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Abstract

The open question what the true nature of dark matter (DM) in the ΛCDM
cosmological standard model is, could find its answer due to the nat-
urally appearing QCD-axions in the solution of the strong-CP problem
of QCD, which are generalized by string theory to axion-like particles
(ALPs). Despite spanning a huge mass range that covers several order
of magnitudes, especially ultra-light axions (ULAs) match extraordinary
well with the DM properties known from precision cosmology. Due to
their small masses, ULAs appear to be Fuzzy DM (FDM) rather than the
familiar CDM by manifesting their wavelike character, what intuitively
leads to the idea of modelling FDM as a non-relativistic wavefunction, ψ
that then could be evolved in a Newtonian gravitational potential, Φ, via
the Schrödinger-Poisson equation in a flat, expanding Universe governed
by the RW-metric. Building on a strong theoretical framework we worked
out in [1] already, this work aims at building an easy accessible numerical
Schrödinger-Poisson solver that can be used to investigate FDM and any
other wavefunctions in the given framework. After recapping on the most
important theoretical lines from our previous work, we first present how
our solver is built up and why the used algorithms were chosen, before
tackling different systems in one- and three dimensions for various tests
as well as first real-world FDM applications.
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Chapter 1
Introduction

As was already stated in [1], the ΛCDM cosmological standard model is a
well-described model in nowadays precision cosmology that truly estab-
lishes itself as the current standard model. However, it faces challenges of
which one is the question what the true nature of dark matter (DM) is. Al-
though, we know the most important DM properties very well due to the
instruments used in precision cosmology, we still seek after the particle fit-
ting in the picture. As we have discussed in lengths in the previous work,
the standard model of particle physics naturally gives the QCD-axion as
a well-suited DM-candidate even though it does not appear in the rows
of the standard model particles at first, but introduces itself by solving
the strong-CP problem of QCD. In the context of GUTs, e.g. string theory,
the QCD-axion is generalized to a whole class of particles, called axion-
like particles (ALPs) with a common set of properties that match the DM
properties frightening well, where a subclass of ALPs are the ultralight
axions (ULAs) that span a mass range

10−33 eV ≲ ma ≲ 10−18 eV. (1.1)

In the previous work [1] we ended our discussion after realizing that the
impact of ULAs on large-scale structure cannot be described by cosmo-
logical perturbation theory throughout the whole history of the Universe
since the density perturbations grow over time leading to values break-
ing the prerequisites that are necessary for perturbation theory, eventually
leading to the necessity of non-linear evolution equations. By noting that
the extremely low ULA-masses justify a wavelike description, i.e. Fuzzy
Dark Matter (FDM), for non-relativistic velocities, it was natural to take
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2 Introduction

the Schrödinger-equation at a starting point. Combined with Newtonian
gravity on cosmological scales with sufficiently large distances to black
holes, we ended up with the Schrödinger-Poisson equation that shall gov-
ern the evolution of FDM in the Universe as soon as the density pertur-
bations have grown big enough. Hence, this work is dedicated to build
a numerical Schrödinger-Poisson solver in an educational, but still effi-
cient, way in order to tackle non-relativistic wavefunctions in Newtonian
gravity on cosmological scales. The basic idea and the approach is heavily
influenced by [2].

We are going to use the Robertson-Walker (RW) metric

ds2 = −dt2 + a2[dr2 + S2
κ(r)dΩ2], (1.2)

where we typically assume a flat (κ = 0) Universe geometry, so that Sκ=0 =
r. Furthermore, we are going to work in the following system of units

[M] = 1010 M⊙, [L] = Mpc and [v] =
km

s
, (1.3)

where M⊙ ≈ 1.99 · 1030 kg is one solar mass and 1 Mpc≈ 3.086 · 1019 km.
We will always set c = 1 if necessary and keep h̄ in all equations. For
Fourier-transformations we usually transform the coordinates x to k, where
the 2π’s are placed below the dk’s. G is Newton’s gravitational constant
and finally, in flat space, we will work with the mostly positive metric sig-
nature, i.e. ηµν = (−1,+1,+1,+1). New words that are defined or further
explained are written in italic letters.
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Chapter 2
Brief review of axion theory

This chapter is devoted to present very briefly the main considerations
that naturally led to the idea of axions as the DM question solving particle
as well as a quick overview over the important theoretical framework that
is applied in the work. Readers of [1] can safely skip this chapter, although
section 2.4 contains a few additional information about the Schrödinger-
Poisson equation.

2.1 How axions naturally appear in the known
picture

Instead of guessing a particle that has the DM properties we were able to
observe and deduce so far and then fitting it into the known pictures, we
would like to follow a more natural approach by looking at what we al-
ready know. The standard model of particle physics is well-established,
so it appears obvious to search for the DM particle in the rows of the ex-
tensively studied fundamental theories, but the result is that there is no
appropriate DM candidate. However, one building block, i.e. Quantum
Chromodynamics (QCD), of the standard model of particle physics suf-
fers the so-called strong-CP problem.

The QCD-Lagrangian appears to be invariant under axial transformations
if and only if the quark masses vanish, which is apparently not the case.
However, the resulting Noether-current gives rise to a chiral anomaly,
which in turn introduces an additional term to the QCD Lagrangian, namely

3



4 Brief review of axion theory

δS = α
N f g2

s

32π2

∫
d4x Gµν,aG̃a

µν, (2.1)

where
Gµν,aG̃a

µν = ∂µ

(
εµνρσ Aa

ν

[
Fa

ρσ −
gs

3
f abc Ab

ρ Ac
σ

])
, (2.2)

so that the integral seems to become a surface integral which vanishes un-
der the assumption that Aµ,a = 0 at spatial infinity, which is nothing else
than the vacuum[3]. Although, it seems like there is nothing more to it,
t’Hooft found out that one shall not pass the complexity of the vacuum
structure, which is in fact crucial to investigate at this point[4]. Interest-
ingly, he realized that one can easily rotate one vacuum state into another
what then gives rise to the so-called θ-vacua. The main consequence is that
the integral above does not vanish trivially and the chiral anomaly is still
present, so that the axial transformations cannot be a true symmetry of
QCD[4]. The θ-vacua introduce an additional term

L =
θ

32π2

∫
d4xTr[GµνG̃µν] (2.3)

to the QCD-Lagrangian, which violates CP symmetry and thus, gives rise
to an electric dipole, which is constrained by experiment[5]

θ · 10−16 e cm ≈ |dn| ≲ 3 · 10−26 e cm ⇒ θ ≲ 3 · 10−10. (2.4)

This is a fine-tuning problem, what is problematic since theoretically, θ can
be any value in [0, 2π]. The situation exacerbates because whilst analyzing
the θ-vacua structure in the context of the electroweak (EW) theory, t’Hooft
found that the used chiral transformations introduce an additional angle
term due to the quark masses to the θ-value, i.e.

θQCD = θ + arg[det[M]], (2.5)

which should counteract the original angle in order to satisfy the fine-
tuning problem and in principal to set θ = 0. One refers to these problems
as the strong-CP problem.

In order to solve the problem, we impose an additional U(1)PQ-symmetry1

and assume that at least one fermion of the theory acquires its mass through
Yukawa-coupling whose corresponding vacuum expectation value is nonzero

1Instead of renaming it later, we already call the new U(1)-symmetry with the subscript
PQ to honor Peccei and Quinn[6] who solved this problem.
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2.2 The most important axion properties 5

then[6]. The solution then goes as follows. The best case scenario is that
the total angle θ̄ = 0. The Yukawa coupling gives rise to at least one
(pseudo-)scalar field, ϕ,

L ⊂ ψ̄

[
gYϕ

1
2
(1 + γ5) + g∗Yϕ∗ 1

2
(1 − γ5)

]
ψ, (2.6)

where gY is the Yukawa-coupling-constant and ϕ has the nonzero vacuum
expectation value ⟨ϕ⟩ = λeiβ. In order to minimize the potential, V(ϕ),
that depends on the field itself and the angle θ̄ = θ + β, one finds β = 0.
The corresponding fermion mass term then reads

λψ̄

[
gYeiβ 1

2
(1 + γ5) + g∗Ye−iβ 1

2
(1 − γ5)

]
ψ, (2.7)

which must be made real again. Now, the new U(1)PQ symmetry comes
in handy since we can simply perform the rotation exp{iγ5θ} for θ = −β,
so that in the end we get

θ̄ = θ + β = θ − θ = 0, (2.8)

what is precisely the best case scenario we were hoping for. The new
U(1)PQ-symmetry is said to set θ̄ dynamically to zero, what restores CP
invariance on the one hand and solves the strong-CP problem on the other
hand. The most important point for us is the introduction of a new pseu-
doscalar field, ϕ, which couples to the GG̃-term in (2.3), so that we can
set

θQCD = C
ϕ

fa
, (2.9)

so that ϕ, which is the canonically normalized axion field, is clearly part
of QCD. Note, that C describes the color anomaly and fa is the axion decay
constant.

2.2 The most important axion properties

Historically, the axion was introduced as the QCD-axion like presented in
the previous section. We are going to use the term axion more generally
for Axion-Like Particles (ALPs) that share a small set of common properties
which we would like to investigate briefly in the following.

Recall that the strong-CP problem originated from t’Hooft’s observation
that the vacuum structure is not trivial and one has to consider transitions
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6 Brief review of axion theory

between different θ-vacua to which the so-called instantons correspond.
These in turn come along with a very important property that is crucial
for the description of axions, namely that it is a purely non-perturbative
effect. We saw in the previous section that it is necessary for θQCD to
bet set to zero, so that we demand a shift-symmetry of the axion field,
ϕ → ϕ + const., and that only derivatives of the axion field enter the ac-
tion. The fact that the instanton-effects are non-perturbative effects come
in useful now because the shift-symmetry must be protected from quan-
tum corrections to all orders in perturbation theory which is automatically
given by the instantons. For all possible quantum corrections we demand
that they are suppressed by powers of fa[7]. If we now face additional
contributions to θQCD we can simply absorb them via the shift-symmetry
in the axion field, ϕ. The result is, that the by the instanton-effects in-
duced action and potential can only depend on the overall axion field. We
can reformulate the protection of the shift-symmetry from quantum cor-
rections as the violation of a classical symmetry by quantum effects, i.e.
an anomaly, which justifies the color anomaly C in (2.9). The notion of
C is the number of distinguishable θ-vacua in [0, 2π fa]. Along with the
shift-symmetry, we can now state ϕ → ϕ + 2π fa and since ϕ is an angular
variable, it is safe to say that C ∈ Z.2

Finally, we can investigate the mass range of axions, especially for QCD-
axions, by investigating the interaction between axions and quarks. Note,
that after QCD-confinement at T ∼ ΛQCD, we can effectively replace q̄q-
terms in the interaction by their corresponding vacuum expectation val-
ues and note additionally, that interactions between axions and standard
model particles are suppressed by powers of fa, so that by considering
only large fa-values, i.e. small ma-values, it is sufficient to neglect all but
up- and down-quarks in the interaction. Without going into detail, one
ends up with

ma,QCD ≈ 6 · 10−6eV ·
(

1012 GeV
fa
C

)
. (2.10)

For T < ΛQCD, instanton-effects break the shift-symmetry explicitly to a
discrete symmetry,

ϕ → ϕ + 2π
fa

C
, (2.11)

which coincides with the earlier results that C ∈ Z. Additionally, the

2Please refer for details to [1] and references therein, especially to appendix C for this
section.
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2.2 The most important axion properties 7

symmetry breaking induces the QCD-axion potential3

V(ϕ) = muΛ3
QCD

[
1 − cos

(
C

ϕ

fa

)]
, (2.12)

where mu is the up-quark mass. The cosine potential results from the vac-
uum energy, we do not want to investigate further here.

