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Abstract

Record linkage aims to bring records together from two or more files that belong to the

same statistical entity. Linkage errors can occur during this process. Ignoring these linkage

errors can lead to biased inference. There is a growing emphasis on accounting for linkage

errors in the statistical analysis of categorical data and contingency tables.

In this thesis, we developed three new approaches for compensating for linkage errors

in contingency tables. The first approach, the regularised estimator, uses ideas from the

application of regularisation of ill-conditioned matrices. Two other approaches use proba-

bilities to compute the expected contingency table given the observed contingency table and

to weight three existing correction methods with their estimated mean square error. The

new approaches were tested together with two existing estimators Q and Q−1 by means of

a simulation study.

For dependent contingency tables, we propose to use the expected value approach with a

prior distribution that uses information about the observed values of the contingency table.

Moreover, we propose to use the existing Q approach for independent contingency tables.

The regularised estimator seems to have a lot of potential for both dependent and indepen-

dent tables, but improvement is still needed.

Keywords: contingency table, exchangeable linkage error model, linkage error correction,

probabilistic record linkage
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1 Introduction

With the increasing use and availability of routinely collected data, linking data from multiple

sources is becoming more useful. Record linkage is a solution to the problem of recognizing

records in two or more files that represent identical persons, objects, or events and aims to bring

those records together (Fellegi & Sunter, 1969). To illustrate the concept of record linkage, a

simple scenario is shown in Figure 1. Assume there are two separate files, with four records in

each file. Information about an individual’s highest education qualification is stored in file 1 and

information about the individual’s occupation is in file 2. By linking these two files together,

the linked file on the right is obtained. The unlinked files (file 1 and file 2) provide information

on the distribution of education qualification and occupation separately, e.g. the percentage

of individuals with a PhD degree or the percentage of individuals that are methodologists by

profession. The linked file additionally provides information on the joint distribution of education

qualification and occupation, e.g. the percentage of methodologists with a PhD degree.

Figure 1
Example of the Concept of Record Linkage

Note. File 1 contains the first name, last name, and highest educational qualification of four individuals.
File 2 contains the first name, last name, and occupation of the same four individuals. By using record
linkage, records from these two files can be brought together into one file. The linked file that is obtained
after linking files 1 and 2 is shown on the right.

Record linkage is also used for the deduplication of individual records within a single database

and case re-identification in capture-recapture studies (Sayers et al., 2016). However, this thesis

focuses on linking data from multiple sources together.

Record linkage is used in all kinds of scientific areas, e.g. health, epidemiology, demography,

and sociology. However, it is not limited to these scientific areas. National Statistical Institutes

(NSIs) increasingly rely on linking surveys to administrative registers to provide more accurate
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measurements and to reduce respondent burden. Two examples of the use of record linkage in

official statistics are given by Chambers (2009). The first example is the development of a linked

longitudinal employer-employee dataset based on administrative data at Statistics New Zealand.

This dataset allows the analysis of job and worker flows, multiple job holdings, and business

demography. The second example is the development of an integrated longitudinal dataset by

the Office for National Statistics in the United Kingdom to improve migration and population

statistics. Records from administrative, health register, school enrollment, and university student

data are linked with incoming passenger survey and labour force survey data, which is used for

the analysis of the migrant experience in the UK.

During the record linkage process, linkage errors can occur. Linkage errors are the errors

caused by incorrectly linking different population units as well as by not linking the same popu-

lation units; incorrect links and missed links, respectively. These linkage errors are a particular

type of measurement error, which can lead to biased inference if no appropriate steps are taken to

control and/or adjust this bias. Typically, the errors in this type of record matching are ignored.

Hence, this leads to bias and additional variability in standard statistical estimation techniques

(Chambers, 2009).

NSIs aim to publish high-quality and accurate descriptive statistics of the population. Con-

sequently, the estimation of contingency tables is important as they are used to inform policies

by government agencies and other stakeholders. In earlier research on correcting for linkage

errors, the focus mainly is on compensating for linkage errors in regression models, given data

from a probabilistically linked file (see also Section 2.1). There has been comparatively little

research carried out on compensating for linkage errors in contingency tables. However, due to

the increasing use of administrative and new forms of data in statistical systems, more research is

needed to understand the impact of linkage errors on categorical data and to continue developing

record linkage approaches. In particular, there is a growing emphasis on accounting for linkage

errors in the statistical analysis of contingency tables (Chipperfield & Chambers, 2015; Scholtus

et al., 2022).

To emphasise this, a real example from Chipperfield and Chambers (2015) is shown. In this

example, a census and a database are linked; where the records in the database are a subset of the

census. The census contains economic and social information from over 20 million people living

in Australia. The database contains information about 1,315,000 immigrants who were granted

visas to live permanently in Australia. The ‘true’ contingency table for level of qualification

(a categorical variable in the census) by visa class (a categorical variable in the database) is

shown in Table 1, where it is assumed that all the links are correct. Here, the links are made by

using the variables name and address. The frequency counts are expressed as proportions of the

marginal counts by visa class.
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Table 1
Real Example of Accounting for Linkage Errors in the Statistical Analysis of Contingency Tables: The
True Contingency Table of Level of Qualification and Visa Class

Level of Qualification
Visa Class 1 2 3
1 0.273 0.642 0.083
2 0.385 0.391 0.222

Note. Level of qualification is a categorical variable in the census data and visa class is a categorical
variable in the database. The frequency counts are expressed as proportions of the marginal counts by
visa class.

Now, we will look at the results when the linkage is not perfect. The difference with Table

1 is that now the links are made by using all variables, except name and address. The näıve

contingency table that is obtained for level of qualification by visa class when the data is linked

without any compensation for linkage errors is shown in Table 2.

Table 2
Real Example of Accounting for Linkage Errors in the Statistical Analysis of Contingency Tables: The
Contingency Table Using a Näıve Estimator (Not Correcting for Linkage Errors)

Level of Qualification
Visa Class 1 2 3
1 0.220 0.750 0.029
2 0.315 0.641 0.043

Note. Level of qualification is a categorical variable in the census data and visa class is a categorical
variable in the database. The frequency counts are expressed as proportions of the marginal counts by
visa class.

It is clearly visible that the näıve contingency table differs from the true contingency table.

If the näıve contingency table would be used instead of the (unknown) true contingency table,

this may lead to biased inference.

In Scholtus et al. (2022) the effect of linkage errors on contingency tables is researched in its

purest form, assuming there are no other errors besides linkage errors. That paper is based on

a basic problem, namely the estimation of contingency tables where the two target variables are

from different linked datasets. Two fundamental correction methods; an unbiased correction and

a biased correction, are investigated and compared to a näıve approach where linkage error is not

compensated for. Results showed that the unbiased correction approach performs rather poorly

compared to the biased and näıve approach. In practice, the variance of the unbiased estimator

is often so large that the näıve and biased estimators produce a smaller total mean square error.

Further research is needed to construct an estimator correcting for linkage errors in contingency

tables that performs consistently better than the näıve estimator, the biased estimator, and

the unbiased estimator. Preferably, this estimator is (approximately) unbiased and has a lower

variance.
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The aim of this current project is to develop, implement and test new methods for the

correction of linkage errors in contingency tables. A simulation study will be performed where

the quality of the new estimators will be measured by computing the estimation errors, bias,

variance, and mean square error. The first new estimator, presented in Pijpers (2021), uses

notions from the application of regularisation of ill-conditioned matrices. Furthermore, two new

estimators will be developed and evaluated based on other ideas for a possible improved estimator

presented in Scholtus and De Waal (2020-2022). Moreover, in Scholtus et al. (2022) conditions

are derived that describe which correction method is best to use in a given situation. However,

these conditions cannot be applied directly as they are based on the true contingency table,

which is not known in reality. This thesis aims to find a way to determine which estimator to

use in a specific situation.

The remainder of this thesis is structured as follows. Section 2 provides background informa-

tion about the main topics of this project. Section 3 describes the used methods. The correction

methods are tested with a simulation study in Section 4. Lastly, Section 5 discusses all the results

of this study and gives further recommendations.
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2 Background information

This section provides a brief introduction to the main topics of this project; namely, record

linkage and linkage errors. As this thesis builds on Scholtus et al. (2022), a repetition of the

notation and terminology used in that paper is given next. Lastly, the exchangeable linkage error

model is explained.

2.1 Record linkage

As mentioned in the Introduction, record linkage is the process of bringing information from two

or more distinct sources together. In general, there are two broad types of record linkage, namely

deterministic and probabilistic record linkage.

Deterministic record linkage is the process of linking information by a unique shared key or by

identifying variables using a fixed linking ruleset. Deterministic linkage results in two mutually

exclusive categories of linked and nonlinked records, where the nonlinked records are only present

in one of the files. Unfortunately, deterministic linkage does not reflect whether the linking fields

partially or fully agree, e.g. if a single character is different due to a spelling mistake but the

remaining characters are all identical, the two records will not be linked while they probably

should be linked. This can be solved by cleaning the data first to reduce heterogeneity or by

applying some form of probabilistic linkage.

Probabilistic record linkage attempts to link pieces of information together using multiple,

possibly non-unique keys (Sayers et al., 2016). First, all matching fields have to be uniquely

identifying in both files. Next, a join between the two files is performed containing all possible

links. Each possible link is given a score based on the likelihood that the records belong to the

same unit. Optimisation algorithms are used to select which pairs are declared as links. Nowa-

days, probabilistic methods for record linkage are well established (Chipperfield & Chambers,

2015).

When using probabilistic linkage, a researcher is in a more informed position than when

using deterministic linkage (Sayers et al., 2016). An advantage of probabilistic linkage is its

capability of finding the optimal balance between keeping sufficient discriminative power and

allowing disagreements to overcome registration errors. Deterministic linkage does not have the

capability of finding this optimal balance and therefore has to be based on a priori knowledge

(Tromp et al., 2011).

2.2 Linkage errors

Ideally, the linkage between two datasets will be perfect, i.e. all records belonging to the same

unit are linked and no other records are linked. However, this does not happen in many situations,

especially when records may contain incorrect values or missing values (Chipperfield et al., 2011).
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Two types of errors can occur in record linkage: the failure to link two records that belong to the

same entity (missed links) and the linking of two records that belong to different entities (incorrect

links). Missed links occur when there is disagreement on linking variables while the records belong

to the same entity, a problem that can be caused by data entry errors. Incorrect links occur when

two different entities share the same value on several linking variables by coincidence (Tromp et

al., 2011). Incorrectly linked pairs may potentially incur bias in statistical analyses, and missed

links impact coverage and potential bias if those missed links differ in their characteristics from

the found links (Scholtus et al., 2022). Typically, the linkage errors are ignored, and thus

bias and additional variability are introduced into statistical estimation techniques. This poses

a significant barrier to policy-relevant research using probabilistically linked data (Chambers,

2009).

Statistical methods for linking datasets are now well established. Previous research in this

area is mainly focused on the confidentiality issues that arise as a consequence of linkage (Cham-

bers, 2009) and regression model-based linkage correction (Scholtus et al., 2022). However, as

the focus of NSIs emerges on administrative-based censuses, it is important to understand the

impact of linkage errors on categorical data and census tables. NSIs aim to publish high-quality

and accurate descriptive statistics of the population. The estimation of such contingency tables

is therefore important, as they are mainly used to inform policies. Meanwhile, the statistical

analyses of such tables, e.g. for tests for independence, are important for research purposes

(Scholtus et al., 2022).

2.3 Notation and terminology

In Scholtus et al. (2022) the focus is on incorrectly probabilistically linked pairs which result

from records in two datasets being linked incorrectly due to errors, missing values, or changes

over time in the variables that are used in the linking procedure. The missed links are not

included. It is assumed that both datasets contain the same units. The aim is to link all of

the units, corresponding to a one-to-one linkage. The scenario of having a one-to-one linkage

is relevant at NSIs, where there is a move towards administrative-based censuses which link

multiple administrative data sources, e.g. administrative data from patients registers, income

tax, and social security authorities. There is an expectation of a one-to-one linkage in this

scenario (Scholtus et al., 2022). Consequently, the focus of this thesis is also on one-to-one

incorrectly probabilistically linked pairs from datasets that contain the same units.

Assume two data files A and B of n records (n ≥ 2) for observed units in a population. File

A contains variables (x, y) and file B contains variables (x, z). To estimate the contingency table

of the categorical variables y and z, the two datasets are linked first on the common variable(s)

x. For the purpose of constructing the contingency table of y and z, variables y and z can be

re-coded into dummy variables as a binary n × J matrix Y and n × K matrix Z respectively,

where J is the number of categories of variable y and K the number of categories of variable z.
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The elements of Y are equal to one (yij = 1) if the unit in record i of the first dataset belongs

to category j of variable y, and equal to zero (yij = 0) otherwise. Similarly, the elements of Z

are equal to one (zik = 1) if the unit in record i of the second dataset belongs to category k of

variable z, and equal to zero (zik = 0) otherwise. As the focus is on the effect of linkage errors

on estimators, Y and Z are treated as fixed. After linking the two data files, the J ×K target

contingency table is given by T = YTZ (where T denotes taking the transpose of a matrix) with

typical element tjk =
∑n

i=1 yijzik. The marginal counts of the contingency table of y and z can

be obtained from the separate data files. Therefore, they are unaffected by linkage errors. The

marginal count for category j of variable y is denoted by rj = yT
j u = uTyj , where yj denotes a

column of Y and u denotes the n vector of ones. Similarly, the marginal count for category k of

variable z is denoted by sk = zTku = uTzk, where zk denotes a column of Z.

As both datasets contain the same entities, random linkage errors can be represented by a

random permutation of the order of some units in the second dataset. As a result, Z∗ = CZ

is observed instead of Z, where C is a stochastic permutation matrix of order n due to ran-

dom linkage errors. This means that each row and column of C contains exactly one element

equal to one and all other elements equal to zero. The target contingency table is observed as

T̂∗ = YTZ∗ = YTCZ with typical element t̂∗jk =
∑n

i=1 yij (
∑n

l=1 cilzlk). See Example 1 for an

illustration of the notation.

