
Understanding Deep Learning: Deep Linear Neural Networks and
Fisher Information
Luzzatto, Leone

Citation
Luzzatto, L. (2023). Understanding Deep Learning: Deep Linear Neural Networks and
Fisher Information.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master Thesis,
2023

Downloaded from: https://hdl.handle.net/1887/3627769

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/3627769

Understanding Deep Learning
Deep Linear Neural Networks and Fisher Information

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

PHYSICS

Author : Leone Luzzatto
Student ID : 3271048
Supervisor : Dr. Subodh Patil
Second corrector : Prof. Koenraad Schalm

Leiden, The Netherlands, June 16, 2023

Understanding Deep Learning
Deep Linear Neural Networks and Fisher Information

Leone Luzzatto

Instituut-Lorentz, Leiden University
P.O. Box 9500, 2300 RA Leiden, The Netherlands

June 16, 2023

Abstract

In recent years, deep neural networks have attracted the attention of both
the academic community and the general public. An effort to theoreti-
cally understand the intricacies of these systems is ongoing and physics-
inspired approaches may have a part to play. In this thesis, we will dis-
cuss recent results in the theoretical study of deep linear neural networks.
This class of neural networks has very limited real-world applications, but
it could provide a good training ground for developing theoretical tech-
niques that could prove useful beyond the simple linear case. We will also
argue that Fisher information, and in particular “sloppy model” logic, can
be a useful tool for future research on deep neural networks, in particular
for network architecture optimization.

Contents

1 Introduction 1

2 A Physicist’s Introduction to Neural Networks 3
2.1 Concepts in Machine Learning 4

2.1.1 Fitting and predicting 4
2.1.2 Gradient descent 4
2.1.3 Regularizers 8
2.1.4 Bayesian inference 8

2.2 Feed-Forward Neural Networks 10
2.2.1 Basics of FFNNs 11
2.2.2 Activation functions 12
2.2.3 Training neural networks 13

3 Recent Developments: Deep Linear Neural Networks 16
3.1 Back-Propagating Kernel Renormalization 16

3.1.1 Setting the scene 17
3.1.2 Integrating over the final layer of weights 19
3.1.3 Integrating over the next layer of weights 20
3.1.4 Iterative integration of the remaining weights 24
3.1.5 Results and thoughts on the BPKR 25

3.2 Validity of the BPKR: Exact Calculations 27
3.2.1 Introducing the Meijer G-functions 27
3.2.2 An exact formula for the partition function 28
3.2.3 Recovering the BPKR result 30
3.2.4 Comments and conclusions 33

3.3 The Gaussian Limit 34
3.3.1 The Gaussian limit as a saddle-point approximation 34
3.3.2 The Gaussian limit through iterative integration 36

Version of June 16, 2023– Created June 16, 2023 - 07:37

i

CONTENTS ii

4 Fisher Information in Neural Networks 39
4.1 Fisher Information and Sloppy Models 39

4.1.1 Statistical manifolds 40
4.1.2 Sloppy models 42

4.2 Analytical Results 43
4.2.1 A classification problem 43
4.2.2 Calculations 44

4.3 Numerical Implementation 46
4.4 Directions for Future Work 50

A The Meijer G-Functions 51

Version of June 16, 2023– Created June 16, 2023 - 07:37

ii

Chapter 1
Introduction

Over the past few years, deep neural networks have been a subject of
increased interest on the part of both the academic community and the
public at large. Research on neural networks exists at the intersection
of a diverse collection of academic fields: people working on this topic
have backgrounds in computer science, mathematics, and neuroscience.
And, of course, physics. Physicists have contributed to the field from an
early stage, as evidenced by the many textbooks written on the subject of
physics and machine learning [2, 3], and physicists may still have a role to
play in this evolving field going forward.

Research on this subject takes a variety of different forms, but from
the point of view of a theoretical physicist, one of, if not the most fasci-
nating is a pursuit of a theoretical understanding of how these machines
operate. Neural networks are large machines built out of relatively simple
units. Such a system naturally lends itself to be studied through many of
the techniques that physicists have developed over the years, in particular
statistical mechanics.

The present thesis is concerned with the theoretical study of deep neu-
ral networks. In particular, we will discuss a series of recent papers deal-
ing with deep linear neural networks [4, 8, 14]. These are simple enough
systems that analytical calculations are possible, but still complex enough
that their behavior is not trivial. Unfortunately, deep linear neural net-
works (DLNN) have little to no real-world applications. Nevertheless,
studying simplified models can often provide useful insights that can be
carried over to the study of more realistic systems.

With this perspective in mind, we will discuss the work of Li and
Sompolinsky [8], who introduced a physics-inspired procedure to study
DLNNs: the “back-propagating kernel renormalization.” As the name

Version of June 16, 2023– Created June 16, 2023 - 07:37

1

2

suggests, this procedure presents intriguing parallels with the renormal-
ization group that may be worth exploring in more detail. Then, we will
discuss the work of Zavatone-Veth and Pehlevan [14] and that of Hanin
and Zlokapa [4], who study DLNNs using the tools of Bayesian inference.
We will show how these three papers, using the two different theoretical
frameworks of statistical mechanics and Bayesian statistics, reach similar
conclusions in their descriptions of DLNNs.

Finally, we will argue that Fisher information [1] can be an effective tool
for studying machine learning systems. In particular, the logic of “sloppy
models” [9, 12] has the potential to be useful in designing, as well as un-
derstanding neural networks. We will show numerically that simple neu-
ral network models can be characterized as sloppy models, and we will
discuss how this could be relevant for future research.

Version of June 16, 2023– Created June 16, 2023 - 07:37

2

Chapter 2
A Physicist’s Introduction to
Neural Networks

Machine learning1 problems often follow a similar script. Broadly, we
have a dataset D(X, Y), a model fθ of parameters θ = (θ1, . . . , θn), and
a cost function E(Y, fθ(X)); i.e. a set of pairs of independent and depen-
dent variables {(xµ, yµ)}µ=1,...,P, a function that, given input x, outputs a
prediction for the corresponding y, and a procedure to measure how well
this function describes the observed data. The final missing ingredient is
an optimization procedure: we need a way to tweak the parameters θ to
improve the model’s performance.

Most physicists will be familiar with this basic structure, as it is used
to fit experimental data with a theoretical prediction. For example, we
could take measurements of the voltage applied across a metal wire and
the current running through it (the dataset), postulate a linear relationship
between the two (the model), and estimate the resistance of the wire (the
parameter) using the method of least squares, which consists in minimiz-
ing the squared difference between each measured point and the corre-
sponding theoretical prediction (the cost function).

One important difference between a simple regression problem, like
fitting Ohm’s law, and a typical problem in machine learning, is that often
in machine learning an exact, or even approximate, mathematical descrip-
tion of the process generating the data is not available. Overcoming this
problem requires more sophisticated techniques as well as a variety of dif-
ferent strategies to deal with different tasks.

1Machine learning is a vast field, that can be broadly divided into supervised, unsu-
pervised, and reinforcement learning. The present thesis will only deal with supervised
learning.

Version of June 16, 2023– Created June 16, 2023 - 07:37

3

2.1 Concepts in Machine Learning 4

In this chapter, we will provide an overview of some concepts and tech-
niques common in machine learning, with a particular focus on neural net-
works, which will be the subject of most of Chapters 3 and 4. The source
of the information found in the rest of this chapter is a 2019 review written
by Mehta et al. [10].

2.1 Concepts in Machine Learning

2.1.1 Fitting and predicting

One important problem in machine learning is overfitting. Naively, we
could think that a model with a larger number of free parameters would
be more flexible to describe subtler features of a dataset. In practice, how-
ever, models with a large number of free parameters perform worse than
comparatively simpler models. The more complex a model, the higher the
chance that some of the features it is describing are due to statistical noise,
rather than to a fundamental aspect of the underlying phenomenon2. The
goal of many machine learning models, like most scientific theories, is not
just to accurately describe the available data, but rather to accurately pre-
dict the output given a previously unseen input.

Over decades of research, many techniques have been developed to
improve the performance of machine learning models, and many of them
can be understood as acting to avoid overfitting, to some degree. The goal
is to strike a balance: the model needs to be complex enough to capture
the key features of the dataset while losing as little accuracy as possible
when it is applied to unseen data. Most importantly, it is common practice
when approaching any machine learning problem to randomly divide the
dataset D into two separate datasets: a training dataset Dtrain, used to
train the model, and a test dataset Dtest, used to test the trained model’s
performance.

2.1.2 Gradient descent

A key ingredient in any supervised learning task is the training proce-
dure. This is a procedure that updates the model’s parameters in an effort
to improve performance. During this procedure, model performance is
typically measured on the training dataset, the only one we have access to

2Physicists have long been wary of models with a large number of free parameters.
Rather famously, John von Neumann is said to have told Enrico Fermi: “With four pa-
rameters I can fit an elephant, and with five I can make him wiggle his trunk.”

Version of June 16, 2023– Created June 16, 2023 - 07:37

4

2.1 Concepts in Machine Learning 5

during training. The most commonly used training procedures are vari-
ations on the theme of gradient descent, a simple and commonly used
minimization algorithm. We can employ it to minimize the cost function
E(Y, fθ(X)) ≡ E(θ), thereby fitting the model to the data. It can sometimes
be useful to think of the cost function as the energy of a system. Training a
model is then analogous to navigating through an energy landscape, try-
ing to find its minimum.

Plain gradient descent

The simplest gradient descent algorithm consists of iteratively updating
the parameters in the direction where E(θ) is steepest. At each time step,
update the parameters according to

∆θt = −ηt∇θE(θ) , (2.1a)
θt+1 = θt + ∆θt , (2.1b)

where we have introduced the learning rate ηt.
Gradient descent is simple, but it has several limitations. The energy

landscapes associated with machine learning models can get rather com-
plicated, and gradient descent can easily get stuck in local minima, or take
a very long time to escape a plateau.

Adding stochasticity

In most cases, the cost function (a measure of how well a model is per-
forming on a dataset) can be written as a sum over the individual data
points3,

E(θ) = ∑
x∈X

E(x, θ) .

This offers the chance of speeding up calculations by using random sub-
sets of the training data to approximate the gradient during training. These
are known as mini-batches.

In practice, if our training dataset contains N data points, we can ran-
domly subdivide it into N/M mini-batches of M ≪ N points. If we denote
the mini-batches as Bi, with i running over different batches, the gradient
can be approximated as

∇θE(θ) = ∑
x∈X

∇θE(x, θ) ≈ N
M ∑

x∈Bi

∇θE(x, θ) . (2.2)

3Usually, “cost function” refers to the performance on a dataset, while “loss function”
is used for the performance on individual data points.

Version of June 16, 2023– Created June 16, 2023 - 07:37

5

2.1 Concepts in Machine Learning 6

This approximate gradient can then be used instead of the exact result in
Eq. (2.1), cycling over the mini-batches as we update the parameters.

In addition to speeding up calculations, this procedure has an addi-
tional benefit: computing the gradient using a small random sample of
data points instead of the full dataset introduces a degree of stochasticity
to the training process, which makes it harder for the model to get stuck
in a local minimum.

Adding momentum

One other common variation on gradient descent (these variations are of-
ten used in combination with one another) is the addition of a “memory
term”:

∆θt = −γ∆θt−1 − ηt∇θE(θ) , (2.3a)
θt+1 = θt + ∆θt . (2.3b)

where we introduced a new hyperparameter4, 0 ≤ γ ≤ 1, which deter-
mines the characteristic time scale over which the algorithm keeps the
memory of previous updates. In a way, this new term acts as an inertia
term, resisting sudden changes to the velocity through parameter space.
In fact, Eq. (2.3) has the same form as the discretized equation of motion
of a particle moving through a viscous medium. In this analogy, plain
gradient descent is akin to the overdamped limit.

The advantages of including such an inertia term should be clear: if
in one direction the cost function has a small, but slowly varying gradi-
ent, the inertia term will cause the algorithm to build up speed in that
direction. At the same time, directions in which the gradient is quickly
fluctuating will have a diminished effect on training.

Moments of the gradient

Ideally, we would like to compute higher derivatives of the cost function.
This would allow us to adapt the step size to avoid getting stuck on saddle
points or skipping over deep, but narrow minima. Computing the Hes-
sian matrix of the cost function at each step, however, is extremely com-
putationally expensive for models with many parameters. For this reason,
there are several different algorithms that keep track of some information
regarding the landscape to adaptively change the step size based on cur-
vature.

4Hyperparameters are parameters that are not optimized through training.

Version of June 16, 2023– Created June 16, 2023 - 07:37

6

2.1 Concepts in Machine Learning 7

One such algorithm is RMSprop:

st = β st−1 + (1 − β)[∇θE(θ)]2 , (2.4a)

∆θt = − ηt√
st + ϵ

∇θE(θ) , (2.4b)

θt+1 = θt + ∆θt . (2.4c)

Here, st is essentially keeping a running average of the squared gradient
over the last few time steps (β is typically taken to be around 0.9). This is
referred to as the second moment of the gradient since it is a local estimate
of E

[
[∇θE(θ)]2

]
. RMSprop then uses the information from this estimate

to adapt the step size to the curvature of the energy landscape: the smaller
the mean squared gradient, the larger the step size.

