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Notation

Throughout this thesis, there are certain fields, groups and modules which occur time
and time again. For the convenience of the reader, we have collected the notations
used for these in this chapter.

We work with an odd prime p. Associated to this prime, we consider the following
fields:

Fi’l = Q(Cp"*l); Q(Cpll+l + C n+1)
Kn = Qp(Cp”“)r Qp(Cp"’fl + C n+1)
Poo:Unzanr F;:UnZOF;

Ky = UnZO K, K;—o = UnzO K;

The various Galois groups of these fields are the following:

I, = Gal(F../F,) = Gal(FL/F})
F = ro
G, = Gal(F,/Q) = Gal(K,/Q,), G} =Gal(F}/Q) = Gal(K;/Q,)

A p-extension of a field is one whose Galois group is a pro-p-group. We will encounter
the following p-extensions of the above fields (we allow n = oo as well):

L, = maximal abelian unramified p-extension of F,

L} = maximal abelian unramified p-extension of F;;
M,, = maximal abelian p-extension of F, unramified away from p
M} = maximal abelian p-extension of F;} unramified away from p

Their Galois groups are denoted as follows:

Y, =Gal(L,/F,), ¥ =Gal(L}/F})
%, = Gal(M,/F,), %, =Gal(M;}/F})
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Lastly, we also frequently encounter various groups of units.

%n = OE?’
7,=0;
&, = closure of 7;, in %,

9, = cyclotomic units of F,
€, = closure of &,, in %,

A superscript + on any of these groups denotes the intersection with K/, and a sub-
script 1 denotes those units which are = 1 modulo the unique prime above p. Lastly,
we write

U =limU,,
(—

where the limit is with respect to the norm maps. The same holds for all above sub-
groups of %,,.
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Introduction

The class group of the field Q(C,) has been a central object of study in algebraic num-
ber theory since its early beginnings in the 19th century. One of the most notable
early figures studying this group was Ernst Kummer, who famously proved in 1850
that the Fermat equation x? + y? = zP has no non-trivial integer solutions whenever p
is a regular prime, i.e. when it does not divide the class number of the field Q(Cp). He
simultaneously gave a simple criterion for regularity, proving that p is regular if and
only if p divides none of the Bernoulli numbers By, By, ..., B,_3.

In the 1950’s, Kenkichi Iwasawa quite literally took the study of this field to the next
level, when he started studying the whole cyclotomic tower Q(C,) C Q(Cp2) C ---. By
working with the whole tower at once instead of only focussing on the individual
fields, he was able to prove [ | a growth theorem regarding the class numbers of
these fields. It states that for large n, the p-valuation of the class number of Q(Cp») is
equal to up"+An+v for integers y, A, v independent of n. After this, Iwasawa dedicated
most of his time to the study of this tower of fields and their class groups, proving
numerous results that nowadays fall under the umbrella of Iwasawa theory. Another
major breakthrough occurred in 1964 when Iwasawa observed | | that under a
simple hypothesis on p, a certain ‘characteristic polynomial” associated to the class
groups Cl(Q(C,n)) was essentially just the p-adic L-function, which was constructed
around the same time by Kubota and Leopoldt | ]. This observation allowed him
to deduce many detailed statements about the structure of the class group, including a
long sought after refinement of Kummer’s criterion for regularity. The belief that this
relationship between the p-adic L-function and the class group held true even without
any hypothesis on p became known as the Main Conjecture of Iwasawa theory.

In 1976, Ken Ribet | | was able to prove the aforementioned refinement of Kum-
mer’s criterion using the theory of modular forms, sidestepping the Main Conjecture.
However, his techniques were later successfully adapted by Barry Mazur and Andrew
Wiles [ ] to prove the full Main Conjecture. In 1990, Victor Kolyvagin | ]
developed the theory of Euler systems based on a new approach by Francisco Thaine



[ | to studying class groups. Not long after, Karl Rubin [ , Appendix] suc-
cessfully used Euler systems to give a new proof of the Main Conjecture, which was
much simpler and shorter than that of Mazur—Wiles.

This finally brings us to this thesis. There are many books exploring in detail the
results mentioned above. However, these books often lack examples, motivations,
and are riddled with long and arduous technical arguments. Our goal is to focus on
the main ideas present in the construction of the p-adic L-function, Iwasawa’s growth
theorem, and Rubin’s proof of the Main Conjecture. Also among our contribution is
to prove a more ‘effective’ version of the growth theorem, providing explicit values
for y, A and v and quantifying how large n needs to be for the formula to hold. We
furthermore give an algorithm and implementation for computing p-adic L-functions,
and use it to provide numerous examples.

In Chapter 1 the construction of the p-adic L-function is carried out. We also intro-
duce the Iwasawa algebra and study its finitely generated modules, which will turn
out to be the key to understanding many of the results in Iwasawa theory.

In Chapter 2 we look at Iwasawa’s growth theorem. The version of this theorem typi-
cally found in the literature gives a formula for the class number of Q(C,) that holds
for ‘large enough n’. We will make explicit how large we need n to be, and provide
details on how to find the invariants present in this formula from p-adic L-functions.
We also provide an algorithm for calculating these L-functions, and give many explicit
examples. At the end we explain how the results thus far motivate the statement of
the Main Conjecture, whose proof covers the remaining chapters.

Chapter 3 covers the theory of the unit groups of Q,(C,») and their connection to
power series. The most important result is Coleman’s theorem, which allows to con-
struct power series which interpolate certain systems of units. This leads to a gener-
alization of the construction of the p-adic L-function in Chapter 1.

In Chapter 4 we study the group of cyclotomic units. Using the results from the
previous chapter we prove Iwasawa’s theorem, which relates the cyclotomic units to
the p-adic L-function. This result in fact allows us to prove the Main Conjecture for
all Vandiver primes.

Chapter 5 is concerned with the theory of Euler systems. For us, Euler systems are
collections of elements in cyclotomic extensions, which can be factored to obtain re-
lations in class groups and bounds on class numbers.

At last, we finish the proof of the Main Conjecture in Chapter 6. We will see how Euler
systems can be exploited to yield information on class groups, while leaving some of
the more technical details aside.



1 Measures and Iwasawa algebras

In 1964, Kubota and Leopoldt | | constructed the p-adic L-function, a p-adic ana-
lytic function that interpolates certain values of the usual Dirichlet L-function. In this
chapter we carry out this construction using the theory of p-adic measures. We also
discuss the Iwasawa algebra and the theory of its finitely generated modules. We do
all of this rather quickly, with most proofs being omitted. The interested reader can
consult [RW] for a more detailed exposition.

§1.1 p-adic measures

In the entirety of this thesis, p will be an odd prime. We fix once and for all algebraic
closures Q and ap, and an embedding Q— GP‘ Throughout this chapter, we let
L denote a finite extension of Q,. Let G be a profinite abelian group, which will
usually be Z,, or Z;. We denote by C(G, L) the L-vector space of continuous functions
G — L. This space comes equipped with a norm ||f]| := sup,.;|f(x)], and with this
norm C(G,L) becomes a p-adic Banach space. The continuous dual space C(G,L)Y
(consisting of all continuous linear functionals C(G,L) — L) is called the space of L-
valued measures on G, and also denoted by M(G,L). If p € M(G,L) and f € C(G,L), we
also write IGf - p or fo(x) - u(x) for p(f).

So far we have not yet utilized the group structure of G, and the above definitions
indeed make sense for any topological space. But using the group operation, we can
endow the space of measures with the structure of a (commutative) algebra, if we
define the multiplication to be convolution of measures: given u,v € M(G,L), their
convolution is the measure yv defined by

| £tm- L(Lf(xw - y(x)) V().

Example 1.1.1. For g € G, the dirac measure 6, or [g] is defined by If [g]=f(g). If pis
any measure, the convolution [g]u is the measure given by fo ([glp) = fo(gx)-y(x).
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Any measure is bounded in the sense that for y € M(G, L), there is a constant C such
that |u(f)| < C||f|| for all f € C(G,L). In particular this implies that any measure can be
scaled so that u(f) € O; for all f € C(G,Op). Note that also any continuous map G — L
can be scaled to take values in O;. Thus there is no harm in restricting ourselves to
only studying the spaces C(G,O;) of Op-valued functions and its dual M(G,O;) of
O -valued measures.

To get a better idea of what the space M(G,O;) looks like, we start by analyzing the
space C(G,Op). In the case that G = Z,,, this space has a very simple description. For
x € Z,,, define the generalized binomial coefficient (;) by

n n!

(x) x(x=1)--(x—-n+1)

Prorosrrion 1.1.2 (Mahler’s Theorem). If f € C(Z,,0y), then there are unique ele-
ments ay,4,,--- € O such that

for all x € Zp.

Proof. Theidea is to construct the coefficients a,, as the finite differences A" f(0), where
Af(x) = f(x+1)— f(x). For the details, see [ , Théoreme 1.2.3]. O

The theorem implies that a measure on Z, is uniquely determined by its values on
the functions (7). Given a measure y, it would therefore be instructive to consider the

generating function ) - U(x) . y(x))T” = j(l + T)* - u(x). We call this power series

n

the Amice transform of p, and denote it by /,(T).

ProrositioN 1.1.3. The Amice transform is an Oy -algebra isomorphism

M(Z,,01) = O([T].

Proof. See [ , Théoreme 11.2.2]. O

Example 1.1.4. The Amice transform of the dirac measure [a] is simply (1 + T)".



Remark 1.1.5. Note that we have an inclusion Z,[T] c O([T]. By the above isomor-
phism, this means that we can integrate O; -valued functions against Z,-valued mea-
sures, which was not clear from the definition of M(G,O;). For this reason, we will
from now on specialize to the case L = Q,. In this case we also denote the spaces
C(G,Z,) and M(G,Z,) simply by C(G) and M(G).

The ring Z,[T] is a particularly nice ring; it is a 2-dimensional complete regular local
ring, with maximal ideal (p, T). Later we will study modules over this ring, which in
the finitely generated case turn out to have a very simple description.

§1.2 Operations on measures

If f € C(Z,), p€ M(Z,), we can define a new measure f y, which is defined by jng-

(fu) = IZ fg-p. We will focus our attention on three special cases, and look at how

the Amice transform of a measure transforms under the multiplication.

* Multiplication by x. First consider the measure xy. From the identity

x(;):mm(njl)m(’;),

it follows that &,,(T) = (1 + T)%MV(T). The differential operator (1 + T)%
occurs frequently enough that we shorten it to .

From this, we see that the k-th moment of the measure p, which is defined to be
JZ xK - u(x), is given by 9"&@(0).
p

* Multiplication by z*. 1f z € 1 + pZ,,, we can make sense of z* for any x € Z,,, and
the Amice transform of z*p is equal to &/,((1+ T)z - 1).

* Multiplication by 1x. If X CZ, is a compact open subset, the indicator function
1x is continuous, and the measure 1xpu is called the restriction of y to X. It is
denoted Resx(u) or plx. Note that we have a natural inclusion of Z,-modules

M(X) — M(Z,), by letting
J f‘P“:J flx-p
z, X

for y a measure on X. Clearly the restriction of a measure to X lies in the image
of this map, so we also view Resy as a map M(Z,) — M(X).

In the case that X =a+p"Z,, we can use the identity

1a+p”Zp(x) = p—n Z ﬁx—a

7]!’” =1



in combination with the previous point to see that
%Reszﬂp"zp(}'{)(T) = p_n Z rl_a%}/l((]‘ + T)I/I - 1)
=1

It then also immediately follows that

Shres,0(T) = (1) =p™" ) (1 +T)n 1)
nP=1

Lastly, we come to the most important operations on measures: the Frobenius and trace

operators.

For p € M(Z,), the measures ¢(u) and ¢(u) are given by

[ reoto=[ sn-um,

[ o= st izt
Zp ZP

The maps ¢ and 1 are respectively known as the Frobenius and trace map. Via the
Amice transform we can also view them as maps on Z,[T]. The Frobenius is easily
described on power series: @(f) = f((1+ T)? —1). The trace operator is more mysteri-
ous, and has no explicit direct description in terms of power series. The best we can
do is the following proposition.

Proposition 1.2.1. We have that o ¢ =1Id and @ o = Respz . In particular, ¢ is
injective, and for f € Z,[T],

(pow)(f)=p™ ) f((1+T)y-1)
nP=1

Proof. Clear by writing out definitions. O]

If X CZ,, we say that a measure p is supported on X if ply = p.

LEmma 1.2.2. A measure p is supported on Zj if and only if () = 0.

Proof. This is immediate from the fact that p o ¢ = Res,z =1Id - Reszx and that @ is
injective. O



§1.3 Iwasawa algebras

Let G again be any profinite abelian group. If U C G is compact and open, we write
u(U) := p(1y), p € M(G). The resulting function {U C G compact open} — Q,, is rem-
iniscent of the more familiar idea of a measure one encounters in real analysis. This
gives us another way of thinking about the space of measures as follows: the set of
locally constant functions is dense in C(G), and any locally constant function is a lin-
ear combination of indicator functions of sets of the form gH, where g € G and H is
an open subgroup. Thus a measure is uniquely determined by the values y(gH). This
motivates the following definition and proposition.

Definition 1.3.1. The Iwasawa algebra of G is
A(G) = hﬁZP[G/H],

where the inverse limit runs over all open subgroups of G, with respect to the
obvious maps.

Prorosition 1.3.2. The collection of maps M(G) — Z,[G/H], H an open subgroup,
given by

pr Z wgH)[gH]
gHeG/H

induces a map M(G) — A(G), and this map is a Z,-algebra isomorphism.

Proof. This is proved by explicitly constructing an inverse map, see [R\W, Proposition
2.3] for the details. O

We have a natural inclusion Z,[G] — A(G), which has dense image (A(G) is equip-
ped with the standard inverse limit topology). For this reason the Iwasawa algebra is
also often called the completed group algebra, and modules over it naturally arise in
the following way: suppose we have an inverse system of Z,[G]-modules (My, fy i)
indexed by the open subgroups of G, such that H acts trivially on My. Then h(_mMH
has a natural continuous A(G)-module structure.