Example 1. Take n = 10 and assume that variables y and z both have 2 categories. Sup-

pose that the two dummy variables are:

Y =

(
1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 1 1 1

)T

and Z =

(
1 1 1 1 0 0 0 1 1 0

0 0 0 0 1 1 1 0 0 1

)T

.

The true contingency table of y and z is: T = YTZ =

(
4 3

2 1

)
. Suppose that linkage errors

occur according to permutation matrix C where the 4th and 10th unit in the second dataset are

permuted. The other eight units are linked correctly. Hence,

Z∗ =

(
1 1 1 0 0 0 0 1 1 1

0 0 0 1 1 1 1 0 0 0

)T

. The observed contingency table is then given by:

T̂∗ = YTZ∗ =

(
3 4

3 0

)
̸= YTZ.

2.4 Exchangeable linkage error model

In Chambers (2009), a methodological framework is proposed that can be used to provide appro-

priate adjustments to standard statistical analysis methods to ensure that they remain unbiased

when used with probabilistically linked data. This framework is based on modelling the relation-

ship between the probabilistically linked data and the true data that would be obtained if perfect
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linkage (linkage without errors) were possible. The proposed model is known as the exchangeable

linkage error model and is widely used. It was originally suggested by Neter et al. (1965) in a

groundbreaking paper. Despite the simplicity of the model, it provides important insights into

the properties of various compensation approaches for linkage errors. These insights are also

useful for more complicated linkage error models (Scholtus et al., 2022).

The framework in Chambers (2009) assumes the existence of a population of n units. Two

registers are given: one with a scalar random variable and one with a vector random variable. It

is assumed that both registers refer to the same population and do not contain any duplicates,

hence both registers consist of n records. Probabilistic linkage is used to link the records. The

linkage is complete and one-to-one. In practice, probabilistic linkage is often carried out within

blocks. The linked records are then partitioned into W distinct blocks where each block contains

mw linked records, so n =
∑

w mw. There is no possibility that linked records in different blocks

contain data for the same population unit. Blocking allows one to consider more general linkage

error models for different sub-groups of the datasets and makes record linkage more manageable

in practice (Scholtus et al., 2022).

In Scholtus et al. (2022), the focus is on compensating for linkage errors when analysing a

two-way contingency table, where one variable is from one file and the second variable is from

another file. Therefore, it is more natural to take two scalar random variables in this context.

Moreover, the focus is on one block. For all these reasons, we assume the existence of a population

of n units, two registers A and B with a scalar random variable, and one block in what follows.

Let i index the records in the linked dataset. In total, there are n linked pairs (yi, z
∗
i ), where

yi denotes the value of y on register A and z∗i the linked value of z on register B. Let z∗ denote

the n vector defined by the linked values in z∗i , y the n vector defined by the values yi, and z the

unknown n vector indexed as in register B that corresponds to the true values of y on register

A associated with y. As mentioned previously, randomness is modelled in the outcome of the

linkage process by z∗ = Cz, where C = [cij ] is an unknown random permutation matrix of order

n. Inference based on linked data involves assumptions about the distribution of C, which is

assumed to be independent of z given y. Let

E (C|y) = Q. (1)

Assume that the probability of correct linkage is the same for all records. Moreover, assume that

it is equally likely that any two records in register A that are not linked to a specific record in

register B could in fact be the correct link for this record. These assumptions can be characterised

by the exchangeable linkage error model:

Pr(correct linkage) = Pr(cii = 1) = q, (2)
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and for i ̸= j:

Pr(incorrect linkage) = Pr(cij = 1) = δ, (3)

where Pr reflects the stochastic process by which C is generated. The model specified by (2)

and (3) represents a simple way of characterising the behaviour of a probabilistic linkage process.

Given that (2) and (3) hold, it then follows that (1) is of the form:

Q = (q − δ)I+ δuuT

= qI+ δ(uuT − I), (4)

where I denotes the identity matrix of order n. Since uTC = uT and Cu = u, it follows that

uTQ = uT and Qu = u. This means that (4) implies:

q + (n− 1)δ = 1. (5)

So, if a value for q (the probability of a correct link) is specified, it follows from (5) that δ = 1−q
n−1

(the probability that the unit in register A should be linked to a specific other unit in register

B). This is useful, as the estimation of q only requires information on whether a defined link is

correct or incorrect and not the identity of the correct link. The model in (4), or equivalently (2)

and (3) in combination with (5), is the essence of the previously mentioned exchangeable linkage

error model.

The following weak technical assumption is made:

1

n
< q < 1. (6)

The left inequality implies that the linking process is at least better than linking the records

completely at random and the right inequality rules out the trivial case where the linkage process

is deterministic and perfect (q = 1). The inverse of Q is:

Q−1 =
n− 1

nq − 1
I− 1− q

nq − 1
uuT. (7)

The left inequality assumption in (6) is necessary to ensure that the inverse of Q exists.

The assumptions of the exchangeable linkage error model are followed in Scholtus et al. (2022)

to develop a theoretical framework. As mentioned, the focus is on one block with a single value

of q and it is assumed that the linkage error rate is known. Therefore, the focus in this thesis is

also on one block and the linkage error rates are also assumed to be known.
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3 Methods

In this section, the used methods in this study are covered. First, the existing correction methods

are repeated. Next, a regularised estimator is presented. Lastly, new correction methods are

presented based on conditional probabilities.

3.1 Existing estimators

In Scholtus et al. (2022), several different estimators are considered that have been proposed to

improve on the näıve estimator. The main formulas of these estimators will now be repeated.

The full derivations of these formulas can be found in Scholtus et al. (2022).

The näıve estimator is given by:

T̂
∗
= YTZ∗, (8)

where Z∗ = CZ. It is easy to see that the näıve estimator is biased for the true contingency

table, namely: E(T̂
∗
) = E(YTCZ) = YTE(C)Z ≡ YTQZ, which in general is not equal to

T = YTZ. The following estimators are considered to correct for linkage errors:

T̂Q = (QY)TZ∗ = YTQTCZ, (9)

T̂
BC

= YTQ−1Z∗ = YTQ−1CZ. (10)

The idea of the Q approach in (9) is that (CY)TZ∗ = (CY)TCZ = YTZ = T. The second

equality follows from the fact that C is a permutation matrix, so CTC = I. By replacing the

unknown matrix C by its expectation Q, the estimator T̂Q is obtained. Using the expectation Q

instead of the unknown matrix C is the defining property of this approach. The idea of the Q−1

approach in (10) is that YTQ−1Z∗ is an unbiased estimator for the true contingency table of y

and z, namely: E(YTQ−1Z∗) = E(YTQ−1CZ) = YTQ−1E(C)Z = YTQ−1QZ = YTZ = T.

The errors of the single entries are examined in estimated contingency tables under the

exchangeable linkage error model. Consider a single entry of the true contingency table T:

tjk = (YTZ)jk = yT
j zk. The corresponding entries of the estimated tables T̂

∗
, T̂

Q
, and T̂

BC

are:

t̂∗jk = (YTCZ)jk = yT
j Czk,

t̂Qjk = (YTQTCZ)jk = yT
j Q

TCzk,

t̂BC
jk = (YTQ−1CZ)jk = yT

j Q
−1Czk.
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Denote the errors per element as e∗jk = t̂∗jk − tjk, e
Q
jk = t̂Qjk − tjk, and eBC

jk = t̂BC
jk − tjk:

e∗jk = yT
j (C− I)zk,

eQjk = yT
j (Q

TC− I)zk =
nq − 1

n− 1
yT
j (C− I)zk +

1− q

n− 1
yT
j (uu

T − nI)zk,

eBC
jk = yT

j (Q
−1C− I)zk =

n− 1

nq − 1
yT
j (C− I)zk − 1− q

nq − 1
yT
j (uu

T − nI)zk.

For the derivations of the expressions eQjk and eBC
jk formulas (4) and (7) are used.

It follows that the expressions for the bias are:

B(t̂∗jk) = −δ(ntjk − rjsk), (11)

B(t̂Qjk) = −(1 +
nq − 1

n− 1
)δ(ntjk − rjsk), (12)

B(t̂BC
jk ) = 0. (13)

Furthermore, expressions for the variance are:

Var(t̂∗jk) = Var(yT
j Czk),

Var(t̂Qjk) =

(
nq − 1

n− 1

)2

Var(yT
j Czk),

Var(t̂BC
jk ) =

(
n− 1

nq − 1

)2

Var(yT
j Czk).

Note that the variance of t̂BC
jk can diverge. The variance of the estimator plus the square of

the corresponding bias gives the mean square error for each of the three estimators. In Scholtus

(2020), the following extended formula for the variance Var(t̂∗jk) is given for n ≥ 3, assuming that

15



linkage errors can be described by the simple simulation method with 2-cycles (see Appendix B):

Var
(
t̂∗jk
)
= q(1− q)tjk +

1− q

n− 1

(
1− 1− q

n− 1

)
(rjsk − tjk)

− q
1− q

n− 1
2tjk(rj + sk − 2)

+

{
2q

n− 1
+

(
1− 2

n− 1

)(
nq − 1

n− 1

)2− 2
n

− q2 −
(
1− q

n− 1

)2
}
tjk(tjk − 1)

+
1

n− 2

{
n− 3

n− 1

[
q2 −

(
nq − 1

n− 1

)2− 2
n

]
+

(
1− q

n− 1

)2
}
×

2tjk[(rj − 1)(sk − 1)− (tjk − 1)]

−
(
1− q

n− 1

)2

(rjsk − 2tjk)(rj + sk − 2)

+
1

n− 2

{
1

n− 1

[(
nq − 1

n− 1

)2− 2
n

− q2

]
+

(
1− q

n− 1

)2
}
×

{rjsk(rj − 1)(sk − 1)− 2tjk [2(rj − 1)(sk − 1)− (tjk − 1)]} . (14)

3.2 Regularised estimator

In Pijpers (2021), a new estimator is proposed. In this section, the main formulas of this estimator

will be given. The full derivations of these formulas are given in Pijpers (2021). The proposed

estimator uses notions from the application of regularisation of ill-conditioned matrices. A square

matrix is ill-conditioned if it is invertible (non-singular) but can become non-invertible (singular)

if some of its entries are changed slightly. The matrix Q is generally not ill-conditioned except

when q approaches the lower bound 1
n , which is exactly where the variance of the unbiased

estimator T̂
BC

in (10) diverges. Two different variants of the regularised estimator are proposed.

The following estimator is the first variant proposed to correct for linkage errors:

T̂
reg

= YT[νQTQ+ (1− ν)I]−1QTZ∗ = YT[νQTQ+ (1− ν)I]−1QTCZ, (15)

where 0 ≤ ν ≤ 1. The parameter ν is to be chosen such that it balances minimizing the bias and

the variance. As ν approaches zero the estimator becomes identical to T̂
Q

and as ν approaches

1 the estimator becomes identical to T̂
BC

. The entries of the estimated table T̂reg are:

t̂regjk =
(
YT[νQTQ+ (1− ν)I]−1QTCZ

)
jk

= yT
j [νQ

TQ+ (1− ν)I]−1QTCzk.
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The expression for the error per element, eregjk = t̂regjk − tjk, becomes:

eregjk = yT
j ([νQ

TQ+ (1− ν)I]−1QTC− I)zk

=
nq − 1

n− 1− nνλ(1− q)
yT
j (C− I)zk +

(1− q)(1− νλ)

n− 1− nνλ(1− q)
yT
j (uu

T − nI)zk,

where λ = (n−1)2−(nq−1)2

n(n−1)(1−q) . The expression for the bias of this family of estimators is:

B(T̂
reg

) =
1

n

[(n− 1)2 − (nq − 1)2](1− ν)

(n− 1)2(1− ν) + ν(nq − 1)2
YT[uuT − nI]Z,

and the expression for the variance is:

Var(t̂regjk ) =

(
(nq − 1)(n− 1)

(n− 1)2(1− ν) + ν(nq − 1)2

)2

Var(yT
j Czk).

One possible approach to choosing a value for ν is to determine whether there is a value for ν

for which the mean squared error has a minimum. This yields:

νopt = 1− n2(n− 1)2

(n− 1)2 − (nq − 1)2
Var(yT

j Czk)

(yT
j [uu

T − nI]zk)2
. (16)

There are two problems with the expression for νopt. The first problem is that for values of

q ↑ 1 or when (yT
j [uu

T − nI]zk)
2 << Var(yT

j Czk) the value of ν will approach −∞. This would

violate the design that 0 ≤ ν ≤ 1. It is inconvenient to have to determine whether the νopt is in

the correct range before applying the estimator. The second problem is that the second fraction

of the expression depends on the true contingency table T, which is not known in practice.

Therefore, this term needs to be estimated first.

A pragmatic choice proposed by Pijpers (2021) is to set ν to:

νprag =
(nq − 1)2

(n− 1)2 + (nq − 1)2
. (17)
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With the pragmatic value for ν, the bias and variance become:

B(T̂
reg,prag

) =
1

n

[(n− 1)2 − (nq − 1)2](n− 1)2

(n− 1)4 + (nq − 1)4
YT[uuT − nI]Z

=
(n− 1)4

(n− 1)4 + (nq − 1)4
B(T̂

Q
)

Var(t̂reg,pragjk ) =

(
[(n− 1)2 + (nq − 1)2](n− 1)(nq − 1)

(n− 1)4 + (nq − 1)4

)2

Var(yT
j Czk)

=

(
[(n− 1)2 + (nq − 1)2](n− 1)2

(n− 1)4 + (nq − 1)4

)2

Var(t̂Qjk).

The second variant of the estimator that is proposed in Pijpers (2021), is not included in this

project as the variance is slightly higher than for the näıve estimator, which is higher than for

the first variant of the regularised estimator (see Appendix A).

3.3 New estimators using probabilities

As mentioned before, the true contingency table is unknown in practice. In what follows, new

correction methods will be constructed by using the probabilities of the true tjk given the observed

t̂∗jk, i.e. Pr(t|t̂∗) where t and t̂∗ denote the true and observed value for some cell, respectively. For

notational convenience, we will often drop subscripts in this section. Multiple steps are necessary

to compute these probabilities. First, the probabilities Pr(t̂∗|t) are computed, after which this

conditional probability is reversed using Bayes’ rule. Based on these probabilities, two different

correction methods are constructed.

