even-crossed 2-
links {< —2i > |i € N}, equals the subset of links. In other words, the 2-links
found in the reaction products are also 2-bridge knots. This shows that as in
the case of Tn3-resolvase, all the products are a subset of the 2-bridge knots.

Although claimed in (Spengler et al. 1985) that torus knots always have
an odd crossing number, this is not the case. Prop. 2.22 lets us construct a
torus knot ¢(4, 3) with crossing number min{3- 3,42} = 8. The torus knots
that are found in Int-mediated recombination products do have odd crossing
number.

Proposition 2.14 lets us compute the genus of the different knot and link
products. For the torus knots {< 2n + 1 > |n € N} we have genus

1
S2n+1-1)=n,
and for the torus 2-links {< —2n > |n € N} we have genus
S =20 =2)=n—1
—(|—2n|-2)=n-1.
2
Unfortunately Int does not perform multiple rounds of recombination, unlike
Tn3. In the next chapter we try to learn more about site-specific recombina-

tion. Because of the rather simple nature of Int reactions, we will focus on
the Tn3-resolvase mechanism.
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4 The mathematical structure of DN A knots
in site-specific recombination events

In this section we try to expand our knowledge of site-specific recombina-
tion by Tn3-resolvase by investigating the mathematical structure of these
processes. In the previous section we have seen that the models set up to
investigate site-specific recombination are based on the assumption that re-
combination is performed processively. That means multiple rounds of recom-
bination are performed on a substrate before it is released by the enzyme.
We will discuss both distributive and processive recombination events.

If we look at a single step in the process of site-specific recombination we
know from the biological and mathematical results reviewed in previous sec-
tions that both substrate and product knots are 2-bridge knots. This provides
motivation to consider the questions: given some 2-bridge knot k£, what are
the possible forms of the product knot made by recombinating k7 How many
possibilities are there, and does the form give us any new information on
where the enzyme may perform its actions? These matters are considered in
section 4.2.

We will also see some results in which we perform multiple rounds of site-
specific recombination. If we regard all recombination steps in a certain se-
quence to be the same, we are discussing distributive recombination events,
since this is the situation in which the enzyme makes one recombination and
lets the product knot go every single step. If we on the other hand regard
the first step as a ‘preliminary and global’ move and all further events as
‘local’, we are in the field of processive recombination. As we will see, the
latter is a simplified version of the first situation. this means that processive
recombination events may be modelled as ‘trivial’ distributive recombination
events.

In sections 4.3 and 4.4 we try to answer how the knot invariants change if
we perform a site-specific recombination. Do these changes tell us anything
about the mechanism? This leads to discussions on four well-known invari-
ants and study their application on site-specific recombination events. First
the genus and the graph of a knot will be conidered. After that we look into
the application of the Alexander and Jones polynomials.

First we look at our model of site-specific recombination more accurately.
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4.1 A more general model for site-specific recombina-
tion

As we have seen in the previous chapter the topological characterisation of
Tn3-resolvase has been determined satisfactorily. Theorem 3.1 provides us
the with specific information required to make a generalisation. The Theo-
rem states that the unique pair of tangles {O, R} such that the equations
are satisfied is {(—3,0), (1)}. The first tangle is a negative twist of length
3 of two strings, and the second tangle is the recombination of two strings.
The twists are made in the ‘outside’ tangle and are a global move of the
substrate. They are needed to align the two recombination sites, which are
then recombinated by the enzyme. This last step is seen as the substitution
of a tangle T by a new one R = (1). This also implies that T is the trivial
tangle (0). The complete action can thus be divided in two steps: a global
move of 3 twists and a local recombination of the sites inside the enzyme.
More generally we model one step in the site-specific recombination event by
n twists and one recombination.

Note that this model for site-specific recombination based on the Tn3 enzyme
also covers the topological moves performed by the Int enzyme. Therefore,
apart from the fact that Tn3 performs processive recombination while Int
does not, their first recombination step is the same. Of course, Tn3 really
fixes the number of twists before it performes the recombination, and this
aligning of sites is done actively by the enzyme. With Int on the other hand
we find that the number of twists may vary. This is due to that fact that
aligning of the sites is done passively: by random collision. Different substrate
knots just have a different amount of supercoiling. We proceed our discussion
on processive recombination.

Processive recombination is seen as addition of multiple R tangles as dis-
cussed before. This can also be regarded a bit differently. If we perform no
twists and only make one recombination, we have actually done nothing else
than one step in a processive recombination event (save the initial step).
This means that processive recombination can be considered as a special
case of distributive recombination, i.e. such that the first step may contain
non-trivial twists but all consecutive steps do not.

We now briefly investigate if there are any constraints to this model. More
specifically, is it always possible to add a crossing from a recombination in a
processive sequence of recombinations and write this in a form N(A+ B)? If
the new crossings is added on the ‘outsides’ of the knot (i.e. left of A; and
right of Ag,,11) this is seen to be easy. But if we add such a crossing in the
interior of the knot, there doesn’t seem to be enough space to draw closed
curves as the boundaries of the two tangles A and B to form the N(A + B)
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complex. But if we regard the tangles as three-dimensional objects with S?’s
as boundaries one may see that the recombination tangle can be lifted above
the rest of the 2-bridge knot, and we are able with this construction to write
the entire 2-bridge knot as the numerator of the sum of A and B.

As we have seen processive recombination is quite the same as distributive
recombination: they differ only in the fact that in each step after the initial
one the latter may have non-trtivial twist whereas the first may not. In this
perspective processive recombination is a more restricted form of distributive
recombination.

With these preliminaries out of the way we start with the actual discussion
on classification of DNA knots in site-specific recombination events.

4.2 A classification of DNA knots in site-specific re-
combination events
We investigate the question: given a 2-bridge knot k =< aq,... ,a9ms1 >,

what will be the product of the enzyme action of the type of Tn3-resolvase?
To deal with the question, we introduce some additional notation.

Figure 26: The different regions of the 2-bridge knot < 3,2,1 >

The region of k£ which contain the crossing of length a;, will be denoted
by A;. Regarding k as a 4-plat coming from a suitable 4-braid, we have four
semi-circles: one above and one below A;, joining the two left pairs of strings,
and one above and one below Ay, 1, joining the other two pairs (cf. Fig. 8).
We denote the lower two by I and I resp. and the upper two by I1I and
1V. See Figure 26 for an example. The set of 2-bridge knots will be denoted
by K. The enzyme action p, is modelled by n twists and 1 recombination.
We have the following theorem.

Theorem 4.1 Letk =< ay,... 69,11 > be a2-bridge knot, and p,: K —
K be a map which performs n twists and 1 recombination on k. Then the
possible product knots p,(k) are:
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< Qpye.. 7a2m+17n71 >,

< Ary.-- ,a2m+1,n—1,1 >,

< 1,n,a1,... y Bam41 >,
<17n_17a17"' y Qom+1 >,

< Ary.-- ,ai_l,j,:l:l,ai—j,... y A2m+1 >,
< Ary.-- ,aizl:l,... y A2m+1 >

We prove the Theorem by asserting that these are product knots under
pr-action on k£ and furthermore that there are no other possibilities. We make
two distinctions: either the action of n twists, with n > 1, is performed some-
where between the regions 4;, 1 <1 < 2m + 1, and end-regions included, or
outside the crossing regions (so at the far ends of the knot). Since the sub-
strate is the unknot and since the enzyme will always perform either positive
or negative twists, and not both during distributive recombination, we can
fix the orientation of the twist after we know whether they are left-twists
or right-twists (where right and left are determined in the usual way). We
therefore may assume that twists are always positive, and the signs of the
crossings and of the twists are the same. We don’t have any information
however on the sign of the recombination event and have to consider both
negative and positive cases.

We begin with a lemma.

Lemma 4.2 If the enzyme performs a non-trivial twist and a recombination
between A, and Asyyq, then the product is not a 2-bridge knot.

The proof of this Lemma will be postponed to section 4.3.

PROOF OF PROPOSITION We first consider a trivial twist action and

one recombination between A; and A,,, 1, end-regions included. We make a
distinction between positively and negatively oriented recombination w.r.t.
the orientation of the crossings. We denote this action by pg and p, resp.
where 0 denotes the trivial twist.
We have two different situations when recombination occurs between the
first and second string as opposed to recombination between the other two
pairs. We can divide these situations in recombination above A; (for i odd)
and below A; (for ¢ even), and between two A; and A;,;, again between the
middle two strings or between the upper pair. We deal with actions ‘inside’
the regions A; for ¢ odd and positive orientation of the recombination to
illustrate the idea:
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The recombination site right above a region A; divides A; into two pieces of
j and a; — j crossings for some 0 < j < a;. So we have

pa'(<a1,... y Aoma1 >)=<a1,... ,ai_l,j,l,ai—j,... y G > .

or more generally

p(:)t(< iy .-, Gam41 >): < qpye.. 7ai—17j7:|:17ai_.77"' » Gam41 > -

For recombination next to some region A; we have in an analogous fashion:

p§(<a1,...,a2m+1>) = <ay,...,6;+1,...,0m11 >,
pa(<a1,...,a2m+1>) = <a1,...,ai—1,...,a2m+1>.

