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Abstract

The developments in Artificial Intelligence have resulted in the emergence of large lan-
guage models such as ChatGPT. The development of such models has led to an increased risk
of fraudulent activities, therefore this research wants to determine the most e↵ective features
for distinguishing between humanly-authored and ChatGPT-generated text within the sci-
entific domain. This research has constructed a text corpus consisting of humanly-authored
and ChatGPT-generated abstracts based on the titles of scientific papers. This research
build three di↵erent XGBoost classifiers, the first based on Doc2Vec vector embeddings, the
second on text-extracted features and the third combining both. The results underscore the
superiority of models incorporating Doc2Vec vector embeddings while reading time emerged
as the most influential feature in accurately predicting whether a text is humanly-authored
or ChatGPT-generated in both the text-extracted feature and the combined model. The
combined model had the best performance in terms of accuracy. Nevertheless, the model
based on Doc2Vec vector embeddings and text-extracted features was still outperformed by
the GPTZero model, emphasizing the necessity for further refinement before its application
in assessing whether a text is humanly-authored or ChatGPT-generated.
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1 Introduction

The advancements in Artificial Intelligence (AI) have led to the emergence of several powerful
models. An example of the implementation of AI in daily life includes the incorporation of
virtual assistants and home robots [Rawassizadeh et al., 2019]. In the paper by Rawassizadeh
[Rawassizadeh et al., 2019], it is stated that both the virtual assistants and home robots share
the characteristics that they both interact with users through conversation and make an e↵ort
to replicate human behavior. Recently, the AI powered models ChatGPT [OpenAI, 2022b] and
DALL-E [OpenAI, 2022a] by OpenAI have garnered significant attention.

DALL-E, for instance, has found applications in domains as art, illustration and tattooing
[OpenAI, 2022a]. The model is utilised to generate visualisations based on textual prompts.
ChatGPT has attracted attention because of its ability to simplify complex problems and gen-
erate novel ideas [Grant, 2023]. The conversational format of ChatGPT enables the model to
respond to follow-up questions, challenge incorrect premises and reject inappropriate requests
[OpenAI, 2022b]. These models show the recent advancements in deep learning that are con-
tributing to the development of intelligent systems with human-like capabilities.

This research focuses on text generation using the ChatGPT model. The goal of this research
is to identify the most e↵ective features to distinguish between texts generated by ChatGPT
in comparison to those authored by humans and to employ these to di↵erentiate between the
two. While the use of ChatGPT appears to be promising, it also poses an additional threat
of fraudulent activities. Educational institutions have expressed their concerns regarding the
use of ChatGPT by students and assessing their work [Mhlanga, 2023]. The concerns regarding
fraudulent activities have already led to the development of models which are able to distinguish
between humanly-authored and AI-generated text.

For instance, GPTZero [Tian, 2023] employs a logistic regression algorithm with perplexity
and burstiness to assess whether a text is humanly-authored or AI-generated. In contrast, the
GLTR algorithm, found by Gehrmann et al. [Gehrmann et al., 2019], utilises statistical baseline
methods to distinguish between the two. OpenAI [Kirchner et al., 2023] has also introduced its
own algorithm, based on a neural network, for identifying humanly-authored and AI-generated
texts. This research intends to extract features from both humanly-authored and ChatGPT-
generated texts to develop an XGBoost classifier. The classifier will be analysed using SHapley
Additive exPlanations (SHAP) [Lundberg and Lee, 2017] to identify the most important features
in distinguishing between humanly-authored and ChatGPT-generated texts.

As has been stated above, the arrival of ChatGPT concerns educational institutions [Mh-
langa, 2023] as it poses an increased risk of fraudulent activities. In light of this concern, this
research wants to identify the most e↵ective features to distinguish between humanly-authored
and ChatGPT-generated texts in the scientific domain. The existing approaches mentioned
above rely on features, statistics or a neural network. This research aims to expand research
on the di↵erences in characteristics of AI-generated and humanly-authored text by constructing
an XGBoost classifier that incorporates text-extracted features and advanced machine learning
techniques by utilising Doc2Vec. Specifically, this research aims to determine the characteris-
tics that distinguish ChatGPT-generated text from humanly-authored text. To determine the
most important characteristics, this research will evaluate the classifier using SHAP [Lundberg
and Lee, 2017]. By implementing this approach, this research aims to answer the following
research question: What features are most e↵ective in distinguishing ChatGPT-generated and
humanly-authored texts in the scientific domain?

This research is organised into several sections. First, a section on related literature which
provides insight into how ChatGPT is trained, a concise overview of existing models to dis-
tinguish between humanly-authored and AI-generated text and features that can be used to
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di↵erentiate. In the third section, the methods, it is described how the data is obtained and the
classification method is discussed. The fourth section discusses the exploration of the data, the
di↵erences between the humanly-authored text corpus and the ChatGPT-generated corpus and
the classification results. The fifth and final section, the discussion, provides an analysis of the
results, provides a discussion on further research and the limitations of this research.

2 Related Literature

This section outlines an analysis of the research that has been conducted to distinguish between
humanly-authored and AI-generated text. The goal of this section is to define characteristics and
features that can be extracted from texts to di↵erentiate between the two. First, the training
process and limitations of the ChatGPT model are discussed [OpenAI, 2022b], highlighting the
challenges and limitations of this model in generating text.

In the second subsection, an overview of existing AI-generated text classifiers and their un-
derlying principles and techniques are discussed. This subsection explores the di↵erent ap-
proaches and algorithms used by these classifiers to di↵erentiate between humanly-authored and
AI-generated text.

The third subsection, which discusses features to distinguish humanly-authored and ChatGPT-
generated text, is further broken down into subsections. The first subsection describes di↵erent
approaches to pre-process text before extracting features. The next subsection discusses the
di↵erent vector representations which can be used to represent text and its characteristics to
accurately di↵erentiate between humanly-authored and AI-generated text. In the subsequent
subsections, di↵erent features regarding text informativeness, text readability and text charac-
teristics are discussed to distinguish between humanly-authored and ChatGPT-generated text.

2.1 The ChatGPT model

The ChatGPT model developed by OpenAI has been trained using reinforcement learning from
human feedback [OpenAI, 2022b]. The training data consisted out of two parts. Firstly, the
data used to train the predecessor of ChatGPT, InstructGPT, was converted into a dialogue
format. Next to that, human conversations were added to the training data. OpenAI made
use of so-called ”AI trainers” which played both the user, the one who asked the question, and
the AI assistant. The trainers used model-written suggestions to formulate their response. To
enable reinforcement learning, a comparison dataset was created which consisted of two or more
model-generated responses. Model responses were re-sampled after which AI-trainers ranked the
responses, these rankings were used to fine-tune the model.

While the utilisation of ChatGPT appears to be promising, its reliability is hindered by certain
inadequacies as reported by OpenAI [OpenAI, 2022b]. ChatGPT occasionally provides incorrect
or nonsensical answers. This is di�cult to improve as this is a consequence of the limitations
of the training data. An adoption to this problem could be to make ChatGPT more cautious
to answer questions, however, this would make the model also decline to answer a question to
which it does know the answer. Moreover, ChatGPT’s capability to answer a question accurately
can be impacted by its formulation, the model’s current inability to ask for clarification on a
question represents a significant limitation. Furthermore, reusing certain sentences and writing
long-winded sentences is considered one of the models shortcomings. The ”AI trainers” preferred
longer extensive answers which caused for bias in the training data. Despite e↵orts from OpenAI
to make the model decline improper requests, ChatGPT may still respond to detrimental prompts
or display biased behavior.
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2.2 Existing AI-generated text classification models

The first model introduced in the introduction to detect whether text is AI-generated or humanly-
authored is called GPTZero [Tian, 2022]. This model is trained using a corpus of humanly-
authored and AI-generated texts. The initial version of the model relied on linear regression,
but it has since been updated to logistic regression [Tian, 2023]. The updated model utilises
the same variables and inputs, but it provides a more nuanced classification. The model utilises
perplexity, burstiness, and other variables in a simple calculation to determine the probability
of the text being generated by AI [Tian, 2023]. Perplexity measures the degree of familiarity of
the text to a Large Language Model (LLM), whereas burstiness is a measure of variation in the
text.

GPTZero returns a document-level score, this indicates the probability of a document being
AI-generated. GPTZero [Tian, 2022] recommends to use a threshold of 0.65 or higher to de-
termine whether a document is AI-generated. The algorithm considers documents with scores
above this threshold as AI-generated. Furthermore, sentence based classification should only be
used to indicate which parts of a document classified as AI-generated could be generated. It is
not advisable to rely on sentence classification to decide whether a document is partially gener-
ated as it may not provide accurate results. Testing the model, GPTZero managed to correctly
classify 99% of the humanly-authored texts and 85% of the AI-generated texts. Notably, it has
been observed that the performance of the GPTZero model improves when the size of the input
text increases or the input closely resembles text from the training data.

GPTZero [Tian, 2022] also provides insight into the limitations of the current model. As AI
is developing, AI-generated content is constantly changing. Therefore, GPTZero also wants to
create awareness that the classification of GPTZero should only be a small part on assessing a
students work.

The second algorithm, with the aim of detecting AI-generated text is developed by Gehrmann
et al. [Gehrmann et al., 2019]. The authors emphasized the importance of the classification
method being accurate, explainable to non-experts and easy to set up. The GLTR model is based
on the foundation that text generators tend to use a limited subset of the natural language with a
high probability of usage. Gehrmann et al. [Gehrmann et al., 2019] use color-coded visualisations
to show the likelihood of the occurrence of a word. Words that are highly probable, like ”in”,
”and” or ”example”, are colored green. Less likely words are colored yellow and the least likely
words are colored red and purple respectively. In their experiments, Gehrmann et al. [Gehrmann
et al., 2019] found that humans tend to use words that are colored purple more often than AI-text
generators.

Furthermore, Gehrmann et al. [Gehrmann et al., 2019] conducted an experiment that showed
that humans were able to di↵erentiate between AI-generated and humanly-authored text in 54%
of the cases. The GLTR algorithm proposed by their research was able to achieve an accuracy of
over 72% without any prior training. As the authors assume that AI-generated text stems from
biased sampling techniques to produce fluent output, the research performs three di↵erent tests.

• The likeliness of the occurrence of a word.

• Where the word ranks as compared to other words.

• How predictable the next word is based on its context.

The first two tests are used to determine whether a word is sampled from the top of the dis-
tribution. The last test establishes whether the previous context is well-known to the detection
system, this is used to establish what word occurs next.
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The third classifier mentioned in the introduction was developed by OpenAI. OpenAI has
developed a classifier using a neural network trained on a dataset comprising both humanly-
authored and AI-generated texts on the same subject [Kirchner et al., 2023]. The dataset was
generated in two di↵erent ways. The first method involved truncating text at 1,000 tokens, after
which language models generated a completion of the truncated text. This completion was then
paired with the original continuation. The second method used human answers to prompts which
were used to train the predecessor of ChatGPT, InstructGPT. The prompts were submitted to
language models trained by OpenAI, as well as models trained by other organisations and then
paired to the human answers. The resulting dataset included texts generated by 34 di↵erent
language models.