3.3.1 Prior probabilities

To derive the reverse probability Pr(t|t̂∗), Bayes’ rule (Hoff, 2009) will be used. A prior distri-

bution of the true value tjk is needed to be able to use Bayes’ rule to compute this probability.

Three different prior distributions are constructed for tjk. Note that the prior distribution

has to be computed for each individual cell of the contingency table and that different values

for t (i.e. potential true values) are considered. The values for t run over all integers from

L = max{rj + sk −n, 0} up to and including U = min{rj , sk}. L and U are the so-called Fréchet

bounds and hold true for any cell in any contingency table (Nelsen, 1987). Due to computa-

tional difficulties, which will be clarified in Section 4.1, the possible integers for t are noted as

L ≤ L′ ≤ t ≤ U ′ ≤ U .
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The first prior distribution is given by:

Pr0(t) =
1

U ′ − L′ + 1
for L′ ≤ t ≤ U ′. (18)

With this prior, each value of t that will be considered has the same probability of occurring. As

this prior distribution just assigns the same probability to each possible value for t, it is hardly

informative.

The second prior distribution, proposed by Scholtus and De Waal (2020-2022), is given by:

Pr0(t) = C

(
rj
t

)(
sk
t

)
t!

(n−rj)!(n−sk)!
(n−rj−sk+t)!

n!
for L′ ≤ t ≤ U ′, (19)

where C is a constant to ensure that the probabilities sum up to 1. It is assumed that this prior

probability is the probability of obtaining tjk in cell (j, k) when links between the n units in

dataset A and the n units in dataset B are made randomly, with rj units with category j in

dataset A and sk units with category k in dataset B.
(
rj
t

)(
sk
t

)
t! is the number of ways t can be

selected from the rj units with category j in dataset A and from the sk units with category k

in dataset B, and subsequently, link these sets of units to each other randomly. (n−sk)!
(n−rj−sk+t)! is

the number of ways in which rj − t units with category j in dataset A can be linked to n − sk

units in dataset B not having category k. This way the value of t is not affected. The remaining

n−rj units in dataset A can be linked in every way to n−rj units in dataset B without affecting

the value of t, which can be done in (n− rj)! ways (Scholtus & De Waal, 2020-2022). This prior

distribution is more informative in comparison to the first prior distribution in (18), as it makes

use of the marginals rj and sk.

The third and last prior distribution is given by:

Pr0(t) = C

(
U ′

t

)
pt(1− p)U

′−t for L′ ≤ t ≤ U ′, (20)

where C is a constant to ensure that the probabilities sum up to 1. A truncated binomial

distribution is assumed for t. Since the observed values t̂∗ are known, we assume that EPr0(t) =

t̂∗, where EPr0 denotes the expectation with respect to the truncated binomial model. To find

a value for p, we assume that EPr0(t) can be closely approximated by using the corresponding

binomial model instead of the truncated binomial model. Then, we can say: EPr0(t) = U ′ × p.

Subsequently, p can be estimated by p̂ = t̂∗

U ′ . Thus, this prior distribution can be estimated by:

P̂r0(t) = C

(
U ′

t

)
p̂t(1− p̂)U

′−t for L′ ≤ t ≤ U ′. (21)
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As this prior distribution makes use of the observed values t̂∗, it is again more informative in

comparison to the first prior distribution in (18).

In practice, the informativeness of the prior distribution for the true value t can be both an

advantage and a disadvantage. If the value of t̂∗ is close to the true value tjk, it is useful to make

use of an informative prior distribution, e.g. (19) and (21). However, if the value of t̂∗ deviates

more from tjk, it might be better to use a less informative prior, e.g. (18).

3.3.2 Computing the conditional probabilities

To compute the conditional probabilities Pr(t̂∗|t), an iterative method is proposed in Scholtus

and De Waal (2020-2022) to approximate these probabilities for the observed value t̂∗ given the

true value t:

Pr(t̂∗|t) =
∞∑
d=0

p(d, t̂∗)e−λ(n,q)λ
d(n, q)

d!
. (22)

Here, p(d, t̂∗) is the probability of observing t̂∗ links after having drawn exactly d 2-cycles. A

2-cycle (ij) represents an incorrect link between the records of unit i in file A and unit j in file

B, and vice versa (see Appendix B). This probability is conditional on the true number of links

t, so it actually is p(d, t̂∗|t). In practice, only the first few terms of the sum in (22) have to be

computed, as the sum can be truncated once the contributions of terms with larger values of d

become negligible.

To be able to compute the probability p(d, t̂∗), three different probabilities have to be com-

puted first. The sum of these three probabilities is equal to 1 (Scholtus & De Waal, 2020-2022).

The first probability is Pr(+|t̂∗). This is the probability of drawing a 2-cycle that leads to an

extra linked pair of units with category j in dataset A and category k in dataset B, which leads

to an increase of 1 in cell (j, k) when there are already t̂∗ linked pairs. In other words, it is the

probability of swapping one of the (sk − t̂∗) units from dataset B with category k that is not

linked to a unit from dataset A with category j yet, with one of the (rj − t̂∗) units from dataset

B with another category than k that is linked to a unit from dataset A. That is:

Pr(+|t̂∗) = (rj − t̂∗)(sk − t̂∗)(
n
2

) = 2
(rj − t̂∗)(sk − t̂∗)

n(n− 1)
, (23)

since there are (rj − t̂∗)(sk − t̂∗) 2-cycles that create a new linked pair with categories j and k

and
(
n
2

)
2-cycles in total.

Next, we have the probability Pr(−|t̂∗). This is the probability of drawing a 2-cycle that leads

to one linked pair of units with category j in dataset A and category k in dataset B less, which

leads to a decrease of 1 in cell (j, k) when there are already t̂∗ linked pairs. In other words, this

is the probability of swapping one of the t̂∗ units from dataset B with category k that is linked

to a unit from dataset A with category j, with one of the (n− rj − sk + t̂∗) units from dataset

20



B with another category than k that are not linked to a unit from dataset A with category j.

This probability can be computed by:

Pr(−|t̂∗) = t̂∗(n− rj − sk + t̂∗)(
n
2

) = 2
t̂∗(n− rj − sk + t̂∗)

n(n− 1)
, (24)

since there are t̂∗(n − rj − sk + t̂∗) 2-cycles that have a linked pair less with categories i and j

and
(
n
2

)
2-cycles in total.

Lastly, we have the probability of drawing a 2-cycle that has no effect on the number of linked

pairs of units with category j in dataset A and category k in dataset B when we already have t̂∗

linked pairs, Pr(= |t̂∗). Since Pr(+|t̂∗) + Pr(−|t̂∗) + Pr(= |t̂∗) = 1, we have:

Pr(= |t̂∗) = 1− (rj − t̂∗)(sk − t̂∗) + t̂∗(n− rj − sk + t̂∗)(
n
2

)
= 1− 2

rjsk + nt̂∗ − 2(rj + sk)t̂
∗ + 2(t̂∗)2

n(n− 1)
. (25)

With these three probabilities, we can compute:

p(d, t̂∗) = Pr(+|t̂∗ − 1)p(d− 1, t̂∗ − 1)+Pr(= |t̂∗)p(d− 1, t̂∗) +Pr(−|t̂∗ +1)p(d− 1, t̂∗ +1), (26)

with boundary conditions p(0, t̂∗) = 1 if t̂∗ = t and p(0, t̂∗) = 0 otherwise. By computing

Pr(+|t̂∗),Pr(−|t̂∗) and Pr(= |t̂∗) for all feasible values of t̂∗, and substituting those probabilities

in (26), p(d, t̂∗) can be computed for all t̂∗.

3.3.3 Applying Bayes’ Rule

Now that we have the probabilities Pr(t = tjk|t̂∗ = t̂∗jk), we can apply Bayes’ rule to reverse this

conditional probability to find Pr(t = tjk|t̂∗ = t̂∗jk):

Pr(t|t̂∗) = Pr(t̂∗|t)Pr0(t)∑U ′

z=L′ Pr(t̂∗|t = z)Pr0(z)
. (27)

These probabilities describe the likelihood that tjk is the true value for a certain cell (j, k), given

the observed value, the assumed model for linkage errors, and the prior distribution (Scholtus

& De Waal, 2020-2022). With these probabilities, new correction methods can be constructed.

Unlike the previous existing and regularised estimators in Sections 3.1 and 3.2, we do not have

explicit formulas for the bias and variance of the new estimators that exploit (27). The bias and
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variance of the following estimators could be estimated using the bootstrap method, as performed

in Chipperfield and Chambers (2015). However, this is beyond the scope of this project.

3.3.4 Expected value of the contingency table

The first correction method that is constructed, uses the probabilities Pr(t = tjk|t̂∗ = t̂∗jk) to

directly compute the expected value E(T|T̂
∗
). The expected value of true links in cell (j, k)

given the observed links t̂∗jk is given by:

t
(E)
jk = E(tjk|t̂∗jk) =

U ′∑
t=L′

t · Pr(t|t̂∗). (28)

Denote the error per element as e
(E)
jk = t

(E)
jk −tjk. The expected contingency table can also be used

in combination with the regularised estimator from Section 3.2, by using it in the computations

of νopt in (16).

3.3.5 Weighted correction method by using MSEs

The second correction method uses the estimated mean square errors (MSE) to weight the three

existing correction methods from Scholtus et al. (2022) (see Section 3.1). That is,

t̂Wjk =
M̂SE(t̂Qjk)

−1t̂Qjk + M̂SE(t̂∗jk)
−1t̂∗jk + M̂SE(t̂BC

jk )−1t̂BC
jk

M̂SE(t̂Qjk)
−1 + M̂SE(t̂∗jk)

−1 + M̂SE(t̂BC
jk )−1

, (29)

where

M̂SE(t̂Qjk) = B̂(t̂Qjk)
2 + V̂ar(t̂Qjk) =

(
−(1 + nq−1

n−1 )δ(nt̂
(E)
jk − rjsk)

)2
+ (nq−1)2

(n−1)2 V̂ar(t̂∗jk),

M̂SE(t̂BC
jk ) = B̂(t̂BC

jk )2 + V̂ar(t̂BC
jk ) = 0 + (n−1)2

(nq−1)2 V̂ar(t̂
∗
jk),

M̂SE(t̂∗jk) = B̂(t̂∗jk)
2 + V̂ar(t̂∗jk) =

(
−δ(nt̂

(E)
jk − rjsk)

)2
+ V̂ar(t̂∗jk).

The estimated bias for the näıve correction method is computed using the expressions for the

bias in (11), (12), and (13); where tjk is replaced by t
(E)
jk . The estimated variance of the näıve

correction method is computed using formula (14), where again tjk is replaced by t
(E)
jk . This

estimator weights for each individual cell of the contingency table which of the three correction

methods from Section 3.1 (the näıve, Q, or Q−1 approach) performs best and weights them

based on their estimated MSE.
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4 Simulation study

In this section, all the correction methods are tested by means of a simulation study. The settings

for the simulation study are presented first. Thereafter, the results of the simulation study are

presented.

4.1 Simulation design

The simulation study uses an extended version of the design that was used in Scholtus et al.

(2022). It is based on a dataset of n = 300 records. As mentioned in Section 2.4, we assume we are

dealing with one block of data and a single error rate according to the exchangeable linkage error

model. Nine different error matrices Q will be considered, with error rates q = 0.9, 0.8, . . . , 0.1

on the diagonal. All off-diagonal elements of the Q matrices are equal to δ = 1−q
n−1 = 1−q

299 .

First, four continuous variables are generated: x ∼ N(20, 102), z ∼ N(20, 152), y = 20+2x+

1z+ϵ, where ϵ ∼ N(0, 42), and w ∼ N(20, 102). Then the variables y, z, and w are discretised into

five categories each and converted to vectors of dummy variables Yg,Zg, and Wg, respectively.

Next, the dataset is split into two files. File A contains the vector Yg and matching variables.

File B contains the vectors Zg and Wg and matching variables. Two true contingency tables are

obtained, namely YT
gZg with dependent attributes (i.e. the target variables in file A and B are

dependent on each other), and YT
gWg with independent attributes (i.e. the target variables in

file A and B are independent of each other).

For each error matrix Q, 10, 000 permutation matrices are generated. The approach that was

used to generate the permutation matrices is explained in Appendix B. For each permutation

matrix, a row of file A is linked with the corresponding row of file B according to the permutation

matrix. This way, we simulate the situation where we observe Z∗
g = CZg andW∗

g = CWg instead

of the true (and unknown) Zg and Wg, respectively. Next, on each of the 10,000 linked files,

5 × 5 corrected contingency tables of YTZg and YT
gWg are produced after using the following

correction methods:

1. the näıve approach (8): YT
gZ

∗
g and YT

gW
∗
g , without any correction.

2. the Q approach (9): (QYg)
TZ∗

g and (QYg)
TW∗

g .

3. the Q−1 approach (10): YT
gQ

−1Z∗
g and YT

gQ
−1W∗

g . For this estimator, estimated cell

values can become negative. These negative values are set equal to zero.

4. the expected value approach (28): E(YT
gZg) and E(YT

gWg), by using the first (18), second

(19), or third (21) prior distribution.

5. the regularised approach (15): YT
g [νQ

TQ+(1−ν)I]−1QTZ∗
g andYT

g [νQ
TQ+(1−ν)I]−1QTW∗

g ,

where different values for ν are used, namely:

(a) νprag (17)
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(b) νopt (16) computed with YT
gZg and YT

gWg

(c) νopt computed with YT
gZ

∗
g and YT

gW
∗
g

(d) νopt computed with the three different variants of E(YT
gZg) and E(YT

gWg)

6. the weighted MSE approach (29), computed with the three different variants of E(YT
gZg)

and E(YT
gWg)

In total, we obtain 15 corrected contingency tables for YT
gZg with dependent attributes and

15 corrected contingency tables for YT
gWg with independent attributes, for each of the 10,000

permutation matrices. Moreover, the whole simulation is repeated 10 times, with different true

contingency tables YTZg and YTWg by setting a different random seed. The average Cramer’s

V (Sakoda, 1977) of the ten tables with dependent attributes is 0.3167 with a minimum of

0.2482 and a maximum of 0.3534. For the ten tables with independent attributes, the average

Cramer’s V is equal to 0.1145 with a minimum of 0.0901 and a maximum of 0.1590. Note that the

regularised approach where νopt is computed with YT
gZg and YT

gWg cannot be used in practice,

as the true contingency tables are unknown. However, these are included in the simulation study

to be able to compare the performance of the regularised approach where νopt is computed with

the true contingency tables with the performances of the other regularised approaches where νopt

is estimated by using the observed and expected contingency tables.