Let us summarize the four important shared ALP properties.

1. The classical action has a global PQ-symmetry, i.e a U(1)PQ-symmetry.

2. The spontaneous symmetry breaking scale fa leads to an angular de-
gree of freedom, ϕ/ fa, that contains a shift-symmetry.

3. The PQ-symmetry is anomalous and thus, explicitly broken at quan-
tum level by non-perturbative instanton-effects that protect the clas-
sical shift-symmetry.

4. The protected shift symmetry, ϕ → ϕ + 2nπ fa with n ∈ Z, mani-
fests the axion as a pseudo-Goldstone boson that obtains a periodic
potential, V(ϕ/ fa) ≡ V(ϕ), when the non-perturbative quantum ef-
fects switch on at some scale, Λa. The same effects induce the axion
mass, ma, which is proportional to Λ2

a/ fa.

To highlight the first connections to DM, note, that DM is non-baryonic,
what is given for axions since they are manifested as bosonic particles, i.e.
they are pseudo-Goldstone bosons. Further, DM should be stable or at
least long-lived compared to the age of the Universe, what is given since
we demand the axion decay constant, fa, to be very large in order for the
coupling strengths to standard model particles, that scale with negative
powers of fa, to be very small since observations reveal that DM is basi-
cally not interacting4 with ordinary matter. The missing DM property, i.e
that DM particles are cold, is left to show in the next section.

3We consider QCD-axions here to give a notion for the general axion properties, but as
string-theory dictates, the general results from the QCD-axion investigations are trans-
ferable to ALPs in general. For a generic ALP, V(ϕ) = Λ4

a

[
1 ± cos

(
C ϕ

fa

)]
is the typical

potential[7].
4Even more appropriate would it be to state, that DM is at most interacting gravita-
tionally with ordinary matter, what underlines observations in which one can explic-
itly makes ordinary matter visible via X-rays and notices the presence of DM only via
gravitational lensing.
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8 Brief review of axion theory

2.3 Axion production in the early Universe

One can raise the question now, how a relevant axion population was pro-
duced in the early Universe, which shall be the scope of this section. In-
stead of considering different production mechanisms as in [1], we will
immediately discuss the proper one here, namely the non-thermal pro-
duction via misalignment.

The action, S, for a minimally coupled real scalar field, ϕ, in the theory of
general relativity is given by[8]

Sϕ =
∫

d4x
√
−g
[
−1

2
∂µϕ∂µϕ − V(ϕ)

]
. (2.13)

Note, that this holds only after symmetry breaking in order for the axion
to be established as a pseudo-Goldstone boson and it is only valid after
non-perturbative effects switch on since this is necessary for the axion to
acquire mass. The latter is no instantaneous process, which is why there
will be a time-dependence on the ϕ-fields5. By varying the action with
respect to ϕ we obtain the equations of motion (EOM)

0 =
1√−g

∂µ(
√
−ggµν∂ν)ϕ − ∂V

∂ϕ
=: −∂V

∂ϕ
. (2.14)

Recall, that we work with the RW-metric (1.2)

ds2 = −dt2 + a2[dr2 + S2
κ(r)dΩ2], (2.15)

where we will assume a flat Universe with κ = 0 ⇒ Sκ(r) = r, so that

ds2 = −dt2 + a2[dr2 + r2dΩ2] (2.16)

plugged into the EOM (2.14) results in

ϕ̈ + 3Hϕ̇ + m2
aϕ = 0, (2.17)

which is the equation of a harmonic oscillator with an additional friction
term, that in this case expresses the expansion of the Universe with the
Hubble parameter, H(t) := ȧ

a . We know, that the scale-factor, a, scales as a
power-law, a ∼ tp, what allows for an analytical solution

ϕ(t) = a−
3
2

(
t
ti

) 1
2

[C1 Jn(mat) + C2Yn(mat)] (2.18)

5Note, that this can be converted, as usual, to a temperature-dependence.

8



2.3 Axion production in the early Universe 9

for the EOM (2.14), where n = (3p − 1)/2, Jn(x) and Yn(x) are Bessel
functions of the first and second kind, respectively. In order to solve for
the coefficients, C1,2, we need proper initial conditions. First, ϕ̇i = 0 ap-
pears reasonable because by looking at the EOM (2.14), one sees that ϕ is
overdamped for H ≫ ma. Second, by setting the color anomaly in (2.9) to
unity, after rearranging we get ϕ(ti) = faθi as the second initial condition,
which basically states that the vacuum was initially misaligned, i.e. ϕ not
being at its potential minimum.

By varying the action (2.13) with respect to the metric we get the energy-
momentum tensor

Tµ
ν = gµα∂αϕ∂νϕ − δ

µ
ν

2

[
gαβ∂αϕ∂βϕ + 2V(ϕ)

]
. (2.19)

Note, that we assume fa to be very large, so that ma ∼ f−1
a is very small.

Hence, a perfect fluid description for the axions is valid and the energy-
momentum tensor has the components

T0
0 = −ρ, T0

i = (ρ + P)vi and Ti
j = Pδi

j + Σi
j, (2.20)

where ρ is the energy density, P is the pressure, vi is the velocity and Σi
j is

the anisotropic stress. Recall, that we use a flat RW-geometry, i.e. the most
general metric that satisfies the cosmological principle that states that the
Universe is homogeneous and spatially isotropic. Thus, we get

ρ̄a =
1
2

ϕ̇2 +
1
2

m2
aϕ2 and P̄a =

1
2

ϕ̇ − 1
2

m2
aϕ2 (2.21)

as the background energy density and pressure, respectively. Due to (2.18),
we know that ϕ ∼ a−

3
2 and ϕ̇i = 0, so that ρ̄a ∼ ϕ2 ∼ a−3, meaning that

axions behave as ordinary matter. However, the EOM (2.14) describe a
harmonic oscillator, meaning that at a certain scale factor, aosc, the condi-
tion of overdamping, H ≫ ma, must be violated since for ongoing time,
the scale factor is increasing and thus, H := ȧ

a is decreasing. As we have
just shown, ρa(a) ∼ a−3 holds, so that we can approximate

ρa(a)a3 ≈ ρa(aosc)a3
osc (2.22)

for a > aosc since the energy density must be almost constant in the un-
derdamped oscillation region. Thus along with ϕ̇i = 0,

ρa(aosc) ≈
1
2

m2
aϕ2

i , (2.23)

9



10 Brief review of axion theory

so that by knowing the axion mass, ma, and the initial field displacement,
ϕi, we are able to compute the axion energy density. A well-fitting ap-
proximation [9] is 3H(aosc) = ma to get aosc. Note, that H(aeq) ∼ 10−28 eV,
where aeq is the scale factor at radiation-matter equality. If ma > H(aeq),
the axions start oscillating in the radiation-dominated epoch. Assuming
this to be the case, one can show [10] that

Ωa ≈
〈(

ϕi

Mpl

)2〉
·


1
6(9Ωγ)

3
4

(
ma
H0

) 1
2 aosc < aeq

9
6 Ωm aeq < aosc ≲ 1

1
6

(
ma
H0

) 1
2 aosc ≳ 1

, (2.24)

where the angular brackets are a necessary average depending on if the
PQ-symmetry gets broken during or after the era of inflation. We do not
go deeper into this discussion, but will assume that the PQ-symmetry gets
broken during the era of inflation in order to produce sufficiently large
axion populations[1]. However, for H ≪ ma, i.e. the underdamped case
of the EOM (2.14), one can make a WKB-approximation with the ansatz
ϕ(t) = A(t) cos(mat+ ϑ), where ϑ is an arbitrary phase and the amplitude,
A(t), is in consistence with the slow-roll inflation model,

Ȧ(t)
ma

∼ H(t)
ma

≪ 1, (2.25)

so that via the EOM (2.14) one gets A(t) ∼ a−
3
2 and hence, we once again

get

ρa
(2.21)∼ ϕ2

i
WKB∼ A2 ∼ a−3, (2.26)

meaning that axions still behave as ordinary matter and thus, contribute to
the total matter content of the Universe. Finally, note that (2.24) in order to
produce a significant contribution to the amount of dark matter, ΩDMh2 ≈
0.12, the axions should have fa ≳ ϕi > 1014 GeV, what agrees with our
previous results that build on the assumption that fa is very large. This
motivates us to focus on the study of the so-called ultralight-axions (ULAs)
in the mass range

10−33 eV ≲ ma ≲ 10−18 eV. (2.27)

The lower bound is of the order of the Hubble constant, H0, and the upper
bound is related to the baryon Jeans scale to reflect the role of ULAs in
structure formation[7].

10



2.4 The Schrödinger-Poisson equation 11

Note, that the whole production mechanism is solely based on the the-
ory of general relativity, i.e gravitational effects, so that it clearly is a non-
thermal process on the one hand, but, most importantly, on the other hand,
is a very natural mechanism to provide an explanation for a relevant ax-
ion population. Additionally, the non-thermal production apparently pro-
duces cold axions, so that the fourth DM property, that was left at the end
of the previous section, is also fulfilled. This clearly establishes the axion
as a viable DM candidate.

2.4 The Schrödinger-Poisson equation

In order to describe the evolution of initial density perturbations in the
early Universe, we extensively discussed cosmological perturbation the-
ory in [1], mostly based on the recommendable review article [11]. How-
ever, at later times, the perturbations grow far beyond the perturbation
theory requirements, so that non-linear theory is in need, which is what
we would like to briefly describe now.

Let us first note, that based on the the previous sections, we know that the
axion mass should be very small. In fact, it should be small enough that
the pure particle description of the axion can be loosened a bit, i.e. by the
wave-particle-dualism, it should be valid to describe the axion as a wave
in general. This justifies why the literature typically speaks of Fuzzy-DM
(FDM). Since virial velocities in the Universe are small compared to the
speed of light, vvir ≪ c, and the Newtonian gravitational potential is small
compared to unity, Φ ≪ 1, everywhere except in the vicinity of a black
hole (BH), a good starting point seems to be the Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m
ψ + Vψ, (2.28)

where ψ is the wavefunction of the particle and m its mass and V the po-
tential it is located in as usual. From [7] we know that

ρa =
1
2

[
(1 − 2Ψ)

(
∂Φ
∂t

)2

+ m2
aϕ2 +

1
a2 (1 + 2Ψ)(∇ϕ)2

]
(2.29)

11



12 Brief review of axion theory

and by making a WKB-approximation6 for the axion field, ϕ, i.e.

