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Notation

Throughout this thesis, there are certain fields, groups and modules which occur time
and time again. For the convenience of the reader, we have collected the notations
used for these in this chapter.

We work with an odd prime p. Associated to this prime, we consider the following
fields:

Fn = Q(ζpn+1), F+
n = Q(ζpn+1 + ζ−1

pn+1)

Kn = Qp(ζpn+1), K+
n = Qp(ζpn+1 + ζ−1

pn+1)

F∞ =
⋃
n≥0Fn, F+

∞ =
⋃
n≥0F

+
n

K∞ =
⋃
n≥0Kn, K+

∞ =
⋃
n≥0K

+
n

The various Galois groups of these fields are the following:

Γn = Gal(F∞/Fn) = Gal(F+
∞/F

+
n )

Γ = Γ0

Gn = Gal(Fn/Q) = Gal(Kn/Qp), G+
n = Gal(F+

n /Q) = Gal(K+
n /Qp)

A p-extension of a field is one whose Galois group is a pro-p-group. We will encounter
the following p-extensions of the above fields (we allow n =∞ as well):

Ln = maximal abelian unramified p-extension of Fn
L+
n = maximal abelian unramified p-extension of F+

n
Mn = maximal abelian p-extension of Fn unramified away from p
M+
n = maximal abelian p-extension of F+

n unramified away from p

Their Galois groups are denoted as follows:

Yn = Gal(Ln/Fn), Y +
n = Gal(L+

n/F
+
n )

Xn = Gal(Mn/Fn), X +
n = Gal(M+

n /F
+
n )
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Lastly, we also frequently encounter various groups of units.

Un = O×Kn
Vn = O×Fn

En = closure of Vn in Un
Dn = cyclotomic units of Fn
Cn = closure ofDn in Un

A superscript + on any of these groups denotes the intersection with K+
n , and a sub-

script 1 denotes those units which are ≡ 1 modulo the unique prime above p. Lastly,
we write

U∞ = lim←−−Un,

where the limit is with respect to the norm maps. The same holds for all above sub-
groups of Un.
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Introduction

The class group of the field Q(ζp) has been a central object of study in algebraic num-
ber theory since its early beginnings in the 19th century. One of the most notable
early figures studying this group was Ernst Kummer, who famously proved in 1850
that the Fermat equation xp + yp = zp has no non-trivial integer solutions whenever p
is a regular prime, i.e. when it does not divide the class number of the field Q(ζp). He
simultaneously gave a simple criterion for regularity, proving that p is regular if and
only if p divides none of the Bernoulli numbers B2,B4, . . . ,Bp−3.

In the 1950’s, Kenkichi Iwasawa quite literally took the study of this field to the next
level, when he started studying the whole cyclotomic tower Q(ζp) ⊂ Q(ζp2) ⊂ · · · . By
working with the whole tower at once instead of only focussing on the individual
fields, he was able to prove [Iwa59] a growth theorem regarding the class numbers of
these fields. It states that for large n, the p-valuation of the class number of Q(ζpn) is
equal to µpn+λn+ν for integers µ,λ,ν independent of n. After this, Iwasawa dedicated
most of his time to the study of this tower of fields and their class groups, proving
numerous results that nowadays fall under the umbrella of Iwasawa theory. Another
major breakthrough occurred in 1964 when Iwasawa observed [Iwa64] that under a
simple hypothesis on p, a certain ‘characteristic polynomial’ associated to the class
groups Cl(Q(ζpn)) was essentially just the p-adic L-function, which was constructed
around the same time by Kubota and Leopoldt [KL64]. This observation allowed him
to deduce many detailed statements about the structure of the class group, including a
long sought after refinement of Kummer’s criterion for regularity. The belief that this
relationship between the p-adic L-function and the class group held true even without
any hypothesis on p became known as the Main Conjecture of Iwasawa theory.

In 1976, Ken Ribet [Rib76] was able to prove the aforementioned refinement of Kum-
mer’s criterion using the theory of modular forms, sidestepping the Main Conjecture.
However, his techniques were later successfully adapted by Barry Mazur and Andrew
Wiles [MW84] to prove the full Main Conjecture. In 1990, Victor Kolyvagin [Kol90]
developed the theory of Euler systems based on a new approach by Francisco Thaine
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[Tha88] to studying class groups. Not long after, Karl Rubin [Lan90, Appendix] suc-
cessfully used Euler systems to give a new proof of the Main Conjecture, which was
much simpler and shorter than that of Mazur–Wiles.

This finally brings us to this thesis. There are many books exploring in detail the
results mentioned above. However, these books often lack examples, motivations,
and are riddled with long and arduous technical arguments. Our goal is to focus on
the main ideas present in the construction of the p-adic L-function, Iwasawa’s growth
theorem, and Rubin’s proof of the Main Conjecture. Also among our contribution is
to prove a more ‘effective’ version of the growth theorem, providing explicit values
for µ,λ and ν and quantifying how large n needs to be for the formula to hold. We
furthermore give an algorithm and implementation for computing p-adic L-functions,
and use it to provide numerous examples.

In Chapter 1 the construction of the p-adic L-function is carried out. We also intro-
duce the Iwasawa algebra and study its finitely generated modules, which will turn
out to be the key to understanding many of the results in Iwasawa theory.

In Chapter 2 we look at Iwasawa’s growth theorem. The version of this theorem typi-
cally found in the literature gives a formula for the class number of Q(ζpn) that holds
for ‘large enough n’. We will make explicit how large we need n to be, and provide
details on how to find the invariants present in this formula from p-adic L-functions.
We also provide an algorithm for calculating these L-functions, and give many explicit
examples. At the end we explain how the results thus far motivate the statement of
the Main Conjecture, whose proof covers the remaining chapters.

Chapter 3 covers the theory of the unit groups of Qp(ζpn) and their connection to
power series. The most important result is Coleman’s theorem, which allows to con-
struct power series which interpolate certain systems of units. This leads to a gener-
alization of the construction of the p-adic L-function in Chapter 1.

In Chapter 4 we study the group of cyclotomic units. Using the results from the
previous chapter we prove Iwasawa’s theorem, which relates the cyclotomic units to
the p-adic L-function. This result in fact allows us to prove the Main Conjecture for
all Vandiver primes.

Chapter 5 is concerned with the theory of Euler systems. For us, Euler systems are
collections of elements in cyclotomic extensions, which can be factored to obtain re-
lations in class groups and bounds on class numbers.

At last, we finish the proof of the Main Conjecture in Chapter 6. We will see how Euler
systems can be exploited to yield information on class groups, while leaving some of
the more technical details aside.
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1 Measures and Iwasawa algebras

In 1964, Kubota and Leopoldt [KL64] constructed the p-adic L-function, a p-adic ana-
lytic function that interpolates certain values of the usual Dirichlet L-function. In this
chapter we carry out this construction using the theory of p-adic measures. We also
discuss the Iwasawa algebra and the theory of its finitely generated modules. We do
all of this rather quickly, with most proofs being omitted. The interested reader can
consult [RW] for a more detailed exposition.

§1.1 p-adic measures

In the entirety of this thesis, p will be an odd prime. We fix once and for all algebraic
closures Q and Qp, and an embedding Q ↪→ Qp. Throughout this chapter, we let
L denote a finite extension of Qp. Let G be a profinite abelian group, which will
usually be Zp or Z×p . We denote by C(G,L) the L-vector space of continuous functions
G → L. This space comes equipped with a norm ∥f ∥ := supx∈G |f (x)|, and with this
norm C(G,L) becomes a p-adic Banach space. The continuous dual space C(G,L)∨

(consisting of all continuous linear functionals C(G,L)→ L) is called the space of L-
valued measures on G, and also denoted by M(G,L). If µ ∈M(G,L) and f ∈ C(G,L), we
also write

∫
G
f ·µ or

∫
G
f (x) ·µ(x) for µ(f ).

So far we have not yet utilized the group structure of G, and the above definitions
indeed make sense for any topological space. But using the group operation, we can
endow the space of measures with the structure of a (commutative) algebra, if we
define the multiplication to be convolution of measures: given µ,ν ∈ M(G,L), their
convolution is the measure µν defined by∫

G
f · (µν) =

∫
G

(∫
G
f (xy) ·µ(x)

)
· ν(y).

Example 1.1.1. For g ∈ G, the dirac measure δg or [g] is defined by
∫
f · [g] = f (g). If µ is

any measure, the convolution [g]µ is the measure given by
∫
G
f · ([g]µ) =

∫
G
f (gx) ·µ(x).
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Any measure is bounded in the sense that for µ ∈M(G,L), there is a constant C such
that |µ(f )| ≤ C∥f ∥ for all f ∈ C(G,L). In particular this implies that any measure can be
scaled so that µ(f ) ∈ OL for all f ∈ C(G,OL). Note that also any continuous map G→ L
can be scaled to take values in OL. Thus there is no harm in restricting ourselves to
only studying the spaces C(G,OL) of OL-valued functions and its dual M(G,OL) of
OL-valued measures.

To get a better idea of what the space M(G,OL) looks like, we start by analyzing the
space C(G,OL). In the case that G = Zp, this space has a very simple description. For
x ∈ Zp, define the generalized binomial coefficient

(x
n

)
by(

x
n

)
:=
x(x − 1) · · · (x −n+ 1)

n!
.

Proposition 1.1.2 (Mahler’s Theorem). If f ∈ C(Zp,OL), then there are unique ele-
ments a1, a2, · · · ∈ OL such that

f (x) =
∑
n≥0

an

(
x
n

)
for all x ∈ Zp.

Proof. The idea is to construct the coefficients an as the finite differences ∆nf (0), where
∆f (x) = f (x+ 1)− f (x). For the details, see [Col10, Théorème I.2.3].

The theorem implies that a measure on Zp is uniquely determined by its values on
the functions

(x
n

)
. Given a measure µ, it would therefore be instructive to consider the

generating function
∑
n≥0

(∫ (x
n

)
·µ(x)

)
T n =

∫
(1 + T )x · µ(x). We call this power series

the Amice transform of µ, and denote it by Aµ(T ).

Proposition 1.1.3. The Amice transform is an OL-algebra isomorphism

M(Zp,OL)
∼→OLJT K.

Proof. See [Col10, Théorème II.2.2].

Example 1.1.4. The Amice transform of the dirac measure [a] is simply (1 + T )a.
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Remark 1.1.5. Note that we have an inclusion ZpJT K ⊂ OLJT K. By the above isomor-
phism, this means that we can integrate OL-valued functions against Zp-valued mea-
sures, which was not clear from the definition of M(G,OL). For this reason, we will
from now on specialize to the case L = Qp. In this case we also denote the spaces
C(G,Zp) and M(G,Zp) simply by C(G) and M(G).

The ring ZpJT K is a particularly nice ring; it is a 2-dimensional complete regular local
ring, with maximal ideal (p,T ). Later we will study modules over this ring, which in
the finitely generated case turn out to have a very simple description.

§1.2 Operations on measures

If f ∈ C(Zp), µ ∈M(Zp), we can define a new measure f µ, which is defined by
∫

Zp
g ·

(f µ) =
∫

Zp
f g · µ. We will focus our attention on three special cases, and look at how

the Amice transform of a measure transforms under the multiplication.

• Multiplication by x. First consider the measure xµ. From the identity

x

(
x
n

)
= (n+ 1)

(
x

n+ 1

)
+n

(
x
n

)
,

it follows that Axµ(T ) = (1 + T ) d
dT Aµ(T ). The differential operator (1 + T ) d

dT
occurs frequently enough that we shorten it to ∂.

From this, we see that the k-th moment of the measure µ, which is defined to be∫
Zp
xk ·µ(x), is given by ∂kAµ(0).

• Multiplication by zx. If z ∈ 1 + pZp, we can make sense of zx for any x ∈ Zp, and
the Amice transform of zxµ is equal to Aµ((1 + T )z − 1).

• Multiplication by 1X . If X ⊂ Zp is a compact open subset, the indicator function
1X is continuous, and the measure 1Xµ is called the restriction of µ to X. It is
denoted ResX(µ) or µ|X . Note that we have a natural inclusion of Zp-modules
M(X)→M(Zp), by letting ∫

Zp
f ·µ :=

∫
X
f |X ·µ

for µ a measure on X. Clearly the restriction of a measure to X lies in the image
of this map, so we also view ResX as a map M(Zp)→M(X).

In the case that X = a+ pnZp, we can use the identity

1a+pnZp (x) = p−n
∑
ηpn=1

ηx−a
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in combination with the previous point to see that

AResa+pnZp (µ)(T ) = p−n
∑
ηpn=1

η−aAµ((1 + T )η − 1).

It then also immediately follows that

AResZ×p (µ)(T ) =Aµ(T )− p−1
∑
ηp=1

Aµ((1 + T )η − 1).

Lastly, we come to the most important operations on measures: the Frobenius and trace
operators.

For µ ∈M(Zp), the measures ϕ(µ) and ψ(µ) are given by∫
Zp
f ·ϕ(µ) =

∫
Zp
f (px) ·µ(x),

∫
Zp
f ·ψ(µ) =

∫
Zp
f (p−1x) ·µ|Z×p (x).

The maps ϕ and ψ are respectively known as the Frobenius and trace map. Via the
Amice transform we can also view them as maps on ZpJT K. The Frobenius is easily
described on power series: ϕ(f ) = f ((1 + T )p − 1). The trace operator is more mysteri-
ous, and has no explicit direct description in terms of power series. The best we can
do is the following proposition.

Proposition 1.2.1. We have that ψ ◦ϕ = Id and ϕ ◦ψ = RespZp . In particular, ϕ is
injective, and for f ∈ ZpJT K,

(ϕ ◦ψ)(f ) = p−1
∑
ηp=1

f ((1 + T )η − 1).

Proof. Clear by writing out definitions.

If X ⊂ Zp, we say that a measure µ is supported on X if µ|X = µ.

Lemma 1.2.2. A measure µ is supported on Z×p if and only if ψ(µ) = 0.

Proof. This is immediate from the fact that ϕ ◦ψ = RespZp = Id −ResZ×p and that ϕ is
injective.
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§1.3 Iwasawa algebras

Let G again be any profinite abelian group. If U ⊂ G is compact and open, we write
µ(U ) := µ(1U ), µ ∈M(G). The resulting function {U ⊂ G compact open} → Qp is rem-
iniscent of the more familiar idea of a measure one encounters in real analysis. This
gives us another way of thinking about the space of measures as follows: the set of
locally constant functions is dense in C(G), and any locally constant function is a lin-
ear combination of indicator functions of sets of the form gH , where g ∈ G and H is
an open subgroup. Thus a measure is uniquely determined by the values µ(gH). This
motivates the following definition and proposition.

Definition 1.3.1. The Iwasawa algebra of G is

Λ(G) = lim←−−Zp[G/H],

where the inverse limit runs over all open subgroups of G, with respect to the
obvious maps.

Proposition 1.3.2. The collection of maps M(G)→ Zp[G/H], H an open subgroup,
given by

µ 7→
∑

gH∈G/H
µ(gH)[gH]

induces a map M(G)→Λ(G), and this map is a Zp-algebra isomorphism.

Proof. This is proved by explicitly constructing an inverse map, see [RW, Proposition
2.3] for the details.

We have a natural inclusion Zp[G] → Λ(G), which has dense image (Λ(G) is equip-
ped with the standard inverse limit topology). For this reason the Iwasawa algebra is
also often called the completed group algebra, and modules over it naturally arise in
the following way: suppose we have an inverse system of Zp[G]-modules (MH , fH,H ′ )
indexed by the open subgroups of G, such that H acts trivially on MH . Then lim←−−MH

has a natural continuous Λ(G)-module structure.

In what follows we will study some properties of Λ(G)-modules (which are all as-
sumed to have a Hausdorff topology with respect to which the action is continuous),
paying special attention to the case G = Zp. In this case, combining Propositions 1.1.3
and 1.3.2, we see that Λ(G) is isomorphic to ZpJT K. Recall that the latter was a local
ring with maximal ideal (p,T ), and that it is complete with respect to the (p,T )-adic
topology. It turns out (see the proof of [Was97, Theorem 7.1]) that the isomorphism
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between Λ(G) and ZpJT K also identifies the inverse limit topology on the former with
the (p,T )-adic topology on the latter.