In what follows we will study some properties of A(G)-modules (which are all as-
sumed to have a Hausdorff topology with respect to which the action is continuous),
paying special attention to the case G = Z,,.. In this case, combining Propositions 1.1.3
and 1.3.2, we see that A(G) is isomorphic to Z,[T]. Recall that the latter was a local
ring with maximal ideal (p, T), and that it is complete with respect to the (p, T)-adic
topology. It turns out (see the proof of | , Theorem 7.1]) that the isomorphism



between A(G) and Z,[T] also identifies the inverse limit topology on the former with
the (p, T)-adic topology on the latter.

Remark 1.3.3. One may wonder if the topology also has a natural description directly
on M(G). It turns out to be the weak topology: a sequence (y,,), of measures converges
to p if and only if y,(f) converges to u(f) for all f € C(G).

We start with a version of Nakayama’s lemma that works for general compact modules
over local rings.

ProposiTioN 1.3.4 (Nakayama’s lemma). Suppose R is a local ring with maximal
ideal m, equipped with the m-adic topology, and let X be a compact R-module.
Then X is finitely generated over R if and only X/mX is finitely generated over
R/m, in which case a set of elements xy,...,x, generate X if and only if their images
generate X/mX.

Proof. We first show that we have that (,.; m"X = 0. Indeed, let y € X be non-zero
and U an open neighborhood of 0 not containing y. Then for any x € X, we can find
n and a neighborhood U, of x such that m"U, Cc U. Choosing finitely many of the
U, that cover X, we find that there exists n such that m"X C U, and consequently
yem"X.

Now, the forward direction of the proposition is clear. Conversely, suppose the quo-

tient is finitely generated by the images of xj,...,x,. Consider Y = Rx; +--- + Rx,,
which is a compact, hence closed, submodule of X. Then X =mX + Y, so that

mX+Y

=X/Y.
% /

m(X/Y) =
Applying this repeatedly yields that m"(X/Y) = X/Y for all n, and thus X/Y =0. [

The following structure theorem will be our most important tool in the study of
finitely generated Z,[T]-modules. It classifies such modules up to so called pseudo-
isomorphism, which is a homomorphism with finite kernel and cokernel.

Let us call a polynomial over Z, distinguished if it is monic and every non-leading
coefficient is divisible by p.



Taeorem 1.3.5. Let M be a finitely generated A = Z,[T]-module. Then there is a
pseudo-isomorphism from M to a module of the form

S t
A @ G?A/(pm")ea G?A/( £
= j=

where the f; are irreducible distinguished polynomials. Furthermore, such a de-
composition is unique.

Proof. See | , Theorem 13.12] for a direct proof using matrices, similar to the use
of Smith normal form over PID’s. Alternatively, the proposition is a special case of a
more general structure theorem for Noetherian integrally closed domains, see | ,
Théoreme 7] and | , Ch. VII, §4, Theorems 4 & 5]. O

It is important to note that pseudo-isomorphism is not in general an equivalence re-
lation. This is however the case if we are dealing with torsion modules, which are
precisely the modules for which r = 0 in the above decomposition. In this case, let
us write y = ) ;m;. We call the ideal generated by p/ ]_[;:1 fjnj in A the characteristic
ideal of M, and denote it by ch(M). It is an important invariant of M, and has the
property of being multiplicative in exact sequences ([ , Ch. VII, §5, Proposition
10]).

We now work a little more abstractly, and denote by I' any group isomorphic to Z,,
and let G be a group of the form @ xI', where @ is a finite cyclic group of order k
dividing p — 1. Then any character x of @ takes values in the (p —1)-st roots of unity
Hp-1 C Zp, and we define e, := %Zuewx(a)[a‘l] € Z,[@]. The collection of elements
e, form a complete orthogonal system of idempotents. It follows that for any A(G)-
module M, we have a decomposition M = EBX eyM. Note that e, M is the largest
A(T)-submodule on which @ acts via .

Applying this to A(G) itself, we obtain a decomposition A(G) =[], e, A(G). Clearly
eyA(G) isaring, and ¢, M is a e, A(G)-submodule of M.

LemmMma 1.3.6. The restriction map Resp: A(G) — A(T) gives an isomorphism
e, A(G) — A(T).

Proof. Let I}, C T be the unique subgroup of index p". Take a € ¢,Z,[@ xI'/T;] =
exZy[I/1,][@], which we can write as ), ag(g] with a; € Z,[T/I]. Because @ acts
via x, the element is completely determined by ay, as a, = x~'(g)ay. It follows that the



projection map

Z,[@xT/T,] — Z,[I/T,]

) _aglglea

geA

restricts to an isomorphism on e, Z,[@ x I'/T].

The inverse limit of the projection maps is precisely the restriction map Res, which
is then an isomorphism e, A(G) — A(T). O

§1.4 The p-adic zeta measure

Let us denote by C the Riemann zeta function, which is defined and analytic on the
whole complex plane except for a simple pole at 1. Recall that it has the special
values C(1 —k) = (—=1)k+! %, where the By are the Bernoulli numbers, defined by their
exponential generating function 5 =Y ;5 %tk- In fact, By = 0 if k > 1 is odd, so as
long as k # 1, we may replace (~1)¥*! by —1 in the special value. In this section, we
will construct the p-adic analogue of the C function, which actually turns out to be a
measure instead of a function.

Let a € Z be coprime to p and define F,(T) := ( % It is easily shown that F, is

a
1+7)"—1
in fact a power series with p-adic integral coefficients. Let p, be the measure on Z,, it

corresponds to under the Amice transform.

Lemma 1.4.1. The moments of y, are given by

B

k k+1\ Pk+1
. =—(1- e

pr Ha(x) (1-a )k 1

Proof. If we make the change of variables T = ¢’ — 1, then

a 1
et —1 ef—1

By, tF
kZ>o'( 4 )k+1k!

The result now follows from the fact that the moments are given by J*F,(0), and that
under the above change of variables, d = %. ]

10



There are a few problems with the measure we have obtained. First off, there is of
course the factor of (1 — ak*1) that we want to rid ourselves of. Second, we would
ideally have the k-th moment of our measure be related to By instead of By, ;. We will
deal with these problems now.

Lemma 1.4.2. P(p,) = pg

A direct proof involving power series computations is possible, but a more concep-
tual proof uses some of the theory of Chapter 3. Namely, we shall see that F, is the
logarithmic derivative of a norm invariant power series, and that this implies that it is
equal to its own trace.

The above lemma implies that Resz«(pa) = pa — @(P(Ha)) = pa — ¢(p,), and conse-
quently

By
f;xk'mw:—(l—p")( a2

If we now consider the measure 1, := x™! Resz;(,ua) on Z;, then it satisfies

[t =—a-p ey (1)

The restriction to Z; has allowed us to multiply by x~1, shifting the moments to now
interpolate the correct Bernoulli numbers. However, this has introduced a new factor
of (1 —pk1). Luckily this factor is not a problem; it now allows us to write —(1 —
pk 1)3" =(1- p ~1)C(1-k), which would not have been true for k = 1 without the extra
factor. Moreover, the new factor cancels out the corresponding Euler factor in the
product C(s) =[],(1 - p~¥)~!, which is necessary to make the zeta function p-adically
continuous.

This leaves us with the final task of getting rid of the factor depending on our choice
of a. To do this, we want to ‘divide’ our measure by the measure [1] - [a].

Definition 1.4.3. A pseudo-measure on Zj is an element y of the total ring of frac-
tions of A(Zy) (i.e. the localization at the non-zero-divisors) with the property that
([1]-[gDp € A(Z}) for all g € Z7.

We can no longer integrate arbitrary functions against pseudo-measures. We can,
however, integrate non-trivial group homomorphisms Z; — L*. This is because we

have that
f “(p1p2)( [ flx ][ fo(x)'ﬂz(x))

11



whenever f is a homomorphism. Hence for a pseudo-measure y, we may define

IZ;f (1]~ [ghn
Lf"‘" T f(g)

where g € Zj is chosen such that f(g) = 1, and this will be independent of the choice
of such g. In particular, this means that we can still make sense of the moments of a
pseudo measure.

X
P

Lemma 1.4.4. Let p € A(Z)).

1. We have y = 0 if and only if IZ; xK . u(x) = 0 for all k > 0. The analogous

assertion holds for pseudo-measures.

2. If fzx xk . u(x) = 0 for all k > 0, then p is not a zero-divisor.
P

Proof. See [RW, Lemma 3.8]. O

The second point shows that [1]—[a] is not a zero-divisor. Furthermore, if we choose
a such that it is a topological generator for Zj, then for any g € Z;, the element
[1] - [a] divides [1] - [g] in the group rings Z,[(Z/p"Z)*]. This implies that in fact

HH% € A(Z3), so that 1/([1] - [a]) is a pseudo-measure. This finally gets us our de-

sired result.

Treorem 1.4.5. There is a unique pseudo-measure Cj, on Z; such that

L g, =(1-pFhe -k

X
P

forall k > 1.

Proof. Choose a € Z to be a topological generator of Z}, and define A, as before. We

can take C, = “f\ﬁ by (1.1). Uniqueness follows from the previous lemma. O

§1.5 The Kubota-Leopoldt p-adic L-function

In the previous section we have constructed a pseudo-measure, whose moments are
given by interpolating values of the zeta function. What we would really like however,
is to turn C, into an actual (analytic) function on Z,. We will do this now.

12



Recall that there is a decomposition Zj = p, 1 X (1 + pZ,). The projection onto the
first factor is called the Teichmiiller character, and is denoted w. The projection onto
the second factor is denoted x — (x). Hence any p-adic unit x may be written as
x = w(x)(x).

If x: (Z/p"Z)* - QC GP is a primitive Dirichlet character of p-power conductor, we
may view it as a homomorphism on Z;. By the decomposition above, we can uniquely

write x as the product of a character which is trivial on 1+pZ,, (which must be a power
of ), and a character trivial on p,_;.

When necessary, we can also view a character as a function on Z, by setting it equal
to 0 outside Z;, unless y is the trivial character, in which case we let it be constant 1
onall of Z,,.

Definition 1.5.1. The p-adic L-function of x is defined as

L) = L X T,

X
14

Tueorem 1.5.2. For k > 1, the p-adic L-function satisfies

Ly(x,1-k)=(1 - xw ¥ (p)p* " )L(x0™, 1 - k)

Proof. In the case that x = w, this is exactly Theorem 1.4.5, since

Lp(wk,l—k):J
V4

The general case is a little more tedious, see for instance [R\, Theorem 4.1]. O

g, = [ A,

X
p p

Just as the Riemann zeta function, the special values of Dirichlet L-functions can be
expressed using the the so-called generalized Bernoulli numbers By ,, which are defined
using generating functions similar to ﬁ for the regular Bernoulli numbers. The

special values are then given by L(x,1 - k) = B

k
Next, we would like to see that the functions Lp X,s) are in fact analytic, meaning that
they can be represented by a power series in C, [s].

Every character of p, | is given by raising to the i-th power for some i € Z/(p -
1)Z. Recall from Section 1.3 that we have a complete system of idempotents ¢; =
ZTG”H [t 1] e A(Z}). The results from that section tell us that a measure p € A(Z))

is completely determined by the measures Resszp(eiy) € A(1 +pZ,). We can use the

13



isomorphism
log(x)
log(1+p)

to view the resulting measure on 1+pZ, as a measure on Z,,. The measure constructed

1+pZ,>Z, xm

this way is called the i-th Leopoldt transform of y, and is denoted by T (p).

ProrosiTion 1.5.3. Let x = Ow' be a Dirichlet character of p-power conductor (where
0 is trivial on ;1) and p € A(Zy). Then with g; := i, (T), we have that

Gl +pP 1= [ xto s

P

where Cg = 0(1 +p).

Proof. We directly calculate that

gi<ce<1+p>5—1>=fz 1+ ) T ()

o IR
1+pZ,

y f (1 11y, (1) ()

Te}/lp 1

Yy f X))y, (5) )

Te}/lp 1

Jxx(x)<X>s~M(x),

11 8% and the fact that if x € T+ pZ,, we have
g(1+p)’

(x)=7"'xand w(x)=1. O

where we used the substitution y =

Taeorem 1.5.4. Let i 2 0 mod p — 1. There is a power series f; € Z,[T] such that for
any character 0 of 1 + pr, we have

filCo(1+p)' ™ —1)=L,(00',5),

where Cg = 0(1 + p). In particular, Lp(Qa)i,s) is a p-adic analytic function.
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Proof. Choose a € Z such that w'(a) # 1. By the previous result, there are power series
g; and h; such that we may write

by 00T A ot epi)
@ -l hColT+p) = 1)

Because h;(0) = 1-w'(a) is a p-adic unit, h; € Z,[T]*, so that we may take f; = g;/h;. [

The power series from this theorem are sometimes called the Iwasawa power series
of the L-functions, but it is also common to refer to these power series as the p-adic
L-functions themselves.

Remark 1.5.5. Even though to define the pseudo-measure C, = we needed to

Ay
(1]-[a]
take a to be a topological generator of Zj, the expression

fo X217 2,
jzx (X)) (1]~ [a))

still holds true for any a € Z coprime to p with the property that w'(a) = 1.

Finally, let us record the following well-known result about p-adic analytic functions,
known as the Weierstrass preparation theorem. Recall that a polynomial is said to be
distinguished if it is monic and its non-leading coefficients are all divisible by p.

Tueorem 1.5.6. Let f € Z,[T]. Then f can be uniquely written as p#P(T)U(T) where
P is a distinguished polynomial, and U is a unit of Z,[T].

Proof. See [ , Theorem 7.3]. O

As a consequence, a non-zero element of Z,[T] can have only finitely many zeros in

Zp. In particular this holds for the Iwasawa power series of the p-adic L-functions.
In the next chapter, we see how these zeros relate to the class numbers of p-power
cyclotomic extensions of Q.