All the calculations of the above-mentioned simulation are performed in RStudio, version

2022.2.1.461 (RStudio Team, 2022). The code that was used for the simulation study is stored in

a repository. The link to this repository can be found in Appendix C. For computational reasons,

some adjustments are made to the theoretical calculations covered in Section 3. In Section 3.3.1,

prior probabilities are computed for each individual contingency table cell, for all values of t from

L up to and including U . During the simulation study, it appeared that the number of possible

values for t can be too large to be able to compute the probabilities that are needed for the new

estimators. Therefore, the potential true values of t are considered from L′ = max(L, t̂∗−19) ≥ L

up to and including U ′ = min(U, t̂∗+19) ≤ U . Moreover, a different approach is used to calculate

the probabilities from Sections 3.3.2 and 3.3.3. The numerical procedure to obtain p(d, t̂∗) and

the reversed probabilities Pr(t|t̂∗) are described in matrix-vector notation and programmed using

this approach. The full explanation of this approach can be found in Appendix D.

4.2 Simulation results

In this section, we will look at the results of the simulation study. First, we will extract two

contingency tables YT
gZg with dependent attributes and YT

gWg with independent attributes

that were used in the simulation study. We also look at four corresponding näıve contingency

tables. After that, we will inspect the general results of the simulation study by looking at the

average percentages where the näıve approach outperforms the alternative approach and the

average total relative differences from the näıve empirical RMSE. Finally, we will go back to the
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two examples. Based on the general results, one correction approach that performs well and one

that performs worse are applied to these tables.

4.2.1 Example tables from the simulation study

To give a better idea of the simulation study that was performed, two examples of the contingency

tables are extracted and shown in detail. In Table 3, one of the ten true contingency tables YT
gZg

with dependent attributes is shown. In Table 4 one of the ten true contingency tables YT
gWg

with independent attributes is shown.

Table 3
One of the Ten Contingency Tables YT

gZg with De-
pendent Attributes that Was Used in the Simulation
Study

C1 C2 C3 C4 C5

R1 4 3 1 0 0
R2 4 17 17 9 0
R3 1 18 59 27 4
R4 0 8 42 36 15
R5 0 1 9 16 9

Table 4
One of the Ten Contingency Tables YT

gWg with In-
dependent Attributes that Was Used in the Simula-
tion Study

C1 C2 C3 C4 C5

R1 0 2 3 3 0
R2 2 10 23 10 2
R3 0 30 56 19 4
R4 1 20 45 23 12
R5 1 8 15 8 3

For this example, we will only look at two error matrices Q with q = 0.8 and q = 0.2 in

detail. Note that for the error matrix with q = 0.8, 80% of the links are correct and 20% of the

links are incorrect in expectation. Similarly, 20% of the links are correct and 80% of the links

are incorrect in expectation for the error matrix with q = 0.2. Two examples of the observed

näıve contingency table YT
gZ

∗
g with dependent attributes are given in Table 5 and Table 6 with

a probability of a correct link of q = 0.8 and q = 0.2, respectively. When we compare these näıve

contingency tables to the true contingency table in Table 3, we see that the values of Table 5 are

closer to the true values compared to the values of Table 6, which is as expected.

Table 5
One of the 10,000 Näıve Contingency Tables YT

gZ
∗
g

with Dependent Attributes where the Probability of a
Correct Link (q) Is 0.8

C1 C2 C3 C4 C5

R1 4 2 1 1 0
R2 4 15 18 9 1
R3 1 17 56 29 6
R4 0 10 43 34 14
R5 0 3 10 15 7

Table 6
One of the 10,000 Näıve Contingency Tables YT

gZ
∗
g

with Dependent Attributes where the Probability of a
Correct Link (q) Is 0.2

C1 C2 C3 C4 C5

R1 1 0 4 3 0
R2 2 8 19 11 7
R3 3 17 46 31 12
R4 2 16 42 35 6
R5 1 6 17 8 3

Two examples of the observed näıve contingency tables YT
gW

∗
g with independent attributes

are given in Table 7 and Table 8 with a probability of a correct link of q = 0.8 and q = 0.2,
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respectively. Comparing these näıve contingency tables to the true contingency table in Table 4,

we see that the values of Table 7 are closer to the true values compared to the values of Table 8,

which again is as expected.

Table 7
One of the 10,000 Näıve Contingency Tables YT

gW
∗
g

with Independent Attributes where the Probability of
a Correct Link (q) Is 0.8

C1 C2 C3 C4 C5

R1 0 2 3 3 0
R2 3 9 23 11 1
R3 0 28 57 20 4
R4 1 25 40 22 13
R5 0 6 19 7 3

Table 8
One of the 10,000 Näıve Contingency Tables YT

gW
∗
g

with Independent Attributes where the Probability of
a Correct Link (q) Is 0.2

C1 C2 C3 C4 C5

R1 0 1 4 3 0
R2 2 10 14 16 5
R3 1 31 56 17 4
R4 1 20 47 22 11
R5 0 8 21 5 1

If we look at the values of the näıve tables with dependent attributes in Table 5 and 6, we see

that the values are very different for q = 0.8 and q = 0.2. For the näıve tables with independent

attributes in Table 7 and 8, the values are less different for q = 0.8 and q = 0.2. Moreover, values

of the näıve contingency tables with independent attributes differ less from the true contingency

table in Table 4 than the tables with dependent attributes differ from the true contingency

table in Table 3. An explanation for this is that linkage errors, provided they comply with the

exchangeable linkage error assumption, cause more damage to dependent tables (i.e. tables where

the target variables are dependent on each other) than to independent tables (i.e. tables where

the target variables are independent of each other). Incorrectly linking records that do not belong

to the same entity disturbs the relationships between Y and Z by attenuating the association

towards zero. As a result, the association between Y and Z in the näıve table is underestimated

when the target variables are dependent. On the other hand, if there is no dependency between

the target variables, the true association is already zero. The expected association then remains

equal to zero after incorrectly linking records. In Zhang and Tuoto (2021), these findings were

also shown in the context of regression models and using non-informative linkage errors instead

of exchangeable linkage errors.

4.2.2 General results of the simulation study

In what follows, we will look at the overall results of the simulation study. In the figures, short

names are used to indicate the alternative approaches. A list of these short names and the

corresponding approaches can be found in Table E.10 in Appendix E.

We begin by assessing whether the näıve approach is expected to perform better than the

alternative approaches for each of the 25 individual cells of the tables among all the 10,000

tables produced from the linked files. In other words, this is the percentage of times that

|ealternativejk | > |e∗jk|. Then, the average of all 25 individual cells is computed over the tables.
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Thereafter, we again take the average of these 10,000 percentages. This is repeated for the

different values of q. A low average percentage would indicate that the corresponding approach is

expected to perform better than the näıve approach, which is desirable. The average percentages

over the 10 contingency tables with dependent attributes with corresponding standard deviation

are shown in Figure 2. The full results can be found in Table E.11 in Appendix E.

Figure 2
Average Percentages where the Näıve Approach Outperforms the Alternative Approach over the 10 Gen-
erated Contingency Tables with Dependent Attributes for Different Error Rates q with Corresponding
Standard Deviation

Note. The values of q are on the x-axis and the average percentage is on the y-axis. Each alternative
approach has its own colour, which can be found in the legend. Moreover, each group of estimators has
its own shape to indicate the data points. The existing estimators from Section 3.1 are indicated by a
square, the expected values from Section 3.3.4 by a dot, the regularised estimators from Section 3.2 by
a triangle, and the weighted MSE estimators from Section 3.3.5 by a diamond. The percentages are the
average over the ten contingency tables with dependent attributes. The ribbon around the graph in the
same colour as the line and data points corresponding to the approach indicates one standard deviation
above and below the average percentage. For an overview of the short names used for the alternative
approaches, see Table E.10 in Appendix E.

In the plot, we see that the Q−1 approach has the highest average percentage for q = 0.1.

However, as q increases, the average percentage that the näıve approach will outperform the

Q−1 approach decreases and is below most of the alternative approaches. For values q > 0.3,

the average percentage is below 50%. The expected value with the first (uninformative) prior

distribution also has a high average percentage for q = 0.1, which slightly decreases as q increases.
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For q > 0.7 the average percentage increases again. For this approach, the average percentage

being outperformed by the näıve approach is always above 50%.

The Q approach, the expected value approach with the second prior, the regularised approach

with the pragmatic choice for ν and the three variants of the weighted MSE approach perform

the worst for values of q between 0.5 and 0.9. As the value of q increases, the average percentages

of the näıve approach outperforming these six alternative approaches also increases. Overall, the

average percentages remain above 50% for these six alternative approaches for all considered

values of q.

The regularised approaches where the optimal value of ν is estimated with the observed

and the three expected contingency tables, perform all similarly. Between the values q = 0.2

and q = 0.8, the average percentages slightly increase for all types of the regularised estimator,

where the regularised estimator with ν estimated with the second prior rises the most and the

regularised estimator with ν estimated with the first prior rises the least. When we compare

these four regularised estimators with the regularised approach that uses the true contingency

table to compute the optimal ν, it can be concluded that the average percentage is higher if we

do not use the true contingency table for all values of q. If we knew the true contingency table

in practice, the regularised estimator with optimal ν would perform better. From these results,

it appears that the expected value with the first prior estimates νopt best for all values of q.

However, using an estimated value of νopt, the average percentages results in considerably higher

percentages than using the true value of νopt.

The expected value approach with the third prior distribution has the lowest average percent-

age for all values of q that were considered. The average percentage is below 50% for all values

of q. Hence, no matter what value of q, the expected value approach with the third prior is likely

better than the näıve approach when the table has dependent attributes. The Q−1 approach is

also likely to perform better than the näıve approach for values of q ≥ 0.4. For smaller values

of q, the average percentages of the näıve approach outperforming the alternative approaches

are all close to each other. For larger values of q, the average percentages are more separated

compared to the smaller values of q.

The average percentages over the 10 contingency tables with independent attributes with

corresponding standard deviation are shown in Figure 3. The full results can be found in Table

E.13 in Appendix E. Again, the lower the average percentage, the better the alternative approach

performs in comparison to the näıve approach.
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Figure 3
Average Percentages where the Näıve Approach Outperforms the Alternative Approach over the 10 Gen-
erated Contingency Tables with Independent Attributes for Different Error Rates q with Corresponding
Standard Deviation

Note. The values of q are on the x-axis and the average percentage is on the y-axis. Each alternative
approach has its own colour, which can be found in the legend. Moreover, each group of estimators
has its own shape to indicate the data points. The existing estimators from Section 3.1 are indicated
by a square, the expected values from Section 3.3.4 a dot, the regularised estimators from Section 3.2
by a triangle, and the weighted MSE estimators from Section 3.3.5 by a diamond. The percentages are
the average over the ten contingency tables with independent attributes. The ribbon around the graph
in the same colour as the line and data points corresponding to the approach indicates one standard
deviation above and below the average percentage. For an overview of the short names used for the
alternative approaches, see Table E.10 in Appendix E.

We see that the Q−1 approach has the highest average percentage for smaller values of q

and slightly decreases as q increases. The average percentages of the expected value approaches

computed with the first and third prior both remain around the same value for all considered

values of q. The average percentages for these two approaches are above 63% for all values of

q. The expected value approach with the second prior performs better. For values of q ≤ 0.4

the average percentage of the näıve approach outperforming this alternative approach is below

50%. As the value of q increases, the average percentage also increases. For values of q > 0.4,

the average percentage is above 50%.

When we look at the regularised estimators, we see that the regularised estimator with νopt

estimated with the expected value with the first prior has the highest average percentage of all
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variants of the regularised estimator for all values of q. All the regularised estimators where νopt

is estimated are outperformed by the näıve approach for q > 0.4. The average percentages are

below 50% for all the regularised estimators with estimated νopt when q ≤ 0.3, except when using

the first variant of the expected value. For almost all values of q, the regularised estimator with

the pragmatic choice for ν has a lower average percentage compared to the other regularised

estimators that use an estimated value of νopt. Hence, the optimal value of ν appears not to be

optimal for tables with independent attributes when νopt has to be estimated. The regularised

approach that uses the true contingency table to compute νopt has the lowest average percentage

of all alternative approaches for almost all values of q. So, just like for the contingency tables

with dependent attributes, the regularised estimator with optimal ν would perform better if we

knew the true contingency table in practice.

The Q approach and the three weighted MSE approaches all perform quite similarly and have

the lowest average percentages of all the alternative approaches that can be used in practice.

Overall, it seems that most approaches perform better for smaller values of q. The higher

the probability of a correct link, the higher the average percentage where the näıve approach

outperforms the alternative approach. For larger values of q, the average percentages of the

näıve approach outperforming the alternative approaches are all close to each other. For smaller

values of q, the average percentages are more separated compared to the larger values of q. This

is the opposite of what we saw for tables with dependent attributes in Figure 2.