ADAM

A widely used, similar algorithm is ADAM, which combines different fea-
tures of the previous methods:

mt = β1 mt−1 + (1 − β1)∇θE(θ) , (2.5a)

st = β2 st−1 + (1 − β2)[∇θE(θ)]2 , (2.5b)

m̂t =
mt

1 − (β1)t , (2.5c)

ŝt =
st

1 − (β2)t , (2.5d)

∆θt = − ηt√
ŝt + ϵ

m̂t , (2.5e)

θt+1 = θt + ∆θt . (2.5f)

In addition to the second moment, ADAM keeps track of the first mo-
ment, the “momentum of the particle.” It also implements a correction to
account for the fact that the moments are estimated through a running av-
erage. Typical values of the hyperparameters are β1 = 0.9 and β2 = 0.99.

These various methods each have their advantages and drawbacks.
The choice of one over another (and many other variations) often comes
down to the observed performance on the specific task, though ADAM
usually performs better than the other methods mentioned here.

Version of June 16, 2023– Created June 16, 2023 - 07:37

7

2.1 Concepts in Machine Learning 8

2.1.3 Regularizers

It is common in machine learning to modify the cost function to include
a regularizer5. This is usually an extra term that punishes models whose
parameters are too large. Common choices are the L2 norm,

E(θ) → E(θ) + λ∥θ∥2
2 , (2.6)

where ∥θ∥2
2 = ∑i θ2

i and λ ≥ 0 is a hyperparameter, and the L1 norm

E(θ) → E(θ) + λ∥θ∥1 , (2.7)

where ∥θ∥1 = ∑i θi.
Regularizers can be understood as constraining the model to a smaller

region of parameter space, artificially reducing model complexity, and
helping to prevent overfitting. They are also intimately related to Bayesian
inference, which is the subject of the next section.

2.1.4 Bayesian inference

Bayesian inference provides a powerful alternative lens through which to
view machine learning problems, especially for theoretical study, as we
will see in Chapter 3.

Formulating a problem in Bayesian terms is initially similar to what
we have seen so far: we have a dataset D(X, Y) and a model that depends
on a set of parameters θ. The first difference we encounter is that now we
assume that there is some inherent uncertainty to the dataset. Then, we
use the language of probability to describe this uncertainty. The central
object of our discussion is the “likelihood function” p(D|θ), which is the
probability that we would observe dataset D given a model of parameters
θ.

In this framework, fitting the model to the data means finding the val-
ues θ̂ of the parameters that maximize the probability of producing the
observed dataset:

θ̂MLE = arg max
θ

p(D|θ) . (2.8)

Since the logarithm is a monotonic function, the same set of parameters θ̂
that maximizes the likelihood also maximizes its logarithm:

θ̂MLE = arg max
θ

log p(D|θ) ,

5The term “regularization” is used to describe any one of a variety of procedures that
act to prevent overfitting. Modifying the cost function is one commonly used option.

Version of June 16, 2023– Created June 16, 2023 - 07:37

8

2.1 Concepts in Machine Learning 9

and working with this “log-likelihood” is often useful for calculations.
This procedure is known as “maximum likelihood estimation” (MLE), and
it is roughly analogous to our previous discussion of machine learning,
where the goal was to minimize a cost function.

The next ingredient is the “prior distribution” p(θ). This contains any
information we have about the parameters, independently of any mea-
surements in the dataset. Remember that we are using the language of
probability to describe knowledge and uncertainty. The prior can be “un-
informative,” if we do not have prior information about the parameters, or
it can be “informative,” if it expresses some kind of prior knowledge about
the parameters. Common choices of informative priors are the Gaussian
prior

p(θ|λ) = ∏
i

√
λ

2π
exp{−λθ2

i } , (2.9a)

and the Laplace prior

p(θ|λ) = ∏
i

λ

2
exp{−λ|θi|} , (2.9b)

where λ is a hyperparameter.
Our goal is to extract information about the model’s parameters from

the observed data. We do so through the “posterior distribution”, defined
using Bayes’ rule as

p(θ|D) =
p(D|θ) p(θ)∫

dθ′p(D|θ′) p(θ′)
. (2.10)

While the prior distribution encodes our knowledge about the parameters
prior to taking into account the observed data, the posterior distribution
includes the dataset into our calculation and uses it to update our knowl-
edge of the parameters.

All that is left to do is find an appropriate estimate for the parameters.
Common choices include the mean of the posterior distribution,

⟨θ⟩ =
∫

dθ θ p(θ|D) , (2.11)

and the “maximum-a-posteriori” (MAP) estimate, defined in a similar way
as the maximum likelihood estimator (2.8)

θ̂MAP = arg max
θ

p(θ|D) = arg max
θ

log p(θ|D) . (2.12)

Version of June 16, 2023– Created June 16, 2023 - 07:37

9

2.2 Feed-Forward Neural Networks 10

We can use equation (2.10) to write the MAP estimator as

θ̂MAP = arg max
θ

log p(θ|D)

= arg max
θ

log
[
p(D|θ) p(θ)

]
= arg max

θ

[
log p(D|θ) + log p(θ)

]
.

(2.13)

If we took the negative log-likelihood as our cost function,

E(θ) = − log p(D|θ) ,

the MAP estimator would be the set of parameters that minimize

θ̂MAP = arg min
θ

[
E(θ) + R(θ)

]
, (2.14)

where R(θ) = − log p(θ). Using a Gaussian prior (2.9a), we find that
R(θ) = λ ∑i θ2

i is simply an L2 regularizer, while a Laplace prior (2.9b) is
equivalent to an L1 regularizer, R(θ) = λ ∑i |θi|.

We can see that regularizers are not just a convenient way of improv-
ing a model’s performance, but they are intimately linked to Bayesian pri-
ors, encoding our expectations of what the trained weights should look
like. A Gaussian prior (and therefore an L2 regularizer) is used when we
expect many of the network’s weights to be small. A Laplace prior (L1
regularizer) encodes our belief that many of the weights will be zero af-
ter training. Both of these assumptions are often reasonable since many
machine learning models have too many parameters for all of them to be
equally important. We will discuss in more detail the relative importance
of different parameters in Chapter 4.

2.2 Feed-Forward Neural Networks

Recent years have seen an increased interest in one specific class of mod-
els: deep neural networks (DNN). These models – and some of their vari-
ants, such as convolutional neural networks (CNN) and recursive neural
networks (RNN) – have seen success after success when applied to tasks
such as natural language processing, and speech and image recognition.
DNNs perform especially well on large datasets and they seem to be able
to extract relevant features from datasets with minimal input about what
“relevant features” should look like. In essence, a DNN (most likely a

Version of June 16, 2023– Created June 16, 2023 - 07:37

10

2.2 Feed-Forward Neural Networks 11

Figure 2.1: Schematic representation of the an artificial “neuron” of the type com-
mon in machine learning. Source: Mehta et al., 2019 [10].

CNN, in this case) could learn to recognize the presence of a cat in a pic-
ture without ever having been given much information about what a cat
might look like.

This intriguing ability of DNNs to “learn on their own” has attracted
the attention of many researchers, who would like to better understand
these objects from a theoretical point of view.

2.2.1 Basics of FFNNs

Neural networks (NN) are a class of models often used in machine learn-
ing. As the name suggests, the structure of NNs was broadly inspired by
biological brains6, which are made up of a complicated mesh of neurons,
each performing a relatively simple computational task. In a scenario that
is probably familiar from statistical mechanics, highly complex behavior
emerges from the interactions of a very large number of relatively sim-
ple units. Similarly, the basic building blocks of NNs, often referred to as
“neurons,” are simple units that receive an input in the form of a vector
x = (x1, . . . , xN), perform a linear transformation, multiplying the input
components by a vector of weights w = (w1, . . . , wN) and adding a con-
stant b, then act on the result with a non-linear function φ(·), referred to
as the “activation function.” The full input-output function of a neuron is
therefore

f (x) = φ

(
N

∑
i=1

wixi + b

)
. (2.15)

It is common to define x = (1, x) and w = (b, w) and write the linear
transformation as a dot product,

f (x) = φ(w · x) .
6To distinguish the two, the terms “artificial” and “biological” neural networks are

often used.

Version of June 16, 2023– Created June 16, 2023 - 07:37

11

2.2 Feed-Forward Neural Networks 12

Figure 2.2: Schematic representation of the structure of a feed-forward neural
network. Source: Mehta et al., 2019 [10].

Neurons can be connected in a variety of different ways, but a rela-
tively simple and extremely common structure is found in Feed-Forward
Neural Networks (FFNN). Here, neurons are organized in layers, each
neuron using the outputs of the previous layer’s neurons as inputs and
sending its output onward to the next layer. The first layer is called the in-
put layer, and it is fed the data that needs to be studied, the final layer (of-
ten a single neuron) is called the output layer, and the intermediate layers
are called hidden layers. We can write the overall input-output function
of an FFNN with L layers as

f (x0) = φL

(
WL · φL−1

(
WL−1 · φL−2

(
. . . W2 · φ1(W1 · x0) . . .

)))
, (2.16)

where Wℓ are matrices whose rows are the vectors wℓ
i , each containing

all of the weights feeding into the i-th neuron of the ℓ-th hidden layer.
We use W · φ(x) to denote matrix-vector multiplication of W with φ(x),
and all activation functions φℓ(·) are understood as acting element-wise
on their input vectors.

2.2.2 Activation functions

Common choices of activation functions include the step-function, the lo-
gistic function7, the hyperbolic tangent, rectified linear units (ReLU), and
variations on the latter (leaky ReLU, ELU).

7Logistic functions are sometimes referred to as “sigmoids,” but this term is also used
more broadly to denote any function roughly in the shape of an “S.” By this definition,
the hyperbolic tangent is also a sigmoid.

Version of June 16, 2023– Created June 16, 2023 - 07:37

12

2.2 Feed-Forward Neural Networks 13

Figure 2.3: Some common choices of activation functions in feed-forward neural
networks. Source: Mehta et al., 2019 [10].

Whether activation functions saturate for large or small inputs, i.e. they
have horizontal asymptotes, will affect training. This is because, in large
portions of parameter space, the neuron’s output will be essentially con-
stant, leading to flat regions in the energy landscape, which can present a
challenge for optimization algorithms derived from gradient descent.

2.2.3 Training neural networks

By and large, neural networks are trained in much the same way as other
supervised learning models: gradient descent. There is, however, one
thing worth mentioning. Depending on the specific network architecture,
the number of parameters can be enormous, and in modern applications it
almost always is. Moreover, computing the derivative of the cost function
with respect to weights deep in the network threatens to be computation-
ally challenging. Employing sophisticated forms of gradient descent is of
little use if we cannot efficiently compute the gradient. Fortunately, we
can take advantage of the layered structure of FFNNs to more efficiently
compute derivatives of the cost function.

The algorithm that allows us to do so is called “back-propagation,” and
it relies on the chain rule to efficiently compute derivatives with respect
to parameters everywhere in the network. We are going to explain this
algorithm, but let us first set up some convenient notation. Given neuron
number i in layer ℓ, we denote its output, or “activation,” as aℓi , while
we use zℓi to refer to its “pre-activation,” i.e. the linear combination of its

Version of June 16, 2023– Created June 16, 2023 - 07:37

13

2.2 Feed-Forward Neural Networks 14

inputs given by
zℓi = ∑

j
Wℓ

ija
ℓ−1
j + bℓj ,

where Wℓ
ij is the weight connecting neuron j in layer ℓ− 1 with neuron i

in layer ℓ. The input-output function of a network with L layers can be
written as

[f (x)]i = aL
i

= φL(zL
i)

= φL

(
∑

j
WL

ij aL−1
j + bL−1

j

)
= . . .

where [f (x)]i is the i-th component of the output. Similarly, the cost func-
tion is explicitly a function of the output layer activations, and implicitly
a function of all other variables,

E(W) = E
(
{aL

i }
)
= E

(
{aL

i (z
L
i)}
)
= E

({
aL

i
(
{aL

j }
)})

= . . .

With this notation in place, we are ready to describe how the back-propagation
algorithm exploits the chain rule to efficiently compute the gradient of the
cost function.

The back-propagation algorithm

1. Activation at the input layer: given an input, compute the activa-
tions a1

i at the input layer.

2. Feed-forward: due to the layered architecture of the network, a1
i

completely determines all activations and pre-activations in the rest
of the network. Compute all of these.

3. Error at the top layer: use the chain rule to compute the derivatives
of the cost function w.r.t. the pre-activations of the output layer,

∂E
∂zL

i
=

∂E
∂aL

i
φ′

L(z
L
i) , (2.17)

where φ′
ℓ(·) denotes the derivative of the ℓ-th layer activation func-

tion w.r.t. its argument.