For recombination with n twists outside A; or Ag,,.1, we can immediately
state the result for enzyme actions at I11 and IV:

177 —

2 7+(< iy .-, Gam41 >) = < 17”7 A1y -e 5 Q2my1 >,
TV, —

Dn +(< A1y -+ y Qopt1 >) = < A1y.-- ,a2m+1,n,1 >.

and for negatively oriented recombination

Ir7,— —
n (<a1,...,a2m+1 >) = <1,n—1,a1,...,a2m+1 >,
TV,— _
P (< ar, ... Gome1 >) = < ap,...,09mp1,n—1,1>.

For actions at I and 11, we turn to a different notation for k. For non-
canonical 4-plats, we can have crossings between the first and second strings,
between the second and third strings, and between the third and fourth
strings. We denote these with a;, b; and ¢; respectively, and write

k= (al,... ,ak|b1,... ,,bk+1|01,... ,Ck).
By Murasugi, p.183 - 186, we can transform D into
(0,0,... ,0|b1,... ,bk+1|a1+01,... ,ak—i-ck).

With our previous notation we can identify

< Ary.-- y Gom+1 >= (0, ,0|a1,a3,... y Qo 41|Q2, G4,y - - . ,an).
We have
I,+ —
by (< aiy -+ 5 2m41 >) - (TL,O,... 70|17a17a37"' 7a2m+1|07a27a47"' 7a2m)

which is equivalent to
(0707 s 70|17a17a37 s 7a2m+1|n7 2,04, - - - 7a2m) =< 17”7 a1, G2, - 5 O2my1 >
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which equals I+ (< ay, ..., aome1 >)-
For negatively oriented recombination we get

IIIT,—

Dy (< A1y -« 5 Gam+1 >) =<1,n—-1,a1,a9,...,0m11 > .

Similarly we find

IT+

Py (ar, ... aome1 >) = (0,...,0,n|a1,as, ..., Gamt1, L]ag, @y, . .. , azm, 0),

which is equivalent to

< oty 1> = PV (< ar, . aamar ).
and an analogous result for p!/’V>~. In conclusion we have
p{L:III:Jr = <1,n,a1,a9,...,0m11 >,
ILIVA = < ay,ag,...,Gmy1,M, 1>,
TIL,III,— = < 1,n—1,a1,a2,... y Qomt1 =,
ILIV= = <ap,ag,...,6ume1,n— 1,1 >, H

Theorem 4.1 allows us to gain insight in the complexity of the product
knots in Tn3-resolvase mediated reactions. Here complexity is defined to
be the total number of crossings in the canonical representation of the 2-
bridge knot, or crossing number of the knot.® We distinguish the two cases
of processive vs. distributive recombination. In processive recombination we
see that in the first step up to n+ 1 crossings are added (depending on signs
of both topological moves), and in each next step only one crossing is added.
In the other case we add up to m + 1 crossings in each step. Therefore we
have proved

Proposition 4.3 Let k =< ay,... ,a, > be a 2-bridge knot, and p,: K —
K be a processive resp. distributive enzyme action of n twists and one recom-
bination on k. Then for the complexity of the product knot after q rounds of
recombination we have

0 0(173_1(17”(/)@)))

< n+gq,
0 < c(pi (k)

<
< q(n+1),

respectively. O

6 According to (Soteros et al. 1992) this measure is a ‘good’ measure to study knotted-
ness. In their article the authors have introduced some properties which any real-valued
function on the set of knots should have in order to measure complexity. One of the
functions which has these properties is the total crossing number.
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The theorem invites more investigation in the question which transfor-
mations preserve 2-bridge knots? Since we have a canonical representation of
2-bridge knots, we can try to solve the question using the vector notation of
the 2-bridge knots. Given a knot < ay,... ,a, > the transformed knot must
also be of the form < z1,...,x,, >. In site-specific recombination processes
we find three different reactions. The first gives extra complexity by either
making n twists and performing one strand exchange, as we have seen in
Tn3-resolvase mediated reactions. A second reaction recombinates ends for
integration of a piece of DNA which was discussed in the Int PB action. The
last reaction does the opposite of the previous one, i.e. it excises DNA from
the (already integrated) DNA-knot. An example is the Int LR action. So for
our discussion we restrict ourselves to transformations which preserve the
greater part of the molecule, and only perform local operations. To put this
mathematically, only few of the entries of the vector will change and most
will stay the same. All transformations then either yield additional entries,
in a way that they preserve the canonical representation, or they delete en-
tries from the original knot. By Theorem 4.1 we know that new entries can
only be put on the outsides of the knot (w.r.t. the canonical representation)
in blocks of two successive regions with crossings A; and A;,, to preserve
2-bridge structure, while excision can only be done in blocks of two in the in-
terior of the knot (between A; and A,,).” Therefore we’ve proved the following
result:

Proposition 4.4 Let k =< aq,...,a, > be a 2-bridge knot, and p: K —
K be a map which performs local recombination actions as described above.
Then p(k) is made from k by excision or addition of pairs of blocks, where
addition is done on the outside of the regqular diagram of k, and excision in
the interior. O

4.3 The genus of the handlebody

Recall that any knot can be embedded into a handlebody of genus g, for suit-
able g, by Proposition 2.17. We try to find relations between the successive
knot types found in processive site-specific recombination reactions and the
genus of the handlebodies in which these knots can be embedded. Remark
that this definition of genus of the handlebody is the same as the original
‘Seifert’ genus of a knot. We will denote this genus by g(k).

We would like to prove a proposition which states that is in some way the

“For addition of blocks, we can of course immediately say that on the left of the regular
diagram blocks are added such that the first is between the middle two strings. If addition
occurs on the right side, then the far right block has to be in the middle.
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genus g(k) of some knot is a lower bound of the number times distributive
recombination has been performed. The original definition of the genus of a
knot using handlebodies can unfortunately not be used to do this. Explain-
ing why this is so, we will give a slightly different one, in a sense the dual
definition of the genus g(k).

To construct the graph of a knot one has to choose which area enclosed
by the curve one first draws black (or white for that matter). After having
chosen the first area, the rest of the colour scheme is fixed. If by convention
you place the vertices of the graph in the white regions, you can make two
graphs. One with a vertex in the outer region (meaning, the outer region is
white), or no vertex in the outer region. We have stated at the point where
we've defined the graph of a knot (cf. section 2.5), that by convention the
outer region will be chosen white. This has consequences for our further
discussion.

The genus of the knot, which measures the number of inner areas in which
the region enclosed by the graph is divided, changes when changing from one
graph to the other. The relations are as follows:

Consider a graph I'y = (V4, E1), where V] is the set of vertices and E) the
set of edges of I'y. The graph encloses a region, which is divided into f;
subregions. If we denote |V;| (the number of vertices of I'1) by v; and |E|
by e, then by the well-known Euler characteristic for 1-simplices, we have

v —e + f1=2.

Now we can look at the dual graph of I'y, i.e. we put vertices in the regions
of I'1 and connect them if there is an edge from I'; between them. For this
dual graph I's, we have the same relation

vy —ea + fo = 2.

Furthermore we observe that the number of regions of I'1, fi, equals the
number of vertices of I's, v9, and vice versa.
For 2-bridge knots we can thus have the following two definitions of the genus
g(k). Either the genus belonging to the graph with vertex in the outer region,
and the one belonging to the dual graph of this graph. We first examine the
situation when we choose the outer region to be black, since that is the one
suitable for our proposition.
We write £k = < ai,... ,a2ms1 > as usual, and after having projected it onto
the plane in the canonical way, we make the graph I'(k). By Lemma 4.6 I'(k)
has the following form:
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The genus g(k) is equal to the number of areas inside the graph (or the
total number of areas in which the plane is divided by I'(k) minus 1). By
construction this is equal to

Figure 27: The graph of < 3,2,1 >

g(<ar,...,09mq1 >) = ZUQH—I -1 (3)
i—0

The example in the figure above gives an illustration of this fact.
The genus belonging to the dual graph, is computed by

m
g(< a1,y . -« 5 G2m41 >) = Za% + 1.
=1

We have the following proposition, stressing the fact that the genus used
in the proposition is the one having no vertex in the outer region.

Proposition 4.5 Let k be a knot, and p',(k) be the | times distributively
recombinated knot with n twists per recombination, then the genus g(k) of

p'(k) is a lower bound for the number of times k has been recombinated, i.e.
I > g(k).

Before we are able to prove the proposition, we introduce a lemma from
(Murasugi 1996). As we have already remarked the lemma holds in both
definitions of the genus.