15



2 Cyclotomic class numbers and p-
adic L-functions

In this chapter we focus our attention on a theorem of Iwasawa [ ], which states
that for large enough 1, the p-valuation of the class number of Q(C,») is equal to up" +
An + v for some constants y, A, v independent of n. The usual proof of this theorem
however gives us no indication on how to find these constants, or on how large n needs
to be for the formula to hold. In Section 1 we will study this proof. In Section 2 we
will prove an ‘effective’ version of the theorem, where we now make explicit both how
large n needs to be, and what the invariants y, A and v are. It will turn out that both
of these questions are answered by looking at p-adic L-functions. In Section 3 we will
look at some explicit calculations and examples (something that is typically absent
in the established literature). Section 4 discusses some heuristics on the size of the
invariant A. Lastly, we discuss how the results from this chapter motivate the Main
Conjecture of Iwasawa theory.

From this point onward, we make repeated use of the basics of class field theory. The
necessary results can be found in the Appendix.

§2.1 Class numbers in Z -extensions

Let Fy be a number field and F.,/Fy a Z,-extension, meaning a Galois extension such
that I' := Gal(F/Fy) is isomorphic to Z,. Then I has a unique subgroup of index p"
for each n which we denote by I, and we let F,, be the corresponding field.

Example 2.1.1. The most important examples of Z,-extensions are the cyclotomic ex-
tension F, = Q(C,n+1) and its maximal real subfield F, = Q(C,n+1)". More generally,
if Fy is any number field and F((Cp~) is the field obtained by adjoining all p-power
roots of unity, then the fixed field of the torsion subgroup of Gal(Fy(C,~)/Fp) is a Z,,-
extension of F, called the cyclotomic extension of F,.
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Let h, be the class number of F,. In this section, we prove a remarkable theorem of
Iwasawa regarding these class numbers.

Treorem 2.1.2. There exist positive integers y, A, v, ny such that
ord,(h,) = pup" + An+v

for all n > ny.

We will prove the theorem under the following additional hypothesis:
There is a unique prime py C Fy above p, and it ramifies completely in F,.

Note that both our examples of Q(C,n+1) and Q(Cpn+1)™ satisfy this assumption. From
now on we will assume that this hypothesis is satisfied. The general case can be re-
duced to this special one (see | , Theorem 13.13]).

For each n, let L,/F, be the maximal abelian unramified p-extension (meaning the
Galois group is pro-p). We let %, = Gal(L,/F,). Additionally, let L, = |J,5¢L, be
the maximal abelian unramified p-extension of F,, and %, = lim%, = Gal(L../F,).
Class field theory shows that the Artin map yields an isomorphism between the Sylow
p-subgroup of CI(F,) and %,,.

Note that since each %, is a p-group, they are also Z,-modules. Furthermore, %, is
equipped with an action of I as follows: for y €T, y € %, let y € Gal(L../F) denote
any lift of y. Then the action is defined by y -y := yyy~1. It is easily checked that
this is well defined and gives a group action. Furthermore, under the aforementioned
isomorphism of %, with the Sylow p-subgroup of the class group, this action is simply
the one induced from the natural action of I' on the group of fractional ideals of F,,.
Consequently, %, becomes a Z,[I']-module. Iwasawa proved his theorem by using
rather ad-hoc arguments regarding the structure of %, as an Z,[I'|-module. Not long
after, Serre | ] was able to simplify Iwasawa’s proof by realizing that because
I, = Gal(F./F,) acts trivially on %, the inverse limit %, is even a (finitely generated)
A(I')-module (as is described just after Proposition 1.3.2). The theorem now follows
by exploiting the established structure theory for such modules. This insight cannot
be understated: from this point on, almost all of the key results in Iwasawa theory are
most naturally stated in terms A(I')-modules.

From now on, fix a topological generator y, for I', which yields an isomorphism I' —
Z,. This allows us to identity A(G) with A =Z,[T] via the Amice transform. Under
this identification, yo € A(G) corresponds to 1 + T € Z,[T]. If M is any A(T)-module,
we denote by

Mr, = M/(yE - 1)M
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the set of I},-coinvariants.

Lemma 2.1.3. Let H = Gal(L.,/F() and let I C H be the inertia subgroup of any prime
above py.

1. H=1%,and IN%,=1;

2. [H,H] = (yo - )% = T, where [H, H] denotes the closed subgroup gener-
ated by the commutators [a, b];

o8 ?n = (?OO)I‘“'

Proof. The first assertion follows since F,/F is totally ramified above py and L..,/F,
is unramified.

This implies that the natural map I — H/%,, =TI is an isomorphism. Under this
isomorphism, the action of I corresponds to I acting on %, by conjugation. Let o( € I
be the element mapping to . To lessen the risk of confusion, let us denote the action
exponentially. Thus it remains to show that [H,H]| = A T v € %, we have
y9~l = gpyay 'yt = [09,9]. Conversely, let a,b € H. Writing a = ax,b = fy with
a,f € I,x,y € %, a straightforward calculation shows that [a,b] = (x%)! = (pF)a-1.
Because oy topologically generates I, 1 — f and a — 1 are divisible by oy — 1 in the

Iwasawa algebra A(I). Thus [a,b] € AL
Write H,, = Gal(L.,/F,) and I, = H, N I. One deduces from the previous points that

" pn_
IL,=1" ,H, = In?oo and [H,, H,] = ?0(0% 1)-

Because L, is the maximal abelian unramified subextension of L.,/F,, we deduce that

_ Gal(L/F,) H,  I"%,

(ggil _
- = n n = oo/ (&
z Gal(Loo/Ly) ~ [Hy HuJIP" — %(oog 1) vl

1) =

LemMA 2.1.4. The group %, is a finitely generated A-module.

Proof. As T € (p,T), %/(p, T)Y is a quotient of %) = %../T¥, hence finite. The
result now follows from Nakayama’s lemma 1.3.4. O]

Remark 2.1.5. Note that the application of Nakayama’s lemma yields something else

interesting: namely, %, = 0 if and only if %, = 0 for some . In particular, we see that
p | h, for some n if and only if p | h,, for all n.
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Proof of Theorem 2.1.2. By the structure theorem and the previous lemma, there is a
module of the form

S 3
A=NeoPHAp™ e P AL
i=1 j=1

and a pseudo-isomorphism ¢: %, — A. Writing A, = A/¢"(T)A, we obtain a com-
mutative diagram

0 — ¢"(T)% > Yoo > Y, s 0
¥ Lﬁ W
0 — @"(T)A s A s A, s 0

Applying the snake lemma immediately yields the following:
(i) #ker(¢)) < #ker(¢)
(ii) #coker(¢;) < #coker(¢)
(iii) #coker(¢;) < #coker(¢)
(iv) #ker(¢;) < #ker(¢)#coker(¢p)
(v) #coker(¢, )# ker(¢}) ker(¢) = #ker(¢h, )# coker(¢}) coker(¢})
Additionally, if m > n > 0, we have
(a) #ker(¢}) > #ker(¢),)
(b) #coker(¢;,) > #coker(¢,,)
(c) #coker(¢,) < #coker(¢))
All of these taken together imply that as n grows, the sizes of ker(¢;;) and coker(¢;,)

eventually stabilize. We conclude that #%, = #A,, - %

stant c and large enough n. We are therefore reduced to showing that #A, = up"+An+v
for some y, A, v and large enough #. In fact, still writing

=#A, - p° for some con-

S t
A=NeoPapme P,
i=1 j=1

we will show that we can take y =)} ;m; and A = Z;Zl njdeg(f;). We first state the
following lemma, which tells us that we can divide with remainder by distinguished

polynomials.
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Lemma 2.1.6. Let f € A be a distinguished polynomial of degree d. Then for any
g € A, there exist unique g, € A with r a polynomial of degree < d, such that

g=qf +r.

The proof can be found in | , Proposition 7.2]. Now, the lemma immediately
implies that A/(¢"(T)) is infinite, so that we must have r = 0 in the decomposition.
Furthermore, it is clear that #A/(¢"(T),p™) = p™P". It remains to show that for g a
distinguished polynomial of degree d, we have that #A/(g(T), " (T)) = p?"*¢ for large
enough n. This turns out to be a bit technical, but the idea is to use the division algo-
rithm to show that when p"~! > d, we have #A/(g(T), "t (T)) = pd#A/(g(T), "(T)).
The details are in | , Chapter 5, Theorem 1.2]. O

Note that while the proof above shows that y, A,v and n( as in the theorem exist, it
does not give us any way to find them. There is no way to find n(, and to find the
other invariants it seems we would need to have complete knowledge of the structure
of all the class groups %,,. One might think we could look at the proof of the structure
theorem to see how m;, f] and n; are obtained from the module. Alas, we would see
that we need an explicit finite presentation of %,,, something which is of course again
unrealistic to ask for given limited knowledge of the class groups. In the next section
we will focus our attention to the case F,, = Q(ppn+1), and prove an effective version
of the theorem. We will see how in this case y, A and ng are connected to p-adic L-
functions.

§2.2 An effective version of the growth theorem

For the rest of this chapter, let F,, = Q(Cpn+1) and Fo, = Q(Cpe) = Ups1 F- Then Foo/Fy
is a Z,-extension. Indeed, there is an isomorphism

n: Gal(F,/Q) — Z;

characterized by o(Cpn) = C;(,,(o), called the cyclotomic character. We have a decomposi-
tion Zj = p, 1 x (1 + pZ,), the latter factor being isomorphic to Z,,. The fixed field of
the this subgroup is then exactly Fy. Similarly, we have that F{/F{ is a Z,-extension
as well, where the + indicates the maximal real subfield.

We write h,, and h;, for the class numbers of F,, and F;, respectively. By class field the-
ory, h} divides h,,, and we denote the quotient by h;;, which is called the relative class
number. Why would we be interested in this number? There are two main reasons.
Firstly, the relative class number is much easier to handle than the individual class
numbers A, and k. Part of the reason that class groups are hard to study, is because
they are intimately related to unit groups. For instance, the analytic class number
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formula allows us to compute the product of the class number and the regulator with
relative ease, but gives no way to separate the two. However, the unit groups of F,
and F; have the same rank, and most of the complications introduced by them disap-
pear upon dividing the class numbers. Secondly, it is conjectured that p never divides
h{. A prime with this property is called a Vandiver prime, so that conjecturally, ev-
ery prime is a Vandiver prime. This is known as the Kummer-Vandiver conjecture.
Remark 2.1.5 implies that a Vandiver prime does not divide 4}, for any n. Since we
are interested in studying ord,(h,), it therefore makes sense to study ord,(h;), since
we expect these to be the same. While there is virtually no progress towards a proof
of the conjecture, it has been confirmed for all primes < 23! by Hart, Harvey & Ong
[ ]. In this sense, for all practical applications of Theorem 2.1.2, we can simply
work with #;, instead.

n’

Now that we have motivated the study of h
version of Iwasawa’s theorem.

we will prove the following effective

Tueorem 2.2.1. Fori = 2,4,.--,p-3, let f; € Z,[T] be the power series from Theorem
1.5.4. Write f; = p#iP,(T)U;(T) with P; distinguished of degree A; and U; a unit, and
write P for the product of the P.. Let n be such that max; A; < p™ — p"~!, Then for
all n > ny, we have that

ord,(h,) = up" + An+v,

K= Z.”i'
i

A= ZA,-,
i

V= Z ordp(%)—]ﬁrordp(ha).

where

no—l_
C#1

s 1

Proof. From the analytic class number formula for F, and F;, it follows that
- n+1 1 n+1 1
hn = 2p I_[ _EBLX = Zp I_[ —EBLXC‘)—I ),
x odd X even

where the product runs over Dirichlet characters of conductor dividing p"*!. As be-
fore, we may write any such character as a product of some w' and a character 6 of
1 + pZ, vanishing on 1 + p”+1Zp. Thus, up to multiplication by a p-adic unit, this
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product becomes

p'1+1 ]_[ Bllwi—ll_[Bl’gw—l ]_I Bl,gwi—l.

i even 0=1 0,w'#1
ieven

Here the middle product runs over the characters of 1+ pZ, that are trivial on 1 +
p”“Zp. Let us first analyze this middle product. It is (up to a unit) equal to

f OGO -,

| [00=] [ —gam

0=1 0=1

where we can take a = 1 + p. Write Cg = O(a). Then (g is a p"-th root of unity. Hence
ord,(1-Cg) <1, so that ord,(1 - 6(a)(a)) = ord,(1 —Cg + Cgp) = ord,(1 —Cg). As 6 runs
through the characters trivial on 1 + p””Zp, Co runs through all p"-th roots of unity.

We therefore have that
1 1 _n
- —=p",
]0:1[ 1-06(a){a) CH 1-C

n

P =1
c=1

where ~ means equality up to a p-adic unit.

Let us now turn to the integral JZX O(x)(x)x~! - p,. We claim that it is a p-adic unit. As
p

O(x) is a power of Cy, we have O(x) = 1 mod 1-Cp, and of course (x) = 1 mod p, so that
O(x){x) =1 mod 1 — Cqy. Thus it suffices to show that fzx x71- p, is a unit.
p

[x=yl
[xyl

. -1 . ‘ , s
constant function Zle r‘lalZp approximates x! up to order p’ in the sense that

Note that for x,y € Z%, we have [x! —p~1| = = |x —y|. It follows that the locally

—_

p-
x—l

r_l 1r+pr (X) mod p

ﬂ
i
—_
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for all x € Z,. Thus fzx x oy, = Zf;ll r1 mod p. We now calculate that
p

r+prV“

a =5 es 0
=p) T, (C-1)
cP=1

=p ', (0)+p"! UZZI Cr(cua_l - Clj)

c=1

+
27 b=1-C

We claim that this last sum is equal to r — %. It suffices to show that this holds for
r =1 and that the difference between the sums for r + 1 and r is 1. The case r =1 is
simple: it becomes

1 D, (1) (1-p)
——1 = - _]- = ’
Cp;(l—c ) @, (1) P-=—
c=z1

where qu is the p-th cyclotomic polynomial. Next, for r = 1,...,p — 2, we have that

Cr+l Cr 1_Cr 1 Cr+l
—1-C 1-C 4=1-CT 1-C
(€3 til
-y
cP=1
Cc=1

as was to be shown.