Version of June 16, 2023– Created June 16, 2023 - 07:37

14

2.2 Feed-Forward Neural Networks 15

4. Back-propagation: the chain rule enables us to recursively relate
derivatives w.r.t. zℓ−1 to derivatives w.r.t. zℓ.

∂E
∂zℓ−1

i

= ∑
k

∂E
∂zℓk

∂zℓk
∂zℓ−1

i

= ∑
k

∂E
∂zℓk

Wℓ
ik φ′

ℓ(z
ℓ−1
i) . (2.18)

We can use this to “move upstream” through the network and com-
pute derivatives w.r.t. all pre-activations zℓi , ℓ = 1, . . . , L.

5. Compute the gradient: use the chain rule one last time to compute
derivatives w.r.t. weights and biases everywhere in the network,

∂E
∂Wℓ

ij
=

∂E
∂zℓi

∂zℓi
∂Wℓ

ij
=

∂E
∂zℓi

aℓ−1
j , (2.19a)

∂E
∂bℓi

=
∂E
∂zℓi

∂zℓi
∂bℓi

=
∂E
∂zℓi

. (2.19b)

Version of June 16, 2023– Created June 16, 2023 - 07:37

15

Chapter 3
Recent Developments: Deep Linear
Neural Networks

In this chapter, we will discuss three recent papers dealing with deep lin-
ear neural networks (DLNN) [4, 8, 14]. DLNNs are deep feed-forward
neural networks that use linear activation functions. This severely lim-
its their usefulness for real-world applications. In fact, DLNNs do not
perform better than simple models without hidden layers. Nevertheless,
DLNNs can be an interesting object of theoretical study: considering linear
activation functions makes theoretical analysis more accessible, but still
far from trivial. It is reasonable to imagine DLNNs being a good train-
ing ground, where we can develop theoretical machinery that could be
applied to more realistic, non-linear neural network models in the future.

3.1 Back-Propagating Kernel Renormalization

A remarkable result in the study of DLNNs was obtained by Qianyi Li
and Haim Sompolinsky (LS), who used an approach inspired by statisti-
cal mechanics to study the statistical properties of an ensemble of trained
DLNNs [8]. The method they introduce, which they call Back-Propagating
Kernel Renormalization (BPKR), consists of setting up an iterative proce-
dure to calculate the partition function of the network’s weights, which is
then used to characterize the model’s performance on previously unseen
inputs. We will now discuss LS’s procedure in some detail.

Version of June 16, 2023– Created June 16, 2023 - 07:37

16

3.1 Back-Propagating Kernel Renormalization 17

3.1.1 Setting the scene

Let us begin by setting up the notation. For simplicity, consider a single-
output DLNN1. This network has L hidden layers with N hidden units
each, and it takes vectors of dimension N0 as inputs. We denote the train-
ing inputs as xµ = (xµ

1 , . . . , xµ
N0
) and their target labels as yµ, where the

different pairs of training inputs and labels are indexed by µ = 1, . . . , P.
Throughout this chapter, Greek letters will be used to index training ex-
amples, while Latin letters will index neurons in a layer. We denote as Wℓ

ij
the weight connecting the j-th neuron in layer ℓ− 1 with the i-th neuron in
layer ℓ. We will treat ℓ = 0 as the input layer. Since there is only one out-
put, the weight connecting the i-th neuron in the final hidden layer with
the output will be denoted as WL+1

i . The weights of the network will be
collectively referred to as W.

For the remainder of this chapter, summation over repeated indices,
Latin or Greek, will be left implicit unless otherwise stated. The network’s
output given input vector x = (x1, . . . , xN0) is

f (x, W) = WL+1
iL

WL
iLiL−1

WL−1
iL−1iL−2

. . . W2
i2i1W1

i1i0 xi0 , (3.1)

and we use a quadratic loss function with an L2 regularizer, so the cost
function is

E(W) =
1
2

P

∑
µ=1

(f (xµ, W)− yµ)2 +
T

2σ2

(L

∑
ℓ=1

Wℓ
ijW

ℓ
ij + WL+1

i WL+1
i

)
, (3.2)

where the final term, proportional to the sum of the squared weights, is the
regularizer. T and σ2 are two hyperparameters of the network, referred to
as “temperature” and “weight noise,” respectively.

LS’s approach to studying this system is rooted in physics. In partic-
ular, it is inspired by statistical mechanics2. In Chapter 2, when we dis-
cussed gradient descent, we mentioned that some variants of stochastic
gradient descent can be seen as a discretized Langevin equation of motion.
In this analogy, the weights W of the network are dynamical variables, and
the cost function E(W) defines an energy landscape. After we set initial
values for the parameters, the optimization procedure will look for the
global minimum of the energy. Since the procedure is in part stochastic,
we can expect an ensemble of networks initialized at different points of the

1The theory can be generalized to larger output dimensions.
2The idea of using statistical mechanics to study machine learning and neural net-

works is not new. See, for example, [2, 3].

Version of June 16, 2023– Created June 16, 2023 - 07:37

17

3.1 Back-Propagating Kernel Renormalization 18

Figure 3.1: Schematic representation of the BPKR procedure: we begin by inte-
grating the layer of weights feeding into the network’s output, then proceed to
move “upstream” through the network, integrating the weights one layer at a
time. Adapted from Li and Sompolinsky, 2021 [8].

energy landscape to eventually reach an equilibrium distribution around
the global minimum of the cost function.

LS use statistical mechanics to investigate the properties of an ensem-
ble of networks all trained on the same set of examples. The equilibrium
distribution is the Gibbs distribution

P(W) =
e−βE(W)

Z
, (3.3)

where β = T−1, and the most important object to study is, of course, the
partition function

Z = A
∫

dW e−βE(W) , (3.4)

where

dW =

(N

∏
i=1

N0

∏
j=1

dW1
ij

)
×

L

∏
ℓ=2

(N

∏
i=1

N

∏
j=1

dWℓ
ij

)
×
(N

∏
i=1

dWL+1
i

)
,

and A can be any constant since its value has no effect on the “physical”
behavior of the system.

Direct calculation of the partition function is highly non-trivial, so the
goal of LS’s paper is to set up an iterative procedure to perform the inte-
grations layer by layer and compute Z in the wide network limit (N → ∞).
Following LS, our strategy will be to perform the integrals layer by layer,
starting from the output and proceeding backward through the network.

Version of June 16, 2023– Created June 16, 2023 - 07:37

18

3.1 Back-Propagating Kernel Renormalization 19

3.1.2 Integrating over the final layer of weights

We begin by making our notation more compact by defining the Gaussian
integration measures

DW1 =

(N

∏
i=1

N0

∏
j=1

dW1
ij

)(
N0

2πσ2

) NN0
2

exp
{
− N0

2σ2 W1
ijW

1
ij

}
, (3.5a)

DWℓ =

(N

∏
i=1

N

∏
j=1

dWℓ
ij

)(
N

2πσ2

) N2
2

exp
{
− N

2σ2 Wℓ
ijW

ℓ
ij

}
, (3.5b)

for ℓ = 2, . . . , L, and

DWL+1 =

(N

∏
i=1

dWL+1
i

)(
N

2πσ2

) N
2

exp
{
− N

2σ2 WL+1
i WL+1

i

}
. (3.5c)

This allows us to write the partition function as

Z =
∫

DW1· · ·
∫

DWL+1 exp

{
−β

2

P

∑
µ=1

(
WL+1

iL
WL

iLiL−1
. . . W1

i1i0 xµ
i0
− yµ

)2
}

.

(3.6)
Our strategy to calculate the partition function is to set up an itera-

tive procedure to perform the integrals over the weights one layer at a
time, starting from the last layer and moving “upstream” through the net-
work. In order to keep our notation simple, we start by writing Z =∫
DW1· · ·

∫
DWL ZL, where

ZL =
∫

DWL+1 exp

{
−β

2

P

∑
µ=1

(
WL+1

iL
WL

iLiL−1
. . . W1

i1i0 xµ
i0
− yµ

)2
}

. (3.7)

Next, we introduce the auxiliary integration variables tµ (µ = 1, . . . , P) to
perform a Hubbard-Stratonovich transformation,

ZL =
∫

DWL+1
∫

Dt exp
{
−itµ

(
WL+1

iL
WL

iLiL−1
. . . W1

i1i0 xµ
i0
− yµ

)}
. (3.8)

We have once again introduced a Gaussian integration measure to make
the notation more compact:

Dt =
(P

∏
µ=1

dtµ

)(
1

2πβ

) P
2

exp
{
− 1

2β
tµtµ

}
.

Version of June 16, 2023– Created June 16, 2023 - 07:37

19

3.1 Back-Propagating Kernel Renormalization 20

Going forward, it is useful to define the activation of neuron i in layer ℓ
when input vector xµ is fed into the network. This is

xℓ,µ
i = Wℓ

iiℓW
ℓ−1
iℓiℓ−1

. . . W1
i2i1 xµ

i1
. (3.9)

Performing the integration over the readout weights is now straightfor-
ward: it is a Gaussian integral.∫

DWL+1 exp
{
−itµWL+1

iL
xL,µ

iL

}
=

=
∫ (N

∏
i=1

dWL+1
i

)(
N

2πσ2

) N
2

exp
{
− N

2σ2 WL+1
i WL+1

i − itµWL+1
i xL,µ

i

}
=

= exp
{
− σ2

2N
tµxL,µ

i xL,ν
i tν

}
. (3.10)

We can now define the ℓ-th layer kernel matrix

Kµν
ℓ =

σ2

N
xℓ,µ

i xℓ,ν
i (3.11)

and write our result as

ZL =
∫

Dt exp
{

itµyµ − 1
2

tµKµν
L tν

}
=

=

(
1

2πβ

) P
2 ∫ (P

∏
µ=1

dtµ

)
exp

{
itµyµ − 1

2
tµ

(
Kµν

L +
δµν

β

)
tν

}
. (3.12)

The integral over t is Gaussian, and we can solve it to find ZL = e−βHL ,
where

βHL =
1
2

yµ(Γ−1
L)µνyν +

1
2

log det (ΓL) , (3.13)

Γµν
L = Kµν

L +
δµν

β
.

3.1.3 Integrating over the next layer of weights

We turn our attention to

ZL−1 =
∫

DWLZL =
∫

DWL
∫

Dt exp
{

itµyµ − 1
2

tµKµν
L tν

}
. (3.14)

Version of June 16, 2023– Created June 16, 2023 - 07:37

20

3.1 Back-Propagating Kernel Renormalization 21

We used Eq. (3.12) instead of Eq. (3.13), as this makes calculations simpler
going forward. Notice from the definition of the Kernel matrix (3.11) that
Kµν

L is a function of WL. Making this dependence explicit, we write

ZL−1 =
∫

Dt eitµyµ
∫

DWL exp
{
−WL

ji

[
σ2

2N
tµtνxL−1,µ

j xL−1,ν
k

]
WL

ki

}
.

The integral over the L-th layer of weights is once again a Gaussian inte-
gral, and solving it gives

ZL−1 =
∫

Dt exp
{

itµyµ − N
2

log det ΛL−1

}
, (3.15)

where

(ΛL−1)ij = δij +
σ4

2N2 tµtνxL−1,µ
i xL−1,ν

j . (3.16)

It is worth taking a careful look at this matrix. Let us define the new
matrix

(λL−1)ij =
σ4

2N2 tµtνxL−1,µ
i xL−1,ν

j , (3.17)

so that
(ΛL−1)ij = δij + (λL−1)ij .

This new matrix has the interesting property

(λ2
L−1)ij = (Tr λL−1)(λL−1)ij,

which in turn implies that

Tr
(
λn

L−1
)
= (Tr λL−1)

n . (3.18)

Here, λn
L−1 denotes repeated matrix multiplication:

λn
L−1 = λL−1 · λL−1 · . . . · λL−1︸ ︷︷ ︸

n times

.

This seemingly innocuous property is actually remarkable. The determi-
nant of ΛL−1 can be written3 as a power series in terms of traces of powers
of λL−1:

det ΛL−1 = 1 + Tr λL−1 +
1
2

[
(Tr λL−1)

2 − Tr(λ2
L−1)

]
+ . . .

3See the Cayley-Hamilton theorem.

Version of June 16, 2023– Created June 16, 2023 - 07:37

21

3.1 Back-Propagating Kernel Renormalization 22

Equation (3.18) implies that only the first term of the series is non-zero,
providing us with the very useful result

det ΛL−1 = 1 + Tr λL−1 . (3.19)

Substituting this result into Eq. (3.15), we have

ZL−1 =
∫

Dt exp
{

itµyµ − N
2

log(1 + Tr λL−1)

}
=

=
∫

Dt exp
{

itµyµ − N
2

log
(

1 +
σ2

N
tµKµν

L−1tν

)}
. (3.20)

Comparing Eq. (3.20) and Eq. (3.12), there is a striking similarity. Indeed,
in the wide network limit (N → ∞), they would be identical. Unfortu-
nately, taking this limit right away would be too drastic an approximation,
and if we did take the limit we would miss out on much of the complex
behavior in the resulting theory. We will come back to this limit in Sec-
tion 3.3. One reason why taking the limit is not as straightforward as it
looks is that ZL−1 is not the complete integral we are studying: we cannot
simply take N to infinity without this affecting the integrals over all other
layers of weights. Therefore, LS had to come up with an alternative way
of bringing the kernel matrix out of the logarithm.