Next, the relative difference from the näıve approach for the alternative approach is investi-

gated. That is: (RMSEalternative−RMSEnäıve)/RMSEnäıve, where RMSE is the empirical root

mean square error. The relative difference is computed for each individual cell of the contingency

table, after which the relative differences of all 25 cells are added up for each table. Using the

relative difference makes it easy to see whether the alternative approaches improve upon the

näıve approach or not. Negative values mean that the alternative approach performs better than

the näıve approach, and positive values mean that the näıve approach performs better than the

alternative approach. In Figure 4, the average total relative differences over the 10 contingency

tables with dependent attributes with corresponding standard deviations are given for all consid-

ered values of q. Note that the y-axis is truncated to be able to see all the graphs with negative

values more clearly. Because of the high average total relative differences for the Q−1 approach

for small values of q, the lines of the other alternative approaches became hard to recognize. The

average total relative difference of the Q−1 approach keeps increasing as q becomes smaller, up

until an average total relative difference of approximately 80. The full plot and a table with the

corresponding results can be found in Figure E.6 and Table E.12 in Appendix E, respectively.
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Figure 4
The Average Total Relative Differences from the Näıve Empirical RMSE over the 10 Generated Con-
tingency Tables with Dependent Attributes for Different Error Rates q with Corresponding Standard
Deviation

Note. The values of q are on the x-axis and the average total relative difference is on the y-axis. Each
alternative approach has its own colour, which can be found in the legend. Moreover, each group of
estimators has its own shape to indicate the data points. The existing estimators from Section 3.1
are indicated by a square, the expected values from Section 3.3.4 by a dot, the regularised estimators
from Section 3.2 by a triangle, and the weighted MSE estimators from Section 3.3.5 a diamond. The
total relative differences are the average over the ten contingency tables with dependent attributes. The
ribbon around the graph in the same colour as the line and data points corresponding to the approach
indicates one standard deviation above and below the average total relative difference. For clarity, the
y-axis is truncated from -10 to 30. The graph of the Q−1 approach keeps increasing until approximately
80 for q < 0.2. For an overview of the short names used for the alternative approaches, see Table E.10
in Appendix E.

In the plot, we see more positive values than negative values for the average total relative

difference. The average total relative difference for the Q approach is negative for q = 0.1 and

q = 0.2 and increases and becomes positive for larger values of q. The Q−1 approach has very

high average total relative differences for small values of q which decrease as q increases. For

q = 0.8 and q = 0.9, the average total relative difference is negative.

When we look at the expected value approaches with the different prior distributions, we see

that when using the first prior the average total relative difference is barely negative for q = 0.9

and becomes positive for all smaller values of q. When we use the second prior the average total

relative difference is negative for q ≤ 0.2 and positive for larger values of q. Using the third prior
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results in negative average total relative differences for values of q between 0.6 and 0.9. When

the probability of a correct link becomes smaller than 0.6, the average total relative difference

becomes positive.

The regularised estimator where the optimal value of ν is computed with the true contingency

table performs best of all estimators. Unfortunately, this estimator cannot be used in practice,

as mentioned previously. The other regularised estimators do not perform as well. Only for

q ≤ 0.2 the regularised estimators with νprag and νopt estimated with the observed contingency

table and the expected values with priors two and three have a negative average total relative

difference.

The three versions of the weighted estimators all perform quite similarly. The average total

relative differences are positive for values of q between 0.4 and 0.9. For q ≤ 0.3, the average total

relative difference becomes negative for all three weighted estimators. Using the third variant of

the expected value in the computations seems to give the best results, but the performances of

the other variants are close.

In Figure 5, the average total relative differences over the 10 contingency tables with indepen-

dent attributes with corresponding standard deviations are given for all considered values of q.

Note that again the y-axis is truncated to be able to see all the graphs with negative values more

clearly. This is because of the same reason as in the previous figure, namely the high average

total relative differences for the Q−1 approach for small values of q. The average total relative

difference of the Q−1 approach keeps increasing as q becomes smaller, up until an average total

relative difference of approximately 140. The full plot and a table with the corresponding results

can be found in Figure E.7 and Table E.14 in Appendix E.
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Figure 5
The Average Total Relative Differences from the Näıve Empirical RMSE over the 10 Generated Con-
tingency Tables with Independent Attributes for Different Error Rates q with Corresponding Standard
Deviation

Note. The values of q are on the x-axis and the average total relative difference is on the y-axis. Each
alternative approach has its own colour, which can be found in the legend. Moreover, each group of
estimators has its own shape to indicate the data points. The existing estimators from Section 3.1 are
indicated by a square, the expected values from Section 3.3.4 by a dot, the regularised estimators from
Section 3.2 by a triangle, and the weighted MSE estimator from Section 3.3.5 by a diamond. The total
relative differences are the average over the ten contingency tables with independent attributes. The
ribbon around the graph in the same colour as the line and data points corresponding to the approach
indicates one standard deviation above and below the average total relative difference. For clarity, the
y-axis is truncated from -10 to 30. The graph of the Q−1 approach keeps increasing until approximately
140 for q < 0.4. For an overview of the short names used for the alternative approaches, see Table E.10
in Appendix E.

In this plot, we have more negative values for the average total relative difference in com-

parison to the plot for tables with dependent attributes in Figure 4. The Q approach is clearly

outperforming the Q−1 approach for all values of q. The smaller the value of q, the higher the

average total relative difference from the näıve empirical RMSE for the Q−1 approach. It is the

other way around for the Q approach: the smaller q, the lower the average relative difference.

Moreover, the average total relative difference is negative for all values of q for the Q approach.

The expected value approach using the second prior gives the same results as the Q approach

and thus performs well. The expected value approach using the first prior does not perform well.

The smaller the value of q, the higher the average total relative difference. The performance of

33



the third variant of the expected value approach is between the other two. It only has positive

average total relative differences for all values of q.

Again, we see that the regularised estimator with νopt computed with the true contingency

table performs best of all the variants of the regularised estimators and of all the alternative

approaches in general. For all regularised estimators that can be used in practice, the average

total relative difference becomes more negative as the probability of a correct link becomes

smaller, except when using the first variant of the expected value. The regularised estimator

with the pragmatic choice of ν also performs well, better than most of the regularised estimators

where an estimated value of νopt is used. Hence, again the optimal value of ν does not appear

to be optimal for tables with independent attributes when it has to be estimated.

The weighted approaches all have negative average total relative differences, which become

more negative as the value of q becomes smaller. The three variants perform similarly, but the

weighted estimator using the second expected value seems to perform best.

4.2.3 Example tables revisited

Now that we have investigated the average percentages where the näıve approach outperforms the

alternative approaches and the average total relative difference from the näıve empirical RMSE,

we go back to the contingency tables that we looked at in detail in Tables 3 and 4. We will now

show the application of one correction approach that performs well and one correction approach

that performs worse for YT
gZg with q = 0.8. The application of one correction approach that

performs well and one correction approach that performs worse for YT
gZg with q = 0.2 and for

YT
gWg with q = 0.8 and q = 0.2 can be found in Appendix F.

In the results, we saw that for tables with dependent attributes and larger values of q the

expected value approach with the third prior distribution performed well and the Q approach

performed poorly. The näıve contingency table YT
gZ

∗
g with q = 0.8 that we saw in Table 5 after

correction with these two correction methods are shown in Table 9.

Table 9
Two Examples of the Corrected Contingency Tables with Dependent Attributes where the Probability of a
Correct Link (q) Was 0.8 by Using the Expected Value Approach with the Third Prior Distribution and
the Q Approach

C1 C2 C3 C4 C5

R1 4.63 2.13 0.72 0.82 0.00
R2 4.44 16.30 17.69 8.31 0.66
R3 0.73 17.00 57.44 28.60 5.37
R4 0.00 9.16 43.04 34.70 14.76
R5 0.00 2.63 9.22 15.80 7.66

C1 C2 C3 C4 C5

R1 3.25 1.85 1.48 1.27 0.15
R2 3.48 13.47 18.41 9.96 1.68
R3 1.46 17.02 54.09 29.60 6.84
R4 0.61 11.17 43.02 33.12 13.08
R5 0.21 3.50 10.99 14.05 6.25

Note. The corrected contingency table on the left is corrected using the expected value approach that
uses the third prior distribution. The corrected contingency table on the right is corrected using the Q
approach.
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The corrected table by using the expected value approach with the third prior distribution in

Table 9 indeed performs very well, as the values of the corrected table are quite close to the real

values. The values of the corrected contingency table with the worse correction method, the Q

approach, differ more from the true values. If the values are all rounded to whole numbers, the

corrected contingency table using the expected value approach with the third prior distribution

results in 9 correct values compared to the true contingency table in Table 3. When we look at

the times that |e(E3)
jk | > |e∗jk|, we find that this holds for 6 out of 25 cells (i.e. 24%). The total

relative difference from the näıve empirical RMSE is approximately -0.281. If we do the same

for the corrected contingency table using the Q approach, we find 4 correct values compared to

the true contingency table in Table 3. It holds for 24 out of 25 cells (i.e. 96%) that |eQjk| > |e∗jk|.
The total relative difference from the näıve empirical RMSE is approximately 0.642.
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5 Discussion

In this final section, the findings of this project are discussed and limitations and suggestions for

future research are given.

Linkage errors can occur during linking data from multiple sources together. There is a growing

emphasis on accounting for linkage errors in the statistical analysis of categorical data and con-

tingency tables. This is relevant for NSIs, as their published statistics are used by government

agencies and stakeholders. If the linkage errors are ignored, this can lead to biased inference. In

Scholtus et al. (2022) two general approaches for compensating for linkage errors (the biased Q

approach and the unbiased Q−1 approach) were presented and tested for dependent tables, i.e.

tables where the target variables in two data files are dependent on each other, and independent

tables, i.e. tables where the target variables in two data files are independent of each other.

Results showed that the unbiased correction approach performed rather poorly compared to the

biased and näıve approach where linkage errors were not compensated for.

The aim of this project was to develop, implement and test new methods for the correction

of linkage errors in contingency tables that perform consistently better than the näıve estimator

and the two previously proposed estimators presented in Scholtus et al. (2022). Moreover, the

aim was to ascertain which correction method is best for a given situation by comparing their

performances on simulated data. Three new approaches for compensating for linkage error when

calculating and analysing two-way contingency tables for categorical data were presented: the

regularised approach, the expected value approach, and the weighted MSE approach. The exist-

ing and the new approaches (and their different variants) were tested in an extended simulation

study. The correction methods were both tested on dependent tables and independent tables.

Moreover, the performances of the correction approaches were tested with different matrices of

linkage error probabilities Q, with 9 different values of q (the probability of a correct link).

For each of the alternative correction methods, the errors and the root mean square error were

compared to the näıve approach.

Determining the best correction approach for the cell values of a contingency table depends

on if the table has dependent or independent attributes, and on how many linkage errors might

be present, i.e. the probability of a correct link (q). For dependent tables, the näıve approach

performs just as well or even better than most of the alternative approaches. The Q−1 approach

seemed to perform well when we looked at the average percentage where this approach is outper-

formed by the näıve approach. If q is larger than 0.4, i.e. 40% or more of the links are correct,

the average percentage is below 50%. However, when we looked at the average total relative

difference for the Q−1 approach, we found high positive values for all values of q < 0.8. This

indicates that this approach does not perform well when less than 80% of the links are correct.

The expected value approach with the third prior distribution also performed well according to

the average percentage of being outperformed by the näıve approach. For all values of q, the
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average percentage was below 50%. Hence, regardless of the probability of a correct link q, the

expected value approach with the third prior distribution (see Section 3.3.1) is likely to perform

better than the näıve approach. This is confirmed for values of q > 0.5 by the average total rela-

tive difference. For q > 0.5 the average total difference of this approach from the näıve empirical

RMSE is negative, which indicates that it performs better than the alternative approach. For

values q ≤ 0.5, the average total relative difference is between 0 and 1. For these reasons, we

recommend using the expected value approach with the third prior distribution for dependent

tables. However, the performance may be worse if the probability of a correct link is less than

0.5. If the probability of a correct link is larger than 0.8, the Q−1 approach may also be a good

alternative that requires less computational work.

For independent tables, we found that the Q approach, the expected value approach with

the second prior distribution (see Section 3.3.1), and the three weighted MSE approaches all had

the lowest average percentages where the näıve approach outperforms the alternative approach

for all values of q. When we looked at the average total relative difference from the näıve

empirical RMSE, we found negative values for all of these five alternative approaches for all

values of q. The smaller the probability of a correct link, the better the correction methods

perform. Moreover, the regularised estimator with the second variant of the expected value and

the regularised estimator with the pragmatic choice for ν also have negative values for all q

for the average total relative difference from the näıve empirical RMSE. However, the average

percentages of these two approaches are always slightly higher than the previous five highlighted

alternative approaches. For these reasons, we recommend using the Q approach. For very small

values of q (i.e. q ≤ 0.2), the weighted MSE approach with the second variant of the expected

value may be a good alternative.

In Scholtus et al. (2022), it was recommended to use the Q approach for independent tables.

This is in line with what is found in this thesis. In addition, the expected value approach with

the second prior distribution performs the same as the Q approach. As the Q approach is easier

to calculate than the expected value approach, it is recommended to use the Q approach in

practice. When the probability of a correct link is very small, the weighted MSE approach with

the second variant of the expected value is a good approach to use for independent tables as well.

In both the previous research and this thesis, it was found that the Q−1 approach performs badly

for independent tables. As only the values q = 0.8 and q = 0.9 were considered in Scholtus et al.

(2022), it was shown in this thesis that the Q−1 approach also performs poorly for independent

tables when the error matrix has less than 0.8 on the diagonal. For dependent tables, it was

recommended in Scholtus et al. (2022) to use the näıve approach when the probability of a

correct link is larger than 0.8. In this thesis, the expected value approach with the third prior

distribution is recommended to use for tables with dependent attributes. Moreover, it is found

in this thesis that the Q−1 approach performs well for tables with q > 0.8. This is in contrast

to the previous findings, where it was suggested to use the näıve approach when the probability

of a correct link is larger than or equal to 0.8.
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We are aware that this research may have some limitations as well. First of all, three different

prior distributions for tjk were used to apply Bayes’ rule to compute the probability of obtaining

tjk in cell (j, k) given the observed t̂∗jk. Using the third prior distribution to compute the

probabilities and thereafter correct with the expected value approach gave positive results for

tables with dependent attributes. For tables with independent attributes, using the second

prior distribution to compute the probabilities and subsequently correct with the expected value

approach gave reasonable results. In future research, new priors can be constructed and used in

the computations, which may lead to better results.

Secondly, if the regularised estimator with νopt is used to correct for linkage errors, the

marginals of the corrected contingency table generally do not sum up to the fixed marginal

totals of the true contingency table. This also holds for the expected value approach and the

weighted correction approach using mean square errors. To obtain tables where the row and

column totals are preserved, an additional iterative proportional fitting (IPF) can be performed

(Deming & Stephan, 1940). This is not implemented in this project, but it might positively

influence the correction approaches.