The OpenAI classifier [Kirchner et al., 2023] uses the input text and yields whether the
text is ”very unlikely”, ”unlikely”, ”unclear if it is”, ”possibly” or ”likely AI-generated”. As
noted by the authors, it remains challenging to accurately detect AI-generated text. Therefore,
as was the case with GPTZero, the threshold is adjusted to keep the false positive rate low.
This results in only classifying text as AI-generated if the classifier is confident. The OpenAI
classifier demonstrated a 26% success rate in correctly identifying AI-generated texts as ”likely
AI-generated”. In 9% of the cases, the classifier incorrectly classified humanly-authored texts as
”likely AI-generated”.

OpenAI considers the model to be unreliable when the input text is below 1,000 characters
[Kirchner et al., 2023]. This is similar to the classifier of GPTZero [Tian, 2022], where it was also
found that when the input text was larger, the accuracy of the classifier increased. Additionally,
it is recommended to solely use the classifier on English texts since this was the language of the
training data. The authors noted that the performance of the classifier deteriorated considerably
when applied to texts in other languages. Furthermore, the authors cautioned that whenever an
AI-generated text is altered, it can evade being detected as AI-generated. Moreover, the authors
acknowledged the limitations of using a neural network to train a classifier of AI-generated and
humanly-authored text. If the input text deviates from the training data, the classifier can
occasionally demonstrate high confidence in an incorrect prediction, resulting in ”very unlikely”
or ”likely AI-generated” classifications.

2.3 Features

2.3.1 Pre-proccesing of text

In the article authored by Gharehchopogh and Khalifelu [Gharehchopogh and Khalifelu, 2011]
textual data is characterised as: ”unstructured, amorphous, and complicated to deal with”.
Therefore, text should be pre-processed to have it in a usable format. Avinash and Sivasankar
[Avinash and Sivasankar, 2019] pre-processed the data in their study by removing stop words
and performing tokenisation. Tokenisation is used to break a text into meaningful data while
retaining the information about the text. As stop words do not posses meaningful information
about a text, Avinash and Sivasankar therefore remove stop words from a text.

These pre-processing techniques are also discussed in the paper by Hickman et al. [Hickman
et al., 2022]. This research outlines di↵erent text pre-processing techniques. In their paper,
Hickman et al. provide recommendations for pre-processing textual data, it is however noted
that specific cases may require a di↵erent approach.

According to the research of Hickman et al. [Hickman et al., 2022], all text should be converted
to lowercase. This should be done because this decreases the dimensionality of the text while
maintaining semantic information. Lowercase conversion decreases dimensionality because ”dog”
and ”Dog” are now represented in the same way, namely ”dog”.
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In addition to lowercase conversion, Hickman et al. [Hickman et al., 2022] suggest that nega-
tion handling should also be implemented in the pre-processing process of textual data. Despite
increasing the dimensionality of the data, this technique is crucial for a better understanding of
the semantic information in a text. In their paper, an example is given of separately tokenising
”not” and ”honest” or tokenising them as one, ”not honest”. Separately tokenising the words
gives the sentence a di↵erent meaning as opposed to tokenising them as one.

Hickman et al. [Hickman et al., 2022] also discuss the importance of spelling correction, ad-
dressing the use of abbreviations and punctuation. They state: ”Unless idiosyncratic language
di↵erences, such as spelling errors, abbreviations, and use of punctuation, are useful for the re-
search question at hand, researchers should make these corrections to standardize the language”.

In case of a small corpus, it is argued that stemming or lemmatisation should be used [Hick-
man et al., 2022]. Stemming is a process that reduces the vocabulary of a corpus by ”removing
morphological a�xes from words, leaving only the word stem” [Bird et al., 2009]. As an example
Hickman et al. [Hickman et al., 2022] show that using the Porter stemmer [Porter, 1980], or-
gan, organs, organic, organism, organize and organization would all be stemmed to organ while
organizational would be stemmed to organiz.

A lemmatiser is another technique that reduces the vocabulary of a corpus by using morpho-
logical information to get the base form of a word [Schütze et al., 2008]. The Natural Language
Toolkit Wordnet Lemmatiser [Bird et al., 2009] would lemmatise organized and organize to
organize while organization and organizations would be transformed to organization.

Hickman et al. [Hickman et al., 2022], argue that lemmatisation is preferable to stemming
as it reduces the likelihood of distinct words being conflated, thus enhancing the validity of the
analysis. Furthermore, lemmatised words remain recognisable, thus keeping their meaning and
therefore being more interpretable than stems.

2.3.2 Vector embeddings

In their research, Gharehchopogh and Khalifelu [Gharehchopogh and Khalifelu, 2011] state that
text is an unstructured form of data. This poses a challenge when using machine learning tech-
niques, which typically require fixed-length feature vectors. To address this challenge, researchers
have explored di↵erent techniques for feature extraction. In the study by Avinash and Sivasankar
[Avinash and Sivasankar, 2019], the Term Frequency-Inverse Document Frequency (TF-IDF) and
Doc2Vec (known as the paragraph vector [Le and Mikolov, 2014]) techniques are used to discern
the polarity of textual data. In their paper it is discussed that whenever patterns in the texts
show resemblance, discriminating between classes becomes a challenging task.

In the paper of Avinash and Sivasankar [Avinash and Sivasankar, 2019], the TF-IDF and
Doc2Vec document representations are employed to extract features from textual data. However,
there are more methods available, Basarkar [Basarkar, 2017] for instance mentions the use of the
TF-IDF vectoriser but also discusses the use of the Binary and Count vectoriser. Kim et al. [Kim
et al., 2019] proposed another method while comparing document classification methods using
di↵erent document representations. In their research TF-IDF, Doc2Vec and Latent Dirichlet
Allocation (LDA) are used.

The Binary, Count and TF-IDF vectorisation all are based on the Bag-Of-Words (BOW)
approach [Harris, 1954]. These models are popular because of its simplicity and often good
performance. Binary vectorisation [Basarkar, 2017] is a text representation technique that uses
binary values to encode a text document. The document vector is representative of the number
of unique words in the text corpus, referred to as the vocabulary. A binary encoding assigns a
value of 1 to a word that exists in a document and 0 to a word that is absent. A variation on this
approach is the use of Count vectorisation [Basarkar, 2017]. This technique uses the frequency
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of each word to represent a document. Words appearing twice in the document will have value
2, followed by 1 for words that appear once and 0 for words that do not appear in the document.
Count vectorisation captures more detail than Binary vectorisation as it considers the frequency
of each word, allowing for identification of important words in a document.

One limitation of the Count vectoriser is that it does not take into account how rare or
common a word is within the corpus of documents [Basarkar, 2017]. To overcome this limitation,
an alternative approach called Term Frequency-Inverse Document Frequency (TF-IDF) [Jurafsky
and Martin, 2023] has been suggested. The technique assigns a weight to each word in a document
based on its frequency and importance in the corpus of documents, with the aim of capturing
the informative power of less frequent words.

The intuition behind this approach is that the most frequent terms are not informative
[Jurafsky and Martin, 2023]. A document that contains word t 10 times is not 10 times more
relevant than a document that only contains word t once. To take this into account the Log
Term Frequency can be used as opposed to the regular Term Frequency. Using this approach,
when there are two documents, A and B, where document A only contains word t once and
document B contains word t twice, document B is regarded as more relevant. However, when
word t occurs one million times in document A and two million times in document B, both are
regarded to be highly relevant. In this case B is not considered to be much more relevant than
document A. The Log Term Frequency is calculated as:

TFt,d = log10(tct,d + 1)

• tct,d: The term count of term t in document d

The second factor in the TF-IDF score, the IDF, is used to assign a higher weight to terms
that are present in a limited number of documents [Jurafsky and Martin, 2023]. This is because
such terms are considered to have high discriminatory power and are more informative than
words which occur frequently across the entire corpus of documents. The Inverse Document
Frequency is calculated by:

IDFt = log10
N

dft

• dft: The document frequency, this is the number of documents that contain the word t.

• N : The total number of documents in the collection.

The TF-IDF score for a specific term t in document d is computed as TFt,d ⇤ IDFt.
In the paper by Blei et al. [Blei et al., 2003] it is stated that the TF-IDF approach reveals

little in the way of inter- or intradocument statistical structure. According to the research by Blei
et al., several approaches have been introduced to address these shortcomings. Latent Semantic
Indexing (LSI) [Deerwester et al., 1990] is the foremost approach according to Blei et al.. LSI
works on the following principle: ”LSI uses a singular value decomposition of the X matrix to
identify a linear subspace in the space of TF-IDF features that captures most of the variance in
the collection” [Blei et al., 2003]. Nonetheless, LSI still follows the BOW approach. Therefore, in
order to generate exchangeable representations for both words and documents, mixture models
should be considered to capture the ex-changeability of both words and documents. This has
lead to the development of the Latent Dirichlet Allocation (LDA) by Blei et al. [Blei et al.,
2003].
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LDA is a generative probabilistic model of a corpus [Blei et al., 2003]. Blei et al. describe the
intuition as: ”The basic idea is that documents are represented as random mixtures over latent
topics, where each topic is characterized by a distribution over words”. For each document d in
a text corpus D, LDA assumes the following generative process:

• Choose N ⇠ Poisson(⇣).

• Choose ✓ ⇠ Dir(↵).

• For each of the N words dn:

– Choose a topic zn ⇠ Multinomial(✓)

– Choose a word wn from p(dn|zn,�), a multinomial probability conditioned on the
topic zn.

Using LDA, the algorithm iteratively updates the topic assignments considering the words in
the document and the distribution of topics in the entire corpus [Blei et al., 2003]. LDA produces
a set of probability distributions over topics for each corpus document and a set of probability
distributions over words for each topic. These will help to identify the most probable topic for
each document and the most probable words for each topic. As a result, the most probable words
for each topic can be used as a document representation method for a classification task.

As is already stated by Blei et al. [Blei et al., 2003], the TF-IDF approach has certain
shortcomings. This is also highlighted by Le and Mikolov [Le and Mikolov, 2014]. In their paper
several limitations of the BOW approach are emphasized. The use of Binary vectorisation,
Count vectorisation, TF-IDF vectorisation or LDA, models based on the BOW approach, the
word order is ignored. Consequently, sentences containing identical words may be assigned the
same representation despite carrying di↵erent meaning. Models using the BOW approach lack a
semantic understanding of the words, which leads to a sub-optimal performance. Le and Mikolov
[Le and Mikolov, 2014] state that models using the BOW approach treat words as ”powerful”,
”strong” and ”Paris” equally while semantically, ”powerful” should be closer to ”strong” than
to ”Paris” since they have a similar meaning.