The strategy they employ is to introduce a new integral and a Dirac
delta function,

ZL−1 =
∫

dmL−1

∫
Dt δ

(
mL−1 −

σ2

N
tµKµν

L−1tν

)
exp

{
itµyµ − N

2
log(1 + mL−1)

}
, (3.21)

and then use one of the integral representations of the Dirac delta to write

ZL−1 =
∫

duL−1

∫
dmL−1

∫
Dt

exp
{

itµyµ +
N

2σ2 uL−1mL−1 −
σ2

N
tµ
(
uL−1Kµν

L−1

)
tν − N

2
log(1 + mL−1)

}
.

(3.22)

The t-integral is now in the same form as Eq. (3.12), with the only dif-
ference that the kernel is rescaled by the auxiliary variable uL−1. If we
wanted to keep integrating over the remaining weights, we would start

Version of June 16, 2023– Created June 16, 2023 - 07:37

22

3.1 Back-Propagating Kernel Renormalization 23

from here and repeat the same steps to go from ZL−1 to ZL−2. Before we
do that, however, it is useful to see what it would take to solve all three
integrals in Eq. (3.22).

We can solve the Gaussian integral right away4, which leaves us with

ZL−1 =
∫

duL−1

∫
dmL−1 exp

{
N

2σ2 uL−1mL−1 −
N
2

log(1 + mL−1)−

− 1
2

yµ(Γ−1
L−1)

µνyν − 1
2

log det(ΓL−1)

}
, (3.23)

where
Γµν

L−1 = uL−1Kµν
L−1 + Tδµν .

Next, we can use saddle-point approximations to solve the two remaining
integrals. We consider the limit N → ∞ and P → ∞, keeping the ratio α =
P/N constant. First, we integrate over mL−1. The saddle-point equation is

1 + mL−1 = σ2u−1
L−1 .

This leaves us with the integral over uL−1. Its saddle point equation is

N(1 − σ−2uL−1) = Tr
(

Γ−1
L−1uL−1KL−1

)
− yµ(Γ−2

L−1)
µνuL−1Kνρ

L−1yρ , (3.24)

which becomes rather simpler in the limit T → 0:

1 − σ−2uL−1 = α(1 − u−1
L−1rL−1) , (3.25)

where we have defined

rℓ = P−1yµ(K−1
ℓ)µνyν . (3.26)

LS call this “mean squared readout” because it is equal to (σ2α)−1 times
the squared norm of the vector of output weights that would be needed to
read out the target labels yµ directly from layer ℓ. Using these saddle-point
equations in the integral (3.23) would give us a result for ZL−1, which will
depend on the solution of Eq. (3.24).

4We assume here that P < N, though the calculation can be generalized.

Version of June 16, 2023– Created June 16, 2023 - 07:37

23

3.1 Back-Propagating Kernel Renormalization 24

3.1.4 Iterative integration of the remaining weights

Moving on to the next layer of weights, we can start from Eq. (3.22) and
follow the same steps as before to find

ZL−2 =
∫

duL−1

∫
dmL−1

∫
duL−2

∫
dmL−2 exp

{
N

2σ2 uL−1mL−1+

+
N

2σ2 uL−2mL−2 +
N
2

log(1 + mL−1) +
N
2

log(1 + mL−2)

}
∫

Dt exp
{

itµyµ − σ2

N
tµ
(
uL−2uL−1Kµν

L−2
)
tν

}
. (3.27)

The kernel is now rescaled by two auxiliary variables: uL−1 and uL−2. We
can once again solve the Gaussian integral right away and use saddle-
point approximations for the remaining four integrals. The saddle point
equations for mL−1 and mL−2 read

1 + mL−1 = σ2u−1
L−1 , (3.28a)

1 + mL−2 = σ2u−1
L−2 , (3.28b)

while the saddle-point equations for uL−1 and uL−2 read

N(1 − σ−2uL−1) = Tr
(

Γ−1
L−2uL−2uL−1KL−2

)
−

− yµ(Γ−2
L−2)

µνuL−2uL−1Kνρ
L−2yρ , (3.29a)

N(1 − σ−2uL−2) = Tr
(

Γ−1
L−2uL−2uL−1KL−2

)
−

− yµ(Γ−2
L−2)

µνuL−2uL−1Kνρ
L−2yρ , (3.29b)

where
Γµν

L−2 = uL−2uL−1Kµν
L−2 + Tδµν .

These equations satisfy uL−1 = uL−2, therefore ZL−2 will only depend on
the the value of uL−2 that solves

N(1 − σ−2uL−2) = Tr
(

Γ−1
L−2u2

L−2KL−2

)
− yµ(Γ−2

L−2)
µνu2

L−2Kνρ
L−2yρ ,

which when T → 0 becomes

1 − σ−2uL−2 = α(1 − u−2
L−2rL−2) . (3.30)

Version of June 16, 2023– Created June 16, 2023 - 07:37

24

3.1 Back-Propagating Kernel Renormalization 25

(We use un
L−2 to refer to uL−2 raised to the n-th power.)

The procedure can be iterated to integrate over all the weights in the
neural network. After solving all of the integrals in the weights and the
Gaussian integral in tµ, we would be left with 2L integrals in the vari-
ables m0, . . . , mL−1 and u0, . . . , uL−1. Using saddle-point approximations,
we would find that the final solution depends only on the value of a single
parameter, u0, which is fixed by a saddle-point equation. Notice that this
procedure allows us to take the N → ∞ limit at the end, thereby avoiding
the issues we would have encountered if we had tried to take the limit
directly in Eq. (3.20).

In the limit T → 0, the resulting partition function for wide linear neu-
ral networks of arbitrary depth is Z = e−βH0 , where

βH0 =
1
2

yµ(u−L
0 K−1

0)µνyν +
1
2

log det
(

uL
0 K0

)
− LN

2
log u0 +

LN
2σ2 u0 ,

(3.31)
and u0, referred to as the “kernel renormalization factor” by LS, is the
solution to

1 − σ−2u0 = α(1 − u−L
0 r0) . (3.32)

3.1.5 Results and thoughts on the BPKR

The ultimate goal of the BPKR is to study the statistics of an ensemble
of trained networks. Given a new input vector x, we want to study the
statistical moments of f (x, W)) ≡ f (x), i.e. the output of a network with
weights W given input x. We will use x to denote a new input vector,
not part of the training set, while xµ will be the training vectors, indexed
by µ = 1, . . . , P (or any other Greek index). Our strategy is one commonly
used in statistical mechanics: we define a generalized form of the partition
function (3.4),

Z(λ, x) =
∫

dW e−βE(W)−iλ f (x) , (3.33)

which allows us to write the first two moments of f (x) as

⟨ f (x)⟩ = i
∂

∂λ
log Z(λ, x)

∣∣∣∣
λ=0

, (3.34a)

Var[f (x)] = ⟨(δ f (x))2⟩ = − ∂2

∂λ2 log Z(λ, x)
∣∣∣∣
λ=0

. (3.34b)

We can compute this generalized partition function in much the same way
as before, and LS are able to show that the expectation value of the net-

Version of June 16, 2023– Created June 16, 2023 - 07:37

25

3.1 Back-Propagating Kernel Renormalization 26

work’s output is

⟨ f (x)⟩ = σ2

N0
xi xµ

i (K
−1
0)µνyν , (3.35)

where xi and xµ
i are the i-th components of the new input vector x and the

µ-th training vector, respectively. The variance of the output is

Var[f (x)] = uL
0

[
σ2

N0
xixi −

σ4

N2
0

xi xµ
i (K

−1
0)µνxν

j xj

]
. (3.36)

Notice that because the definition (3.11) of the kernel matrix K0 contains a
factor σ2/N0, the two terms in (3.36) are the same order in 1/N0.

Li and Sompolinsky’s method uses an iterative procedure to write down
a sequence of effective Hamiltonians for the weights upstream of a hidden
layer ℓ. In the T → 0 limit, these are given by

βHℓ

(
{Wk}k≤ℓ

)
=

1
2

yµ
(

uℓ−L
ℓ K−1

ℓ

)µν
yν+

+
1
2

log det
(

uL−ℓ
ℓ Kℓ

)
− (L − ℓ)N

2
log uℓ +

(L − ℓ)N
2σ2 uℓ . (3.37)

It is not hard to see a parallel with the renormalization group. In a typical
renormalization group study of a physical system, microscopic degrees
of freedom are integrated over and the resulting effective Hamiltonian is
cast in a similar mathematical form as the full Hamiltonian of the system,
some physical quantities having been rescaled by the procedure. Here, it
seems that the layers of the neural network that are closest to the output
are playing the role of “microscopic” degrees of freedom, and the kernel
matrix is the quantity being renormalized. Fully developing and exploring
this analogy has the potential to lead to interesting results.

The iterative nature of the BPKR makes it a promising candidate for
studying the properties of hidden layers in deep neural networks. How-
ever, attempting to generalize this method to the case non-linear activation
function is not trivial. In particular, the linearity of the activation function
ensures that all integrals over the weight throughout the procedure are
Gaussian, as can be seen in the steps leading to Eq. (3.15). Applying a sim-
ilar procedure beyond the case of linear activation functions risks leading
to unsolvable integrals. Any attempt at solving this problem needs to care-
fully avoid ruining the special property of λℓ, Eq. (3.18), or it could become
impossible to continue the integration beyond the first layer. Moreover,
when a source term is included in the partition function, as in (3.33), the
integrals only remain Gaussian if f (x) is linear in the weights.

Version of June 16, 2023– Created June 16, 2023 - 07:37

26

3.2 Validity of the BPKR: Exact Calculations 27

A notable feature of the BPKR is that it can be generalized to the case of
multiple outputs. The overall derivation and the resulting theory are es-
sentially unchanged, the only difference being that the mean square read-
out rℓ and the kernel renormalization factor uℓ are both promoted from
scalars to matrices.

3.2 Validity of the BPKR: Exact Calculations

Does the BPKR provide an accurate description of a DLNN’s behavior?
In this section we will present an alternative approach to the study of
DLNNs, based on Bayesian inference rather than statistical mechanics. We
will report results from two papers [4, 14] and see how this alternative ap-
proach allows us to recover the BPKR results.

3.2.1 Introducing the Meijer G-functions

We have seen that LS study the properties of an ensemble of trained net-
works. The object of their study is the statistical distribution of outputs
found when the same input is passed through different networks, all of
them trained on the same dataset. A related investigation was carried
out by Jacob A. Zavatone-Veth and Cengiz Pehlevan (Z-VP). In their pa-
per [14], Z-VP consider a Bayesian neural network5 with linear activation
functions and Gaussian priors over the weights. For the purposes of this
thesis, we can think of an ensemble of deep linear neural networks in
which all of the weights are independently drawn from a Gaussian distri-
bution. Z-VP consider networks with a layer-dependent number of neu-
rons Nℓ and noise σℓ, and output dimension of one. in contrast to LS, they
are not concerned with training. Instead, given the ensemble of untrained
networks and an input x, they ask about the distribution p(xL|x) of the
neuron activations at the last hidden layer before the output.

Remarkably, they find an exact answer, expressed as a Meijer G-function:

p(xL|x) =
[

L−1

∏
ℓ=1

Γ
(

Nℓ

2

)]−1(
π∥x∥2

)− NL
2

[
L

∏
ℓ=1

2σ2
ℓ

Nℓ−1

]− NL
2

GL,0
0,L

([L

∏
ℓ=1

Nℓ−1

2σ2
ℓ

]∥∥xL
∥∥2

∥x∥2

∣∣∣∣ −
0, N1−NL

2 , . . . , NL−1−NL
2

)
. (3.38)

5Bayesian neural networks are a type of neural networks where weights do not have
a specific value, but rather an associated probability distribution.

Version of June 16, 2023– Created June 16, 2023 - 07:37

27

3.2 Validity of the BPKR: Exact Calculations 28

Meijer G-functions are rather obscure but extremely well studied special
functions, defined as a line integral of Gamma functions in the complex
plane:

Gm,n
p,q

(
x
∣∣∣ a

b

)
=

1
2πi

∫
C

ds xs ∏m
j=1 Γ(bj − s)∏n

k=1 Γ(1 − ak + s)

∏
p
k=n+1 Γ(ak − s)∏

q
j=m+1 Γ(1 − bj + s)

,

where a = (a1, . . . , an, an+1, . . . , ap) and b = (b1, . . . , bm, bm+1, . . . , bq), Γ(x)
is the Gamma function, and C is the Mellin-Barnes contour (see Appendix
A). Meijer G-functions are extremely general and reduce to many simpler
special functions for specific choices of the parameters n, m, p, q, a, and b.
They are very well studied: plenty of identities and formulas are known
involving Meijer G-functions.