Lemma 4.6 Let k be a knot. Then the graph of k, T'(k), is the graph of a
2-bridge knot if and only if there exists a vertex v € Vp(y) such that I' —v and
all edges incident to v consists of a stimple line segment. O

The proof is straightforward and left to the reader. More on these sub-
jects can be found in (Murasugi 1996).
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PROOF OF PROPOSITION By Theorem 4.1 we can give a list of all possible
product knots p, (k) of a given knot k:

(I) <Ay 02mt1,M, 1 >,

(II) < Ary.-- ,a2m+1,n—1,1 >,

(Il) < 1,m,a1,...,Gme1 >,

(IV) < 17” - 17a17 coe s Qomt1 >

(V) < Ary.-- ,ai_l,j,:lzl,ai —j, e Aoy >,
(

VI) <a1,...,ai:|:1,...,a2m+1>.

We use identity (3) to compute the genera of the various knots. We can
see eg. from type (I), that

g(< aiy ..., 02m+1, M, 1 >) = g(k) + 17

since the n twists are not counted when the genus g(p,(k)) is determined,
since it’s an even spot ag;, and g only sums the odd entries. Similarly we get:

g(<ay,...,q0mi1,n—1,1>) =
g(<L,n,a1,...,00m41 >) =
g(<Ln—1,a1,...,09m41 >) =
g(<a,...,qi-1,5, L, a4, —j, ... ,Gomy1 >) =
g(<ay,...,aq;t1,...  agmy >) =

Remarks:
* If i is odd then g(p,(k)) = g(k), and if i is even then g(p,(k)) = g(k) 1

1 When 7 is odd, a is equal £1, depending on the sign of the recombination.
When i is even, a is equal to zero.

This proves the proposition, since with every recombination, the maximum
contribution to the genus g(k) is 1. O

Remark Since the enzymes which we have discussed (Tn3, Int) both require
a non-trivial twist before recombination it’s important to remark that
for non-trivial twist action of enzymes the proposition gives equality
between genus and number of distributive recombination events. This
may be a practical way of obtaining extra information directly after
having analysed the biological data with gel electrophoresis.
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We are now in a good position to give a proof of Lemma 4.2. We simply
introduce non-trivial twist inside the standard representation of a 2-bridge
knot, and recombinate to find a product. After that we compute the genus
and use Lemma 4.6 to decide whether the new graph belongs to a 2-bridge
knot or not. Since this idea is conceptually easy, we give one worked out
example and for the others we just give the graphs from which we can imme-
diately decide if there exists a vertex such that the graph minus the vertex
and all edges incident to it is a simple line segment.

Proor oF LEMMA 4.2 Let k£ be a 2-bridge knot, denoted by
< A1y .- 5 Qoma1 > .

We will perform non-trivial twist between the lower two strands, since this
is the easiest case to describe. Let A; be the region in which & has its a;
crossings. Suppose the twist occurs beneath A; and A;,;, where we choose %
odd (i.e. A; is a region of crossings between the middle strands). Note that the
twists have to be vertical, which was also important in the proof idea given
for Lemma 4.2. This means that the lower regions which did not contain any
crossings, is now divided between a left and right region, with the vertical
crossings in the middle. Since we have defined our graph in such a way that
there is no vertex in the unbounded region outside the knot (regarding the
knot to be projected onto a plane), we will now have two vertices between
the lower strands: one for the left region and one for the right. Completing
the graph in the usual fashion we find that the line segment is still there
with its families of curves attached to it. Formerly these families all came
together in one vertex, the one from the lower region. After vertical twists
and recombination in this lower region the families are split into two subset.
The first subset will have all its families of edges incident with the vertex
from the left region, and the other with the right one. On top of that the
left and right vertex are joined by a family of edges corresponding with the
amount of twisting one has performed. For a picture of this situation, see
Figure 28.

It’s clear that this new graph does not contain a vertex with the desired
property needed to satisfy Lemma 4.6, which proves that the knot with non-
trivial twisting in the interior cannot be a 2-bridge knot.

In a completely similar way the other places where twisting and recombina-
tion might take place have to be considered. The resulting graphs are both
of a different form than as stated in Lemma 4.6 and are illustrated in Figure
29. This completes the proof of Lemma 4.2. O

Lemma 4.6 might be extended to n-bridge knots.
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Figure 28: A different proof of Lemma 4.2 using graphs
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Figure 29: The other two graphs of knots with vertical twists

Proposition 4.7 Let I'(k) be the graph of some knot k. k is an n-bridge
knot if and only if there exists a v € Vi(k) such that I'(K) — v and all edges
incident to it has a structure as described below.

The structure can be defined as follows: we have n parallel lines Iy, ... 1,
and on every line m points which fill a matriz

pl Pt ... P
p: p:.. P
pmpp ... pm

Two adjacent point Pij , PijJrl are joined by a family of curves to form a struc-
ture as seen in Fig. 30, and the number of curves corresponds with the number
of crossings equal to al ;.

PROOF One direction of this statement is readily seen to be true: for a
given n-bridge knot we can define the same kind of notation as we have for
2-bridge knots. More specifically we regard k£ as an 2n-plat, and specify the
crossings between adjacent parallel strands. As with 2-bridge knots, this can
be done in such a way, that crossings in adjacent pairs of strings can be found
not directly above or below each other (but slightly shifted horizontally).
Then, if we number the n pairs of strands from top to bottom, we can write

k=(a3,a, ... 0|05, s Gopprr] .- |0k, ..., aB)
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Figure 30: The graph of an n-bridge knot

If we make a graph of such a knot, we see that I" has the structure as defined
in the Proposition.

To prove the other direction we use the genus g of a knot, and try to get
back the knot from the handlebody of genus g(k). We recall that by Propo-
sition 2.17 a knot can always be embedded in a handlebody of genus g(k).
As we have already stated in the proof of Proposition 2.17 it is possible to
give the knot which belongs to a particular graph or its tubular neighbour-
hood. For every vertex of the graph, we can put a pair of crossing arcs on
the tubular neighbourhood precisely at the locus of the vertex, as seen in the
figure in the proof of Proposition 2.17. It should be noted that non-equivalent
graphs (w.r.t. the general equivalence relations from graph theory) may yield
equivalent knots, but non-equivalent knots will yield non-equivalent graphs
(Murasugi 1996). Therefore the knot which will be constructed from the
graph with has a structure as defined in the proposition will be an n-bridge
knot by construction. This completes the proof. 0.

When we consider n-bridge knots, with n > 3 we should pay attention
to our definition of the graph of these knots. In the case of 2-bridge knots,
after having projected the knot onto a plane and dividing this plane into the
regions inclosed by the projected knot, we had the choice whether or not to
include the outer unbounded region of the plane as a vertex of the graph or
not. In either case Lemma 4.6 was seen to hold, and we could use the choice
of graph suitable to prove that the genus of the knot w.r.t. this choice of
graph is a lower bound for the number of times an enzyme had performed
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distributive recombination on the unknot. If the number of bridges of the
knot is greater than two we can’t generally project the knot in such a way
that two adjacent strands in the 2n-braid don’t contain any crossings. This
can be seen by adjusting the diagrams in the detailed proof of Theorem 2.30
in (Murasugi 1996) to the n-bridge case, with n > 3. Therefore there is only
one graph of the two possible ones for which Proposition 4.7 holds, and this
is the one most widely used in knot theory.
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4.4 DNA recombination and knot polynomials

In section 2.6.2 we have introduced the Alexander and Jones polynomial of a
knot or link. Here we try to use these invariants to study the enzyme action
as discussed in previous sections.

The Alexander polynomial

Before we make an attempt to characterise site-specific recombination
events using the Alexander polynomial we recall the fact that this polynomial
is not well-defined for links, but only for true knots. We may thus forget
the ambition to give a detailed account on the site-specific recombination
mechanism as a whole, since there will obviously be many links involved. As
a simple example, we consider a substrate knot < 1,2,2 > and introduce
one extra crossing in the left region, thus giving < 2,2,2 > as product knot.
We might easily compute the Alexander polynomial of the substrate knot,
but since the product is a link (as are all < 2,n,2 > knots) the analysis
stops. The number of links among 2-bridge knots is substantial, as seen in
the following proposition, from (Murasugi 1996):

Proposition 4.8 Let k be a 2-bridge knot of type (c, B). Then k is a link if
and only if « is even. O

None the less, good insight in the composition of the Alexander polyno-
mial might give more grip on the biological processes.

As a first step towards a characterisation of site-specific recombination
processes using the Alexander polynomial we would like to know the Alexan-
der polynomial for a general 2-bridge (true) knot. To do this we use the first
of the two definitions introduced in the first chapter to construct a presen-
tation matrix for the knot by setting up the Seifert matrix of the knot. We
have the following proposition.

Proposition 4.9 Let k= < ay,... ,aom+1 > be a 2-bridge (true) knot. Then
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a Seifert matriz of k is of the form

11
(1 )
..1 1 0
—a21
11
11
11
—a41
—a2m1
0 11
11
\ 1)

where the m+1 blocks of consecutive 1’s on the diagonal are of length ag; 1 —1
respectively, fori=1,...,m.

