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Abstract 

Human decision-making in the context of value-based learning considerably deviates from the 

premise to always maximise short-term reward. This sort of behavioural variability has been 

attributed to exploration during the choice process and has been linked to the locus coeruleus-

noradrenaline (LC-NA) system. A recent computational account implementing a “noisy” 

reinforcement learning (RL) model provides evidence that computational imprecision during 

the learning process contributes to behavioural variability in decision-making as well. In the 

present study, the role of the LC-NA system in modulating learning imprecision has been 

investigated, using a multi-modal approach including the newly developed noisy RL model, a 

double-blind pharmacological manipulation, and EEG. The responses of thirty participants in 

a decision-making task were investigated during two experimental sessions in which either 

atomoxetine, a NA reuptake inhibitor, or placebo was administered, and the model fit of the 

noisy RL model was tested against the classical RL model without learning imprecision 

parameter. Contrary to our expectations, we did not find evidence for a modulatory role of the 

LC-NA system of learning imprecision. However, in line with our expectations, increased NA 

levels did not impact exploratory behaviour either. Crucially, the noisy RL model 

outperformed the classical RL model assuming exact learning and learning imprecision led to 

a significant number of non-maximising decisions contributing to behaviour variability. 

Moreover, the exploratory EEG analyses on potential underlying mechanisms of learning 

imprecision suggest learning noise to emerge broadly during feedback processing, rather than 

within a certain time window. The current study provides further evidence for the importance 

of computational imprecision during value-based learning. 
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Computational Imprecision in Value-Based Learning and Decision-Making: 

Investigating the Potential Role of the Noradrenergic Locus Coeruleus System 

In a world of ever-changing possibilities to satisfy one’s needs, human decision-

making has been found to be subject to variability: Decisions for or against an option fluctuate 

over time and do not always align with the highest expected reward (Sutton & Barto, 2018). A 

growing body of evidence suggests that noradrenaline (NA) released in the brainstem nucleus 

locus coeruleus (LC) plays a pivotal role in modulating this kind of behavioural variability 

(Aston-Jones & Cohen, 2005), however, the exact role and underlying mechanisms 

contributing to such variability remain to be determined. Theoretical work in the domain of 

reinforcement learning (RL) and decision-making assigns the role of regulating explorative 

versus exploitative behaviour to the LC-NA system, further suggesting that behavioural 

variability results from the need to explore lesser-known alternatives to mitigate uncertainty 

and potentially increase long-term reward. Recent theoretical and empirical work has 

introduced another source of behavioural variability, showing that learning imprecision during 

the learning process (i.e., linking an action to a certain reward) contributes to behavioural 

variability as well (Findling et al., 2019). The current study aims to investigate the role of the 

LC-NA system in regulating these two sources of behavioural variability in human learning 

and decision-making. Specifically, we hypothesise that the activity of the LC-NA system 

drives behavioural variability by modulating the level of learning imprecision, rather than 

regulating the “exploration-exploitation” trade-off. With the current research, we seek a direct 

test of the involvement of the LC-NA system in modulating learning imprecision during 

value-based learning by using a pharmacological manipulation to increase central NA levels. 

Moreover, we wish to investigate the dynamics of learning imprecision on the neural level 

using electroencephalography (EEG) due to its high temporal resolution.     

Reinforcement learning (RL) is a computational framework for understanding how 

humans learn complex behaviour through simple rewarding or punishing signals (Lindsay, 
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2021). One of the main premises of RL is that humans as well as artificial agents aim at 

maximising reward in the long run (Sutton & Barto, 2018). However, our world presents 

challenges to achieving that goal, as immediate rewards and long-term values of actions often 

are unknown or subject to volatility (i.e., action-outcome contingencies change over time). 

One approach within RL is value-based or reward-guided learning, which involves trial-and-

error learning to identify the most rewarding options. This approach follows a sequential 

process of learning and decision-making. Initially, the values of possible actions are 

estimated, providing a basis for subsequent decisions in the action selection process. 

Feedback on the chosen action is received, which in turn allows for an update of the action 

values. The updated action values then guide future decisions, resulting in an iterative 

learning and decision-making process.  

Despite the simplicity of these steps, a key challenge in RL lies in effectively utilising 

the estimated values to make decisions that maximise outcome, as seen in the exploration-

exploitation dilemma. While exploitation involves choosing the option with the highest 

estimated value to maximise short-term reward (so-called greedy decisions), exploration is 

necessary to potentially discover better alternatives to maximise long-term outcome by 

venturing beyond the option with the highest expected value (non-greedy decisions). Thus, 

balancing reward maximisation vs. information seeking is crucial for adaptive behaviour and 

optimal decision-making. Reportedly, humans make a substantial number of decisions which 

fail to maximise immediate reward, especially in uncertain and volatile environments (Jepma 

et al., 2020). Many RL and decision-making theories have predominantly attributed this 

phenomenon to exploration alone (Daw et al., 2006; Dayan & Daw, 2008), overlooking other 

potential factors contributing to non-greedy decisions. 

Recent research by Findling et al. (2019) has shed light on such an additional 

mechanism contributing to non-greedy decisions, namely imprecision during the learning 
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process. While classical RL models rely on precise reward prediction errors (RPE; obtained 

reward minus expected reward) for updating action values, the newly introduced “noisy RL 

model” incorporates noise along with the RPE in the updating process. This model suggests 

that decision-making is not solely guided by precise action values but also by noisy action 

values that are corrupted by learning noise. Consequently, the noisy RL model additionally 

entails random variability on the learning level. In contrast, exploration is accounted for at the 

choice level through random variability during the action selection process (i.e., choice 

stochasticity), where the degree of exploration influences the extent to which decisions are 

driven by estimated action values. The idea of human-decision making being corrupted by 

imprecision founds support from earlier studies, in which human perceptual decision-making 

was shown to be affected by inference noise during evidence accumulation (Drugowitsch et 

al., 2016; Findling & Wyart, 2021; Wyart & Koechlin, 2016). 

To test if noise influences value-based decision making, Findling et al. (2019) 

compared the performance of their noisy RL model with the performance of the “exact” RL 

model in a canonical two-armed bandit task. Their findings indicated that the noisy RL model 

explained human decision-making better, with decisions labelled as non-greedy under the 

exact RL model often being classified as greedy under the noisy RL model. This suggests that 

learning imprecision might play a crucial role in driving behavioural variability. Additionally, 

the study revealed that the effect of learning imprecision was more pronounced in task 

conditions where exploration was unnecessary (i.e., during complete feedback conditions 

where both the chosen and forgone outcome was revealed) compared to conditions where 

exploration was required (i.e., in partial feedback conditions where only the chosen outcome 

is known). Overall, this emerging line of research highlights the contribution of learning 

imprecision, alongside the trade-off between exploitation and exploration, to behavioural 

variability in decision-making. Understanding the neurobiological mechanisms underlying 
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such variability, particularly in the context of value-based learning, has been the focus of 

further investigation. 

The locus coeruleus-noradrenaline (LC-NA) system is a prominent candidate for 

modulating behavioural variability during value-based decision-making and learning, given 

its neuromodulatory role and involvement in arousal, attention, learning, and memory (for 

reviews, see Sara, 2009; Sara & Bouret, 2012; Thiele & Bellgrove, 2018). While the seminal 

work of Schultz, Dayan, and Montague (1997) has linked dopaminergic activity in the ventral 

tegmental area (VTA) and substantia nigra with the reward prediction error, the influential 

adaptive gain theory proposes that tonic LC-NA activity regulates the exploration-exploitation 

trade-off (Aston-Jones & Cohen, 2005). By modulating the sensitivity (i.e., gain) of cortical 

target neurons to sensory input, cognitive and behavioural performance is optimised across 

situations that require either exploration (high tonic NA levels) or exploitation (low tonic NA 

levels). Empirical findings on that account are conflicting, however. For instance, Jepma et al. 

(2010) found that increased tonic NA levels after administering reboxetine, a selective NA 

reuptake inhibitor, had no effect on exploratory behaviour during a four-choice gambling task. 