3.2.2 An exact formula for the partition function

Z-VP’s result was later used by Boris Hanin and Alexander Zlokapa (HZ)
to obtain a full description of the behavior of trained deep linear neural
networks of any width and depth, as long as they’re limited to a single
neuron in the output layer. In their paper [4], rather than dealing with
the intricacies of gradient descent-based training, HZ consider Bayesian
inference (Section 2.1) as a form of training, i.e. a way to fit the model’s
parameters to a dataset. In their Bayesian framework, the partition func-
tion is defined as the expectation value of the cost function w.r.t. the prior
probability distribution of the weights:

Z(λ, x) = Eprior[exp{−βE(W)− iλ f (x)}] . (3.39)

Using Gaussian priors over the weights and a quadratic loss as the cost
function, this formula is fully equivalent to Eq. (3.33).

HZ manage to obtain an exact, rather complicated formula for the par-
tition function (3.39) in the zero temperature limit, written in terms of an
infinite sum of Meijer G-functions:

Z(λ, x) =

(
4π

∥θ∗∥2

) P
2

e−iλθ∗i xi

[
L

∏
ℓ=1

Γ
(

Nℓ

2

)]−1 ∞

∑
k=0

(−∥λx⊥∥2)k

k! 4k[L

∏
ℓ=0

2σ2

Nℓ

]k

GL+1,0
0,L+1

([L

∏
ℓ=0

Nℓ

2σ2

]
∥θ∗∥2

∣∣∣∣ −
P
2 , N1

2 + k, . . . , NL
2 + k

)
. (3.40)

Version of June 16, 2023– Created June 16, 2023 - 07:37

28

3.2 Validity of the BPKR: Exact Calculations 29

One important new object in this formula is θ∗ = (θ∗1 , . . . , θ∗N0
), defined as

θ∗ = arg min
θ

P

∑
µ=1

(
θix

µ
i − yµ

)2
. (3.41)

In other words, θ∗ is the vector of weights that, given a linear network
without hidden layers, would result on the best fit on the training set
{(xµ, yµ)}µ=1,...,P. In (3.40), we find a second new object: x⊥. The case con-
sidered here is the one where α0 = P/N0 < 1, meaning that there are more
neurons in the input layers than there are training vectors. One common
thread throughout HZ’s analysis is the decomposition of vectors into two
components, one parallel and one perpendicular to the subspace spanned
by linear combinations of the training inputs, {xµ}µ=1,...,P. x⊥ denotes the
component of the unseen input x perpendicular to this subspace.

The procedure employed by HZ to arrive at their formula for the par-
tition function is rather complicated. They begin in much the same way
LS did: with a Hubbard-Stratonovich transformation, followed by direct
integration of the last layer of weights. After this point, however, the two
procedures are entirely different. HZ write one of the terms in the inte-
gral as a Laplace transform, which they are then able to write as a Meijer
G-function using Z-VP’s result. What follows are a series of clever ma-
nipulations of the integral involving various properties of the Meijer G-
functions. Their procedure allows HZ to integrate over the weights in the
network all at once, however many layers there are, without the need for
an iterative procedure.

Extracting the statistical moments of f (x) is done in the same way as
LS did in Eq. (3.34), this time using the exact partition function (3.40). The
result is

⟨ f (x)⟩ = θ∗i xi , (3.42a)

Var[f (x)] =
1
2

[L

∏
ℓ=0

2σ2

Nℓ

]
∥x⊥∥ 2 G[1]

G[0]
, (3.42b)

where we have used the shorthand notation

G[k] ≡ GL+1,0
0,L+1

([L

∏
ℓ=0

Nℓ

2σ2

]
∥θ∗∥2

∣∣∣∣ −
P
2 , N1

2 + k, . . . , NL
2 + k

)
.

HZ do not stop here. They go on to use the Laplace method to produce
novel asymptotic expansions of the Meijer G-functions in three distinct
cases as P, Nℓ, and L are taken to infinity in different ways. The one we

Version of June 16, 2023– Created June 16, 2023 - 07:37

29

3.2 Validity of the BPKR: Exact Calculations 30

care about here is the limit considered by LS in their paper: set N1 = · · · =
NL = N, fix P/N0 = α0 < 1, then take the limit N, P → ∞ while P/N → α.
In this limit, HZ find

log G[k] =
Nα

2

[
log
(

Nα

2

)
+ log

(
1 +

z∗
α

)
−
(

1 +
z∗
α

)]
+

+
NL
2

[
log
(

N
2

)
+ log(1 + z∗)− (1 + z∗)

]
+O(log N) , (3.43a)

and

log G[k]− log G[0] = kL
[

log
(

N
2

)
+ log(1 + z∗)

]
+O

(
log N

N

)
, (3.43b)

where z∗ is the solution to the saddle-point equation

(
1 +

z∗
α

)
(1 + z∗)

L =
∥θ∗∥2

σ2(L+1)α0
, z∗ > min{−α,−1} . (3.43c)

3.2.3 Recovering the BPKR result

While comparing the partition functions directly seems to be a non-trivial
task, we can check that the mean and variance of f (x) found by LS and
HZ match in the wide network limit.

Saddle-point equation

Our first clue that this might be the case is that both LS’s and HZ’s results
rely on a parameter defined implicitly through similar-looking saddle-
point equations: (3.32) and (3.43c). We reproduce the two equations here,
to compare them.

1 − σ−2u0 = α(1 − u−L
0 r0) , (LS)(

1 +
z∗
α

)
(1 + z∗)

L =
∥θ∗∥2

σ2(L+1)α0
. (HZ)

In both equations, α, α0, L, and σ2 are parameters of the network, while
u0 and z∗ are the parameters we want to fix through their respective equa-
tions. The remaining two parameters, r0 and ∥θ∗∥2, are defined by Eq.
(3.26) and Eq. (3.41), respectively. LS show that the mean squared readout
r0 is proportional to the squared norm of the vector of weights that would

Version of June 16, 2023– Created June 16, 2023 - 07:37

30

3.2 Validity of the BPKR: Exact Calculations 31

read off the target labels directly from the input layer, but this is precisely
the definition of ∥θ∗∥2 given by HZ. In fact, we can state that

α0 σ2 r0 = ∥θ∗∥2 , (3.44)

having accounted for the different definitions in the two papers. Having
identified these two parameters, the two saddle-point equations are com-
pletely equivalent, with

u0 = σ2(1 + z∗) . (3.45)

Output’s mean

Next, we can compare the two results for the mean of the output, ⟨ f (x)⟩,
given in Eq. (3.35) and Eq. (3.42a), which we reproduce here for compari-
son.

⟨ f (x)⟩ = σ2

N0
xi xµ

i (K
−1
0)µνyν , (LS)

⟨ f (x)⟩ = θ∗i xi . (HZ)

In both equations, we are taking a dot product between the new input
x and another vector: θ∗ in the HZ result, and σ2

N0
xµ(K−1

0)µνyν in the LS
result. We have to compare these vectors. Once again, we need to look
at the definition of θ∗, given in Eq. (3.41). Since there are fewer training
vectors than neurons in the input layer (α0 < 1), it should be possible to
find a vector θ∗ that solves

P

∑
µ=1

(θ∗i xµ
i − yµ)2 = 0 .

As it turns out, σ2

N0
xµ(K−1

0)µνyν is such a vector. We can easily show that
this is the case by remembering the definition of the kernel matrix, Eq.
(3.11):

Kµν
0 =

σ2

N0
xµ

i xν
i .

Using this definition, we have(
σ2

N0
xρ

i (K
−1
0)ρτyτ

)
xµ

i = (xµ
i xρ

i)(xρ
j xτ

j)
−1yτ = δµτyτ = yµ . (3.47)

The two results for ⟨ f (x)⟩ are not strictly equivalent, since the vector θ∗

may not be unique. Nevertheless, Eq. (3.47) shows that the LS’s and HZ’s
procedures lead to extremely similar results.

Version of June 16, 2023– Created June 16, 2023 - 07:37

31

3.2 Validity of the BPKR: Exact Calculations 32

Output’s variance

We conclude this section by comparing the two results for the network
output’s variance Var[f (x)], given in Eq. (3.36) and Eq. (3.42b), which we
once again reproduce here for comparison.

Var[f (x)] = uL
0

[
σ2

N0
xixi −

σ4

N2
0

xi xµ
i (K

−1
0)µνxν

j xj

]
, (LS)

Var[f (x)] =
σ2

N0

(
2σ2

N

)L

∥x⊥∥ 2 G[1]
G[0]

. (HZ)

We can use Eq. (3.43b) and Eq. (3.45) to write, in the wide network limit
N, P → ∞,

G[1]
G[0]

≃
(

Nu0

2σ2

)L

, (3.49)

which we can use to write HZ’s result for the variance as

Var[f (x)] ≃ uL
0

σ2

N0
∥x⊥∥2 . (3.50)

Here, we have used both HZ’s asymptotic expansion of the Meijer G-
functions and the equivalence between the two saddle-point equations we
found earlier.

The last step is to once again recall the definition of the kernel matrix,
Eq. (3.11), and notice that

σ2

N0
xµ

i (K
−1
0)µνxν

j = xµ
i (xµ

k xν
k)

−1xν
j ≡ Pij (3.51)

is a projection operator, and so

σ2

N0
xix

µ
i (K

−1
0)µνxν

j xj = xiPijxj = ∥x∥∥
2 (3.52)

is simply the squared norm of the projection of input x onto the subspace
spanned by the set of training vectors {xµ}µ=1,...,P. Substituting this into
LS’s formula, we have

Var[f (x)] = uL
0

σ2

N0

[
∥x∥2 − ∥x∥∥

2
]
= uL

0
σ2

N0
∥x⊥∥ 2 . (3.53)

The two results for the variance are therefore completely equivalent to one
another, in the wide network limit.

Version of June 16, 2023– Created June 16, 2023 - 07:37

32

3.2 Validity of the BPKR: Exact Calculations 33

3.2.4 Comments and conclusions

It should be noted that both procedures we considered avoid dealing ex-
plicitly with training through gradient descent-based methods. Instead,
both LS’s statistical mechanical approach and HZ’s Bayesian approach as-
sume that an ensemble of networks will follow a theoretically motivated
distribution after training. The applicability of their results to real-world
neural networks hinges on this assumption being at least approximately
correct.

The two methods both have their strengths and drawbacks. The BPKR
has intriguing similarities with well-studied renormalization procedures,
common in physics, and the implications of these similarities may be worth
investigating further. Moreover, it enables us to integrate over some of the
network’s weights and find an effective description of the resulting trun-
cated network, which has the potential to provide insights into the role of
depth in DLNNs.

On the other hand, there is no doubt that the biggest strength of HZ’s
approach is its ability to provide an exact solution for networks of any
width or depth. The BPKR, in contrast, relies on the wide network limit,
N → ∞, which may restrict its applicability to some real-world networks.

Another useful feature of LS’s method is that it can be generalized to
networks with multiple outputs, whereas our attempts at generalizing
HZ’s method to output dimensions greater than one have shown this to
be a non-trivial task.

One more aspect to consider is how easily interpretable each method’s
results are. HZ’s exact result is undoubtedly remarkable, but its form in
terms of Meijer G-functions (and an infinite sum of them at that) is rather
obscure and difficult to interpret. Gaining intuition about the inner work-
ings of deep neural networks is a task worth pursuing, and this is not
an especially straightforward task when Meijer G-functions are involved,
though asymptotic expansions help. On a related note, very interesting
results and considerations about the combined roles of depth and width
in neural networks can be found in HZ’s paper.

Finally, both approaches seem to rely heavily on the activation func-
tions being linear. Unfortunately, it is difficult to see a clear way to extend
either of the two procedures to more realistic, non-linear networks. One
promising result in this direction can be found in the Z-VP paper [14],
where the authors find an exact equivalent of equation (3.38) for the case
of ReLU activation functions. Unfortunately, building on this result in a
similar way as HZ did for the linear case does not seem to be quite as
straightforward.

Version of June 16, 2023– Created June 16, 2023 - 07:37

33

3.3 The Gaussian Limit 34

3.3 The Gaussian Limit

So far, we have used statistical mechanics to describe the behavior of an
ensemble of trained DLNNs. We have shown how to compute the parti-
tion function by iteratively integrating over the layers of weights (BPKR
procedure). Then, we have described how a different approach to the same
problem, based on Bayesian inference, could be used to recover the same
results, renewing our confidence in the validity of the BPKR calculation.

There is another question we could ask: does the BPRK lead to any
non-trivial results? In Section 3.2, we have shown how the BPKR recovers
the correct leading order results in the wide network limit, N → ∞, but
is the leading order enough to capture any non-trivial behavior? In this
section, we will show how a simplified version of the BPKR can be used
to recover what we will call the “Gaussian limit” of DLNNs. The fact that
the full BPKR procedure manages to go beyond this simple limit indicates
that it is indeed capturing at least some non-trivial features of DLNNs.