Thirdly, a point of improvement that can be made in future research, is the estimation of

the value of νopt for the regularised approach. It was found that the regularised estimator with

νopt computed with the true contingency table performed well for both tables with dependent

attributes as with independent attributes. In practice, the true contingency table is unknown

and νopt has to be estimated. In this project, νopt was estimated by using the näıve contingency

table and by using the three variants of the expected value tables. The performance of the

regularised approach with estimated νopt was worse than when νopt was computed with the true

contingency table. Therefore, if the estimation of νopt can be optimised, this may lead to a

better performance which can also be used in practice. We already tried to optimise the value

of optimal ν by iteratively computing νopt until convergence. Unfortunately, this did not lead to

better results.

The iterative method that we just mentioned might also be interesting to use in future research

for any of the other methods that require an estimate for the real tjk as input, i.e. all the new

estimators. In this case, one would compute the estimator by using the näıve observed value as

input for the first round t = 0. Then for each round t > 0, the estimator can be computed by

using the estimator of round t− 1 as input until the estimator no longer changes. Possibly, this

can lead to better estimators.

Moreover, for the existing approaches Q and Q−1 and the regularised approach, explicit

formulas were given for the bias and variance. For the new estimators that use the probabilities

of the true tjk given the observed t̂∗jk, no explicit expressions were derived in this thesis. The

bias and variance of these estimators can be estimated using the bootstrap method, as performed

in Chipperfield and Chambers (2015). This was out of the scope of this project but it can be

performed in future research. Lastly, the correction methods are now only tested by means of a

simulation study. In further research, it might be interesting to also apply and test the correction
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methods on real probabilistically linked data.

In summary, we have found a new successful correction approach for dependent contingency

tables, namely the expected value approach with the third prior distribution that uses the ob-

served values of the contingency table. Moreover, it is confirmed that the Q approach is best

to use for independent contingency tables, also when the probability of a correct link is smaller

than 0.8. The regularised estimator could eventually become the most recommendable correction

method to use for tables with both dependent and independent attributes, but more research is

needed to get there.
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Appendices

A Second variant of the regularised estimator

In this appendix, the second variant of the regularised estimator is given as an addition to Sec-

tion 3.2. As mentioned there, the second variant of this estimator is not as attractive as the first

variant. For this reason, it was decided to leave the second variant aside in this study. The main

formulas of the second variant of the regularised estimator will be given (Pijpers, 2021).

The first variant of the proposed regularised estimator in (15) is constructed in such a way

that even if Q were not symmetric, the matrix inverse needed for the estimator is guaranteed

to exist for all values of 0 ≤ ν ≤ 1. For the Q that is actually considered, i.e. (4) which is

symmetric and positive definite as long as 1
n < q < 1, a second alternative estimator can be

considered:

T̂
reg,2

= YT[µQ+ (1− µ)I]−1Z∗

= YT[µQ+ (1− µ)I]−1CZ

= YT

[
n− 1

µ(nq − 1) + (1− µ)(n− 1)
I− µ(1− q)

µ(nq − 1) + (1− µ)(n− 1)
uuT

]
CZ, (A.30)

where 0 ≤ µ ≤ 1. The expression for the bias of this estimator is:

B(T̂
reg,2

) = YT

[
n− 1

µn(q − 1) + (n− 1)
Q− I− µ(1− q)

µn(q − 1) + (n− 1)
uuT

]
Z

= YT

[
n(1− µ)(q − 1)

µn(q − 1) + (n− 1)
I+

(1− µ)(1− q)

µn(q − 1) + (n− 1)
uuT

]
Z

=
(1− µ)(1− q)

µn(q − 1) + (n− 1)
YT

[
uuT − nI

]
Z

=
(1− µ)(n− 1)2

(nq + n− 2)(µn(q − 1) + (n− 1))
B(T̂Q). (A.31)

and the expression for the variance is:

Var(t̂reg,2jk ) =

(
n− 1

µn(q − 1) + (n− 1)

)2

Var(yT
j Czk)

=
(n− 1)4

(nq − 1)2[µn(q − 1) + (n− 1)]2
Var(t̂Qjk). (A.32)

Even in the limit q ↓ 1
n , the variance remains finite. In general, smaller values of µ decrease

the bias but increase the variance. As done for the ν with the first variant of the regularised
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estimator, an optimal value for µ is determined:

µopt = 1− (n− 1)2

(nq − 1)(1− q)2
Var(yT

j Czk)(
yT
j [uu

T − nI]zk
)2 . (A.33)

As for νopt, the same two problems occur for µopt. For q ↑ 1 or if (yT
j [uu

T − nI]zk)
2 <<

Var(yT
j Czk) the value of µ can go to -∞, which would violate 0 ≤ µ ≤ 1, and the second fraction

of the expression depends on T, which needs to be estimated first.

A pragmatic choice is to set µ to:

µprag =
nq − 1

nq + n− 2
. (A.34)

Using the pragmatic choice for µ results in a lower bias for T̂
reg,2

compared to the biases of T̂
∗

and T̂
Q
. However, this is not the case when comparing the bias of T̂

reg,2
with µprag with the bias

of T̂
reg,1

with νprag. The variance of T̂
reg,2

is slightly higher than for T̂
∗
which is considerably

higher than for T̂
reg,1

. Hence, the second variant is not as attractive as the first variant.
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B Generating permutation matrices

In this appendix, a relatively simple approach by Scholtus (2020) is proposed to generate permu-

tation matrices C. This approach is necessary for the computations of the variance of t̂∗jk in (14)

and the conditional probabilities Pr(t̂∗|t) for the new methods that were constructed in Section

3.3. Lastly, the approach is used in the simulation study in Section 4. The full derivations and

proof of this approach can be found in Scholtus (2020).

When two datasets that are to be linked one-to-one contain the same n entities, random linkage

errors can be presented by a random permutation of order n. For each of the error matrices Q,

permutation matrices C have to be generated by using a stochastic procedure. Generating these

random matrices C is non-trivial when n > 2 as the permutation matrices, with exactly one

entry of one in each row and column and zero otherwise, have to be drawn from an appropriate

distribution such that the expectation of the generated permutation matrices is equal to the error

matrix Q under consideration (see (1)). When n = 1, there are no linkage errors.

In Scholtus et al. (2022), appropriate permutation matrices C with Q as expectation were

generated by applying Cox’s algorithm (Cox, 1987) which is presented in Willenborg and De Waal

(2012). This procedure control-rounds the Q matrix to base 1 according to the probabilities

provided in this matrix. It ensures that there is exactly one entry equal to 1 in each column and

row and that the other entries are equal to zero. Therefore, the expectation of these generated

permutation matrices is equal to the corresponding Q of the exchangeable linkage error model

(see (1)). However, this method becomes relatively time-consuming when n is large.

In Scholtus (2020), a relatively simple probability distribution for C that satisfies (2) and

(3) is proposed to efficiently generate permutation matrices. Assume that n ≥ 3. The set of

permutation matrices C of order n can be mapped one-to-one to the permutation group Sn.

There are n! permutations in Sn. To describe these permutations the cycle notation can be used.

Let Tn = {(12), (13), . . . , (1n), (23), . . . , ((n − 1)n)} denote the set of all distinct 2-cycles of n

elements. The 2-cycle (ij) represents an incorrect link between the records of unit i in file A and

unit j in file B, and vice versa. The number of elements in Tn is
(
n
2

)
= n(n−1)

2 .

Every possible linked dataset can be obtained by taking combinations of pairwise linkage

errors of the form (ij). Consider the following two-step procedure for drawing a permutation

from Sn (i.e., a permutation matrix C):

1. Draw a random number d from a probability distribution on {0, 1, 2, . . . }

2. If d = 0, take the identity permutation. Otherwise, draw d random 2-cycles from Tn and

take their composition.

This procedure always yields a valid permutation from Sn and every permutation Sn can be

constructed this way. Note that a pairwise linkage error can also correct for other pairwise
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linkage errors, e.g. when (ij) is used immediately after (ij) itself. The second pairwise linkage

error then corrects the first one. To complete the procedure, a probability distribution has to

be specified in each step. The following specification is proposed, which is in line with the

exchangeable linkage error model when n is not small:

• In the first step, d is drawn from a Poisson distribution with parameter λ. That is to say,

Pr(d = t) = e−λ λt

t! for t ∈ {0, 1, 2, . . . }.

• In the second step, 2-cycles are drawn from Tn with equal probability and with replacement,

i.e. for each draw all
(
n
2

)
2-cycles have the same selection probability 1

(n2)
= 2

n(n−1) .

We speak of an appropriate value of λ when this generation procedure results in permutation

matrices with the correct expectation, namely Q. The following formula can be used to find an

appropriate value of λ:

λ(n, q) =
n− 1

2
{log(n− 1)− log(nq − 1)}, (B.35)

where log denotes the natural logarithm. The proof that (B.35) indeed results in appropriate

values of λ can be found in Scholtus (2020). Note that the weak assumption 1
n < q from

(6) is necessary to ensure that this solution exists. Under this assumption, λ(n, q) decreases

monotonically to 0 as q increases to 1 for fixed n.
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C Online repository

In addition to the simulation study in Section 4, this appendix provides a link to an online

repository, where the files with the R-code can be downloaded. These files are ready to use and

reproduce the study. Moreover, a short description is given for each file.

The files containing the R-code that was used for the simulation study is available at the follow-

ing online repository: https://github.com/sjarai/master thesis

The following files are in the repository:

• READ.ME: Explanatory file that gives a short description of the project and the files in

the repository. It is recommended to read this file before use.

• Functions.R: R-file with all the functions that are needed in the simulation study.

• Simulation study.R: R-file with parallelised code that performs the simulation study that

was described in Section 4.1.

• Results.R: R-file with code that gives the average results and the plots from Section 4.2.2.
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D Alternative approach to calculate probabilities

In this appendix, the alternative approach to compute the probabilities Pr(t̂∗|t) (Scholtus, 2023)
is given as an addition to Section 3.3 and Section 4. This approach is used in the R-code to

perform the simulation study, as this is a more convenient approach to program.

First, the numerical procedure of computing the probabilities p(d, t̂∗), covered in Section 3.3.2, is

rewritten in matrix-vector notation. Let A be a transition matrix built up from the probabilities

Pr(+|t̂∗), Pr(−|t̂∗), and Pr(−|t̂∗) (i.e., (23), (24), (25, respectively):

A =



aTL′

...

aTy
...

aTU ′


,aTy = (ayz), ayz =



Pr(+|y − 1), if z = y − 1 and y > L′

Pr(−|y + 1), if z = y + 1 and y < U ′

Pr(= |y), if z = y

0, otherwise.

(D.36)

Note that matrixA is a band matrix and that it does not depend on the assumed true value t. Let

pt(d) be a vector containing all possible probabilities p(d, t̂∗), i.e. for all L ≤ L′ ≤ t̂∗ ≤ U ′ ≤ U ,

under the assumption that t is the true value. We then have:

pt(0) = et,

pt(d) = A · pt(d− 1) = Adet, (D.37)

where et is a standard basis vector with 1 in position t and 0 otherwise.

Next, the computation of the reversed probabilities using Bayes’ rule, covered in Section

3.3.3, is rewritten in matrix-vector notation. Let P = (pt̂∗t) denote the matrix of all conditional

probabilities Pr(t̂∗|t), with pt̂∗t = Pr(t̂∗|t) and let P̃ = (ptt̂∗), with ptt̂∗ = Pr(t|t̂∗). Let π0t be

the chosen prior distribution for the true cell t. We collect the prior probabilities into a vector:

π0 = (π0t), where t runs over all integers from L′ up to and including U ′. Then, applying Bayes’

rule to obtain P̃ from P and π0 can be represented in two steps:

Pjoint = P · diag(π0),

P̃ = diag(Pjoint · u)−1 ·Pjoint, (D.38)

where Pjoint is a matrix of all joint probabilities Pr(t, t̂∗) = Pr(t̂∗|t)Pr0(t), u denotes a vector

of ones, diag(π0) denotes a diagonal matrix with the prior probabilities on the diagonal corre-

sponding to each value of t. Matrix P has an interesting property that the numerical procedure
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in (22) and (D.37) can be computed in one step by:

P = VeD−λ(n,q)IV−1, (D.39)

where B = VDV−1 denotes the eigenvalue decomposition of matrix B = λ(n, q)A and D a

diagonal matrix of eigenvalues. The full proof of this property is given in Scholtus (2023).
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E Other results simulation study

In addition to the results of the simulation study in Section 4.2.2, this appendix provides an

overview of the short names used in the results and tables with the exact results correspond-

ing to the line graphs with the average percentages of the näıve approach outperforming the

alternative approach and the average total relative differences from the näıve empirical RMSE.

Moreover, full plots are given for the latter, as they were shown with a truncated y-axis.

In the figures in Section 4.2.2 and in the tables and figures in the remainder of this appendix,

short names are used for the different alternative approaches. For clarity, an overview is given

with all the alternative approaches with the corresponding short name in Table E.10.

Table E.10
Overview of the Short Names Used in the Figures and Tables in This Thesis for Each Alternative Cor-
rection Approach

Short name Corresponding alternative approach

Q The Q approach
Q−1 The Q−1 approach
E1 The expected value approach using the first prior distribution
E2 The expected value approach using the second prior distribution
E3 The expected value approach using the third prior distribution
Regprag The regularised approach with the pragmatic value for ν
Regopt(true) The regularised approach with the optimal value for ν which is computed

using the true contingency table
Regopt(obs) The regularised approach with the optimal value for ν which is estimated

using the näıve contingency table
Regopt(E1)

The regularised approach with the optimal value for ν which is estimated

using the first variant of the expected value
Regopt(E2)

The regularised approach with the optimal value for ν which is estimated

using the second variant of the expected value
Regopt(E3)

The regularised approach with the optimal value for ν which is estimated

using the third variant of the expected value
W

M̂SE1
The weighted MSE approach using the first variant of the expected value

W
M̂SE2

The weighted MSE approach using the second variant of the expected value

W
M̂SE3

The weighted MSE approach using the third variant of the expected value

Note. In the legends of the figures, the text format differs as the short names are displayed without the
bold and italic letters and E is displayed as a normal E.