In their paper, Le and Mikolov [Le and Mikolov, 2014] introduce the concept of the Paragraph
vector used in the research by Avinash and Sivasankar [Avinash and Sivasankar, 2019] and Kim
et al. [Kim et al., 2019]. This model learns continuous distributed vector representations for
di↵erent pieces of text. The model’s framework for learning paragraph vectors mirrors the
approach employed in learning word vectors (Word2Vec) [Le and Mikolov, 2014]. Word vectors
are build while constructing a neural network to predict a word given its contextual words. After
the training converges, words that share similar meaning are positioned closely together within
the vector space. ”strong” and ”powerful” would thus be close to each other while ”Paris” would
be more distant.

The same construct is adapted in the context of the Paragraph Vector Model [Le and Mikolov,
2014], wherein the subsequent word is predicted based on contexts sampled from the paragraph.
These contexts are sampled using a sliding window of a predetermined length over the paragraph.
As apposed to Word2Vec, where a single vector representation is learned for each word, Doc2Vec
learns two vectors for each document, a document vector (known as the Paragraph Vector) and
a set of word vectors. Just as was the case with the representation of similar words in the vector
space, similar documents can now also be positioned closely together within the vector space.
Moreover, the paragraph vectors constructed can be used as features in machine learning models.
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This research has decided to use Doc2Vec as this method has the ability to capture the
semantic meaning of a text and is therefore able to capture more detail than the other methods
mentioned above. The ability of Doc2Vec to capture the semantic meaning allows to compare
the content of the di↵erent abstracts. As each paper title has one humanly-authored and one
ChatGPT-generated abstract, it will be interesting to see whether the vector representations of
these abstracts, and thus it contents, are most similar.

2.3.3 Text informativeness

Jiang and Srinivasan [Jiang and Srinivasan, 2023] propose three features to quantify the con-
textual awareness of a text. The first measure, the boilerplate evaluates the informativeness of
a text. The boilerplate refers to the words in a sentence that can be removed without altering
its meaning. The degree of informativeness is given by the boiler score which is determined
by comparing the number of sentences containing boilerplate language to the total number of
words in the text. The higher the score, the lower the informativeness of a given text. This is
mathematically defined as:

Boilerplate =
Ws

Wd

• Ws: The word count of the sentence that has a boilerplate.

• Wd: The word count of the whole document.

Next to the boilerplate score, the informativeness of a text can also be evaluated using the
redundancy as proposed by Jiang and Srinivasan [Jiang and Srinivasan, 2023]. Redundancy is
a prevalent issue in text generation. In the paper by Lloret and Palomar [Lloret and Palomar,
2013], it is argued that an e↵ective summarisation technique strives to combine the central
themes of a piece of text while maintaining completeness, readability and conciseness. However,
redundancy poses a well-established challenge to text summarisation as it introduces noise and
undermines the quality of the resulting summary when information is duplicated.

Therefore, the measure of redundancy, as proposed by Jiang and Srinivasa [Jiang and Srini-
vasan, 2023], reflects the usefulness of a text. This can be quantified by calculating the proportion
of large sentences that appear more than once in a text. To determine the redundancy, Jiang
and Srinivasan [Jiang and Srinivasan, 2023] make use of n-grams. N -grams can be defined as
”consecutive sequences of n characters)” [Damashek, 1995]. When specific n-grams are repeat-
edly used in a text, the resulting duplicate information is non-useful. Similar to the boiler score,
higher redundancy scores indicate lower informativeness of the text.

Third, Jiang and Srinivasan [Jiang and Srinivasan, 2023] propose to measure the specificity
of a text. This measures how much a text relates to a specific subject. It is described as the
number of specific entity names, numerical values and time or date specifications scaled by the
overall word count of a text. To determine the entities in a text, Jiang and Srinivasan make use
of the Natural Language Processing Python Package spaCy [Honnibal et al., 2020].
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Measure Meaning Scale
Boilerplate The informativeness of a piece of text. Measured as the

ratio of sentences that contain words that can be left out
without altering the meaning of the sentence, relative to
the total word count of a text.

0% (Not informa-
tive) - 100% (Very
informative)

Redundancy A measure of usefulness of text, defined by the n-grams
that occur more than once.

0% (Not informa-
tive) - 100% (Very
informative)

Specificity How much a text relates to a specific subject, defined as
the number of specific entity names, numerical values and
time or date specifications scaled by the overall word count
of a text

0% (Not informa-
tive) - 100% (Very
informative)

Table 1: Measures on informativeness.

To quantify the informativeness of a text, this research uses the boilerplate, redundancy and
specificity measure proposed by Jiang and Srinivasan [Jiang and Srinivasan, 2023].

2.3.4 Text readability

In recent years the application of neural networks to summarise text has gained increasing at-
tention. One of the main problems concerning such generated texts, was its readability [Zhuang
and Zhang, 2019]. Di↵erent metrics, based on di↵erent foundations as syllables, polysyllables,
word length and lists of similar words, are available to determine the readability of a text.

The Flesch Reading Ease Test [Flesch, 1979], Flesch Kincaid Reading Ease Test [Kincaid
et al., 1975] and Linsear Write approach [O’hayre, 1966] are readability measures based on the
number of words, sentences and syllables. Flesch [Flesch, 1979] asserted that mastering the use
of a readability formula is a fundamental skill for writing English text that is comprehensible to
the target audience. A high score indicates that a text is easily understandable while a low score
indicates that the content of a text is complex.

Flesch Reading Ease Score = 206.835� 1.015 ⇤ #words

#sentences
� 84.6 ⇤ #syllables

#words
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A variation to this approach is the Flesch-Kincaid grade level test [Kincaid et al., 1975].
This alternative to the Flesch Reading Ease Test is designed to assess the readability of a text
within the context of the US education system. The resulting score is a grade level indicating the
number of years of education required to comprehend a text. A high score on the Flesch-Kincaid
Readability Test thus indicates a di�cult text.

Flesch Kincaid Grade Level = 0.39 ⇤ #words

#sentences
+ 11.8 ⇤ #syllables

#words
� 15.59

The Linsear Write [O’hayre, 1966] readability metric was found specifically for assessing the
readability of technical manuals. Based on a 100 word sample of a text, the Linsear Write formula
evaluates the readability based on sentence length and the number of ”easy” and ”hard” words.
A word is seen as ”easy” whenever the word consists out of less than three syllables. A word is
seen as ”hard” if it consists out of three or more syllables. For each word in the sample, it is
determined whether it is ”easy” or ”hard”, ”easy” words are assigned a value of 1, while ”hard”
words are assigned a value of 3. The Linsear Write Score is then calculated as:

1. The starting score of the text sample is 0.

2. For each ”easy” word in the text, add 1 point to the score.

3. For each ”hard” word in the text, add 3 points to the score.

4. Divide the score by the number of sentences in the sample.

• If the score is bigger than 20, the Linsear Write Score is equal to the score divided by
2.

• If the score is smaller or equal to 20, the Linsear Write Score is equal to the score.

A comparable, but slightly di↵erent approach for assessing readability is the use of the number
of words, sentences and polysyllables, words with three or more syllables. These metrics are the
foundation for the Gunning Fog Index [Robert, 1952] and the Simple Measure of Gobbledygook
(SMOG) grade [Mc Laughlin, 1969]. The Gunning Fog Index [Robert, 1952] has been used to
determine the grade level required to comprehend a text. The Gunning Fog Index is calculated
by taking a sample of approximately 100 words of the input text. The average number of words
per sentence is determined by calculating the ratio between the number of words and sentences
in the selected sample. The number of di�cult words, or polysyllables, is then specified as the
words consisting out of three or more syllables that are not proper names, combinations of easy
words or verbs that are prolonged because of su�xes.

Gunning Fog Index = 0.4 ⇤ ( #words

#sentences
+ 100 ⇤ #polysyllables

#words
)

A comparable approach, the SMOG [Mc Laughlin, 1969], estimates the years of education
needed to understand a text. The intuition behind the SMOG grade is that longer words are
more di�cult to read and understand. The formula uses ten sentences at the beginning of a
text, ten in the middle and ten sentences at the end of a text. With a total sample size of 30
sentences, the SMOG grade is an ill advised metric for texts consisting of less than 30 sentences.
Needless to say, the higher the estimate of the years of education needed to understand a text,
the more di�cult a text is to comprehend.

SMOG grade = 1.043 ⇤
r
#polysyllables ⇤ 30

#sentences
+ 3.1291
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Instead of using syllables to assess the di�culty of a text, other approaches incorporate
the number of characters to determine the readability. This approach is incorporated by the
Automated Readability Index (ARI) [Senter and Smith, 1967], the Coleman Liau Index (CLI)
[Coleman and Liau, 1975] and the McAlpine approach [McAlpine, 2012. Using those linguistic
features, the ARI [Senter and Smith, 1967] gives an indication of the US grade level needed to
comprehend a text. When the ARI score is low, it indicates that the text is simple and easy
to comprehend. Conversely, a high ARI score indicates that the text is complex and di�cult to
understand.

ARI = 4.71 ⇤ #characters

#words
+ 0.5 ⇤ #words

#senctences
� 21.43

A variation to this is approach is the CLI [Coleman and Liau, 1975], the CLI uses the average
numbers of letters and sentences per 100 words. This approach was found because word length
in letters was seen as a better predictor of readability than word length in syllables. A score of
a 6 corresponds to 6th grade in the US schooling system, thus, the higher the score the higher
the level of education that should have been obtained to understand a text.

CLI = 0.0588 ⇤ L� 0.296 ⇤ S � 15.8

• L: Is the average number of letters per 100 words.

• S: Is the average number of sentences per 100 words.

The McAlpine approach [McAlpine, 2012] on the other hand uses the length of a word to
define whether a word is di�cult to understand for a foreigner. Rachel McAlpine proposed the
McAlpine EFLAW readability score to determine the di�culty of a text for non-native English
speakers. Familiar words or mini-words, as McAlpine calls them, are words of a length smaller
or equal to 3 characters. The lower the score, the easier it is to comprehend a text.

McAlpine Readability Score =
#words+#miniwords

#sentences

The Dale Chall Index [Dale and Chall, 1948] and Spache [Spache, 1953] approach, as opposed
to other methods, determine readability based on word similarity. These methods are rooted in
the finding that readers exhibit improved reading comprehension when they encounter familiar
words in a text. Both use a count of ”hard” words to determine the reading di�culty. Therefore,
the methods use a list to categorise words as ”familiar”. If the word is not present in this list, the
word is categorised as ”hard”. In the first version of the Dale Chall formula, the list of ”familiar”
words, consisted of 763 words which was later updated to 3,000 words. The Space approach uses
a list of 769 ”familiar” words for kids up to third grade.

Dale Chall Index = 0.1579 ⇤ (#hardWords

#words
⇤ 100) + 0.0496 ⇤ #words

#sentences

Spache Index = (0.121 ⇤ averageSentenceLength) + (0.082 ⇤ #hardWords

#words
) + 0.659

A di↵erent way of quantifying a texts readability is by looking at the reading time of a text
[Demberg and Keller, 2008]. Demberg and Keller use a constant value of 14.69 milliseconds to
read one character. This indicates that for each extra character in a word, the reading time
increases by approximately 15 milliseconds.

