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Introduction

The study of invariant theory is indispensable for mathematicians seeking to classify various objects, and algebraic
geometry is no exception. As a result, a lot of research has been dedicated to this subject. The foundations
of invariant theory for algebraic varieties were initially laid by Hilbert in 1890 and later refined by Mumford,
leading to the development of the geometric invariant theory we know today. One significant motivation behind
this theory is the construction of moduli spaces.

However, as one might have seen in an introduction course on scheme theory, quotients by some group action
do not generally give nice results. Even when we look at regular algebraic varieties, there should be no reason
for the regular functions on a variety to be compatible with the group action. Moreover, we are faced with two
different types of quotients that deserve our attention. The first type corresponds to categorical quotients, which
are objects that have a specific universal property within the associated category. On top of that, in classical
settings, there is often a desire for quotients that provide some insight into the structure of the orbit space, known
as geometric quotients.

In this thesis, we aim to provide an introduction to geometric invariant theory while exploring its applications
as seen in the literature. Specifically, we will look into the theory of variations of geometric invariant theory,
investigating the implications of altering the quotient. As we would like it to be a complete introduction, anyone
that has followed an introductory course in scheme theory should be able to follow the entire thesis. Although
some concepts may not have been explicitly defined within such a course, they will not hinder the general view or
main ideas presented. Nonetheless, we shall recall some definitions and notations if we feel that this is necessary.

In the first chapter we shall introduce the theory of group schemes, which are schemes endowed with a natural
group structure. This gives us the tools to define group actions of group schemes on schemes, and then define
what we mean by a quotient. As previously mentioned, it would be nice for the group action to have some induced
structure on the sections of a scheme. Moreover, we aim to extend this concept to general quasi-coherent modules.
This gives us the theory of equivariant structures and linearizations of our group on invertible sheaves. We end
this chapter by introducing line bundles corresponding to invertible sheaves, providing an elegant reformulations
of linearizations.

Chapter two will contain the main theory on GIT-quotients. After exploring the theory defined by Mumford in
[5], we shall look at some alternative methods of expanding this theory. One way to do this is by considering
something we call a GIT-fan. There are multiple versions of this fan, but we shall use the definition used by
Ressayre in [21]. The final part shall be some theory on flips, the idea being that crossing a “wall” in our fan
will “flip” a Cartier divisor.

The rest of the thesis shall be used to work towards variations of GIT theory. To build up to this theory, we will
define triangulated categories, Verdier quotients and derived categories in chapter three. Chapter four shall be
used to tell a short note on stacks, HKKN stratifications and factorizations all used in the final theory.

In the final two chapters we consider the variation of GIT theory as developed by Ballard, Favero and Katzarkov
in [3]. We will give some definitions, theorems and explanations to be able to sketch the proof of this theorem.
On top of this we have some applications firstly given by Favero, Kaplan and Kelly in [10]. We shall give some
examples of important singularity categories that they haven’t explored yet, and after that study their statements.
As a last part, we give some other version of the main theorem as stated in this chapter.
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1 Group actions and quotients

In this chapter we introduce the topic of group actions and quotients. We start off by defining this for general
schemes, and slowly make our way towards varieties as it is our goal to study their quotients. At the end of the
chapter we introduce some new way to view invertible sheaves on a variety, which gives us more tools to study
G-equivariant structures on sheaves.

1.1 Conventions

There are quite a few conventions and notation we shall use throughout the thesis. We have listed all conventions
here so that the reader has an extra reference just in case something is unclear.

• When talking about schemes X and Y over an affine base scheme S = Spec(A), we will usually denote the
fiber product as X ×A Y := X ×Spec(A) Y .

• If X1, ..., Xn are all schemes over some base scheme S, we shall write pi : X1 ×S X2 ×S · · · ×S Xn → Xi for
the i-th projection map.

• With a geometric point of a scheme X we shall mean a Spec(k)-valued point for some algebraically closed
field k.

• Whenever we have a map of schemes f : X → Y with Y = Spec(R) affine, the usual duality tells us that

f corresponds to some ring map R→ OX(X). We shall denote this ring map by f∨ := f#Spec(R), called the

dual map.

• With k we shall always mean a field, for simplicity we shall assume this field to be algebraically closed and of
characteristic 0. In some cases of thesis these last two properties are not necessary. We write k× := k \{0}.