In Table E.11, the average percentages of the näıve approach outperforming the alternative

approach over the 10 contingency tables with dependent attributes with corresponding standard

deviation are given. These results were also graphically shown in Figure 2. In Table E.12, the

average total relative differences from the näıve empirical RMSE over the 10 contingency tables

with dependent attributes with corresponding standard deviation are given. These results were

also graphically shown in Figure 4.
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Table E.11
The Average Percentages where the Näıve Approach Outperforms the Alternative Approach over the 10
Generated Contingency Tables with Dependent Attributes for Different Error Rates q

Dependent attributes
q = 0.1 q = 0.2 q = 0.3

Q 54.93 (2.45) 62.46 (2.96) 69.14 (3.57)
Q−1 65.39 (2.78) 56.47 (3.14) 49.84 (3.24)
E1 64.78 (2.41) 63.78 (2.26) 61.45 (3.21)
E2 54.97 (2.64) 62.55 (3.19) 69.14 (3.64)
E3 46.91 (2.97) 41.04 (3.49) 36.31 (4.20)
Regprag 54.93 (2.53) 62.34 (2.99) 68.99 (3.64)
Regopt(true) 50.00 (3.04) 44.97 (2.99) 40.14 (3.00)

Regopt(obs) 54.33 (2.39) 60.84 (2.72) 65.25 (3.24)

Regopt(E1)
55.19 (2.31) 58.39 (1.87) 58.36 (1.99)

Regopt(E2)
54.93 (2.45) 62.46 (2.96) 69.13 (3.57)

Regopt(E3)
54.16 (2.40) 60.54 (2.70) 63.08 (2.86)

W
M̂SE1

54.79 (2.43) 61.70 (2.99) 67.79 (3.58)

W
M̂SE2

54.93 (2.44) 62.28 (2.97) 68.77 (3.61)

W
M̂SE3

54.82 (2.44) 61.97 (3.00) 67.86 (3.57)

q = 0.4 q = 0.5 q = 0.6
Q 74.33 (3.90) 78.39 (4.21) 81.40 (4.06)
Q−1 43.68 (3.36) 39.85 (3.30) 37.55 (4.33)
E1 59.15 (3.71) 55.26 (4.97) 53.38 (4.72)
E2 74.38 (4.03) 78.39 (4.19) 81.35 (4.02)
E3 32.93 (4.65) 31.03 (5.01) 30.83 (5.15)
Regprag 74.14 (3.95) 77.93 (4.02) 80.61 (3.92)
Regopt(true) 37.88 (3.10) 37.27 (4.13) 37.86 (4.08)

Regopt(obs) 66.44 (3.44) 64.87 (4.77) 62.66 (4.95)

Regopt(E1)
58.31 (2.21) 57.44 (2.73) 57.17 (3.91)

Regopt(E2)
74.14 (3.87) 76.78 (4.52) 75.96 (5.50)

Regopt(E3)
62.59 (3.53) 60.80 (3.39) 59.06 (4.10)

W
M̂SE1

72.67 (3.68) 76.77 (3.82) 79.89 (3.72)

W
M̂SE2

73.50 (3.77) 76.81 (3.83) 79.89 (3.72)

W
M̂SE3

72.68 (3.68) 76.78 (3.82) 79.89 (3.72)

q = 0.7 q = 0.8 q = 0.9
Q 83.57 (3.76) 84.97 (2.91) 86.79 (1.90)
Q−1 37.06 (4.32) 38.48 (4.75) 45.52 (4.24)
E1 52.16 (4.93) 54.84 (5.59) 64.22 (3.92)
E2 83.53 (3.67) 84.93 (2.81) 86.77 (1.83)
E3 32.30 (5.07) 36.15 (4.86) 45.49 (4.18)
Regprag 82.44 (3.38) 84.23 (2.80) 86.79 (1.90)
Regopt(true) 41.64 (3.72) 47.99 (3.40) 61.33 (2.84)

Regopt(obs) 62.31 (5.26) 62.67 (4.81) 69.62 (4.18)

Regopt(E1)
57.90 (4.15) 60.20 (4.30) 68.64 (3.91)

Regopt(E2)
71.52 (6.58) 67.87 (5.51) 70.38 (4.23)

Regopt(E3)
58.61 (3.96) 60.64 (4.35) 68.71 (3.80)

W
M̂SE1

82.30 (3.41) 84.23 (2.81) 86.79 (1.90)

W
M̂SE2

82.31 (3.41) 84.23 (2.81) 86.79 (1.90)

W
M̂SE3

82.30 (3.41) 84.23 (2.81) 86.79 (1.90)

Note. The rows contain the 14 considered alternative approaches. The columns contain the different
values of q. Due to the table’s width, the columns are split into three parts. The percentages where the
näıve approach outperforms the alternative approach are the average over the ten contingency tables with
dependent attributes. The corresponding standard deviation is given behind the average percentages in
parentheses. For an overview of the short names used for the alternative approaches, see Table E.10.
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Table E.12
The Average Total Relative Differences from the Näıve Empirical RMSE over the 10 Generated Con-
tingency Tables with Dependent Attributes for Different Error Rates q with Corresponding Standard
Deviation

Dependent attributes
q = 0.1 q = 0.2 q = 0.3

Q -3.02 (1.21) -1.43 (1.27) 0.10 (1.32)
Q−1 81.64 (9.07) 34.61 (4.36) 18.58 (2.83)
E1 13.34 (2.19) 13.48 (1.74) 11.76 (1.52)
E2 -3.02 (1.21) -1.43 (1.27) 0.10 (1.32)
E3 0.62 (0.13) 0.87 (0.23) 0.82 (0.33)
Regprag -3.02 (1.21) -1.45 (1.26) 0.01 (1.28)
Regopt(true) -3.55 (1.21) -3.28 (1.24) -3.31 (1.19)

Regopt(obs) -2.56 (0.92) -0.83 (0.74) 0.34 (0.67)

Regopt(E1)
1.25 (1.22) 4.70 (1.03) 4.86 (0.93)

Regopt(E2)
-3.02 (1.21) -1.43 (1.27) 0.09 (1.32)

Regopt(E3)
-2.31 (0.85) -0.23 (0.59) 1.01 (0.47)

W
M̂SE1

-2.98 (1.17) -1.39 (1.10) -0.22 (1.01)

W
M̂SE2

-3.02 (1.21) -1.45 (1.25) -0.06 (1.24)

W
M̂SE3

-3.01 (1.17) -1.47 (1.12) -0.29 (1.03)

q = 0.4 q = 0.5 q = 0.6
Q 1.53 (1.33) 2.79 (1.31) 3.86 (1.27)
Q−1 10.48 (2.06) 5.63 (1.63) 2.58 (1.30)
E1 9.23 (1.38) 6.47 (1.18) 3.98 (1.04)
E2 1.52 (1.33) 2.79 (1.31) 3.85 (1.28)
E3 0.55 (0.41) 0.12 (0.49) -0.39 (0.55)
Regprag 1.21 (1.22) 2.01 (1.09) 2.28 (0.88)
Regopt(true) -3.41 (1.09) -3.42 (0.95) -3.31 (0.82)

Regopt(obs) 1.00 (0.69) 1.27 (0.76) 1.19 (0.83)

Regopt(E1)
3.82 (0.78) 2.56 (0.69) 1.52 (0.70)

Regopt(E2)
1.38 (1.33) 2.14 (1.32) 2.19 (1.25)

Regopt(E3)
1.49 (0.51) 1.45 (0.60) 1.10 (0.71)

W
M̂SE1

0.49 (0.91) 0.92 (0.82) 1.22 (0.73)

W
M̂SE2

0.97 (1.17) 1.62 (1.09) 1.98 (0.98)

W
M̂SE3

0.47 (0.93) 0.95 (0.84) 1.28 (0.76)

q = 0.7 q = 0.8 q = 0.9
Q 4.60 (1.17) 4.80 (1.01) 3.94 (0.73)
Q−1 0.64 (1.02) -0.51 (0.77) -0.84 (0.47)
E1 1.92 (0.88) 0.47 (0.75) -0.27 (0.48)
E2 4.60 (1.19) 4.80 (1.01) 3.94 (0.73)
E3 -0.87 (0.56) -1.18 (0.52) -1.05 (0.38)
Regprag 1.99 (0.60) 1.28 (0.33) 0.45 (0.10)
Regopt(true) -3.03 (0.68) -2.50 (0.53) -1.60 (0.35)

Regopt(obs) 0.88 (0.84) 0.41 (0.77) -0.01 (0.52)

Regopt(E1)
0.74 (0.73) 0.18 (0.70) -0.12 (0.50)

Regopt(E2)
1.68 (1.12) 0.87 (0.92) 0.12 (0.57)

Regopt(E3)
0.63 (0.74) 0.17 (0.69) -0.12 (0.50)

W
M̂SE1

1.48 (0.67) 1.76 (0.62) 2.00 (0.52)

W
M̂SE2

2.17 (0.86) 2.27 (0.74) 2.24 (0.56)

W
M̂SE3

1.55 (0.69) 1.82 (0.63) 2.02 (0.53)

Note. The rows contain the 14 considered alternative approaches. The columns contain the different
values of q. Due to the table’s width, the columns are split into three parts. The total relative differ-
ences from the näıve empirical RMSE are the average over the ten contingency tables with dependent
attributes. The corresponding standard deviation is given behind the average total relative differences
in parentheses. For an overview of the short names used for the alternative approaches, see Table E.10.
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The corresponding full plot (i.e. the plot we saw in Figure 4 with full axes) is shown in Figure

E.6.

Figure E.6
Full plot of the Average Total Relative Differences from the Näıve Empirical RMSE over the 10 Generated
Contingency Tables with Dependent Attributes for Different Error Rates q with Corresponding Standard
Deviation

Note. The values of q are on the x-axis and the average total relative difference is on the y-axis. Each
alternative approach has its own colour, which can be found in the legend. Moreover, each group of
estimators has its own shape to indicate the data points. The existing estimators from Section 3.1 are
indicated by a square, the expected values from Section 3.3.4 by a dot, the regularised estimators from
Section 3.2 by a triangle, and the weighted MSE estimators from Section 3.3.5 by a diamond. The
total relative differences are the average over the ten contingency tables with dependent attributes. The
ribbon around the graph in the same colour as the line and data points corresponding to the approach
indicates one standard deviation above and below the average total relative difference. For an overview
of the short names used for the alternative approaches, see Table E.10.

In Table E.13, the average percentages of the näıve approach outperforming the alternative

approach over the 10 contingency tables with independent attributes with corresponding standard

deviation are given. These results were also graphically shown in Figure 3. In Table E.14, the

average total relative differences from the näıve empirical RMSE over the 10 contingency tables

with independent attributes with corresponding standard deviation are given. These results were

also graphically shown in Figure 5.
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Table E.13
The Average Percentages where the Näıve Approach Outperforms the Alternative Approach over the 10
Generated Contingency Tables with Independent Attributes for Different Error Rates q

Independent attributes
q = 0.1 q = 0.2 q = 0.3

Q 41.41 (3.55) 43.44 (4.11) 45.24 (4.92)
Q−1 82.36 (4.12) 78.45 (3.80) 75.45 (4.06)
E1 76.18 (3.55) 76.55 (3.51) 75.77 (4.01)
E2 41.41 (3.55) 43.36 (4.19) 45.29 (4.86)
E3 71.02 (4.98) 70.10 (5.14) 69.15 (5.45)
Regprag 41.44 (3.53) 43.26 (4.26) 45.07 (4.88)
Regopt(true) 41.38 (3.36) 42.40 (3.33) 42.92 (3.20)

Regopt(obs) 40.51 (3.44) 42.87 (3.88) 46.51 (4.65)

Regopt(E1)
48.94 (2.31) 56.75 (2.19) 60.22 (2.29)

Regopt(E2)
41.41 (3.55) 43.44 (4.11) 45.24 (4.92)

Regopt(E3)
40.37 (3.52) 43.98 (3.93) 48.95 (4.32)

W
M̂SE1

41.00 (3.49) 42.03 (4.06) 42.92 (4.57)

W
M̂SE2

41.40 (3.55) 43.25 (4.17) 44.79 (4.84)

W
M̂SE3

41.11 (3.53) 42.13 (4.26) 43.10 (4.64)

q = 0.4 q = 0.5 q = 0.6
Q 47.41 (5.15) 50.02 (5.46) 52.87 (5.44)
Q−1 72.23 (4.41) 70.52 (4.76) 68.90 (5.08)
E1 73.92 (5.85) 73.89 (6.38) 74.23 (6.42)
E2 47.43 (5.14) 50.08 (5.43) 52.95 (5.38)
E3 68.34 (5.53) 67.61 (5.55) 67.20 (5.46)
Regprag 47.25 (4.99) 49.35 (5.41) 52.21 (5.19)
Regopt(true) 44.19 (3.50) 46.24 (3.61) 47.93 (3.58)

Regopt(obs) 50.36 (4.86) 54.31 (4.77) 58.40 (4.85)

Regopt(E1)
62.87 (2.04) 64.72 (1.73) 65.48 (3.09)

Regopt(E2)
47.39 (5.14) 49.87 (5.26) 52.83 (5.50)

Regopt(E3)
53.99 (4.17) 58.15 (3.97) 61.67 (3.99)

W
M̂SE1

45.62 (4.76) 48.64 (5.09) 52.08 (5.11)

W
M̂SE2

46.53 (5.01) 48.63 (5.10) 52.08 (5.11)

W
M̂SE3

45.62 (4.76) 48.64 (5.10) 52.08 (5.11)

q = 0.7 q = 0.8 q = 0.9
Q 56.78 (5.16) 62.32 (4.42) 71.80 (3.35)
Q−1 68.07 (4.78) 68.46 (4.50) 71.95 (4.02)
E1 75.38 (6.67) 77.12 (6.19) 81.47 (4.89)
E2 56.81 (5.18) 62.37 (4.40) 71.78 (3.37)
E3 67.40 (5.13) 68.43 (4.61) 71.78 (3.88)
Regprag 56.44 (4.95) 62.34 (4.35) 71.82 (3.34)
Regopt(true) 51.59 (3.63) 57.80 (3.26) 68.50 (2.57)