Conversely, another study using atomoxetine, a NA reuptake blocker, to increase extracellular 

NA levels in the cortex, found an effect of increased tonic NA levels on exploration, however, 

in the opposite direction as hypothesised: higher tonic NA levels were associated with less 

exploration in a gambling task (Warren et al., 2017). Considering the contradictory results 

regarding the relationship between the LC-NA system and exploratory behaviour, an 

alternative explanation for the underlying mechanism of behavioural variability has been 

proposed by Findling et al. (2019). Specifically, their pupillometry data revealed a connection 

between trial-to-trial fluctuations in pupil dilation and learning noise. Given that pupil 

diameter has been previously linked to tonic LC-NA activity (Rajkowski et al., 1994), these 

findings imply a potential involvement of the LC-NA system in the modulation of learning 

imprecision. 
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Event-related potentials (ERPs) have been widely used to identify the underlying 

neural mechanisms of cognitive processes. The two primary ERPs associated with reward and 

feedback processing are the feedback-related negativity (FRN; for reviews, see Kirsch et al., 

2022; Sambrook & Goslin, 2015) and the P3 (for an overview, see Polich, 2020). The 

frontocentrally distributed negative-polarity FRN typically occurs 200 to 300 ms after 

feedback delivery and is told to stem from dopaminergic anterior cingulate cortex (ACC) 

activity (Holroyd & Coles, 2002). The more parietal and positive-polarity component, the P3, 

occurs 300 to 700 ms after feedback and has been linked to phasic LC-NA activity 

(Nieuwenhuis, 2011; Nieuwenhuis et al., 2005). The FRN and P3 have both been found to be 

sensitive to feedback valence (higher negativity for losses than for wins), reward magnitude 

(higher negativity for higher than for lower rewards), and the probability of reward (higher 

negativity for rare than for common rewards) with conflicting findings however (San Martín, 

2012; Yeung & Sanfey, 2004). In particular, the FRN amplitude has been suggested to scale 

with a signed RPE, exhibiting a more negative deflection when the outcome is smaller or 

worse (negative RPE) than when the outcome is larger or better than expected (positive RPE; 

Holroyd & Coles, 2002; for review, see Kirsch et al., 2022). The P3 amplitude on the other 

hand has been linked to an unsigned RPE (Mars et al., 2008) and to unexpected events (e.g., 

the oddball paradigm; Duncan-Johnson & Donchin, 1977), which both reflect surprise. 

Moreover, current evidence points to the possibility of a two-step feedback evaluation 

process, in which the FRN reflects a first evaluation of primary feedback attributes such as 

valence, and the P3 a later in-depth evaluation of secondary feedback attributes such as 

magnitude and probability (Bernat et al., 2015). To date, no study has explored the effect of 

learning imprecision on the FRN and P3. Thus, investigating ERP data may help bridge the 

gap between underlying neural mechanisms, cognitive processes, and computational models 

of human reinforcement learning and decision-making. 
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The current study aims to examine the role of the LC-NA system in regulating 

computational precision in value-based learning using a pharmacological manipulation to 

increase central NA levels, by administering a single dose of 40mg of atomoxetine. 

Atomoxetine, a selective NA reuptake inhibitor, is commonly used in the treatment of 

Attention Deficit Hyperactivity Disorder (ADHD) symptoms (Clemow et al., 2017) and was 

found to alleviate ADHD symptoms by increasing NA levels in the prefrontal cortex (PFC; 

Bymaster et al., 2002). One goal of the study is to replicate some relevant behavioural and 

computational findings of the study of Findling et al. (2019) as depicted in Figure 1. More 

specifically, we want to demonstrate that the model accounting for computational noise by 

entailing a learning imprecision parameter (noisy RL model) explains the human data better 

than an exact RL model without learning imprecision parameter (H1a). Furthermore, we 

expect the fraction of non-greedy decisions explained by learning imprecision to be lower 

when counterfactual information about the decisions is available than when it is not (H1b). 

We further hypothesise that increased NA levels are associated with increased learning 

imprecision but not with increased choice stochasticity (H2). Moreover, we want to explore 

potential model-free correlates such as reward magnitude (H3a) and model-based correlates 

such as learning noise (H3b) of FRN and P3 activity, and test if the effect of the model-based 

variables on FRN and P3 amplitude are modulated by NA or the amount of feedback 

information available (H3c).  

Methods 

Participants 

Thirty Participants (17 female) aged 19-29 years (M = 22.87, SD = 2.27) were 

recruited via Leiden University’s online recruitment tool (https://ul.sona-systems.com/), 

designated Facebook groups, and posters distributed on campus (see Appendix A for the 

recruitment flyer). The following inclusion criteria were applied: 18-35 years old, no history 
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of neurological or psychiatric disorders, no use of psychotropic medication or active drug use, 

no contra-indications to atomoxetine, normal weight (BMI: 18.5-25), normal or corrected-to-

normal vision, and no dreadlocks (due to the EEG measurement). Participants were screened 

by a medical doctor to ensure eligibility to take atomoxetine, excluding those with certain 

medical conditions or habits, such as cerebral diseases (migraine, epilepsy, head trauma), 

cardiovascular diseases, hypertension, gastro-intestinal diseases (e.g., chronic inflammation), 

liver or kidney problems, premature birth, glaucoma, possible pregnancy, breast-feeding, 

heart arrythmia, alcohol addiction, use of anti-depressants, and smoking more than five 

cigarettes per day. Participation in the whole study took around 7.5 hours and was 

compensated with € 110 and a performance-based bonus of € 0, 5, or 10 in each session (M = 

€ 9.02, SD = 2.38). No participant had to be excluded despite one experiencing side effects 

(nausea) from taking atomoxetine. All participants gave consent; the study was approved by 

the Medical Ethics Committee Leiden The Hague Delft (METC LDD). 

Procedure 

Study Design 

The study followed a pseudo-random, double-blind, 2 (treatment) x 2 (feedback) 

within-subject design. We utilised a methodological procedure similar to that of Findling et 

al.'s (2019) behavioural study and were provided with their original material. In contrast to the 

previous study, our design included the use of EEG to measure brain activity, a 

pharmacological manipulation for a more direct test of the involvement of the LC-NA system, 

and our task design did not entail “choice-free, cued-trials”, in which participants had to 

choose the highlighted options.   

Treatment Condition: Atomoxetine vs. Placebo. To test the effect of increased 

central NA levels on learning imprecision and brain activity, participants were orally 

administered a single dose of 40 mg atomoxetine - a selective NA reuptake inhibitor - in one 
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session and placebo (microcrystalline cellulose PH 102) in the other session, counterbalanced 

across participants and feedback condition. Experimenter and participants were blinded to the 

treatment condition, and the substances were delivered by the pharmacy in identical 

containers. Both sessions occurred at the same time of day, followed the same experimental 

procedure, and lasted approximately 210 minutes each, with exactly one week between 

sessions. The initial dose of 40mg is generally considered safe and has a low risk of side 

effects (Heil et al., 2002). After administration, atomoxetine reaches its maximum plasma 

concentration between 60 to 120 minutes with variable half-life duration between extensive 

(5.2 hours) and poor metabolisers (21.6 hours; Sauer et al., 2005).  

Feedback Condition: Partial vs. Complete. During the bandit task, participants 

received feedback for each decision. In half of the blocks feedback was delivered completely 

and in the other half partially. In the partial feedback condition, participants only received 

feedback about the chosen option, while both outcomes (chosen and forgone) were presented 

in the complete feedback condition. The block-design was pseudo-randomised, with 

conditions alternating between blocks. Having these two conditions allows for distinguishing 

between the sources of non-greedy decisions. In the partial feedback condition, non-greedy 

choices can arise from two possible sources: learning imprecision and the need for 

exploration. In contrast, the need to explore is expected to be unnecessary in the complete 

feedback condition because all information is revealed to the participant. 

Session Procedure 

Participants were asked to refrain from consuming alcohol for 24 hours and from 

coffee for 3 hours prior to each session. They were advised to have a regular meal up to one 

hour before the start of the session and to only consume water in the final hour before their 

appointment. Upon arrival at the laboratory, participants read and signed the informed consent 

form. To establish baseline α-amylase levels, a known biomarker for central NA activity and 
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release (for review, see Segal & Cahill, 2009), participants provided a first saliva sample five 

minutes before taking either the active substance or the placebo. We used the passive drool 

collection method (Beltzer et al., 2010) to collect saliva at three measurement points (-5 

minutes, 85 minutes, and 195 minutes after pill administration). Following drug 

administration, the electrocardiogram (ECG) was set up for an offline measurement of the 

heart rate throughout the session, indicating central NA release and activity. Participants then 

completed a brief demographics questionnaire and the State-Trait Anxiety Inventory (STAI; 

Spielberger et al., 1983), since trait anxiety has been linked to tonic LC-NA activity (Howells 

et al., 2012), implying a potential influence on the effect of NA release on task performance. 

After the questionnaires, participants received instructions for the bandit task. Two training 

blocks of the bandit task were conducted in the laboratory room, and feedback on the 

performance was provided to ensure participants' comprehension of the experiment. 

Subsequently, the EEG was set up, and the distance to the screen was maintained at 70cm. A 

second saliva sample was collected from participants five minutes before beginning the main 

experiment, consisting of 12 blocks of the bandit task. Exactly 90 minutes after pill 

administration, participants started with the experiment in the laboratory room, with dimmed 

lights and closed doors. After half of the blocks, participants had the opportunity to take a 

break and have a small snack. Upon finishing the experiment, participants were asked to 

guess which pill they received that day (with 58.33% of participants providing correct 

answers) and provided the final saliva sample 195 minutes after pill administration.  

Measures 

Restless Bandit Task 

Participants completed a restless two-armed bandit task during which they chose 

between two options and were instructed to maximise outcome. Each trial began with a 

fixation cross, followed by the presentation of two differently coloured shapes. Participants 
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indicated their choice by pressing the F key with the left index finger for the left option, and 

the J key with the right index finger for the right option (Figure 2a). Subsequently, feedback 

of the outcome (ranging from 1 to 99 points) was presented. In total, participants did the task 

for 12 blocks à 56 trials each session, and for two training blocks à 48 trials in the beginning 

of the sessions. The shapes and colours of the stimuli were randomly selected from a 

predetermined set, ensuring that the combinations were unique between blocks and that 

colours did not repeat within a single block to maximise distinction between the options. 