There has also been research on increasing the readability of a text. Kaushik et al. [Kaushik
et al., 2020] have performed a study on the use of grammar checkers in increasing the readability
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of a text. Although, the results show that grammar tools show a significant reduction in error
rates, it does not increase the readability of a text.

The development of tools that can evaluate textual inaccuracies holds great importance in
the domain of NLP research. D. Naber [Naber et al., 2003] has made a significant contribution
to this domain by developing LanguageTool, a tool which can be used for assessing errors in
grammar, punctuation and spelling. The tool, which was developed in 2003 using Python, uses
a rule set to detect errors in English texts. Since its development, volunteer maintainers have
expanded the tool by adding support for multiple languages and di↵erent rule sets.

Measure Meaning Scale
Flesch Read-
ing Ease Test

Readability measure based
on the number of words, sen-
tences and syllables.

1 (Complex text) - 100 (Easily understandable)

Flesch Kin-
caid Reading
Ease Test

Readability measure based
on the number of words, sen-
tences and syllables.

US grade level, indicating the years of education
needed to comprehend a text. A higher score
thus indicating a more complex text.

Linsear Write
Approach

Readability measure based
on the number of words, sen-
tences and syllables.

US grade level, indicating the years of education
needed to comprehend a text. A higher score
thus indicating a more complex text.

Gunning Fog
Index

Readability measure based
on the number of words, sen-
tences and polysyllables.

US grade level, indicating the years of education
needed to comprehend a text. A higher score
thus indicating a more complex text.

SMOG Index Readability measure based
on the number of words, sen-
tences and polysyllables.

Years of education needed to comprehend a text,
a higher score thus indicating a more complex
text.

Automated
Readability
Index (ARI)

Readability measure based
on the number characters,
words and sentences.

US grade level, indicating the years of education
needed to comprehend a text. A higher score
thus indicating a more complex text.

Coleman Liau
Index (CLI)

Readability measure on the
average number of letters
and sentences per 100 words.

US grade level, indicating the years of education
needed to comprehend a text. A higher score
thus indicating a more complex text.

McAlpine
EFLAW

Readability measure based
on word length.

1 (Very easy to comprehend)- 30+ (Very di�cult
to comprehend).

Dale Chall In-
dex

Readability measure based
on word similarity using a
list of 3,000 familiar words.

US grade level, indicating the years of education
needed to comprehend a text. A higher score
thus indicating a more complex text.

Spache Ap-
proach

Readability measure based
on word similarity using a
list of 769 words.

US grade level, indicating the years of education
needed to comprehend a text. A higher score
thus indicating a more complex text.

Reading time Readability measure based
on the time it takes (in sec-
onds) to read text.

Time in seconds, a higher score indicating a
longer reading time and thus a more di�cult
text.

Grammatical
and syntacti-
cal errors

Readability measure based
on the number of grammat-
ical and syntactical errors in
a text.

The number of grammatical and syntactical er-
rors in a text, a higher score thus indicating more
errors and thus a text that is more di�cult to
comprehend.

Table 2: Measures on readability.
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To capture the readability of an abstract this research has opted to use one readability metric
from each group in combination with the reading time and grammatical errors. Regarding the
readability metrics, considering the measures in the first category, this research has decided to
use the Flesch Reading Ease Test as this is the most widely used and well-established formula
[Zamanian and Heydari, 2012]. Regarding the second category, the SMOG index is an ill advised
metric for texts consisting of less than 30 sentences, therefore, as an abstract is a short text,
this research opted to use the Gunning Fog Index. Considering the third category, the research
has chosen to use the ARI readability measure. This approach was chosen as the use of this
method has been validated on technical materials by Smith and Kincaid [Smith and Kincaid,
1970]. Regarding the fourth category, as the Spache approach is developed for assessing the
readability of a text by children up to third grade, the use of the Spache approach is not suitable
to capture the readability of an abstract. Therefore, in this this research, the Dale Chall Index
is used.

2.3.5 Text characteristics

According to Lippi et al. [Lippi et al., 2019], natural languages show remarkable statistical prop-
erties in their word statistics. Zipf’s and Heaps’ law [Zipf, 1999, Heaps, 1978] are two statistical
principles that show these remarkable properties. Both are used to analyse the frequency distri-
bution and vocabulary of a text corpus. The laws have been found to provide valuable insight
into the structure and complexity of natural language. Lippi et al. [Lippi et al., 2019], have
used both laws to evaluate the frequency distribution and vocabulary complexity of the LSTM
and Markov generated texts. Deviations suggest that a generated text is not similar to human
language.

Zipf’s law [Zipf, 1999] describes the relationship between the frequency and rank of words in a
text corpus. According to this law, the most frequent word in a text corpus occurs approximately
twice as often as the second most frequent word, three times as often as the third most frequent
word, and so on. Zipf’s law suggests that the word frequency in a text corpus follows a power-law
distribution where a small number of words occur frequently while others occur rarely.

Heaps’ law [Heaps, 1978] is used to describe the relationship between the size of a text corpus
and its vocabulary. Heaps’ law states that when the size of the corpus increases, the size of the
vocabulary also increases. However, when the corpus becomes bigger and bigger the vocabulary
will increase at a decreasing rate. This thus means that the number of new unseen words in a
new document decreases. Heaps’ law does suggest that language is infinitely complex and always
evolving as it suggests that no matter how big the text corpus is, there will always be new words
to discover.

Both Zipf’s and Heaps’ law [Zipf, 1999, Heaps, 1978], can thus be used to measure the
language complexity of a text. Visualising a text corpus according Heaps’ law can show the rate
at which the vocabulary grows as a function of its size. The growth rate thus is an indicator of
the lexical diversity in a text corpus. The lexical diversity of a text can be assessed using the
TRUNAJOD library released by Palma et al. [Palma et al., 2021].

TRUNAJOD, the library developed by Palma et al. [Palma et al., 2021], provides a function
to capture the complexity of a text. The lexical diversity of a text is assessed by dividing the
unique tokens by the total number of tokens. This ratio is indicative of the extent of repetition
within a text, with a higher ratio indicating a more diverse range of vocabulary.
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Measure Meaning Scale
Lexical diversity The ratio of unique tokens and

the total number of tokens.
0% (Non diverse vocabulary) -
100%(Very diverse vocabulary)

Table 3: Measure on text characteristics.

This research will visualise both the humanly-authored and ChatGPT-generated text corpus
according Zipf’s and Heaps’ Law to give insight into the complexity of both corpora. The
complexity of the text will be used as a feature by leveraging the library developed by Palma et
al. [Palma et al., 2021]. Palma et al. state that lexical diversity is not e↵ective when comparing
texts of di↵erent lengths, however, as abstracts are of a comparable length, lexical diversity is a
useful measure.

3 Methods

This section outlines the approach taken to determine the most e↵ective features in distinguishing
ChatGPT-generated and humanly-authored texts in the scientific domain. To achieve this, a
collection of humanly-authored scientific texts and ChatGPT-generated texts in the scientific
domain is required. In this section, the development of a PubMed [“PubMed”, n.d.] scraper tool
is described. This tool extracts the URL to the article, the PubMed ID, title and abstract.

Using the paper titles extracted by the PubMed scraper, this research uses the OpenAI
API [Brockman et al., 2020] to generate new abstracts. Features will be extracted from both
the humanly-authored and ChatGPT-generated abstracts. The features were based on those
found in the related literature and were selected to capture key text characteristics, such as
sentence structure, vocabulary and informativeness. These extracted features are used to build
an XGBoost classifier. To establish which are the most e↵ective features to determine whether
a text is humanly-authored or ChatGPT-generated the SHapley Additive exPlanations (SHAP)
library will be used [Lundberg and Lee, 2017].

In the first two subsections the step-by-step approach involved in constructing the PubMed
scraper and the generation of abstracts using the ChatGPT API is presented. Third, the ap-
proach to exploring the humanly-authored and ChatGPT-generated text corpora is explained.
Additionally, the classification procedure is elucidated also explaining how the most important
features will be identified.

3.1 PubMed scraper

The PubMed scraper consists out of 3 functions. The first function, check pmids page, of the
scraper takes a URL as input. This URL contains the query used on PubMed and the page
number. If you would search for articles on ”data science” on PubMed, the URL for the first
page would be ”https://pubmed.ncbi.nlm.nih.gov/term=data+science\&page=1”.

The purpose of this function is to return a list of unique PubMed IDs on a given page. To
return this list, the function first extracts the HTML code of the search page using a Python
library called Requests [Reitz, n.d.]. This function returns the HTML code of a search page
which is parsed by the Beautiful Soup library [Richardson, 2007] to extract the unique PubMed
IDs on a page. The function then returns the list of the unique PubMed IDs found on a page.
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The second function, collect pmids is designed to retrieve 12,499 unique PubMed IDs. This
research has opted to scrape 12,499 PubMed IDs due to the possibility that some papers associ-
ated with the PubMed IDs may not adhere to the filtering criteria discussed in Section 3.2. As a
result, to ensure an adequate amount of a data, the substantial number of 12,499 PubMed ID’s
has been selected for scraping.

To scrape the 12,499 PubMed IDs, this function uses a list of URLs, which are used as input
to the check pmids page function. The URLs in the list provided are formatted without a page
number, which is provided by a counter. The concatenation of the URL and the page number
provided by the counter are then passed as input to the check pmids page function. The PubMed
IDs extracted by collect pmids page are appended to a list if they have not been seen before. If
the PubMed IDs are added to the list, the value of the counter is incremented by one to proceed
on to the next page.

PubMed only allows scraping of PubMed IDs for papers up to the first 1,000 pages on a query.
Therefore, if the 1,000th page is reached, the counter is reset to one after which the next URL
in the list of URLs is used in combination with the counter until the 1,000th page is reached.
This way, the unique PubMed IDs extracted by the check pmids page function are added to a
complete list, facilitating the collection of unique PubMed IDs across all the URLS provided to
the collect pmids function.

As PubMed only allows the first 1,000 pages on a query to be scraped, a list of thirteen
URLs in the domain of data science is provided to the collect pmids function. The queries used
in this list are: ”data science”, ”artificial intelligence”, ”statistics”, ”machine learning”, ”data
statistics”, ”probability theory”, ”deep learning”, ”information science”, ”computer science”,
”data mining”, ”data engineering”, ”data visualisation” and ”business intelligence”. The list of
unique PubMed IDs is then saved using the pickle library [Van Rossum, 2020] to enable reloading
it at a later moment.

The third function, collect info, uses the list of unique PubMed IDs to extract the title and
abstract of a scientific paper. The unique PubMed IDs are concatenated to ”https://pubmed.
ncbi.nlm.nih.gov/”. This combination results in a URL to a paper specific page on PubMed.
This page contains the title of a paper and the abstract. The URL is passed to the Requests
library [Reitz, n.d.] to extract the HTML code from a page. Using BeautifulSoup [Richardson,
2007] the HTML code can be parsed.

The extraction of the title and abstract is performed by utilising the HTML ID tag, a unique
identifier assigned to specific elements on a HTML page. This ID tag allows for the identification
and extraction of a specific element from a webpage. Using the HTML div-tag in combination
with ”abstract”, the abstract can be extracted. The title of a paper can be retrieved using
”soup.select(h1.heading-title)”, here the title is retrieved using a text element in a h1 container
with the class ”heading-title”.