3.3.1 The Gaussian limit as a saddle-point approximation

Let us consider a linear neural network with L hidden layers of N1, . . . , NL
neurons each, an input layer of N0 neurons, and NL+1 outputs. Denote
the Gaussian probability distribution for the weights in layer ℓ prior to
training as

p(Wℓ
ij) =

√
Nℓ−1

2πσ2
ℓ

exp
{
−Nℓ−1

2σ2
ℓ

(Wℓ
ij)

2
}

. (3.54)

The combined prior probability distribution of all of the weights in the
network is

p(W) =
L+1

∏
ℓ=1

Nℓ

∏
i=1

Nℓ−1

∏
j=1

p(Wℓ
ij) . (3.55)

Let dW be the plain integration measure over all of the network’s weights:

dW =
L+1

∏
ℓ=1

Nℓ

∏
i=1

Nℓ−1

∏
j=1

dWℓ
ij . (3.56)

We can define the expectation value of an arbitrary function of the weights
Φ(W) with respect to the probability distribution p(W) as

⟨Φ(W)⟩ =
∫

dW p(W)Φ(W) . (3.57)

Version of June 16, 2023– Created June 16, 2023 - 07:37

34

3.3 The Gaussian Limit 35

In our analogy with statistical mechanics, the trained networks are de-
scribed by a Hamiltonian. In our case, the quadratic loss function plays
the role of the Hamiltonian, and it is a function of the weights, the training
inputs, and the target labels,

H(W; {xµ, yµ}µ=1,...,P) =
1
2

P

∑
µ=1

[
f (W, xµ)− yµ

]2 , (3.58)

where f (W, xµ) ≡ f (xµ) is once again the output of the network when
vector xµ is used as the input:

f (x) = WL+1
i iL

WL
iLiL−1

· · ·W1
i1 j xµ

j . (3.59)

Notice that, since we are considering an output layer with NL+1 neurons,
the target labels have been promoted to vectors: yµ = (yµ

1 , . . . , yµ
L+1).

The partition function can be written as the expectation value of the
Boltzmann factor,

Z =
〈

e−βH
〉

. (3.60)

This is analogous to Eq. (3.39), used by HZ. In the limit β → ∞ (low-
temperature limit), we can use a saddle-point approximation on integral
(3.57) to find

Z =
〈

e−βH
〉

β→∞−−−→ e−β⟨H⟩ . (3.61)

Computing the expectation value of the Hamiltonian we find

⟨H⟩ = 1
2

P

∑
µ=1

[
⟨[f (xµ)]2⟩ − ⟨ f (xµ)⟩ yµ + (yµ)2

]
=

=
1
2

P

∑
µ=1

[
⟨[f (xµ)]2⟩+ (yµ)2

]
, (3.62)

where we have used the fact that f (xµ) is linear in the weights. Mean-
while, [f (xµ)]2 is quadratic in the weights and its expectation value is a
product of Gaussian integrals. We can compute this explicitly. For this

Version of June 16, 2023– Created June 16, 2023 - 07:37

35

3.3 The Gaussian Limit 36

computation, no summation over Greek indices is implied.

⟨[f (xµ)]2⟩ =
〈

δiL+1 jL+1δµν
(
WL+1

iL+1iL
. . . W1

i1i0 xµ
i0

)(
WL+1

jL+1 jL
. . . W1

j1 j0 xν
j0

)〉
= δiL+1 jL+1

〈
WL+1

iL+1iL
WL+1

jL+1 jL

〉
. . .
〈

W1
i1i0W1

j1 j0

〉
xµ

i0
xµ

j0

= δiL+1 jL+1

(
σ2

L+1
NL

δiL+1 jL+1δiL jL

)
. . .
(

σ2
1

N0
δi1 j1δi0 j0

)
xµ

i0
xµ

j0

=
σ2

L+1 . . . σ2
1

NL . . . N0
δiL+1 jL+1δiL+1 jL+1︸ ︷︷ ︸

=NL+1

δiL jL δiL jL︸ ︷︷ ︸
=NL

. . . δi1 j1δi1 j1︸ ︷︷ ︸
=N1

xµ
i0

xµ
i0

=
NL+1

N0
σ2

L+1 · · · σ2
1 ∥xµ∥2 , (3.63)

where δij denotes a Kronecker delta and ∥xµ∥2 = ∑N0
i=1(xµ

i)
2. In the compu-

tation, we have used the fact that the probability distributions of weights
in different layers are independent of each other, and therefore the full
expectation value can be written as a product of expectation values of
weights in different layers.

Finally, going back to Eq. (3.62) we find

⟨H⟩ = 1
2

P

∑
µ=1

[
NL+1

N0
σ2

L+1 . . . σ2
1 ∥xµ∥2 + (yµ)2

]
. (3.64)

We found that in the low temperature limit, the partition function can be
approximated as Z = e−β⟨H⟩, which is purely Gaussian since the expec-
tation value of the Hamiltonian is given by (3.64). From now on, we will
refer to this result as the “Gaussian limit.”

3.3.2 The Gaussian limit through iterative integration

In Section 3.1, we explained the procedure used by LS to compute the
network’s Hamiltonian (the back-propagating kernel renormalization) by
proceeding upstream through the network, iteratively integrating one layer
of weights at a time and finding a sequence of effective Hamiltonians.
Here, we will show how we can use a simplified version of the same pro-
cedure to recover the Gaussian limit.

First, recall that LS considered the case in which N1 = · · · = NL = N,
NL+1 = 1, and σ2

1 = · · · = σ2
L+1 = σ2. In order to carry out the calcula-

tions, in Section 3.1 we defined a convenient set of Gaussian integration

Version of June 16, 2023– Created June 16, 2023 - 07:37

36

3.3 The Gaussian Limit 37

measures for the weights, given by Eq. (3.5):

DW1 =

(N

∏
i=1

N0

∏
j=1

dW1
ij

)(
N0

2πσ2

) NN0
2

exp
{
− N0

2σ2 W1
ijW

1
ij

}
,

DWℓ =

(N

∏
i=1

N

∏
j=1

dWℓ
ij

)(
N

2πσ2

) N2
2

exp
{
− N

2σ2 Wℓ
ijW

ℓ
ij

}
,

for ℓ = 2, . . . , L, and

DWL+1 =

(N

∏
i=1

dWL+1
i

)(
N

2πσ2

) N
2

exp
{
− N

2σ2 WL+1
i WL+1

i

}
.

With this notation, we defined the effective Hamiltonians Hℓ as

Z =
∫

DW1· · ·
∫

DWℓ Zℓ =
∫

DW1· · ·
∫

DWℓ exp{−βHℓ} .

The first step in LS’s procedure was to perform a Hubbard-Stratonovich
transformation, which was followed by direct integration of the last layer
of weights, the result was Eq. (3.12):

ZL =
∫

Dt exp
{

itµyµ − 1
2

tµKµν
L tν

}
, (I)

where

Dt =
(P

∏
µ=1

dtµ

)(
1

2πβ

) P
2

exp
{
− 1

2β
tµtµ

}
and

Kµν
ℓ =

σ2

N
xℓ,µ

i xℓ,ν
i .

Integrating over the next layer of weights led us to Eq. (3.20):

ZL−1 =
∫

Dt exp
{

itµyµ − N
2

log
(

1 +
σ2

N
tµKµν

L−1tν

)}
. (II)

At this point in the procedure, we commented that the simplest thing to
do would be approximating

N
2

log
(

1 +
σ2

N
tµKµν

L−1tν

)
≃

N→∞

σ2

2
tµKµν

L−1tν , (III)

Version of June 16, 2023– Created June 16, 2023 - 07:37

37

3.3 The Gaussian Limit 38

as this would bring ZL−1 into the same form as ZL, but we opted against
it, the reason being that this approximation would have been too drastic.
As it turns out, this is exactly the approximation we have to use to recover
the Gaussian limit. Each successive iteration of the simplified procedure
starts with an integral similar to (I), then, integrating over the following
layer of weights, we find an integral in the form of (II), at which point we
can approximate our result using (III), and repeat for the following layer.
Each iteration will add a factor of σ2 in front of the kernel Kℓ, and at the
end we would be left with

Z ≈
∫

Dt exp
{

itµyµ − σ2L

2
tµKµν

0 tν

}
=

=
∫ (P

∏
µ=1

dtµ

)(
1

2πβ

) P
2

exp
{
− 1

2 β
tµΣµν

0 tµ + itµyµ

}
= exp{−βH} ,

(3.65)

where
βH =

1
2

yµ(Σ−1
0)µνyν +

1
2β

log det (Σ0) (3.66)

and

Σµν
0 = δµν + β σ2LKµν

0 = δµν +
β σ2(L+1)

N0
xµ

i xν
i .

If we now assume β/N0 ≪ 1, we can use

Σµν
0 ≈ δµν

and

log det(Σ0) = Tr log(Σ0) =
P

∑
µ=1

[
log(Σ0)

]µµ ≈
P

∑
µ=1

β σ2(L+1)

N0
∥xµ∥2

to recover our previous Gaussian limit result, Eq. (3.64):

HL ≈ 1
2

P

∑
µ=1

[
σ2(L+1)

N0
∥xµ∥2 + (yµ)2

]
, (3.67)

where the norm is taken over the Latin index, i.e. ∥xµ∥2 = ∑N0
i=1(xµ

i)
2.

Notice that we previously arrived at Eq. (3.64) without having to re-
quire Nℓ → ∞; the limit β → ∞ was sufficient. When explicitly integrat-
ing over the weights following LS’s procedure, however, we had to require
the number of neurons per layer to be large. Not only that, but we had to
require β/N0 ≪ 1, meaning that the input dimension N0 has to go to in-
finity faster than β. The relationship between these various limits seems
to be rather complex and it may be worth studying in more detail.

Version of June 16, 2023– Created June 16, 2023 - 07:37

38

Chapter 4
Fisher Information in Neural
Networks

Fisher information can be a powerful tool in the study of statistical models.
Many models used in science rely on a large number of free parameters,
but Fisher information-based approaches have shown that some param-
eter combinations have a vastly larger effect on the model’s output than
others [9, 12]. By their nature, neural network models usually have an
extremely large number of free parameters that have to be tuned during
training. Fisher information can provide a way to identify the most impor-
tant parameter combinations in a trained network, which could hopefully
lead to a prescription for reducing the number of free parameters. This
could lead to a variety of benefits, from avoiding overfitting to helping
understand the inner workings of deep neural network models.

4.1 Fisher Information and Sloppy Models

Information geometry is the study of statistical models using techniques
from differential geometry [1]. In addition to contributing an interesting
point of view on many concepts in statistics, such as distributions, sam-
ples, and inference, it can provide useful insights into the inner workings
of statistical models. In particular, information geometry has been used
to investigate the relative importance of different parameters in scientific
models. [9, 11, 12]. The central observation of these papers, that a rela-
tively small number of parameters often accounts for most of a model’s
behavior, is a rather powerful one: it explains why simple models can
sometimes provide accurate descriptions of highly complex phenomena.

Version of June 16, 2023– Created June 16, 2023 - 07:37

39

4.1 Fisher Information and Sloppy Models 40

4.1.1 Statistical manifolds

Consider a Gaussian distribution,

p(x|µ, σ2) =
1√

2πσ2
exp

[
− (x − µ)2

2σ2

]
.

Repeated measurements of the random variable x described by this dis-
tribution will have mean µ and will be spread out according to the vari-
ance σ2. Now, suppose that we have good reasons to believe that our
measurements of some process will return a Gaussian distribution, but we
cannot predict what the mean and variance will be, so we decide to infer
these parameters from measurements. One question arises: how confi-
dently can we tell a distribution with parameters (µ1, σ2

1) from one with
parameters (µ2, σ2

2)? To answer, let us consider a more general setting.
Let x = (x1, x2, . . . , xm) be a vector of random variables, and let p(x|θ)
be a family of probability distributions that depend on the parameters
θ = (θ1, θ2, . . . , θn). Can we define a notion of how different a distribution
p(x|θ1) of parameters θ1 is from a second distribution p(x|θ2) of param-
eters θ2? A notion of similarity between two probability distributions is
known as a statistical distance, and one commonly used distance is the
Kullback-Leibler (KL) divergence, defined as

DKL[p(x|θ2) || p(x|θ1)] =
∫

dmx p(x|θ2) log
(

p(x|θ2)

p(x|θ1)

)
, (4.1)

This notion of distance lacks many characteristics that we might find use-
ful: it is not symmetric in its arguments and it does not satisfy the triangle
inequality. In order to fix these problems, we notice that the KL divergence
is minimized by θ1 = θ2 ≡ θ, and we expand around this minimum, find-
ing

DKL[p(x|θ+ dθ) || p(x|θ)] ≃ 1
2

gαβ(θ)dθα dθβ +O(dθ3) ,

where we have defined

gαβ(θ) =
∂2DKL

∂θα∂θβ

∣∣∣∣∣
dθ=0

=
∫

dmx p(x|θ) ∂ log p(x|θ)
∂θα

∂ log p(x|θ)
∂θβ

. (4.2a)

This is known as the Fisher information metric (FIM) and can be written
more concisely in terms of ℓ = log p(x|θ) as

gab(θ) =
〈
∂αℓ ∂βℓ

〉
= −

〈
∂α∂βℓ

〉
, (4.2b)

Version of June 16, 2023– Created June 16, 2023 - 07:37

40

4.1 Fisher Information and Sloppy Models 41

where ∂α ≡ ∂/∂θα and ⟨·⟩ denotes the expectation value with respect to
p(x|θ). The two formulas in terms of first or second derivatives are equiv-
alent because ⟨∂αℓ⟩ = 0.