ϕ =

√
h̄3

2ma

(
ψe−i ma

h̄ t + ψ∗ei ma
h̄ t
)

, (2.30)

where ψ is a complex scalar field, one can show that ρa = |ψ|2 holds in
Newtonian limit working up to leading order in Ψ if we only consider
axion-wavelengths above their Compton wavelength. Since we work in
Newtonian limit, ρa should source the gravitational potential via the Pois-
son equation

∆Φ = 4πGρa = 4πG|ψ|2. (2.31)

Based on this insight and a the work done in [1, 11] under the same as-
sumptions, one ends up with the non-linear Schrödinger-Poisson equation

ih̄
∂ψ

∂t
+

3
2

ih̄Hψ = − h̄2

2ma
∆ψ + mΦψ, (2.32)

which is the EOM of ψ. Note, that the gravitational potential, Φ, is given
in dimensions of energy per unit mass, so that in order to insert Φ in V
in the Schrödinger (2.28) equation, we must multiply it with an additional
mass factor, m. With the replacements7

ψ → a−
3
2 ψ, ∆ → a−2∆ and Φ → a−1Φ, (2.33)

where ∆ = ∇2 should be kept in mind, we transform the Schrödinger-
Poisson equation to comoving coordinates, so that it reads

ih̄
∂ψ

∂t
= − h̄2

2maa2 ∆ψ +
ma

a
Φψ. (2.34)

Likewise, the Poisson equation (2.31) is transformed, but the additional
factors a−3 on both sides cancel each other, so that it is invariant under
this transformation.

6We are keeping factors of h̄ whilst setting c = 1 in the equations since h̄ is going to be
relevant in the further discussion unlike c.

7Recall the RW-metric (1.2), then you immediately know, that coordinates transform as
x → a · x, so that the replacements for ∇i = ∂/∂xi and ψ with dimensions M1/2L−3/2

follow immediately. For Φ with dimensions EM−1, note that E → a−1E in an expanding
Universe.

12



2.4 The Schrödinger-Poisson equation 13

Originally, the Schrödinger-Poisson8 equation was derived by Ruffini and
Bonazzola [12] in 1969. Instead of equation based on the perturbed RW-
metric in the non-relativistic limit or replacing the potential, V, in the
Schrödinger equation by the gravitational potential, they kept a non-grav-
itational potential inside the equation, i.e.

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + Vψ + mΦψ, (2.35)

where V is the non-gravitational potential and Φ is the gravitational po-
tential. They ran into some conflicts with interpretation of their results, so
we do not want to follow their track here.

Following our initial path, we have to be very careful about the correct
interpretation of the wavefunction.

First of all, recall, that ρ = |ψ|2 should hold, but we tacitly assumed all
units to work out just fine. It is crucial to note that the wavefunction, ψ,
must be normalized. By following Born’s rule, |ψ|2(x⃗, t) is the probability
to find the system that is described by ψ to be in x⃗ at time t, so that after
integration over the whole space for a fixed time yields∫

|ψ|2 d3x = 1 (2.36)

in order to fulfill the probability interpretation. Since the dimension of dx
is length, L, |ψ|2 must have dimensions L−3. However, since ρ should be
given in dimensions ML−3, |ψ|2 must have the same dimensions, what
conflicts with the above normalization. In order to fix this, instead of nor-
malizing the wavefunction to unity, we simply normalize it to the total
mass, Mtot, in the volume as this is likewise conserved, so that∫

|ψ|2 d3x = Mtot. (2.37)

Again, with [d3x] = L3 and [Mtot] = M we then get [|ψ|2] = ML−3, so
that the normalization and hence, the dimensions, are in no conflict with
ρ = |ψ|2.

8In their original work, they spoke of the Schrödinger-Newton equation due to the ap-
plied Newtonian limit, but we will stick to the nowadays common term in the literature.
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14 Brief review of axion theory

Second, May and Springel[13] noted that since axions are bosons with low
velocities, most of them should be in their ground state, what justifies a
mean-field approximation interpretation of our ansatz, so that the whole
axion population can in fact be modelled by a single wavefunction, ψ,
whose evolution is governed by the non-linear Schrödinger-Poisson equa-
tion (2.34).

With the Schrödinger-Poisson equation (2.34) and the Poisson equation
(2.31) at hand, we should be able to compute the evolution of any given
wavefunction, ψ, that describes a system of particles in a gravitational
potential, Φ, with low velocities in non-relativistic as well as Newtonian
limit, i.e. being far away from black holes.

14



Chapter 3
Building a Schrödinger-Poisson
solver

The implementation of the Schrödinger-Poisson solver was done in Python

3.8.10, for which we strongly made use of NumPy[14] and1 Matplotlib[16].
Note, that the python files themselves contain short information about the
purpose of a specific file and function, respectively, as well as what input
is required along with the output that is to be expected.

The solver is structured fairly simple and can be broken down in the fol-
lowing manner. First, the parameters and initial values are defined. Sec-
ond, the initial wavefunction under consideration gets computed. Third,
the main routine iterates through a fixed amount of timesteps of variable
length in order to evolve the system in time. For this purpose, per iteration
the gravitational potential is computed. Then, the so-called Schrödinger-
velocity is computed and based on it, the current timestep is computed via
the Courant-condition. Out of the current wavefunction, the potential, the
Schrödinger-velocity and the timestep the wavefunction at the next point
in time is computed. In equidistant time intervals, the system is plotted for
analysis purposes. Fourth, after going through all timesteps, some track-
ing variables are plotted and stored along with the simulation parameters
for convenience. In the following sections, we would like to go through
theses steps in somewhat more detail, explaining how the implementation
is done and why we chose certain approaches.

1We also used the Simpson-integrator from the SciPy[15] module, but for basically all
other computation and data formatting purposes, we used NumPy or the built-in
Python functions.

15



16 Building a Schrödinger-Poisson solver

3.1 Parameters, setup and constants

In constants.py we have stored Newton’s constant of gravity, G, and the
reduced Planck constant, h̄. Since we use (1.3) as the system of units we
would like to work in, the constants read

G = 43.21
Mpc

1010M⊙

(
km

s

)2

(3.1)

and h̄ = 1.709 · 10−100 Mpc
km

s
1010M⊙. (3.2)

The first step of the solver is to define basic parameters (see Listing A.1) .
The output directory is defined, where all the simulation output is stored
during and after the simulation2. The boxsize is set to be 10 Mpc and is
meant to be the length of each space-coordinate axis of the to be simulated
cubical Universe under consideration. The number axis points, Nx, then
sets the number of points per axis, so that in one dimension, for instance,
you simulate L = 103 axis points along the x-axis. We have tested different
values for L, but since L = 104 is unnecessarily detailed and requires way
too much memory, L = 102 are not enough axis points in order to get a
satisfying result, i.e. the resolution is too low to get correct results. We will
later see how L significantly affects the runtime of the simulation.

The number time steps defines how many iterations the main routine has
to go through. Apparently, the more timesteps you choose, the longer the
simulation needs in order to finish, but also the bigger is the time inter-
val you are able to simulate. However, for testing purposes, it is sufficient
to choose one just to check that the code runs without errors and after-
wards, values of 102 − 103 are appropriate to check if the evolution of ψ
is computed correctly, for example. In the real simulations we chose way
higher numbers of timesteps to get significant results on the hand but also
to check if there is an upper limit at which the simulation breaks and gives
wrong results or to check when the time interval gets too large, so that the
numerical error made is scaled to too large values.

Finally, the mass axion is, as it suggests, the axion mass, ma, for which
we chose a value at the lower boundary of the ULA masses, i.e. ma =
10−33 eV, which converts in our units (1.3) to

ma ≈ 9 · 10−100 · 1010 M⊙ ≈ 10−99 · 1010 M⊙. (3.3)
2For the explicit implementation of the output directory-method, see Listing A.9
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3.1 Parameters, setup and constants 17

Recall, that in the Schrödinger-Poisson equation (2.34), a factor h̄
ma

appears
in the first term and its reciprocal, ma

h̄ , in the second term. If h̄ and ma
have values that are several magnitudes of orders apart from each other,
both terms diverge quickly from each other, so that either the kinetic or
the gravitational term dominate. In order to compensate this as best as
possible, apart from the selection of the wavefunction itself, we chose a
mass at the lower boundary, so that

h̄
ma

∼ 10−100

10−99 = 10−1 and
ma

h̄
∼ 101, (3.4)

what is completely acceptable.

Now, we define the three coordinate-axes3 via a NumPy linspace in order
to get Nx equidistant points with total length L. Then, the position step,
∆x, is computed, which is the distance between two neighbouring axis
points. Note, that if you have Nx axis points, there are Nx − 1 spaces in
between, so that

∆x =
L

Nx − 1
(3.5)

holds. Later, we are going to perform a Fourier transformation4, for which
we need the wave-vector, k⃗, and its inverse square, k−2. Although Fourier
analysis is typcially done in terms of frequency and wavefrequency rather
than position and wave number, we are allowed to call NumPy’s fftfreq-
method from the fft package since the formula is basically the same going
from coordinate- to reciprocal-space. It only needs to know Nx and ∆x due
to (3.5). The result is given in a somewhat cumbersome ordering, i.e. the
null frequency, then the positive and then the negative frequencies, but
this does not affect k−2 since addition is commutative. k2 is obviously
obtained as the scalar product k2 = k⃗ · k⃗, what is computed via NumPy’s
dot-method.

3Note, that we will always present the code that is used by the solver in 3D. However,
later we will also present results from the one-dimensional simulations that were the
first step to build the solver. The 3D code can be easily brought to 1D by mostly just
reducing the number of dimensions in the used arrays.

4See section 3.3.
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18 Building a Schrödinger-Poisson solver

3.2 How to define a wavefunction ψ

Now, we need to initialize the wavefunction, ψ, that we want to evolve in
time (see Listing A.2).

First, an empty 3D-array is created with NumPy’s zeros-method, where
we specifically demand the values to be complex since ψ ∈ C in general.
Second, we must compute the initial wavefunction, ψ0, at each grid point,
which is done in three nested for-loops that go through all axes points and
store the results in the previously created empty 3D array. One can use
basically every wavefunction one desires to simulate by simply inserting
your equation in the line

1 wavefunction[xi ,yi ,zi] = ...

3.3 The main routine: Evolving ψ in time

3.3.1 Compute the gravitational potential Φ

The first step of the main routine is to compute the current gravitational
potential, Φ, what is depicted in the code of Listing A.3. Recall, the Poisson
equation (2.31)

∆Φ = 4πGρ, (3.6)

where ∆ = ∇2 and ρ = |ψ|2. Hence, we only need to know the wavefunc-
tion at the current time, what we do apparently. The idea is to compute
the density, ρ, first. Then, we apply a Fourier transformation (FT) on the
Poisson equation (2.31) to end up with an algebraic equation, i.e.

∆Φ ≡ ∇2Φ = 4πGρ
FT⇒ −k2Φ̃ = 4πGρ̃, (3.7)

where a tilde denotes the Fourier transformed variables. Recall, that the
FT of a function, f (x), where x is to be understood in coordinate-space, is
given by[17]

f̃ (k) := FT[ f (x)] =
∫

f (x)e−ikxdx (3.8)

in one dimension and in three dimensions trivially after the replacements
x → x⃗, k → k⃗ and dx → d3x. Thus, one can easily check the two properties

FT
[

dn f (x)
dxn

]
= (ik)n · FT[ f (x)] and FT[C · f (x)] = C · FT[ f (x)], (3.9)

18



3.3 The main routine: Evolving ψ in time 19

where C =const. and n ∈ N0. Note, that both properties transform to their
3D pendants via the same replacements as above. Note additionally, that
k is the pendant of x in the reciprocal Fourier space and that the inverse
FT (FT−1) is given by

f (x) := FT−1[ f̃ (k)] =
∫

f̃ (k)eikxdk. (3.10)

The Fourier transformed Poisson equation (3.7) can be rearrangend to

Φ̃ =
4πG
−k2 ρ̃, (3.11)

so that the inverse transformation (3.10)

Φ = FT−1[Φ̃] = FT−1
[

4πG
−k2 ρ̃

]
(3.12)

should give the desired potential, Φ. The ever constant k−2 appearing
in the equation was already computed in the beginning of the simulation
in section 3.1, so that we can immediately apply NumPy’s fftn-method
for the Fast Fourier transformation5 (FFT) in n-dimensions and NumPy’s
ifftn-method for the inverse Fast Fourier transformation in n-dimensions.