Remark 1.3.3. One may wonder if the topology also has a natural description directly
onM(G). It turns out to be the weak topology: a sequence (µn)n of measures converges
to µ if and only if µn(f ) converges to µ(f ) for all f ∈ C(G).

We start with a version of Nakayama’s lemma that works for general compact modules
over local rings.

Proposition 1.3.4 (Nakayama’s lemma). Suppose R is a local ring with maximal
ideal m, equipped with the m-adic topology, and let X be a compact R-module.
Then X is finitely generated over R if and only X/mX is finitely generated over
R/m, in which case a set of elements x1, . . . ,xn generate X if and only if their images
generate X/mX.

Proof. We first show that we have that
⋂
n≥1m

nX = 0. Indeed, let y ∈ X be non-zero
and U an open neighborhood of 0 not containing y. Then for any x ∈ X, we can find
n and a neighborhood Ux of x such that mnUx ⊂ U . Choosing finitely many of the
Ux that cover X, we find that there exists n such that mnX ⊂ U , and consequently
y <mnX.

Now, the forward direction of the proposition is clear. Conversely, suppose the quo-
tient is finitely generated by the images of x1, . . . ,xn. Consider Y = Rx1 + · · · + Rxn,
which is a compact, hence closed, submodule of X. Then X = mX +Y , so that

m(X/Y ) =
mX +Y
Y

= X/Y .

Applying this repeatedly yields that mn(X/Y ) = X/Y for all n, and thus X/Y = 0.

The following structure theorem will be our most important tool in the study of
finitely generated ZpJT K-modules. It classifies such modules up to so called pseudo-
isomorphism, which is a homomorphism with finite kernel and cokernel.

Let us call a polynomial over Zp distinguished if it is monic and every non-leading
coefficient is divisible by p.
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Theorem 1.3.5. Let M be a finitely generated Λ = ZpJT K-module. Then there is a
pseudo-isomorphism from M to a module of the form

Λr ⊕
s⊕
i=1

Λ/(pmi )⊕
t⊕
j=1

Λ/(f
nj
j ),

where the fj are irreducible distinguished polynomials. Furthermore, such a de-
composition is unique.

Proof. See [Was97, Theorem 13.12] for a direct proof using matrices, similar to the use
of Smith normal form over PID’s. Alternatively, the proposition is a special case of a
more general structure theorem for Noetherian integrally closed domains, see [Ser60,
Théorème 7] and [Bou89, Ch. VII, §4, Theorems 4 & 5].

It is important to note that pseudo-isomorphism is not in general an equivalence re-
lation. This is however the case if we are dealing with torsion modules, which are
precisely the modules for which r = 0 in the above decomposition. In this case, let
us write µ =

∑
imi . We call the ideal generated by pµ

∏t
j=1 f

nj
j in Λ the characteristic

ideal of M, and denote it by ch(M). It is an important invariant of M, and has the
property of being multiplicative in exact sequences ([Bou89, Ch. VII, §5, Proposition
10]).

We now work a little more abstractly, and denote by Γ any group isomorphic to Zp,
and let G be a group of the form ϖ × Γ , where ϖ is a finite cyclic group of order k
dividing p − 1. Then any character χ of ϖ takes values in the (p − 1)-st roots of unity
µp−1 ⊂ Zp, and we define eχ := 1

k

∑
a∈ϖχ(a)[a−1] ∈ Zp[ϖ]. The collection of elements

eχ form a complete orthogonal system of idempotents. It follows that for any Λ(G)-
module M, we have a decomposition M =

⊕
χ eχM. Note that eχM is the largest

Λ(Γ )-submodule on which ϖ acts via χ.

Applying this to Λ(G) itself, we obtain a decomposition Λ(G) =
∏
χ eχΛ(G). Clearly

eχΛ(G) is a ring, and eχM is a eχΛ(G)-submodule of M.

Lemma 1.3.6. The restriction map ResΓ : Λ(G)→Λ(Γ ) gives an isomorphism
eχΛ(G)→Λ(Γ ).

Proof. Let Γn ⊂ Γ be the unique subgroup of index pn. Take a ∈ eχZp[ϖ × Γ /Γn] =
eχZp[Γ /Γn][ϖ], which we can write as

∑
g∈A ag [g] with ag ∈ Zp[Γ /Γn]. Because ϖ acts

via χ, the element is completely determined by a1, as ag = χ−1(g)a1. It follows that the
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projection map

Zp[ϖ × Γ /Γn]→ Zp[Γ /Γn]∑
g∈A

ag [g] 7→ a1

restricts to an isomorphism on eχZp[ϖ × Γ /Γn].

The inverse limit of the projection maps is precisely the restriction map ResΓ , which
is then an isomorphism eχΛ(G)→Λ(Γ ).

§1.4 The p-adic zeta measure

Let us denote by ζ the Riemann zeta function, which is defined and analytic on the
whole complex plane except for a simple pole at 1. Recall that it has the special
values ζ(1− k) = (−1)k+1 Bk

k , where the Bk are the Bernoulli numbers, defined by their
exponential generating function t

et−1 =
∑
k≥0

Bk
k! t

k . In fact, Bk = 0 if k > 1 is odd, so as
long as k , 1, we may replace (−1)k+1 by −1 in the special value. In this section, we
will construct the p-adic analogue of the ζ function, which actually turns out to be a
measure instead of a function.

Let a ∈ Z be coprime to p and define Fa(T ) := a
(1+T )a−1 −

1
T . It is easily shown that Fa is

in fact a power series with p-adic integral coefficients. Let µa be the measure on Zp it
corresponds to under the Amice transform.

Lemma 1.4.1. The moments of µa are given by∫
Zp
xk ·µa(x) = −(1− ak+1)

Bk+1

k + 1
.

Proof. If we make the change of variables T = et − 1, then

Fa(T ) =
a

eat − 1
− 1
et − 1

= −
∑
k≥0

(1− ak+1)
Bk+1

k + 1
tk

k!
.

The result now follows from the fact that the moments are given by ∂kFa(0), and that
under the above change of variables, ∂ = d

dt .
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There are a few problems with the measure we have obtained. First off, there is of
course the factor of (1 − ak+1) that we want to rid ourselves of. Second, we would
ideally have the k-th moment of our measure be related to Bk instead of Bk+1. We will
deal with these problems now.

Lemma 1.4.2. ψ(µa) = µa.

A direct proof involving power series computations is possible, but a more concep-
tual proof uses some of the theory of Chapter 3. Namely, we shall see that Fa is the
logarithmic derivative of a norm invariant power series, and that this implies that it is
equal to its own trace.

The above lemma implies that ResZ×p (µa) = µa − ϕ(ψ(µa)) = µa − ϕ(µa), and conse-
quently ∫

Z×p
xk ·µa(x) = −(1− pk)(1− ak+1)

Bk+1

k + 1
.

If we now consider the measure λa := x−1 ResZ×p (µa) on Z×p , then it satisfies∫
Z×p
xk ·λa(x) = −(1− pk−1)(1− ak)Bk

k
. (1.1)

The restriction to Z×p has allowed us to multiply by x−1, shifting the moments to now
interpolate the correct Bernoulli numbers. However, this has introduced a new factor
of (1 − pk−1). Luckily this factor is not a problem; it now allows us to write −(1 −
pk−1)Bkk = (1−pk−1)ζ(1−k), which would not have been true for k = 1 without the extra
factor. Moreover, the new factor cancels out the corresponding Euler factor in the
product ζ(s) =

∏
p(1 − p−s)−1, which is necessary to make the zeta function p-adically

continuous.

This leaves us with the final task of getting rid of the factor depending on our choice
of a. To do this, we want to ‘divide’ our measure by the measure [1]− [a].

Definition 1.4.3. A pseudo-measure on Z×p is an element µ of the total ring of frac-
tions of Λ(Z×p ) (i.e. the localization at the non-zero-divisors) with the property that
([1]− [g])µ ∈Λ(Z×p ) for all g ∈ Z×p .

We can no longer integrate arbitrary functions against pseudo-measures. We can,
however, integrate non-trivial group homomorphisms Z×p → L×. This is because we
have that ∫

Z×p
f (x) · (µ1µ2)(x) =

∫
Z×p
f (x) ·µ1(x)

∫
Z×p
f (x) ·µ2(x)


11



whenever f is a homomorphism. Hence for a pseudo-measure µ, we may define

∫
Z×p
f ·µ :=

∫
Z×p
f · ([1]− [g])µ

1− f (g)

where g ∈ Z×p is chosen such that f (g) , 1, and this will be independent of the choice
of such g. In particular, this means that we can still make sense of the moments of a
pseudo measure.

Lemma 1.4.4. Let µ ∈Λ(Z×p ).

1. We have µ = 0 if and only if
∫

Z×p
xk · µ(x) = 0 for all k > 0. The analogous

assertion holds for pseudo-measures.

2. If
∫

Z×p
xk ·µ(x) , 0 for all k > 0, then µ is not a zero-divisor.

Proof. See [RW, Lemma 3.8].

The second point shows that [1]− [a] is not a zero-divisor. Furthermore, if we choose
a such that it is a topological generator for Z×p , then for any g ∈ Z×p , the element
[1] − [a] divides [1] − [g] in the group rings Zp[(Z/pnZ)×]. This implies that in fact
[1]−[g]
[1]−[a] ∈ Λ(Z×p ), so that 1/([1] − [a]) is a pseudo-measure. This finally gets us our de-
sired result.

Theorem 1.4.5. There is a unique pseudo-measure ζp on Z×p such that∫
Z×p
xk · ζp = (1− pk−1)ζ(1− k)

for all k ≥ 1.

Proof. Choose a ∈ Z to be a topological generator of Z×p , and define λa as before. We

can take ζp = λa
[1]−[a] by (1.1). Uniqueness follows from the previous lemma.

§1.5 The Kubota–Leopoldt p-adic L-function

In the previous section we have constructed a pseudo-measure, whose moments are
given by interpolating values of the zeta function. What we would really like however,
is to turn ζp into an actual (analytic) function on Zp. We will do this now.
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Recall that there is a decomposition Z×p = µp−1 × (1 + pZp). The projection onto the
first factor is called the Teichmüller character, and is denoted ω. The projection onto
the second factor is denoted x 7→ ⟨x⟩. Hence any p-adic unit x may be written as
x =ω(x)⟨x⟩.

If χ : (Z/pnZ)×→ Q ⊂ Qp is a primitive Dirichlet character of p-power conductor, we
may view it as a homomorphism on Z×p . By the decomposition above, we can uniquely
write χ as the product of a character which is trivial on 1+pZp (which must be a power
of ω), and a character trivial on µp−1.

When necessary, we can also view a character as a function on Zp by setting it equal
to 0 outside Z×p , unless χ is the trivial character, in which case we let it be constant 1
on all of Zp.

Definition 1.5.1. The p-adic L-function of χ is defined as

Lp(χ,s) :=
∫

Z×p
χ(x)⟨x⟩1−s · ζp.

Theorem 1.5.2. For k ≥ 1, the p-adic L-function satisfies

Lp(χ,1− k) = (1−χω−k(p)pk−1)L(χω−k ,1− k)

Proof. In the case that χ =ωk , this is exactly Theorem 1.4.5, since

Lp(ωk ,1− k) =
∫

Z×p
ωk(x)⟨x⟩k · ζp =

∫
Z×p
xk · ζp.

The general case is a little more tedious, see for instance [RW, Theorem 4.1].

Just as the Riemann zeta function, the special values of Dirichlet L-functions can be
expressed using the the so-called generalized Bernoulli numbers Bk,χ, which are defined
using generating functions similar to t

et−1 for the regular Bernoulli numbers. The

special values are then given by L(χ,1− k) = −Bk,χk .

Next, we would like to see that the functions Lp(χ,s) are in fact analytic, meaning that
they can be represented by a power series in CpJsK.

Every character of µp−1 is given by raising to the i-th power for some i ∈ Z/(p −
1)Z. Recall from Section 1.3 that we have a complete system of idempotents ei =∑
τ∈µp−1

τ i[τ−1] ∈Λ(Z×p ). The results from that section tell us that a measure µ ∈Λ(Z×p )
is completely determined by the measures Res1+pZp(eiµ) ∈Λ(1 + pZp). We can use the
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isomorphism

1 + pZp→ Zp, x 7→
log(x)

log(1 + p)

to view the resulting measure on 1+pZp as a measure on Zp. The measure constructed
this way is called the i-th Leopoldt transform of µ, and is denoted by Γ i(µ).

Proposition 1.5.3. Let χ = θωi be a Dirichlet character of p-power conductor (where
θ is trivial on µp−1) and µ ∈Λ(Z×p ). Then with gi :=AΓ i (µ)(T ), we have that

gi(ζθ(1 + p)s − 1) =
∫

Z×p
χ(x)⟨x⟩s ·µ

where ζθ = θ(1 + p).

Proof. We directly calculate that

gi(ζθ(1 + p)s − 1) =
∫

Zp
ζ
y
θ(1 + p)sy · Γ i(µ)(y)

=
∫

1+pZp
θ(x)xs · (eiµ)(x)

=
∑
τ∈µp−1

∫
Zp
θ(x)τ i(τ−1x)s11+pZp (τ

−1x) ·µ(x)

=
∑
τ∈µp−1

∫
Zp
θ(x)ωi(x)⟨x⟩s1τ+pZp (x) ·µ(x)

=
∫

Z×p
χ(x)⟨x⟩s ·µ(x),

where we used the substitution y = log(x)
log(1+p) , and the fact that if x ∈ τ + pZp, we have

⟨x⟩ = τ−1x and ω(x) = τ .

Theorem 1.5.4. Let i . 0 mod p − 1. There is a power series fi ∈ ZpJT K such that for
any character θ of 1 + pZp, we have

fi(ζθ(1 + p)1−s − 1) = Lp(θωi , s),

where ζθ = θ(1 + p). In particular, Lp(θωi , s) is a p-adic analytic function.
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Proof. Choose a ∈ Z such that ωi(a) , 1. By the previous result, there are power series
gi and hi such that we may write

Lp(χ,s) =

∫
Z×p
χ(x)⟨x⟩1−s ·λa∫

Z×p
χ(x)⟨x⟩1−s · ([1]− [a])

=
gi(ζθ(1 + p)1−s − 1)
hi(ζθ(1 + p)1−s − 1)

.

Because hi(0) = 1−ωi(a) is a p-adic unit, hi ∈ ZpJT K×, so that we may take fi = gi/hi .

The power series from this theorem are sometimes called the Iwasawa power series
of the L-functions, but it is also common to refer to these power series as the p-adic
L-functions themselves.

Remark 1.5.5. Even though to define the pseudo-measure ζp = λa
[1]−[a] we needed to

take a to be a topological generator of Z×p , the expression

Lp(χ,s) =

∫
Z×p
χ(x)⟨x⟩1−s ·λa∫

Z×p
χ(x)⟨x⟩1−s · ([1]− [a])

still holds true for any a ∈ Z coprime to p with the property that ωi(a) , 1.

Finally, let us record the following well-known result about p-adic analytic functions,
known as the Weierstrass preparation theorem. Recall that a polynomial is said to be
distinguished if it is monic and its non-leading coefficients are all divisible by p.

Theorem 1.5.6. Let f ∈ ZpJT K. Then f can be uniquely written as pµP (T )U (T ) where
P is a distinguished polynomial, and U is a unit of ZpJT K.

Proof. See [Was97, Theorem 7.3].