As the name suggests, the FIM is a metric. To understand how this
can be, we need to look at our probability distributions in a different way.
Given a family of probability distributions p(x|θ), we can define a Rie-
mannian manifold on which the parameters (θ1, θ2, . . . , θn) provide a set of
coordinates. This is known as a statistical manifold, and each point corre-
sponds to a probability distribution. The FIM can be used as a Riemannian
metric on this statistical manifold, providing a natural notion of distance
between probability distributions. The field of information geometry [1]
is concerned with studying the nature of these manifolds, using the tools
of differential geometry to gain insight into the nature of statistical models
and techniques.

One result in particular, the Cramér-Rao bound, provides some useful
intuition about the FIM itself. The Cramér-Rao bound is a statement about
estimators. An estimator is a procedure to extract an estimate for one of
the parameters of the probability distribution from measurements. Going
back to our original example of a Gaussian distribution, if we wanted to
estimate the mean µ given a set {xi}i=1,...,N of measurements, we could
use the empirical mean µ̂ = 1

N ∑N
i=1 xi as an estimator of the true mean µ.

Moreover, the empirical mean is an example of what is called an “unbi-
ased” estimator since

⟨µ̂⟩ = 1
N

N

∑
i=1

∫
dxi xi p(xi|µ, σ2) = µ .

Applying the same logic to the more general case of a distribution p(x|θ),
we can define the bias B of an estimator θ̂a of the parameter θa as B(θ̂a) =〈

θ̂a
〉
− θa. The Cramér-Rao bound states that, given two unbiased estima-

tors θ̂α and θ̂β, and a set {xi}i=1,...,N of independent measurements,〈(
θ̂α − θα

)(
θ̂β − θβ

)〉
≥ 1

N
gαβ(θ) , (4.3)

where gαβ(θ) = [gαβ(θ)]
−1 is the inverse FIM. If we wanted to determine

the values of parameters θα and θβ from measurements up to a given ac-
curacy, a larger value of gαβ(θ) would mean that we need a larger sample.
Given a finite sample, some combinations of parameters will be better es-
timated than others. Conversely, this means that some combinations of
parameters have a larger, more noticeable effect on the outcome of mea-
surements than others, and this information is contained in the FIM.

Version of June 16, 2023– Created June 16, 2023 - 07:37

41

4.1 Fisher Information and Sloppy Models 42

4.1.2 Sloppy models

In recent years, a series of papers have brought to light how the FIM can
provide insight into the models we use to describe vastly different phe-
nomena, in diverse areas of science [9, 12]. The central notion in these
papers is that of “sloppiness” in statistical models. The authors notice
that the FIM in many models of natural phenomena is characterized by
an eigenvalue spectrum spanning many orders of magnitude. Some di-
rections in parameters space, corresponding to large eigenvalues, are ex-
tremely important in describing the data and are labeled “stiff”, while
others are labeled “sloppy” since even large changes to the parameters
in these directions have little effect on the model’s predictions. Often, the
eigenvalues seem to roughly follow a geometric sequence (Fig. 4.1), so a
very limited number of parameter combinations account for much of the
observations. The model manifold is characterized by a “hyper-ribbon”
structure: just as a ribbon is much longer than it is wide and much wider
than it is thick, each subsequent direction in the model manifold is much
shorter than the previous one (length is defined using the FIM).

Figure 4.1: Largest (normalized) eigenvalues of the FIM for models in various
fields. Source: Transtrum et al., 2015 [12].

Version of June 16, 2023– Created June 16, 2023 - 07:37

42

4.2 Analytical Results 43

4.2 Analytical Results

Are neural networks sloppy? If so, can this be useful for understand-
ing their properties and behavior? Neural networks usually have a very
large number of parameters, and it is reasonable to assume that not all
parameters are equally important for the network’s performance. A pre-
liminary investigation of simple neural networks can be found in a paper
by Transtrum et al. [13], and it seems to suggest that they can be character-
ized as sloppy models. A more extensive exploration of Fisher information
in neural networks was carried out by Karakida et al. [5, 6]. In this sec-
tion, we will investigate the FIM associated with simple neural network
models, with a particular focus on its eigenvalue spectrum.

4.2.1 A classification problem

We consider a classification problem, where an input x sampled from a
set X has to be correctly classified as belonging to a class y chosen from
set Y . For example, X could be a set of images representing handwritten
digits and Y = {0, 1, 2, . . . , 9}. To perform this classification, we consider
a model fθ(x), where θ = (θ1, θ2, . . . , θn) are the parameters. Our model
takes x ∈ X as its input and determines the probability p(y|x, θ) that x
should be classified as belonging to class y ∈ Y . We use a set of pairs of
inputs and target labels {(xi, yi)}i=1,...,P to estimate the set of parameters
θ̄ that maximizes the likelihood that our model would correctly classify
each xi as belonging to class yi. In order to do this we need a procedure
to quantify the model’s performance with a given set of parameters and
a mechanism for training, i.e. updating the values of the parameters to
improve performance.

We choose to treat both the input and output as vectors. As input we
will use N0-dimensional vectors x ∈ RN0 . The model’s output will be
a NL-dimensional vector y ∈ RNL , where NL is the number of classes.
Different classes are represented by so-called “one-hot” vectors, so y(1) ≡
(1, 0, 0 . . .) is the first class, y(2) ≡ (0, 1, 0, . . .) the second, etc., and our
model is a function fθ : RN0 → RNL .

Given an input x and its true label y, we can define a loss function

E(θ) = ∥y − fθ(x)∥2 , (4.4)

which is an indicator of the model’s performance as a classifier for input
x. Such a quadratic loss is common, but not the only choice. It is usually
considered appropriate when the process that generates the data leads to

Version of June 16, 2023– Created June 16, 2023 - 07:37

43

4.2 Analytical Results 44

Gaussian uncertainty on the output. In our example, if we denoted as
F : RN0 → RNL the true process generating the data, this would mean that

p(y|x) ∼ exp
[
− 1

2σ
∥y − F(x)∥2

]
. (4.5)

Such an assumption is usually considered appropriate for processes with
continuous outputs, rather than for classification tasks, where the output
is discreet. Nevertheless, using Eq. (4.4) as a loss function can lead to good
results for classification tasks, too, and using Eq. (4.5) will allow us to
write the FIM in a remarkably simple form. Formulating an FIM analysis
of neural networks in a form more appropriate for categorical data is left to
future work; in the present thesis, we will concern ourselves with whether
useful insights about neural networks can be obtained using Equations
(4.4) and (4.5) to compute the FIM.

4.2.2 Calculations

Using (4.5) as our probability distribution, we can calculate the FIM using
its definition (4.2)1. The resulting FIM is

gαβ(θ̄) = ∑
µ

1
σ2

[
∂θα

fθ(x)
∣∣∣∣
θ=θ̄

]µ[
∂θβ

fθ(x)
∣∣∣∣
θ=θ̄

]µ

. (4.6)

Summation of repeated indices will not be left implicit for the remainder
of the present discussion on the Fisher information of artificial neural net-
works. Notice that (4.6) is a function of the input x. Let us not apply this
general formula to some simple neural network architectures.

No hidden layers

Let us first look at a very simple model, without hidden layers. Each com-
ponent of the input vector x = xµ ∈ RN0 is connected by a weight to each
component of the output vector y = yµ ∈ RN1 . A generic non-linearity
φ(·) is then applied to each component of the output. Denoting as θ

µ
ν the

weight connecting the ν-th component of the input to the µ-th component
of the output, the model is2

[fθ(x)]µ = φ
(

∑
ν

θ
µ
ν xν
)
= φ(aµ) ,

1The expectation value is taken over y, so ⟨·⟩ =
∫

dy p(y|x) (·).
2Upper and lower indices do not have any deep meaning, but this notation is good

for telling at a glance the direction of the weights.

Version of June 16, 2023– Created June 16, 2023 - 07:37

44

4.2 Analytical Results 45

where we have introduced aµ = ∑ν θ
µ
ν xν. The corresponding FIM is

gθ
µ
α θν

β
(θ̄) =

1
σ2 δµν φ′(aµ) φ′(aν) xα xβ =

1
σ2

[
φ′(aµ)

]2
δµν xα xβ , (4.7)

where φ′(z) ≡ dφ
dz (z) and aµ is computed using the trained parameters θ̄.

The presence of the Kronecker delta allows us to write this FIM in the form
of a block-diagonal matrix, where each block is made of the same matrix
B = [Bαβ] = xαxβ ∈ Rn×n scaled by a factor α(µ) = σ−2[φ′(aµ)]2 ∈ R,
where µ labels the different blocks.

gθ
µ
α θν

β
(θ̄) =

α(1)B 0 · · · 0

0 α(2)B · · · 0
...

...
...

0 0 · · · α(m)B

 .

One hidden layer

We introduce one hidden layer with N1 units to our model. We denote the
input vector as x0 = xµ

0 ∈ RN0 , and the output vector as y = yµ ∈ RN2 .
θ

µ
1ν is the weight connecting the ν-th component of x0 with the µ-th hidden

unit, and θ
µ
2ν is the weight connecting the ν-th hidden unit with the µ-th

component of y. We also define the vectors x1 = xµ
1 ∈ RN1 , denoting

the values of hidden layer units, and a1 = aµ
1 = ∑ν θ

µ
1νxν

0 and a2 = aµ
2 =

∑ν θ
µ
2νxν

1. With these definitions in place, the model can be written as

[fθ(x0)]
µ = φ2(aµ

2) = φ1

(
∑
ν

θ
µ
2ν φ1(aν

1)
)
= φ1

(
∑
ν

θ
µ
2ν φ1

(
∑
ρ

θν
1ρxρ

0

))
,

where φ1(z) denotes the non-linearity acting of the hidden layer neurons
and φ2(z) is a second, possibly different non-linearity.

Three distinct cases arise when calculating the FIM. First, components
that refer to two weights in the second layer are a straightforward gener-
alization of the case without hidden layers.

gθ
µ
2αθν

2β
(θ̄) =

1
σ2

[
φ′

2
(
aµ

2
)]2

δµν xα
1 xβ

1 . (4.8a)

Next, FIM components that refer to two weights in the first layer are

gθ
µ
1αθν

1β
(θ̄) =

1
σ2 ∑

ρ

[[
φ′

2
(
aρ

2
)]2

φ′
0
(
aµ

1

)
φ′

1(aν
1) θ̄

ρ
2µ θ̄

ρ
2ν

]
xα

0 xβ
0 , (4.8b)

Version of June 16, 2023– Created June 16, 2023 - 07:37

45

4.3 Numerical Implementation 46

which is no longer block diagonal, instead having a considerably more
complex internal structure. Finally, components that refer to weights in
two different layers are

gθ
µ
1αθν

2β
(θ̄) =

1
σ2 [φ

′
2(aν

2)]
2 φ′

1
(
aµ

1

)
θ̄ν

2µ xα
0 xβ

1 , (4.8c)

We can write the full FIM concisely by defining some matrices Bij = Bαβ
ij

and Aij = Aµν
ij , where i, j ∈ {0, 1}:

Bαβ
11 = xα

1 xβ
1 ∈ RN1×N1 , Aµν

11 =
1
σ2

[
φ′

2
(
aµ

2
)]2

δµν ∈ RN2×N2 ;

Bαβ
10 = xα

1 xβ
0 ∈ RN1×N0 , Aµν

10 =
1
σ2

[
φ′

2
(
aµ

2
)]2

φ′
1(aν

1) θ̄
µ
2ν ∈ RN2×N1 ;

Bαβ
01 = xα

0 xβ
1 ∈ RN0×N1 , Aµν

01 =
1
σ2

[
φ′

2(aν
2)
]2

φ′
1
(
aµ

1

)
θ̄ν

2µ ∈ RN1×N2 ;

Bαβ
00 = xα

0 xβ
0 ∈ RN0×N0 ,

Aµν
00 =

1
σ2 ∑

ρ

[[
φ′

2
(
aρ

2
)]2

φ′
1
(
aµ

1

)
φ′

1(aν
1) θ̄

ρ
2µ θ̄

ρ
2ν

]
∈ RN1×N1 .