Additionally, to introduce volatility into the decision-making environment, a random walk 

procedure (for details, see Findling et al., 2019) was employed for each block separately, to 

generate average outcome trajectories across trials (Figure 2b). The actual outcome on each 

trial was randomly sampled from probability distributions based on the generated means. 

Participants were informed about the volatile nature of the task environment, specifically 

regarding the fluctuation of both mean and the sampled rewards (see Appendix B for task 

instructions).  

STAI, ECG, and Saliva Measures 

STAI, ECG, and saliva measures were conducted but will not be discussed in the 

current thesis. ECG activity and salivary α-amylase levels served as manipulation check and 

correlates of central NA release. 

EEG 

Data Collection. EEG data was collected during the bandit task with a sampling rate 

of 512 Hz using a 32-channel electrode cap and the ActiveTwo System (BioSemi, 

Netherlands). The electrode cap layout followed the international 10/20 system, with an 

additional channel at the FCz position instead of T8. The activity of 32 scalp electrodes and of 

six exterior electrodes were recorded. The four electrodes surrounding the eyes served to 

measure eye movement, with electrodes below and above the eye capturing vertical eye 
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movement (i.e., eye blinks) and electrodes at the outer canthi of both eyes detecting horizonal 

eye movement (i.e., saccades). The two exterior electrodes at the mastoid sites served as 

offline reference point.  

Pre-processing. The EEG data was pre-processed in MATLAB (Version 2021a) using 

the EEGLAB toolbox (Delorme & Makeig, 2004). First, a bandpass filter to include 

frequencies between 0.1 Hz and 35 Hz using the EEGLAB filter method firls was applied and 

the data was re-referenced to the mastoids. Then, we divided the data into epochs, starting 

2000 ms before and ending 2500 ms after feedback onset and removed baseline activity 

starting 200 ms before feedback onset. Next, electrodes were interpolated if any of the three 

criteria applied: the kurtosis (5 SD cut-off), the joint probability (5 SD cut-off), and the 

spectrum criterion (3 SD cut-off). However, electrodes typically contaminated with eye blinks 

(Fp1, Fp2) were not interpolated since eye blink activity was corrected for separately. In total, 

99 electrodes (5.5%) were interpolated, on average 1.53 electrodes (SD = 0.94) in the 

atomoxetine and 1.77 (SD = 1.38) in the placebo condition. The number of interpolated 

electrodes ranged from zero to five per participant and session, thus there was no excessive 

interpolation of electrodes (cut-off criterion = 20%, i.e., six electrodes per EEG recording 

session). As a next step, epoch segments were automatically rejected if the amplitude 

exceeded 300 μV or if the joint probability criterion (5 SD cut-off) applied. Both criteria were 

applied to the signal of the scalp electrodes (excluding those that are typically contaminated 

by eye blinks: Fp1, Fp2, AF3, and AF4) with a time window of 1000 ms before and 1500 ms 

after feedback onset. On average, 39.57 trials (range: 12-155) were rejected per participant in 

the atomoxetine condition, and 24.23 trials (range: 13-44) in the placebo condition. None of 

the EEG recordings had to be excluded, since the amount of rejected trials per participant and 

session did not exceed 25% (= 168 trials). As a result, clean data of 632.43 trials (SD = 34.27) 

per participant remained on average in the atomoxetine and 647.77 trials (SD = 8.39) in the 

placebo condition. Lastly, we run an independent component analysis (ICA; Bell & 
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Sejnowski, 1995) with the data of all scalp electrodes and rejected components that contained 

less than 5% of brain activity but more than 80% of artifact activity in total (categorised as 

muscle, eye, heart, line, or channel noise activity) using the EEGLAB plugin ICLabel. 

Specifying the Spatial and Temporal Occurrence of Valence-Sensitive ERP 

Components. Our task design differed from bandit tasks typically used in the reward learning 

literature in that it employed continuous (1-99 points) instead of binary feedback (e.g., win or 

loss), and it entailed an additional complete feedback condition next to the more common 

partial feedback condition. For this reason, we decided to use a data-driven instead of a 

literature-driven approach to identify the spatial and temporal occurrence of the FRN and P3 

or their approximation. Given the well-established sensitivity of the FRN and P3 to reward 

valence (Kirsch et al., 2022), we employed a difference wave approach to identify relevant 

time windows and electrode locations. Ultimately, our goal was to specify the time windows 

and locations in the ERP data for our later regression analyses (see section “Linking the ERP 

and Computational Data” of the Methods section). 

To determine the spatial and temporal characteristics of the ERP components 

differentially sensitive to reward valence, we analysed the ERP signal by computing the 

difference between low reward trials (≤ 50 points, representing negative valence) and high 

reward trials (> 50 points, representing positive valence). We generated topography plots for 

each 50 ms interval, starting from feedback onset and extending to 1000 ms post-feedback. 

The plots revealed a pronounced negativity at around 400 ms and a strong positivity at around 

700 ms both localized at parietal electrode sites (Figure 3a). Based on these results, we plotted 

the averaged ERP waveforms of the parietal cluster (including electrode Pz and neighbouring 

electrodes CP1, CP2, P3, P4, PO3, and PO4) to examine the precise temporal course of the 

parietal ERP signal and determine the time windows for the regression analyses (Figure 3b). 

Our analysis of the difference wave identified an early parietal negative deflection occurring 
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between 350 and 450 ms and a late parietal positive deflection occurring between 600 and 800 

ms. We refer to these early and late parietal components of the difference wave as the valence 

N400 and valence P700, respectively. Importantly, the characteristics of these identified 

components align with those of the FRN and P3, as the FRN is an early component exhibiting 

a strong negative difference wave deflection, while the P3 is a late component showing a 

positive difference wave deflection. For the main ERP analyses, however, we will not use the 

difference wave, but the specified time windows (350-450 ms and 600-800 ms) and electrodes 

(Pz, CP1, CP2, P3, P4, PO3, and PO4) to further determine the dependent variables reflecting 

“early parietal activity” (between 350 and 400 ms) and “late parietal activity” (between 600 

and 800 ms). We will refer to these parietal cluster activities as Pz400 and Pz700, 

respectively, where Pz refers to the central cluster electrode, and 400 and 700 refer to the 

mean latency of the previously identified maximum activity after feedback onset. 

Data Analyses 

Data Exclusion Criteria 

Participants that performed below chance level (i.e., indication that they did not learn) 

were excluded from all analyses. Performance accuracy was defined based on the previously 

generated mean reward trajectories; if participants chose the option that corresponded to the 

highest mean reward, their decision was classified as correct. For every block, the proportion 

of accurate decisions was calculated to determine performance. Given the original findings of 

the mean performance (M = 65%, SD = 5%), chance level was set to M-2*SD = 55% for our 

study. We did not have to exclude any participants, since the participants’ objective 

performance was above chance level (M = 66.36%, SEM = 0.61%, range = 58.26-72.17%, t-

test against 50%: t(29) = 26.6749, p < .001). 
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Computational Analyses  

Computational Modelling. To mathematically describe the action value learning 

process, we used the identical reinforcement learning models as Findling et al. (2019) did: the 

Q-learning model based on the original Rescorla-Wagner equation (further called “exact RL 

model”), and the noisy RL model as introduced by Findling et al. (2019). The noisy RL model 

differs from the exact RL model in entailing an additive random noise variable εt as can be 

seen in Equation 1.  

 𝑄௧ =  𝑄௧ିଵ +  𝛼(𝑟௧ −  𝑄௧ିଵ) +  𝜀௧                (1) 

Both RL models describe the action value (Qt) updating process on each trial t, where 

α is the learning rate and rt is the obtained reward. In these models lies the idea that the update 

of the action value (i.e., learning) is only necessary when the prediction error (PE = rt - Qt-1) 

does not equal zero, meaning that the reward was unexpected in one way or the other and 

differs from the previously estimated action value Qt-1. Crucially, while the exact RL model 

assumes that the learning process is noise-free (εt = 0), the noisy RL model does not (εt > 0). 

The noisy RL model adds random noise to the equation to corrupt the action values, 

attempting to model not exact but imprecise learning. The noise variable εt is drawn from a 

normal distribution with zero mean and a standard deviation σt defined by a constant learning 

imprecision parameter ζ multiplied by the magnitude of the prediction error as described in 

Equation 2. Is the learning imprecision parameter set to zero, the random noise added to the 

equation will be zero, resulting in the exact RL model. Thus, Equation 1 describes both the 

exact and the noisy RL model. Unmentioned so far, to model the forgetting process we also 

included a learning decay parameter (ranging between 0 and 1) that was applied to the Q-

values that were not being updated at the given trial. However, this is outside the scope of the 

thesis and will not be discussed further.   
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𝜎௧ =  ζ|𝑟௧ −  𝑄௧ିଵ|                         (2) 

To model the action selection process capturing explorative and exploitative decision 

making, we used a stochastic softmax policy as described in Equation 3.  