3.3.2 Computing second derivatives of ψ

The second step in the main routine is to compute ∆ψ that appears in
the Schrödinger-Poisson equation (2.34). This is done via a centered finite-
differencing method6 as can be seen in Listing A.4. The idea is to consider
Taylor expansions f (x + 2∆x), f (x + ∆x), f (x − ∆x) and f (x − 2∆x) of
a continuous function, f (x), up to a certain order, so that one can then
compute a linear combination of the results in order to solve the resulting

5The FFT is an extremely important upgrade to the standard discrete Fourier transfor-
mation in terms of computation time. However, we do not want to go into detail about
the algorithm here as there is a huge variety of literature on the topic. An educational
approach can be found in [18], for instance.

6Again, there is a wide variety of literature on that topic. One example is the book [19]
by Milne who is one of the pioneers of the method.
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20 Building a Schrödinger-Poisson solver

equation for the desired derivative. For example,

f (x + 2∆x) ≈ f (x) + 2∆x f (1)(x) + 4∆x2 f (2)(x)
2!

+ 8∆x3 f (3)(x)
3!

(3.13)

f (x + ∆x) ≈ f (x) + ∆x f (1)(x) + ∆x2 f (2)(x)
2!

+ ∆x3 f (3)(x)
3!

(3.14)

f (x − ∆x) ≈ f (x)− ∆x f (1)(x) + ∆x2 f (2)(x)
2!

− ∆x3 f (3)(x)
3!

(3.15)

f (x − 2∆x) ≈ f (x)− 2∆x f (1)(x) + 4∆x2 f (2)(x)
2!

− 8∆x3 f (3)(x)
3!

, (3.16)

where ≈ instead of a true equality comes from cutting of higher order
expansion terms. Now, the first derivative, f ′(x) ≡ f (1)(x), is given by

f ′(x) ≈ f (x − 2∆x)− f (x − ∆x) + 8 f (x + ∆x) + f (x + 2∆x)
12∆x

. (3.17)

Likewise, one can derive the second derivative, f ′′(x) ≡ f (2)(x), to be

f ′′(x) ≈ f (x − 2∆x)− 16 f (x − ∆x)− 30 f (x) + 16 f (x + ∆x) + f (x + 2∆x)
12∆x2 .

(3.18)
Note, that both, f ′(x) and f ′′(x) given above, are O

(
∆x4) approxima-

tions. These results are easily transferable to higher orders. However,
a fourth-order approximation is sufficient for our solver. Since ∇ con-
tains partial derivatives for each spatial direction, we can simply apply
the same second derivative formula (3.18) to each spatial direction in a
nested for-loop over all grid points. Since this requires to address each
grid point three times, going from one to three dimensions decreases the
computation speed from O (Nx), where Nx is the number of data points
per axis, down to O

(
3N3

x
)

and since we need to address five values of the
wavefunction-array, we need 15N3

x array-accesses per simulation step in
order to compute the second derivative. It is safe to say, that this is clearly
the bottleneck of the simulation in terms of runtime. Note additionally,
that one typically uses a centered finite-differencing method only for the
grid points between the end points and a forward (backward) algorithm
for the leftest (rightest) end. This does not apply to our solver since it
applies periodic boundary conditions to the simulated box, making it the-
oretically infinitely large, so that we do not have to distinguish between
the algorithms.

20



3.3 The main routine: Evolving ψ in time 21

The code itself (see Listing A.4) is precisely the formula (3.18) in a nested
for-loop, first, in order to compute the derivative, ∆ψ, in a three-dimensional
array vel schr7. Then, the scale-factor, a, in a flat, matter-dominated Uni-
verse is computed8 to be

a(t) =
(

t
t0

) 2
3

. (3.19)

Its necessity results from the transformation of the Schrödinger-Poisson
equation to comoving coordinates. Finally, the seperate pieces are put to-
gether to compute the Schrödinger-velocity vel schr. Note, that we must
shift the time in a(t), so that it starts at some initial time, ti, that we would
like to be different from ti = 0, i.e. the Big Bang, in general. For this
purpose, it is sufficient to make a time translation, so that

a(t) =
(

ti + t
t0

) 2
3

(3.20)

is going to be the scale-factor equation in the solver. For ti we chose the
time at redshift zi = 1000, what we actually can use (3.19) with the defini-
tion a := (1 + z)−1, so that we get

t(z) = t0(1 + z)−
3
2 ⇒ ti ≡ t(z = 1000)

t0≈13.7 Gyr
≈ 330000 yr. (3.21)

Note, that since we are working units (1.3), we need to modify the unit of
time correspondingly, so that

[T] =
[L]
[v]

=
1 Mpc · s

km
= 3.086 · 1019 s = 0.978 · 1012 yr (3.22)

is the unit of time we are using, meaning that if the simulation, that is fully
working in our chosen units, giving back a time of 1 it actually means
0.978 · 1012 yr. Accordingly, the initial time, i.e. at z = 103, is now ti ≈
4.43 · 10−7 and the age of the Universe is t0 ≈ 14.11 · 10−3 in our new time
unit.

7Instead of having two separate arrays for the second derivative and the Schrödinger
velocity, respectively, we spare some memory by just using one for the Schrödinger-
velocity directly since we do not need ∆ψ apart from that.

8Start with the Friedmann equation
( ȧ

a
)2

= 8πG
3 ρ(a), where ρ(a) = ρ0a−3 for matter.

Then solve for a(t) to get a ∼ t2/3, so that you can take a(t)/a0 with a0 = 1, as usual.
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22 Building a Schrödinger-Poisson solver

3.3.3 Compute the Schrödinger-velocity and the timestep

Let us now justify retroactively what we mean in terms of the so-called
Schrödinger-velocity. Recall, that the Schrödinger-Poisson equation in one
dimension reads

ih̄
∂ψ

∂t
=

[
− h̄2

2maa2
∂2

∂x2 +
ma

a
Φ

]
ψ. (3.23)

Dividing by the prefactor of the time-derivative, one gets an equation for
the Schrödinger velocity, vS, i.e.

vS = i
[

h̄
2maa2

∂2

∂x2 − ma

h̄a
Φ
]

ψ. (3.24)

We call this equation a velocity because we will use it to evolve the wave-
function ψ as

ψn+1 = ψn + vS · ∆tn, (3.25)

where ∆tn is the step size of the n-th iteration (see Listing A.6). Note,
that the term in square brackets in (3.23) is the Hamiltonian, which has
the dimension of energy, which in turn has dimensions [Energy] = E =
ML2T−2. One can check that this indeed turns out since [h̄] = ML2T−1,
mass trivially has dimensions of mass, [a] = 1, [∂x2] = L2 and as noted
in the previous chapter, [Φ] = EM−1. Using these information now in
the Schrödinger velocity (3.24), one finds that both terms in the square
brackets have dimensions

1st term:
[

h̄
maa2

∂2

∂x2

]
=

ML2

TM
1
L2 =

1
T

and (3.26)

2nd term:
[ma

h̄a
Φ
]
=

T
ML2

ML2

T2 =
1
T

, (3.27)

so that the Schrödinger velocity in fact describes the change of the wave-
function ψ with respect to time. Recalling, that [ψ] = M1/2L−3/2, vS must
have dimensions

[vS] =
[ψ]

T
=

M1/2

L3/2T
, (3.28)

which are not the dimensions of a classical velocity we are familiar with,
especially since vS ∈ C in general.

The third step in the main routine (see Listing A.5) is to compute time step,
∆t, that is not fixed, but adjusted to vS, so that the evolution is stable. Think
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3.3 The main routine: Evolving ψ in time 23

about a moving point mass on a one dimensional axis. If the velocity of the
point mass is high, you would like to choose a sufficiently small timestep
because then the change in position is not conflicting with your chosen
resolution, i.e. if the timestep is chosen too high you might increase the er-
ror of the result significantly. For example, you choose a timestep, so that
the point mass travels by 2∆x in ∆t, but after 1∆x it rapidly decelerates to
half its previous velocity and in total just travels to 1.5∆x, meaning that
you have an error of 0.5∆x in the position of the point mass. However, for
our simulation we follow the idea of Courant, Lewis and Lewy[20] that
can broken down to

C ≤ v · ∆t
∆x

⇔ ∆t ≤ C · ∆x
v

, (3.29)

where C is the so-called CFL-number9 and can be regarded as a free param-
eter, basically. By considering the inequality, it gives the amount of steps
in terms of ∆x an object with velocity v in time ∆t makes, so that C = 1
means that it moves precisely ∆x. For our simulations10, we chose C = 0.1.

Now, the question is what velocity should be taken to compute vmax. There
are several approaches to define a velocity and even more conditions on
the timestep could be applied, see for instance [13], but we just want to
briefly touch upon the following three. First, if simply take vS we must
deal with vS ∈ C in general, so that we first have to extract some real
quantity out of it. There are various ways, but let us focus on the two most
simple ones, namely taking the absolute value, |vS|, or simply adding the
real and imaginary part of vS. They are related as

|vS|2 = ℜ2[vS] +ℑ2[vS] (3.30)

≤ ℜ2[vS] + 2Re[vS]ℑ[vS] +ℑ2[vS] = (ℜ[vS] +ℑ[vS])
2, (3.31)

so that after taking the square root

|vS| ≤ |ℜ[vS] +ℑ[vS]| (3.32)

holds. This suggests that taking the absolute value of the sum of the real
and imaginary part of the Schrödinger velocity is always greater than the

9Note, that it is common in literature to just speak of the Courant-condition and the
Courant-number, but we stick to CFL.