• A variety X will be a separated scheme of finite type over k that is geometrically integral. With a
geometrically integral scheme over k we mean a scheme X such that the base change X := X ×k Spec(k)
is integral. A closed (respectively open) subvariety shall be a closed (respectively open) subscheme that is
also a variety.

• We let Ank := Spec k[x1, ..., xn] and Pnk := Proj k[x0, ..., xn] denote the standard affine and projective
varieties. For a construction of the projectification of a graded ring, we refer to the definition on page 76
of Hartshorne, see [13].

• With ei ∈ Ank we shall mean the element given on points by a 1 on coordinate i and a 0 else. With ei ∈ Pnk
we shall mean the element given on points by a 1 on coordinate i+ 1 and 0 else.

1.2 Group schemes

Let S be a scheme. In this section, all schemes shall be defined as schemes over S, unless stated otherwise. In
other words, with a scheme X we shall mean a scheme X together with a structure morphism π : X → S.

Definition 1.1. A group scheme is a tuple (G,µ, ι, e), where G is a scheme and µ : G×S G → G, ι : G → G
and e : S → G are S-morphisms satisfying the following properties:

(i) The diagram

G×S G×S G G×S G

G×S G G

IdG×µ

µ×IdG µ

µ

commutes.

(ii) Write i1, i2 for the isomorphisms G ∼= S ×S G and G ∼= G×S S respectively. Then the compositions

S ×S G

G G×S G G

G×S S

e×IdG

i2

i1

µ

IdG×e

both equal the identity on G.
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(iii) Let ∆G : G → G ×S G denote the diagonal morphism and let π : G → S denote the structure morphism.
Then the compositions

G×S G

G G×S G G

G×S G

µ

∆G

ι×IdG

IdG×ι µ

both equal e ◦ π.

We shall usually leave out the S-morphisms and write G for the group scheme if these morphisms are clear from
the context.

Example 1.2. There are two natural group schemes Gm,S and Ga,S , constructed as follows.

• First for S = Spec(R) affine we have the multiplicative group scheme Gm,S := Spec(R[x, x−1]). Its group
action σ is defined by the R-algebra map R[x, x−1] → R[x, x−1] ⊗R R[x, x−1] given by x 7→ x ⊗ x. The
inverse map ι will be given by the R-algebra map R[x, x−1] → R[x, x−1] defined by x 7→ x−1 and the
identity element e is given by the R-algebra map R[x, x−1] → R defined by x 7→ 1.

If S is not affine, we can define Gm,S := Gm,Z ×Z S, where S 7→ Spec(Z) is the canonical scheme map
induced from the canonical ring map Z → OS(S). Note that whenever S is affine, this second definition
agrees with the first definition.

• Another group scheme would be the additive group scheme Ga,S over S. Similarly as for the multiplicative
group we can first define it when S = Spec(R) is affine by Ga,S := Spec(R[x]). Its group action is additive;
σ would now be given by the R-algebra map R[x] → R[x] ⊗R R[x] given by x 7→ x ⊗ 1 + 1 ⊗ x. With the
same idea in mind, the inverse map ι would be defined by x 7→ −x and the identity element e by x 7→ 0.

When S is not affine, we again define Ga,S := Ga,Z ×Z S. If we ignore the group structure, then a common
notation will be A1

S , also known as the affine line over S.

Example 1.3. Another interesting example is the group scheme GL(n, k) over S = Spec(k), where n ∈ Z≥1 and
k is some field. This group scheme will mimic the n×n invertible matrices as we are used to from linear algebra.
To be precise, we define GL(n, k) := Spec(k[xij ,det(x)

−1]1≤i,j≤n), where det(x) is the polynomial given by the
’determinant’ of the matrix with indices xij . The multiplication will be given by the ring map

k[xij ,det(x)
−1]1≤i,j≤n → k[yij ,det(y)

−1]1≤i,j≤n ⊗k k[zij ,det(z)−1]1≤i,j≤n;

xij 7→
n∑
l=1

yilzlj .