𝑃(𝐴௧) =  
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                  (3) 

The softmax rule converts the action values (QA for option A and QB for option B) into 

action probabilities, here the probability to choose option A at trial t: P(At). The parameter τ 

describes the temperature and determines how strongly the choices are guided by the action 

values. The higher the τ the more stochastic the choices will be, reflecting explorative 

behaviour where choices are more likely to deviate from the option with the highest estimated 

Q-value (non-greedy decisions). In contrast to that, the lower the τ the more deterministic the 

choices will be, reflecting exploitative behaviour where the option with the highest estimated 

Q-value is always chosen to maximise short-term pay-off (greedy decisions).  

Taking these two equations together, we created three distinct models to be able to test 

our hypothesis concerning the origin of non-greedy decisions. The first model captured 

exploration as the only source (exact RL model with softmax policy, τ > 0, ζ = 0), the second 

model captured both exploration and learning imprecision (noisy RL model with softmax 

policy, τ > 0, ζ > 0), and the third model captured only learning imprecision as a source for 

non-greedy decisions (noisy RL model with argmax policy, τ = 0, ζ > 0). The performance of 

these three models will be tested against each other. For clarification, the model parameters 

(including learning rate, learning decay, learning imprecision, and choice stochasticity) 

remain constant within each single condition, participant, and RL model, while the model 

variables (including prediction error, learning noise, and Q-value) vary across trials. 
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Model Fitting, Selection, and Simulation. To estimate the parameter set (learning 

rate, learning imprecision, and choice stochasticity) for every participant, condition, and RL 

model (exact RL-softmax, noisy RL-softmax, and noisy RL-argmax) separately, we used a 

Bayesian optimization algorithm, the Bayesian adaptive direct search method (BADS; Acerbi 

& Ma, 2017) which is based on variational Bayesian Monte Carlo sampling. We set the 

parameter bounds to the following values: learning rate α = [0.001 0.999], learning decay δ = 

[0 0.999], learning imprecision ζ = [0 10], and choice stochasticity τ = [10-12 1]. 

In a next step, we were interested to know which of the models fitted the data best 

(H1a) by using a Bayesian model selection (BMS) procedure as implemented in the spm_bms 

function of the SPM12 toolbox (https://github.com/spm/spm12) with the previously estimated 

log likelihoods as input. This resulted in two model comparison metrics - the posterior 

probability Pposterior and the exceedance probability Pexceedance. The posterior probability 

indicates how likely the model is given the data, while the exceedance probability indicates 

how more likely the model is than any of the other models given the data (Stephan et al., 

2009). Thus, the higher the probabilities, the better the model fit compared to the alternative 

models.  

Based on these two metrics, we chose the best fitting model: the noisy RL model with 

softmax policy, entailing a learning noise and exploration parameter. The estimated learning 

imprecision and choice stochasticity parameters of that model were later used as independent 

variables to test if increased NA levels are linked to increased learning imprecision but not to 

increased choice stochasticity (H2; see next section “Mixed-Effects ANOVAs of the 

Computational Data”). Moreover, we aimed to quantify the proportion of non-greedy 

decisions attributed to imprecise learning rather than to the need for exploration (H1b). To 

achieve this, we initially identified non-greedy trials based on the exact RL model. 

Subsequently, we examined whether any of these trials would be categorised as greedy by the 
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noisy RL model with softmax policy. If such trials were identified, they would contribute to 

the fraction of non-greedy decisions accounted for by learning imprecision. 

Lastly, we used the best fitting model (noisy RL model + softmax) for the model 

simulation process to recover the model variables such as the estimated action values (Q-

values), the prediction error, and learning noise on the trial level. The simulated model 

variables were later used as regressor variables to test our third hypothesis H3b (see section 

“Exploratory Model-Based Analyses of the ERP Components”).  

Mixed-Effects ANOVAs of the Computational Data 

To test if increased NA levels are linked to increased learning imprecision but not to 

increased choice stochasticity (H2), we ran two separate mixed-effects ANOVAs with 

treatment condition (main interest) and feedback condition (control) as within-subject factors, 

treatment order (control) as between-subject factor, and the respective model parameter 

(learning imprecision and choice stochasticity) as dependent variable. Treatment order was 

included to control for its potential effect but will not be reported or discussed further. 

Linking the ERP and Computational Data 

Exploratory Model-Free Analyses of the ERP Components. To explore if some 

model-free variables (i.e., variables that are not based on the RL models) are linked to neural 

activity (H3a), we ran two separate repeated measures ANOVAs. Feedback type (partial vs. 

complete) and reward magnitude (low: ≤ 50 points vs. high: > 50 points) served as our 

model-free independent variables. To operationalise neural activity serving as dependent 

variable for the ANOVAs, we employed a grand-average ERP approach to our EEG data as 

discussed earlier (for details, see section “Specifying the Spatial and Temporal Occurrence of 

Valence-Sensitive ERP Components”). In general, the dependent variable reflected average 

Pz400 and average Pz700 activity, respectively. More specifically, for every participant, we 
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split the EEG data among the four conditions (partial – low, partial – high, complete – low, 

complete – high) to be able to test if feedback type and reward magnitude differentially affect 

the neural signal. Then, we averaged the EEG signal (per component, participant, and 

condition) across all cluster electrodes (Pz, CP1, CP2, P3, P4, PO3, and PO4), across the time 

points of the respective time window (Pz400: 350 to 450 ms; Pz700: 600 to 800 ms), and 

across all the trials (6 blocks à 56 trials per feedback condition, without any previously 

excluded trials) resulting in one amplitude value per ERP component, participant, and model-

free condition (feedback x reward magnitude).  

Exploratory Model-Based Analyses of the ERP Components. To explore if some of 

our central RL model variables predict neural activity (H3b), we conducted multi-level 

analyses for each component separately. The first level consisted of single-trial regression 

analyses examining the relationship between model variables and neural activity on a single-

trial level, while the second level involved mixed-effects ANOVA analyses investigating the 

effect of feedback and treatment conditions on the standardised regression coefficients. As in 

the model-free analyses, we operationalised neural activity by employing a grand-average 

ERP approach to our EEG data (for details, see section “Specifying the Spatial and Temporal 

Occurrence of Valence-Sensitive ERP Components”). In general, the dependent variable 

reflected average parietal cluster activity in the time window of valence N400 (i.e., Pz400 

amplitude) and valence P700 (i.e., Pz700 amplitude) on a single trial. To obtain the single-

trial amplitudes for the regression analyses, we averaged the EEG signal for every participant 

across the parietal electrodes Pz, CP1, CP2, P3, P4, PO3, and PO4 and across the data 

timepoints from 350 to 450 ms (for activity within the valence N400 time window) and from 

600 to 800 ms (for activity within the valence P700 time window) for each feedback and 

treatment condition separately. We specified the following model variables on the single-trial 

level as regressor variables: the signed reward prediction error, choice difficulty, and learning 

noise. Prediction error and learning noise were derived from the model simulation procedure 
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directly (see section “Model Fitting, Selection, and Simulation”). Choice difficulty was 

defined as the absolute value of the difference of the simulated Q-values for the two options, 

where a smaller value reflects a more difficult choice that has to be made. The resulting linear 

equations for each participant and for each condition separately looked like the equation 

below (4), where each variable reflects values on a single-trial level: 

𝐸𝐸𝐺௭ସ/௭ ~ 𝛽 + 𝛽ଵ × 𝑅𝑃𝐸 +  𝛽ଶ × 𝐷𝐼𝐹𝐹𝐼𝐶𝑈𝐿𝑇𝑌 + 𝛽ଷ × 𝑁𝑂𝐼𝑆𝐸 +

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠 +  𝜀                  (4) 

This resulted in four single-trial regression models (one per condition: treatment x 

feedback) per ERP component and participant. To test if any of the regressor variables 

significantly predict activity in the time windows of valence N400 or valence P700, we tested 

the values of the three main regression coefficients (without the interaction terms) - averaged 

across conditions - against zero using the two-tailed t-test with a significance level α = .05 for 

each regression coefficient separately. 

In a second step, we wanted to know if any of the effects are modulated by the NA 

levels or by how feedback is presented (H3c). Therefore, we ran a mixed-effects ANOVA for 

each regressor (RPE, choice difficulty, and learning noise) separately, with the respective 

regression coefficient variable as dependent variable. Treatment and feedback condition 

served as within-factor, whereas treatment order was included as a control as between-factor 

variable and will not be discussed further. 

Results 

No participants were excluded from the analyses, since they performed above chance 

level in the restless bandit task, indicating that they did learn (for details, see section “Data 

Exclusion Criteria” of the Methods section). 



24 
 

Performance and Comparison of the Reinforcement Learning Models 

First, we ran the Bayesian model fitting procedure using variational Bayesian Monte 

Carlo sampling to estimate the model parameter set (Table 1). To test which of the three RL 

models performed best in each condition, we applied the BMS procedure with the log 

likelihood estimates as input. All relevant model comparison metrics are listed in Table 2. We 

used the posterior and the exceedance probability to demonstrate our findings (for explanation 

of the metrics, see section “Model Fitting, Selection, and Simulation” of the Methods section). 

As expected, the model entailing a learning imprecision and exploration (i.e., choice 

stochasticity) parameter explained the data best (Figure 4) in the partial feedback conditions 

of both treatment conditions (atomoxetine: Pexceedance = 1; placebo: Pexceedance = 1), but 

unexpectedly also in the complete feedback conditions (atomoxetine: Pexceedance > 0.99; 

placebo: Pexceedance = 1). Given these results, we used the noisy RL model with softmax action 

selection rule for further analyses. 