All in all we find that prZ pa=1—5, so that
P

p-1
-1 E -1
X . = r
J; Ha J:+prya

X
P r=1

3
AN

l1=-1modp

ﬂ
1l
—_

In particular, it is a unit as claimed.
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We have shown thus far that

Z_EN [T Brow ~[T] ] to@’00= [ [ fitcot+p)-1).

0,w' =1 0=1 =0 =1, 120

i even 1 even Cil 1 even
Write f;(T) = p# P;(T)U;(T) with P, distinguished of degree 1;, and U; a unit. Choose
ny such that A; < p™ — p™~1 for all i. If { is root of unity of order p*, then ord,(C(1+
p)-1)=ord,(C-1)= pk—;pk’l' Thus for k > ny, we have

ord, (P(C(1+p)-1)) = A;ord,(C ~1).

It follows that for n > n,,

I
ordp(h—f) =ulp"-1)+ Z ord,(P(C(1+p-1)))
0

Cpnzl
€3

=u(p" 1)+ ) ord,(C-1)+C

=1
c#1

=up" +An+(C—p),

where
C= Z ord,(P(C(1 +p) - 1)) —ord,(C ~1).
CP”CO"1=1

Thus we have shown that
ord,(h,) = pup" + An+v

for n > ng, with v = C — p+ ord, (hy). O

It would be remiss not to mention the following remarkable result of Ferrero and

Washington regarding the y-invariant, that actually holds true for more general num-
ber fields.

THeOREM 2.2.2 (Ferrero-Washington). Let F be an abelian number field. Then the
p-invariant of the cyclotomic Z,-extension of Fj vanishes.

Proof. See | , Theorem 7.15]. O
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As mentioned, so far the equality ord, h, = ord, h; has been verified for all p < 231
in | |. The same paper also verified for all these primes that y = 0 (which we
also know to be true by the Ferrero-Washington theorem) and A = v = i,, where i,
is the number of L-functions fz,...,fp_3 which have a zero, known as the irregularity
index of p. Note that we always have i, < A, with equality if and only if all L-functions
have at most one zero. In particular, we can take 1y = 1 in the preceding theorem.
Lastly, by the interpolation formula f;((1 + p)k -1)= Lp(a)k,l -k)=-(1 —pk_l)% and
the Weierstrass preparation theorem, f; has a zero if and only if By is divisible by p.
Combining all of this, we get the following practical result.

Taeorem 2.2.3. If p < 23!, we have that

ord, (#C(Q(Cpn))) = An

for all n > 1, where A is the number of Bernoulli numbers B,, By,---, B,_3 that are
divisible by p.

§2.3 Examples of p-adic L-functions

The results from the previous chapter motivate us to look at how one might compute
the A-invariant for a prime by considering their p-adic L-functions. By the Weierstrass
preparation theorem and the Ferrero-Washington theorem 2.2.2, the number of zeros
of a power series ) ,-,a,T" is equal to the smallest index n for which g4, is not di-
visible by p. Thus to find the A invariant, it suffices to find an approximation of the
L-functions that is accurate modulo p.

Lemma 2.3.1. Let f € Z,[T] be a power series, and let g € Z,[T] be a polynomial that
agrees with f in at least n points. Then f = g mod (p, T").

Proof. By the Weierstrass preparation theorem, we may write f(T)-g(T) = p#P(T)U(T)
with P a distinguished polynomial of degree at least n, so that P =0 mod (p, T"). [

Consequently, to find our modulo p approximation up to a certain number of terms,
we only need to find a polynomial that agrees with f; in a certain number of points.
But this is easy: after all, we know that f;((1 +p)k-1) = —(1-pk! )% forall k =i mod p—
1. We do however need to be careful that the resulting interpolating polynomial is
actually a polynomial over Z,, otherwise we cannot apply the above lemma. Using
this method, we find for instance that for p = 5, the power series f, is given by

H(T)=2+T+T3+T*mod (p, T°).
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Note that f, is in this case the only interesting power series, since f; is not a power
series, and fi, f; are identically zero.

As an another example, the Iwasawa power series for p = 11 are given by

£(T)=10+ 5T+6T>+7T%+ T*mod (p, T?)
fi(T)=10+10T +8T?+3T3+8T* mod (p, T>)
fo(T)=1 + 9T +5T?+7T3+6T* mod (p, T°)
fo(T)=5 +10T +8T%+8T3+4T* mod (p, T°)

We can see that none of these series so far have constant terms which are divisible by
p, which is to be expected, since 5 and 11 are regular primes. The smallest irregular
prime is p = 37, for which the 32nd series has a zero:

f52(T)=21T +8T%+35T3 +15T* mod (p, T°).

This agrees with the fact that B3, = -37 x % is divisible by 37, and that the
class number of Q(C37) is 37.

The smallest prime for which multiple series have a zero is p = 157, and it concerns
the following series:
fea(T)=48T + 65T+ 28T +142T* mod (p, T°)
fi10(T)=51T +128T? +16T° +139T* mod (p, T°)

A remarkable class number computation has shown that the class number of Q(C;57)
is equal to
5-13%2.1572.1093 1873418861 - 3148601.

Note the factor of 1572, which agrees with what we expect from looking at the L-
functions. The next few primes for which two series have a zero are p = 353,379,467.
Not long after, we find the first prime for which three of the power series have a zero,
namely p = 491:

fo02(T) = 456T +189T% + 268T° + 282T* mod (p, T°)

f336(T) = 103T +240T? + 233T3 + 232T* mod (p, T°)
f338(T) = 475T + 98T%+342T° +296T* mod (p, T)

Even though we have no idea what the class number of Q(C491) is, this definitively
shows not only that this number is exactly divisible by 4913, but also that the class
number of Q((49;2) is divisible by 4919, that of Q(C49;3) is divisible by 4917, etc, even
though we will probably never know what these class numbers are.
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Now, what if we are interested in finding more accurate approximations of p-adic L-
functions? We can still do this by finding a polynomial that interpolates certain values
of the L-function, except that the points have to be chosen more carefully to guarantee
a higher p-adic accuracy.

ProrosiTioN 2.3.2. Let 4 be a measure on Z3, and let P, ; be the polynomial

p 1p” 1
w'( 1+p)]+p”+IZ (1 +T).
=0

=~
Il
—

.

Then if C is a p"-th root of unity, and 6: Z; — 6; is the character trivial on p, 4
with (1 + p) = C, we have that

P,(C-1) :f Ow' - .
p

Proof. This follows immediately upon noting that Z is the disjoint union of the sets
w(k)(1+p) + p”+1Zp, and that on such a set, Qw' is constant with value w'(k)¢/. O

In particular, applying this to the measures A, and [1] — [4] from Chapter 1, we get
polynomials that agree with the power series g; and h; from Theorem 1.5.4 in the
values C — 1. Thus the difference between our approximation and the true power
series will be divisible by ¢"(T) = (1 + T)P" — 1. The coefficients of this polynomial are
of course the binomial coefficients ( ) which become more and more divisible by p
as n increases. For instance, for k = 0 ..,p— 1 they are divisible by p", so that the first
p terms of our approximation are accurate modulo p”.

Proposition 2.3.2 appears in | | (though with i = 0) as a way to compute p-adic
L-functions of elliptic curves. It is also the basis for SageMath’s built-in algorithm
for computing these L-functions. Curiously, Sage has no built-in methods to compute
the Kubota-Leopoldt p-adic L-functions discussed in this thesis. Luckily, the tech-
niques described above are easy enough to implement.! This way, we can for instance
compute the 32nd L-function for p = 37 that is accurate modulo p°:

f52(T) = (30-37 +31-37%)+ (21 +30-37 +25-37%)T
+(8+6-37)T2+(35+6~37+6-372)T3
+(15+4-37+3-37%)T* mod (p°, T°)

Lror example, see https://gitlab.com/niels-ketelaars/iwasawa
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Using the mentioned code to do this already reveals a big weakness: computing the
above series already takes almost 5 minutes on standard hardware. Trying to compute
a series for p = 157 with a similar accuracy is already infeasible.

§2.4 Heuristics for Iwasawa invariants

From the examples we have seen, it appears that the A-invariant of a prime is usu-
ally not that large. It is almost always 0, and was shown in [ ], it is always
smaller than 10 for all p < 23!, Furthermore, for all these primes there is actually no
L-function which has more than a single zero. This suggests that we can always take
no =1 in Theorem 2.2.1. In this section we analyze some heuristics for why this might
be the case.

Let us denote by i, the irregularity index of p, which is defined to be the number of
p-adic L-functions f,,..., f,_3 which have a zero. We have remarked that i, = A for all
primes below 23!, Is this what we expect to happen in general?

We will make the following assumption:

The coefficients of each Iwasawa power series are independently, uniformly
distributed modulo p.

We will show that we expect that for all but finitely many primes, A <i, +1. There
are two ways in which this inequality can fail to be true. The first is that one of the
L-functions has three zeros, or equivalently, has its first three coefficients divisible by
p. Under our assumption, the probability that for a given series at least one of its first
three coefficients is not divisible by p is 1 — p~3. Thus, the probability that this holds
for all (p —3)/2 series is (1—p~3)P~3/2, Consequently, we have with probability 1—(1—
p~3)(P=3)/2 that some series has its first three coefficients divisible by p. Because

-(1-p )2 < P22 0p),
the sum of these probabilities over all p converges. This implies (for instance, via
the Borel-Cantelli lemma from probability theory) that with probability 1, it happens
only finitely often that some L-function has three zeros.

The second way in which it can happen that A > i, +1 is if at least two series have their
first two coefficients divisible by p. Using the same reasoning as above, we have a
probability of (1 —p~2)(P~3/2 that no power series has its first two coefficients divisible
by p. Similarly, the probability of exactly one series having this property is

((p —13)/2) (1 ~ p_2)<p—3)/2—1 b2
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Thus the probability that at least two power series have their first two coefficients
divisible by p comes down to

1- ((1 _pY)P32 g ((P —13)/2)(1 _p—z)(P*WZ*l p—z) —0(p2).

Thus we should also expect this to only happen finitely often. It should therefore
hold that A < i, + 1 for almost all p. In particular, we see that most of the time, an
L-function has at most 1 zero. If it does happen to have 2 zeros, then it is most likely
the only L-function for that prime to have multiple zeros.

§2.5 Towards the Main Conjecture

Looking at the proof of Theorem 2.1.2, we see that the A-invariant is precisely the
number of zeros of a generator of the characteristic ideal ch(%,). On the other hand,
Theorem 2.2.1 tells us it is the number of zeros of the product f = []; oyen fi Of the
p-adic L-functions. This begs the question: is this product perhaps a generator for the
characteristic ideal of %,?

First note that the A from Theorem 2.1.2 is different from the one in 2.2.1. The first
has to do with the class numbers h,,, while the latter contributes only to the relative
class number h;. Thus the above conjecture on the characteristic ideal is certainly
stronger than the Kummer-Vandiver conjecture that ord, h, = ord, h;,. It seems that
we cannot reasonably hope to answer our question. We could of course assume the
Kummer—Vandiver conjecture (and we even know that is true for all p < 23!) and see
if that leads to a proof, but we can actually refine our question on the characteristic
ideal in a way that it is independent from Kummer-Vandiver.

Let G, = Gal(F,/Q), G} = Gal(F;;/Q) and similarly define G = Gal(F..,/Q) = I x Gg
and G* = Gal(F%,/Q) =T x Gj. Note that our action of T on %, extends in an ob-
vious way to an action of G. We may identify Gy with (Z/pZ)*, in which case every
character of Gy is given by a power of the Teichmiiller character w. Recall that we
have idempotents e; = ﬁzﬂGGo w'(a)a!] € Z,[Go], which allow us to decompose
Yoo = @i ei¥s. Lete, =) i ovenei and e_ =1 —e,. Then in fact e, %, is naturally iso-
morphic to Z = Gal(L{/Fg,). It follows that e, %, has order ord, hj;, and hence e_%,,
has order ord, ;,.

Thus we can now ask, is the characteristic ideal of e_%/,, generated by the product of
the L-functions? If the Kummer-Vandiver conjecture is true, we have e, %, = 0, and
this question therefore reduces to the previous one. But we can try to be even more
precise. We still have a decomposition e_%, = . 4%, and so we could even
ask if the characteristic ideal of ¢;%,, is generated by some individual L-function. It
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cannot of course be generated by f;, since this power series is identically 0 for 7 odd.
The correct answer turns out to be the following;:

THeoreMm 2.5.1. For i Z 1 mod p —1 odd, we have that

chieiFen) = fy-i (1oL -1)A.

This is known as the Main Conjecture of Iwasawa theory (even though it is a theorem
nowadays, the name has stuck). It was first proven by Mazur and Wiles | | using
modular forms. Later a simpler proof was found by Karl Rubin | , Appendix]
using what are now known as Euler systems. The rest of this thesis will be dedicated
to studying this proof.

We first mention that the version of the Main Conjecture mentioned here is slightly
different from the version that is usually encountered, which is also the version we
will prove. Let M,, be the maximal abelian p-extension of F, that is unramified away
from p, and let &, = Gal(M,,/F,). Define M, and &, analogously. In the same way as
Yoo» & is A(G)-module, which is in fact finitely generated. Furthermore, if V is any
A(G)-module, let V' denote the A(G)-module with the same underlying group, but
where the action of G is now defined as g- v := x(g)g~'v, where the latter expression
is taken to mean the original action of G on V. Iwasawa [ ] showed that for each
even i Z 0 mod p - 1, the A-module ¢;Z, is pseudo-isomorphic to e, ;Z,. On the
level of characteristic ideals it is seen that this implies that the Main Conjecture can
be equivalently stated as follows:

THeOREM 2.5.2. For i 2 0 mod p —1 even, we have that

ch(e; ) = fiA.
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3 Local units and power series

Since the Main Conjecture concerns certain modules over the Iwasawa algebra A =
Z,[T], it makes sense to start with a more thorough study of this ring itself. We do this
by introducing two important operations: the norm and the logarithmic derivative.
We start by studying the norm map, and use it to prove a theorem of Coleman, which
relates certain power series in A to units in completions of cyclotomic fields. After
this, we turn to the logarithmic derivative, which gives us a way to relate the norm
map to the trace map from Chapter 1. As a result we will be able to derive multiple
exact sequences giving us insight into the structure of the Iwasawa algebra.