As a consequence, a non-zero element of ZpJT K can have only finitely many zeros in
Zp. In particular this holds for the Iwasawa power series of the p-adic L-functions.
In the next chapter, we see how these zeros relate to the class numbers of p-power
cyclotomic extensions of Q.
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2 Cyclotomic class numbers and p-
adic L-functions

In this chapter we focus our attention on a theorem of Iwasawa [Iwa59], which states
that for large enough n, the p-valuation of the class number of Q(ζpn) is equal to µpn+
λn + ν for some constants µ,λ,ν independent of n. The usual proof of this theorem
however gives us no indication on how to find these constants, or on how large n needs
to be for the formula to hold. In Section 1 we will study this proof. In Section 2 we
will prove an ‘effective’ version of the theorem, where we now make explicit both how
large n needs to be, and what the invariants µ,λ and ν are. It will turn out that both
of these questions are answered by looking at p-adic L-functions. In Section 3 we will
look at some explicit calculations and examples (something that is typically absent
in the established literature). Section 4 discusses some heuristics on the size of the
invariant λ. Lastly, we discuss how the results from this chapter motivate the Main
Conjecture of Iwasawa theory.

From this point onward, we make repeated use of the basics of class field theory. The
necessary results can be found in the Appendix.

§2.1 Class numbers in Zp-extensions

Let F0 be a number field and F∞/F0 a Zp-extension, meaning a Galois extension such
that Γ := Gal(F∞/F0) is isomorphic to Zp. Then Γ has a unique subgroup of index pn

for each n which we denote by Γn, and we let Fn be the corresponding field.

Example 2.1.1. The most important examples of Zp-extensions are the cyclotomic ex-
tension Fn = Q(ζpn+1) and its maximal real subfield Fn = Q(ζpn+1)+. More generally,
if F0 is any number field and F0(ζp∞) is the field obtained by adjoining all p-power
roots of unity, then the fixed field of the torsion subgroup of Gal(F0(ζp∞)/F0) is a Zp-
extension of F0, called the cyclotomic extension of F0.
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Let hn be the class number of Fn. In this section, we prove a remarkable theorem of
Iwasawa regarding these class numbers.

Theorem 2.1.2. There exist positive integers µ,λ,ν,n0 such that

ordp(hn) = µpn +λn+ ν

for all n ≥ n0.

We will prove the theorem under the following additional hypothesis:

There is a unique prime p0 ⊂ F0 above p, and it ramifies completely in F∞.

Note that both our examples of Q(ζpn+1) and Q(ζpn+1)+ satisfy this assumption. From
now on we will assume that this hypothesis is satisfied. The general case can be re-
duced to this special one (see [Was97, Theorem 13.13]).

For each n, let Ln/Fn be the maximal abelian unramified p-extension (meaning the
Galois group is pro-p). We let Yn = Gal(Ln/Fn). Additionally, let L∞ =

⋃
n≥0Ln be

the maximal abelian unramified p-extension of F∞, and Y∞ = lim←−−Yn = Gal(L∞/F∞).
Class field theory shows that the Artin map yields an isomorphism between the Sylow
p-subgroup of Cl(Fn) and Yn.

Note that since each Yn is a p-group, they are also Zp-modules. Furthermore, Yn is
equipped with an action of Γ as follows: for γ ∈ Γ , y ∈ Yn, let γ̃ ∈ Gal(L∞/F0) denote
any lift of γ . Then the action is defined by γ · y := γ̃yγ̃−1. It is easily checked that
this is well defined and gives a group action. Furthermore, under the aforementioned
isomorphism ofYn with the Sylow p-subgroup of the class group, this action is simply
the one induced from the natural action of Γ on the group of fractional ideals of Fn.
Consequently, Y∞ becomes a Zp[Γ ]-module. Iwasawa proved his theorem by using
rather ad-hoc arguments regarding the structure of Y∞ as an Zp[Γ ]-module. Not long
after, Serre [Ser60] was able to simplify Iwasawa’s proof by realizing that because
Γn = Gal(F∞/Fn) acts trivially on Yn, the inverse limit Y∞ is even a (finitely generated)
Λ(Γ )-module (as is described just after Proposition 1.3.2). The theorem now follows
by exploiting the established structure theory for such modules. This insight cannot
be understated: from this point on, almost all of the key results in Iwasawa theory are
most naturally stated in terms Λ(Γ )-modules.

From now on, fix a topological generator γ0 for Γ , which yields an isomorphism Γ →
Zp. This allows us to identity Λ(G) with Λ = ZpJT K via the Amice transform. Under
this identification, γ0 ∈ Λ(G) corresponds to 1 + T ∈ ZpJT K. If M is any Λ(Γ )-module,
we denote by

MΓn
=M/(γp

n

0 − 1)M
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the set of Γn-coinvariants.

Lemma 2.1.3. LetH = Gal(L∞/F0) and let I ⊂H be the inertia subgroup of any prime
above p0.

1. H = IY∞ and I ∩Y∞ = 1;

2. [H,H] = (γ0 − 1)Y∞ = TY∞, where [H,H] denotes the closed subgroup gener-
ated by the commutators [a,b];

3. Yn = (Y∞)Γn .

Proof. The first assertion follows since F∞/F0 is totally ramified above p0 and L∞/F∞
is unramified.

This implies that the natural map I → H/Y∞ = Γ is an isomorphism. Under this
isomorphism, the action of Γ corresponds to I acting on Y∞ by conjugation. Let σ0 ∈ I
be the element mapping to γ0. To lessen the risk of confusion, let us denote the action

exponentially. Thus it remains to show that [H,H] = Y (σ0−1)
∞ . If y ∈ Y∞, we have

yσ0−1 = σ0yσ
−1
0 y−1 = [σ0, y]. Conversely, let a,b ∈ H . Writing a = αx,b = βy with

α,β ∈ I,x,y ∈ Y∞, a straightforward calculation shows that [a,b] = (xα)1−β(yβ)α−1.
Because σ0 topologically generates I , 1 − β and α − 1 are divisible by σ0 − 1 in the
Iwasawa algebra Λ(I). Thus [a,b] ∈Y σ0−1

∞ .

Write Hn = Gal(L∞/Fn) and In =Hn ∩ I . One deduces from the previous points that

In = Ip
n
,Hn = InY∞ and [Hn,Hn] =Y

(σp
n

0 −1)
∞ .

Because Ln is the maximal abelian unramified subextension of L∞/Fn, we deduce that

Yn =
Gal(L∞/Fn)
Gal(L∞/Ln)

=
Hn

[Hn,Hn]Ipn
=

Ip
n
Y∞

IpnY
(σp

n

0 −1)
∞

=Y∞/Y
(σp

n

0 −1)
∞ .

Lemma 2.1.4. The group Y∞ is a finitely generated Λ-module.

Proof. As T ∈ (p,T ), Y∞/(p,T )Y∞ is a quotient of Y0 = Y∞/TY∞, hence finite. The
result now follows from Nakayama’s lemma 1.3.4.

Remark 2.1.5. Note that the application of Nakayama’s lemma yields something else
interesting: namely, Y∞ = 0 if and only if Yn = 0 for some n. In particular, we see that
p | hn for some n if and only if p | hn for all n.
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Proof of Theorem 2.1.2. By the structure theorem and the previous lemma, there is a
module of the form

A = Λr ⊕
s⊕
i=1

Λ/(pmi )⊕
t⊕
j=1

Λ/(f
nj
j )

and a pseudo-isomorphism φ : Y∞ → A. Writing An = A/ϕn(T )A, we obtain a com-
mutative diagram

0 ϕn(T )Y∞ Y∞ Yn 0

0 ϕn(T )A A An 0

φ′n φ φ′′n

Applying the snake lemma immediately yields the following:

(i) #ker(φ′n) ≤ #ker(φ)

(ii) #coker(φ′′n ) ≤ #coker(φ)

(iii) #coker(φ′n) ≤ #coker(φ)

(iv) #ker(φ′′n ) ≤ #ker(φ)#coker(φ)

(v) #coker(φn)#ker(φ′n)ker(φ′′n ) = #ker(φn)#coker(φ′n)coker(φ′′n )

Additionally, if m ≥ n ≥ 0, we have

(a) #ker(φ′n) ≥ #ker(φ′m)

(b) #coker(φ′n) ≥ #coker(φ′m)

(c) #coker(φ′′n ) ≤ #coker(φ′′m)

All of these taken together imply that as n grows, the sizes of ker(φ′′n ) and coker(φ′′n )
eventually stabilize. We conclude that #Yn = #An ·

#ker(φ′′n )
#coker(φ′′n ) = #An · pc for some con-

stant c and large enough n. We are therefore reduced to showing that #An = µpn+λn+ν
for some µ,λ,ν and large enough n. In fact, still writing

A = Λr ⊕
s⊕
i=1

Λ/(pmi )⊕
t⊕
j=1

Λ/(f
nj
j ),

we will show that we can take µ =
∑s
i=1mi and λ =

∑t
j=1nj deg(fj ). We first state the

following lemma, which tells us that we can divide with remainder by distinguished
polynomials.
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Lemma 2.1.6. Let f ∈ Λ be a distinguished polynomial of degree d. Then for any
g ∈ Λ, there exist unique q,r ∈ Λ with r a polynomial of degree < d, such that
g = qf + r.

The proof can be found in [Was97, Proposition 7.2]. Now, the lemma immediately
implies that Λ/(ϕn(T )) is infinite, so that we must have r = 0 in the decomposition.
Furthermore, it is clear that #Λ/(ϕn(T ),pm) = pmp

n
. It remains to show that for g a

distinguished polynomial of degree d, we have that #Λ/(g(T ),ϕn(T )) = pdn+c for large
enough n. This turns out to be a bit technical, but the idea is to use the division algo-
rithm to show that when pn−1 ≥ d, we have #Λ/(g(T ),ϕn+1(T )) = pd#Λ/(g(T ),ϕn(T )).
The details are in [Lan90, Chapter 5, Theorem 1.2].

Note that while the proof above shows that µ,λ,ν and n0 as in the theorem exist, it
does not give us any way to find them. There is no way to find n0, and to find the
other invariants it seems we would need to have complete knowledge of the structure
of all the class groups Yn. One might think we could look at the proof of the structure
theorem to see how mi , fj and nj are obtained from the module. Alas, we would see
that we need an explicit finite presentation of Y∞, something which is of course again
unrealistic to ask for given limited knowledge of the class groups. In the next section
we will focus our attention to the case Fn = Q(µpn+1), and prove an effective version
of the theorem. We will see how in this case µ,λ and n0 are connected to p-adic L-
functions.

§2.2 An effective version of the growth theorem

For the rest of this chapter, let Fn = Q(ζpn+1) and F∞ = Q(ζp∞) =
⋃
n≥1Fn. Then F∞/F0

is a Zp-extension. Indeed, there is an isomorphism

κ : Gal(F∞/Q)→ Z×p

characterized by σ (ζpn) = ζκ(σ )
pn , called the cyclotomic character. We have a decomposi-

tion Z×p = µp−1 × (1 + pZp), the latter factor being isomorphic to Zp. The fixed field of
the this subgroup is then exactly F0. Similarly, we have that F+

∞/F
+
0 is a Zp-extension

as well, where the + indicates the maximal real subfield.

We write hn and h+
n for the class numbers of Fn and F+

n , respectively. By class field the-
ory, h+

n divides hn, and we denote the quotient by h−n, which is called the relative class
number. Why would we be interested in this number? There are two main reasons.
Firstly, the relative class number is much easier to handle than the individual class
numbers hn and h+

n . Part of the reason that class groups are hard to study, is because
they are intimately related to unit groups. For instance, the analytic class number
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formula allows us to compute the product of the class number and the regulator with
relative ease, but gives no way to separate the two. However, the unit groups of Fn
and F+

n have the same rank, and most of the complications introduced by them disap-
pear upon dividing the class numbers. Secondly, it is conjectured that p never divides
h+

0 . A prime with this property is called a Vandiver prime, so that conjecturally, ev-
ery prime is a Vandiver prime. This is known as the Kummer–Vandiver conjecture.
Remark 2.1.5 implies that a Vandiver prime does not divide h+

n for any n. Since we
are interested in studying ordp(hn), it therefore makes sense to study ordp(h−n), since
we expect these to be the same. While there is virtually no progress towards a proof
of the conjecture, it has been confirmed for all primes < 231 by Hart, Harvey & Ong
[HHO17]. In this sense, for all practical applications of Theorem 2.1.2, we can simply
work with h−n instead.

Now that we have motivated the study of h−n, we will prove the following effective
version of Iwasawa’s theorem.

Theorem 2.2.1. For i = 2,4, · · · ,p−3, let fi ∈ ZpJT K be the power series from Theorem
1.5.4. Write fi = pµiPi(T )Ui(T ) with Pi distinguished of degree λi and Ui a unit, and
write P for the product of the Pi . Let n0 be such that maxi λi < pn0 − pn0−1. Then for
all n ≥ n0, we have that

ordp(h−n) = µpn +λn+ ν,

where
µ =

∑
i

µi ,

λ =
∑
i

λi ,

ν =
∑

ζp
n0−1

=1
ζ,1

ordp

(
P (ζ(1 + p)− 1)

ζ − 1

)
−µ+ ordp(h−0).

Proof. From the analytic class number formula for Fn and F+
n , it follows that

h−n = 2pn+1
∏
χ odd

(
−1

2
B1,χ

)
= 2pn+1

∏
χ even

(
−1

2
B1,χω−1

)
,

where the product runs over Dirichlet characters of conductor dividing pn+1. As be-
fore, we may write any such character as a product of some ωi and a character θ of
1 + pZp vanishing on 1 + pn+1Zp. Thus, up to multiplication by a p-adic unit, this
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product becomes
pn+1

∏
i even

B1,ωi−1

∏
θ,1

B1,θω−1

∏
θ,ωi,1
i even

B1,θωi−1 .

Here the middle product runs over the characters of 1 + pZp that are trivial on 1 +
pn+1Zp. Let us first analyze this middle product. It is (up to a unit) equal to

∏
θ,1

Lp(θ,0) =
∏
θ,1

∫
Z×p
θ(x)⟨x⟩x−1 ·µa
1−θ(a)⟨a⟩

where we can take a = 1 + p. Write ζθ = θ(a). Then ζθ is a pn-th root of unity. Hence
ordp(1−ζθ) < 1, so that ordp(1−θ(a)⟨a⟩) = ordp(1−ζθ +ζθp) = ordp(1−ζθ). As θ runs
through the characters trivial on 1 + pn+1Zp, ζθ runs through all pn-th roots of unity.
We therefore have that ∏

θ,1

1
1−θ(a)⟨a⟩

∼
∏
ζp

n
=1

ζ,1

1
1− ζ

= p−n,

where ∼means equality up to a p-adic unit.

Let us now turn to the integral
∫

Z×p
θ(x)⟨x⟩x−1 ·µa. We claim that it is a p-adic unit. As

θ(x) is a power of ζθ, we have θ(x) ≡ 1 mod 1−ζθ, and of course ⟨x⟩ ≡ 1 mod p, so that
θ(x)⟨x⟩ ≡ 1 mod 1− ζθ. Thus it suffices to show that

∫
Z×p
x−1 ·µa is a unit.

Note that for x,y ∈ Z×p , we have |x−1 − y−1| = |x−y|
|xy| = |x − y|. It follows that the locally

constant function
∑p−1
r=1 r

−11r+pZp approximates x−1 ‘up to order p’ in the sense that

x−1 ≡
p−1∑
r=1

r−11r+pZp (x) mod p
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for all x ∈ Zp. Thus
∫

Z×p
x−1 ·µa ≡

∑p−1
r=1 r

−1
∫
r+pZp

µa mod p. We now calculate that∫
r+pZp

µa =AResr+pZpµa
(0)

= p−1
∑
ζp=1

ζrAµa(ζ − 1)

= p−1Aµa(0) + p−1
∑
ζp=1
ζ,1

ζr
( a
ζa − 1

− 1
ζ − 1

)

= −1
2

+
∑
ζp=1
ζ,1

ζr

1− ζ

We claim that this last sum is equal to r − p+1
2 . It suffices to show that this holds for

r = 1 and that the difference between the sums for r + 1 and r is 1. The case r = 1 is
simple: it becomes ∑

ζp=1
ζ,1

( 1
1− ζ

− 1
)

=
Φ ′p(1)

Φp(1)
− (p − 1) =

(1− p)
2

,

where Φp is the p-th cyclotomic polynomial. Next, for r = 1, . . . ,p − 2, we have that∑
ζp=1
ζ,1

ζr+1

1− ζ
− ζr

1− ζ
=

∑
ζp=1
ζ,1

1− ζr

1− ζ
− 1− ζr+1

1− ζ

= −
∑
ζp=1
ζ,1

ζr = 1

as was to be shown.