The FIM can be written as

g(θ̄) =
(

A00 ⊗ B00 A01 ⊗ B01
A10 ⊗ B10 A11 ⊗ B11

)
=

(
A00 A01
A10 A11

)
∗
(

B00 B01
B10 B11

)
, (4.9)

where ⊗ denotes the Kronecker product, and this specific operation – Kro-
necker products applied independently to different blocks of two matrices
– is known as a Khatri-Rao product, denoted here as ∗.

4.3 Numerical Implementation

In this section, we will report some preliminary results about the FIM
eigenvalue spectra of models trained on the MNIST. The MNIST3 is a
dataset of 70,000 handwritten digits, each in the form of a 28 × 28 pixel
image, where pixels are assigned a numerical value from 0 to 255 to indi-
cate color (white to black).

As we have already mentioned, the analytical results in Section 4.2
were obtained by making use of assumptions that are most appropriate
for models with continuous outputs, whereas the data in the MNIST is

3http://yann.lecun.com/exdb/mnist/

Version of June 16, 2023– Created June 16, 2023 - 07:37

46

4.3 Numerical Implementation 47

Figure 4.2: Sample of images of handwritten digits in the MNIST. Source: LeCun
et al., 1998 [7].

characterized by 10 discreet labels (one for each digit). Nevertheless, we
are going to use these analytical results to study neural networks trained
on the MNIST, hoping that we will still gain some useful insights.

We consider a simple neural network, with an input layer of size 784
(282), a single hidden layer of size 25 with ReLU activation functions, and
an output layer of size 10 with SoftMax activation functions4. The network
was trained on the 60,000 images in the MNIST training dataset using a
quadratic loss function, ADAM optimizer, and mini-batches of size 128
(see Section 2.1). The trained model had an accuracy of 0.96 on the 10,000
images in the MNIST test dataset. After choosing one input, shown in Fig.
4.3, we have used Eq. (4.8) to compute the FIM. The largest eigenvalues of
the resulting FIM are shown in Fig. 4.3. We can notice that the eigenvalues
span many orders of magnitude, which is ins line with the conclusions of
Transtrum et al. [13] that neural networks can be characterized as sloppy
models. Furthermore, we notice that out of the 19,885 eigenvalues, only 8,
shown in Fig. 4.3, are large enough that we were able to easily compute
them without running into numerical errors.

Since there is some stochasticity in the training procedure, due to the
use of mini-batches and the random initial parameters, we trained sev-
eral networks to better test our results. In total, we trained 30 networks:
10 with one hidden layer of 25 neurons, 10 with one hidden layer of 16
neurons, and 10 without any hidden layers. We computed the FIM eigen-

4Given the output vector y, SoftMax(yi) = eyi / ∑k eyk

Version of June 16, 2023– Created June 16, 2023 - 07:37

47

4.3 Numerical Implementation 48

Figure 4.3: The largest eigenvalues of the FIM of a trained neural network (right)
and the input image used in the computations (left), labeled as “seven.”

values for each network using the same input image as before. The results
are shown in Fig. 4.4. We see that the addition of hidden neurons seems
to have the only effect of spreading out the distribution of eigenvalues.

One factor that may affect the eigenvalue spectrum is whether the net-
work is classifying the input image correctly. All 30 networks correctly
classified the handwritten “seven” we have used as input so far, so we
have looked in the MNIST for an image that was harder for the networks
to classify. We settled on the odd-looking number “four” shown in Fig.
4.5. Only one out of the ten trained networks with no hidden layers cor-

Figure 4.4: The largest eigenvalues of the FIM of 30 trained models.

Version of June 16, 2023– Created June 16, 2023 - 07:37

48

4.3 Numerical Implementation 49

Figure 4.5: Image of a hand-
written digit, labeled as “four.”
This image was especially diffi-
cult to classify for the neural net-
works we trained.

rectly classified the image. This number increased slightly to two out of
ten for the networks with a 16-neuron hidden layer, while networks with
25 neurons in the hidden layer performed much better: eight out of ten
correctly classified the image as “four”.

Figure 4.6 shows the FIM eigenvalues spectra of all 30 networks when
this hard-to-classify input is used. We can see that, in addition to spread-
ing out the eigenvalue distribution, the FIM eigenvalues are larger for net-
works without hidden layers, which for the most part classify the input
incorrectly, and smaller for networks with one 25-neuron hidden layer,
most of which are successful in classifying the image.

Figure 4.6: The largest eigenvalues of the FIM of 30 trained models when the
hard-to-classify number “four” is used as the input. Only one out of ten net-
works without hidden layers classified the input correctly, while eight out of ten
networks with 25 hidden neurons did.

Version of June 16, 2023– Created June 16, 2023 - 07:37

49

4.4 Directions for Future Work 50

4.4 Directions for Future Work

In the previous section, we only reported some preliminary results, but
they clearly show the presence of a hierarchy of parameter combinations
in neural network models. For any one input, a handful of parameter
combinations account for most of the model’s behavior. In light of this
observation, several questions arise. First of all, while neural networks are
sloppy models when a single input is considered, can they still be said to
be sloppy in their performance on an ensemble of inputs? In other words,
could some parameter combinations that were unimportant for classifying
the handwritten “seven” and “four” we used as our inputs actually be
crucial for classifying a different digit? It would be interesting to study
whether neural networks’ sloppy model behavior depends on the input
we use, and what the eigenvalue spectra look like when more than one
input is considered.

Another question concerns optimization: if relatively few parameter
combinations account for most of the model’s behavior, is it possible to
isolate the relevant parameter combinations and construct a simpler sta-
tistical model, with far fewer free parameters than the full network, but
performing about as well? Reducing the number of free parameters could
help avoid overfitting, and potentially improve the network’s performance
on unseen inputs.

Finally, could studying the FIM’s eigenvectors provide a way to bet-
ter understand the inner workings of a trained network? The eigenvectors
that correspond to the largest eigenvalues are the combinations of parame-
ters that have the largest effect on the network’s behavior. We can imagine
that, since they have the most noticeable effect, they are capturing the most
important features of the training dataset: is this true? Can we find a way
to identify these features? Perhaps, the neural network is extracting fea-
tures we can intuitively understand – e.g. one large eigenvalue could be
interpreted as identifying the typical round shape of a handwritten “zero”
in the input image – or they may not easily line up with our intuition of
what it takes to identify a handwritten digit. Either possibility, in its way,
would be an interesting finding.

We leave the exploration of these promising questions to future work.

Version of June 16, 2023– Created June 16, 2023 - 07:37

50

Appendix A
The Meijer G-Functions

Meijer G-functions are very general and extremely well-studied special
functions. Given parameters m, n, p, q, a = (a1, . . . , ap), b = (b1, . . . , bq)
and complex argument x, Meijer G-functions are defined as line integrals
in the complex plane:

Gm,n
p,q

(
x
∣∣∣ a

b

)
=

1
2πi

∫
C

ds xs ∏m
j=1 Γ(bj − s)∏n

k=1 Γ(1 − ak + s)

∏
p
k=n+1 Γ(ak − s)∏

q
j=m+1 Γ(1 − bj + s)

,

(A.1)
where C is the Mellin-Barnes contour, shown in Fig. A.1.

Figure A.1: The Mellin-Barnes contour in the complex plane for G1,1
1,1

(
x
∣∣∣ 4

1/2

)
.

The green dots represent the poles of Γ(1
2 − s), while the red dots are

the poles of Γ(1 − 4 + s). The Mellin-Barnes contour C is represented
by the solid black line and goes from −i∞ to +i∞. Source: Weisstein,
Eric W. ”Meijer G-Function.” From MathWorld–A Wolfram Web Resource.
https://mathworld.wolfram.com/MeijerG-Function.html.

Version of June 16, 2023– Created June 16, 2023 - 07:37

51

52

Meijer G-functions reduce to other known functions for certain choices
of the parameters. For example:

G1,2
2,2

(
x
∣∣∣ 1, 1

1, 0

)
= log(1 + x) , (A.2a)

G1,2
2,2

(
x
∣∣∣ 1, 1

1, 1

)
=

x
1 + x

, (A.2b)

G1,0
0,2

(x
2

∣∣∣ −
0, 1

2

)
=

cos
(√

2x
)

√
π

, (A.2c)

G1,0
0,2

(x2

4

∣∣∣ −
ν
2 ,− ν

2

)
= Jν(x) , (A.2d)

where Jν(x) is a Bessel function.
There are plenty of known identities involving Meijer G-functions (see

section 5 of [4]). A few examples are:

Gm,n
p,q

(
x
∣∣∣ a

b

)
= Gm,n

p,q

(1
x

∣∣∣ 1 − a
1 − b

)
, (A.3a)

xρ Gm,n
p,q

(
x
∣∣∣ a

b

)
= Gm,n

p,q

(
x
∣∣∣ ρ + a

ρ + b

)
, (A.3b)

Gm,n
p,q

(
x
∣∣∣ α, a

b, α

)
= Gm,n−1

p−1,q−1

(
x
∣∣∣ a

b

)
, (A.3c)

zh dh

dzh Gm,n
p,q

(
x
∣∣∣ a

b

)
= Gm,n+1

p+1,q+1

(
x
∣∣∣ 0, a

b, h

)
. (A.3d)

Version of June 16, 2023– Created June 16, 2023 - 07:37

52

Bibliography

[1] S. Amari and H. Nagaoka. Methods of Information Geometry. Transla-
tions of mathematical monographs. American Mathematical Society,
2000.

[2] A. C. C. Coolen. Statistical mechanics of neural networks. lecture
notes, king’s college london., 1997.

[3] A. Engel and C. van den Broeck. Statistical Mechanics of Learning.
Cambridge University Press, 2001.

[4] B. Hanin and A. Zlokapa. Bayesian interpolation with deep linear
networks, 2022.

[5] R. Karakida, S. Akaho, and S. Amari. Universal statistics of fisher
information in deep neural networks: mean field approach. Journal of
Statistical Mechanics: Theory and Experiment, 2020, 2018.

[6] R. Karakida, S. Akaho, and S. Amari. Pathological spectra of the
fisher information metric and its variants in deep neural networks.
Neural Computation, 33:2274–2307, 2019.

[7] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[8] Q. Li and H. Sompolinsky. Statistical mechanics of deep linear neu-
ral networks: The backpropagating kernel renormalization. Physical
Review X, 11(3), Sep 2021.

[9] B. Machta, R. Chachra, M. Transtrum, and J. Sethna. Parameter space
compression underlies emergent theories and predictive models. Sci-
ence, 342(6158):604–607, Nov 2013.

Version of June 16, 2023– Created June 16, 2023 - 07:37

53

BIBLIOGRAPHY 54

[10] P. Mehta, M. Bukov, C. Wang, A. Day, C. Richardson, C. Fisher, and
D. Schwab. A high-bias, low-variance introduction to machine learn-
ing for physicists. Physics Reports, 810:1–124, May 2019.

[11] A. Raju, B. Machta, and J. Sethna. Information loss under coarse-
graining: A geometric approach. Physical Review E, 98(5), Nov 2018.

[12] M. Transtrum, B. Machta, K. Brown, B. Daniels, C. Myers, and
J. Sethna. Perspective: Sloppiness and emergent theories in physics,
biology, and beyond. The Journal of Chemical Physics, 143(1), 07 2015.
010901.

[13] M. Transtrum, B. Machta, and J. Sethna. Geometry of nonlinear least
squares with applications to sloppy models and optimization. Phys.
Rev. E, 83:036701, Mar 2011.

[14] J. Zavatone-Veth and C. Pehlevan. Exact marginal prior distributions
of finite bayesian neural networks. In M. Ranzato, A. Beygelzimer,
Y Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34, pages 3364–3375.
Curran Associates, Inc., 2021.

Version of June 16, 2023– Created June 16, 2023 - 07:37

54

	Introduction
	A Physicist's Introduction to Neural Networks
	Concepts in Machine Learning
	Fitting and predicting
	Gradient descent
	Regularizers
	Bayesian inference

	Feed-Forward Neural Networks
	Basics of FFNNs
	Activation functions
	Training neural networks

	Recent Developments: Deep Linear Neural Networks
	Back-Propagating Kernel Renormalization
	Setting the scene
	Integrating over the final layer of weights
	Integrating over the next layer of weights
	Iterative integration of the remaining weights
	Results and thoughts on the BPKR

	Validity of the BPKR: Exact Calculations
	Introducing the Meijer G-functions
	An exact formula for the partition function
	Recovering the BPKR result
	Comments and conclusions

	The Gaussian Limit
	The Gaussian limit as a saddle-point approximation
	The Gaussian limit through iterative integration

	Fisher Information in Neural Networks
	Fisher Information and Sloppy Models
	Statistical manifolds
	Sloppy models

	Analytical Results
	A classification problem
	Calculations

	Numerical Implementation
	Directions for Future Work

	The Meijer G-Functions