3.2 Abstract generation

By using the PubMed scraper, this research has obtained a collection of 12,499 paper titles and
its corresponding abstracts. The paper titles are going to be used as input for ChatGPT in order
to generate new abstracts.

Research by H. Else [Else, 2023] has shown that ChatGPT is capable of writing believable
abstracts. In her research she found that abstracts generated by ChatGPT passed a plagia-
rism check with a median score of 100%. This indicates that none of the abstracts generated
by ChatGPT was considered to contain plagiarism. The abstracts were also posed to an AI
output detector which was able to correctly identify 66% of the generated abstracts. Humans
did not perform better when classifying ChatGPT-generated abstracts and humanly-authored
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abstracts. Humans were able to correctly identify 68% of the generated abstracts as generated
while classifying the other 32% as humanly-authored. Humans did perform better on classify-
ing humanly-authored abstracts, correctly classifying 86% of the humanly-authored abstracts as
humanly-authored and 14% as ChatGPT-generated.

However, prior to generating new abstracts, the existing abstracts are subjected to a filtering
process. This was done in order to ensure that both the ChatGPT-generated and humanly-
authored abstracts were in the same format.

The decision to filter the abstracts was made in order to avoid potential biases that could arise
from variations in abstract length. If the length of the abstracts from humanly-authored text and
ChatGPT-generated text would greatly di↵er, it could serve as an indicator of which abstracts
were humanly-authored or ChatGPT-generated. Filtering the abstracts before generating new
abstracts, papers of which the abstracts did not conform to the preferred format could already
be filtered out, leading to a reduction in the number of abstracts that needed to be generated.

In accordance with the guidelines outlined by Nagda [Nagda, 2013], an informative abstract
should contain approximately 200 words. To ensure that only informative abstracts are used
as input for the classification algorithm, this research uses a 15% margin and only considers
abstracts that have a length of 170 to 230 words.

In addition to the length-based filtering, this research also addresses the language in which
the abstract is written. This research will use abstracts that are all written and generated in
English. Therefore, to exclude abstracts that are not written in English, this research uses
langdetect [Danilak, 2021]. This Python library is used to determine the language in which an
abstract is written. Papers of which the abstract is not written in English are filtered out. By
applying both length and language based filtering, this research aims to create a collection of
humanly-authored and ChatGPT-generated texts in the same format. This leads to a collection
of 3,648 paper titles which can be used for the generation of abstracts by ChatGPT.

The OpenAI API [Brockman et al., 2020] is available for use through a paid API key. The
API can be used in combination with a variety of di↵erent models [OpenAI, n.d.]. The most
recent and advanced version, GPT-4, is currently only available in a limited beta version. Access
to this version is restricted to those who have been granted permission to use it. Therefore, this
research will use the GPT-3.5-turbo model, this is also the version which is currently used by
ChatGPT [OpenAI, 2022b, at least until 16.04.2023 ]. According to OpenAI [OpenAI, n.d.], this
is ”the most capable and cost e↵ective model in the GPT-3.5 family” which is the latest version
that is publicly available.

Using the GPT-3.5-turbo model of the API, abstracts for a list of titles from scientific papers
are generated. To achieve this, the ”openai.ChatCompletion.create” command is used. This
command allows the creation of text based on the message provided to the API. The role is
specified as ”user” and the content of the request is filled using a for loop to create an abstract
for each paper title. This research had posed di↵erent prompts to ChatGPT, this included the
prompts ”write an abstract for a paper on the title: title” and ”write an abstract for a scientific
paper on the title: title”. It was found that the more detail provided in the prompt, the better
ChatGPT was able to generate an abstract in the preferred format. Ultimately the prompt was
formulated as ”write an abstract for a scientific paper of 170 to 230 words on the title: title”.
This prompt was used as the API content where title was equal to a title in the filtered list of
paper titles extracted by the PubMed scraper.

Given that an abstract is a required element in a scientific article and it is specified that
the text should be for a scientific paper, ChatGPT will generate a text using a scientific writing
style. Therefore, the style and tone of the abstracts generated by ChatGPT will be similar to
the style and tone of the humanly-authored abstracts. The generated abstracts are appended to
an empty list which is transformed into a dataframe containing the paper title and its generated
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abstract.
The generation of abstracts has resulted in a collection of 3,648 humanly-authored and

ChatGPT-generated texts which can be used for classification purposes. As the presence of
shorter abstracts may introduce a length bias into the classification process, generated abstracts
were again subjected to filtering. Despite instructing the OpenAI API to generate abstracts rang-
ing between 170 to 230 words, a filter is once again applied to determine whether the generated
abstracts are within this length. Filtering the generated abstracts to be of a length in between
170 and 230 words, this leads to a total of 2,744 of the generated abstracts to be retained. These
filtered generated abstracts’ titles are used to filter the human-authored abstracts, resulting in an
equal number, 2,744 each, of humanly-authored and ChatGPT-generated abstracts. Each title
now has one abstract that is humanly-authored and one abstract that is generated by ChatGPT.

3.3 Data exploration

Zipf’s and Heaps’ law [Zipf, 1999, Heaps, 1978] show the distribution of word frequency in a text
corpus and can be used to provide insight into the complexity of a text corpus. In this research,
both the humanly-authored and ChatGPT-generated corpus will be subjected to Zipf’s and
Heaps’ law. By visualising both corpora, the aim is to identify di↵erences in their distributions.
This will provide insight into how a text corpus containing texts generated by ChatGPT compares
to a text corpus consisting of humanly-authored texts.

Both the humanly-authored and ChatGPT-generated corpus will be analysed using Zipf’s
law [Zipf, 1999]. The text corpora will be visualised in three di↵erent ways. First, a bar chart
depicting the top 20 most commonly occurring words, including stop words, will be constructed.
As stop words do not carry any meaning, these will be neglected for the second visualisation.
The second visualisation will show the word frequency distribution considering the top 20 most
frequent words excluding stop words. Third, a line plot will visualise the frequency distribution
of the whole vocabulary. This plot will show the rank, according to the frequency of occurrence
and its frequency.

Next to that, both corpora will be analysed using Heaps’ law [Heaps, 1978]. To visualise the
corpora, the size of each corpus is increased by adding one token from the text corpus at a time
and the number of unique words at that time will be determined. Doing so, the growth and
richness of the vocabulary in both the humanly-authored and ChatGPT-generated corpus can
be assessed. According to Gehrmann et al. [Gehrmann et al., 2019], text generators use a subset
of the natural language which is used as the foundation for the GLTR algorithm developed by
Gehrmann et al.

In addition to analysing the frequency distribution, the growth and vocabulary richness of
both corpora, the di↵erences in scores on the features will be investigated. For each feature,
the mean, standard deviation and histograms of the scores will be examined for both corpora.
To assess whether a significance di↵erence exists between both corpora a t-test [Student, 1908]
will be employed if the scores on a feature exhibit a normal distribution. Alternatively, if the
assumption of normality is violated, the Mann-Whitney U test [McKnight and Najab, 2010],
which does not assume normality, will be used. The resulting p-value will be compared against
an alpha level of 0.05 to determine statistical significance. This could already provide insight
into how humanly-authored and ChatGPT-generated texts di↵er from each other.
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3.4 Classification and feature importance

In this research the XGBoost classifier [Chen and Guestrin, 2016] will be used to classify humanly-
authored and ChatGPT-generated texts. To determine which features are most e↵ective in
distinguishing humanly-authored and ChatGPT-generated texts, three di↵erent XGBoost models
will be build. The first model will be build on the Doc2Vec vector embeddings as discussed in
Section 2.3.2. The second model will be build on text-extracted features, discussed in Sections
2.3.3, 2.3.4 and 2.3.5, derived from the abstracts. The last model will combine both methods to
investigate the added value of the di↵erent features.

XGBoost [Chen and Guestrin, 2016] has gained popularity in the data science community
due to its ability to achieve state-of-the-art results and its scalability and e�ciency. XGBoost
was used in 17 of 29 winning solutions in a Kaggle competition underwriting the success of using
XGBoost in a classification task. Of those 17 solutions, eight solely used XGBoost while the
others also incorporated neural networks, as is also done in this research using Doc2Vec.

XGBoost [Chen and Guestrin, 2016] is a classification algorithm which uses gradient boosted
decision trees. As opposed to traditional machine learning algorithms, where a single model is
trained on the data and used for prediction, XGBoost is an ensemble of iteratively trained models.
In each iteration, a new model is trained to correct for errors of the previous models. The boosting
algorithm creates new models and sequentially combines their predictions to improve the overall
performance of the model. Sub-models are assigned weights based on their performance, models
that have a higher contribution to the overall improvement of predictions are given a higher
weight in the final ensemble model. To optimise the model, the gradient descent algorithm is
used. This is an optimisation method that updates the weights of the model by computing
the gradient of the loss with respect to each weight and updating the weights in the opposite
direction of the gradient.

As the XGBoost classifier is incapable of processing textual data, whether a text is written
or generated is encoded. Written text is encoded as 1 while generated text is encoded as 0.
Subsequently, the encoded data is partitioned into training and testing sets, whereby 70% of
the data is assigned for training, amounting to 3,841 abstracts. Of this, 1,902 abstracts are
humanly-authored while the remaining 1,939 are ChatGPT-generated.

As the dataset exhibits an equal distribution comprising of 2,744 humanly-authored and
2,744 ChatGPT-generated abstracts, this research has chosen to adopt the accuracy as most
important performance metric. This allows to evaluate the predictive capabilities of the model
in correctly classifying abstracts as either humanly-authored or ChatGPT-generated. To give a
more comprehensive insight into the models performance, this research will construct confusion
matrices.

To investigate which features are most important this research uses the SHAP [Lundberg and
Lee, 2017] library. Using the SHAP library, this research will analyse the contribution of each
feature in the XGBoost model build on text-extracted features and the model build on vector
embeddings and text-extracted features. Moreover, this research will evaluate which group of
features, the vector embeddings or the text-extracted features, is more important. To do this,
the XGBoost classifier constructed on both the vector embeddings and text-extracted features
will be analysed. By summing the mean absolute SHAP values of this model for each feature
group, it can be analysed which group of features has a higher contribution towards the model’s
output.
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Additionally, the contribution of the text-extracted features to the model constructed using
both vector embeddings and the text-extracted features will be examined using a leave-one-out
approach. The importance of each feature within the model is assessed by excluding it from
the model and subsequently measuring the resulting accuracy. The magnitude of decrease in
accuracy serves as an indicator of the importance of each feature, with the most most important
features expected to exhibit the highest decrease in accuracy when omitted from the model.