Next, we were interested in the fraction of non-greedy decisions that can be explained 

by learning imprecision. Using the same approach as Findling et al. (2019), our analysis 

yielded consistent results. As expected, participants made a higher fraction of non-greedy 

decisions due to learning imprecision in the complete feedback conditions (atomoxetine: 

75.72%; placebo: 82.15% ) than in the partial feedback conditions (atomoxetine: 51.88% ; 

placebo: 45.04%). These results imply that the fraction of non-greedy decisions due to choice 

stochasticity is lower in the complete than in the partial feedback condition, showing that less 

exploration is exerted when both outcomes are revealed. 

Effect of Noradrenaline on Learning Imprecision and Choice Stochasticity 

To test if increased NA levels are linked to changes in learning imprecision and choice 

stochasticity (i.e., exploration), we ran two separate mixed-effects ANOVAs. We were 

interested in the two model parameters since learning imprecision controls for the amount of 
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learning noise generated on each trial, while choice stochasticity determines how strongly the 

decisions are guided by the estimated action values. Contrary to our hypothesis that increased 

NA levels are linked to increased learning imprecision but not to increased choice 

stochasticity, the results of the analyses (Table 3) did not reveal a main effect of the treatment 

condition on learning imprecision, F(1, 29) = 0.37, p = .549, meaning that increased NA was 

not linked to increased learning imprecision. However, as expected, increased NA levels did 

not impact choice stochasticity either, F(1, 29) = 0.15, p = .704. Interestingly, there was a 

main effect of feedback type on choice stochasticity, F(1, 29) = 19.39, p < .001. Participants 

explored on average more when only the outcome of their chosen option was presented to 

them (atomoxetine: Mβ = 0.06, SD = 0.01; placebo: Mβ = 0.07 , SD = 0.01) than when both 

outcomes were revealed (atomoxetine: Mβ = 0.03 , SD = 0.01; placebo: Mβ = 0.02 , SD = 

0.01). This finding is consistent with the notion of our first hypothesis, since it suggests that 

exploration is lower, albeit not inexistent, in the partial outcome condition than in the 

complete outcome condition. 

Exploratory Analyses of the ERP Data 

Effect of Feedback Type and Reward Magnitude on Pz400 and Pz700 Amplitude  

First, we wished to explore if some model-free variables (i.e., variables that are not 

based on the RL models) are linked to neural activity. To operationalise neural activity, we 

used a grand-average approach (for details, see section “Exploratory Model-Free Analyses of 

the ERP Components” of the Methods section), resulting in two main cluster activities at 

parietal site with peak activity between 350 and 450 ms (Pz400) and between 600 and 800 ms 

(Pz700) after feedback onset (Figure 3). Since we wanted to investigate if feedback type and 

reward magnitude influence Pz400 and Pz700 amplitude, we ran two separate repeated 

measures ANOVAs with feedback type (partial vs. complete) and reward magnitude (low: ≤ 

50 points vs. high: > 50 points) as independent variables.  
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The model-free analysis for the early parietal component (Pz400; Figure 5) revealed a 

significant large main effect of feedback type on the mean parietal amplitude between 350 

and 450 ms after feedback presentation, F(1, 29) = 10.02, p = .002, partial η2 = 0.14, but no 

significant main effect of reward magnitude, F(1,59) = 1.79, p = .186, partial η2 = 0.03, or 

interaction effect of the two, F(1,29) = 2.20, p = .144, partial η2 = 0.04. The average Pz400 

amplitude was significantly higher when feedback was presented partially (M = 6.83 mV, SD 

= 5.29) compared to when feedback was presented completely (M = 5.03 mV, SD = 4.87).  

The model-free analysis for the late parietal component (Pz700; Figure 6) revealed a 

large main effect of reward magnitude on the mean parietal amplitude between 600 and 800 

ms after feedback presentation, F(1,29) = 19.01, p < .001,  partial η2 = 0.24.  There was no 

significant main effect of feedback type, F(1,29) = 0.42, p = .521, partial η2 = 0.01, nor of the 

interaction of the two, F(1,29) = 0.12, p = .725, partial η2 = 0.00. The average Pz700 

amplitude was significantly higher when reward was low (reward = 1-50 points; M = 7.27 

mV, SD = 6.08) compared to when reward was high (reward = 51-99 points; M = 6.41 mV, 

SD = 6.03).  

Effect of Prediction Error, Choice Difficulty, and Learning Noise on Pz400 and Pz700 

Amplitude and the Modulation thereof by Noradrenaline and Feedback Type 

Next, we wanted to know if some of our central RL model variables predict single-

trial neural activity by applying regression analyses for each condition (treatment x feedback) 

and participant separately. The dependent variable reflecting single-trial neural activity was 

operationalised using a grand-average approach (for details, see section “Exploratory Model-

Based Analyses of the ERP Components”), resulting in two main cluster activities at parietal 

site with peak activity between 350 and 450 ms (Pz400) and between 600 and 800 ms (Pz700) 

after feedback onset (Figure 3). The central model variables serving as regressor variables 

were reward prediction error (signed), learning noise, and choice difficulty (|(QA – QB|) on the 
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single-trial level. After obtaining the regressor coefficients for each participant and condition 

separately, we tested the mean value of the standardised regression coefficients (averaged 

across conditions) against zero to check if the regressors significantly predict parietal activity 

within the time window of valence N400 (i.e., Pz400) and valence P700 (i.e., Pz700). The 

findings show that all model variables significantly predict Pz400 and Pz700 amplitude on a 

single-trial level (Table 4), however all to a different extent. Choice difficulty predicts Pz400 

and Pz700 activity the strongest, followed by reward prediction error, and learning noise. 

Subsequently, we were interested to test if any of the effects is modulated by NA 

levels or feedback type for which we ran a mixed-effects ANOVA (with treatment and 

feedback condition as within- and treatment order as between-factor). The standardised 

regression coefficients across the four conditions (treatment x feedback) are illustrated in 

Figure 7 for Pz400, and in Figure 8 for Pz700.  

The mixed-effects ANOVA for the early component (parietal activity within the time 

window of valence N400) yielded significant effects of feedback type on the regression 

coefficient of the reward prediction error and learning noise, but not of choice difficulty 

(Table 5). The effect of reward prediction error on Pz400 amplitude was stronger when 

feedback was presented partially compared to completely, main effect of feedback type on 

βN400~RPE: F(1,28) = 5.37, p = .028. The effect of learning noise on Pz400 amplitude on the 

other hand was stronger when both feedback outcomes were revealed, main effect of feedback 

type on βN400~NOISE: F(1,28) = 5.39, p = .028). The effect of choice difficulty on Pz400 

amplitude, F(1,28) = 0.05, p = .827, was not modulated by the feedback condition, and the 

treatment condition did not have any significant effect on the regression coefficients. 

The mixed-effects ANOVA for the late component (parietal activity within the time 

window of valence P700) yielded significant effects of feedback type on the regression 

coefficients of choice difficulty and learning noise, but not of prediction error (Table 6). The 
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effect of choice difficulty on Pz700 amplitude was stronger when feedback was presented 

partially compared to completely, main effect of feedback type on βP700~DIFFICULTY: F(1,28) = 

5.65, p = .024. The effect of learning noise on Pz700 amplitude on the other hand was 

stronger when both feedback outcomes were revealed, main effect of feedback type on 

βP700~NOISE: F(1,28) = 9.85, p = .004. The effect of reward prediction error on Pz700 

amplitude was not modulated by the feedback condition, F(1,28) = 2.62, p = .117, and the 

treatment condition did not have any significant effect on the regression coefficients. 

Discussion 

The main aim of the current study was to investigate the role of the LC-NA system in 

modulating learning imprecision during value-based learning by using a multi-modal 

approach including reinforcement learning, a pharmacological manipulation, and EEG data. 

The computational results indicate that the RL model entailing a learning imprecision and 

exploration (i.e., choice stochasticity) parameter explained the human learning and decision-

making data better than the models with only or without imprecision parameter. However, 

contrary to our expectations, this was also the case when counterfactual information was 

available, and exploration was hypothesised not to be needed. On the contrary, we did find a 

higher fraction of non-greedy decisions due to learning imprecision in the complete compared 

to the partial feedback condition, suggesting that less explorative decisions were made when 

counterfactual information was presented. This was confirmed by further analyses, in which 

we found a main effect of feedback type on choice stochasticity, showing that participants 

explored less in the complete compared to the partial feedback condition. However, our main 

expectation of the second hypothesis could not be confirmed since no evidence was found for 

an association between learning imprecision and NA levels. Lastly, our exploratory approach 

of the ERP data revealed that the amount of presented information affected the early parietal 

cluster activity between 350 and 450 ms after feedback presentation (Pz400), while reward 
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magnitude affected the later parietal cluster activity between 600 and 800 ms after feedback 

presentation (Pz700). Moreover, both parietal components were significantly predicted by 

choice difficulty, prediction error, and learning noise. NA did not modulate any of these 

effects, while the amount of presented feedback did modulate the effects of the prediction 

error on Pz400, choice stochasticity on Pz700, and learning noise on both components.    