10The chosen value of C often depends on the algorithms that are used to compute v and
typically 0 < C ≤ 1, where smaller values of C apparently give more accurate results in
trade for a higher runtime if one desires to simulate a fixed amount of time rather than
a fixed amount of timesteps.
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24 Building a Schrödinger-Poisson solver

absolute value itself if ℜ ̸= ℑ ̸= 0, what we assume to be true in gen-
eral. Second, considering the Ehrenfest-Theorem, the velocity operator in
Quantum Mechanics (QM) reads

v̂Ehre =
1
ih̄
[x̂, Ĥ], (3.33)

where the hat indicates an operator and the square brackets the commu-
tator [A, B] = AB − BA, as usual. From the Schrödinger-Poisson equation
(2.34) we read off Ĥ with the QM-typical replacement −ih̄∇ → p̂, so that
we obtain

v̂Ehre =
1

(ih̄)2

[
x̂,

1
2maa2 p̂2 +

ma

a
Φ(x̂)

]
, (3.34)

where we factored one (ih̄)−1 out of the commutator. Now,

v̂Ehre =
1

(ih̄)2

([
x̂,

1
2maa2 p̂2

]
+
[

x̂,
ma

a
Φ(x̂)

])
(3.35)

=
1

(ih̄)2

{
1

2maa2 ( p̂ [x̂, p̂] + [x̂, p̂] p̂) +
ma

a
[x̂, Φ(x̂)]

}
(3.36)

=
1

(ih̄)2

{
1

2maa2 ( p̂ih̄ + ih̄ p̂) +
ma

a
· 0
}

(3.37)

= − 1
maa2∇, (3.38)

where in the first line we used [A + B, C] = [A, C] + [B, C], in the sec-
ond line we used [AB, C] = A[B, C] + [A, C]B, in the third line used the
canonical commuation relation [x̂, p̂] = ih̄ as well as the fact that the last
term vanishes since the commutator is taken of an observable and a func-
tion of the same observable, which commutes always, and in the last line
we inversely made the replacement p̂ → −ih̄∇. However, applying the
Ehrenfest-velocity operator to ψ, we get the Ehrenfest-velocity

v⃗Ehre = v̂ψ = − 1
maa2 ∇⃗ψ, (3.39)

but since this would force us to compute the first partial derivatives of ψ
as well, we discard this ansatz as the numerical computation of the second
derivative is already the solver’s bottleneck in terms of computation time
and we do not want to make things worse. We do not need to worry too
much about the actual interpretation here since we are solely interested
in getting an appropriate vmax to compute a proper timestep. The third
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3.3 The main routine: Evolving ψ in time 25

ansatz we could think of, is to check the values of |ψ̇/ψ|. Assume that
ψ ̸= 0∀ t, x⃗, then it should be safe to state∣∣∣∣ ψ̇ψ

∣∣∣∣ = ∣∣∣∣ 1
ψ

∂ψ

∂t

∣∣∣∣ (2.34)
=

∣∣∣∣ 1
ψ

vS

∣∣∣∣ , (3.40)

but since we assumed ψ ̸= 0, what implies |ψ| > 0, we get∣∣∣∣vS

ψ

∣∣∣∣ < |vS|, (3.41)

so that we basically end up with our first ansatz. Taking all this into ac-
count, we adapt our first result and define

vS,max = max {|ℜ[vS] +ℑ[vS]|} , (3.42)

where max indicates that the biggest value of the resulting Schrödinger-
velocity vector should be taken. Note, that we tacitly dropped the vector
arrows for the Schrödinger-velocity and assumed the absolute value of the
sum to be taken element-wise. We can use the maximum then to finally
compute

∆t = C · ∆x
vS,max

. (3.43)

3.3.4 Update ψ

The fourth and final step of the main routine is to evolve ψ according to
(3.25). The code is trivially just incrementing wavefunction, ψ, by the
product of timestep, ∆t, and vel schr, vS, as we have discussed above.
As you can see in Listing A.6, before evolving ψ, we make a 3D scatter-
plot at all 103 timesteps (for plotting see Listing A.10 and A.11) to be able
to track the evolution of ρ = |ψ|2.
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26 Building a Schrödinger-Poisson solver

3.4 Finishing the simulation run

As a fourth and last step, the solver makes plots (for plotting see again
Listing A.10 and A.11) from different variables (see Listing A.7).

In fact, we make three important final plots after the main routine. The
first one is a 3D scatter plot of the final density. The second plot shows
the maximum velocities, vmax,i against their corresponding timestep index
and the third plot shows the timestep values against their corresponding
timestep index. Due to the Courant condition (3.43), one expects that the
latter two plots are somewhat reciprocal to each other, which is a good
check that they were computed correctly.

Finally, we store the ψ-values, wavefunction, as well as the vmax,i- and ∆t-
values, respectively, in .npz-files via NumPy’s savez-method (see Listing
A.8). The constants G and h̄ as well as the boxsize, L, the number of axis
points, Nx, the number of timesteps, Nt, the position step, ∆x along k−2,
the simulation- and run-time are stored in a .txt-file for an easy access by
the user. This is done for convenience in order to match simulation outputs
with the most important parameters and variables.
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Chapter 4
Using the Schrödinger-Poisson
solver

In the following we would like to test the solver we have built in the pre-
vious chapter with known examples, so that we should be able to tackle
real world applications like the deeply desired axion wavefunction. How-
ever, we start by investigating the one-dimensional solver in section 4.1
with simple examples like Gaussian pulses (subsection 4.1.1) and a point
mass (subsection 4.1.2). Then we check if the simulation runs stable for a
large amount of timesteps (subsection 4.1.3) and take a look on the open
problems for the one-dimensional solver (subsection 4.1.4). The next step
is to consider the three-dimensional solver in section 4.2, where we again
take a look at a Gaussian (subsection 4.2.1) as well as a point-mass (sub-
section 4.2.2). Then we finally making first steps in simulating the axion
wavefunction (subsection 4.2.3) and discussing open problems (subsection
4.2.4).

4.1 In one dimension

4.1.1 Evolving Gaussian pulses

First of all, let us try to simulate two Gaussian pulses, where each pulse is
described by

ψ0(x) =
c√
2a

· exp
{

ik0x − x2

4a

}
, (4.1)
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28 Using the Schrödinger-Poisson solver

where

a =
σ

2
, c =

(√
2
√

π

)−1

(4.2)

with σ = 0.5 and k0 = (−1)nmπ/L with m = 106. The latter was chosen
because the group velocity of a wave is defined as

vG :=
∂ω(k)

∂k
=

h̄k
m

(4.3)

since 2mω(k) = h̄k holds for the Gaussian pulse, so that by choosing m in
k0 accordingly, we can influence the direction in which a pulse is going to
propagate over time. However, in any case this is going to be a very small
velocity compared to the size of the simulated box, so that in practice we
will not be able to really observe such a behavior.

Note, that the blue (n = 0) pulse was shifted 3.25 Mpc along the negative
x-axis and the orange (n = 1) pulse by the same distance along the positive
x-axis. You see the initial densities qualitatively in 4.1(a). We have let them
evolve for tmax = 105 timesteps, what you can qualitatively see in 4.1(b).
One can clearly see that the pulses are sharpening, i.e. their variances de-
crease, and the pulses seem to become more concentrated. In order for the
normalization to be invariant under time translation it appears logical that
the amplitudes of the peaks seem to increase as well. However, we will see
in subsection 4.1.4 that this turns out to be not quite exact. Note, that the
two Gaussian pulses are a representative test choice rather than depict-
ing an interesting physical system, which is why we restrain ourselves on
qualitative investigations for now.

In figure 4.2 we plotted the maximum Schrödinger-velocity, vS,max, and
the corresponding timesteps, ∆t, against the timestep indices, i, to visu-
alize their evolution. As one could expect from (3.43), we observe the
∆t ∼ v−1

S,max behavior very clearly, so that it is sufficient in the following to
focus on one of them. If one considers the timestep (figure 4.2(b)) one can
see that the timesteps are decreasing over time. It also seems to oscillate
heavily, what indicates some instability that we will investigate further in
subsection 4.1.4.

We can summarize that it is no problem to simulate two Gaussian pulses
in our Schrödinger-Poisson solver. Of course, one can just simulate one
Gaussian or arbitrarily many more than just two, but one has to keep
in mind that the wavefunction simulation points must be stored, which
should not become a problem in the three-dimensional solver, but still,
one can easily overshoot the available memory capacity.

28



4.1 In one dimension 29

(a) Density of two Gaussian pulses (4.1) at initial timestep index i = 0.

(b) Density of two Gaussian pulses (4.1) at final timestep index i = 105.

Figure 4.1: Two Gaussian pulses. The left (blue, n = 0) pulse has a group velocity
that points to the positive x-direction, whereas the right (orange, n = 1) pulse has
a group velocity that points to the negative x-direction. Ordinate values are to be
understood qualitatively, hence, no units were given.
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30 Using the Schrödinger-Poisson solver

(a) Maximum Schrödinger velocity, vS,max, against timestep index, i.

(b) Timestep, tstep ≡ ∆t, against timestep index, i.

Figure 4.2: Time-evolution of the two important evolution equation (3.25) pa-
rameters, namely the timestep ∆t and the maximum Schrödinger-velocity, vS,max.
Note, that the timestep-axis is given logarithmically, which actually makes no dif-
ference in the visualization since vS,max ∼ ∆t−1 due to (3.43) and by considering
the velocity axis in (a).
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4.1 In one dimension 31

4.1.2 Testing the Poisson-solver

A standard test to check that the gravity part, i.e. the Poisson-solver, in the
solver works correctly is to compute the potential of a point mass. Say, we
want to model a point mass, m, at position x0, then

ψ(x) = δ(x − x0), (4.4)

where δ is the Dirac-Delta distribution, so that

|ψ(x)|2 = δ2(x − x0) (4.5)

is to be expected, then for x0 = 0 we indeed have a the to a point mass
corresponding wavefunction in figure 4.3(a). Note, that we multiplied the
Dirac-Delta with a factor of 10 in ψ, so that the amplitude of δ2 is 100 as
displayed, what we have done solely to get better displayable values on
the potential axis in figure 4.3(b). In the same figure you can easily rec-
ognize the typical 1/r-behavior of the point mass potential. Note, that we
manually capped the potential values in an infinitesimal vicinity around
x = 0 in order to make the 1/r-behavior clearly visible.

As a second test case, we have chosen a mass distribution in form of a
cosine,

ψ(x) = cos(x) ⇒ |ψ(x)|2 = cos2(x), (4.6)

visible in figure 4.4(a). Intuitively, we expect to find potential wells at the
same positions as mass density peaks. This behavior should be recov-
ered also because by solving the Poisson equation (2.31) via the method
described in subsection 3.3.1, we basically expect nothing else than

Φ ∼ − cos2(x). (4.7)

The resulting potential (figure 4.4(b)) shows, as expected, the − cos2(x)-
behavior very clearly and one can also see that the positions of the poten-
tial minima match very well with the maxima of the density distribution.

Both results give us confidence that the gravity part, i.e. the Poisson-
solver, works correctly, what is obviously a crucial component of the Schrö-
dinger-Poisson solver.
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32 Using the Schrödinger-Poisson solver

(a) Density field of a point mass at x = 0.

(b) Potential of a point mass at x = 0.

Figure 4.3: A point mass is modeled in its simplest form by ψ = δ(x) in the
center, so that one indeed recovers the expected 1/r-behavior of the gravitational
potential of the point mass. To avoid the diverging values in the vicinity of x = 0,
an infinitesimal vicinity was manually set to a finite value in order to make the
1/r-behavior clearly visible. Additionally, ψ was rescaled, so that the potential
labels are better readable.
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4.1 In one dimension 33

(a) Density field of a cosine-mass distribution with ψ(x) = cos(x).

(b) Potential of a cosine-mass distribution with ψ(x) = cos(x) showing the expected
Φ(x) ∼ − cos2(x) behavior.

Figure 4.4: A mass distribution in form of a cosine is modeled by ψ = cos(x), so
that one can expect potential wells in the denser regions apparently or from the
algorithm presented in subsection 3.3.1 to solve the Poisson equation (2.31) that
indicates a resulting − cos2(x) behavior.
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34 Using the Schrödinger-Poisson solver

4.1.3 Check of the simulation’s stability

In order to test our Schrödinger-Poisson solver’s stability, we again used
two Gaussian pulses as before, with the slight difference that we only shift
both by 2 Mpc in each direction seen from the center. Now, we let the sim-
ulation run for 8.5 · 106 timesteps and observe the simulation regularly. In
figure 4.5 we have shown three different timestep indices, to represent the
evolution of the density fields behavior. For this purpose, we additionally
plot the real- and imaginary parts, ℜ[ψn=0] and ℑ[ψn=0], respectively, for
the n = 0 pulse.