The presentation of this material is heavily inspired by [ , Chapter 2], though we
have tried to be more clear and give simpler proofs in a number of places.

§3.1 The norm map

Our goal in this section if to prove the following proposition, which asserts the exis-
tence of a multiplicative analogue of the trace map . Recall that the Frobenius map
¢@: A — A was defined by ¢(f) = f((1+T)? - 1).

ProrosiTion 3.1.1. There exists a unique multiplicative map A : A — A such that

(o N)(f ]_[f (1+T)y—-1)

Proof. Uniqueness follows from injectivity of ¢. For existence, we first show that a
power series f is in the image of ¢ if and only if it satisfies f((1+T)n—1) = f(T) for all
11 € pp. Indeed, suppose f has this property. Then f (1 —1) = f(0) for all 17 € p,,, and by
the Weierstrass preparation theorem, f(T)— f(0) must be divisible by [1,,_;(T —7) =
@(T). If we write f(T)— f(0) = @(T)f1(T), we see that f; also has the property that
H(1+T)n-1)=fH(T Thus we may write fi(T) - f,(0) = ¢(T)f,(T). Continuing this
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indefinitely, we obtain a sequence ay,ay,... such that f(T)-Y}_, ak(p(T)k € p(T)" 1A
(where ay = f(0), a1 = £1(0),...). Since ¢(T) € (p, T), we may take n — oo to obtain that
F(T) = @(Lrz0akT")-

Now, for any f € A, the power series h(T) = ]_[,]pzl f((1+T)n—-1) satisfies the hypothesis
that h((1+T)n—1) = h(T) for all i, so it lies in the image of ¢. Therefore we may define

[1ﬂu+Tm—n}
nP=1

which satisfies the desired relation. O

N(f)=¢"

Note the similarity of this result with Proposition 1.2.1. Being the multiplicative ana-
logue of the trace map, it is aptly named the norm map. The next proposition tells us
that the procedure of iterating the norm map enjoys some nice convergence proper-
ties.

ProposiTiON 3.1.2. The norm map has the following properties:
1. If f € AX, we have NV (f) = f mod pA.
2. If f =1 mod p*A, then NV (f) =1 mod p**1A.
3. If f e AX, ky > k; >0, then N*2(f) = Nk (f) mod pFi*TA.

In particular, point 3 implies the sequence N"(f) is Cauchy, and hence convergent.
To prove the proposition, we need a lemma.

Lemma 3.1.3. Let f € A. If ¢(f) =1 mod p*A, then f =1 mod p*A.

Proof. Note that ¢(T) = T? mod pA, and therefore ¢(h) = h(T?) mod pA for he A. In
particular, p | hif and only if p | ¢(h).

Now suppose f € A is such that ¢(f) = 1 mod p*A. Write f —1 = p™h, with h € A,
p t h. We wish to show that m > k. We have that ¢(f)—1 = p™¢(h), and by the above,
pt@(h). Therefore m >k, as desired. O

Proof of Proposition 3.1.2. Denote by p, the maximal ideal of Z,[u,]. Suppose that
f e A* satisfies f = 1 mod p*A. Since for 1 € pp we have (1+T)ny—1 =T mod poA,
we find that f((1+ T) —1) = f(T) mod pop*A. Hence, p(N(f)) = f(T)P mod pop*A.
Because @(N(f))— f(T)P € A, this is in fact a congruence mod A Npop*A = pF*1A.

Taking k = 0, we see that any f € A satisfies (N (f)) = f(T)P = ¢(f) mod pA. Ap-
plying Lemma 3.1.3 to N(f)/f then yields that N (f) = f mod pA. If k > 1, then
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any f = 1 mod p*A satisfies (N (f)) = f(T)? = 1 mod p**! A, and again Lemma 3.1.3
yields that A'(f) = 1 mod p**! A. This takes care of the first two assertions.

Finally, the first part shows that N*27%1(f)/f = 1 mod pA for f € A*. The last part
then follows from the second upon applying M¥i to both sides. O]

§3.2 Coleman’s interpolating power series

Denote by %, the unit group of the ring of integers of K,, = Q,(ppn+1). Let us fix a
system {11,,},, where 1, € K,, is a primitive p"*!-th root of unity, with the property that

775+1 =1],. Also write 7, = 1, — 1, which is a uniformizer for K,,.

Because K, is totally ramified over Q,, we can write any element in its ring of integers
as a power series in 7, with coefficients in {1,---,p — 1}. In particular, we find that for
each n and u, € %,, there is a power series f,, € A such that f,(n,) = u,.

Let %, = @%n, where the limit is with respect to the norm maps. It was the amazing
insight of Coleman | | that if we choose u = (u,), € %, then there is a unique
power series f such that f(m,) = u, for all n. Our goal in this section is to prove this
theorem.

To see how we might find this power series, let us remark the following: if f € A*
satisfies N'(f) = f, then (f(71,,)),, € % This is because in general, we have

W F)) = (9o N ) = [ | FOmmn=1) = Nii, , (f (70):
€Up

Thus to find an interpolating power series for a system of units u € %,,, it seems like
a good idea to consider norm invariant power series. If we denote by (AX)V=! the set
of f € A* with N(f) = f, we will prove the following theorem:

Tueorem 3.2.1. For u = (u,), € %, thereis a unique f, € (A*)N=1 such that fulmt,) =
N=1

u,, and the map u > f,, is an isomorphism %, — (A*)

Proof. By the Weierstrass preparation theorem, an non-zero integral power series has
only finitely many zeros in Z,, from which the uniqueness follows at once.

Let u = (u,), € %-. Choose a power series f, € A with f,(n,) = u,. Consider the
sequence g, = N"™(f5,,). Because A is compact, this sequence has a convergent subse-
quence, whose limit we denote by g. We claim that this g is our desired f,.

Recall that for general f € A* we have that

(Nf)(nn—l) = NF,,/F,,_I (f(nn))
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In particular, u,_; = N*(f,)(1,_¢) for k < n. Consequently, we find that for m > n,
u, = N?""(f,,.)(1,). By Proposition 3.1.2, N2""(f,,) = N™(f,,,) mod p™'A. In
particular, u, = g,,(7,,) mod p™*! and therefore g,,(1,,) — u, as m — co. Thus g(mn,) =
Uy,.

Because the power series f = N(g) also satisfies f(7,) = u,,, the uniqueness implies
that V(g) = g, so g € (AX)V=1, O

In fact, a little more is true. As before, let us write G = Gal(F,,/Q) = Gal(Koo/Qp). Then

G acts naturally on %,,. It also acts on A by o f = f((1 + T)*(?) - 1), where x: G — Z,
is the cyclotomic character. Then we can see that the isomorphism %, — (A*)V=1 is

in fact G-invariant as well.

Example 3.2.2. Of course the Coleman power series for the units (1), is simply 1+ T.
A more interesting example is given by the cyclotomic units

£ o= ni? = qeaani-1
na — — =Hn ’
71711/2 — 1 1/2 Ny —1

where a € Z is coprime to p. It is a nice exercise to show that &, = (&,,,) € %w- Its
Coleman series is

—

1+T)Y2—(1+T)¥? an(1+T) -1
1/2 ( o = (L T)!="2 :
1+T)2-(1+T) T

—_

The cyclotomic units will be studied in more detail in the next chapter, and play an
important role in the proof of the Main Conjecture.

§3.3 The logarithmic derivative

Given a unit power series f € A, define its logarithmic derivative to be

_of o fAD)
=7 Uy

It’s clear that A: A* — A is a group homomorphism. Furthermore, the identity

A(f):

Ao N =¢oA (3.1)

is easily verified. Thus A acts as a bridge between the multiplicative norm and ad-
ditive trace map. In particular, we see that A((AX)NZI) c A¥=!, where (AX)V=! as
before denotes the unit power series satisfying NV (f) = f, and A¥=! those power series
satisfying ¢(f) = f.
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Remark 3.3.1. Let
(1+T)*-1

T

be the Coleman power series of the cyclotomic units &,. Its logarithmic derivative is
equal to

f — (1 + T)(l—a)/Z

a-1 N a 1
2 (1+T)yi-1 T
which we recognize as being (up to a constant term) the power series used to construct

the pseudo-measure C, in the first chapter. By the above, this power series is equal to
its own trace, from which Lemma 1.4.2 follows immediately.

The rest of this section will be devoted to showing that the inclusion A(AN=1) ¢
A¥=lis in fact an equality.

PROPOSITION 3.3.2. We have that A(AX)V=1) = A¥=1,

Before we begin the proof, we need the following auxillary lemma.

Lemma 3.3.3. For n > 1, we have that

zp(l;T(p(T)”): 1;TT”.

Proof. Note that while we defined A only on A*, its defining expression of course
makes sense for any non-zero power series (as an element of the field of fractions of
A). Applying A to both sides of the equation

o(T)=| J(1+T)-1)

nP=1

14T (1+7T)
W( ; ):n;qﬁu;)—r

Multiplying by %(p(T)” yields that

we obtain that

[ r)=vov(Ser)

Injectivity of ¢ then gives the desired result. O

Proof of Proposition 3.3.2. We have already remarked that A(AX)V=1) c A¥=!. The

hard part lies in showing the reverse inclusion. If A C A, we write A for its image
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in F,[T]. The idea will be to first show that A((A*)N=1) = A¥=1, and then that this
implies the proposition. The proof proceeds in several steps.

Step 1: (AX)VN=1 =F,[T]".

Let f € A*. Then by the last part of Proposition 3.1.2, the sequence N'"(f) is Cauchy.
It therefore converges to some power series g, which must satisfy A'(g) = g (so g €
(A*)N=1) and g = f (by the first part of the same proposition).

Step 2: F, [T] = A(F,[T]*) + -

TPE,[T*].

Suppose g € F,[T]. Write HLTg =) .04, T", and define a new power series

"L )T

p)=1 k>0
Then 1+Tg h € TPF,[TP], so it suffices to show that Llh e AF PITT). We will
inductively construct a sequence a; € F, such that for all m,

m

h— ZA(l ~a;T') e T"F,[T].
i=1

1+T

h,, = T

The case m = 0 is vacuous. Now suppose we have found ay,...,a,,_y. Write h,,_; =
# Y ksm Ak Tk. Observe that

Al —a;Ti) = - ; Y ik
k>1

From this and the definition of h, it follows that dj = d, for all k.

Now, if d,, = 0, we may take a,, = 0. Otherwise, by the previous remark m is not
divisible by p, and we may take a,, = -m~'d,,.

By construction, h,, — 0 (in the T-adic topology), so we have 1+Th Yis1 Al —a;T).
Thus we see that A([];51(1 - a;TY) = %h.

Step 3: A¥=1 = A(F,[T]") = A(AX)V=1).

Let f € A¥=!. By the previous steps we may write f = A(a) + b mod pA for some
ae (AXN=1b e A, with b of the form #Zmzl d,, TP™. Because A maps (AN=1 to
AY=1, we see that 1)(b) = b mod pA. From Lemma 3.3.3 it now follows that

Zd Tm]] 1+TZd T™ mod pA.

m>1 m>1

1+T

b=(b)= (

36



Thus d,, = 0 mod p, and f = A(a) mod pA.
Step 4: AV=! = A(A)V=N).

Let f, € A¥=!. By the previous step, there exists a gl € (AX)N=1 such that A(g) = fo —
pfi for some f; € A. Since A maps (AX)V=! to A¥=!, it follows that we must also have
fi € A¥=!. Hence there existsa g, € (A*)N=1 such that we can write A(g,) = fi —pf, for
some f, € A. We may continue this 1r1def1n1tely to obtain a sequence of power series
gi € (AN)N=1, f; € A with the property that A(g;) = fi_; — pf;. Define

1 i-1 _
h, = ]_[gf e (AN,
i=1

Then A(h,) =Y p' "' A(gi) = fo— p" f,, s0 A(h,,) — fo. Hence any limit point & of the
sequence h,, satisfies A(h) = f,. O

§3.4 Some exact sequences

In this section we will construct a number of exact sequences using the maps ¢, 1, N'
and A. We will see that these sequences give us more insight into the process from
Chapter 1 where we constructed the ¢ measure. Especially the last sequence will
play in important role in the next chapter in connecting the ¢ measure to the units

%..

One important step in the construction in Chapter 1 was restricting the measure
Ha on Z, to Z;. Because §(p,) = p,, restricting to Z; was the same as applying
the map 1 — ¢@. Our first exact sequence describes the kernel and cokernel of this
map.

ProrosiTioN 3.4.1. There is an exact sequence

0—>Z —>A¢1 A¢O—>Z —0

where the map A¥=0 — Z,, is evaluation at 0.

Proof. First note that since ¢ o ¢ = Id, (1 — ¢) indeed maps A¥=! to A¥=0. Also, we
have ¢(1 + T) = 0, which shows surjectivity of the last map.

The only remaining non-obvious parts are the exactness at the middle two terms. For
the first, suppose f € A is non-constant. Write f =ay+a,T" +... with a, # 0. Then
o(f)=ag+p"a,T" +---# f, and hence we have exactness at A¥=1.
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Lastly, we need to check exactness at A¥=!. It is clear that f(0)— ¢(f)(0) = 0. Suppose
f € A¥=0 satisfies f(0) = 0. A straightforward induction shows that ¢™(T) € (p, T)",
and hence ¢"(T) converges to 0. As f is divisible by T, we also get that ¢"(f) — 0.
Consequently, the series ), @"(f) converges to an element h, which satisfies p(h) = h
and (1-¢)(h) = f. O

We now define the so called canonical map.