Our main computational findings suggest that learning imprecision plays a crucial role 

in human value-based learning and decision-making. This challenges the idea of the origin of 

non-greedy decisions that fail to maximise short-term reward. Previous literature has 

attributed non-greedy decisions to exploration only (Aston-Jones & Cohen, 2005; Daw et al., 

2006; Dayan & Daw, 2008), suggesting that behavioural variability arises solely from the 

exploration-exploitation dilemma. Importantly, our findings demonstrate that learning 

imprecision is another source of non-maximising decisions, in addition to the need to explore. 

This partially aligns with prior findings of the study we wished to replicate (Findling et al., 

2019). In accordance with the original findings, the fraction of non-greedy decisions 

explained by learning imprecision was higher when only information on the chosen outcomes 

was revealed. However, contrary to the original findings, exploration was not fully eliminated 

when counterfactual information was available. Thus, the manipulation of the amount of 

feedback (complete vs. partial) did not result in eliminating the need for exploration during 

value-based decision tasks. Subsequently, the results of Findling et al. (2019) showed that the 

noisy RL model with learning imprecision but not with choice stochasticity explained the data 

best in the complete feedback conditions, while our results suggest that the noisy RL model 

with both parameters explained the data best, irrespective of the feedback amount. Despite the 

discrepancies to the findings of Findling et al. (2019), the decomposition of non-greedy 

decisions in our study did reveal a potential trend towards the original findings since 

exploration was lower during complete compared to partial feedback conditions. 

Alternatively, a possible explanation for our contradictory findings may lie in the volatile 
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nature of the decision environment. Previous research has shown that volatility drives 

exploration (Jepma et al., 2020). Accordingly, the uncertainty inherent in such volatile 

environments may increase the importance of not relying solely on estimations of the highest 

reward. Thus, choice stochasticity continues to play a role even when counterfactual 

information is available, particularly in scenarios where the reward-outcome contingencies 

undergo rapid shifts or when the sampled rewards strongly deviate from the underlying 

reward structures, as observed in our restless bandit task.  

Contrary to our expectations, higher NA levels did not affect learning imprecision, 

however as expected were also not linked to choice stochasticity. This is further evidence that 

the LC-NA system is not involved in balancing exploration against exploitation as suggested 

by the adaptive gain theory (Aston-Jones & Cohen, 2005). Already earlier studies could not 

find conclusive evidence for the link between high tonic NA levels and exploration, showing 

either no association (Jepma et al., 2010) or an association in the opposite direction as 

suggested by the adaptive gain theory (i.e., higher tonic NA levels were correlated with less 

exploration; Warren et al., 2017). It is important to note, however, that these three studies 

have notable differences making the comparison of the findings difficult. While Warren et al. 

(2017) used the same dose and substance (40mg of atomoxetine) to increase tonic NA levels 

in a within-subject design, the timing of the administration (180 minutes before the decision 

task), the decision task (a modified version of the horizon task as described by Wilson et al., 

2014), and the decision environment (stable reward-outcome contingencies) was different 

from our study. On the other hand, Jepma et al. (2010) used a similar decision task (4-armed 

bandit task) with volatile reward-outcome contingencies as well, but with a between-subject 

study design and the administration of 4mg of reboxetine 2 to 3 hours prior the gambling task 

to increase tonic NA levels. Hence, a closer examination of the biochemical aspects of the 

substances is required. This point will be addressed in more detail later.  
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In terms of ERP correlates of value-based learning and decision-making, we identified 

two valence-sensitive ERP components using a data-driven difference wave approach to 

identify approximates of the FRN and P3. We identified the highest activity of the difference 

wave between positive minus negative reward to be at parietal sites (electrode Pz and 

neighbouring electrodes) with a peak negative deflection between 350 and 450 ms (valence 

N400) and a peak positive deflection between 600 to 800 ms (valence P700), respectively. 

Most literature identifies peak activity of the FRN and P3 difference waves to occur earlier, 

namely 200 to 300 ms and 300 to 600 ms after feedback presentation, respectively (for 

review, see Kirsch et al., 2022). Moreover, peak activity of the FRN has been identified 

frontocentrally at the FCz electrode, while we found maximum activity of the valence N400 

more posterior at parietal sites (electrode Pz and neighbouring electrodes). Nevertheless, 

spatial and temporal locations of the FRN and P3 are variable, and other research found 

similar results as we did (e.g., Balconi & Crivelli, 2010). Thus, averaged EEG activity of the 

parietal clusters within the respective time windows made a good approximation of the FRN 

and P3, further used in the main ERP analyses. 

In accordance with the two-step theory of feedback evaluation (Bernat et al., 2015), 

our results show an influence of reward magnitude on the late parietal cluster activity within 

the time window of valence P700 (i.e., Pz700 amplitude) but not the early parietal cluster 

activity within the time window of valence N400 (i.e., Pz400 amplitude), suggesting that a 

more in-depth evaluation of the feedback (here the evaluation of reward magnitude) happens 

later. Given that we used reward valence (positive: ≤ 50 points vs. negative: > 50 points) in our 

ERP approach to identify the temporal and spatial sites of valence-sensitive ERP components 

(i.e., valence N400 and valence P700), the null finding of reward magnitude on the Pz400 

amplitude is counterintuitive. A possible explanation may lie in the fact, that the difference 

wave of reward valence is less pronounced for valence N400 than for valence P700, as can be 

seen in the topography and the ERP plot of the difference wave. Concerning the effect of 
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feedback type on Pz400 and Pz700 amplitude, the amount of information revealed (partial vs. 

complete) had only an influence on the Pz400 amplitude but not on Pz700 amplitude. These 

findings may suggest that processing the type of feedback delivery (partial vs. complete) 

suffices superficial elaboration during the early stage. Additionally, when information is 

missing, the Pz400 amplitude tends to be higher compared to when all information is 

revealed. This may imply an increased need to process the uncertainty about the reward-

outcome contingencies that arises from missing information.  

Interestingly, we found that the signed reward prediction error (RPE), choice 

difficulty, and learning noise significantly predicted both parietal cluster activities (within the 

time window of valence N400 and valence P700) on a single-trial basis. These findings are 

not conforming previous literature suggesting that the FRN scales with a signed RPE 

(Holroyd & Coles, 2002; Kirsch et al., 2022), while the P3 scales with an unsigned RPE 

(Mars et al., 2008). Our main interest lied in investigating the underlying neural dynamics of 

learning noise, however. Even though we did find that single-trial learning noise significantly 

predicted averaged single-trial EEG activity between 350 and 450 ms and between 600 and 

800 ms at parietal sites, choice difficulty predicted both cluster activities the strongest, 

followed by the reward prediction error. Moreover, the strength of prediction of learning noise 

was the same for the early and late component. These findings may imply that learning 

imprecision manifests in a broader, more generalised manner, as suggested by Findling & 

Wyart (2021), rather than during a single process within a certain time window. The authors 

argue that genuine neural noise could arise from stochastic synaptic release at the cellular 

level, from random fluctuations in the delicate balance between excitation and inhibition that 

neural populations need for precise computations, or the variable process of pooling task-

relevant information.  
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Contrary to our primary hypothesis involving the role of the LC-NA system in 

modulating learning imprecision, we were unable to establish a connection between elevated 

NA levels and learning imprecision. Furthermore, the relationship between learning 

imprecision and neural activity was not moderated by central NA release. These null findings 

may raise questions about the pharmacological manipulation used in the current study, posing 

a potential limitation and implications for future research on that topic. For instance, evidence 

on the pharmacokinetics of atomoxetine (Sauer et al., 2005) shows individual differences in 

metabolising atomoxetine. Accordingly, “slow” metabolisers demonstrate an approximately 

10-fold higher average steady-state plasma concentration of atomoxetine than “extensive” 

metaboliser, implicating significant differences in how and when the effect of atomoxetine 

unfolds. Additionally, baseline dependent effects may contribute to different treatment effects 

depending on the individual baseline NA activity, similar to the implications of the inverted-U 

relationship between tonic LC activity and task performance suggested by Aston-Jones and 

Cohen (2005) or the findings on tonic LC-NA activity and trait anxiety (Howells et al., 2012). 

Lastly, the NA system is intricately interconnected with other neurotransmitter systems, such 

as dopamine (Ranjbar-Slamloo & Fazlali, 2020). For instance, the NA transporter has been 

found to be responsible for dopamine reuptake in the cortex as well (Devoto & Flore, 2006). 

Thus, a single dose of atomoxetine may not only increase central NA levels, but also cortical 

dopamine levels. This, and the fact that neurotransmitter systems often have feedback 

mechanisms that regulate their activity to maintain balance may mitigate the effect of central 

NA release due to atomoxetine. Interestingly, a recent re-analysis of the study by Jepma et al. 

(2010), which initially demonstrated no association between exploration and central NA 

levels following the administration of 4 mg of reboxetine (another NA reuptake inhibitor), has 

yielded positive findings regarding the link between reboxetine and computational learning 

imprecision (Findling & Wyart, 2021). The reboxetine group exhibited a larger fraction of 

behavioural variability (80%) compared to the placebo group (53%). Furthermore, 
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computational learning noise estimates were higher in the reboxetine group compared to the 

placebo group, indicating an increase in learning imprecision due to the administration of a 

low dose of reboxetine. Thus, despite the present null findings regarding elevated NA levels 

and learning imprecision, future research should consider using reboxetine to increase central 

NA levels as an alternative to atomoxetine and assess potential individual differences and 

baseline dependent effects of the pharmacological substance. 