Proor First we project the knot onto a plane in the usual way and create
the ‘standard’ Seifert surface which is formed in the following way: for every
crossing make cuts in the projection as in Figure 31. We then end up with a
collection of disjoint discs in the plane. We now construct a surface by gluing
back small twisted strips with a rotation corresponding with the original
crossing. The result is a ‘soap film’ surface, and is clearly a Seifert surface
for the 2-bridge knot k.

\\é/v\:’\

Figure 31: The ‘standard’ Seifert surface of a knot

As an example we consider the Seifert surface of the trefoil. The result
can be found in Figure 32.
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Figure 32: The ‘standard’ Seifert surface M of the trefoil and the two generating

closed curves of Hy(M).

For general 2-bridge knots we may proceed in an analogous fashion as in
the example of the trefoil: we find one large disc at the bottom and the upper
disc of the trefoil will in general be subdivided in smaller ones corresponding
with the crossings in the regions Ay, ¢ = 1,...,m. We find a horizontally
aligned array of closed curves which generate the first homology group of the
Seifert surface. They will be denoted by

1 1 2 3 3 om . 2m+1 om+1
{ag, .. oy, 0807, 00, g, .., 0™ 0™ ,aa2m+1_1}.

Consequently we will only find a non-trivial linking number of two of these
curves if they are next to each other on the surface. It’s an easy exercise to
verify the following relations:

lk(c, (f)t) = 1if i is odd
lk(c, (af)T) = 1 if the two curves are adjacent
Ik(a®, (&®)) = —ay;

This completes the proof. O

With this general matrix one may easily compute the Alexander polyno-
mial for given 2-bridge knots. To give general polynomials in the variables
G, 04, ... , 02y, 15 & much harder task. Even for quite small knots with only
as non-zero, the determinant can become unintelligable. In the event that all
odd entries ag11, 2 = 0,...,m are equal to 1, the Seifert matrix becomes
very simple indeed: we only find the —ag;, ¢ = 1,... ,m on the diagonal
and all entries zero. Since this matrix is obviously symmetric the Alexander
matrix V — tV7T is still diagonal with entries —ay;(1 — ), i =1,... ,m, and
therefore we find

AW = (1)1 =" [ o
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Recall that we have defined a second presentation matrix which may be
calculated by a simple algorithm (cf. p.26). To calculate this matrix we have
to choose a regular projection, which will of course be the standard projection
for 2-bridge knots. Having oriented it we choose the overpasses for each of
the n crossing points, where n equals the sum of the a;, : =1,...,2m + 1.
The dimension of the matrix as a presentation matrix for H;(X) @ A is thus
simply this sum. We now fill all non-zero entries as defined on page 26. We
give, as a simple example, a presentation matrix for < 2,2,1 >.

&3
1/3 o)
13
&

Figure 33: Construction of a presentation matrix for k = < 2,2,1 >

The generators of the knot group, z;, correspond to the &; in the knot
projection. We see that the matrix for this projection is

1—-¢ ¢ 0 0 -1
0 -1 0 t 1-
t 0 1—-¢ -1 O
-1 1-¢t =t O 0
0 0 —-11-¢ ¢

By computing a 4 X 4 minor of this matrix and considering the fact that
the coefficients of the polynomial have to be symmetric w.r.t. the powers of
t we find that the Alexander polynomial of < 2,2,1 > equals —2¢t~! + 3 — 2t.
This example shows the following matter, which will occur in the next section
on Jones polynomials as well: the numbers of the crossings may be chosen
at will since this will only produce a permutation of the columns, which give
equivalent matrices according to our previous discussion in section 2.6.1. The
labelling of the overpasses though may not be done at random, but has to
be according to the orientation! (See Fig. 33 for an example.) Therefore, af-
ter having chosen one of the two orientations of a given knot and beginning
at some crossing, we can a priori not determine which underpass lies left
or right of the overpass at that particular crossing. This is due to the ori-
entation and can only be seen after having physically drawn the knot on a
piece of paper. A general form for the Alexander matrix for a 2-bridge knot
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< @y,...,0,y1 > can not be given.
We will encounter this orientation problem in a different context in the sec-
tion on Jones polynomials.

We have already noted that the dimensions of the two presentation ma-
trices are generally different. In the case of the Seifert matrix, the dimension
is equal to the number of closed loops which generate the first homology
group of the open Seifert surface. This number is twice the genus of the knot
(Rolfsen 1976). As we have seen in the proof of Proposition 4.9, the number
of closed loops is equal to

m
E A2i41-
i=0

Working out the determinant of the matrix, we observe that all powers
of the Alexander polynomial A(t) are non-negative, and the dimension is an
upper bound on the the difference between the smallest and largest power
of the polynomial, which is called the degree of A(t). A similar fact may be
seen for the second presentation matrix.

Here the dimension of the matrix is equal to the number of crossings in the
regular projection of the knot, which in the case of 2-bridge knots is equal to

2m—+1

E a;.
i=1

This number is of course greater than the dimension of the Seifert matrix
the same knot. Therefore, if we would like to estimate the degree of A(t) for
a given knot, the Seifert matrix gives a better estimate.

In general, knot complexity (measured by the minimal number of crossings
for any regular projection) and top degree of A(t) admit a fine relation:

Proposition 4.10 Let deg(A(k)) be the difference between the highest and
lowest degree of the (symmetric) Alexander polynomial for a knot k, and let
c(k) be the crossing number of k. Then we have

c(k) > deg(A(k)) + 1.

This means that to estimate knot complexity, using the second presen-
tation matrix gives the optimal result by construction. On the other hand,
estimating knot complexity will usually not be done using Alexander polyno-
mials since the knowledge required to give this polynomial using the second
construction requires gives you the total number of crossings anyway, before
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you have computed the Alexander matrix!

We now turn to more specific considerations: how does the Alexander
polynomial change under site-specific recombination events? We have already
noted that the Alexander polynomial is not well-defined for links. It’s easy to
see that with the second definition using under- and overpasses no structure
due to the recombination will be picked up: introducing a single crossing
changes the whole array of overpasses. The matrix may look completely dif-
ferent after only a small alteration of the knot. For the method using Seifert
matrices things seem more promising.

Using the Classification Theorem 4.1 and Proposition 4.9 we may immediatly
write down the different Seifert matrices for the original knot and its various
possible products. The structure of the determinant however is too loose in
general to recover the recombination event from the polynomials. Even in
the simplest case, when we perform n twists and 1 recombination, giving a
product < 1,n,aq,... 6,1 >, the Alexander polynomials of the substrate
and product knots have little in common: neither may have any factors in
common, nor may there be any any relation between the difference of the
two.

In conclusion we can surely say that the Alexander polynomial, though eas-
ily computable, is not a good invariant to study site-specific recombination
events, due to the fact that it’s not well defined for links and the little struc-
ture the determinant bears w.r.t. its matrix.

We will now discuss a more recently developed polynomial, the Jones poly-
nomial, and it’s behaviour under recombination events.

The Jones polynomial

The motivation to study the Jones polynomial in relation to the biological
processes is based on the following observation: in the procedure of calculat-
ing the Jones polynomial we simplify the knot by making overcrossings into
undercrossings (w.r.t. some fixed projection), and by recombinating the ends
as illustrated in Figure 14 in section 2.6.2. The local moves performed by en-
zymes such as topoisomerases on the one hand and Int or Tn3 on the other
are examples of actions which are similar to the moves performed in the cal-
culation of the Jones polynomial. On top of that the action of an enzyme as
modelled in our previous discussion resembles these types of moves.

Recall that for the computation of the Jones polynomial we first choose a

suitable crossing which is replaced to get knots k_ and k¢ needed for the skein
relation (cf. p. 27). There are two possible ways of looking at this subject:
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given a knot k£ we may study what effect £ has on ky or k_. On the other
hand, we might be given a knot ky or k_ and try to find relations between
these knots and a 'product knot’ k. Both ways are useful for illustrating dif-
ficulties or creating insights in our model of recombination events. Although
the latter way proves to be more profitable we start with the first.

The ‘moves’ which we have to perform to calculate the Jones polynomial
can be seen as ‘recombination moves’. Here we mean the following: the con-
struction of ky can be viewed as an ‘inverse recombination’ in the sense that
k. can be made from ky by a move similar to a site-specific recombination.?
Similarly the move performed to construct k_ is to first do an ‘inverse re-
combination’ on k, to get ky and then perform a negative recombination to
get k_. In the following discussion we emphasise that when we use the word
recombination it does not refer to an actual action performed by an enzyme
but rather to the types of moves necessary to calculate the Jones polynomial.