Lemma 3.4.2. If f € A%, the expression

1 [ fTP
p o8 ((p(f)(T))

defines an element of A, and L(f) € A¥=Cif f € (AN=L,

L(f) =

Proof. Here log is defined by its usual power series log(x) = Zle(—l)m’lw It is

P
immediately seen that for h € 1 + pA, log(h) converges to an element of pA. Because
@(f)= f(T)? mod pA, it follows that L(f) € A.

Now suppose f € (AX)V=1. This means that

o(f)=| [ fna+1)-1).

Nekp
From this it readily follows that
1
PORL) =2 ) L1 +T)=1)=0. O
€Up

The canonical map is defined this way precisely to make the following square com-
mute:

(AX)NZI Ly A¥=0

b b

AV=1 T AP=0

Note that in our original construction of Cp, we started with a power series in AY=1
corresponding to a measure p,. We restricted this measure to Z; (which is the same as

applying 1 -¢) and divided it by x~! (which in terms of power series is the same as ap-
plying the inverse of d, since multiplication by x corresponds to applying d). By now
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we have also seen that our original power series is the logarithmic derivative of an ele-
ment of (AX)V=1, so our entire construction in Chapter 1 is essentially an application
of the canonical map. This can be summarized by the following proposition.

Lemma 3.4.3. Suppose f € (AX)V=1_If y is the measure associated to £(f) under the
Amice transform, then y is supported in Z, and

L 2 u(x) = (1= 1) - (91 0 AY(F)(O)

X
P

Proof. By Lemma 3.4.2 we have (p) = 0, so that p is supported in Z; by Lemma 1.2.2.

Hence
k. — k.

p P
The last integral is exactly okL( £)(0). From the commutative square above and the
additional identity do ¢ = p(¢ o0 d), the desired expression for the integral follows. [

Example 3.4.4. Let us once and for all hammer home how the canonical map gives us
the measure from Chapter 1. Let

)/2(1 +T)a—1

f=@1+T)1™ =

It is an element of (AX)V=! because it is the Coleman series for the cyclotomic units
&, We have seen that its logarithmic derivative is

a-—1 a 1

2 TA+Ty-1 T

By the previous lemma, letting y be the measure associated to £(f), we have

_ B

[ et =—a-p i -ah 2

Z;

We of course already know a measure with these exact moments, namely A, = ([1] -
[a])Cp- Thus by Lemma 1.4.4, we have p = A,.

The following proposition determines the kernel and cokernel of the canonical map.
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Prorosition 3.4.5. Let A = {n(1+T)" | 1 € pp_1,a € Z,}. Then we have an exact
sequence

0—A— (AN E A0 7,0

where the last map is given by f + (df)(0).

Proof. It is easily checked that £ maps A to 0. Conversely, if £(f) = 0, then by injec-
tivity of log we have f(T)? = f((1+ T)P —1). Writing f = f,, we then have u, = u,_,
and 1 = f(0) € p,_1. Hence nlue hgy,,m so we can write it as (1), for some a € Z,,.
Then f =n(1+T)* € A.

Finally, exactness at A¥=0 follows from a simple diagram chase in the following com-
mutative diagram,
(AX )N =1 _£ s AY=0 s Zp
Js b

AV AV —— 7,

using that d is injective on A¥=?, A is surjective (Proposition 3.3.2) and the bottom
row is exact (Proposition 3.4.1). O

Let T,(Gy) = hﬁypn C U As before, we let G = Gal(F.,/Q) = Gal(K,,/Q). Using

the Coleman isomorphism we may identify %, with (AX)V=1, and via the cyclotomic
character we identity G and Z;;. This way we may view the canonical map as a way of
constructing measures on G from compatible systems of local units.

CoroLLARY 3.4.6. There is an exact sequence of G-modules

0— Hp-1 X% Tp(Gm) = %oo = A(G) = Tp(Gm) — 0.

Proof. This is simply the sequence in Proposition 3.4.5, where we have identified
(AX)N=1 with %,, using Proposition 3.2.1, and A¥=? with A(Zy) = A(G) using Lemma
1.2.2 and the cyclotomic character. O

40



4 Global and cyclotomic units

In the previous chapter, we saw the relation between local units and measures. Exam-
ple 3.4.4 in particular showed us the connection between the units

B Ny = aiaani-1
61’1 a 9/, _1/0 —_ 1

: V2,7 Mn o — 1
and the pseudo-measure C,. In this chapter we explore this connection further, and
use it to prove a theorem of Iwasawa | ], which describes the characteristic ideal
of a certain A-module arising from these local units in terms of p-adic L-functions.
We then use class field theory to relate this module to &, thereby getting us closer to
a proof the Main Conjecture.

§4.1 The group of cyclotomic units

Definition 4.1.1. We define the group of cyclotomic units of F,, denoted &,,, to be
the intersection of Of with the subgroup of F;; generated by

pn+1_1
1<a< .
Sas 2

{iﬂm Mo — 1

We will also denote by 6, the closure of &, inside of K,,.

The group of cyclotomic units certainly contains the aforementioned &, ,. By the
Dirichlet unit theorem, the group of cyclotomic units &, (as well as its real coun-
terpart &, = &, NF;}) has rank at most w —1. The following proposition provides
us with an explicit set of of w
of cyclotomic units.

— 1 many generators for the free part of the group
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ProrositioN 4.1.2. The following hold:

1. The group of real cyclotomic units &, is generated by —1 and
(Enal 1 <a<tr(ap)=1)

2. The group of cyclotomic units &), is generated by #,, and &, .
3. If a generates (Z/p"*'Z)*, then &, , generates ;1 /{+1} as a Z[G;;]-module.

k_ o n+1-k
Proof. From the fact that for k < 1 we have XP' —1 = - 1(X P —1), we get that
7j=0 1’] g
k k_l k
b b+i n+1-,
R T I (U Y}
j=0

This implies that in our original generating set for &,, we may restrict to a4 coprime to
p.

Now suppose we have an arbitrary cyclotomic unit & € &,,. By the above, we may

write
=y | | wi-ve,
(ap)=1

n+l_
where the product runs over all a coprime to p from 1 to 2 L. All the factors =1

have the same p-adic absolute value, while the left hand side has absolute value 1, so
that )_e, = 0. Therefore we can write

11_1 €
e=2ni | (—Z”_l) =2 [ ] &
(ap)=1""" (ap)=1

Point 1 and 2 now follow upon noting that &, , is real, so that £ € & if and only if
e=0.

The last point follows by observing that

= (@—ai*1)/2 U“jﬂ -1
a’—a
fnar = ™
=0 fn —1
and that all the factors in the product are Galois conjugates of &, ,. O
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Remark 4.1.3. It is in fact even true that the group of cyclotomic units has finite index
in the full unit group. In other words, it has maximal rank and the set of generators
provided above are actually a basis for the free part. Explicitly, it can be shown using
the analytic class number formula that

0% 2, =0}, : &) = hi.

This equation is one of the key ingredients in connecting the cyclotomic units to the
class group. To get an idea for why it is true, note that the class number formula
for the field F;; says that the product []L(x, 1) over the non-trivial even characters of
conductor dividing p™*! is essentially equal to Reg((’)ff)h;. Furthermore, we have the
classical formula that L(x, 1) is essentially given by 7

Y x(@)Moglt - .

aE(Z/p”*lZ)X

Some (elementary, though non-trivial) algebraic manipulations show then that the
product [TL(x, 1) is exactly equal to the regulator Reg(Z,") of the cyclotomic units.
We obtain the formula since the quotient of the regulators of the full unit group and
the cyclotomic units is precisely the index [O;; : 7). For details see [ , Chapter
3, Theorem 5.1].

Denote by %, the subgroup of %, consisting of units which are = 1 modulo the
maximal ideal. If H C %, is any subgroup, we let H; = HN%,,;. The reason for
restricting to only these units is because %,,; is a pro-p-group, and so has a natu-
ral action of Z,. Combined with its Galois action, this means that %, is a A(G)-
module.

Cororrary 4.1.4. The group 6, is a cyclic A(G*)-module. It is generated by

w ()&, = (a)_l(a)én’u)n, where a € Z is a topological generator of Z;.

Proof. The Coleman power series of &, is (1+ T)(l’“w%, which has constant term
a. Therefore &, , = amod 7, so w!(a)&,, € U, Because %, is a Z,-module and
p—1 a p-adic unit, we can write

0 N (@) q = (07 (@)E )PP

with (071 (a)&,,,)P! = éﬁ;l € Z,. This shows that w™!(a)&,,, € G-

To see that this element generates € |, it suffices to show that w‘l(a)én,a generates

%+

1 asaZ,[G}]-module. Any element of €, may be written as &%, with & € 2, and
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d € Z,. By the previous proposition, we may write & =[[,c¢: 0(&;,4)°, in which case

1/(p-1)
E=|[ ] o@ @) €Z,[Glo™ (@& O

oeG}h

§4.2 Iwasawa’s theorem

Recall that any A(G)-module M could be decomposed as e, M @ e_M. In particular,
we can write A(G) = e, A(G) x e_A(G). Similarly as in Lemma 1.3.6, we can show that
e, A(G) is naturally isomorphic to A(G*). The isomorphism G — Z; allows us to view
the pseudo-measure Cp as a measure on G. In fact, because all odd moments of CP
are 0, this means that it actually descends to a pseudo-measure on G*. To remove the
hassle of having only a pseudo-measure instead of a bonafide measure, we introduce
the augmentation ideal.

Definition 4.2.1. The augmentation ideal 1(G) of A(G) is the closure in A(G) of the
regular augmentation ideal {} ,c;ag[g] | Y oecay = 0} € Zy[G]. Equivalently, it is
the inverse limit of the augmentation ideals of Z,[G,].

We know if K is a cyclic group generated by k, the augmentation ideal of Z,[K] is
generated by [1] —[k]. It readily follows that I(G) is generated by [1]—[o,], where a
topologically generates Z; and o, satisfies %(0,,) = a. From the definition of a pseudo-
measure, it is now immediate that I(G)C,, is an ideal of A(G).

The following theorem of Iwasawa makes very explicit the relation we have been ob-
serving between cyclotomic units and the pseudo-measure C,.

TueorEM 4.2.2. There is a canonical isomorphism of A(G*)-modules

UL /Gty = MGG,

Proof. Consider the exact sequence
0— Hp-1 X Tp(Gm) — U — A(G) — Tp(Gm) —0
from Corollary 3.4.6. Because %, = pip_1 X %,1, We also get an exact sequence

0— Tp(Gm) — %oo,l - A(G) - Tp(Gm) — 0.

Multiplying this sequence by the idempotent e, yields an isomorphism 7% = A(GY).
Thus it now suffices to calculate the image of 6 |, which by Corollary 4.1.4 will be
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generated by the image of u = w™!(a)&,. But by Example 3.4.4, this image is A, =
([1]1=[0a])*Cp, where ([1]-[0,])" denotes the image of [1]—-[0,] in A(G™). As ([1]-[0,])"
generates I(G"), we find that the image is indeed I(G")C,.

O

§4.3 An equivalent statement of the Main Conjecture

Let us denote by 7;, the group of global units Oy , and by &, its closure inside K, =
Q,(ppn+1). Furthermore, recall that M., denoted the maximal abelian p-extension of
F, that is unramified away from p, and L, its the maximal subextension that is ev-
erywhere unramified over F,. Just as we related the Galois group of L, to the class
groups of the fields F,, we would like to have a similar description for the Galois
group &, = Gal(M./F). The statement of class field theory in the Appendix is in-
sufficient for this, since that only deals with unramified extensions. However, more
intricate statements of class field theory can relate Galois groups to subgroups of the
idele class group. In particular, we have the following result for our field M.

Lemma 4.3.1. There is an isomorphism

Uo 1/, — Gal(Moo/Los)

Proof. By class field theory (see [RW, Proposition 10.5]) we have for all n an exact
sequence 0 — &, 1 — %, — Gal(M,/L,) — 0. A compactness argument shows that
the sequence stays exact when passing to the inverse limit. O

THeorEM 4.3.2. There is an exact sequence

0— gw,l/(gw,l B %oo,l/(goo,l B %oo B ?oo — 0.

Proof. Follows immediately from the preceding lemma. O

Let i Z 0mod p — 1 be even. By multiplying the above sequence by e; and taking
characteristic ideals, we find that

ch(e;(Beo,1/Co,1)) ch(e; o) = chle;(%eo,1/Coo,1)) ch(ei Y-

The proofs of Proposition 1.5.3 and Theorem 1.5.4 shows that under the identification
of ¢;A(G) with A = Z,[T], the ideal ¢;1(G)C, corresponds to the ideal of A generated
by the Iwasawa power series f;. In particular, combining this with Iwasawa’s theorem,
we have that

ch(e;(%eo,1/C0,1)) = fil\
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The Main Conjecture states that this is also the characteristic ideal of ¢;Z,,. Thus to
show the Main Conjecture, it actually suffices to show that

ch(e;(Eeo,1/Cc0,1)) = ch(eiYo)- (4.1)

In fact, this already allows to prove the Main Conjecture for all practical cases.

CoroLrrAry 4.3.3. If p is Vandiver prime, the Main Conjecture holds.

Proof. We will show that & /6| = %% = 0. That Z = 0 follows from Remark
2.1.5. Next, notice that by tensoring the exact sequence

0— nj—l - %+ - F;
with Z, we obtain that 7", ®2 Z, = 7," ® Z,,. The same holds for &,;. Therefore, we
find that the Sylow p-subgroup of 7,/ is
(7, 19,)©2Z, =V, ®@2Z,)/(D, ®2Z))
= (%:—1 ®Z Zp)/( r:r,l ®Z Zp)-

Remark 4.1.3 states that k) = [7,": 7], so the Sylow p-subgroup of 7,," /<, is trivial.
Hence &, ®7Z, = 7,| ® Z,. From the commutative diagram

9’4—

n,1

l l

G —— &,

where the vertical arrows are surjective, we find that the bottom arrow is surjective as
well, showing that &, =6, ,. O

Remark 4.3.4. A theorem of Brumer | | says that 7', ®7 Z, and &, in fact have
the same Z,-rank. Consequently, the vertical maps are isomorphisms, and we see that
we actually always have that #(&,/,/6,"|) = #%,. This is of course still a much weaker
statement than (4.1), but nevertheless it will turn out to be relevant for the proof.