In subsection 4.1.1 we already mentioned that after 103 timesteps a sharp-
ening of the density fields can be presumed. By looking at the density field
after 106 timesteps in figure 4.5(c) this assumptions seems to be approved
and strengthened even later after 8.5 · 106 timesteps in figure 4.5(e), when
the density field is basically centered on two density peaks at the mean
positions of the initial Gaussian pulses. Hence, it seems like the simula-
tion is running stable in the sense that there are no divergences that we
are hitting in the first 8.5 · 106 timesteps, but the density field’s evolution
shows a strong clustering of the modeled matter distributions.

When observing the real and imaginary part of ψn=0, one can surmise ba-
sically the same behavior as for the density fields, but it is not quite simple
as it seems. The typical behavior of the real and imaginary part is an os-
cillatory one around the mean of the matter distributions, what could be
guessed by looking at figure 4.5(b), but it becomes clear when, for exam-
ple, making a movie of these splitted plots for the first 103 timesteps. We
will discuss this in the following subsection in somewhat more detail as
it could explain an important open problem of the solver. However, one
clearly sees that the smooth real and imaginary part curves are not recov-
erable after 106 timesteps in figure 4.5(d). Both parts seem to be chaotically
distributed around the mean of the pulse, but also the width of the curves
appears smaller, what fits to the sharpened density peak in figure 4.5(c).
This could also be a result of the visualization in the sense that the ampli-
fication of the density peaks is also visible in the real and imaginary part.
However, the amplification and sharpening goes on, so that after 8.5 · 106

the resulting figure 4.5(f) fits to the the corresponding density field.

We can safely say that the solver is not running into some form of diver-
gences, but unfortunately, it seems like there could be some form of uncer-
tainty still unrevealed, that amplifies the wavefunctions over time or that
we simply observe a strong clustering of apart mass distributions.
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4.1 In one dimension 35

(a) Density field for two Gaussians at
timestep index i = 0.

(b) Real and imaginary part at timestep
index i = 0.

(c) Density field of two Gaussians at
timestep index i = 106.

(d) Real and imaginary part at timestep
index i = 106.

(e) Density field of two Gaussians at
timestep index i = 8.5 · 106.

(f) Real and imaginary part at timestep
index i = 8.5 · 106.

Figure 4.5: For three timestep indices i ∈ {0, 106, 8.5 · 106}, the density field was
plotted as well as the real (blue) and imaginary part (orange) of the left (blue,
n = 0) Gaussian pulse. Whilst the pulses seem to sharpen over time, the behavior
of the real and imaginary part gets chaotic, resulting in a somewhat collapsed
situation that fits well to the strongly amplified density field.
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36 Using the Schrödinger-Poisson solver

4.1.4 Open problem: Non-conserved |ψ|2

As was presumed in subsections 4.1.1 and 4.1.3, it seems like there could
still be some hidden error that causes an ongoing amplification of the den-
sity fields. In order to check if there is in fact an error instead of just the
observation of clustering of the modeled matter distributions, recall, that∫

|ψ(x)|dx (4.8)

should be a conserved quantity, which is why we track its value at each
timestep. This uncovers the following. In the figures in 4.6 we track the
just defined integral values subtracted by their initial values for the n = 0
Gaussian pulse in figure 4.5(a) from the previous subsection because if it is
conserved, it remain zero at all times. Regarding the fact that we are never
fully freed from roundoff and truncation errors in numerics, the total error
made over 105 timesteps (figure 4.6(b)) could be reasonable. However, if
one considers only the first 200 timesteps, one sees that in ever increasing
time index intervals1 small jumps in the difference occur that are simply
smoothened over large amount of timesteps and hence, not visible in the
plot anymore. Hence, we uncovered a systematic error in the solver.

In order to check if the error is made in the quantum or gravitation part
of the solver, we cut off the gravitation part in the Schrödinger-Poisson
equation (2.34) and redo the simulations for 200 (figure 4.7(a)) and 103

(figure 4.7(b)) timesteps. Indeed, we find one and two jumps, respectively.
To further investigate the jumps, we again track the real and imaginary
part of the wavefunction for the first 103 timesteps, which are not given
in this thesis, but by making a movie out of the 103 plots, one can observe
the following. As we suggested in the previous subsection, the real and
imaginary part show an oscillatory behavior. For example, let us start in
figure 4.5(b), then the real part is increasing until it is approximately the
now imaginary curve and the imaginary curve is then the now real curve.
Afterwards, this oscillation is repeated, so that we end up with the same
picture as at i = 0. However, all the time, the real part is expanding to-
wards its amplitude, it shows some kind of rapid acc- and deceleration in
the vicinity of its amplitude, so that it overshoots this position a bit what
matches exactly with the jumps in figures 4.6 and 4.7. Despite intensive
research, it remains an open problem in the solver what causes this over-
shooting behavior solely in the real part of the wavefunction.
1Recall from subsection 4.1.1 that the timestep-size is decreasing over the number of
timestep indices, suggesting that the total time interval is still fixed in which the jumps
occur.
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4.1 In one dimension 37

(a) Differences between the sum of all |ψ|2-values and the sum of the initial |ψ0|2-values
against the timestep indices, i, for 200 timesteps.

(b) Differences between the sum of all |ψ|2-values and the sum of the initial |ψ0|2-values
against the timestep indices, i, for 105 timesteps.

Figure 4.6: Evolution of the total error of the simulation made in the sense of the
conserved integral over |ψ(x)|2. Hence, the sum of the |ψ|2-values at a timestep
are subtracted by the initial value from which they should not differ significantly
over time. One observes a somewhat diverging behavior with little jumps.
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38 Using the Schrödinger-Poisson solver

(a) Differences between the sum of all |ψ|2-values and the sum of the initial |ψ0|2-values
against the timestep indices, i, for 200 timesteps in a pure Schrödinger-solver.

(b) Differences between the sum of all |ψ|2-values and the sum of the initial |ψ0|2-values
against the timestep indices, i, for 103 timesteps in a pure Schrödinger-solver.

Figure 4.7: The same as in the caption of figure 4.6 holds with the important
addition that we focus here on the pure Schrödinger-solver, i.e. by neglecting
the gravitation term in the Schrödinger-Poisson equation (2.34). The maximum
number of timesteps was chosen to visualize one and two jumps, respectively.
Note, that a CFL-number of 0.5 was chosen to catch two jumps in the first 103

timesteps.
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4.2 In three dimensions 39

4.2 In three dimensions

4.2.1 Radially symmetric Gaussian wavefunction

As in the one-dimensional case, we start by testing the solver with a ra-
dially symmetric Gaussian wavefunction (4.1), where x → x⃗ and k0 → k⃗0

apparently. We have chosen the same values as before and n = 0 in k⃗0.
However, in contrast to the one-dimensional case, in order to keep simu-
lation runtimes at a minimum, we reduce the number of axis points per
axis from Nx = 103 to Nx = 102. Note, that whilst it takes just a couple
of seconds for the one-dimensional solver to finish for Nx = 102 and 104

timesteps, the three-dimensional solver needed roughly eleven hours to
finish.

Instead of showing the three-dimensional scatter plot2 we present a pro-
jection of the |ψ|2-values in x-direction that goes centrally through the sim-
ulated box, what you can see in figure 4.8. At the initial timestep (figure
4.8(a)) as well as the final one (figure 4.8(b)) you can clearly see the Gaus-
sian shape, but note, that after 104 timesteps one clearly sees the enhance-
ment of the peak compared to the initial one. This indicates again, that the
integral over all |ψ|2-values could not be conserved.

In figure 4.9(a) we plotted again the maximum Schrödinger-velocity, vS,max,
and in figure 4.9(b) the timesteps, ∆t, against the timestep indices, respec-
tively. Once again, one can clearly see the ∆t ∼ v−1

S,max behavior from the
CFL-condition 3.43. One again observes an oscillating behavior in both
parameters over time with a clear increasing (decreasing) tendency in the
maximum velocities (timesteps) what matches the behavior we observed
for the one-dimensional behavior in subsection 4.1.1.

Thus, we conclude again that our solver is capable of simulating, at least,
a Gaussian wavefunction properly in time via the non-linear Schrödinger-
Poisson equation (2.34). Note, that this is based on a qualitative analysis.
However, by choosing Nx = 102 data points we did not test the limits of
the solver, which is also a number of axis points that can be easily simu-
lated on an average desktop computer for educational purposes.

2Due to the high number of simulation points that only differ by its colour since the |ψ|2-
values are represented by color at each grid point, the outer grid points shield the inner
ones. Additionally, only a vicinity of the center has |ψ|2-values that are significantly
different from zero, so that both effects in total give three-dimensional representations
that are not interpretable.
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40 Using the Schrödinger-Poisson solver

(a) Density of a radially symmetric Gaussian pulse (4.1) at initial timestep index i = 0.

(b) Density of a radially symmetric Gaussian pulse (4.1) at final timestep index i = 103.

Figure 4.8: One radially symmetric Gaussian pulse. Ordinate values are to be
understood qualitatively, hence, no units were given. Note, that in contrast to
the one-dimensional discussion, we explicitly have chosen Nx = 102 instead of
Nx = 103, what does not inflict with the qualitative analysis.
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4.2 In three dimensions 41

(a) Maximum Schrödinger velocity, vS,max, against timestep index, i.

(b) Timestep, tstep ≡ ∆t, against timestep index, i.

Figure 4.9: Time-evolution of the two important evolution equation (3.25) param-
eters, namely the timestep ∆t and the maximum Schrödinger-velocity, vS,max.
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42 Using the Schrödinger-Poisson solver

4.2.2 The density of a point mass

For the three-dimensional solver we once again test the gravity part, i.e.
the Poisson-solver, that was described in subsection 3.3.1, with the sim-
plest possible example, namely a point mass in the center of the simulation
box. Basically the same equations that were described in subsection 4.1.2
hold with the dimensional replacement x → x⃗ and δ → δ(3) obviously,
where the latter was done to make the dimensionality of the Dirac-Delta
distribution explicit. However, we observe an 1/r-behavior in the poten-
tial (figure 4.10) as was expected. Hence, we can safely state, that even in
3D, the Poisson-solver operates as it should.

Figure 4.10: he potential of a point mass in the center of the simulation box after
one timestep, solely to show that the expected 1/r-behavior is clearly visible. The
plot shows the potential values along an axis through the center of the simulation
box that is parallel to the x-axis.
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4.2 In three dimensions 43

4.2.3 An axion wavefunction attempt

Let us tackle at least a basic example of an axion wavefunction by starting
from the WKB-approximation (2.29) for the axion field, ϕ, one notes that
the axion wavefunction, ψ, is simply a complex scalar field, so that we
could rewrite in polar coordinates as ψ = |ψ| exp{iα}, where α is a phase
and |ψ| can easily be computed by ρa = |ψ|2. If we plug ψ then in the
Schrödinger-Poisson equation (2.34), one immediately sees that the expo-
nential drops out, so that α should be a free parameter, which is why we
set α = 0 for convenience, so that ψ = |ψ| = √

ρa is a good starting point
for the FDM analysis. However, we are now forced to choose an initial
density field as the initial condition for the solver to start from. Choosing
initial conditions is rather complicated as was discussed by [2, 13] and oth-
ers. For educational purposes, we simply choose a density that follows a
Gaussian-like distribution. By making sure that units work out, we arrive
at

ψ(x⃗) =

√
M
V

· exp
{
− πx⃗2

2V2/3

}
, (4.9)

where M is the total mass in the simulated box with volume V = L3.
Note, that since the Gaussian integral in the normalization (2.37) is three-
dimensional, one gets the Gaussian integral value three times, which then
corrects the resulting exponent 2/6, where the additional factor 1/2 comes
from the standard Gauss-integral solution, so that V cancels out in the
normalization and M is achieved as we demand.