3.5 Features

3.5.1 Vector embeddings

To prepare the abstracts for vectorisation, using Doc2Vec, the content is lowercased, lemmatised
and tokenised. The words are lowercased because this decreases dimensionality while maintaining
semantic information [Hickman et al., 2022]. This is also the reason for lemmatising the words
in an abstract, lemmatising decreases the vocabulary while also keeping the meaning of a word
[Schütze et al., 2008]. Finally, tokenisation is used to break the abstract into individual units.
Spelling errors, stop words, abbreviations and the use of punctuation are all kept in the data as
they could expose di↵erent patterns in humanly-authored and ChatGPT-generated texts.

The Doc2Vec model utilised in this research is specified by several parameters. Kenter et
al. [Kenter et al., 2016] also used the Doc2Vec model in their research and state that they
have used ”default” parameters. In their research the number of dimensions is specified as 300,
which is also used in this research. As rare terms might be e↵ective in distinguishing between
humanly-authored and ChatGPT-generated texts, this research uses a minimum count of 0.
This number specifies the minimum frequency of a word in the training data to be considered
in the vocabulary. Le and Mikolov [Le and Mikolov, 2014] have demonstrated that the PV-DM
variant outperforms the PV-DBOW variant, hence this variation is used in this research. For
the number of epochs, the iterations over the corpus, the default value of 10, as specified in the
documentation of Doc2Vec [Le and Mikolov, n.d.], is chosen. To ensure deterministic results, the
seed and workers parameter are to set 1.

To determine the similarity between the documents, the Doc2Vec model is trained using
the whole corpus of both the written and ChatGPT-generated abstracts. For each abstract, a
vector is inferred based on the trained model. These inferred vectors will then be compared to
look at which documents are most similar, thus whether the content of the ChatGPT-generated
abstracts is most similar to the content of the humanly-authored abstracts. For classification
purposes, the Doc2Vec model will be trained on the training data using the test and training
split discussed in Section 3.4.

3.5.2 Text informativeness

The boilerplate of a document is calculated by providing the lowercased, lemmatised and to-
kenised text corpus. The abstracts are tokenised using the ”mts.sent tok” function provided by
Jiang and Srinivasan [Jiang and Srinivasan, 2023]. Additionally, the n-grams, with the default
value of 4, as chosen by this research, should be included. Furthermore, the min doc parameter
should be specified to exclude n-grams with a document frequency lower than the provided value.
It is advised to set this parameter to 30% of the number of documents [Jiang, 2022]. In this
research, the frequency of n-grams is not of interest, therefore get ngram is False, which causes
the function to not produce a dataframe containing the n-grams and their respective frequencies.
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To compute the redundancy of the abstracts, the abstracts are also lowercased, lemmatised
and tokenised using ”mts.sent tok”. Using these cleaned abstracts and the number of n-grams
to use in the calculation, the redundancy can be calculated. The default number of n-grams is
10, which is also used in this research. To calculate the specificity, the abstracts only need to be
lowercased and lemmatised before being passed to the function.

3.5.3 Text readability

To assess the readability of the abstracts, this research used the humanly-authored and ChatGPT-
generated abstracts as the complete uncleaned texts needs to be used to asses the readability.
Using the Textstat library [Bansal and Aggarwal, n.d.], the Flesch Reading Ease Test, Gunning
Fog Index, ARI Dale Chall and the reading time in seconds can be calculated.

To assess the grammatical and syntactical errors, the Python Language Tool library [Morris,
n.d.] is used. This library is a wrapper for the grammar check developed by D. Naber [Naber
et al., 2003]. This research uses the English model of the Great Britain and US to determine the
number of errors within a text. The errors in a text is determined by the matching errors found
by the Great Britain and US version. Thus, if the tool spots ten errors using the US version
and eight using the Great Britain version or the other way around, this research considers the
number of errors within the text to be eight.

3.5.4 Text characteristics

To calculate the lexical diversity using TRUNAJOD [Palma et al., 2021], the abstracts are first
lowercased and lemmatised before being provided to spaCy [Honnibal et al., 2020]. Since named
entity recognition and text classification are not of interest, these are disabled. The spaCy load
function is employed to generate a list of processed documents with corresponding tokens and
Part-Of-Speech tags. The resulting list of processed documents is subsequently analysed using
the TRUNAJOD library. This analysis provides the lexical diversity score for each abstract.

4 Results

The first subsection first describes the characteristics of both the humanly-authored and ChatGPT-
generated text corpus using Zipf’s and Heaps’ Law. Subsequently, this research will compare the
performance of these corpora on the features. The second subsection will present the classification
results and show which futures are found to be more important.

4.1 Data Exploration

4.1.1 Visualising the corpus

The figure below, Figure 1, shows the frequency distribution of the 20 most frequent words in
both the humanly-authored and ChatGPT-generated text corpus. It can be observed in Figure
1a that although the first word may not exhibit a frequency that is twice that of the second most
frequent word and three times that of the third most frequent word, the frequency of the words
does decline. Conversely, the frequency distribution for the ChatGPT-generated text corpus, as
illustrated in Figure 1b, depicts a less steep decline in frequencies. The figure shows that the
frequencies of the second and third most frequent word are almost equal.
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(a) Humanly-authored text corpus. (b) ChatGPT-generated text corpus.

Figure 1: Comparison of the frequency distribution of the 20 most frequent words of the humanly-
authored and ChatGPT-generated text corpus - Including stop words.

If the stop words are removed from the text corpus, the graphs show a more equal frequency
distribution. This figure can be seen in Figure 2.

(a) Humanly-authored text corpus. (b) ChatGPT-generated text corpus.

Figure 2: Comparison of the frequency distribution of the 20 most frequent words of the humanly-
authored and ChatGPT-generated text corpus - Excluding stop words.

If the frequency distribution of the whole corpus is visualised, the graphs are similar. This
can be seen seen in Figure 3.

(a) Humanly-authored text corpus. (b) ChatGPT-generated text corpus.

Figure 3: Comparison of the frequency distribution of the humanly-authored and ChatGPT-
generated text corpus.
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Figure 4 shows the vocabulary growth as the size of the corpus of both the humanly-authored
and ChatGPT-generated text corpus increases. By comparing Figure 4a and Figure 4b, it shows
that the vocabulary of the humanly-authored text corpus exceeds that of the ChatGPT-generated
text corpus. The humanly-authored text corpus has a vocabulary of approximately 30,000 words
while the ChatGPT-generated text corpus has a vocabulary of around 20,000 words.

(a) Humanly-authored text corpus. (b) ChatGPT-generated text corpus.

Figure 4: Comparison of the growth of the vocabulary size with text corpus size of the humanly-
authored and ChatGPT-generated text corpus.

4.1.2 Vector embeddings

By using the Doc2Vec algorithm to create vector representations of the abstracts, this research
is able to compare the similarity of the humanly-authored and ChatGPT-generated abstracts on
the same title. Using the parameters defined in Section 3.5.1, in 12.7% of the cases, the vector
representations of the humanly-authored and ChatGPT-generated abstract on the same title are
most similar.

Table 4 shows two abstracts on the same title which are considered to be most similar. In
Table 5, the opposite can be seen where the humanly-authored and ChatGPT-generated abstract
are not the most similar.
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Written Generated
Continuous intracranial pressure (ICP) moni-
toring is a cornerstone of neurocritical care after
severe brain injuries such as traumatic brain in-
jury and acts as a biomarker of secondary brain
injury. With the rapid development of artifi-
cial intelligent (AI) approaches to data anal-
ysis, the acquisition, storage, real-time analy-
sis, and interpretation of physiological signal
data can bring insights to the field of neuro-
critical care bioinformatics. We review the ex-
isting literature on the quantification and anal-
ysis of the ICP waveform and present an in-
tegrated framework to incorporate signal pro-
cessing tools, advanced statistical methods, and
machine learning techniques in order to com-
prehensively understand the ICP signal and its
clinical importance. Our goals were to iden-
tify the strengths and pitfalls of existing meth-
ods for data cleaning, information extraction,
and application. In particular, we describe the
use of ICP signal analytics to detect intracra-
nial hypertension and to predict both short-
term intracranial hypertension and long-term
clinical outcome. We provide a well-organized
roadmap for future researchers based on exist-
ing literature and a computational approach to
clinically-relevant biomedical signal data. Key-
words: data science; intracranial pressure; ma-
chine learning; prognostics and health mainte-
nance; traumatic brain injury.

Traumatic brain injury (TBI) is a devastating
condition that can lead to intracranial hyper-
tension (ICH) and subsequent brain damage.
Monitoring intracranial pressure (ICP) is an
important tool for managing ICH and reduc-
ing the risk of secondary brain injury. ICP
monitoring generates a complex signal that con-
tains valuable information for clinical decision-
making, yet the signal’s interpretation remains
challenging. In this narrative overview, we
provide a comprehensive review of the current
state of research on ICP monitoring signals af-
ter TBI. We focus on the advances in the under-
standing of signal characteristics related to TBI
severity and outcome prediction. We discuss
various signal processing and machine learn-
ing techniques that have been used to analyze
ICP monitoring signals over time, including tra-
ditional methods and recent algorithms based
on Convolutional neural networks (CNN) and
Deep Learning (DL). Finally, we propose a con-
ceptual data science framework for the analy-
sis of ICP monitoring signals after TBI, com-
bining signal processing and machine learning
techniques. We argue that this framework can
contribute to significant improvements in the
management of TBI patients, and ultimately
reduce the morbidity and mortality associated
with this devastating condition.

Table 4: Abstracts where the humanly-authored and ChatGPT-generated abstracts on the same
title are the most similar - Title: Intracranial Pressure Monitoring Signals After Traumatic Brain
Injury: A Narrative Overview and Conceptual Data Science Framework
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Written Generated
The digitalization of the health-care system has
resulted in a deluge of clinical big data and
has prompted the rapid growth of data sci-
ence in medicine. Data science, which is the
field of study dedicated to the principled ex-
traction of knowledge from complex data, is
particularly relevant in the critical care setting.
The availability of large amounts of data in the
ICU, the need for better evidence-based care,
and the complexity of critical illness makes the
use of data science techniques and data-driven
research particularly appealing to intensivists.
Despite the increasing number of studies and
publications in the field, thus far there have
been few examples of data science projects that
have resulted in successful implementations of
data-driven systems in the ICU. However, given
the expected growth in the field, intensivists
should be familiar with the opportunities and
challenges of big data and data science. The
present article reviews the definitions, types of
algorithms, applications, challenges, and future
of big data and data science in critical care.
Keywords: big data; critical care; data science;
machine learning; prediction models.

The use of big data and data science in critical
care has the potential to revolutionize health-
care by providing unprecedented insights into
patient care and outcomes. This paper explores
the potential applications of big data and data
science in critical care and its impact on pa-
tient outcomes.The application of big data in
critical care provides clinicians with real-time
access to patient data, including clinical notes,
genomic data, and imaging studies. This wealth
of data can be analyzed using machine learning
algorithms to identify patterns and predict pa-
tient outcomes.Data science can also be applied
in critical care to develop personalized treat-
ment plans for patients based on their unique
characteristics. The availability of big data pro-
vides an opportunity to develop predictive mod-
els that can guide clinical decision-making. The
use of big data and data science in critical care
has not been without challenges. Privacy con-
cerns and data governance issues are significant
barriers to the implementation of this technol-
ogy. Despite these obstacles, the potential ben-
efits of big data and data science in critical
care are significant, and the healthcare indus-
try must work towards finding solutions to over-
come these barriers to ensure that patients re-
ceive the best possible care.