Taken together, the current study did not find evidence for a modulatory role of the 

noradrenergic locus coeruleus system on learning imprecision or choice stochasticity during 

human value-based learning and decision-making in volatile environments. Nevertheless, the 

present research provides further evidence for the importance of learning imprecision in 

human value-based learning. Learning imprecision contributes to a substantial number of non-

greedy decisions failing to maximise reward, especially when counterfactual information is 

not available. The noisy reinforcement learning model incorporating a learning imprecision 

parameter outperforms the classical reinforcement learning model that assumes exact 

learning. On a neural level, our exploratory data suggests an early and a late, more in-depth, 

feedback evaluation process, further implying that computational noise emerges more 

generally during feedback processing rather than during a certain time of feedback processing. 

Future research using reboxetine and accounting for individual differences in metabolising 

noradrenaline may help bridge the gap between learning imprecision and potential underlying 

neural mechanisms such as the LC-NA system. 

(Greenhouse & Geisser, 1959) 
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Tables 

Table 1  

Mean Values and Standard Deviations of the RL Model Parameters 

 Model 

Condition Exact RL softmax  Noisy RL argmax  Noisy RL softmax 

Treatment Atomoxetine Placebo  Atomoxetine Placebo  Atomoxetine Placebo 
Feedback 
 

Partial 
M 

(SD) 

Complete 
M  

(SD) 

Partial 
M 

(SD) 

Complete 
M  

(SD) 

 Partial 
M (SD) 

Complete 
M  

(SD) 

Partial 
M (SD) 

Complete 
M  

(SD) 

 Partial 
M 

(SD) 

Complete 
M  

(SD) 

Partial 
M (SD) 

Complete 
M  

(SD) 
Parameter               

Learning rate .79 

(.21) 

.39  

(.19) 

.70 

(.27) 

.44  

(.25) 

 .51  

(.24) 

.50 

(.22) 

.51  

(.23) 

.50 

(.19) 

 .60 

(.24) 

.54 

(.20) 

.65 

(.25) 

.54 

(.21) 

Learning 

imprecision 

- - - - 

 

 1.62 

(1.17) 

.97 

(.57) 

2.27 

(2.16) 

1.17 

(1.30) 

 .78 

(.98) 

.69 

(.41) 

.83 

(1.36) 

.88 

(.89) 

Choice 

Stochasticity 

.10 

(.08) 

.03 

(.03) 

.12 

(.18) 

.07  

(.14) 

 - - - -  .06 

(.07) 

.03 

(.03) 

.07 

(.06) 

.02 

(.03) 

Note. N = 30. The values were obtained after the model fitting procedure. The exact RL (reinforcement learning) softmax model contains learning rate and choice 

stochasticity (i.e., exploration) as model parameters, the noisy RL argmax model contains learning rate and learning imprecision, and the noisy RL softmax 

model contains all three model parameters (learning rate, learning imprecision, and choice stochasticity). 
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Table 2  

Model Comparison Metrics of the RL Models   

Condition Model k ll Pposterior Pexceedance AIC BIC 

Atomoxetine        
Partial τ 3 -137.05 

(37.92) 

.04 0 280.20 

(75.84) 

291.56 

(75.84) 

 ζ 3 -145.21 

(41.82) 

.05 0 296.49 

(83.64) 

307.87 

(83.64) 

 ζ τ 4 -129.13 

(37.17) 

.91 1 266.38 

(74.34) 

281.53 

(74.34) 

Complete τ 3 -122.80 

(37.00) 

.09 0 251.67 

(73.99) 

263.05 

(73.99) 

 ζ 3 -118.21 

(38.49) 

.18 < .01 242.49 

(76.99) 

253.87 

(76.99) 

 ζ τ 4 -115.32 

(35.61) 

.73 > .99 238.77 

(71.22) 

253.91 

(71.22) 

Placebo        
Partial τ 3 -142.75 

(44.48) 

.04 0 291.57 

(88.95) 

302.95 

(88.95) 

 ζ 3 -156.49 

(46.73) 

.03 0 319.05 

(93.45) 

330.43 

(93.45) 

 ζ τ 4 -135.61 

(42.84) 

.93 1 279.35 

(85.67) 

294.50 

(85.67) 

Complete τ 3 -123.20 

(43.69) 

.09 0 252.46 

(87.38) 

263.84 

(87.38) 

 ζ 3 -117.77 

(43.95) 

.13 0 241.61 

(87.91) 

252.99 

(87.91) 

 ζ τ 4 -115.23 

(43.34) 

.78 1 238.58 

(86.68) 

253.72 

(86.68) 

Note. Mean values and standard deviations of the log likelihood, AIC, and BIC values were derived 

across participants (N = 30). τ = model contains exploration parameter (exact RL softmax); ζ = model 

contains learning imprecision parameter (noisy RL argmax); ζ τ = model contains exploration and 

learning noise parameter (noisy RL softmax); k = number of model parameters; ll = log likelihood; 

Pposterior = posterior probability; Pexceedance = exceedance probability; AIC = Akaike information 

criterion; BIC = Bayesian information criterion. 
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Table 3  

Descriptive Statistics (Mean Values, Standard Errors) and the Mixed-Effects ANOVA Statistics for the 

Model Parameters Learning Imprecision and Choice Stochasticity (Temperature τ)   

Model Parameter 
Partial Complete  ANOVA 

M SE M SE  Effect F(1, 29) p 

Learning 
imprecision 

        

    Atomoxetine 0.78 0.18 0.69 0.08  F 0.02 .882 
    Placebo 0.83 0.25 0.88 0.16  T 0.37 .549 
      F x T 0.61 .441 
Choice 
stochasticity 

        

    Atomoxetine 0.06 0.01 0.03 0.01  F 19.39 <  .001*** 
    Placebo 0.07 0.01 0.02 0.01  T 0.15 .704 
      F x T 1.12 .299 
Note. N = 30. ANOVA = analysis of variance; Partial = partial feedback condition; Complete = 

complete feedback condition; F = feedback; T = treatment. 

***p < .001.
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Table 4 

Regression Results of the Pz400 and Pz700 Amplitude for Reward Prediction Error, Choice Difficulty, 

and Learning Noise 

 
Variable 

β SE t(29) p 95% CI 
N400 

RPE 0.67 0.12 5.80 < .001*** [0.43, 0.91] 

Difficulty -1.05 0.16 -6.77 < .001*** [-1.37, -0.73] 

Noise 0.28 0.08 3.44   .002** [0.11, 0.45] 

 P700 
RPE -0.33 0.11 -3.02   .005** [-0.56, -0.11] 

Difficulty -1.56 0.20 -7.64 < .001*** [-1.98, -1.14] 

Noise 0.28 0.12 2.43  .021* [0.05, 0.52] 

Note. For each participant (N = 30), we examined the impact of the single-trial RL model variables 

(RPE, choice difficulty, learning noise) on the averaged single-trial EEG activity within the time 

window of valence N400 (i.e., Pz400 amplitude) and the valence P700 (i.e., Pz700 amplitude) with 

separate regression analyses for the ERP components and conditions (feedback: partial vs. complete; 

treatment: atomoxetine vs. placebo). β = mean value of the standardised regression coefficients 

averaged across conditions and across participants; CI = confidence interval; RPE = reward prediction 

error. The results of the two-tailed t-tests indicate if the standardised regression coefficients averaged 

across the conditions (N = 30) are significantly different from zero (however, assuming non-

normality). Both regressions (for Pz400 and Pz700) yielded the same mean value of the standardised 

regression coefficient of 0.28 for learning noise as regressor. See Table 5 (for Pz400) and Table 6 (for 

valence Pz700) for mean values and standard errors of the standardised regression coefficients across 

conditions. 

*p < .05 **p < .01 ***p < .001. 



45 
 

Table 5  

Descriptive Statistics (Mean Values, Standard Errors) and the Mixed-Effects ANOVA Statistics for the Standardised Regression Coefficients (of Reward 

Prediction Error, Choice Difficulty, and Learning Noise) for Parietal Activity Within the Time Window of Valence N400 

Regression Coefficient 

Partial Complete  ANOVA 

M SE M SE  Effect F(1, 29) p 

βPz400~RPE         
    Atomoxetine  0.93 0.23  0.55 0.20  F 5.37   .028* 
    Placebo  0.84 0.17  0.36 0.16  T 0.64 .432 
      F x T 0.10 .751 
βPz400~DIFFICULTY         
    Atomoxetine -1.23 0.25 -1.14 0.26  F 0.05 .827 
    Placebo -0.91 0.20 -0.93 0.19  T 1.73 .200 
      F x T 0.08 .776 
βPz400~NOISE         
    Atomoxetine  0.08 0.17  0.51 0.16  F 5.39   .028* 
    Placebo  0.01 0.19  0.53 0.17  T 0.03 .867 
      F x T 0.07 .796 
Note. In a first step, we examined for each participant (N = 30) the impact of the RL model variables (RPE, difficulty, noise) on the single-trial parietal activity 

within the time window of valence N400 with separate regression analyses for the four conditions (feedback: partial vs. complete; treatment: atomoxetine vs. 

placebo). In a second step, we ran a mixed-effects ANOVA to examine the effect of feedback and treatment condition on the standardised regression coefficients 

(assuming equal variances across conditions, however, non-normality of the distributions). The Greenhouse-Geisser (1959) correction did not yield different p 

values. RPE = reward prediction error; ANOVA = analysis of variance; Partial = partial feedback condition; Complete = complete feedback condition; F = 

feedback; T = treatment. For illustration of the findings, see Figure 7.  