All in all we find that
∫
r+pZp

µa = r − p2 , so that

∫
Z×p
x−1 ·µa ≡

p−1∑
r=1

r−1
∫
r+pZp

µa

≡
p−1∑
r=1

1 ≡ −1 mod p

In particular, it is a unit as claimed.
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We have shown thus far that

h−n
h−0
∼

∏
θ,ωi,1
i even

B1,θωi−1 ∼
∏
θ,1

∏
i,0
i even

Lp(θωi ,0) =
∏
ζp

n
=1

ζ,1

∏
i,0
i even

fi(ζθ(1 + p)− 1).

Write fi(T ) = pµiPi(T )Ui(T ) with Pi distinguished of degree λi , and Ui a unit. Choose
n0 such that λi < pn0 − pn0−1 for all i. If ζ is root of unity of order pk , then ordp(ζ(1 +
p)− 1) = ordp(ζ − 1) = 1

pk−pk−1 . Thus for k ≥ n0, we have

ordp(Pi(ζ(1 + p)− 1)) = λi ordp(ζ − 1).

It follows that for n ≥ n0,

ordp

(
h−n
h−0

)
= µ(pn − 1) +

∑
ζp

n
=1

ζ,1

ordp(P (ζ(1 + p − 1)))

= µ(pn − 1) +λ
∑
ζp

n
=1

ζ,1

ordp(ζ − 1) +C

= µpn +λn+ (C −µ),

where
C =

∑
ζp

n0−1
=1

ζ,1

ordp(P (ζ(1 + p)− 1))− ordp(ζ − 1).

Thus we have shown that
ordp(h−n) = µpn +λn+ ν

for n ≥ n0, with ν = C −µ+ ordp(h−0).

It would be remiss not to mention the following remarkable result of Ferrero and
Washington regarding the µ-invariant, that actually holds true for more general num-
ber fields.

Theorem 2.2.2 (Ferrero–Washington). Let F0 be an abelian number field. Then the
µ-invariant of the cyclotomic Zp-extension of F0 vanishes.

Proof. See [Was97, Theorem 7.15].
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As mentioned, so far the equality ordp hn = ordp h+
n has been verified for all p < 231

in [HHO17]. The same paper also verified for all these primes that µ = 0 (which we
also know to be true by the Ferrero–Washington theorem) and λ = ν = ip, where ip
is the number of L-functions f2, . . . , fp−3 which have a zero, known as the irregularity
index of p. Note that we always have ip ≤ λ, with equality if and only if all L-functions
have at most one zero. In particular, we can take n0 = 1 in the preceding theorem.
Lastly, by the interpolation formula fk((1 + p)k − 1) = Lp(ωk ,1− k) = −(1− pk−1)Bkk and
the Weierstrass preparation theorem, fk has a zero if and only if Bk is divisible by p.
Combining all of this, we get the following practical result.

Theorem 2.2.3. If p < 231, we have that

ordp(#Cl(Q(ζpn))) = λn

for all n ≥ 1, where λ is the number of Bernoulli numbers B2,B4, · · · ,Bp−3 that are
divisible by p.

§2.3 Examples of p-adic L-functions

The results from the previous chapter motivate us to look at how one might compute
the λ-invariant for a prime by considering their p-adic L-functions. By the Weierstrass
preparation theorem and the Ferrero–Washington theorem 2.2.2, the number of zeros
of a power series

∑
n≥0 anT

n is equal to the smallest index n for which an is not di-
visible by p. Thus to find the λ invariant, it suffices to find an approximation of the
L-functions that is accurate modulo p.

Lemma 2.3.1. Let f ∈ ZpJT K be a power series, and let g ∈ Zp[T ] be a polynomial that
agrees with f in at least n points. Then f ≡ g mod (p,T n).

Proof. By the Weierstrass preparation theorem, we may write f (T )−g(T ) = pµP (T )U (T )
with P a distinguished polynomial of degree at least n, so that P ≡ 0 mod (p,T n).

Consequently, to find our modulo p approximation up to a certain number of terms,
we only need to find a polynomial that agrees with fi in a certain number of points.
But this is easy: after all, we know that fi((1+p)k−1) = −(1−pk−1)Bkk for all k ≡ i mod p−
1. We do however need to be careful that the resulting interpolating polynomial is
actually a polynomial over Zp, otherwise we cannot apply the above lemma. Using
this method, we find for instance that for p = 5, the power series f2 is given by

f2(T ) ≡ 2 + T + T 3 + T 4 mod (p,T 5).
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Note that f2 is in this case the only interesting power series, since f0 is not a power
series, and f1, f3 are identically zero.

As an another example, the Iwasawa power series for p = 11 are given by

f2(T ) ≡ 10 + 5T + 6T 2 + 7T 3 + T 4 mod (p,T 5)

f4(T ) ≡ 10 + 10T + 8T 2 + 3T 3 + 8T 4 mod (p,T 5)

f6(T ) ≡ 1 + 9T + 5T 2 + 7T 3 + 6T 4 mod (p,T 5)

f8(T ) ≡ 5 + 10T + 8T 2 + 8T 3 + 4T 4 mod (p,T 5)

We can see that none of these series so far have constant terms which are divisible by
p, which is to be expected, since 5 and 11 are regular primes. The smallest irregular
prime is p = 37, for which the 32nd series has a zero:

f32(T ) ≡ 21T + 8T 2 + 35T 3 + 15T 4 mod (p,T 5).

This agrees with the fact that B32 = −37 × 214147806700
510 is divisible by 37, and that the

class number of Q(ζ37) is 37.

The smallest prime for which multiple series have a zero is p = 157, and it concerns
the following series:

f62(T ) ≡ 48T + 65T 2 + 28T 3 + 142T 4 mod (p,T 5)

f110(T ) ≡ 51T + 128T 2 + 16T 3 + 139T 4 mod (p,T 5)

A remarkable class number computation has shown that the class number of Q(ζ157)
is equal to

5 · 132 · 1572 · 1093 · 1873 · 418861 · 3148601.

Note the factor of 1572, which agrees with what we expect from looking at the L-
functions. The next few primes for which two series have a zero are p = 353,379,467.
Not long after, we find the first prime for which three of the power series have a zero,
namely p = 491:

f292(T ) = 456T + 189T 2 + 268T 3 + 282T 4 mod (p,T 5)

f336(T ) = 103T + 240T 2 + 233T 3 + 232T 4 mod (p,T 5)

f338(T ) = 475T + 98T 2 + 342T 3 + 296T 4 mod (p,T 5)

Even though we have no idea what the class number of Q(ζ491) is, this definitively
shows not only that this number is exactly divisible by 4913, but also that the class
number of Q(ζ4912) is divisible by 4916, that of Q(ζ4913) is divisible by 4919, etc, even
though we will probably never know what these class numbers are.
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Now, what if we are interested in finding more accurate approximations of p-adic L-
functions? We can still do this by finding a polynomial that interpolates certain values
of the L-function, except that the points have to be chosen more carefully to guarantee
a higher p-adic accuracy.

Proposition 2.3.2. Let µ be a measure on Z×p , and let Pn,i be the polynomial

Pn,i(T ) =
p−1∑
k=1

pn−1∑
j=0

ωi(k)µ(ω(k)(1 + p)j + pn+1Zp)(1 + T )j .

Then if ζ is a pn-th root of unity, and θ : Z×p → Q
×
p is the character trivial on µp−1

with θ(1 + p) = ζ, we have that

Pn,i(ζ − 1) =
∫

Z×p
θωi ·µ.

Proof. This follows immediately upon noting that Z×p is the disjoint union of the sets
ω(k)(1 + p)j + pn+1Zp, and that on such a set, θωi is constant with value ωi(k)ζj .

In particular, applying this to the measures λa and [1] − [a] from Chapter 1, we get
polynomials that agree with the power series gi and hi from Theorem 1.5.4 in the
values ζ − 1. Thus the difference between our approximation and the true power
series will be divisible by ϕn(T ) = (1 +T )p

n −1. The coefficients of this polynomial are
of course the binomial coefficients

(pn
k

)
, which become more and more divisible by p

as n increases. For instance, for k = 0, . . . ,p−1 they are divisible by pn, so that the first
p terms of our approximation are accurate modulo pn.

Proposition 2.3.2 appears in [SW13] (though with i = 0) as a way to compute p-adic
L-functions of elliptic curves. It is also the basis for SageMath’s built-in algorithm
for computing these L-functions. Curiously, Sage has no built-in methods to compute
the Kubota–Leopoldt p-adic L-functions discussed in this thesis. Luckily, the tech-
niques described above are easy enough to implement.1 This way, we can for instance
compute the 32nd L-function for p = 37 that is accurate modulo p3:

f32(T ) = (30 · 37 + 31 · 372) + (21 + 30 · 37 + 25 · 372)T

+ (8 + 6 · 37)T 2 + (35 + 6 · 37 + 6 · 372)T 3

+ (15 + 4 · 37 + 3 · 372)T 4 mod (p3,T 5)

1For example, see https://gitlab.com/niels-ketelaars/iwasawa
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Using the mentioned code to do this already reveals a big weakness: computing the
above series already takes almost 5 minutes on standard hardware. Trying to compute
a series for p = 157 with a similar accuracy is already infeasible.

§2.4 Heuristics for Iwasawa invariants

From the examples we have seen, it appears that the λ-invariant of a prime is usu-
ally not that large. It is almost always 0, and was shown in [HHO17], it is always
smaller than 10 for all p < 231. Furthermore, for all these primes there is actually no
L-function which has more than a single zero. This suggests that we can always take
n0 = 1 in Theorem 2.2.1. In this section we analyze some heuristics for why this might
be the case.

Let us denote by ip the irregularity index of p, which is defined to be the number of
p-adic L-functions f2, . . . , fp−3 which have a zero. We have remarked that ip = λ for all
primes below 231. Is this what we expect to happen in general?

We will make the following assumption:

The coefficients of each Iwasawa power series are independently, uniformly
distributed modulo p.

We will show that we expect that for all but finitely many primes, λ ≤ ip + 1. There
are two ways in which this inequality can fail to be true. The first is that one of the
L-functions has three zeros, or equivalently, has its first three coefficients divisible by
p. Under our assumption, the probability that for a given series at least one of its first
three coefficients is not divisible by p is 1− p−3. Thus, the probability that this holds
for all (p−3)/2 series is (1−p−3)(p−3)/2. Consequently, we have with probability 1− (1−
p−3)(p−3)/2 that some series has its first three coefficients divisible by p. Because

1− (1− p−3)(p−3)/2 ≤
p − 3

2
p−3 =O(p−2),

the sum of these probabilities over all p converges. This implies (for instance, via
the Borel-Cantelli lemma from probability theory) that with probability 1, it happens
only finitely often that some L-function has three zeros.

The second way in which it can happen that λ > ip+1 is if at least two series have their
first two coefficients divisible by p. Using the same reasoning as above, we have a
probability of (1−p−2)(p−3)/2 that no power series has its first two coefficients divisible
by p. Similarly, the probability of exactly one series having this property is(

(p − 3)/2
1

)(
1− p−2

)(p−3)/2−1
p−2.
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Thus the probability that at least two power series have their first two coefficients
divisible by p comes down to

1−
(
(1− p−2)(p−3)/2 +

(
(p − 3)/2

1

)(
1− p−2

)(p−3)/2−1
p−2

)
=O(p−2).

Thus we should also expect this to only happen finitely often. It should therefore
hold that λ ≤ ip + 1 for almost all p. In particular, we see that most of the time, an
L-function has at most 1 zero. If it does happen to have 2 zeros, then it is most likely
the only L-function for that prime to have multiple zeros.

§2.5 Towards the Main Conjecture

Looking at the proof of Theorem 2.1.2, we see that the λ-invariant is precisely the
number of zeros of a generator of the characteristic ideal ch(Y∞). On the other hand,
Theorem 2.2.1 tells us it is the number of zeros of the product f =

∏
i even fi of the

p-adic L-functions. This begs the question: is this product perhaps a generator for the
characteristic ideal of Y∞?

First note that the λ from Theorem 2.1.2 is different from the one in 2.2.1. The first
has to do with the class numbers hn, while the latter contributes only to the relative
class number h−n. Thus the above conjecture on the characteristic ideal is certainly
stronger than the Kummer–Vandiver conjecture that ordp hn = ordp h−n. It seems that
we cannot reasonably hope to answer our question. We could of course assume the
Kummer–Vandiver conjecture (and we even know that is true for all p < 231) and see
if that leads to a proof, but we can actually refine our question on the characteristic
ideal in a way that it is independent from Kummer–Vandiver.

Let Gn = Gal(Fn/Q), G+
n = Gal(F+

n /Q) and similarly define G = Gal(F∞/Q) � Γ × G0
and G+ = Gal(F+

∞/Q) � Γ × G+
0 . Note that our action of Γ on Y∞ extends in an ob-

vious way to an action of G. We may identify G0 with (Z/pZ)×, in which case every
character of G0 is given by a power of the Teichmüller character ω. Recall that we
have idempotents ei = 1

p−1
∑
a∈G0

ωi(a)[a−1] ∈ Zp[G0], which allow us to decompose
Y∞ =

⊕
i eiY∞. Let e+ =

∑
i even ei and e− = 1− e+. Then in fact e+Y∞ is naturally iso-

morphic to Y +
∞ = Gal(L+

∞/F
+
∞). It follows that e+Yn has order ordp h+

n , and hence e−Y∞
has order ordp h−n.

Thus we can now ask, is the characteristic ideal of e−Y∞ generated by the product of
the L-functions? If the Kummer–Vandiver conjecture is true, we have e+Y∞ = 0, and
this question therefore reduces to the previous one. But we can try to be even more
precise. We still have a decomposition e−Y∞ =

⊕
i odd eiY∞, and so we could even

ask if the characteristic ideal of eiY∞ is generated by some individual L-function. It
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cannot of course be generated by fi , since this power series is identically 0 for i odd.
The correct answer turns out to be the following:

Theorem 2.5.1. For i . 1 mod p − 1 odd, we have that

ch(eiY∞) = fp−i
( 1 + p

1 + T
− 1

)
Λ.

This is known as the Main Conjecture of Iwasawa theory (even though it is a theorem
nowadays, the name has stuck). It was first proven by Mazur and Wiles [MW84] using
modular forms. Later a simpler proof was found by Karl Rubin [Lan90, Appendix]
using what are now known as Euler systems. The rest of this thesis will be dedicated
to studying this proof.

We first mention that the version of the Main Conjecture mentioned here is slightly
different from the version that is usually encountered, which is also the version we
will prove. Let Mn be the maximal abelian p-extension of Fn that is unramified away
from p, and let Xn = Gal(Mn/Fn). Define M∞ and X∞ analogously. In the same way as
Y∞, X∞ is Λ(G)-module, which is in fact finitely generated. Furthermore, if V is any
Λ(G)-module, let V ′ denote the Λ(G)-module with the same underlying group, but
where the action of G is now defined as g · v := κ(g)g−1v, where the latter expression
is taken to mean the original action of G on V . Iwasawa [Iwa73] showed that for each
even i . 0 mod p − 1, the Λ-module eiX∞ is pseudo-isomorphic to ep−iY ′∞. On the
level of characteristic ideals it is seen that this implies that the Main Conjecture can
be equivalently stated as follows:

Theorem 2.5.2. For i . 0 mod p − 1 even, we have that

ch(eiX∞) = fiΛ.
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3 Local units and power series

Since the Main Conjecture concerns certain modules over the Iwasawa algebra Λ =
ZpJT K, it makes sense to start with a more thorough study of this ring itself. We do this
by introducing two important operations: the norm and the logarithmic derivative.
We start by studying the norm map, and use it to prove a theorem of Coleman, which
relates certain power series in Λ to units in completions of cyclotomic fields. After
this, we turn to the logarithmic derivative, which gives us a way to relate the norm
map to the trace map from Chapter 1. As a result we will be able to derive multiple
exact sequences giving us insight into the structure of the Iwasawa algebra.