The inverse will be given by

k[xij ,det(x)
−1]1≤i,j≤n → k[xij ,det(x)

−1]1≤i,j≤n;

xij 7→ x⋆ij det(x)
−1,

where x⋆ij is the (i, j)-th element of the adjugate matrix of x. Finally, the identity element will be given by

k[xij ,det(x)
−1]1≤i,j≤n → k;

xij 7→ δij ,

where δij is the Kronecker delta function.

Example 1.4. The product of two group schemes gives a canonical group scheme by choosing the multiplication,
inverse and identity element coordinatewise.

If G is a group scheme, then the axioms above actually give us a natural group structure in a way. Let us recall
the functor of points. Suppose T is some other scheme, then we write G(T ) := HomS(T,G) which we call the
set of T -points of G. We then get a very nice interpretation.

Lemma 1.5. Let (G,µ, ι, e) be a group scheme and T some other scheme. The set G(T ) has a natural group
structure induced by µ, ι and e.
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Proof. The universal property of the product show that (G×S G)(T ) = G(T )×S(T )G(T ), and therefore we have
an induced operation µ(T ) : G(T )×S(T )G(T ) → G(T ). We claim that this puts a group action on the set G(T );
the first axiom of a group scheme shows that this operation is associative, the second that G(T ) has an identity
element given by the composition of the structure map T → S and the map e : S → G, and the third that every
element g ∈ G(T ) has an inverse element given by ι ◦ g : T → G.

Unsurprisingly, it is even true that the functor of points is a group functor. In other words, the (contravariant)
functor T 7→ G(T ) factorizes through the category of groups!

Definition 1.6. Let G,H be group schemes. A homomorphism of group schemes will be a morphism f : G→
H of schemes over S such that for all schemes T the induced map f(T ) : G(T ) → H(T ) is a group homomorphism.

Definition 1.7. Let G be a group scheme and let X be some other scheme. A group action of G on X is an
S-morphism σ : G×S X → X satisfying the following properties:

(i) The diagram

G×S G×S X G×S X

G×S X X

IdG×σ

µ×IdX σ

σ

commutes.

(ii) Let i denote the isomorphism X ∼= S ×S X, then the composition

X S ×S X G×S X Xi e×IdX σ

equals the identity on X.

Definition 1.8. Let G be a group scheme acting on a scheme X via an action σ : G×S X → X. Let Y be any
scheme. We call a morphism ϕ : X → Y G-invariant if the diagram

G×S X X

X Y

σ

p2 ϕ

ϕ

commutes.

Definition 1.9. Let G be a group scheme acting on a scheme X via an action σ. A categorical quotient of
X by G is a pair (Y, ϕ) where Y is a scheme and ϕ : X → Y is a G-invariant S-morphism such that if Z is a
scheme and ψ : X → Z is a G-invariant morphism, then there exists a unique S-morphism f : Y → Z such that
ψ = f ◦ ϕ. In other words, the following diagram commutes.

X Z

Y

ψ

ϕ
∃!f

If a categorical quotient exists, we often write X/G for the quotient instead of Y . Note that this is only defined
up to isomorphism.

Remark 1.10. We make the very important remark that categorical quotients do not always exist, but it can
be difficult to check if this is the case. The paper by A’Campo-Neuen and Hausen tackles this problem, see
[1]. Luckily, if categorical quotients exist, then the quotient preserves some properties. For example, one can
quickly see that if X is reduced, irreducible, or connected respectively, then Y is reduced, irreducible or connected
respectively. Other properties, like being Noetherian, are not necessarily preserved.

Definition 1.11 (GIT, [5], Definition 0.6). Let X be a scheme and let G be a group scheme acting on X. A
geometric quotient of X by G is a pair (Y, ϕ) where Y is a scheme and ϕ : X → Y is a G-invariant S-morphism
such that:

(i) ϕ is surjective, and the image of (σ, p2) : G×S X → X ×S X equals X ×Y X.

(ii) A subset U ⊆ Y is open if and only if ϕ−1(U) ⊆ X is open.
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(iii) If f ∈ Γ(U, ϕ∗(OX)) = Γ(ϕ−1(U),OX) and if F : ϕ−1(U) → A1
k is the corresponding morphism then

f ∈ Γ(U,OY ) if and only if F is G-invariant (by restricting to ϕ−1(U)). In other words, the sheaf OY is
the subsheaf of ϕ∗(OX) consisting of G-invariant functions.