*p < .05  
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Table 6  

Descriptive Statistics (Mean Values, Standard Errors) and the Mixed-Effects ANOVA Statistics for the Standardised Regression Coefficients (of Reward 

Prediction Error, Choice Difficulty, and Learning Noise) for Parietal Activity Within the Time Window of Valence P700 

Regression Coefficient 

Partial Complete  ANOVA 

M SE M SE  Effect F(1, 29) p 

βPz700~RPE         
    Atomoxetine -0.20 0.23 -0.26 0.20  F 2.62 .117 
    Placebo -0.16 0.19 -0.71 0.14  T 1.28 .267 
      F x T 2.05 .163 
βPz700~DIFFICULTY         
    Atomoxetine -1.30 0.29 -1.76 0.30  F 5.65   .024* 
    Placebo -1.27 0.22 -1.91 0.27  T 0.08 .775 
      F x T 0.24 .630 
βPz700~NOISE         
    Atomoxetine  0.15 0.24  0.43 0.18  F 9.85     .004** 
    Placebo -0.28 0.19  0.84 0.22  T 0.01 .941 
      F x T 3.73 .064 
Note. In a first step, we examined for each participant (N = 30) the impact of the RL model variables (RPE, difficulty, noise) on the single-trial parietal activity 

within the time window of valence P700 with separate regression analyses for the four conditions (feedback: partial vs. complete; treatment: atomoxetine vs. 

placebo). In a second step, we ran a mixed-effects ANOVA to examine the effect of feedback and treatment condition on the standardised regression coefficients 

(assuming equal variances across conditions, however, non-normality of the distributions). The Greenhouse-Geisser (1959) correction did not yield different p 

values. RPE = reward prediction error; ANOVA = analysis of variance; Partial = partial feedback condition; Complete = complete feedback condition; F = 

feedback; T = treatment. For illustration of the findings, see Figure 8. 

*p < .05 **p < .01. 
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Figures 

Figure 1  

Original Findings of Findling et al.’s (2019) Study of the Model Selection Procedure and the Decomposition of Non-Greedy Decisions 

          

Note. Panel A: Results of the Bayesian model selection (BMS) procedure (pooled over two experiments, N = 59) by Findling et al. (2019), showing the best 

model fit for the noisy RL softmax model (entailing the learning imprecision ζ and exploration parameter - inverse temperature - β = 1/ τ)  for the partial feedback 

condition (left), and the best fit for the noisy RL argmax model (only entailing the learning imprecision parameter ζ) for the complete feedback condition (right). 

Pexc = exceedance probability. Panel B: Results of the Decomposition of non-greedy decisions by Findling et al. (2019), showing the fraction of non-greedy 

A B 
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decisions explained by learning imprecision (termed as “noise”; blue area) is lower in the partial (top; 61%) than in the complete feedback condition (bottom: 

86%). The purple area reflects the fraction of non-greedy decisions explained by choice stochasticity. From “Computational Noise in Reward-Guided Learning 

Drives Behavioral Variability in Volatile Environments,” by C. Findling, V. Skvortsova, R. Dromnelle, S. Palminteri, and V. Wyart, 2019, Nature Neuroscience, 

22(12), p. 2068 (https://doi.org/10.1038/s41593-019-0518-9). Copyright 2019 by Springer Nature America, Inc. 
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Figure 2 

Trial Description and Visualisation of the Mean and Sampled Rewards Across Trials 

 

Note. The number of trials differed in our experiment: 48 trials in the two training blocks, and 56 trials 

in the twelve experimental blocks. Panel A: In every trial, participants chose between two differently 

coloured shapes and observed the associated reward (1-99 points), which was later converted into real 

financial incentives. Panel B: Rewards were sampled (bright lines) from distributions with means 

drifting independently across trials (thick lines). From “Computational Noise in Reward-Guided 

Learning Drives Behavioral Variability in Volatile Environments,” by C. Findling, V. Skvortsova, R. 

Dromnelle, S. Palminteri, and V. Wyart, 2019, Nature Neuroscience, 22(12), p. 2067 

(https://doi.org/10.1038/s41593-019-0518-9). Copyright 2019 by Springer Nature America, Inc. 

 

  

A B A 
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Figure 3  

Spatial and Temporal Occurrence of the Valence-Sensitive ERP Components 

 

Note. The topography plots of the reward valence difference wave (low reward indicating negative 

valence minus high reward indicating positive valence) plotted for each 50 ms interval (from feedback 

onset to 1000 ms post-feedback) revealed a maximum negative and positive deflection at parietal site 

(electrode Pz and the neighbouring electrodes CP1, CP2, P3, P4, PO3, and PO4) at around 400 and 

700 ms after feedback onset. Panel A: Topography plot of the grandaverage difference wave of reward 

valence averaged across the parietal cluster only, showing a pronounced negativity at 400 ms (left) and 

A 

B 
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a pronounced positivity at 700 ms (right). Panel B: Grandaverage waveforms of low reward trials (≤ 

50 points; grey line) and high reward trials (> 50 points; black line), and the difference wave thereof 

(low minus high reward trials; blue line). The blue area reflects the time-windows we identified to 

enclose peak activity of the components (valence N400: 350 to 450 ms; valence P700: 600 to 800 ms).  
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Figure 4 

Model Comparison of the RL Models With and Without Exploration and Learning Imprecision 

Parameters 

 

Note. Results of the Bayesian model selection (BMS) procedure (N = 30), showing the best model fit 

for the noisy RL softmax model (entailing the learning imprecision ζ and exploration parameter τ) for 

the partial feedback (left), the complete feedback (right), as well as for both treatment conditions (top: 

atomoxetine; bottom: placebo). The posterior probability and the exceedance probability are 

model comparison metrics, indicating how likely the model is given the data (posterior 

probability), respectively how more likely the model is than any of the other models given the 

data (exceedance probability). Pexc = exceedance probability; Pposterior = posterior probability. 
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Figure 5 

Mean Pz400 Amplitude Across the Model-Free Conditions Feedback Type and Reward Magnitude 

  

Note. Average amplitude of the early parietal cluster between 350 and 450 ms after feedback onset of electrodes Pz, CP1, CP2, P3, P4, PO3, and PO4 across the 

feedback (partial vs. complete) and reward (low: ≤ 50 points vs. high: > 50 points) conditions. Error bars represent standard errors. The Pz400 amplitude served 

as dependent variable of the repeated measures ANOVA with feedback type and reward magnitude as independent variables, resulting in a significant main effect 

of feedback type (left), but not reward magnitude (right).  
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Figure 6 

Mean Pz700 Amplitude Across the Model-Free Conditions Feedback Type and Reward Magnitude 

 

Note. Average amplitude of the late parietal cluster between 600 and 800 ms after feedback onset of electrodes Pz, CP1, CP2, P3, P4, PO3, and PO4 across the 

feedback (partial vs. complete) and reward (low: ≤ 50 points vs. high: > 50 points) conditions. Error bars represent standard errors. The Pz700 amplitude served 

as dependent variable of the repeated measures ANOVA with feedback type and reward magnitude as independent variables, resulting in a significant main effect 

of reward magnitude (right), but not feedback type (left).  
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Figure 7 

Standardised Regression Coefficients for Parietal EEG Activity Within the Time Window of Valence 

N400 Across Conditions (Treatment x Feedback) 

  

Note. Standardised regression coefficients of reward prediction error (RPE; top), choice difficulty 

(middle), and learning noise (bottom) for the averaged single-trial EEG activity of the parietal clusters 

(Pz, CP1, CP2, P3, P4, PO3, and PO4) within the time window of valence N400 (350 to 450 ms after 

feedback) for each participant plotted across conditions. The light marker colours refer to the partial 

feedback condition (left), while the dark colours refer to the complete feedback condition (right). 

Atomoxetine = blue colour; Placebo = green colour. Error bars represent the mean and standard errors. 
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Figure 8 

Standardised Regression Coefficients for Parietal EEG Activity Within the Time Window of Valence 

P700 Across Conditions (Treatment x Feedback) 

 

Note. Standardised regression coefficients of reward prediction error (RPE; top), choice difficulty 

(middle), and learning noise (bottom) for the averaged single-trial EEG activity of the parietal clusters 

(Pz, CP1, CP2, P3, P4, PO3, and PO4) within the time window of valence P700 (600 to 800 ms after 

feedback) for each participant plotted across conditions. The light marker colours refer to the partial 

feedback condition (left), while the dark colours refer to the complete feedback condition (right). 

Atomoxetine = blue colour; Placebo = green colour. Error bars represent the mean and standard errors. 
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