We desired to set Nx = 103 but the current solver simply requires too much
computation time in order to compute the second derivatives, ∆ψ, so that
have let the solver run for one timestep with Nx = 103 to show that it is
in fact capable of handling 109 grid points (see figure 4.11(a)), although it
took roughly five hours for one timestep with an additional three hours
per plot, so that we decided to let the simulation run for Nx = 102.

As you can see in figure 4.11(b), the chosen wavefunction (4.9) cannot be
simulated by our solver correctly because the π/V2/3-factor in the expo-
nential widens the Gaussian pulse too much, so that the application of pe-
riodic boundary conditions results in wrong second derivatives and thus,
in the breakdown of the evolution equation. In future works, one must
choose a different wavefunction after a proper initial condition analysis,
which is beyond the scope of this project, unfortunately.
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44 Using the Schrödinger-Poisson solver

(a) Gaussian pulse after one timestep for Nx = 103 axis points per axis.

(b) Axion wavefunction (4.9) for Nx = 102, 104 timesteps and M = 1012ma.

Figure 4.11: One radially symmetric Gaussian pulse and one example of a simple
axion wavefunction. The Gaussian pulse shows the capability of simulating 109

grid points, whereas the axion wavefunction is a simple attempt of solving real-
world applications.
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4.2.4 Open problems

The solver currently lacks two significant problems. The first links to the
non-conserved integral over all |ψ|2-values that we discussed in 4.1.4. In-
stead of integrating via SciPy’s Simpson integrator along the axis as we
did for the one-dimensional solver, we simply sum up all |ψ|2-values of
the wavefunction array, i.e. replacing the integral in (2.37) with a sum over
all grid points. Again, we track the differences of the sums with respect to
the initial value. At first, letting the simulation run for 102 timesteps, the
results shown in figure 4.12(a) suggest that we only deal with numerical
standard errors that are summed over more and more timesteps leading to
large uncertainties in the final results. However, by letting the simulation
run a bit longer, i.e. for 103 timesteps (figure 4.12(b)), one sees two jumps
in the differences at close to the 200th and around the 600th timestep. By
comparing this differences evolution with the corresponding evolutions
of the maximal Schrödinger-velocity, vS,max, (figure 4.13(a)) as well as the
timestep sizes, ∆t, (figure 4.13(b)), one can see that both jumps coincide
with sharp peaks in both evolutions, indicating some hidden error in the
solver. Like in the one-dimensional case, there must be something wrong
with the computation of the real part of the wavefunction, what is still to
be solved.

The second open problem we see is the tremendous runtime that comes
with larger numbers of axis points. As we have said in subsection 4.2.1
already, letting the simulation run 104 timesteps for Nx = 102 axis points
per axis takes roughly five (plus three per plot) hours for the simulation
to finish. By using the same wavefunction we tried running the solver for
just one timestep with Nx = 103 axis points per axis and in fact it finished
on a computer that was capable of providing enough memory to store the
necessary arrays. However, just one timestep took roughly five hours to
finish, so that it is beyond the possibilities of this project to let the simu-
lation run with Nx = 103 axis points per axis for long enough to produce
relevant results. It is thus an open problem to improve the computation of
the second derivatives of ψ, which is the simulation’s biggest bottleneck
right now, as we discussed in subsection 3.3.2 already.
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46 Using the Schrödinger-Poisson solver

(a) Differences between the sum of all |ψ|2-values and the sum of the initial |ψ0|2-value
against the timestep indices, i, for 102 timesteps.

(b) Differences between the sum of all |ψ|2-values and the sum of the initial |ψ0|2-value
against the timestep indices, i, for 103 timesteps.

Figure 4.12: Evolution of the total error of the simulation made in the sense of
the conserved sum over all |ψ(x)|2-values. Hence, the sum of the |ψ|2-values at
a timestep are subtracted by the initial value from which they should not differ
significantly over time.
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(a) Maximum Schrödinger-velocity, vS,max, against timestep index, i.

(b) Timestep, tStep ≡ ∆t, against timestep index, i.

Figure 4.13: Time-evolution of the two important evolution equation (3.25) pa-
rameters, namely the timestep ∆t and the maximum Schrödinger-velocity, vS,max.
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Chapter 5
Conclusion and outlook

In this work, we have built on the theoretical insights we gained through
our intensive research on the physics of ALPs and their impact on cosmol-
ogy, cosmological perturbation theory and non-linear density perturba-
tion evolution in the Universe. We have built an easy accessible Schrödinger-
Poisson solver that fulfills not only educational but also scientific purposes
in evolving arbitrary non-relativistic wavefunctions in Newtonian gravity
in a flat, matter-dominated Universe that is well described by the RW-
metric. We were able to check that gravity, at least qualitatively, behaves
as we expect it and that it is possible to let the solver run, in a stable way,
for very large numbers of timesteps in order to simulate as big time inter-
vals as one desires to.

By changing the equation of the scale-factor (3.19), it is no problem to
change the considered Universe’s epoch to what one is interested. The
same goes for the system under consideration, for one needs only to change
the implemented wavefunction, ψ, accordingly. Be aware of following the
chosen unit convention (1.3).

However, as we presented in the previous chapter as well, the question
remains how we can ensure that the normalization of the wavefunction is
ensured over all times. Although, numerical operations come with nat-
ural errors, we have clearly shown that in the evolution of the real part
of the wavefunction remains a systematic uncertainty that induces a non-
negligible error to our computations.
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In the future it would be interesting to improve the solver in various man-
ners. First of all, we would like to encourage rewriting the solver in an-
other programming language that in general operates faster, like C or even
C++, although the former should already be an enormous upgrade in terms
of runtime. Additionally, it would introduce a pointer-arithmetic that
could be used to outsource the creation of the wavefunction, the compu-
tation of the second derivatives of ψ and probably all plotting in seperate
methods in order to upgrade the main-methods style, strongly increasing
readability of the solver’s basic structure. Second, the computation of the
second derivatives of ψ should be rewritten, so that multiprocessing can
be applied in an efficient way in order to significantly widen the solver’s
biggest bottleneck right now. The idea is that the computation takes place
in a three-fold nested for-loop. Imagine a N3

x -grid with Nx = 3, where we
start at the lowest layer at the bottom row and then go through all three
columns in order to check all grid points in this row. Then we go up one
row in the same layer and repeat this process. After finishing the third
row, we go one layer up and repeat the previous steps again to go through
all layers. Note, that by doing so, we check each data point three times in
total. In a first step, we would assign one processor to each layer, reducing
the scaling of the runtime with 3N3

x down to simply 3N2
x as all layers can

be checked simultaneously. Note, that for Nx = 103 what is the desired
grid size of our simulation, this already requires 103 processors to perform
the sped up simulation. However, depending on the resources, one can of
course speed up the simulation even more. Third, we highly encourage
using a supercomputer in order to have the resources for multiprocessing
available more likely and to let the simulations run even quicker.

Furthermore, after improving the solver, we are looking forward tackling
CDM wavefunctions as well as different FDM wavefunctions via a proper
initial condition treatment as was suggested and presented in [2, 13], for
example, for direct comparisons between FDM and CDM in order to draw
strong conclusions on the differences that could likely be observable in
the near future by precision cosmology. Should the results of upcom-
ing works show that there is no observable differences, one is led to the
conclusion that indeed ULAs could fill the knowledge gap in the ΛCDM
model. Otherwise, if observable differences are not observed to a suffi-
ciently large precision, one can safely rule out ULAs as proper DM can-
didates, what shrinks the axion mass-range substantially for other experi-
ments that check the remaining various orders of magnitudes.
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Appendix A
Code of the solver and availability

In this appendix, we would like to present the code of our Schrödinger-
Poisson solver that is presented in the main text in chapter 3. Afterwards
we present the other functions that were not presented in the main text due
to their less relevance. Although, the code present is completely presented
here, upon reasonable request, it is possible to get the python-files directly.
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54 Code of the solver and availability

1 ### Settings

2 output_directory = setup_output_directory ()

3 boxsize = 10 #Mpc

4 number_axis_points = 10**3

5 number_time_steps = 1*10**6

6 mass_axion = 10** -99 # 10^10 M_solar

7 time_initial = 4.43*10** -7 # 0.978*10^12 yr

8

9

10 ### Initial setup

11 x = np.linspace(-boxsize/2,boxsize/2, number_axis_points)

12 y = np.linspace(-boxsize/2,boxsize/2, number_axis_points)

13 z = np.linspace(-boxsize/2,boxsize/2, number_axis_points)

14

15 position_step = boxsize /( number_axis_points -1) #Mpc

16 k_vec = np.fft.fftfreq(number_axis_points , d=position_step)

17 k_vec_squared_inv = 1/np.dot(k_vec ,k_vec)

Listing A.1: The first part in main.py is to set the basic parameters of the
simulation, i.e. the boxsize L, the number of axis points to be simulated per
coordinate-axis, the number of timesteps the simulation should iterate through
and the axion mass, ma. Then, the coordinate-axes are defined, the position
step, ∆x, is computed and based the number of axis points and ∆x, we
already compute k⃗ and k−2, where k is the absolute value of k⃗, for the Fourier
transformation later.

1 ### Create wavefunction

2 sigma = 0.5

3 a = 0.5* sigma **2

4 c = 1/np.sqrt (2*np.sqrt(np.pi))

5 wavefunction = np.zeros(( number_axis_points ,

number_axis_points ,number_axis_points),dtype=complex)

6 k0 = 10**6* np.pi/boxsize

7 for xi in range(number_axis_points):

8 for yi in range(number_axis_points):

9 for zi in range(number_axis_points):

10 pos = np.sqrt(x[xi ]**2+y[yi ]**2+z[zi ]**2)

11 wavefunction[xi ,yi ,zi] = c*np.exp(1j*k0*pos -pos

**2/(4*a))/(np.sqrt (2*a))

Listing A.2: The second step in main.py is to create the wavefunction, ψ, that we
would like to evolve in time. First, we initialize an empty 3D array to store the
value of the wavefunction at each grid point and then go through all axes points
in order to compute the corresponding ψ-value and store it accordingly.
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1 # Update density and potential

2 density = np.real(np.multiply(np.conj(wavefunction),

wavefunction))

3 density_FT = np.fft.fftn (4*np.pi*G*density)

4 potential = np.fft.ifftn (-1* k_vec_squared_inv*density_FT)

Listing A.3: The first part of the third step, i.e. the main routine, in main.py is to
compute the current density, ρ, and based on it the current potential, Φ. This is
done by using NumPy’s FFT implementation and its inverse pendant to quickly
solve the Poisson equation for the potential, Φ.