As stated in GIT, [5], property (i) has an equivalent statement that one might find easier to understand. It states
that “the geometric fibres of ϕ are exactly the orbits of the geometric points of X over an algebraically closed
field of sufficiently high transcendence degree”. Moreover, if G is of finite type over S and X is of finite type over
Y , then this would be true for any algebraically closed field. This statement is a bit vague, and will not be used
in this thesis, but it might give some insight on how geometric fibres of a geometric quotient act.

Proposition 1.12 (GIT, [5], Proposition 0.1). Let G be a group scheme acting on a scheme X. If (Y, ϕ) is a
geometric quotient of X by G, then it is also a categorical quotient of X by G. In particular, geometric quotients
are unique up to isomorphism.

Definition 1.13. Let G be a group scheme. A closed (respectively open) subscheme H of G is called a closed
(respectively open) subgroup scheme if for all schemes T the set H(T ) ⊆ G(T ) is a closed (respectively open)
subgroup. We call a subgroup scheme normal if for all schemes T the sets H(T ) are normal subgroups.

We shall refer to closed subgroup schemes when talking about subgroup schemes.

1.3 Geometric invariance

In this thesis we are interested in geometric objects called varieties, and we would like to translate the notion of
a classical variety to the language of schemes. Our definition will be a separated scheme of finite type over a field
k that is geometrically integral. In particular notice that varieties are Noetherian. As we are mostly interested
in the case when k is algebraically closed, the last requirement only asks the scheme to be integral. However,
this provides a definition that is applicable outside of this thesis. One of the reasons for this definition, is that
they give the same intuition as classical varieties. For example, we have the following result without assuming k
to be algebraically closed.

Proposition 1.14. Let X,Y be varieties and let f, g : X → Y be morphisms of varieties. Then the following
are equivalent:

(i) f = g;

(ii) For any non-zero dense open subset U ⊆ X we have f |U = g|U ;

(iii) f and g agree on k-points.

Proof. (i)⇒ (ii) follows immediately. For (ii)⇒(iii), U being dense implies that the underlying topological maps
of f and g agree. For (iii)⇒ (i) we have to do a bit more work. Since the set of k-points of X is dense,
we again get that the underlying topological maps agree. Next, we notice that it suffices to show that the
base changes fk and gk equal, so that we may assume k = k. It suffices now to show that the induced maps

f#V , g
#
V : OY (V ) → OX(f−1V ) are the same for each open V ⊆ Y . We know that to give a k-algebra map

k[x] → OY (V ) is the same as to give a k-morphism V → A1
k, so we can identify any section v ∈ OY (V ) by

the morphism ϕv : V → A1
k given by the k-algebra map sending x to v. Now f#V (v) = g#V (v) holds when

ϕv ◦ f |f−1V = ϕv ◦ g|f−1V , so we may assume that Y = A1
k. Furthermore, by viewing the morphisms locally, we

may assume X to be affine.

Write X = Spec(R), where R is now a reduced k-algebra of finite type. Notice that this last property implies that
R is Jacobson, and therefore that the intersection of all maximal ideals is 0. Now consider two global sections
v, w ∈ OX(X), and suppose that v(x) = w(x) for all k-points x of X. We would like to show that v = w. Since
this is the same as assuming that (v − w)(x) = 0 for all such k-points, we may reduce to the case where w = 0.
But v(x) = 0 for all k-points x implies that v is an element of all maximal ideals of R, and therefore of all prime
ideals of R. Hence v = 0.

For the rest of the thesis, let k be an algebraically closed field of characteristic 0. There is a special type of
variety that combines this definition with the definition of a group scheme. In the literature they may also be
commonly known as algebraic groups, but we stuck with the term group varieties.

Definition 1.15. Let G be a group scheme over k. We call G a group variety if G is also a variety.

Example 1.16. The group scheme GL(n, k) as seen in Example 1.3 is also a group variety.
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There is a very important example of a group variety which we will use throughout this thesis that deserves a
definition on its own.

Definition 1.17. Define Gm := Gm,k and let r be a positive integer. We call the group variety Grm an r-torus
or simply torus when r is irrelevant for the context.

The most important torus will be the 1-torus Gm. Actions of this group variety on an affine variety can be given
by looking at the underlying rings.