In order for the recombination move to be similar to one made by an en-

zyme such as Tn3 we have to make sure that kg is still a 2-bridge knot. This
is not always the case: e.g. if we take the knots < 2,3,1 > and < 2,2,1 > as
examples, with some fixed orientations, then we see that an inverse recombi-
nation at the first crossings at the left of the knots produces a 2-bridge knot
for K =< 2,2,1 > but a non-2-bridge knot when £ =< 2,3,1 >. Figure 34
illustrates the two outcomes. This is caused by the difference of the induced
orientation of the knot at the site of the crossing where the inverse recombi-
nation is performed.
For 2-bridge links we have a similar problem. Having fixed an orientation of
one of the two links, we may choose an orientation of the other. Only one
of the two possible orientations (or two out of four if both orientations are
chosen simultaneously) will yield 2-bridge knots for ky. On the other hand
it’s always possible for 2-bridge links to choose a suitable pair of orientations
such that ky and k_ are 2-bridge knots or links.

From this side of the problem we don’t get much information other than
to be careful with inverse recombinations of 2-bridge knots. Starting with a
‘substrate knot’ ky and producing £_ and £, from it turns out to be more
fruitful.
We seem to be able to deal with the subtleties explained above by looking
closely to the biological situation of enzyme mediated recombination: the two

8This move is not equal to a site-specific recombination move in the sense as we’ve
discussed. This will be clarified when we discuss the other way of approaching the problem.
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Figure 36: The closed braid associated to 2-bridge knot < 1,3,2 >

recombination sites involved in the site-specific recombination event have the
same or opposite orientations (i.e. they are direct or inverted repeats respec-
tively). But they consist of two homologous pieces of DNA, which have to
aligned such that the ‘orientations of the recombination sites’, regardless of
the induced orientation of the DNA knot, have to be equal. That simply
means that they have to be aligned such that they have the same beginning
and end. This ensures that the recombinated knot is still a 2-bridge knot. Or
put differently, that the inverse recombination of a product knot is always
a 2-bridge knot, if we take into account the role of the orientations of the
recombination sites. Figure 35 illustrates this.

This approach is tempting since it’s easy to write down skein relations for
all possible recombination products using Theorem 4.1, but there is a flaw in
this reasoning: the calculation of the Jones polynomial insists on choosing a
fixed orientation with which positivity of the crossing points is determined.
Therefore we may not regard the ‘orientations’ of the recombination sites to
be the ones determining this. But the idea of forming ‘product knots’ from
‘substrates’ can be viewed alternatively, and we will be able to ensure that
the crossing which is made by the recombination of the substrate is a positive
crossing. To do this we have to consider our knots a bit differently.

Let k = < ay,...,a2,11 > be a 2-bridge knot in canonical projection.
Recall that we may regard k to be a 4-braid with the ends of the four strings
tied together to form a 4-plat. But we may also make a new knot or link by
gluing the ends differently, actually in the standard way in which braids are
glued: the four points on the two opposite sides of the 4-braid are identified
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in pairs such that the sides collide. Figure 36 illustrates this. The braid made
from k (enclosed in the dashed rectangle in Fig. 36) will be denoted by b(k),

and its closuré(ky. The reader may also recall that the generators of the
braid group are defined to be 0,092,053 (cf. Fig. 5, p.11). Since the fourth
strand doesn’t contain any crossings by the result in (Bankwitz & Schumann
1934), o1 and oy will suffice. Then the braid (k) can be written as

ai —1\a2 _a3 a2m+1
o (o5 )20 - 07 a; > 0.

It’s easy to see that if we choose an orientation for b(k) we are always in
the position that the crossings in the of' region are positive. This enables
us to study the effect of site-specific recombination events on 2-bridge knots
using Jones polynomials. But our troubles have not been evaporated by this
construction. In order to have maximal information about the recombination
events using braids, it would be convenient if equivalence of knots implied
equivalence of braids of these knots, or vice versa. Neither of these situations
is the case however. We may construct the following counterexamples:

Let k be < 1,2,3 > and b(k) hence be o}o;°0}. Then we may perform a
cyclic permutation on the O"Z?j without changing the type of b(k). For instance
let ¥’ be 05 %030} = 05%0}. The knot corresponding to o' is < 4 > (the cross-
ings from the oy’s are trivial, which is seen by drawing a picture). But it is
evident that < 1,2,3 > and < 4 > are not equivalent knots, by the Classifi-
cation Theorem of 2-bridge knots.

Similarly we may choose two equivalent knots, k&, =< 1,3,1 > and ke =<
—5 >, say. Then b(k,) is a 2-link, and b(ks) a 3-link. So these closed braids
cannot be equivalent.

From the classification point of view things don’t seem to be much better ei-
ther. From the time the concept of braids has been introduced in the 1920’s
by E. Artin, people have been trying to classify n-braids. A great deal of
progress has been made during the years but the question remains unsettled
to a great extend. Regardless of this fact we would like to know if classifica-
tion of closed alternating 3-braids admits a solution, since that’s all we need
for our discussion. Murasugi has written a monograph on the topic of closed
3-braids in general, and solves the problem for various subclasses of the set
of 3-braids, but dealing with the alternating closed 3-braids seems to be the
hardest part (Murasugi 1974). It has been known for a long time that conju-
gate classes of the braid group ®B,, give a great deal of insight in the link types
of closed braids, and the important question which people have tried to an-
swer is under what conditions do non-conjugate braids define different knots
or links (i.e. closed braids regarded as knots or links). It is known that conju-
gate classes of braids classify all but the alternating closed 3-braids (Murasugi
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Figure 37: The regions of O, A and B of a 2-bridge knot.

1974). Hartley gives some more recent results on this subject (Hartley 1980).
Jones has tried to classify braids with the Jones polynomial in the paper in
which he has introduced his invariant (Jones 1985). Since the classification
of alternating closed 3-braids is still an unsolved problem we have to confine
ourselves to giving skein relations and try a different approach.

Before we state these skein relations we introduce a bit of notation. For
a 2-bridge knot £ = < ay, ... ,a,1 > we distinguish three types of areas
where recombination may take place: the regions on the ‘outside’ of the knot,
which have been denoted by I, I1,III and IV in Theorem 4.1. Here we set

O ={I,1I,1I1,1V}.

Recall that the region where a crossing of magnitude a; occurs is denoted
by A;. Here we enlarge A; by including the regions above and below the
region with crossing a;. Taken together they form a set denoted by A. We
are left with the areas of the knot between the A;’s, which we call B;, and
there are taken together to form a set B. Figure 37 illustrates these regions.
Recombination events on [ at areas in A will now be denoted by

Py (A; D).

With these preliminaries out of the way we can state the skein relations more
efficiently in the following proposition:

Proposition 4.11 Let k be a 2-bridge knot on which we perform a site-
specific recombination modelled by n twists and 1 recombination, denoted by
pn(k). Then we have the following skein relations:
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1

Vit omy @) = Vi oy () + 1 (VE — %)Vk(t),
1

Vit camy () = Vigr ey (@) +H(VE — V),
]

Vitagsan(®) = Vi @y () + HVE = —IVilt),

PROOF The claim is proved by merely changing the recombinated cross-
ing (which is always positive by previous arguments, since the recombination
in question is positive) into its negative counterpart on the one hand, and in
the inversely recombinated crossing on the other. By doing this we find the
two required closed braids b(p; (k)) and b(k). This argument is possible in
all three cases of recombination at O, A and B. O

Apart from writing down new skein relations we gain little information
using braids since the braids b(pg (k)) and b(p, (k) are not related when it
comes to the knots they are made from.

It seems that simply actually computing the Jones polynomial from scratch,
working your way up to more complicated 2-bridge knots seems the only al-
ternative. If we limit ourselves to the case that the substrate unknots have
recombination sites in direct repeats we can make sure that the crossing made
by a recombination is always positive and can thus be used for reduction to
knots which have to be used for the skein relation.

We can set up a general scheme to compute the Jones polynomial of any
knot formed in distributive recombination processes with the method of re-
currence relations from the field of combinatorics. We stress the fact that
this is only valid for recombinations of direct repeats which is the case in
Tn3-resolvase (Wasserman & Cozzarelli 1986). In this case we can always
assume that a positive recombination yields a positive crossing.

To address the problem of calculating the Jones polynomial for any 2-bridge
knot made by distributive recombination processes we choose a substrate
knot £k = < ay,..., 69,41 >. Then k£ can be recombinated by actions on the
regions O, A and B, and products will be conform Theorem 4.1. The setup of
the scheme is to reduce the knot using skein relations such that whole regions
Agiv1, 0 < i < m are deleted in every step. This is possible since we may
assume that the crossings in these regions are positive and hence may be re-
placed by there negative counterpart to form k_ on the one hand and by two
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parallel lines to obtain k3. We will see that in the reduction of every region
Agiy1 we get a recurrence relation. We will now make these ideas more precise.