1 # Update velocity

2 for xi in range(number_axis_points):

3 for yi in range(number_axis_points):

4 for zi in range(number_axis_points):

5 vel_schr[xi,yi,zi] = (-wavefunction [(xi+2)%

number_axis_points ,(yi+2)%number_axis_points ,(zi+2)%

number_axis_points]

6 +16* wavefunction [(xi+1)%

number_axis_points ,(yi+1)%number_axis_points ,(zi+1)%

number_axis_points]

7 -30* wavefunction[xi%

number_axis_points ,yi%number_axis_points ,zi%

number_axis_points]

8 +16* wavefunction [(xi -1)%

number_axis_points ,(yi -1)%number_axis_points ,(zi -1)%

number_axis_points]

9 -wavefunction [(xi -2)%

number_axis_points ,(yi -2)%number_axis_points ,(zi -2)%

number_axis_points ])

10 vel_schr *= 1/(12* position_step **2)

11 time_current = sum(time_steps) # 0.978*10^12 yr

12 scale_factor = (( time_initial+time_current)/age_universe)

**(2/3)

13 vel_schr = 1j*(0.5* hbar*vel_schr /( mass_axion*scale_factor

)-potential*wavefunction/hbar)

Listing A.4: The second part of the third step, i.e. the main routine, in main.py

is to compute the Schrödinger-velocity, which in a first step requires ∆ψ, which is
computed via a fourth-order centered finite-differencing formula (3.18) by going
through all grid points for each spatial dimension. Afterwards this is plugged in
the equation of the Schrödinger-velocity (3.24).
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56 Code of the solver and availability

1 #Update timestep

2 vel_max = np.amax(abs(np.real(vel_schr)+np.imag(vel_schr)

))

3 max_vels = np.append(max_vels ,( vel_max))

4 time_step = 0.1* position_step/vel_max

5 time_steps = np.append(time_steps ,( time_step))

Listing A.5: The third part of the third step in the main routine in main.py is
to compute the maxmimum Schrödinger-velocity, vS,max, and based on it the
timestep via the CFL-condition (3.43) and to append it to the timesteps-array
in order to visualize it after the simulation.

1 # Subplots / Supprints

2 if time_index % 100 == 0: print("i=",time_index ,"at t=","

{:.2f}".format(timeit.default_timer ()-start),"s with a=","

{:.4e}".format(scale_factor))

3 if time_index % 100 == 0:

4 plot_3D(output_directory ,"squared3D_"+str(time_index).

zfill (7),x,"x [Mpc]",y,"y [Mpc]",z,"z [Mpc]",’lin’,’lin’,’

lin’,"Wavefunction at $t_i$ for i="+str(time_index),’upper

left’,np.real(np.multiply(np.conj(wavefunction),

wavefunction)),"$|Psi|^2$")
5 plot_1D(output_directory ,"squared1D_"+str(time_index).

zfill (7),x,"x [Mpc]",r"$|\Psi |^2$",’lin’,’lin’,"
Wavefunction at $t_i$ for i="+str(time_index),’upper left’

,np.real(np.multiply(np.conj(wavefunction [:,int(

number_axis_points /2),int(number_axis_points /2)]),

wavefunction [:,int(number_axis_points /2),int(

number_axis_points /2)])),r"$|\Psi |^2$")
6

7 #Update wavefunction

8 wavefunction = wavefunction + time_step*vel_schr

Listing A.6: The fourth and final part of the third step in the main-routine in
main.py is to update the wavefunction via (3.25) and eventually to print a status
update to the user as well as to make plots in between for some sub-results.
Note, that the frequence of these in-between steps should be adjusted to the total
amount of timesteps that the simulation goes through in order to not slow the
simulation down significantly.
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1 ### Plot final densities

2 plot_3D(output_directory ,"final_squared3D",x,"x [Mpc]",y,"y

[Mpc]",z,"z [Mpc]",’lin’,’lin’,’lin’,"Wavefunction at

$t_i$ for i="+str(number_time_steps),’upper left’,np.real(

np.multiply(np.conj(wavefunction),wavefunction)),"$Psi^2$"
)

3 plot_1D(output_directory ,"final_squared1D",x,"x [Mpc]",r"$
|\Psi |^2$",’lin’,’lin’,"Wavefunction at $t_i$ for i="+str(

number_time_steps),’upper left’,np.real(np.multiply(np.

conj(wavefunction [:,int(number_axis_points /2),int(

number_axis_points /2)]),wavefunction [:,int(

number_axis_points /2),int(number_axis_points /2)])),r"$|\
Psi|^2$")

4

5 ### Analyze max velocities

6 plot_1D(output_directory ,"max_velocities",time_indices ,"i",

"$v_{max}$",’lin’,’lin’,"Evolution of the maximum velocity

",’upper left’,max_vels ,"Max_vel")

7

8 ### Analyze time steps

9 plot_1D(output_directory ,"time_steps",time_indices ,"i","$t_
{step}$",’lin’,’lin’,"Evolution of the Stepsize",’upper

left’,time_steps ,"Timesteps")

Listing A.7: The fourth and final step in main.py is to make some plots and
to store the results and simulation parameters. One 1D and 3D scatter plot of
the final density is made, respectively, and two 1D plots of the evolution of the
maximum velocities, vmax,i, and the timesteps, ∆τi, respectively.
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58 Code of the solver and availability

1 ### Save important values

2 with open(output_directory+’settings_and_output.txt’, ’w’)

as f:

3 f.write("---Constants ---\n")

4 f.write("G="+"{:.4e}".format(G)+"Mpc*(km/s)^2*(10^10

M_solar)^-1\n")

5 f.write("hbar="+"{:.4e}".format(hbar)+"Mpc*(km/s)*10^10

M_solar\n")

6 f.write("\n")

7 f.write("---Settings ---\n")

8 f.write("Boxsize="+"{:.2f}".format(boxsize)+"\n")

9 f.write("Number of axis points="+"{:.4e}".format(

number_axis_points)+"Mpc\n")

10 f.write("Number of time steps="+"{:.4e}".format(

number_time_steps)+"\n")

11 f.write("Position step="+"{:.4e}".format(position_step)+"

Mpc\n")

12 f.write("k^-2="+"{:.4e}".format(k_vec_squared_inv)+"\n")

13 f.write("\n")

14 f.write("---Output parameters ---\n")

15 f.write("Simulation time="+"{:.4e}".format(

time_simulation)+"*3.086e+19s\n")

16 f.write("Runtime="+"{:.4e}".format(runtime)+"s\n")

17 print("Important values are saved in text file

settings_and_output.txt")

Listing A.8: main.py. The 3D wavefunction array wavefunction as well as the
two 1D arrays max vels and timesteps are stored as .npz-files. Finally, the
constants and the simulation parameters as well as some variables are stored in a
.txt-file for the convenience of the user.
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Methods of less relevance
The method setup output directory is a very simple, but handy, method
(see Listing A.9) in order to create a unique output directory. It simply
starts to pretend the current run has the number one and checks if a corre-
sponding directory already exists. If this is not the case, it increments this
number by one and repeats to check for its existence. Eventually, it will
find the lowest number that does not already exist, makes the correspond-
ing output directory and returns this string for later usage of storing plots
and other output files.

1 import os

2

3 def setup_output_directory ():

4 run_number = 1

5 path = "run"+str(run_number)+"/"

6 while os.path.isdir(path) == True:

7 run_number += 1

8 path = "run"+str(run_number)+"/"

Listing A.9: In storage.py is the method setup output directory stored, which
checks for already existing output directories. Eventually, it finds the newest,
non-existing, output directory and simply appends it, so that it can be used in the
current run.

We implemented two methods that are designed to simplify the plotting of
various data sets (see Listing A.10 and A.11) in one- and three-dimensions,
respectively.

The one-dimensional plot 1D requires several input parameters. First, one
must pass the output directory, so that the plots are stored correctly, a de-
sired filename, the horizontal axis, x, and its label as well as the label for
the vertical axis, y. Then, one must specify if one wants to have one or both
axes logarithmic by passing ’log’1. After that, one specifies the plot title
and and gives the position of the legend to legloc. The most convenient
part of the method is that one then can pass an arbitrary amount of data-
label-pairs to ∗yAndLabel, where one must be cautious about the ordering
”data set” first, ”corresponding label” second and that one always passes
a label corresponding to a data set, so that it appears in the legend in the
plot. From all passed data sets, a scatter plot is made and stored in the
given output directory. In fact, the method itself is nothing spectacular, its
only purpose is to spare many codelines in main.py.

1Any other input here gives a linear scale.
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60 Code of the solver and availability

1 def plot_1D(output_path ,filename ,x,xlabel ,ylabel ,xScale ,

yScale ,title ,legloc ,* yAndLabel):

2 plt.xlabel(xlabel)

3 plt.ylabel(ylabel)

4 plt.title(title)

5 plt.grid()

6

7 if xScale == ’log’: plt.xscale(’log’,base =10)

8 if yScale == ’log’: plt.yscale(’log’,base =10)

9

10 for i in range(0,len(yAndLabel) ,2): plt.scatter(x,yAndLabel

[i],label=yAndLabel[i+1])

11

12 plt.legend(loc=legloc)

13 plt.savefig(output_path+filename+".jpg")

14 #plt.show()

15 plt.clf()

Listing A.10: plotting.py contains two different ways of plotting data, i.e a one-
dimensional and a three-dimensional case. The former one, plot 1D presented
here, was implemented in a way that you can add an arbitrary number of data on
the vertical axis for the same horizontal axis.

The three-dimensional plot 3D is not as flexible as its one-dimensional
pendant, which is also not necessary since we always desire to plot pre-
cisely one data set on the whole 3D-grid, i.e. the wavefunction- or the
density-values, respectively. However, basically the same input parame-
ters as in the one-dimensional case must be passed with the slight differ-
ence that a third axis must be passed along with a third scaling option in
order to set one, two or three axes to a logarithmic scaling. In the end,
via vals and vals label one passes the values on the grid points and
the corresponding label, respectively. Then, the plotting is again, noth-
ing spectacular. The only important line to mention is the creation of the
grid via NumPy’s meshgrid-method that takes the three coordinate-axes
we defined and passed to the plotting-method and gives the coordinate-
values of the grid points back that correspond to the axes-points. Thus,
from three axis-arrays of length L, meshgrid makes L3 grid points, so that
we are able to make ψ, |ψ|2, ρ or other data, that is defined at each grid
point, visible.
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1 def plot_3D(output_path ,filename ,x,xlabel ,y,ylabel ,z,zlabel ,

xScale ,yScale ,zScale ,title ,legloc ,vals ,vals_label):

2 fig = plt.figure ()

3 ax = fig.add_subplot(projection=’3d’)

4

5 ax.set_xticks ([-5,-2.5,0,2.5,5])

6 ax.set_yticks ([-5,-2.5,0,2.5,5])

7 ax.set_zticks ([-5,-2.5,0,2.5,5])

8

9 ax.axes.set_xlim3d(left=-5, right =5)

10 ax.axes.set_ylim3d(bottom=-5, top =5)

11 ax.axes.set_zlim3d(bottom=-5, top =5)

12

13 ax.set_xlabel(xlabel)

14 ax.set_ylabel(ylabel)

15 ax.set_zlabel(zlabel)

16 ax.set_title(title)

17 ax.grid()

18

19 if xScale == ’log’: ax.set_xscale(’log’)

20 if yScale == ’log’: ax.set_yscale(’log’)

21 if zScale == ’log’: ax.set_zscale(’log’)

22

23 xp , yp , zp = np.meshgrid(x,y,z)

24

25 color_map = plt.get_cmap(’Reds’)

26 scatter_plot = ax.scatter3D(xp , yp , zp , c=vals , cmap=

color_map , label=vals_label , alpha =0.3)

27 plt.colorbar(scatter_plot)

28

29 ax.legend(loc=legloc)

30

31 plt.savefig(output_path+filename+".jpg")

32 #plt.show()

33 plt.clf()

Listing A.11: plotting.py contains two different ways of plotting data, i.e a one-
dimensional and a three-dimensional case. The latter one, plot 3D presented
here, was implemented specifically for showing precisely one data set on each
grid point.
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