The equivalent form (4.1) is the one we will prove in Chapter 6. We make clear the
strategy for this in the next chapter.

We end with a final lemma regarding the characteristic ideal of ¢;(&,1/6w,1)-
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LemmMma 4.3.5. Suppose that i # 0 is even, and let 1 € A(T') be a generator for the ideal
ch(e;(&u,1/6w,1))- Then for all n, there is a positive integer C such that for all ¢ > C,
there is a map 0: ¢;&,,1 — Z,[I/T;,] such that the image of ;6 1 is p“hZ,[I/T,].

Proof. Since the proof is rather technical, we omit some details, which can be found in
[ , Appendix, Corollary 6.4]. The idea is that since ¢;%,; is a torsion-free A(I')-
module of rank one (as was shown in the proof of Theorem 4.2.2), the same holds
true for ¢;&,, 1. Thus there is an injective map 0’: ¢;&,,; — A(T) with finite cokernel.
Because it induces a pseudo-isomorphism e;(&,,1/%o,1) — A(')/0’(€w,1), we must
have that

0 (Gt = ch(ei(Euo 1/ B ))-

We can tensor with A(T)/()/g” —1) =Z,[T/T,,] to obtain a map 0, (¢;&x 1)1, = Z,[L/T;]-
However, the module (¢;&,1)r, is not isomorphic to ¢;&,; (which was true for the
module %, for instance). Instead, we only have a map 7,,: (¢;&,1)r, — €;&,,1 With
kerm,, C ker @, and coker rt,, is finite with order bounded independently of n. So if we
choose ¢ such that p¢ annihilates this cokernel, we can let O(u) = 0”(r;,' (p°u)). This
has the correct image because it is true that (¢;.,1)r, = €;6,,1. O
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5 Euler systems

In this chapter we develop the theory of Euler systems in the context of the Main Con-
jecture. In their most basic form, they were introduced by Thaine [ ], who used
them to construct annihilators of class groups of cyclotomic fields. Kolyvagin | ]
expanded the theory, using it to prove more detailed statements about the structure
of the class group. Not long after, Rubin [ , Appendix] managed to find a much
simpler proof of the Main Conjecture using Euler systems.

For us, an Euler system is a collection of elements of certain extensions of a field F,
that are norm-compatible in a sense to be defined. Factoring these elements allows us
to obtain relations in the class group of the field, which will help us understand the
characteristic ideal of the class group and ultimately lead us to a proof of the Main
Conjecture.

Throughout this chapter, we utilize some basic results regarding group cohomology.
All the necessary definitions and theorems can be found in the Appendix.

§5.1 Cyclotomic Euler systems

For the rest of this chapter, let m be a power of p and fix one of the fields F = Q(u,,)".
Let t be a power of p larger than m. Denote by S; the set of positive squarefree integers
which are divisible only by primes g = 1 mod ¢. Note that this condition implies that
q splits completely in F.

For any r € S; and g a prime not dividing r, denote by Fr, € Gal(F(y,)/Q) the Frobenius
of g, characterized by Frq(Cr) = C?.

Definition 5.1.1. An Euler system is a collection (&, },cs, with &, € F(u,)* satisfying
the following properties:

1. &, is an integral unit of F(u,) if r > 1;
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2. NF(M)/F(IJTM)(E,) = (Fry —1)&,/, whenever q | 1;
3. & =&,/ modulo any prime above q | r.
Henceforth we will refer to these properties as ES1, ES2 and ES3.

For any prime g € Sy, fix a primitive g-th root of unity C,, and for r € 5, let C, =[], C4-
Also fix a primitive m-th root of unity C,,. Our most important example of an Euler
system is given by

m—1

& =] [@he -1, -1y,
j=0
with n; > 0. To see that ES1 is satisfied, observe first that C,]%C, -1€Z[C,,,C,]*, which
follows from the fact that
[Ta-ch=1

0<k<l
(k,1)=1

whenever [ is not a prime power. Now simply note that

(CmCr = (G T = 1) = No(c,,.,1/E () (CmCr = 1),
For ES2, note that the conjugates of C, over F(y,,,) are given by nC, with 17 a g-th root

of unity different from Cgl, and that l_[ﬁqzl(Xq —1) = X7-1. Lastly, ES3 is clear, since
C4 =1 modulo any prime above g.

The reason for the importance of this Euler system is as follows. Let a,b,c € Z denote
respectively a generator of (Z/mZ)*, an inverse of 2 mod t, and an inverse of -2 mod .
Then taking

& = (e = 1" (C = 1) (CuCy = 1) (G T = 1),
we see that

e = (D@ =D aeanth -1
Tle-n@h-n) T Gt

This last unit is of course the one occurring in Corollary 4.1.4.

mod F*,

As mentioned previously, the Euler systems are used to give relations in the class
group of F. Presently it is not at all clear how this will work. After all, the elements
&, are units, so they do not generate interesting ideals. Furthermore, they are not
even elements of the field we are interested in, which is F. The rest of this section is
devoted to using the Euler system to construct elements of F which do have interesting
factorizations.

Let r € S;, and define
N, = Z o € Z[Gal(F(u,)/F)].

oeGal(F(u,)/F)
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Note that there is a natural isomorphism Gal(F(u,)/F) = [1,, Gal(F(p,)/F), which al-
lows us to identify N, and [ [, N,. Furthermore, because we can also identify Gal(F(u,)/F)
and Gal(F(p,)/F(py/q)) for q | r, we can write Np(ﬂr)/p(ﬂr/q)(x) for x € F(p,) as Njx.

Each Gal(F(u4)/F) for g prime is cyclic. For each of these groups, choose a generator
0g- Define another operator

q-1
D, = Zia; € Z[Gal(F(p,)/F)].

i=1
Note that this depends on the choice of generator. For arbitrary r € S;, let D, = ]_[W D,.
The identity

(0,~1)D,=q-1-N, (5.1)

is straightforward to verify. Even though in what follows we consider the multiplica-
tive groups F(u,)*, we will write the action of Galois additively.

LemMma 5.1.2. For r € S;, we have D,.&, € (F(p,)*/F(u,)<) G EwV/E),

Proof. We will use induction on the number of prime factors of r. If r = 1 there is
nothing to prove. Otherwise, suppose g | 7. Then

(Uq -1)D,¢&, = (q -1 _Nq)Dr/q‘Sr = (1 _Frq)Dr/qEr/q mod F(I"r)Xt-

By the induction hypothesis, the element D,/,&,/, is fixed by Fr, modulo F(;/t,/q)’(t, and
it follows that o,D,&, = D, &, mod F(p,)*'. Since Gal(F(u,)/F) is generated by the o
for g | r, the lemma follows. O

LemmMma 5.1.3. The natural map

FX/FXt N (F(‘ur)x/F('ur)Xt)Gal(F(y,)/F)

is an isomorphism.

Proof. First note that y; N F* =1, and as r is coprime to ¢, a ramification argument
shows that y; N F(pu,)* =1 as well. Hence we have an exact sequence

0 — Flpur) =3 BV — () /() — 0,
and taking Gal(F(yu,)/F) invariants we obtain an exact sequence
0 — F* — F* — (F(p,)"/F ()00 — B (F(py )/ F).
But H!(F(u,)/F) = 0 by Hilbert 90, yielding the result. O
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By the previous lemmas, we see that there exists a unique element x, € F*/F*! such
that x, = D, &, mod F(u,)*". It is these elements that we will factor to gain knowledge
of the class group of F.

Remark 5.1.4. Recall that the map
(F(gup)/F ()< S0 — Y (F (g )/F)

is defined as follows: let ¢ € (P(}Ar)X/F(yr)Xt)Gal(F(”')/F). Choose a representative b €
F(p,)*. Then for all o € Gal(F(u,)/F), the element (¢ —1)b = o(b)/b becomes trivial in
F(p,)*/F(pu,)*", so that there is a unique a, € F(u,)* with a’, = (o — 1)b. Then our map
sends c to the crossed homomorphism Gal(F(u,)/F) — F* given by o - a,.

Applying this to ¢ = D,¢, and using Hilbert 90, we see that there is a € F(u,)* with
(0-1)p=((c-1)D,&)""

and we can then take

Ky = Drér/ﬁt'

This explicit choice of k, will be useful later.

§5.2 The factorization theorem

In this section we prove the ‘factorization theorem’, which tells us how to factor the
elements x, constructed in the previous section.

We again introduce some notation. For g a rational prime, let
1,=Pzq
be the free abelian group on the primes of O lying above q. Also write
1=(P1,
q

for the free abelian group on all primes, which is of course simply the group of non-
zero fractional ideals of O, written additively. If y € F, we let (y) € Z be the principal
ideal generated by y (i.e. () = )_,0rdy(y)g), and (), € Z, denotes the projection to Z,.
Additionally, we denote by [y] € Z/tZ and [y], € Z,/tZ, the projections mod t.
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LemMma 5.2.1. Suppose g = 1 mod t is prime. There is natural map of Gal(F/Q)-
modules
Cy: (Op/qO0F)* — L,/t1,

making the following diagram commute:

—(1 y Y‘N x]q

(Or/q0r)* > I,/tT,

Furthermore, for g C F a prime above g, we have ord,{,(x) = 0 if and only if x is a
t-th power modulo g.

The map on the left should be interpreted as follows: let g C F be a prime above g,
which is totally ramified in F(p,). Let Q C F( yq) be the unique prime above g. Then
for x € F(p,)*, ordq((1 — 04)x) = 0, so (1 —0,)x is a unit in the localization of O, ,) at
Q. It can therefore be interpreted as an element of (Of(, o) y/@Q)*. Doing this for all Q
yields an element of

[ [©r @ =] [(©rray = (©Or/q0%).
Qlq alg

The first equality here is because every g | g totally ramifies in F(y,), and the second
because g is totally split in F, since g = 1 mod .

Proof. Let g C F be a prime above ¢, and let 7t € F(p,) be a uniformizer for the unique
prime of F(p,) above g. Because g totally, tamely ramifies in F(y,), ramification theory
tells us that y, = (1 - 04)7, is a generator for ((’)Fw)/(f),)X = (Or/g)* independent of the
choice of uniformizer.

Any element x of ]_[qm(OF/lq)X = (Or/qOf)* can now be written as x = ()/gq)q. We then
define €;(x) = }_g, 199. This map satisfies all the desired properties. O

Because the kernel of {; contains the ¢-th powers, we can make sense of {,(x) for all
x € F*/F*" with [x], = 0.

THEOREM 5.2.2. Suppose r € Sy, and ¢ is a rational prime. Then [x,], = 0 if g{r, and
(114 = €4(x,/q) otherwise.
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Proof. 1f q t r, then any prime g | q of F is unramified in F(g,). That [x,], = 0 now
follows immediately from the fact that x, = D,&, mod F(p,)*, and that D,¢&, is a unit
of F(puy).

Now suppose g | r. By Remark 5.1.4, we may represent k, as x, = D,&,/BL, where
By € F(pu,)* satisfies
(0 =1)B, = ((0 = 1)D, &)

for all o € Gal(F(p,)/F). Define B,/ similarly. By the above, we may take g, to be
coprime to q.

Let g C F be a prime above g, and QQ C F(y,) a prime above g. As the ramification index
of gin F(yu,)is g—1, we have

1
ord, x,,

-1 -
ordp By = Tord@ K, = _4

so that

[k, ]q = Z(l iq ord@ﬁr)q mod tZ,. (5.2)

olq

Let 7ty € F(p,) be a uniformizer for the unique prime above g. Because F(p,)/F(pg) is
unramified at primes above g, this is also a uniformizer at Q. Writing

ord, x,
=
alg

we have that 8,7~ is a unit at all primes above g and (1,1 = [Ng¥],- It follows
that modulo any prime above g, we have

(1-0,)y 9™V = (0, -1)B, = (-1 ~Ny)D, /&)

(g-1)/t
_(g-1)/t
=Ky

~1)/t (g-1)/t
Dr/qcfﬁq ) _ Dr/qér/q _ Dr/qér/q
((Frq - 1)Dr/qér)1/t (Frq - 1)ﬁr/q ﬂi/q
Here we used (5.1), ES2, and ES3. The commutative diagram in Lemma 5.2.1 shows

that ggq(Kr/q) = g[Kr]q. Writing €,(x,/q) = Y_g)q 40, we find from (5.2) that Qaq =
—ordg B,, and hence

[Kr]q = Z(l iq ordg ﬁr)q = ly(%ryq)- O
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§5.3 Rubin’s density theorem

Theorem 5.2.2 tells us about the factorization of x, above certain primes g in terms of
the map £,. The final ingredient in the our study of Euler systems, will be a theorem
that tells us how to find primes g for which the values {,(x,/,) are ‘easy’ to calcu-
late.

Taeorem 5.3.1. Suppose we are given a class ¢ € CI(F) of p-power order, a finite
Gal(F/Q)-submodule W ¢ F*/F*! and a Gal(F/Q)-homomorphism

W: W — (Z/tZ)[Gal(F/Q)].

Then there are infinitely many primes g € ¢ such that
1. g =1 mod ¢t, where g is the rational prime below g;

2. [w];=0forallwe W;

3. there exists u € (Z/tZ)* such that {;(w) = uW(w)g for all w € W.

Proof. Let L be the maximal abelian unramified p-extension of F, and let F’ = F(y;). By
class field theory, the Artin map gives an isomorphism between the Sylow p-subgroup
of the class group and Gal(L/F). The fields we will consider are summed up in the
diagram below.