Regopt(obs) 62.54 (4.59) 67.80 (4.39) 75.59 (3.35)

Regopt(E1)
66.67 (3.31) 69.97 (4.53) 76.23 (3.58)

Regopt(E2)
57.75 (5.16) 64.74 (4.89) 74.53 (3.63)

Regopt(E3)
65.24 (3.82) 69.11 (4.54) 76.09 (3.63)

W
M̂SE1

56.48 (4.86) 62.29 (4.37) 71.80 (3.35)

W
M̂SE2

56.48 (4.86) 62.29 (4.37) 71.80 (3.35)

W
M̂SE3

56.48 (4.86) 62.30 (4.37) 71.80 (3.35)

Note. The rows contain the 14 considered alternative approaches. The columns contain the different
values of q. Due to the table’s width, the columns are split into three parts. The percentages where the
näıve approach outperforms the alternative approach are the average over the ten contingency tables with
independent attributes. The corresponding standard deviation is given behind the average percentages
in parentheses. For an overview of the short names used for the alternative approaches, see Table E.10.
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Table E.14
The Average Total Relative Differences from the Näıve Empirical RMSE over the 10 Generated Con-
tingency Tables with Independent Attributes for Different Error Rates q with Corresponding Standard
Deviation

Independent attributes
q = 0.1 q = 0.2 q = 0.3

Q -10.69 (1.73) -9.58 (1.74) -8.33 (1.71)
Q−1 138.67 (10.94) 64.25 (5.32) 38.78 (3.26)
E1 26.41 (2.50) 27.14 (2.50) 25.10 (2.35)
E2 -10.69 (1.73) -9.58 (1.74) -8.33 (1.71)
E3 1.50 (0.21) 2.56 (0.34) 3.24 (0.42)
Regprag -10.69 (1.73) -9.54 (1.73) -8.17 (1.66)
Regopt(true) -10.73 (1.70) -9.71 (1.64) -8.61 (1.49)

Regopt(obs) -8.61 (1.27) -5.40 (0.92) -3.21 (0.77)

Regopt(E1)
1.00 (0.82) 8.61 (0.90) 9.00 (0.77)

Regopt(E2)
-10.69 (1.73) -9.58 (1.74) -8.32 (1.71)

Regopt(E3)
-7.79 (1.15) -3.32 (0.65) -0.56 (0.44)

W
M̂SE1

-10.47 (1.66) -8.38 (1.39) -6.16 (1.07)

W
M̂SE2

-10.69 (1.73) -9.48 (1.70) -7.93 (1.55)

W
M̂SE3

-10.52 (1.67) -8.65 (1.45) -6.59 (1.17)

q = 0.4 q = 0.5 q = 0.6
Q -7.03 (1.63) -5.70 (1.53) -4.39 (1.39)
Q−1 25.52 (2.22) 17.26 (1.59) 11.61 (1.13)
E1 21.34 (2.06) 16.87 (1.74) 12.41 (1.41)
E2 -7.03 (1.63) -5.70 (1.53) -4.39 (1.39)
E3 3.61 (0.48) 3.71 (0.52) 3.54 (0.52)
Regprag -6.65 (1.49) -5.02 (1.25) -3.42 (0.93)
Regopt(true) -7.48 (1.29) -6.30 (1.09) -5.11 (0.86)

Regopt(obs) -1.86 (0.72) -1.10 (0.73) -0.63 (0.73)

Regopt(E1)
7.07 (0.54) 4.80 (0.33) 2.88 (0.28)

Regopt(E2)
-6.95 (1.62) -5.40 (1.47) -3.71 (1.27)

Regopt(E3)
0.74 (0.40) 1.08 (0.43) 0.97 (0.49)

W
M̂SE1

-4.43 (0.83) -3.21 (0.69) -2.39 (0.59)

W
M̂SE2

-6.24 (1.33) -4.68 (1.11) -2.34 (0.76)

W
M̂SE3

-4.87 (0.94) -3.57 (0.78) -2.63 (0.67)

q = 0.7 q = 0.8 q = 0.9
Q -3.10 (1.20) -1.89 (0.94) -0.82 (0.58)
Q−1 7.48 (0.79) 4.33 (0.48) 1.89 (0.24)
E1 8.48 (1.09) 5.17 (0.79) 2.38 (0.44)
E2 -3.10 (1.20) -1.89 (0.94) -0.82 (0.58)
E3 3.10 (0.49) 2.39 (0.39) 1.38 (0.23)
Regprag -1.97 (0.59) -0.86 (0.28) -0.20 (0.08)
Regopt(true) -3.88 (0.63) -2.62 (0.41) -1.33 (0.20)

Regopt(obs) -0.35 (0.71) -0.15 (0.62) -0.01 (0.41)

Regopt(E1)
1.47 (0.38) 0.59 (0.45) 0.15 (0.36)

Regopt(E2)
-2.12 (1.03) -0.88 (0.75) -0.17 (0.45)

Regopt(E3)
0.65 (0.53) 0.34 (0.52) 0.12 (0.38)

W
M̂SE1

-1.79 (0.54) -1.27 (0.50) -0.69 (0.41)

W
M̂SE2

-2.34 (0.76) -1.49 (0.62) -0.73 (0.44)

W
M̂SE3

-1.91 (0.59) -1.31 (0.52) -0.70 (0.41)

Note. The rows contain the 14 considered alternative approaches. The columns contain the different
values of q. Due to the table’s width, the columns are split into three parts. The average total rela-
tive differences from the näıve empirical RMSE are the average over the ten contingency tables with
independent attributes. The corresponding standard deviation is given behind the average total relative
differences in parentheses. For an overview of the short names used for the alternative approaches, see
Table E.10.
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The corresponding full plot (i.e. the plot we saw in Figure 5 with full axes) is shown in Figure

E.7.

Figure E.7
Full plot of the Average Total Relative Differences from the Näıve Empirical RMSE over the 10 Generated
Contingency Tables with Independent Attributes for Different Error Rates q with Corresponding Standard
Deviation

Note. The values of q are on the x-axis and the average total relative difference is on the y-axis. Each
alternative approach has its own colour, which can be found in the legend. Moreover, each group of
estimators has its own shape to indicate the data points. The existing estimators from Section 3.1 are
indicated by a square, the expected values from Section 3.3.4 by a dot, the regularised estimators from
Section 3.2 by a triangle, and the weighted MSE estimators from Section 3.3.5 by a diamond. The total
relative differences are the average over the ten contingency tables with independent attributes. The
ribbon around the graph in the same colour as the line and data points corresponding to the approach
indicates one standard deviation above and below the average total relative difference. For an overview
of the short names used for the alternative approaches, see Table E.10.
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F Additional results revisiting example tables

In Section 4.2.3, we revisited the contingency tables with dependent attributes and q = 0.8 with

two correction approaches applied, one that performs well and one that performs worse (see

Table 9). In this appendix, the application of one correction approach that performs well and

one correction approach that performs worse for the table with dependent attributes YT
gZg with

q = 0.2 and for the tables with independent attributes YT
gWg with q = 0.8 and q = 0.2 are

given.

For tables with dependent attributes and smaller values of q, we saw that the regularised es-

timator with νprag performs well and the expected value approach with the first prior performs

worse. The näıve contingency table YT
gZ

∗
g with q = 0.2 that we saw in Table 6 after correction

with these two correction methods are shown in Table F.15.

Table F.15
Two Examples of the Corrected Contingency Tables with Dependent Attributes where the Probability of a
Correct Link (q) Was 0.2 by Using the Regularised Approach with νprag and the Expected Value Approach
with the First Prior Distribution

C1 C2 C3 C4 C5

R1 0.40 1.00 3.53 2.48 0.59
R2 1.53 7.49 19.84 13.22 4.92
R3 3.21 17.06 46.40 31.77 10.55
R4 2.82 15.86 42.87 30.73 8.73
R5 1.04 5.59 15.36 9.80 3.21

C1 C2 C3 C4 C5

R1 4.21 2.41 4.31 4.25 2.49
R2 4.53 12.59 17.28 10.27 16.09
R3 4.13 17.58 45.47 29.84 16.10
R4 3.52 17.31 40.81 41.37 6.73
R5 3.73 12.53 20.97 9.51 8.13

Note. The corrected contingency table on the left is corrected using the regularised approach with the
pragmatic choice for ν. The corrected contingency table on the right is corrected using the expected
value approach with the first prior distribution.

The values of the corrected table by using the regularised approach with νprag in Table F.15

seem to differ quite a lot from the true contingency table in Table 3. The values of the corrected

contingency table with the worst correction method, the expected value approach with the first

prior, also differ a lot from the true values. If the values are all rounded to whole numbers, the

corrected contingency table using the regularised approach with νprag results in 0 correct values

compared to the true contingency table in Table 3. It holds for 12 out of 25 cells (i.e. 48%) that

|ereg,pragjk | > |e∗jk|. The total relative difference from the näıve empirical RMSE is approximately

-0.006. For the corrected contingency table using the expected value approach with the first prior

distribution, we find 3 correct values compared to the true contingency table in Table 3. For

this correction method, we find that it holds for 14 out of 25 cells (i.e. 56%) that |e(E1)
jk | > |e∗jk|.

The total relative difference from the näıve empirical RMSE is approximately 0.161. Overall,

it is clearly visible that the values of the corrected contingency tables under the q = 0.8 error

matrices are closer to the true values than the values of the corrected contingency tables under
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the q = 0.2 error matrices.

For tables with independent attributes and larger values of q we found that the weighted MSE

approach that uses the second variant of the expected value performed well and the expected

value approach using the third prior distribution performed worse. The näıve contingency table

YT
gW

∗
g with q = 0.8 that we saw in Table 7 after correction with these two correction methods

are shown in Table F.16. These corrected contingency tables can then be compared to the true

contingency table YT
gWg in Table 4.

Table F.16
Two Examples of the Corrected Contingency Tables with Independent Attributes where the Probability
of a Correct Link (q) Was 0.8 by Using the Weighted MSE Approach Using the Second Variant of the
Expected Value and the Expected Value Approach Using the Third Prior Distribution

C1 C2 C3 C4 C5

R1 0.02 1.97 3.15 2.76 0.11
R2 2.61 9.33 22.85 10.79 1.37
R3 0.27 27.62 56.55 20.41 4.46
R4 1.07 24.74 40.43 21.85 12.48
R5 0.09 6.35 18.62 7.07 2.89

C1 C2 C3 C4 C5

R1 0.00 2.02 2.87 3.22 0.00
R2 3.31 8.71 23.13 11.19 0.73
R3 0.00 28.42 57.85 19.59 3.47
R4 0.95 25.25 38.92 22.15 13.93
R5 0.00 5.65 19.41 6.93 3.09

Note. The corrected contingency table on the left is corrected using the weighted MSE approach that
uses the second variant of the expected value. The corrected contingency table on the right is corrected
using the expected value approach with the third prior distribution.

The values of the corrected contingency table with the better correction method, the weighted

MSE approach with the second variant of the expected value, are close to the true values in Table

4. The values of the corrected contingency table using the expected value approach with the

third prior distribution differ more from the true values. Rounding the corrected values to whole

numbers, the corrected contingency table using the weighted MSE approach results in 11 correct

values compared to the true contingency table in Table 4. For 13 out of 25 cells (i.e. 52%) it

holds that |e
W

M̂SE2

jk | > |e∗jk|. The total relative difference from the näıve empirical RMSE is

approximately -0.047. If we do the same for the corrected contingency table using the expected

value approach with the third prior distribution, we find 9 correct values compared to the true

contingency table in Table 4. It holds for 18 of the 25 cells (i.e. 72%) that |e(E3)
jk | > |e∗jk|. The

total relative difference from the näıve empirical RMSE is approximately 0.185.

For tables with independent attributes and smaller values of q, the regularised estimator

where νopt is estimated with the first variant of the expected value performs well and the Q−1

approach performs worse. The näıve contingency table YT
gW

∗
g with q = 0.2 that we saw in Table

8 after correction with these two correction methods are shown in Table F.17. These corrected

contingency tables can be compared to the true contingency table YT
gWg in Table 4.
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Table F.17
Two Examples of the Corrected Contingency Tables with Independent Attributes where the Probability of
a Correct Link (q) Was 0.2 by Using the Regularised Approach where νopt Is Computed with the First
Variant of the Expected Value and Q−1 Approach

C1 C2 C3 C4 C5

R1 0.09 1.70 3.83 1.94 0.45
R2 0.90 10.78 20.62 11.08 3.63
R3 1.36 26.53 52.46 21.73 6.91
R4 1.28 22.86 47.65 21.37 7.85
R5 0.37 8.13 17.44 6.89 2.16

C1 C2 C3 C4 C5

R1 0.00 0.00 4.87 8.37 0.00
R2 7.59 6.07 0.00 40.94 11.96
R3 0.00 53.64 73.93 0.00 0.00
R4 0.00 5.49 43.72 25.21 26.99
R5 0.00 7.32 39.03 0.00 0.00

Note. The corrected contingency table on the left is corrected using the regularised approach using νopt
that is estimated with the first variant of the expected value. The corrected contingency table on the
right is corrected using the Q−1 approach.

Some of the values of the corrected contingency table where the regularised approach is used

with νopt estimated by using the first variant of the expected value, are close to the true values

in Table 4, while others differ more. The values of the corrected contingency table using the Q−1

approach clearly differ even more from the true values. Rounding the corrected values to whole

numbers, the corrected contingency table using the regularised value approach with νopt results

in 5 correct values compared to the true contingency table in Table 4. For 16 out of 25 cells

(i.e. 64%) it holds that |eregopt(E1)

jk | > |e∗jk|. The total relative difference from the näıve empirical

RMSE is approximately 0.011. For the corrected contingency table using the Q−1 approach,

we find 3 correct values compared to the true contingency table in Table 4. For this correction

method, we find that it holds for 20 out of 25 cells (i.e. 80%) that |eQ
−1|

jk > |e∗jk|. The total

relative difference from the näıve empirical RMSE is approximately 4.448. For the independent

tables, we also find that the values of the corrected contingency tables under the q = 0.8 error

matrices are closer to the true values than the values of the corrected contingency tables under

the q = 0.2 error matrices.
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