Table 5: Abstracts where the humanly-authored and ChatGPT-generated abstracts on the same
title are not the most similar - Title: Big Data and Data Science in Critical Care

4.1.3 Text informativeness

In Table 6, the mean and standard deviation scores on the informativeness measures can be
seen for both the humanly-authored and ChatGPT-generated text corpus. Here it shows that
the mean boilerplate score for both is exactly 0 with a standard deviation of 0 as well. How-
ever, the mean scores on redundancy and specificity do di↵er. The mean redundancy score
for both the humanly-authored and ChatGPT-generated abstracts is quite small. This indi-
cates that the measured variable generally has low values. The mean redundancy score for
ChatGPT-generated abstracts is slightly higher than the mean score for humanly-authored ab-
stracts. The standard deviation of the ChatGPT-generated abstracts is also slightly larger than
that of humanly-authored abstracts, indicating a greater variability. Regarding the specificity
scores, the mean for humanly-authored abstracts is higher than that of the ChatGPT-generated
abstracts. This indicates that humanly-authored abstracts tend to have a higher value compared
to the ChatGPT-generated abstracts. The standard deviation of the humanly-authored abstracts
is also bigger, indicating a wider spread.
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Generated text corpus Written text corpus
Informativeness metric

Boilerplate 0 (± 0) 0 (± 0)
Redundancy 0.001 (± 0.008) 0.000 (± 0.006)
Specificity 0.0126 (± 0.014) 0.025 (± 0.023)

Table 6: Mean and standard deviation of the informativeness metrics for the ChatGPT-generated
and humanly-authored text corpus.

The analysis of the measures on informativeness for the humanly-authored and ChatGPT-
generated abstracts can be extended by examining the histograms in Figure 5. Both corpora
have a comparable histogram on the redundancy score while the histogram on specificity dif-
fers. Notably, the frequency of abstracts with a specificity score of 0 is considerably higher
for ChatGPT-generated abstracts than for humanly-authored abstracts. As both histograms
do not show that the data is normally distributed, the Mann Whitney U test is used to test
for significance. As the p-value for redundancy and specificity is below 0.05, the comparisons
are statistically significant. As the mean for boilerplate is exactly equal for both the humanly-
authored and ChatGPT-generated text corpus there is no evidence to reject the null hypothesis.
Therefore, it is concluded that there is no significant di↵erence between the boilerplate score for
the humanly-authored and ChatGPT-generated corpus.

(a) Redundancy (b) Specificity

Figure 5: The performance of the humanly-authored and ChatGPT-generated text corpora on
the informativeness measures.

4.1.4 Text readability

In Table 7, the mean and standard deviations on readability metrics for both the humanly-
authored and the ChatGPT-generated text corpus are shown. Here it can be seen that the mean
scores for most of the readability test are similar, with small di↵erences in some cases. This
suggests that both the humanly-authored abstracts and ChatGPT-generated abstracts have a
comparable performance on the readability tests. The standard deviations for the ChatGPT-
generated texts however are lower than those of the humanly-authored abstracts. This indi-
cates that the scores for ChatGPT-generated abstracts are more concentrated around the mean.
Regarding the mean of the grammatical and syntactical errors within humanly-authored and
ChatGPT-generated abstracts, it is interesting to note that on average the humanly-authored
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abstracts contain one grammatical error more as opposed to the abstracts generated using Chat-
GPT. The spread of the grammatical errors for humanly-authored abstracts is also higher com-
pared to that of ChatGPT-generated texts, indicating a wider spread.

Generated text corpus Written text corpus
Readability metric

Flesch Reading Ease Test 23.5 (± 10.4) 25.8 (± 12.3)
Gunning Fog Index 16.0 (± 1.9) 15.6 (± 2.5)

ARI 18.1 (± 2.1) 17.8 (± 2.9)
Dale Chall Index 10.6 (± 0.7) 10.9 (± 0.8)

Reading time (in seconds) 16.7 (± 1.5) 17.7 (± 1.9)
Grammatical errors 1.8 (± 2.7) 2.9 (± 3.3)

Table 7: Mean scores on the readability metrics for the ChatGPT-generated and humanly-
authored texts.

The distribution of the readability scores on the di↵erent readability tests can be seen in
Figure 6. Here it can be seen that both corpora have a comparable performance on the readability
tests as the shapes of the histograms show similarities. However, the histograms for the humanly-
authored corpus is more evenly distributed while that of the ChatGPT-generated corpus consists
of higher peaks. As the histograms show the scores on the readability metrics are normally
distributed, the t-test is used. As the p-values are all below 0.05 the comparisons are statistically
significant for the readability tests.
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(a) Flesch Reading Ease Test. (b) Gunning Fog Index.

(c) ARI. (d) Dale Chall Index.

Figure 6: The performance of the humanly-authored and ChatGPT-generated text corpora on
the readability measures.

In Figure 7 the performance regarding the reading time and grammatical errors can be seen.
The histograms in Figure 7a show that the reading time is more evenly distributed for humanly-
authored abstracts. The peak of the histogram regarding the reading time of ChatGPT-generated
abstracts is a bit more to the left, thus indicating that the abstracts take a little less long to
read. In Figure 7b, the distribution of the grammatical errors among abstracts can be seen.
Notably, several ChatGPT-generated abstracts are free of grammatical or syntactical errors.
The frequency of humanly-authored abstracts without grammatical and syntactical errors is
lower than that of ChatGPT-generated abstracts. Considering the t-test for the significance of
reading time and the Mann Whitney U test for the number of grammatical errors it shows that
the comparisons are statistically significant as the p-values on both measures are below 0.05.
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(a) Reading time. (b) Grammatical errors.

Figure 7: The performance of the humanly-authored and ChatGPT-generated text corpora on
the reading time and grammatical errors.

4.1.5 Text characteristics

In Figure 4, it could be seen that the vocabulary size of the text corpus of the ChatGPT-
generated abstracts is smaller than the vocabulary size of the text corpus of the humanly-authored
abstracts. However, upon examining the lexical diversity of individual abstracts, no discernible
di↵erences emerge between the humanly-authored and ChatGPT-generated abstracts. Both
the humanly-authored and ChatGPT-generated text corpora exhibit a mean lexical diversity
score of exactly 1.0 with a standard deviation of 0, indicating that all abstracts consist of a
diverse range of vocabulary. As the mean for the lexical diversity score is exactly equal for both
the humanly-authored and ChatGPT-generated text corpus, it is concluded that there is no
significant di↵erence in lexical diversity between both corpora on the individual abstract level.

4.2 Classification and feature importance

In this research three di↵erent XGBoost models have been constructed. The first model is build
on the Doc2Vec vector embeddings, the second on the text-extracted features and the third
model combines both. The first model is able to correctly classify 83.9% of the abstracts. In the
confusion matrix in Figure 8 the overall performance of the Doc2Vec model can be seen. Here it
can be seen that the model classifies a humanly-authored abstract as generated in 8.3% of the
cases. A ChatGPT-generated abstract is more often wrongly predicted, in 24.2% of the cases a
ChatGPT-generated abstracts is wrongly classified as humanly-authored.
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Figure 8: The performance of the Doc2Vec model on classifying humanly-authored and
ChatGPT-generated abstracts.

The second model, build on text-extracted features is able to correctly classify 72.4% of the
abstracts. The overall performance of this model is presented in the confusion matrix in Figure 9.
The model classifies humanly-authored abstracts as ChatGPT-generated in 29.9% of the cases.
This is close to the percentage of ChatGPT-generated abstracts that are inaccurately labeled as
humanly-authored in 25.2% of the cases.

Figure 9: The performance of the text-extracted feature model on classifying humanly-authored
and ChatGPT-generated abstracts.

The third model was able to achieve the best performance, the model constructed using
Doc2Vec vector embeddings as well as text-extracted features was able to correctly classify 86.5%
of the abstracts. The overall performance of this model can be observed in the confusion matrix
presented in Figure 10. The combination of vector embeddings and text-extracted features has
decreased the number of times that a humanly-authored abstracts is classified as generated,
using this model this is only happens 6.7% of the time. Additionally, the number of times a
ChatGPT-generated abstract is wrongly classified as humanly-authored is also decreased, using
this model this happens in 20.7% of the cases.
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Figure 10: The performance of the Doc2Vec and text-extracted feature model on classifying
humanly-authored and ChatGPT-generated abstracts.

In Figure 11, the importance of the features in the text-extracted feature model can be seen.
Figure 11a shows the magnitude of feature attributions, features with a large SHAP value thus
are most important. Here it can be seen that the reading time of an abstract thus is the most
important predictor for assessing whether a text is humanly-authored or ChatGPT-generated. It
can also be seen that the lexical diversity and boilerplate score do not contribute to the prediction
while the redundancy score only contributes a little.

Figure 11b combines the feature importance with the feature e↵ects. Each point in the plot
corresponds to a specific feature’s SHAP value for a particular instance. The colour of each point
indicates whether the feature value for that instance is relatively low (blue), mediocre (purple)
or high (red). The x-axis represents the influence of the SHAP value, indicating whether it has a
positive or negative impact on the model output. In this research, a positive influence of a SHAP
value suggest a higher likelihood of an abstract being humanly-authored. Conversely, a negative
SHAP value indicates a higher probability of an abstract being ChatGPT-generated. Abstracts
with a relatively high reading time are thus more likely to be classified as humanly-authored
while abstracts with a relatively low reading time have a higher probability of being classified as
ChatGPT-generated.

The plot shown in Figure 11b indicates that attaining high values across most features, with
the exception for redundancy, is associated with an increased probability of being classified as
humanly-authored. The redundancy feature shows to mostly have low values which do not impact
the model’s output. However, if the redundancy feature is observed to have a high value, the
abstract is more likely to be classified as ChatGPT-generated. Mediocre values on the features
do not substantially alter the probabilities of being classified as ChatGPT-generated or humanly-
authored. The plot highlights that high or low values on features can influence the probability
of an abstract being classified as either ChatGPT-generated or humanly-authored.
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(a) The feature importance. (b) The feature importance feature effects.

Figure 11: The feature importance of the features used in the text-extracted feature model.

By summing the mean absolute SHAP values of vector embeddings and text-extracted fea-
tures enables a direct comparison between the two feature groups, revealing which group is of
greater overall importance. The sum of the mean absolute SHAP values for the vector embed-
dings is equal to 15.9, whereas the summation for the text-extracted features amounts to 2.8.
This indicates that the vector embeddings are of greater importance, being 5.7 times bigger than
the summation of text-extracted features.

In Figure 12, the top 10 of the most important features in the combined feature model can
be seen. Additionally, the figure provides insight into the cumulative distribution of the features
that are not explicitly depicted in the plot. The analysis reveals that reading time is the most
influential feature in the combined model.