LF'(W1)

Q

First, note that LN F’ = F, because F’/F is totally ramified at the unique prime above
p. The proof will now proceed in several steps.

Step 1: the natural map F*/F*' — (F’)*/(F’)*" is injective.
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We can identify F*/F* with H(Gal(F/F), u;), and it follows from the inflation-restriction
exact sequence that
ker(F*/F*' — (F')*/(F')*") = ker(H'(Gal(F/F), u;) — H' (Gal(F/F’), u;))
= HY(Gal(F'/F), uy).

Because Gal(F’/F) is cyclic and y; finite, we have
#H'(Gal(F'/F), u;) = #(p; NF) = 1.

In particular, note that this allows us to interpret W as a subgroup of (F’)*/(F’)*.

Step 2: LNF' (W' = F.

Kummer theory, combined with step 1, gives an isomorphism of Gal(Q/Q)-modules
Gal(F'(W'*)/F’) — Hom(W, ;). As complex conjugation acts trivially on W and by
—1 on p4, it acts by —1 on Gal(F/(W*)/F’). Complex conjugation furthermore acts
trivially on Gal(L/F) = Gal(LF'/F’), since F is totally real and Gal(L/F) is abelian. It
follows that complex conjugation must act both trivially and by —1 on Gal(F/(W#)n
LF’/F’), and therefore F'(WY*) N LF’ = F’. Intersecting this with L then yields that
F'(WYHNL=F.

Step 3: constructing the primes.

Fix a primitive ¢-th root of unity C;, and define a Z/tZ-linear map
1 (2/t2)[Gal(F/Q)] —

by «(Idp) = ¢; and «(g) = 1 for Idp # ¢ € Gal(F/Q). Let ¥ € Gal(F'(W'*)/F’) be the
element corresponding to 1o W € Hom(W, y;) via the Kummer isomorphism. By def-
inition, this means that 1 o W(w) = y(Yw)/v/w. Also let 6 € Gal(L/F) be the element
corresponding to ¢ € CI(F) via the Artin map.

By step 2, there is a unique o € Gal(LF’(W'*)/F) such that olpwiny =y and ofp =
0. The Chebotarev density theorem now guarantees the existence of infinitely many
primes g C F which are unramified in LF’(W!/*), and whose Frobenius conjugacy class
in Gal(LF'(W'/*)/F) is the conjugacy class of o. We will show that all such g satisfy the
desired properties.

Step 4: proving the desired properties.

That g € ¢ is clear from the construction. If g4 denotes the rational prime below g, then
q is totally split in F’ because o|p = Idp. From this we gather that g = 1 mod ¢. The
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assertion that [w], = 0 for all w € W is equally clear, following from the fact that g is
unramified in F/(W?).

It remains only to show the final assertion. Lemma 5.2.1 says that ord,({,(w)) = 0 if
and only if w is a t-th power modulo g. On the other hand,

y(Nw)
W

But y = o|p/wr) is a Frobenius for g, so that this last statement is equivalent to say-
ing that w is a t-th power modulo g. This means that the maps W — Z/tZ given by
w > ordy({s(w)) and w — ord,(W(w)g) have the same kernel and image, and hence
differ by a unit u € (Z/tZ)*. Then the image of w > {,(w) - u'W(w)g is contained
in @q,iq(Z/tZ)q’, which has no non-zero Gal(F/Q)-submodules. We conclude that
Cg(w) =uW(w)g for all w € W, as desired. O

ordy(W(w)g) =0 e 10V (w) =1 =1.
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6 Proof of the Main Conjecture

In this final chapter, we finish the proof of the Main Conjecture. There are plenty
books which do this in detail, such as Rubin’s original account [ , Appendix] and
[ |. However, in a fully detailed proof it can be easy to get overwhelmed by all the
technicalities, and as a result miss the forest for the trees. Instead, we will focus on
the main ideas, namely how the theory of Euler systems gives us information about
the class group that allows us to conclude the theorem.

From now on, fix i Z 0 mod p — 1 even. Recall that we have reduced the Main Conjec-
ture to the statement that

Ch(ei?oo) = Ch(ei(%oo,l/%éo,l ))

Let us start with a quick outline of the proof of this statement. Let &, be the Euler
system discussed at the beginning of the previous chapter, which was given by

& = (€80 - 1), - 1P, - DG T - 1),

where a,b,c € Z- denote respectively a generator of Z, an inverse of 2 mod ¢, and an
inverse of —2 mod t. In particular, we have that

(1-a)2Cp =1
& =C
1 m Cm_l

mod F*.

The fact that this is precisely the unit that generates €, ; allows us to relate the Euler
system to the characteristic ideal ch(e;(&y,1/%w,1)).- Next up, by finding an appro-
priate map W, we use Theorem 5.3.1 to find a prime g; for which we can calculate
{4(x1) in terms of W. The factorization theorem 5.2.2 then tells us about how «, fac-
tors, namely via [x, |, = €, (x1). We now pick another W, and we apply the same
results to find a prime g, for which we can calculate ¢, (x;,) in terms of W, and fac-
tor [k4,4,1q, = €4, (x4, )- Repeating this enough times, we obtain information about the
class group, and through «; we relate the class group back to &, 1/, 1.
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TuaeOREM 6.0.1. For all even i 2 0, we have that

Ch(ei?oo) = Ch(ei(%oo,l/%oo,l ))

Proof. There exists an injective map

k

P ATYgAT) - e%e

j=1

with finite Fokernel. The characteristic ideal of %, is then generated by gl = ]_[;‘:1 gj-
Also, let h') be a generator of ch(e;(&.,1/600,1))-

Fix now a positive integer 1, and write F = F;;. From now on we will think of %, as
the Sylow p-subgroup of the class group of F,. Let cy,...,ck, Cky1 € €%, be ‘specially
chosen’ ideal classes. The idea is to let ¢; be the image in ¢;%, of 1 € A(I')/g;A(T)
under the above map, and cj,; can be any class. Furthermore, let C be as in Lemma
4.3.5, and choose ¢ > C such that p® annihilates the cokernel of the above map. Let
0:e&,1 > Z,[T/T,] be the corresponding map from Lemma 4.3.5, chosen such that

0(e;&yqa) = p°h'). Let t be a large power of p.

If g C Fis a prime lying above a rational prime g, define a map v,: F*/F*t — (Z/tZ)[T/T,]
by vy(w)eig = e;[w], € €;(Z,/tZ,). Note that ¢;(Z,/tZ;) is free of rank 1 as a (Z/tZ)[I'/T;,]-
module, so that Vg is actually well-defined.

We will repeatedly apply Theorem 5.3.1 to construct primes gy,...,9x41 lying above
q1,---,qk+1 such that

1. 9j € Cj;

2. gj=1mod t;

(M)

: Vql(qu) = ulpch(i)l

I

. g]',lvqj(Krj) = ujpcvqj_1 (Kr]__l) forj>1
where rj = q1---q; and u; € (Z/tZ)*.

For the first prime, we let W = ¢;(O5/O5F), and define W: W — (Z/tZ)[I/T,] to be the
composition

W —> e(&,1/8! ) — (Z/Z)[T/T,] <5 e/(Z/1Z)[T/T, ]

Let g; be a prime satisfying the conclusion of Theorem 5.3.1, with this W, W, and
¢ = ¢1. Then clearly conditions 1 and 2 are satisfied. Furthermore, it follows from
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Theorems 5.2.2 and 5.3.1 that for some u; € (Z/tZ)* we have

vy, (g, eitn = eilicq, 1y, = eily, (k1) = uyW(e;xy )eiqy = uy p°hWe;a;.
This proves 3.

Suppose now that we have constructed gy,...,9;_;. Let W C F*/F*! be the Z,[T/L,]-
submodule generated by ¢;x; . One can show now! that there is a map W': W —
(Z/tZ)[I'/T,,] with the property that

g]—l\y,(el KT]‘,l ) = pcvq]‘,l (KT]',I )

Let g; be a prime satisfying the conclusion of 5.3.1, this time with W as above, ¥ =
e;'V’, and ¢ = ;. Again conditions 1 and 2 are immediate, and condition 4 follows by
a similar computation as above.

Continue this process until we have constructed gy,...,g,1. If we now combine con-
dition 3 and condition 4 for all j > 1, we get that

PR vy ()8

for some unit u € (Z/tZ)*. In particular, we see that g(!) | p°®**Dx() in the ring (Z/tZ)[T,].
Because this holds for all sufficiently large ¢ and n, we get that the divisibility also
holds in A(T). By the Ferrero-Washington theorem, p { ¢!/}, and therefore g | h!).

The relation ¢\¥) | k() is actually true as well for i = 0, because ¢©) is actually a unit
in A(T). Let § = [T, even €" and % = [1; even #'"). Under the isomorphism of A(T) with
A =Z,[T], we may assume g and h are both the product of a power of p and a distin-
guished polynomial. It suffices to show now that this power of p is the same for both,
and their degrees are equal.

Let p be such that p¥ is the largest power of p dividing h (by Ferrero-Washington, g is
not divisible by p). We know from the proof of 2.1.2 that for large enough 1, we have
that #%,+ = pd°8(&)"*_ For the other module the situation is a bit more complicated;
we only have that for all n, #(&,,/€,"|) = phP"+degn+vy \where v/ is bounded. But
Remark 4.3.4 states that #%/," = #(&,7,/6,',), which gives the desired equality. O

It is at this point in particular that we are skipping many technical details. Namely, our choice of cj,
c and t all come into play here.
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A Appendix

§A.1 The Hilbert class field

At its most basic level, class field theory gives a way to relate Galois groups of unram-
ified abelian extensions of number fields to the class group of the base field, through
something called the Hilbert class field. A good reference is | ]

Let F be a number field, and Z the group of its non-zero fractional ideals. Recall that
if K/F is a finite, unramified abelian extension, the Artin symbol

(K—/F) . T — Gal(K/F)

is defined by letting (KT/F) = Fr, for p C F a prime, and extending multiplicatively.

THeoreM A.1.1. There exists a unique field extension H/F that is abelian, every-
where unramified and is maximal with these properties among extensions of F.
Furthermore, the extension is finite and its Artin map is surjective and trivial on
the principal ideals. Hence it induces an isomorphism

(1): CI(F) > Gal(H/F).

The field H from the theorem is called the Hilbert class field of F.

Because Gal(H/F) is abelian, it is the direct sum of its Sylow p-subgroups. Therefore,
for any prime p, Gal(H/F) has a unique minimal subgroup of p-power index (namely,
the direct sum of the Sylow subgroups for primes different from p). Associated to this
subgroup is a subfield L C H, which is then the maximal abelian unramified extension
of F of p-power degree. The group Gal(L/F), which is the quotient of Gal(H/F) by the
aforementioned p-power index subgroup, is naturally identified with the Sylow p-
subgroup of Gal(H/F). The Artin map allows us to further identify it with the Sylow
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p-subgroup of CI(F). We will often make this identification.

Suppose now that F is a CM field, meaning that it is totally imaginary, and has a
totally real subfield F* such that F/F" is quadratic. If & denotes the class number of F
and h' that of F*, then h' | h. To see this, let H and H" be the Hilbert class fields of F

and F7, respectively.
+ / \

FNH* =

Because F/F* is totally ramified at the infinite primes, we have FNH* = F*. Conse-
quently, we have an isomorphism Gal(FH*/F) — Gal(H*/F*). In particular, FH*/F* is
abelian. Furthermore, because the extension H*/F* is unramified, so is the extension
FH*/F. It follows that FH* C H, so we have a surjection Gal(H/F) — Gal(FH*/F) —
Gal(H*/F™). By the above theorem, we find that 4™ | h.

§A.2 Group cohomology

Let G be a profinite group and and M a Z[G]-module, such that the action of G on M
is continuous if M is equipped with the discrete topology A crossed homomorphism is
a continuous map f: G — M such that f(gh) = gf (h) + f(g). If m € M is any element,
the map g — gm — m is a crossed homomorphism. Any crossed homomorphism of
this form is called principal. Let H'(G, M) denote the quotient group of all crossed
homomorphisms modulo the principal crossed homomorphisms. It is called the first
cohomology group of G with coefficients in M.

Example A.2.1. If G acts trivially on M, then H'(G, M) = Hom(G, M).

ProrosiTiON A.2.2. Any exact sequence of Z[G]-modules
0—A—B—C—0

induces a long exact sequence

0— AS — BS — ¢S % HY(G,A) — H'(G, B) — H(G, C).

Proof. If M is a Z[G]-module, let Z!(G,M) denote the group of crossed homomor-
phisms G — M. We have a map M — Z!(G, M) sending m to the principal crossed
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homomorphism g — gm —m. The proposition now follows upon applying the snake
lemma to the following commutative diagram:

Ll

0 — ZY(G,A) — Z1(G,B) —— Z!(G,C)

0 >

~
(e

\
7

\
7

O]

If H C Gisaclosed subgroup, then there is a natural induced homomorphism H!(G, M) —
H'(H,M) called the restriction. If in addition H is normal, then M is a Z[G/H]-
module, and there is a natural map H! (G/H,MH) — H! (G, M), called the inflation.

ProposiTiOoN A.2.3. The restriction and inflation maps fit into an exact sequence

0 — HY(G/H, M) 25 511G, M) XS B (H, M),

Proof. See [ , Chapter VII, §6, Prop. 4]. O

We will also need the following result regarding the cohomology of finite cyclic groups.

ProrosiTioN A.2.4. If G is finite cyclic and M is finite, then
#H'(G, M) = #(M®/N:M),

where NGM = {}_oeqgm | m € M}.

Proof. See [ , Chapter VIII, §4, Prop. 8]. O

If L/K is a Galois extension, we also write H!(L/K) for H!(Gal(L/K),L*). The next
result derives its name from the fact that it was the 90th theorem in Hilbert’s famous
Zahlbericht.

ProposiTiON A.2.5 (Hilbert 90). If L/K is a finite Galois extension, then H!(L/K) = 0.

Proof. See [ , Chapter X, §1, Prop. 2]. O
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