The presentation of this material is heavily inspired by [CS06, Chapter 2], though we
have tried to be more clear and give simpler proofs in a number of places.

§3.1 The norm map

Our goal in this section if to prove the following proposition, which asserts the exis-
tence of a multiplicative analogue of the trace map ψ. Recall that the Frobenius map
ϕ : Λ→Λ was defined by ϕ(f ) = f ((1 + T )p − 1).

Proposition 3.1.1. There exists a unique multiplicative mapN : Λ→Λ such that

(ϕ ◦N )(f ) =
∏
ηp=1

f ((1 + T )η − 1)

Proof. Uniqueness follows from injectivity of ϕ. For existence, we first show that a
power series f is in the image of ϕ if and only if it satisfies f ((1+T )η−1) = f (T ) for all
η ∈ µp. Indeed, suppose f has this property. Then f (η −1) = f (0) for all η ∈ µp, and by
the Weierstrass preparation theorem, f (T )− f (0) must be divisible by

∏
ηp=1(T − η) =

ϕ(T ). If we write f (T ) − f (0) = ϕ(T )f1(T ), we see that f1 also has the property that
f1((1 + T )η − 1) = f1(T ). Thus we may write f1(T )− f1(0) = ϕ(T )f2(T ). Continuing this
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indefinitely, we obtain a sequence α1,α2, . . . such that f (T )−
∑n
k=0αkϕ(T )k ∈ ϕ(T )n+1Λ

(where α0 = f (0),α1 = f1(0), . . . ). Since ϕ(T ) ∈ (p,T ), we may take n→∞ to obtain that
f (T ) = ϕ(

∑
k≥0αkT

k).

Now, for any f ∈Λ, the power series h(T ) =
∏
ηp=1 f ((1+T )η−1) satisfies the hypothesis

that h((1+T )η−1) = h(T ) for all η, so it lies in the image of ϕ. Therefore we may define

N (f ) := ϕ−1

∏
ηp=1

f ((1 + T )η − 1)

 ,
which satisfies the desired relation.

Note the similarity of this result with Proposition 1.2.1. Being the multiplicative ana-
logue of the trace map, it is aptly named the norm map. The next proposition tells us
that the procedure of iterating the norm map enjoys some nice convergence proper-
ties.

Proposition 3.1.2. The norm map has the following properties:

1. If f ∈Λ×, we haveN (f ) ≡ f mod pΛ.

2. If f ≡ 1 mod pkΛ, thenN (f ) ≡ 1 mod pk+1Λ.

3. If f ∈Λ×, k2 ≥ k1 ≥ 0, thenN k2(f ) ≡N k1(f ) mod pk1+1Λ.

In particular, point 3 implies the sequence N n(f ) is Cauchy, and hence convergent.
To prove the proposition, we need a lemma.

Lemma 3.1.3. Let f ∈Λ. If ϕ(f ) ≡ 1 mod pkΛ, then f ≡ 1 mod pkΛ.

Proof. Note that ϕ(T ) ≡ T p mod pΛ, and therefore ϕ(h) ≡ h(T p) mod pΛ for h ∈Λ. In
particular, p | h if and only if p | ϕ(h).

Now suppose f ∈ Λ is such that ϕ(f ) ≡ 1 mod pkΛ. Write f − 1 = pmh, with h ∈ Λ,
p ∤ h. We wish to show that m ≥ k. We have that ϕ(f )− 1 = pmϕ(h), and by the above,
p ∤ ϕ(h). Therefore m ≥ k, as desired.

Proof of Proposition 3.1.2. Denote by p0 the maximal ideal of Zp[µp]. Suppose that
f ∈ Λ× satisfies f ≡ 1 mod pkΛ. Since for η ∈ µp we have (1 + T )η − 1 ≡ T mod p0Λ,
we find that f ((1 + T )η − 1) ≡ f (T ) mod p0p

kΛ. Hence, ϕ(N (f )) ≡ f (T )p mod p0p
kΛ.

Because ϕ(N (f ))− f (T )p ∈Λ, this is in fact a congruence mod Λ∩ p0p
kΛ = pk+1Λ.

Taking k = 0, we see that any f ∈ Λ× satisfies ϕ(N (f )) ≡ f (T )p ≡ ϕ(f ) mod pΛ. Ap-
plying Lemma 3.1.3 to N (f )/f then yields that N (f ) ≡ f mod pΛ. If k ≥ 1, then
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any f ≡ 1 mod pkΛ satisfies ϕ(N (f )) ≡ f (T )p ≡ 1 mod pk+1Λ, and again Lemma 3.1.3
yields thatN (f ) ≡ 1 mod pk+1Λ. This takes care of the first two assertions.

Finally, the first part shows that N k2−k1(f )/f ≡ 1 mod pΛ for f ∈ Λ×. The last part
then follows from the second upon applyingN k1 to both sides.

§3.2 Coleman’s interpolating power series

Denote by Un the unit group of the ring of integers of Kn = Qp(µpn+1). Let us fix a
system {ηn}n where ηn ∈ Kn is a primitive pn+1-th root of unity, with the property that
η
p
n+1 = ηn. Also write πn = ηn − 1, which is a uniformizer for Kn.

Because Kn is totally ramified over Qp, we can write any element in its ring of integers
as a power series in πn with coefficients in {1, · · · ,p − 1}. In particular, we find that for
each n and un ∈Un, there is a power series fn ∈Λ such that fn(πn) = un.

LetU∞ = lim←−−Un, where the limit is with respect to the norm maps. It was the amazing
insight of Coleman [Col79] that if we choose u = (un)n ∈ U∞, then there is a unique
power series f such that f (πn) = un for all n. Our goal in this section is to prove this
theorem.

To see how we might find this power series, let us remark the following: if f ∈ Λ×

satisfiesN (f ) = f , then (f (πn))n ∈U∞. This is because in general, we have

(N f )(πn−1) = (ϕ ◦N )(f )(πn) =
∏
η∈µp

f (ηηn − 1) =NFn/Fn−1
(f (πn)).

Thus to find an interpolating power series for a system of units u ∈ U∞, it seems like
a good idea to consider norm invariant power series. If we denote by (Λ×)N=1 the set
of f ∈Λ× withN (f ) = f , we will prove the following theorem:

Theorem 3.2.1. For u = (un)n ∈U∞, there is a unique fu ∈ (Λ×)N=1 such that fu(πn) =
un, and the map u 7→ fu is an isomorphism U∞

∼→ (Λ×)N=1.

Proof. By the Weierstrass preparation theorem, an non-zero integral power series has
only finitely many zeros in Zp, from which the uniqueness follows at once.

Let u = (un)n ∈ U∞. Choose a power series fn ∈ Λ with fn(πn) = un. Consider the
sequence gm =Nm(f2m). Because Λ is compact, this sequence has a convergent subse-
quence, whose limit we denote by g. We claim that this g is our desired fu .

Recall that for general f ∈Λ× we have that

(N f )(πn−1) =NFn/Fn−1
(f (πn)).
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In particular, un−k = N k(fn)(πn−k) for k ≤ n. Consequently, we find that for m ≥ n,
un = N 2m−n(f2m)(πn). By Proposition 3.1.2, N 2m−n(f2m) ≡ Nm(f2m) mod pm+1Λ. In
particular, un ≡ gm(πn) mod pm+1 and therefore gm(πn)→ un as m→∞. Thus g(πn) =
un.

Because the power series f = N (g) also satisfies f (πn) = un, the uniqueness implies
thatN (g) = g, so g ∈ (Λ×)N=1.

In fact, a little more is true. As before, let us writeG = Gal(F∞/Q) = Gal(K∞/Qp). Then
G acts naturally on U∞. It also acts on Λ by σf = f ((1 + T )κ(σ ) − 1), where κ : G→ Z×p
is the cyclotomic character. Then we can see that the isomorphism U∞→ (Λ×)N=1 is
in fact G-invariant as well.

Example 3.2.2. Of course the Coleman power series for the units (ηn)n is simply 1 +T .
A more interesting example is given by the cyclotomic units

ξn,a =
ηa/2n − η−a/2n

η1/2
n − η−1/2

n

= η(1−a)/2
n

ηan − 1
ηn − 1

,

where a ∈ Z is coprime to p. It is a nice exercise to show that ξa = (ξn,a)n ∈ U∞. Its
Coleman series is

(1 + T )a/2 − (1 + T )−a/2

(1 + T )1/2 − (1 + T )−1/2
= (1 + T )(1−a)/2 (1 + T )a − 1

T
.

The cyclotomic units will be studied in more detail in the next chapter, and play an
important role in the proof of the Main Conjecture.

§3.3 The logarithmic derivative

Given a unit power series f ∈Λ×, define its logarithmic derivative to be

∆(f ) :=
∂f

f
= (1 + T )

f ′(T )
f (T )

.

It’s clear that ∆ : Λ×→Λ is a group homomorphism. Furthermore, the identity

∆ ◦N = ψ ◦∆ (3.1)

is easily verified. Thus ∆ acts as a bridge between the multiplicative norm and ad-
ditive trace map. In particular, we see that ∆((Λ×)N=1) ⊂ Λψ=1, where (Λ×)N=1 as
before denotes the unit power series satisfyingN (f ) = f , and Λψ=1 those power series
satisfying ψ(f ) = f .
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Remark 3.3.1. Let

f = (1 + T )(1−a)/2 (1 + T )a − 1
T

be the Coleman power series of the cyclotomic units ξa. Its logarithmic derivative is
equal to

a− 1
2

+
a

(1 + T )a − 1
− 1
T
,

which we recognize as being (up to a constant term) the power series used to construct
the pseudo-measure ζp in the first chapter. By the above, this power series is equal to
its own trace, from which Lemma 1.4.2 follows immediately.

The rest of this section will be devoted to showing that the inclusion ∆((Λ×)N=1) ⊂
Λψ=1 is in fact an equality.

Proposition 3.3.2. We have that ∆((Λ×)N=1) = Λψ=1.

Before we begin the proof, we need the following auxillary lemma.

Lemma 3.3.3. For n ≥ 1, we have that

ψ
(1 + T
T

ϕ(T )n
)

=
1 + T
T

T n.

Proof. Note that while we defined ∆ only on Λ×, its defining expression of course
makes sense for any non-zero power series (as an element of the field of fractions of
Λ). Applying ∆ to both sides of the equation

ϕ(T ) =
∏
ηp=1

((1 + T )η − 1)

we obtain that

pϕ
(1 + T
T

)
=

∑
ηp=1

η(1 + T )
η(1 + T )− 1

.

Multiplying by 1
pϕ(T )n yields that

ϕ
(1 + T
T

T n
)

= ϕ ◦ψ
(1 + T
T

ϕ(T )n
)
.

Injectivity of ϕ then gives the desired result.

Proof of Proposition 3.3.2. We have already remarked that ∆((Λ×)N=1) ⊂ Λψ=1. The
hard part lies in showing the reverse inclusion. If A ⊂ Λ, we write A for its image
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in FpJT K. The idea will be to first show that ∆((Λ×)N=1) = Λψ=1, and then that this
implies the proposition. The proof proceeds in several steps.

Step 1: (Λ×)N=1 = FpJT K×.

Let f ∈Λ×. Then by the last part of Proposition 3.1.2, the sequence N n(f ) is Cauchy.
It therefore converges to some power series g, which must satisfy N (g) = g (so g ∈
(Λ×)N=1) and g = f (by the first part of the same proposition).

Step 2: FpJT K = ∆(FpJT K×) +
T + 1
T

T pFpJT pK.

Suppose g ∈ FpJT K. Write T
1+T g =

∑
n≥0 anT

n, and define a new power series

h =
∑

(m,p)=1

am
∑
k≥0

Tmp
k
.

Then T
1+T g − h ∈ T

pFpJT pK, so it suffices to show that 1+T
T h ∈ ∆(FpJT K×). We will

inductively construct a sequence αi ∈ Fp such that for all m,

hm :=
1 + T
T

h−
m∑
i=1

∆(1−αiT i) ∈ TmFpJT K.

The case m = 0 is vacuous. Now suppose we have found α1, . . . ,αm−1. Write hm−1 =
1+T
T

∑
k≥mdkT

k . Observe that

∆(1−αiT i) = −1 + T
T

∑
k≥1

iαki T
ik .

From this and the definition of h, it follows that dk = dpk for all k.

Now, if dm = 0, we may take αm = 0. Otherwise, by the previous remark m is not
divisible by p, and we may take αm = −m−1dm.

By construction, hm→ 0 (in the T -adic topology), so we have 1+T
T h =

∑
i≥1∆(1−αiT i).

Thus we see that ∆(
∏
i≥1(1−αiT i)) = T+1

T h.

Step 3: Λψ=1 = ∆(FpJT K×) = ∆((Λ×)N=1).

Let f ∈ Λψ=1. By the previous steps we may write f ≡ ∆(a) + b mod pΛ for some
a ∈ (Λ×)N=1,b ∈ Λ, with b of the form 1+T

T

∑
m≥1dmT

pm. Because ∆ maps (Λ×)N=1 to
Λψ=1, we see that ψ(b) ≡ b mod pΛ. From Lemma 3.3.3 it now follows that

b ≡ ψ(b) ≡ ψ

1 + T
T

ϕ

∑
m≥1

dmT
m


 =

1 + T
T

∑
m≥1

dmT
m mod pΛ.
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Thus dm ≡ 0 mod p, and f ≡ ∆(a) mod pΛ.

Step 4: Λψ=1 = ∆((Λ×)N=1).

Let f0 ∈ Λψ=1. By the previous step, there exists a g1 ∈ (Λ×)N=1 such that ∆(g1) = f0 −
pf1 for some f1 ∈Λ. Since ∆ maps (Λ×)N=1 to Λψ=1, it follows that we must also have
f1 ∈Λψ=1. Hence there exists a g2 ∈ (Λ×)N=1 such that we can write ∆(g2) = f1−pf2 for
some f2 ∈ Λ. We may continue this indefinitely to obtain a sequence of power series
gi ∈ (Λ×)N=1, fi ∈Λ with the property that ∆(gi) = fi−1 − pfi . Define

hn =
n∏
i=1

g
pi−1

i ∈ (Λ×)N=1.

Then ∆(hn) =
∑n
i=1p

i−1∆(gi) = f0 − pnfn, so ∆(hn)→ f0. Hence any limit point h of the
sequence hn satisfies ∆(h) = f0.

§3.4 Some exact sequences

In this section we will construct a number of exact sequences using the maps ϕ,ψ,N
and ∆. We will see that these sequences give us more insight into the process from
Chapter 1 where we constructed the ζ measure. Especially the last sequence will
play in important role in the next chapter in connecting the ζ measure to the units
U∞.

One important step in the construction in Chapter 1 was restricting the measure
µa on Zp to Z×p . Because ψ(µa) = µa, restricting to Z×p was the same as applying
the map 1 − ϕ. Our first exact sequence describes the kernel and cokernel of this
map.

Proposition 3.4.1. There is an exact sequence

0 −→ Zp −→Λψ=1 1−ϕ
−→Λψ=0 −→ Zp −→ 0

where the map Λψ=0→ Zp is evaluation at 0.

Proof. First note that since ψ ◦ϕ = Id, (1 −ϕ) indeed maps Λψ=1 to Λψ=0. Also, we
have ψ(1 + T ) = 0, which shows surjectivity of the last map.