We start with an action on A. We first set up new skein relations for the
pIOdUCt knOtS Set ‘/[q] (t) = V<a1 _q7a27"'7ai—17j7:|:17ai_j7ai+17'"7a2m+1>(t)'

Proposition 4.12 Let k = < ai,... ,02m+1 > be the substrate knot with
direct repeats for the recombinated modelled by 0 twists and 1 recombination
at region A. Then the skein relations for the knots p§ (A; k) and py (A; k) are

1
Vit () = t2v},g(,4;k) (t) + t(Vt — —=)Vi(t)

Vi
Vgan (®) = V() +
oV - \%)V[I] (1)

Proor By Theorem 4.1 we know that the knots in question are of the
form

p(:)t(Aa k) =< Ay 7ai—17j7:|:17ai _j7 Qit1y - 5 A2m1 > .

Starting with the case the recombination is positive we choose the recombi-
nated crossing as the one used for the skein relation. By setting k. = pg (A; k)
we get

k- = py (Ask),
ko = k.

If we want to set up a new skein relation for p, (A; k) we have to consider
a different crossing than the one used for pg (A; k) since this is not positive
anymore. But there are plenty others left: we start systematically with the
positive crossings in A;, beginning with the outer left one. Then by setting
ki =py (A k) we get

ko =< a — 2,@2, s 7ai—17j7:|:17ai - j7 Aitls - -+ 5 G2my1 >,
ko =<ay — 1,aq,... ,ai_l,j,:l:l,ai—j,ai+1,... y Aoam41 > -
This completes the proof. O

These skein relations lets us give a proposition on the Jones polynomial
of knots pg (A; k) and py (A; k) .
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Proposition 4.13 Let k be a 2-bridge knot which is recombinated by 0 twists
and 1 recombination at A. Then we have

1

Vi
Vistan(t) =k (%WE - \/%) + \/t(\/i_f - \/%) +a2)" 4

Vi (8) = 8V (8) + 1(VE = —)Vi(1)

Po

Vi Vi

where ki and ky are uniquely determined by Vig and V.

b (L(VE- ) - \/t(\/i_f— ) v ar)”

Proor With the definition of V5 above we may set up a relation

1
Vi) = #Vig-a () + 4Vi = Vigo(®), 0<g<a—1

This is a second order recurrence relation with coefficients t* and t(v/t —

which admits a concrete solution found in any textbook on combinatorics:
‘/[q] (t) = klaq -+ kQ,Bq

where o and 3 are solutions of the equation 22 — ¢(v/t — 7z =t =0.In
this case these roots are equal to

t 1 1 9
—t\/i L t(Vt L 442
/3—5( —\71—5)— ( —\71—5)"‘ -

The k; and k, are uniquely determined by the initial conditions, i.e. the
first polynomials of the sequence, by solving the set of equations

Viop = k1 + ke
Vi = ki + ko8

This completes the proof. O
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We have now reduced the computation of Vi to that of Vig and V.
These knots are of the form < 1,n,b;,...,b; > and me be seen as reaction
products of a substrate knot < by,... , b, > with action performed at O.

We thus proceed discussing actions at O. Analogously to the approach
above we state the skein relations for the knots made by this action in the
following proposition.

Proposition 4.14 Let k = < ay,... ,09m11 > be the substrate knot with
direct repeats for the recombinated modelled by n twists and 1 recombination
at region O. Then the skein relations for pt(k) and p;, (k) are:

Vo (8) = 2V, () + 1(VE — \/%)vku)
Vor iy (1) = t2v});_1(k)(t) +i(vi - \%)Vk(t)

Proor By Theorem 4.1 we know that the product knots are
<1l,n,ai,...,0ms1 >
or
<l,n—1ay,...,Gom+1 >,
depending on the sign of the recombination.® Then if we take
ki =pt(k) =<1,n,ai,...,a2ms1 >

we see immediately that k- = p; (k) and ky = k. For the second skein
relation we may draw a picture of p, (k) and see that it’s equivalent to
<1l,n—1,ay,...,aams1 >. Now the proof is completed by regarding p; ; (k)
as k, and repeating the first argument. O

The Jones polynomial of a knot which has been recombinated at O may
now be computed by multiple reductions of the n crossings in A;. As an
example we compute the Jones polynomial of the first reaction product of
the unknot. The result is found in the next Proposition.

90f course we also should consider < a1,...,82m41,7,1 > and <
Q1,... ,82m+1,7 — 1,1 > but these are done completely analogous by regarding
them as < 1,n,a9m+1,-.. ,a1 > and < 1,n — 1,a9,+41,... ,81 > respectively.
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Figure 38: kg of < 1,n,1 > is equivalent to the unknot.

Proposition 4.15 Let k be the unknot with its recombination sites as direct
repeats. Then the Jones polynomial of the n-twisted positively recombinated
unknot is equal to

Vot (®) = £+ 6= ) S @

Proor By Theorem 4.1 we know that the product knot described in the
proposition is equal to < 1,n,1 >. The only two positive crossings we see are
in A; and Az and we take the first one. Then by setting £, =< 1,n,1 > we
see that k_ =< —1,n,1 > which is equivalent to < 1,n—1,1 >. Furthermore
we observe that ky which is drawn in Fig. 38 is equivalent to the unknot.

By doing multiple reductions using skein relations such as sketched above

we obtain a list of knots < 1,n,1 >, <1,n—-1,1>,...,<1,1,1>, <1>.
Now substituting all skein relations picked up during the reduction and re-
calling that V15 (t) = 1 yields the desired result. O

This example illustrates how p, (k) may be reduced in n steps to
<-1,1,a1,...,Gomy1 >
which is equivalent to
< —ag,l,a3 —1,a4,... ,02m+1 >

and we may write

1 n—1 .
V<1,n,a1,--- »a2m 41> (t) = t2nv<—a2,1,a3—1,a4,--- a2m 41> (t) + t(\/l_f - %)Vk(t) Z tQZ'
=0

Lastly we consider actions at B. By Theorem 4.1 we know that we do not
introduce new regions with positive or negative crossings, but simply enlarge
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or diminish the existing ones. Therefore we do not get in further difficulties if
we want to calculate the Jones polynomial of a knot which has been formed
by an action at B.

By performing two reductions, one at A and one at O, using skein rela-
tions, we have done one step in the scheme. All next steps consist of choosing
the positive crossings at the far left in some Ay; 1, and reducing these and
the crossings in Ag; o by the above two steps. By systematically reducing all
positive crossings in this way we end up with relatively small knots.

Having reduced all positive crossing in this systematic way we have to
make certain that these can always be computed explicitely, thereby solving
the huge implicit equation which has been built during all reduction stages
of the original large recombination knot. The methods to deal with the first
stages have been discussed before and are completely analogous to the proof
of Propositions 4.15 or 4.13. We state some results. Any other needed to
compute the Jones polynomial for some large knot may be left to the reader.
In the following p,q, m,n are positive integers, o and [ are the roots of
2% — p(t)x — t? where p(t) = t(v/t — %)

The set of second order recombination knots contains knots of type <
1,p,1,q,1 >. Their polynomials are

g—1

Varptats =200 + Ve pgos +p(t)Veps > 1% (5)
i=0

Here we make the following remark: The knots < —p—¢—2 > and < —p >
have implicitly been discussed before in Proposition 4.15. More precisely,
< 1,n,1 > can be seen to be equivalent to < —n — 2 > by drawing a
picture. One may also try to prove this by doing a small exercise in continued
fractions.
Among these second order knots we also find < m,n,1 > knots whose Jones
polynomials can be seen to be

— m m
Vemmi> = mia™ +myf™,
where m; and my are determined by

my+me =1
mie+mof = Ve p_os.

In third order processive recombination processes we may encounter
< 1,n,m,n,1 > knots which have Jones polynomial

— m m
V<1,n,m,n,1> =mao "+ n2/6 )
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where n; and ny are determined by

ny+ne = Ve_gn_o>

no+ 1B = Vaipini>-

Many other polynomials may be computed using the techniques described
above. This concludes the exposition on computation of Jones polynomials
of recombinated knots.

With this scheme we may try to ask the question what the Jones polyno-
mial might tell us when it comes to enzyme mediated recombination mech-
anisms. However it soon becomes apparent that little is gained using this
invariant: when we perform multiple steps of reduction we find some recur-
rence relation at every stage or an expression such as (5) on p. 76. Let’s
assume we only find the first type of relation between original and reduced
knots. It’s fairly easy to see that we get enormous polynomials in relatively
few reduction steps. To illustrate this explosion of complexity let’s consider
the following simple example. Let V; be the Jones polynomial of some knot
k. Then we might find

‘/1 = llan + l2/6n7
where [, and [, are uniquely determined by the initial conditions, i.e.

ll -+ l2 = ‘/2
ha+bB=V;
for suitable polynomials V5, V3. We may compute [; and [y explicitly and

substitute these in equation (6). We may go a step further and compute V;
and V3, say

Vo = k1™ + ko 8™,

Vs = mao® +no P

where the coeflicients are determined by

kl + kg = ‘/;1 and ol + Ng = ‘/6
k1a+k2,6 = VE—, TL1C¥+TL2,6 = V7
for suitable polynomials Vy, ..., V7.