Among the top 10 features, six are vectors derived from the vector embeddings, with vector
295 identified as the most important vector. Similar to the model relying solely on text-extracted
features, boilerplate and lexical diversity do not contribute to the prediction task. Moreover,
redundancy, which demonstrated predictive value in the text-extracted feature based model,
does not contribute to the prediction task. The ARI score, Flesch Reading Ease score and
Gunning Fog Index contribute minimally to the prediction task with respective contributions of
0.05, 0.05 and 0.06.
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Figure 12: top 10 most important features in the combined model.

To give more insight into the feature importance, Table 8 shows the impact on accuracy when
each feature is individually dropped from the combined model. The results reveal that omitting
the reading time feature leads to the most significant decrease in accuracy. Conversely, dropping
the Flesch Reading Ease score, redundancy score and Gunning Fog Index actually results in an
increase in accuracy.

Feature E↵ect on accuracy
Reading time -0.017%
Dale Chall Index -0.011%
Specificity -0.006%
Grammatical errors -0.006%
ARI -0.001%
Boilerplate 0%
Lexical diversity 0%
Flesch Reading Ease +0.001%
Redundancy +0.004%
Gunning Fog Index +0.004%

Table 8: The e↵ect of dropping out a feature in the combined model on the accuracy

It is worth mentioning that the overall accuracy is only marginally a↵ected, with small fluctu-
ations observed when features are removed. The impact on accuracy is not substantial, indicating
that the model’s performance remains relatively stable in case a single text-extracted feature is
excluded.

5 Discussion

The objective of this study was to identify the key features that can be used to di↵erentiate
between humanly-authored and ChatGPT-generated texts. This research first constructed two
text corpora, the first comprising of humanly-authored abstracts and the second of ChatGPT-
generated abstracts. To determine the most e↵ective features, this research first explored the
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data. The text corpora have been visualised using Zipf’s and Heaps’ Law after which the vector
embeddings and the performance on the text-extracted features were compared.

Visualising the humanly-authored and ChatGPT-generated corpus according to Zipfs’ Law,
the frequency distributions exhibit striking similarity. This implies that the frequency distri-
butions alone do not o↵er a distinguishing factor between humanly-authored and ChatGPT-
generated texts. The visualisation of both corpora following Heaps’ Law does provide a dis-
tinguishing factor. Figure 4 shows that the vocabulary of the humanly-authored corpus is
larger compared to the vocabulary of the ChatGPT-generated corpus. This indicates that the
ChatGPT-generated texts are generated using a subset of the language.

The visualisations have been able to show the similarities regarding the frequency distribution
and the dissimilarities in the vocabulary size on a corpus level. Using the Doc2Vec vector
embeddings the abstracts on the same title can be compared on an individual level. It was shown
that in 12.7% of the cases the vector representations of the humanly-authored and ChatGPT-
generated abstracts on the same title were the most similar. As the abstracts are generated on
paper titles within the data science domain, the outcome suggests that in most cases ChatGPT
falls short in incorporating su�cient distinctive information into an abstract to make them closely
resemble the content of the authentic, humanly-authored abstracts.

Regarding the performance on the text-extracted features, the humanly-authored and ChatGPT-
generated corpus show similar performances on the boilerplate, redundancy, Flesch Reading Ease
Test, Gunning Fog Index, ARI, Dale Chall Index and lexical diversity. The mean, standard de-
viations and histograms on the measures are comparable for both text corpora indicating that
the features will not have discriminative power. Although Heaps’ Law showed a di↵erence in
vocabulary size on a corpus level, the lexical diversity of a single abstract thus does not seem to
provide discriminative power.

However, the performance on the specificity, reading time and grammatical errors features
is di↵erent for both corpora. The mean, standard deviations and histograms for these features
do di↵er and therefore possibly do seem to provide discriminative power. When testing for
significance it is found that the comparisons are statistically significant for all features except for
boilerplate and lexical diversity. This indicates that the statistically significant features possibly
can be used to distinguish humanly-authored and ChatGPT-generated text.

Second, this research constructed three di↵erent XGBoost classifiers to assess feature im-
portance. The first classifier was built using Doc2Vec vector embeddings, the second using
text-extracted features and the third combining both. The classifiers were able to correctly pre-
dict whether a text was humanly-authored or ChatGPT-generated with an accuracy of 83.9%,
72.4% and 86.5% respectively. These results show that a model based on Doc2Vec vector em-
beddings outperforms one based solely on text-extracted features. Furthermore, the combined
model exhibits an accuracy improvement of 2.6% compared to the Doc2Vec based classifier and
14.1% compared to the text-extracted feature model.

Individual feature importance analysis in the combined model reveals that vector embed-
dings are considered more important than the text-extracted features. The summation of the
mean SHAP values indicate that the vector embeddings are 5.7 times more important than
text-extracted features in this model. This observation aligns with the superior performance of
the model constructed using Doc2Vec vector embeddings compared to the text-extracted fea-
ture model. Within the top 10 most important features in the combined model, six are vector
embeddings, while only four are text-extracted features.

Upon inspecting the feature importance on an individual level, it shows that for both the
text-extracted feature model and the combined model, based on the SHAP values, reading time is
the most important feature. In the text-extracted feature model, specificity, grammatical errors,
Flesch Reading Ease, Dale Chall Index, Gunning Fog Index and ARI follow reading time in
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importance. Additionally, redundancy slightly contributes to the prediction task in this model,
but at a lesser extent.

Conversely to the text-extracted model, in the combined model, the Dale Chall Index emerges
as the second most important text-extracted feature, followed by specificity and grammatical
errors. In this case, the ARI, Flesch Reading Ease and Gunning Fog Index have a minimal
influence on the prediction task. Notably, while redundancy contributes to the prediction task
in the text-extracted feature model, it does not contribute in the combined model.

It is interesting to note that although the data exploration showed a comparable performance
for both text corpora on the Dale Chall Index, the feature provides discriminative power in
both the text-extracted feature and combined model. The Flesch Reading Ease Test, Gunning
Fog Index and ARI do provide discriminative power in the text-extracted feature model but
only contribute slightly in the combined model. Redundancy only contributed slightly to the
prediction task in the text-extracted feature model while not contributing to the prediction in the
combined model. As the mean and standard deviation for the lexical diversity and boilerplate
was identical for both corpora it was anticipated that both features would not at all contribute
to the prediction task in both models.

The leave one feature out approach confirms the order of importance of text-extracted features
in the combined model. Using this approach, it shows that reading time causes the biggest
decrease in accuracy. As lexical diversity and boilerplate do not contribute to the prediction task,
omitting these features from the model does not a↵ect the accuracy. Moreover it is interesting to
see that omitting the Flesch Reading Ease, redundancy and Gunning Fog Index actually increases
the accuracy. Furthermore, it is worth noting that dropping out one text-extracted feature only
e↵ects the accuracy by a small margin, substantiating the importance of the Doc2Vec vector
embeddings in the combined model.

Notably, the model using both Doc2Vec vector embeddings and text-extracted features has
an improved accuracy as compared to the GLTR [Gehrmann et al., 2019], 86.5% and 72%
respectively. The model is also better in correctly classifying AI-generated texts as compared to
the OpenAI classifier. The model built in this research correctly classifies 79.3% of the cases as
opposed to the 26% achieved by OpenAI [Kirchner et al., 2023]. Furthermore, it is less likely to
classify humanly-authored texts as ChatGPT-generated, only classifying 6.7% as generated in
contrast to the 9% of the OpenAI classifier. GPTZero however, is able to outperform the model
built in this research [Tian, 2022].

GPTZero uses perplexity, burstiness and other variables to determine whether a text is AI-
generated or humanly-authored [Tian, 2023]. The features used in their model thus appear to
have more predictive power as opposed to the features used in this research. It is however worth
noting that the performance of GPTZero improves when the size of the input increases, as is
the case for the OpenAI classifier. As the size of the text for the test data in their results is
unknown, it is thus di�cult to compare the results.

As the model built in this research is trained on text consisting of in between 170 and 230
words, it is ill-advised to use this model in the educational setting as of now, as the lengths
of texts might di↵er. Moreover, as the GPTZero model is able to outperform the model built
in this research, it would still be advised to use this model. However, further research could
improve the model built in this research. This research has shown that solely using Doc2Vec
vector embeddings already results in achieving a high accuracy in classifying humanly-authored
and ChatGPT-generated text. Furthermore, adding features as the reading time, Dale Chall
Index, specificity and grammatical errors in the combined model adds predictive power to the
model. For those features it is found in the text-extracted feature model that whenever the
reading time is longer, the text is more specific or more di�cult to comprehend, it is more likely
to be humanly authored.
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For further research and expanding upon the model built in this research it would be inter-
esting to train the algorithm on di↵erent text lengths and add normalisation for the length of a
text. According to GPTZero [Tian, 2022] and the OpenAI classifier [Kirchner et al., 2023], the
accuracy of detecting AI-generated texts increases if the input is longer. Therefore adjusting the
model to account for di↵erent lengths of texts, and therefore adding the need to normalise the
features by the length, could improve the accuracy of the classifier. It is also mentioned above
that this would be necessary before the model could be incorporated within the educational
setting.

Next to the limitation of being trained on texts in between 170 and 230 words, a di↵erent
limitation that is also found by GPTZero [Tian, 2023] and the OpenAI classifier [Kirchner et
al., 2023], is that AI is ever evolving. The model built in this research is trained on detecting
ChatGPT-generated text based on the GPT-turbo 3.5 model while the next model is already
available in beta use. Therefore, to be up to date, the model needs to be retrained every time a
new version of ChatGPT is released.

For further research it would also be interesting to experiment with di↵erent Doc2Vec pa-
rameters. In this research, the importance of the feature groups, the vector embeddings and the
text-extract features, in the combined model is directly compared. However, as this research uses
300 vectors in comparison to ten text-extracted features this is a skewed comparison. Therefore,
it would be interesting to do this comparison once again when the number of vectors and features
is equal.

To add to this, it would be interesting to see, that while this research has elaborated on
the use of Doc2Vec vector embeddings, whether di↵erent vector embeddings would be able to
achieve a better performance. Furthermore, a di↵erent set of features can be incorporated into
the model. It would be interesting to see whether the other features mentioned, or newly found
features, would be able to add more predictive power to the model.

In summary, this research successfully identified key features for di↵erentiating humanly-
authored and ChatGPT-generated texts. The findings underscored the superiority of models
incorporating Doc2Vec vector embeddings. While the comparisons on all features, except for
boilerplate and lexical diversity, were statistically significant reading time was seen as the most
influential future by performing SHAP analysis. The analysis also highlighted the limited contri-
bution of certain text-extracted features, as the lexical diversity and boilerplate did not contribute
to the prediction task. As the model build in this research is outperformed by the GPTZero al-
gorithm, educational institutions are not advised to use the model build in this research to assess
whether a text is humanly-authored or ChatGPT-generated. However, further research on the
model, including training on newer versions of ChatGPT, di↵erent feature sets, larger texts and
normalisation for text length, could improve the model to make it more suitable to be used
within the educational environment.
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