The only remaining non-obvious parts are the exactness at the middle two terms. For
the first, suppose f ∈ Λ is non-constant. Write f = a0 + arT r + . . . with ar , 0. Then
ϕ(f ) = a0 + prarT r + · · · , f , and hence we have exactness at Λψ=1.
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Lastly, we need to check exactness at Λψ=1. It is clear that f (0)−ϕ(f )(0) = 0. Suppose
f ∈ Λψ=0 satisfies f (0) = 0. A straightforward induction shows that ϕn(T ) ∈ (p,T )n,
and hence ϕn(T ) converges to 0. As f is divisible by T , we also get that ϕn(f )→ 0.
Consequently, the series

∑
n≥0ϕ

n(f ) converges to an element h, which satisfiesψ(h) = h
and (1−ϕ)(h) = f .

We now define the so called canonical map.

Lemma 3.4.2. If f ∈Λ×, the expression

L(f ) =
1
p

log
(
f (T )p

ϕ(f )(T )

)
defines an element of Λ, and L(f ) ∈Λψ=0 if f ∈ (Λ×)N=1.

Proof. Here log is defined by its usual power series log(x) =
∑
m≥1(−1)m−1 (x−1)m

m . It is
immediately seen that for h ∈ 1 + pΛ, log(h) converges to an element of pΛ. Because
ϕ(f ) ≡ f (T )p mod pΛ, it follows that L(f ) ∈Λ.

Now suppose f ∈ (Λ×)N=1. This means that

ϕ(f ) =
∏
η∈µp

f (η(1 + T )− 1).

From this it readily follows that

ϕ ◦ψ(L(f )) =
1
p

∑
η∈µp

L(f )(η(1 + T )− 1) = 0.

The canonical map is defined this way precisely to make the following square com-
mute:

(Λ×)N=1 Λψ=0

Λψ=1 Λψ=0

L

∆

1−ϕ

∂

Note that in our original construction of ζp, we started with a power series in Λψ=1

corresponding to a measure µa. We restricted this measure to Z×p (which is the same as
applying 1−ϕ) and divided it by x−1 (which in terms of power series is the same as ap-
plying the inverse of ∂, since multiplication by x corresponds to applying ∂). By now
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we have also seen that our original power series is the logarithmic derivative of an ele-
ment of (Λ×)N=1, so our entire construction in Chapter 1 is essentially an application
of the canonical map. This can be summarized by the following proposition.

Lemma 3.4.3. Suppose f ∈ (Λ×)N=1. If µ is the measure associated to L(f ) under the
Amice transform, then µ is supported in Z×p , and∫

Z×p
xk ·µ(x) = (1− pk−1) · (∂k−1 ◦∆)(f )(0).

Proof. By Lemma 3.4.2 we have ψ(µ) = 0, so that µ is supported in Z×p by Lemma 1.2.2.
Hence ∫

Z×p
xk ·µ(x) =

∫
Zp
xk ·µ(x).

The last integral is exactly ∂kL(f )(0). From the commutative square above and the
additional identity ∂◦ϕ = p(ϕ◦∂), the desired expression for the integral follows.

Example 3.4.4. Let us once and for all hammer home how the canonical map gives us
the measure from Chapter 1. Let

f = (1 + T )(1−a)/2 (1 + T )a − 1
T

.

It is an element of (Λ×)N=1 because it is the Coleman series for the cyclotomic units
ξa. We have seen that its logarithmic derivative is

a− 1
2

+
a

(1 + T )a − 1
− 1
T
.

By the previous lemma, letting µ be the measure associated to L(f ), we have∫
Z×p
xk ·µ(x) = −(1− pk−1)(1− ak)Bk

k
.

We of course already know a measure with these exact moments, namely λa = ([1] −
[a])ζp. Thus by Lemma 1.4.4, we have µ = λa.

The following proposition determines the kernel and cokernel of the canonical map.
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Proposition 3.4.5. Let A = {η(1 + T )a | η ∈ µp−1, a ∈ Zp}. Then we have an exact
sequence

0 −→ A −→ (Λ×)N=1 L−→Λψ=0 −→ Zp −→ 0

where the last map is given by f 7→ (∂f )(0).

Proof. It is easily checked that L maps A to 0. Conversely, if L(f ) = 0, then by injec-
tivity of log we have f (T )p = f ((1 + T )p − 1). Writing f = fu , we then have upn = un−1
and η = f (0) ∈ µp−1. Hence η−1u ∈ lim←−−µpn , so we can write it as (ηan)n for some a ∈ Zp.
Then f = η(1 + T )a ∈ A.

Finally, exactness at Λψ=0 follows from a simple diagram chase in the following com-
mutative diagram,

(Λ×)N=1 Λψ=0 Zp

Λψ=1 Λψ=0 Zp

L

∆

1−ϕ

∂

using that ∂ is injective on Λψ=0, ∆ is surjective (Proposition 3.3.2) and the bottom
row is exact (Proposition 3.4.1).

Let Tp(Gm) = lim←−−µpn ⊂ U∞. As before, we let G = Gal(F∞/Q) = Gal(K∞/Q). Using

the Coleman isomorphism we may identify U∞ with (Λ×)N=1, and via the cyclotomic
character we identity G and Z×p . This way we may view the canonical map as a way of
constructing measures onG from compatible systems of local units.

Corollary 3.4.6. There is an exact sequence of G-modules

0 −→ µp−1 × Tp(Gm) −→U∞ −→Λ(G) −→ Tp(Gm) −→ 0.

Proof. This is simply the sequence in Proposition 3.4.5, where we have identified
(Λ×)N=1 with U∞ using Proposition 3.2.1, and Λψ=0 with Λ(Z×p ) �Λ(G) using Lemma
1.2.2 and the cyclotomic character.
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4 Global and cyclotomic units

In the previous chapter, we saw the relation between local units and measures. Exam-
ple 3.4.4 in particular showed us the connection between the units

ξn,a =
ηa/2n − η−a/2n

η1/2
n − η−1/2

n

= η(1−a)/2
n

ηan − 1
ηn − 1

and the pseudo-measure ζp. In this chapter we explore this connection further, and
use it to prove a theorem of Iwasawa [Iwa64], which describes the characteristic ideal
of a certain Λ-module arising from these local units in terms of p-adic L-functions.
We then use class field theory to relate this module to X∞, thereby getting us closer to
a proof the Main Conjecture.

§4.1 The group of cyclotomic units

Definition 4.1.1. We define the group of cyclotomic units of Fn, denoted Dn, to be
the intersection of O×Fn with the subgroup of F×n generated by{

±ηn,ηan − 1

∣∣∣∣∣∣1 ≤ a ≤ pn+1 − 1
2

}
.

We will also denote by Cn the closure ofDn inside of Kn.

The group of cyclotomic units certainly contains the aforementioned ξn,a. By the
Dirichlet unit theorem, the group of cyclotomic units Dn (as well as its real coun-
terpartD +

n =Dn∩F+
n ) has rank at most p

n(p−1)
2 −1. The following proposition provides

us with an explicit set of of pn(p−1)
2 − 1 many generators for the free part of the group

of cyclotomic units.
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Proposition 4.1.2. The following hold:

1. The group of real cyclotomic unitsD +
n is generated by −1 and

{ξn,a | 1 < a <
pn

2 , (a,p) = 1}.

2. The group of cyclotomic unitsDn is generated by ηn andD +
n .

3. If a generates (Z/pn+1Z)×, then ξn,a generatesD +
n /{±1} as a Z[G+

n ]-module.

Proof. From the fact that for k ≤ n we have Xp
k − 1 =

∏pk−1
j=0 (Xηjp

n+1−k

n − 1), we get that

η
bpk
n − 1 =

pk−1∏
j=0

(ηb+jpn+1−k

n − 1).

This implies that in our original generating set forDn, we may restrict to a coprime to
p.

Now suppose we have an arbitrary cyclotomic unit ξ ∈ Dn. By the above, we may
write

ξ = ±ηdn
∏

(a,p)=1

(ηan − 1)ea ,

where the product runs over all a coprime to p from 1 to pn+1−1
2 . All the factors ηan − 1

have the same p-adic absolute value, while the left hand side has absolute value 1, so
that

∑
ea = 0. Therefore we can write

ξ = ±ηdn
∏

(a,p)=1

(
ηan − 1
ηn − 1

)ea
= ±ηen

∏
(a,p)=1

ξean,a.

Point 1 and 2 now follow upon noting that ξn,a is real, so that ξ ∈ D +
n if and only if

e = 0.

The last point follows by observing that

ξn,ar =
r−1∏
j=0

η
(aj−aj+1)/2
n

ηa
j+1

n − 1

ηa
j

n − 1

and that all the factors in the product are Galois conjugates of ξn,a.
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Remark 4.1.3. It is in fact even true that the group of cyclotomic units has finite index
in the full unit group. In other words, it has maximal rank and the set of generators
provided above are actually a basis for the free part. Explicitly, it can be shown using
the analytic class number formula that

[O×Fn : Dn] = [O×F+
n

: D +
n ] = h+

n .

This equation is one of the key ingredients in connecting the cyclotomic units to the
class group. To get an idea for why it is true, note that the class number formula
for the field F+

n says that the product
∏
L(χ,1) over the non-trivial even characters of

conductor dividing pn+1 is essentially equal to Reg(O×F+
n
)h+
n . Furthermore, we have the

classical formula that L(χ,1) is essentially given by∑
a∈(Z/pn+1Z)×

χ(a)−1 log |1− ηan|.

Some (elementary, though non-trivial) algebraic manipulations show then that the
product

∏
L(χ,1) is exactly equal to the regulator Reg(D +

n ) of the cyclotomic units.
We obtain the formula since the quotient of the regulators of the full unit group and
the cyclotomic units is precisely the index [O×F+

n
: D +

n ]. For details see [Lan90, Chapter
3, Theorem 5.1].

Denote by Un,1 the subgroup of Un consisting of units which are ≡ 1 modulo the
maximal ideal. If H ⊂ Un is any subgroup, we let H1 = H ∩ Un,1. The reason for
restricting to only these units is because Un,1 is a pro-p-group, and so has a natu-
ral action of Zp. Combined with its Galois action, this means that U∞,1 is a Λ(G)-
module.

Corollary 4.1.4. The group C +
∞,1 is a cyclic Λ(G+)-module. It is generated by

ω−1(a)ξa = (ω−1(a)ξn,a)n, where a ∈ Z is a topological generator of Z×p .

Proof. The Coleman power series of ξa is (1+T )(1−a)/2 (1+T )a−1
T , which has constant term

a. Therefore ξn,a ≡ a mod πn, so ω−1(a)ξn,a ∈ U +
n,1. Because Un,1 is a Zp-module and

p − 1 a p-adic unit, we can write

ω−1(a)ξn,a = ((ω−1(a)ξn,a)
p−1)1/(p−1)

with (ω−1(a)ξn,a)p−1 = ξp−1
n,a ∈D +

n . This shows that ω−1(a)ξn,a ∈C +
n,1.

To see that this element generates C +
∞,1, it suffices to show that ω−1(a)ξn,a generates

C +
n,1 as a Zp[G+

n ]-module. Any element of C +
n,1 may be written as ξd , with ξ ∈D +

n,1 and
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d ∈ Zp. By the previous proposition, we may write ξ =
∏
σ∈G+

n
σ (ξn,a)eσ , in which case

ξ =

∏
σ∈G+

n

σ (ω−1(a)ξn,a)
eσ (p−1)


1/(p−1)

∈ Zp[G+
n ]ω−1(a)ξn,a.

§4.2 Iwasawa’s theorem

Recall that any Λ(G)-module M could be decomposed as e+M ⊕ e−M. In particular,
we can write Λ(G) = e+Λ(G)× e−Λ(G). Similarly as in Lemma 1.3.6, we can show that
e+Λ(G) is naturally isomorphic to Λ(G+). The isomorphism G→ Z×p allows us to view
the pseudo-measure ζp as a measure on G. In fact, because all odd moments of ζp
are 0, this means that it actually descends to a pseudo-measure on G+. To remove the
hassle of having only a pseudo-measure instead of a bonafide measure, we introduce
the augmentation ideal.

Definition 4.2.1. The augmentation ideal I(G) of Λ(G) is the closure in Λ(G) of the
regular augmentation ideal {

∑
g∈G ag [g] |

∑
g∈G ag = 0} ⊂ Zp[G]. Equivalently, it is

the inverse limit of the augmentation ideals of Zp[Gn].

We know if K is a cyclic group generated by k, the augmentation ideal of Zp[K] is
generated by [1] − [k]. It readily follows that I(G) is generated by [1] − [σa], where a
topologically generates Z×p and σa satisfies κ(σa) = a. From the definition of a pseudo-
measure, it is now immediate that I(G)ζp is an ideal of Λ(G).

The following theorem of Iwasawa makes very explicit the relation we have been ob-
serving between cyclotomic units and the pseudo-measure ζp.

Theorem 4.2.2. There is a canonical isomorphism of Λ(G+)-modules

U +
∞,1/C

+
∞,1

∼→Λ(G+)/I(G+)ζp.

Proof. Consider the exact sequence

0 −→ µp−1 × Tp(Gm) −→U∞ −→Λ(G) −→ Tp(Gm) −→ 0

from Corollary 3.4.6. Because U∞ = µp−1 ×U∞,1, we also get an exact sequence

0 −→ Tp(Gm) −→U∞,1 −→Λ(G) −→ Tp(Gm) −→ 0.

Multiplying this sequence by the idempotent e+ yields an isomorphismU +
∞,1

∼→Λ(G+).
Thus it now suffices to calculate the image of C +

∞,1, which by Corollary 4.1.4 will be
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generated by the image of u = ω−1(a)ξa. But by Example 3.4.4, this image is λa =
([1]−[σa])+ζp, where ([1]−[σa])+ denotes the image of [1]−[σa] in Λ(G+). As ([1]−[σa])+

generates I(G+), we find that the image is indeed I(G+)ζp.

§4.3 An equivalent statement of the Main Conjecture

Let us denote by Vn the group of global units O×Fn , and by En its closure inside Kn =
Qp(µpn+1). Furthermore, recall that M∞ denoted the maximal abelian p-extension of
F∞ that is unramified away from p, and L∞ its the maximal subextension that is ev-
erywhere unramified over F∞. Just as we related the Galois group of L∞ to the class
groups of the fields Fn, we would like to have a similar description for the Galois
group X∞ = Gal(M∞/F∞). The statement of class field theory in the Appendix is in-
sufficient for this, since that only deals with unramified extensions. However, more
intricate statements of class field theory can relate Galois groups to subgroups of the
idèle class group. In particular, we have the following result for our field M∞.

Lemma 4.3.1. There is an isomorphism

U∞,1/E∞,1
∼→Gal(M∞/L∞)

Proof. By class field theory (see [RW, Proposition 10.5]) we have for all n an exact
sequence 0→ En,1 → Un,1 → Gal(Mn/Ln)→ 0. A compactness argument shows that
the sequence stays exact when passing to the inverse limit.

Theorem 4.3.2. There is an exact sequence

0 −→ E∞,1/C∞,1 −→U∞,1/C∞,1 −→X∞ −→Y∞ −→ 0.

Proof. Follows immediately from the preceding lemma.

Let i . 0 mod p − 1 be even. By multiplying the above sequence by ei and taking
characteristic ideals, we find that

ch(ei(E∞,1/C∞,1))ch(eiX∞) = ch(ei(U∞,1/C∞,1))ch(eiY∞).

The proofs of Proposition 1.5.3 and Theorem 1.5.4 shows that under the identification
of eiΛ(G) with Λ = ZpJT K, the ideal eiI(G)ζp corresponds to the ideal of Λ generated
by the Iwasawa power series fi . In particular, combining this with Iwasawa’s theorem,
we have that

ch(ei(U∞,1/C∞,1)) = fiΛ.
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The Main Conjecture states that this is also the characteristic ideal of eiX∞. Thus to
show the Main Conjecture, it actually suffices to show that

ch(ei(E∞,1/C∞,1)) = ch(eiY∞). (4.1)

In fact, this already allows to prove the Main Conjecture for all practical cases.

Corollary 4.3.3. If p is Vandiver prime, the Main Conjecture holds.