If we write down V] in terms of V5 and V3 we find
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nia® + ngh? — a(k; o™ + ko f™)

an(k1@m+k2,6m— /B—a
ﬂ"(nm/’ + ngﬂp — CV(]C]CVm + kg,@m))
+ .
08—«
A third step with suitable definitions for Vj, ..., V; will yield

)

1%+ g8 — a(piaf + pa )
08—«

jlozg +]2/6g —_ Cl(hqaf + hgﬂf)
8-«

gro® + g2 8% — a(pria® + pe 5°)
08—«

9 i R9 _ f f

j10f + 289 — ahiaf + heB ))+n2ﬂp_
08—«

gro + g8 — a(pra® + pe5°)

a” ((PJ af + pe 5 — 1 ya™ + ke BT

o

S

a(e™(praf + paB° —

(hyad + hy B —

)+7L2,6p—

)+ kzﬂm)> +

ozp(hIaf + hgbf —

af"
8-«

((amkzﬂm(m a + pp° —

It’s clear from these formulae that in general it will be very hard to analyse
a Jones polynomial from a given recombination knot.

In conclusion we have seen that in general it’s quite straightforward to cal-
culate the Jones polynomial of a 2-bridge knot. Nevertheless if we try to
analyze the polynomials of substrate and product knots we find ourselves
entangled in a large set of recurrence relations in which all information of
the recombination event is lost. Ultimately this is due to that fact that for
the computation of the Jones polynomial we have to consider both skein
relations rather than only the first one. In this first relation we find the
structure which has lead to the investigation of Jones polynomials: a relation
between the polynomial of the substrate versus the product knot. But in the
second relation this structure is lost. We therefore conclude that, although
several authors have suggested a coorespondence between DNA knots and
the Jones polynomial, this invariant is not suitable to study the site-specific
recombination mechanism as proposed in this model.
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5 Further applications of topology in biochem-
istry

In this section we review some of the other fields in biochemistry in which
topology is used to shed light on matters otherwise non-accessible. We give
short but up-to-date accounts of the fields of topology of polymers, geometric
and topological quantisation of DNA-sequences and the evolution of DNA
from a topological point of view, and the use of topology in relation to NMR
and x-ray diffraction methods.

5.1 Geometric and topological quantisation

In living cells DNA is used in various ways to sustain life. Processes such
as transcription, replication and recombination all contribute to achieve this
goal. Since the configuration of the DNA plays the crucial role in a way DNA
functions, it’s of utmost importance to get a good grip on the stereostruc-
ture of DNA in general, but also how these structures changes in the vital
processes of DNA manipulation. We have already seen the way in which we
try to keep track of the topology of DNA during site-specific recombination,
which should give the reader a bit of a flavour for things to come.

By far the most interesting geometric and topological changes occur with
circular DNA. This subject is of course completely in the line of thought
of previous sections. We will first model such circular DNA-sequences with
methods from differential geometry and then come up with a very nice clas-
sical theorem which gives us important insight in the global behaviour of
DNA circles under local operations. A more thorough account of these mat-
ters can be found in (White 1992) and the original ideas have been published
in (White, 1969).

We envision the DNA as being a supercoiled and circular strand. The super-
coiling can be described in three quantities: linking, twisting and writhing.
We give description of them and then investigate how they are related.

Consider a 2-link formed by £ and ! and regard a regular diagram of
them in some plane P. Then we already know that the crossing number of
the link is defined as the total number of (oriented) crossings. We now make
the following definition:

Definition The linking number of a 2-link k, [ is half the crossing number
of a regular diagram of £, [, and is denoted by Lk(k,1).
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Obviously we have made a choice in taking but one regular diagram of

the 2-link. It can be shown that the linking number is independent of this
choice and doesn’t change under continuous deformations of the links. For
our applications in DNA, we regard the 2-link as the pair of backbones which
are supercoiled around each other. The supercoiling is then measured by the
linking number of the backbone strands. We can equivalently define this
quantity to be the linking number of one of the strands with the axis of the
DNA circle.
The other two quantities can be seen as complementary parts of the linking
number. To be more precise, we can subdivide the crossings which add up
to the linking number (modulo a factor 1/2) in ‘distant crossings’ and ‘local
crossings’. Distant crossings are found when the axis of the DNA circle seems
to cross itself when projected on a plane P. See the figure below for an
example. The writhe of a 2-link measures this distant crossing, and can be
defined as the number of times the axis of the two strands crosses itself (which
is of course dependent on the projection), and denoted by Wr(k). The local
crossings are the ones made from the coiling of one of the backbone strands
about the axis.

To get a better idea of the twist of a 2-link, we let T be the unit tangent
vector field of k. Let furthermore v be a unit differentiable normal vector
field along k. Then we have the following definition:

Definition The twist of [ about k is defined by the line integral

™

1
Tw(k,l)=2—/dv-T><v
k

Now we can state the remarkable fact: given to quantities which change
under deformations of the strands, we can add them up to a third which
doesn’t:

Theorem 5.1 For a 2-link of two supercoiled backbones forming a DNA cir-
cle have the following property:

Lk(k,1) = Tw(k, ) + Wr(k, 1).
O

This Theorem has direct applications for understanding certain facts
about DNA-geometry. For instance, it gives an explanation for the super-
coiling found in the genome: by twisting the backbones millions of times
around each other a great deal of extra energy is being put in the DNA. To
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counterbalance this, the DNA will writhe in the opposite direction to sustain
the amount of linking. The result is a compacted form of DNA which can be
neatly stored inside the nucleus. Another useful application of the Theorem is
the fact that gel electrophoresis, which is used to analyse DN A-recombinant
products, ‘measures’ the writhing of the knots, since the speed with which
the DNA is being transported under electrical current through the gel is a
measure for supercoiling, and therefore for writhing. By determination of
writhing and twisting (which is known before the DNA substrate is being
put into the solution with the enzyme), one can find information about the
change of linking number by simply adding the two known numbers to get
the third. It should be noted that the precise relation between gel speed and
writhing are not clear mathematically. This is regarded as one of the impor-
tant questions of contemporary topology in DNA research (Sumners 1995).

The Theorem was first proved by White in (White 1969), as an application
of Gauf} integrals.

For completeness we state another result from (White 1992), in which DNA-
knots are being situated on protein surface. The best example of such a
surface is the nucleosome core, a ‘ball’ of proteins called histones around
which the DNA is wounded to form part of the complex structure of the
compacted DNA chromosomes. The nucleosome is shaped as a cylinder. In
this situation the DNA is wrapped around the surface nearly twice in a he-
lical fashion. More generally the DNA is said to lie on a solvent accessible
surface, which is the surface generated by moving a water-sized 3-ball around
the atomic surface of the protein at the Van der Waals distance of the outer
atoms, and is the continuous surface made from the loci of the centres of the
3-ball. In this case, it has proved to be less informative to consider writhing
and twisting, but one can define two different quantities, called winding
number and surface linking number. Giving real definitions would be
beyond the scope of this paper, but if we denote them by ®(k) and Sik(k)
respectively, one can prove a similar result as the Theorem stated above.

Theorem 5.2 For a DNA-knot k which lies on a protein surface, we have
Lk(k) = Slk(k) + ®(k).

O

5.2 Evolution of DNA from a topological point of view

This section gives an overview of the evolutionary side of DNA-research:
how have structures found in DNA complexes evolved in history and can we
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explain some of the benefits or constraints that we can find in the geometri-
cal or topological configuration of DNA? We summarise some of the recent
developments, which can be found in (Cozzarelli 1992). We must warn the
reader that the reasonings are teleological, and are not proved in any manner.

As we have seen the topology of DNA is rather complex. Two backbones
are linked many times around each other, but the linking number of the
strands is less then needed for a planar configuration of the DNA. This gives
rise to the supercoiling which in interaction with proteins (mainly histones)
compacts the DNA in such an efficient way that the huge molecules can
be put into a relatively small space, c.q. the nucleus. Furthermore, we can
find various links and knots in DNA complexes in vivo as well as in vitro.
Although most DNA found in living cells is linear, the molecules are often
subdivided into smaller loops of a few hundred kilobase pairs (kb), which can
supercoil, catenate and knot.

As life exists nowadays, it is heavily dependent on this topological structure
of DNA. An important example which indicates that small deviations from
the usual topological configuration of DNA is lethal is illustrated by the
topoisomerases which have been discussed in section 3. We recall that these
enzymes are responsible for relieving DNA from additional stress which is a
side-product of replication. By doing so, it maintains a constant topological
configuration. Some cancer cells inhibit the effect of topoisomerases, and it
has been shown that this causes rapid cell death.

The fact that DNA has such a complex structure is even more startling
when we observe that it is the only molecule which is found with such a
complex topology. To answer the questions why such an aberrant form is
found only in DNA, we have to consider the first beginnings of DNA, when the
language became fixed in which the information was being stored. The four
base pairs can be found in all DNA (in RNA we Thymine is replaced by the
homologous base Uracil). The fact that all organisms still use the same code
to store genetic information reflects the fact that this choice of code really
has been made at the origin if the occurrence of DNA. During the earliest
times of the use of the one-dimensional language of base pairs, the length
of DNA must have been limited and organisms fairly simple. As evolution
progressed'? more complex organisms evolved which required longer DNA.