Proof. We will show that E +
∞,1/C

+
∞,1 = Y +

∞ = 0. That Y +
∞ = 0 follows from Remark

2.1.5. Next, notice that by tensoring the exact sequence

0→ V +
n,1→ V

+
n → F×p

with Zp we obtain that V +
n,1 ⊗Z Zp = V +

n ⊗Z Zp. The same holds forD +
n . Therefore, we

find that the Sylow p-subgroup of V +
n /D

+
n is

(V +
n /D

+
n )⊗Z Zp � (V +

n ⊗Z Zp)/(D +
n ⊗Z Zp)

� (V +
n,1 ⊗Z Zp)/(D +

n,1 ⊗Z Zp).

Remark 4.1.3 states that h+
n = [V +

n : D +
n ], so the Sylow p-subgroup of V +

n /D
+
n is trivial.

HenceD +
n,1 ⊗Z Zp = V +

n,1 ⊗Z Zp. From the commutative diagram

D +
n,1 ⊗Z Zp V +

n,1 ⊗Z Zp

C +
n,1 E +

n,1

where the vertical arrows are surjective, we find that the bottom arrow is surjective as
well, showing that E +

n,1 =C +
n,1.

Remark 4.3.4. A theorem of Brumer [Bru67] says that V +
n,1 ⊗Z Zp and E +

n,1 in fact have
the same Zp-rank. Consequently, the vertical maps are isomorphisms, and we see that
we actually always have that #(E +

n,1/C
+
n,1) = #Y +

n . This is of course still a much weaker
statement than (4.1), but nevertheless it will turn out to be relevant for the proof.

The equivalent form (4.1) is the one we will prove in Chapter 6. We make clear the
strategy for this in the next chapter.

We end with a final lemma regarding the characteristic ideal of ei(E∞,1/C∞,1).
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Lemma 4.3.5. Suppose that i . 0 is even, and let h ∈Λ(Γ ) be a generator for the ideal
ch(ei(E∞,1/C∞,1)). Then for all n, there is a positive integer C such that for all c > C,
there is a map θ : eiEn,1→ Zp[Γ /Γn] such that the image of eiC∞,1 is pchZp[Γ /Γn].

Proof. Since the proof is rather technical, we omit some details, which can be found in
[Lan90, Appendix, Corollary 6.4]. The idea is that since eiU∞,1 is a torsion-free Λ(Γ )-
module of rank one (as was shown in the proof of Theorem 4.2.2), the same holds
true for eiE∞,1. Thus there is an injective map θ′ : eiE∞,1→Λ(Γ ) with finite cokernel.
Because it induces a pseudo-isomorphism ei(E∞,1/C∞,1) → Λ(Γ )/θ′(C∞,1), we must
have that

θ′(C∞,1) = ch(ei(E∞,1/C∞,1)).

We can tensor with Λ(Γ )/(γp
n

0 −1) = Zp[Γ /Γn] to obtain a map θn : (eiE∞,1)Γn → Zp[Γ /Γn].
However, the module (eiE∞,1)Γn is not isomorphic to eiEn,1 (which was true for the
module Y∞ for instance). Instead, we only have a map πn : (eiE∞,1)Γn → eiEn,1 with
kerπn ⊂ kerθn, and cokerπn is finite with order bounded independently of n. So if we
choose c such that pc annihilates this cokernel, we can let θ(u) = θ′′(π−1

n (pcu)). This
has the correct image because it is true that (eiC∞,1)Γn = eiCn,1.
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5 Euler systems

In this chapter we develop the theory of Euler systems in the context of the Main Con-
jecture. In their most basic form, they were introduced by Thaine [Tha88], who used
them to construct annihilators of class groups of cyclotomic fields. Kolyvagin [Kol90]
expanded the theory, using it to prove more detailed statements about the structure
of the class group. Not long after, Rubin [Lan90, Appendix] managed to find a much
simpler proof of the Main Conjecture using Euler systems.

For us, an Euler system is a collection of elements of certain extensions of a field F,
that are norm-compatible in a sense to be defined. Factoring these elements allows us
to obtain relations in the class group of the field, which will help us understand the
characteristic ideal of the class group and ultimately lead us to a proof of the Main
Conjecture.

Throughout this chapter, we utilize some basic results regarding group cohomology.
All the necessary definitions and theorems can be found in the Appendix.

§5.1 Cyclotomic Euler systems

For the rest of this chapter, let m be a power of p and fix one of the fields F = Q(µm)+.
Let t be a power of p larger thanm. Denote by St the set of positive squarefree integers
which are divisible only by primes q ≡ 1 mod t. Note that this condition implies that
q splits completely in F.

For any r ∈ St and q a prime not dividing r, denote by Frq ∈Gal(F(µr )/Q) the Frobenius
of q, characterized by Frq(ζr ) = ζqr .

Definition 5.1.1. An Euler system is a collection {ξr}r∈St with ξr ∈ F(µr )× satisfying
the following properties:

1. ξr is an integral unit of F(µr ) if r > 1;
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2. NF(µr )/F(µr/q)(ξr ) = (Frq − 1)ξr/q whenever q | r;

3. ξr ≡ ξr/q modulo any prime above q | r.

Henceforth we will refer to these properties as ES1, ES2 and ES3.

For any prime q ∈ St, fix a primitive q-th root of unity ζq, and for r ∈ St, let ζr =
∏
q|r ζq.

Also fix a primitive m-th root of unity ζm. Our most important example of an Euler
system is given by

ξr =
m−1∏
j=0

(ζjmζr − 1)nj (ζ−jm ζr − 1)nj ,

with nj ≥ 0. To see that ES1 is satisfied, observe first that ζjmζr − 1 ∈ Z[ζm,ζr ]×, which
follows from the fact that ∏

0<k<l
(k,l)=1

(1− ζkl ) = 1

whenever l is not a prime power. Now simply note that

(ζjmζr − 1)(ζ−jm ζr − 1) =NQ(ζm,ζr )/F(µr )(ζ
j
mζr − 1).

For ES2, note that the conjugates of ζq over F(µr/q) are given by ηζq with η a q-th root
of unity different from ζ−1

q , and that
∏
ηq=1(Xη − 1) = Xq − 1. Lastly, ES3 is clear, since

ζq ≡ 1 modulo any prime above q.

The reason for the importance of this Euler system is as follows. Let a,b,c ∈ Z≥1 denote
respectively a generator of (Z/mZ)×, an inverse of 2 mod t, and an inverse of −2 mod t.
Then taking

ξr = (ζamζr − 1)b(ζ−am ζr − 1)b(ζmζr − 1)c(ζ−1
m ζr − 1)c,

we see that

ξ1 ≡
(

(ζam − 1)(ζ−am − 1)

(ζm − 1)(ζ−1
m − 1)

)1/2

= ζ(1−a)/2
m

ζam − 1
ζm − 1

mod F×t .

This last unit is of course the one occurring in Corollary 4.1.4.

As mentioned previously, the Euler systems are used to give relations in the class
group of F. Presently it is not at all clear how this will work. After all, the elements
ξr are units, so they do not generate interesting ideals. Furthermore, they are not
even elements of the field we are interested in, which is F. The rest of this section is
devoted to using the Euler system to construct elements of F which do have interesting
factorizations.

Let r ∈ St, and define

Nr =
∑

σ∈Gal(F(µr )/F)

σ ∈ Z[Gal(F(µr )/F)].
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Note that there is a natural isomorphism Gal(F(µr )/F) =
∏
q|r Gal(F(µq)/F), which al-

lows us to identify Nr and
∏
q|r Nq. Furthermore, because we can also identify Gal(F(µq)/F)

and Gal(F(µr )/F(µr/q)) for q | r, we can write NF(µr )/F(µr/q)(x) for x ∈ F(µr ) as Nqx.

Each Gal(F(µq)/F) for q prime is cyclic. For each of these groups, choose a generator
σq. Define another operator

Dq =
q−1∑
i=1

iσ iq ∈ Z[Gal(F(µq)/F)].

Note that this depends on the choice of generator. For arbitrary r ∈ St, let Dr =
∏
q|r Dq.

The identity
(σq − 1)Dq = q − 1−Nq (5.1)

is straightforward to verify. Even though in what follows we consider the multiplica-
tive groups F(µr )×, we will write the action of Galois additively.

Lemma 5.1.2. For r ∈ St, we have Drξr ∈ (F(µr )×/F(µr )×t)Gal(F(µr )/F).

Proof. We will use induction on the number of prime factors of r. If r = 1 there is
nothing to prove. Otherwise, suppose q | r. Then

(σq − 1)Drξr = (q − 1−Nq)Dr/qξr ≡ (1−Frq)Dr/qξr/q mod F(µr )
×t .

By the induction hypothesis, the element Dr/qξr/q is fixed by Frq modulo F(µr/q)×t, and
it follows that σqDrξr ≡ Drξr mod F(µr )×t. Since Gal(F(µr )/F) is generated by the σq
for q | r, the lemma follows.

Lemma 5.1.3. The natural map

F×/F×t→ (F(µr )
×/F(µr )

×t)Gal(F(µr )/F)

is an isomorphism.

Proof. First note that µt ∩ F× = 1, and as r is coprime to t, a ramification argument
shows that µt ∩F(µr )× = 1 as well. Hence we have an exact sequence

0 −→ F(µr )
× a7→a

t

−→ F(µr )
× −→ F(µr )

×/F(µr )
×t −→ 0,

and taking Gal(F(µr )/F) invariants we obtain an exact sequence

0 −→ F× −→ F× −→ (F(µr )
×/F(µr )

×t)Gal(F(µr )/F) −→H1(F(µr )/F).

But H1(F(µr )/F) = 0 by Hilbert 90, yielding the result.
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By the previous lemmas, we see that there exists a unique element κr ∈ F×/F×t such
that κr ≡Drξr mod F(µr )×t. It is these elements that we will factor to gain knowledge
of the class group of F.

Remark 5.1.4. Recall that the map

(F(µr )
×/F(µr )

×t)Gal(F(µr )/F)→H1(F(µr )/F)

is defined as follows: let c ∈ (F(µr )×/F(µr )×t)Gal(F(µr )/F). Choose a representative b ∈
F(µr )×. Then for all σ ∈ Gal(F(µr )/F), the element (σ − 1)b = σ (b)/b becomes trivial in
F(µr )×/F(µr )×t, so that there is a unique aσ ∈ F(µr )× with atσ = (σ − 1)b. Then our map
sends c to the crossed homomorphism Gal(F(µr )/F)→ F× given by σ 7→ aσ .

Applying this to c = Drξr and using Hilbert 90, we see that there is a β ∈ F(µr )× with

(σ − 1)β = ((σ − 1)Drξr )
1/t

and we can then take
κr = Drξr /β

t .

This explicit choice of κr will be useful later.

§5.2 The factorization theorem

In this section we prove the ‘factorization theorem’, which tells us how to factor the
elements κr constructed in the previous section.

We again introduce some notation. For q a rational prime, let

Iq =
⊕
q|q

Zq

be the free abelian group on the primes of OF lying above q. Also write

I =
⊕
q

Iq

for the free abelian group on all primes, which is of course simply the group of non-
zero fractional ideals of OF , written additively. If y ∈ F, we let (y) ∈ I be the principal
ideal generated by y (i.e. (y) =

∑
qordq(y)q), and (y)q ∈ Iq denotes the projection to Iq.

Additionally, we denote by [y] ∈ I /tI and [y]q ∈ Iq/tIq the projections mod t.
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Lemma 5.2.1. Suppose q ≡ 1 mod t is prime. There is natural map of Gal(F/Q)-
modules

ℓq : (OF/qOF)×→Iq/tIq
making the following diagram commute:

F(µq)×

(OF/qOF)× Iq/tIq

x 7→(1−σq)x x 7→[Nqx]q

ℓq

Furthermore, for q ⊂ F a prime above q, we have ordq ℓq(x) = 0 if and only if x is a
t-th power modulo q.

The map on the left should be interpreted as follows: let q ⊂ F be a prime above q,
which is totally ramified in F(µq). Let Q ⊂ F(µq) be the unique prime above q. Then
for x ∈ F(µr )×, ordQ((1− σq)x) = 0, so (1− σq)x is a unit in the localization of OF(µq) at
Q. It can therefore be interpreted as an element of (OF(µq)/Q)×. Doing this for all Q
yields an element of ∏

Q|q
(OF(µq)/Q)× =

∏
q|q

(OF/q)× = (OF/qOF)×.

The first equality here is because every q | q totally ramifies in F(µq), and the second
because q is totally split in F, since q ≡ 1 mod t.

Proof. Let q ⊂ F be a prime above q, and let πq ∈ F(µq) be a uniformizer for the unique
prime of F(µq) above q. Because q totally, tamely ramifies in F(µq), ramification theory
tells us that γq = (1−σq)πq is a generator for (OF(µq)/Q)× = (OF/q)× independent of the
choice of uniformizer.

Any element x of
∏

q|q(OF/q)× = (OF/qOF)× can now be written as x = (γ
nq
q )q. We then

define ℓq(x) =
∑

q|q nqq. This map satisfies all the desired properties.

Because the kernel of ℓq contains the t-th powers, we can make sense of ℓq(x) for all
x ∈ F×/F×t with [x]q = 0.

Theorem 5.2.2. Suppose r ∈ St, and q is a rational prime. Then [κr ]q = 0 if q ∤ r, and
[κr ]q = ℓq(κr/q) otherwise.
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Proof. If q ∤ r, then any prime q | q of F is unramified in F(µr ). That [κr ]q = 0 now
follows immediately from the fact that κr ≡Drξr mod F(µr )×t, and that Drξr is a unit
of F(µr ).

Now suppose q | r. By Remark 5.1.4, we may represent κr as κr = Drξr /β
t
r , where

βr ∈ F(µr )× satisfies
(σ − 1)βr = ((σ − 1)Drξr )

1/t

for all σ ∈ Gal(F(µr )/F). Define βr/q similarly. By the above, we may take βr/q to be
coprime to q.

Let q ⊂ F be a prime above q, and Q ⊂ F(µr ) a prime above q. As the ramification index
of q in F(µr ) is q − 1, we have

ordQβr =
−1
t

ordQκr = −
q − 1
t

ordqκr ,

so that

[κr ]q =
∑
q|q

(
t

1− q
ordQβr

)
q mod tIq. (5.2)

Let πq ∈ F(µq) be a uniformizer for the unique prime above q. Because F(µr )/F(µq) is
unramified at primes above q, this is also a uniformizer at Q. Writing

γ =
∏
q|q
π

ordqκr
q ,

we have that βrγ (q−1)/t is a unit at all primes above q and [κr ]q = [Nqγ]q. It follows
that modulo any prime above q, we have

(1− σq)γ (q−1)/t ≡ (σq − 1)βr = ((q − 1−Nq)Dr/qξr )
1/t

=
Dr/qξ

(q−1)/t
r

((Frq − 1)Dr/qξr )1/t
≡

Dr/qξ
(q−1)/t
r/q

(Frq − 1)βr/q
≡

Dr/qξr/q

βtr/q

(q−1)/t

= κ(q−1)/t
r/q .

Here we used (5.1), ES2, and ES3. The commutative diagram in Lemma 5.2.1 shows
that q−1

t ℓq(κr/q) = q−1
t [κr ]q. Writing ℓq(κr/q) =

∑
q|q aqq, we find from (5.2) that q−1

t aq =
−ordQβr , and hence

[κr ]q =
∑
q|q

(
t

1− q
ordQβr

)
q = ℓq(κr/q).
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§5.3 Rubin’s density theorem

Theorem 5.2.2 tells us about the factorization of κr above certain primes q in terms of
the map ℓq. The final ingredient in the our study of Euler systems, will be a theorem
that tells us how to find primes q for which the values ℓq(κr/q) are ‘easy’ to calcu-
late.

Theorem 5.3.1. Suppose we are given a class c ∈ Cl(F) of p-power order, a finite
Gal(F/Q)-submodule W ⊂ F×/F×t and a Gal(F/Q)-homomorphism

Ψ : W → (Z/tZ)[Gal(F/Q)].