00f course we do not mean that evolution is a progressive process (which is still one
of the greatest misconceptions of neo-Darwinism) in the sense, that evolution can be seen
as a ladder, in which the most recently evolved species are the most advanced and best
adapted for life on earth. Rather, we stress the fact that evolution is always tree-like, with
inevitable gain of complexity during time, and look at evolution as a process which has
progressed through time, until the present day.
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With humans as examples of one of the species with very long DNA, some 10
million kb, the need for storage is evident. To cope with very long stretches
of one-dimensional DNA, a double-stranded structure is well-suitable. The
two backbones complement each other, and some errors which might take
place on one strand can be fixed using the other. There are exceptions to
prove the rule: some simple organisms still have single-stranded DNA, as do
some simple viruses. As we have seen in the phage X integration system, some
viruses depend on a host to sustain their own survival.

The duplex structure not only solves the problem of securing the information
stored in the huge molecules, it takes care of the storing of DNA as well: the
helical winding which can also be found in many large molecules such as RNA
and complex proteins causes supercoiling and compacts the molecule in an
efficient way. To put it in an evolutionary manner, the linking number of
the twists has been fixed at a quantity less then needed for ordinary relaxed
DNA. This has resulted in a very efficient way of coiling the DNA.

This supercoiling is indirectly also responsible for the occurrence of knots
and links. As we have seen in the Int recombinations in section 3.4, torus
knots and links can be made from ordinary coiled substrate by just breaking
and gluing the circle once. Topoisomerases also introduce knotting in vivo,
and are also responsible for unknotting them.

The topology which has evolved to deal with the problems of storage, both
overcoming errors introduced in the code during all kinds of manipulations
and compacting, gives difficulties when it comes to other important functions
such as replication. To illustrate one such problem, we consider replication of
a circular piece of DNA. At the replication fork the DNA is locally unwinded
and DNA is being duplicated. The unwinding gives additional linking, which
is dealt with by the topoisomerases. So far so good. But when the replication
fork nears its beginning point, the region where the topoisomerase has to lock
onto the DNA becomes too small, and unlinking is impossible. To solve this
situation, the DNA has to denaturate the last bit, which gives the complex
of intertwined DN A-strands the possibility to migrate away from each other.
Having achieved this, the ends which had yet to be duplicated can now
be made at the separate DNA-strands. The result is a link of two double-
stranded DNA circles. These still need to be broken and glued together to get
two separate DNA circles. See the figure for an illustration of this process.
Another relevant and still unanswered question is how the cell deals with the
fact that the nucleus is crowded with DNA in all kinds of formats, linear and
circular, long and short, and the abundance of topoisomerases which act by
random collision on the 'nearest DNA’. How does it sustain constant linking
number, and how is total unknotting achieved? The answer to this question
is not yet clear.
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Figure 39: A section of a kinetoplast DNA network

As a last look at the evolution of DNA structures we discuss a strange
family of clinically important unicellular parasites which have DNA struc-
tures which do not conform to all rules mentioned above about supercoiling
and knotting. These so called kinetoplasts (kDNA in short) are networks
of some 10* DNA rings, which are interlocked as in the figure below. Being a
very stable catenated network it can sustain through all processes of life with-
out using supercoiling or compacting as seen in regular cells. It is assumed
(Cozzarelli 1992) that these structures are an early alternative in the evolu-
tion of DNA molecules. The way these rings stick together is a more efficient
way of compacting large quantities of genetic code then is the conventional
way of one long coiled string. Recently a number of people have been trying
to solve questions about the topology of kDNA (Rauch et al. 1995; Ryan et
al. 1988; somewhat earlier: Marini et al. 1980; Englund ef al 1982). One of
the topological questions which still stands is whether we can give a clas-
sification of ‘periodic linked networks’ (Sumners 1995), of which the kDNA
network is one example. The periodicity of the network can be viewed as
a mapping from the network to some compact 2-dimensional manifold such
as a torus, and taking the universal cover of this manifold to get the entire
network in the plane. Another question in which topology plays its part is to
explain the observation that trefoils (the simplest knotted objects, with three
crossing points, hence its name) are found in an intermediate stage of the
replication process of kDNA (Sumners 1995, Ryan et al. 1988). How do the
actions of enzyme responsible for replication use the structure of kDNA to
produce these intermediate trefoils? Can we make generalisations of network
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topology for the replication process to yield these knots?

5.3 Limitations of biochemical knowledge

In this section we look at some future possible interactions between topology
and DNA research. For instance one might look at the problem how the func-
tionality of DNA is effected by knotting and linking. One might suggest, as
has been proved already, that knotting may have serious constraints on the
functions it might be involved in. The most obvious situation might be when
DNA is never unknotted. Then knotting becomes so complex that no enzyme
may be able to lock on to it, which will have lethal consequences: the major
processes of replication, recombination and transcription are completely lost.
A bit less trivial but not less important constraint on DNA functionality has
been reviewed in the previous section on replication of DNA circles. Here
the knotting which occurred already asked for some ingenuity of the topoiso-
merases to deliver two disjoint daughter DNA circles. The general question
what kind of effects DNA knotting has on its functioning in vivo is still poorly
understood. Research has rather been focused on revealing the in vitro condi-
tions under which knotting occurs, and people have used this information to
discover the mechanisms underlying enzyme activity as discussed in previous
chapters (Cozzarelli, pers. comm.).

There are more situations in which topology might shed light on molecular
issues.

Since DNA (and many other molecules found in living cells) are being ma-
nipulated by enzymes, the configuration of one may give information about
the other. The reason this approach may work, is that molecules have to
have special structure before they can be handled by some particular en-
zyme. These enzymes have active sites at which the relevant parts of the
molecules are being brought close to each other, and after these global moves
the enzyme does the action it’s designed to perform. At a first glance one
might try to use the topological and geometric information of the enzyme
and in particular its active site inside the molecule to subtract information
about the configuration of the molecule. Unfortunately the methods to study
enzymes and/or DNA strings have not become sophisticated enough to do
this. The best techniques which are available at present are Nuclear Magnetic
Resonance (NMR), a spectroscopic method which measures the spin unique
among only few isotopes (e.g. ' H, 3C, 3'P) by changing the orientation of the
nuclear spin with microwave radiation and z-ray diffraction, which measures
the deviation which scattered radiation will make when passing through a
structure (Mathews & Van Holde 1996, for a more rigorous treatment: Van
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Holde 1985). The first method creates images of enzymes in solutions. This
means the enzyme and all its parts will move constantly, and it has not yet
been proved to be possible to get good information about the real underlying
structure of the enzyme. The great problem with NMR techniques is that it
takes a relatively long amount of time to make a scan. The resulting image
will thus give an average configuration of the components during reaction.!!

Figure 40: A detailed picture of a topoisomerase enzyme

On the other hand we can use x-ray diffraction to get images of enzymes as
ideal crystals: water is ‘squashed’ out of the enzyme, and during this process
the various parts of the protein will move a bit to get into a stable configura-
tion, which is therefore not the same as the original enzyme in solution. One
can even attach some very tightly bonded substrate to the enzyme (which is
usually a slightly altered form of the original substrate, since the bonds made
by the original substrate tend to be too weak to withstand the transforma-
tion of the enzyme into its stable formation) which gives additional insight

HFor the more biologically interested reader we give some additional references on NMR
techniques on protein structure: Glore & Gronenborn 1989, Wagner et al. 1987.
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how the groups found in the active site are bonded to a reactant. All relevant
structures can be seen by nice computer graphics. See Figure 40 for the state
of the art in enzyme graphics.

So although these methods can give some information, they are not yet de-
tailed enough to give a good picture of what actually goes on during enzyme
reactions. Things get even more complicated by the following observation:
knowledge of the precise structure of the active site, where all the topologi-
cal changes happen and which is therefore the most important region of the
enzyme from the mathematical point of view, does not yield exact knowledge
of the action of the enzyme. Contrary to the fact that the molecule has to
be of a very specific form before it might be manipulated by the enzyme, the
actual performance does in general not depend on the internal structure of
the active site too much! By making some mutation of the enzyme on the
outer periphery, at some place which does not seem to have any function at
all, the actions performed by the enzyme might turn out quite different. At
present, the best way of studying enzyme reactions in relation to there stere-
ostructure is the following: by making random mutations in the DNA which
codes for the enzyme, and by using large numbers of different substrates,
one tries to unravel the mysteries behind enzyme function. So far progress
has been slow and no real insight has been obtained. Only for the smallest
enzymes made in the laboratory it has been proved possible to get some
information on the relation between the various groups of one enzyme and
their function. For all physiological enzymes this is still far from possible. It
does not seem likely with these considerations that topology will shed light
on the interaction between DNA and enzymes from the geometrical point of
view for the years to come.
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