Then there are infinitely many primes q ∈ c such that

1. q ≡ 1 mod t, where q is the rational prime below q;

2. [w]q = 0 for all w ∈W ;

3. there exists u ∈ (Z/tZ)× such that ℓq(w) = uΨ (w)q for all w ∈W .

Proof. Let L be the maximal abelian unramified p-extension of F, and let F′ = F(µt). By
class field theory, the Artin map gives an isomorphism between the Sylow p-subgroup
of the class group and Gal(L/F). The fields we will consider are summed up in the
diagram below.

LF′(W 1/t)

F′(W 1/t)

L F′

F

Q

First, note that L∩ F′ = F, because F′/F is totally ramified at the unique prime above
p. The proof will now proceed in several steps.

Step 1: the natural map F×/F×t→ (F′)×/(F′)×t is injective.
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We can identify F×/F×t withH1(Gal(F/F),µt), and it follows from the inflation-restriction
exact sequence that

ker(F×/F×t→ (F′)×/(F′)×t) = ker(H1(Gal(F/F),µt)→H1(Gal(F/F′),µt))

=H1(Gal(F′/F),µt).

Because Gal(F′/F) is cyclic and µt finite, we have

#H1(Gal(F′/F),µt) = #(µt ∩F) = 1.

In particular, note that this allows us to interpret W as a subgroup of (F′)×/(F′)×t.

Step 2: L∩F′(W 1/t) = F.

Kummer theory, combined with step 1, gives an isomorphism of Gal(Q/Q)-modules
Gal(F′(W 1/t)/F′)→ Hom(W,µt). As complex conjugation acts trivially on W and by
−1 on µt, it acts by −1 on Gal(F′(W 1/t)/F′). Complex conjugation furthermore acts
trivially on Gal(L/F) � Gal(LF′/F′), since F is totally real and Gal(L/F) is abelian. It
follows that complex conjugation must act both trivially and by −1 on Gal(F′(W 1/t)∩
LF′/F′), and therefore F′(W 1/t) ∩ LF′ = F′. Intersecting this with L then yields that
F′(W 1/t)∩L = F.

Step 3: constructing the primes.

Fix a primitive t-th root of unity ζt, and define a Z/tZ-linear map

ι : (Z/tZ)[Gal(F/Q)]→ µt

by ι(IdF) = ζt and ι(g) = 1 for IdF , g ∈ Gal(F/Q). Let γ ∈ Gal(F′(W 1/t)/F′) be the
element corresponding to ι ◦Ψ ∈ Hom(W,µt) via the Kummer isomorphism. By def-
inition, this means that ι ◦ Ψ (w) = γ( t

√
w)/ t
√
w. Also let δ ∈ Gal(L/F) be the element

corresponding to c ∈ Cl(F) via the Artin map.

By step 2, there is a unique σ ∈ Gal(LF′(W 1/t)/F) such that σ |F′(W 1/t) = γ and σ |L =
δ. The Chebotarev density theorem now guarantees the existence of infinitely many
primes q ⊂ F which are unramified in LF′(W 1/t), and whose Frobenius conjugacy class
in Gal(LF′(W 1/t)/F) is the conjugacy class of σ . We will show that all such q satisfy the
desired properties.

Step 4: proving the desired properties.

That q ∈ c is clear from the construction. If q denotes the rational prime below q, then
q is totally split in F′ because σ |F′ = IdF′ . From this we gather that q ≡ 1 mod t. The
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assertion that [w]q = 0 for all w ∈W is equally clear, following from the fact that q is
unramified in F′(W 1/t).

It remains only to show the final assertion. Lemma 5.2.1 says that ordq(ℓq(w)) = 0 if
and only if w is a t-th power modulo q. On the other hand,

ordq(Ψ (w)q) = 0 ⇐⇒ ι ◦Ψ (w) = 1 ⇐⇒
γ( t
√
w)

t
√
w

= 1.

But γ = σ |F′(W 1/t) is a Frobenius for q, so that this last statement is equivalent to say-
ing that w is a t-th power modulo q. This means that the maps W → Z/tZ given by
w 7→ ordq(ℓq(w)) and w 7→ ordq(Ψ (w)q) have the same kernel and image, and hence
differ by a unit u ∈ (Z/tZ)×. Then the image of w 7→ ℓq(w) − uΨ (w)q is contained
in

⊕
q′,q(Z/tZ)q′, which has no non-zero Gal(F/Q)-submodules. We conclude that

ℓq(w) = uΨ (w)q for all w ∈W , as desired.
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6 Proof of the Main Conjecture

In this final chapter, we finish the proof of the Main Conjecture. There are plenty
books which do this in detail, such as Rubin’s original account [Lan90, Appendix] and
[CS06]. However, in a fully detailed proof it can be easy to get overwhelmed by all the
technicalities, and as a result miss the forest for the trees. Instead, we will focus on
the main ideas, namely how the theory of Euler systems gives us information about
the class group that allows us to conclude the theorem.

From now on, fix i . 0 mod p − 1 even. Recall that we have reduced the Main Conjec-
ture to the statement that

ch(eiY∞) = ch(ei(E∞,1/C∞,1)).

Let us start with a quick outline of the proof of this statement. Let ξr be the Euler
system discussed at the beginning of the previous chapter, which was given by

ξr = (ζamζr − 1)b(ζ−am ζr − 1)b(ζmζr − 1)c(ζ−1
m ζr − 1)c,

where a,b,c ∈ Z≥1 denote respectively a generator of Z×p , an inverse of 2 mod t, and an
inverse of −2 mod t. In particular, we have that

ξ1 ≡ ζ
(1−a)/2
m

ζam − 1
ζm − 1

mod F×t .

The fact that this is precisely the unit that generates C∞,1 allows us to relate the Euler
system to the characteristic ideal ch(ei(E∞,1/C∞,1)). Next up, by finding an appro-
priate map Ψ , we use Theorem 5.3.1 to find a prime q1 for which we can calculate
ℓq(κ1) in terms of Ψ . The factorization theorem 5.2.2 then tells us about how κq1

fac-
tors, namely via [κq1

]q1
= ℓq1

(κ1). We now pick another Ψ , and we apply the same
results to find a prime q2 for which we can calculate ℓq2

(κq1
) in terms of Ψ , and fac-

tor [κq1q2
]q2

= ℓq2
(κq1

). Repeating this enough times, we obtain information about the
class group, and through κ1 we relate the class group back to E∞,1/C∞,1.
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Theorem 6.0.1. For all even i . 0, we have that

ch(eiY∞) = ch(ei(E∞,1/C∞,1)).

Proof. There exists an injective map

k⊕
j=1

Λ(Γ )/gjΛ(Γ )→ eiY∞

with finite cokernel. The characteristic ideal of Y∞ is then generated by g(i) =
∏k
j=1 gj .

Also, let h(i) be a generator of ch(ei(E∞,1/C∞,1)).

Fix now a positive integer n, and write F = F+
n . From now on we will think of Yn as

the Sylow p-subgroup of the class group of Fn. Let c1, . . . ,ck ,ck+1 ∈ eiYn be ‘specially
chosen’ ideal classes. The idea is to let cj be the image in eiYn of 1 ∈ Λ(Γ )/gjΛ(Γ )
under the above map, and ck+1 can be any class. Furthermore, let C be as in Lemma
4.3.5, and choose c > C such that pc annihilates the cokernel of the above map. Let
θ : eiEn,1 → Zp[Γ /Γn] be the corresponding map from Lemma 4.3.5, chosen such that
θ(eiξn,a) = pch(i). Let t be a large power of p.

If q ⊂ F is a prime lying above a rational prime q, define a map νq : F×/F×t→ (Z/tZ)[Γ /Γn]
by νq(w)eiq = ei[w]q ∈ ei(Iq/tIq). Note that ei(Iq/tIq) is free of rank 1 as a (Z/tZ)[Γ /Γn]-
module, so that νq is actually well-defined.

We will repeatedly apply Theorem 5.3.1 to construct primes q1, . . . ,qk+1 lying above
q1, . . . , qk+1 such that

1. qj ∈ cj ;

2. qj ≡ 1 mod t;

3. νq1
(κq1

) = u1p
ch(i);

4. gj−1νqj (κrj ) = ujpcνqj−1
(κrj−1

) for j > 1

where rj = q1 · · ·qj and uj ∈ (Z/tZ)×.

For the first prime, we let W = ei(O×F /O
×t
F ), and define Ψ : W → (Z/tZ)[Γ /Γn] to be the

composition

W −→ ei(En,1/E
t
n,1)

θ−→ (Z/tZ)[Γ /Γn]
ei−→ ei(Z/tZ)[Γ /Γn]

Let q1 be a prime satisfying the conclusion of Theorem 5.3.1, with this W , Ψ , and
c = c1. Then clearly conditions 1 and 2 are satisfied. Furthermore, it follows from
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Theorems 5.2.2 and 5.3.1 that for some u1 ∈ (Z/tZ)× we have

νq1
(κq1

)eiq1 = ei[κq1
]q1

= eiℓq1
(κ1) = u1Ψ (eiκ1)eiq1 = u1p

ch(i)eiq1.

This proves 3.

Suppose now that we have constructed q1, . . . ,qj−1. Let W ⊂ F×/F×t be the Zp[Γ /Γn]-
submodule generated by eiκrj−1

. One can show now1 that there is a map Ψ ′ : W →
(Z/tZ)[Γ /Γn] with the property that

gj−1Ψ
′(eiκrj−1

) = pcνqj−1
(κrj−1

).

Let qj be a prime satisfying the conclusion of 5.3.1, this time with W as above, Ψ =
eiΨ

′, and c = cj . Again conditions 1 and 2 are immediate, and condition 4 follows by
a similar computation as above.

Continue this process until we have constructed q1, . . . ,qk+1. If we now combine con-
dition 3 and condition 4 for all j > 1, we get that

pc(k+1)h(i) = uνqk+1
(κrk+1

)g(i)

for some unit u ∈ (Z/tZ)×. In particular, we see that g(i) | pc(k+1)h(i) in the ring (Z/tZ)[Γn].
Because this holds for all sufficiently large t and n, we get that the divisibility also
holds in Λ(Γ ). By the Ferrero–Washington theorem, p ∤ g(i), and therefore g(i) | h(i).

The relation g(i) | h(i) is actually true as well for i = 0, because g(0) is actually a unit
in Λ(Γ ). Let g =

∏
i even g

(i) and h =
∏
i evenh

(i). Under the isomorphism of Λ(Γ ) with
Λ = ZpJT K, we may assume g and h are both the product of a power of p and a distin-
guished polynomial. It suffices to show now that this power of p is the same for both,
and their degrees are equal.

Let µ be such that pµ is the largest power of p dividing h (by Ferrero–Washington, g is
not divisible by p). We know from the proof of 2.1.2 that for large enough n, we have
that #Y +

n = pdeg(g)n+ν . For the other module the situation is a bit more complicated;
we only have that for all n, #(E +

n,1/C
+
n,1) = pµp

n+deg(h)n+ν′n , where ν′n is bounded. But
Remark 4.3.4 states that #Y +

n = #(E +
n,1/C

+
n,1), which gives the desired equality.

1It is at this point in particular that we are skipping many technical details. Namely, our choice of cj ,
c and t all come into play here.
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A Appendix

§A.1 The Hilbert class field

At its most basic level, class field theory gives a way to relate Galois groups of unram-
ified abelian extensions of number fields to the class group of the base field, through
something called the Hilbert class field. A good reference is [Neu99].

Let F be a number field, and I the group of its non-zero fractional ideals. Recall that
if K/F is a finite, unramified abelian extension, the Artin symbol(K/F

·

)
: I →Gal(K/F)

is defined by letting
(
K/F
p

)
= Frp for p ⊂ F a prime, and extending multiplicatively.

Theorem A.1.1. There exists a unique field extension H/F that is abelian, every-
where unramified and is maximal with these properties among extensions of F.
Furthermore, the extension is finite and its Artin map is surjective and trivial on
the principal ideals. Hence it induces an isomorphism(H/F

·

)
: Cl(F)

∼→Gal(H/F).

The field H from the theorem is called the Hilbert class field of F.

Because Gal(H/F) is abelian, it is the direct sum of its Sylow p-subgroups. Therefore,
for any prime p, Gal(H/F) has a unique minimal subgroup of p-power index (namely,
the direct sum of the Sylow subgroups for primes different from p). Associated to this
subgroup is a subfield L ⊂H , which is then the maximal abelian unramified extension
of F of p-power degree. The group Gal(L/F), which is the quotient of Gal(H/F) by the
aforementioned p-power index subgroup, is naturally identified with the Sylow p-
subgroup of Gal(H/F). The Artin map allows us to further identify it with the Sylow

60



p-subgroup of Cl(F). We will often make this identification.

Suppose now that F is a CM field, meaning that it is totally imaginary, and has a
totally real subfield F+ such that F/F+ is quadratic. If h denotes the class number of F
and h+ that of F+, then h+ | h. To see this, let H and H+ be the Hilbert class fields of F
and F+, respectively.

FH+

H+ F

F ∩H+ = F+

Because F/F+ is totally ramified at the infinite primes, we have F ∩H+ = F+. Conse-
quently, we have an isomorphism Gal(FH+/F)→Gal(H+/F+). In particular, FH+/F+ is
abelian. Furthermore, because the extension H+/F+ is unramified, so is the extension
FH+/F. It follows that FH+ ⊂ H , so we have a surjection Gal(H/F)→ Gal(FH+/F)→
Gal(H+/F+). By the above theorem, we find that h+ | h.

§A.2 Group cohomology

Let G be a profinite group and and M a Z[G]-module, such that the action of G on M
is continuous if M is equipped with the discrete topology. A crossed homomorphism is
a continuous map f : G→M such that f (gh) = gf (h) + f (g). If m ∈M is any element,
the map g 7→ gm −m is a crossed homomorphism. Any crossed homomorphism of
this form is called principal. Let H1(G,M) denote the quotient group of all crossed
homomorphisms modulo the principal crossed homomorphisms. It is called the first
cohomology group of G with coefficients in M.

Example A.2.1. If G acts trivially on M, then H1(G,M) = Hom(G,M).

Proposition A.2.2. Any exact sequence of Z[G]-modules

0 −→ A −→ B −→ C −→ 0

induces a long exact sequence

0 −→ AG −→ BG −→ CG
δ−→H1(G,A) −→H1(G,B) −→H1(G,C).

Proof. If M is a Z[G]-module, let Z1(G,M) denote the group of crossed homomor-
phisms G → M. We have a map M → Z1(G,M) sending m to the principal crossed
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homomorphism g 7→ gm −m. The proposition now follows upon applying the snake
lemma to the following commutative diagram:

0 A B C 0

0 Z1(G,A) Z1(G,B) Z1(G,C)

IfH ⊂ G is a closed subgroup, then there is a natural induced homomorphismH1(G,M)→
H1(H,M) called the restriction. If in addition H is normal, then MH is a Z[G/H]-
module, and there is a natural mapH1(G/H,MH )→H1(G,M), called the inflation.

Proposition A.2.3. The restriction and inflation maps fit into an exact sequence

0 −→H1(G/H,MH )
Inf−→H1(G,M)

Res−→H1(H,M).

Proof. See [Ser79, Chapter VII, §6, Prop. 4].

We will also need the following result regarding the cohomology of finite cyclic groups.

Proposition A.2.4. If G is finite cyclic and M is finite, then

#H1(G,M) = #(MG/NGM),

where NGM = {
∑
g∈G gm |m ∈M}.

Proof. See [Ser79, Chapter VIII, §4, Prop. 8].

If L/K is a Galois extension, we also write H1(L/K) for H1(Gal(L/K),L×). The next
result derives its name from the fact that it was the 90th theorem in Hilbert’s famous
Zahlbericht.

Proposition A.2.5 (Hilbert 90). If L/K is a finite Galois extension, thenH1(L/K) = 0.

Proof. See [Ser79, Chapter X, §1, Prop. 2].
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