Lemma 1.18. Let X := Spec(R) be an affine variety and let G := Gm. Then, to give an action of G on X is
the same as giving a Z-grading on R with k ⊆ R0.

Proof. Consider the group variety G := Gm acting on some affine variety X = Spec(R) via an action σ :
Gm ×k Spec(R) → Spec(R). Then σ corresponds to a k-algebra map σ∨ : R → R ⊗k k[x, x−1] ∼= R[x, x−1]. For
i ∈ Z we define Ri := {r ∈ R | σ∨(r) = xi ⊗ r} and we shall write µ : Gm ×k Gm → Gm for the multiplication of
Gm.

Since G,X are both affine, we can rewrite the first axiom of Definition 1.7 to a diagram of ring maps:

k[x, x−1]⊗k k[x, x−1]⊗k R k[x, x−1]⊗k R

k[x, x−1]⊗k R R

Idk[x,x−1]⊗σ
∨

µ∨⊗IdR

σ∨

σ∨

Hence if we let r ∈ R and define ri ∈ R for i ∈ Z such that
∑
i∈Z x

i ⊗ ri = σ∨(r), then the commutativity of the
square gives us the equality:

∑
i∈Z

xi ⊗ xi ⊗ ri =
∑
i∈Z

xi ⊗ σ∨(ri).

Since R is a domain, this implies that σ∨(ri) = xi ⊗ ri and hence that ri ∈ Ri. The second axiom tells us that
the composition

R k[x, x−1]⊗k R R
e∨⊗IdR σ∨

has to equal the identity on R, where e∨ : k[x, x−1] → k was defined by x 7→ 1. With the same r ∈ R and
corresponding ri ∈ R defined as above, this simply states that r =

∑
i ri. We conclude that R = ⊕i∈ZRi. But

now notice that the opposite is also true. That is, given an Z-grading of R with k ⊆ R0, the map σ∨ defined
on some homogeneous element ri by σ

∨(ri) = xi ⊗ ri agrees with the definition of an action by reversing the
arguments above. Hence an action of Gm on X is the same as giving a Z-grading on R with k ⊆ R0.

Remark 1.19. It is actually possible to generalise this statement. That is, if G = Spec(k[Λ]), where Λ is some
finitely generated Abelian group, then a G action on X = Spec(R) will be the same as a Λ-grading of R. We
refer to Theorem 2.12 in the paper by Craw, see [6].

As seen in Proposition 1.14, we can in general just give the map on points if we want to give an action. In a lot
of standard cases, this map on points will look fairly familiar.

Example 1.20. Consider the group variety G := Gm = Spec(k[t, t−1]) and variety X := Ank = Spec(k[x1, ..., xn]).
Suppose that we have some action σ : Gm × Ank → Ank so that for all i = 1, ..., n we have σ∨(xi) = xi ⊗ tai for
some ai ∈ Z. For simplicity we shall write k[t, t−1]⊗k k[x1, ..., xn] = k[t, t−1, x1, ..., xn]. A k-point of Akn will be
an element (y1, ..., yn) ∈ kn and can be observed as the maximal ideal (x1−y1, x2−y2, ..., xn−yn) ⊂ k[x1, ..., xn].
Similarly a k-point of G will be an element s ∈ k×, which can be seen as the maximal ideal (t − s) ⊂ k[t, t−1].
Using this notation, σ gives a map on points by s · (y1, ..., yn) ∈ kn being the point which corresponds to the
maximal ideal (σ∨)−1(t− s, x1 − y1, x2 − y2, ..., xn − yn). To calculate this maximal ideal, we do the following.

Given our action, it is fair to suggest that we may obtain the point (sa1y1, ..., s
anyn) as answer, so we may try

this. To do so; for any i = 1, ..., n we have

σ∨(xi − saiyi) = xit
ai − saiyi = (xi − yi)t

ai + yit
ai − saiyi = (xi − yi)t

ai + yi(t
a
i − sai).
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If ai ≥ 0, then tai−sai is a polynomial in t with a zero s, so that tai−sai ∈ (t−s). If ai < 0, then 1−t−aisai ∈ (t−s)
holds using the same logic so that tai(1−t−aisai) = tai−sai ∈ (t−s) holds again. Hence we obtain σ∨(xi−saiyi) ⊂
(t − s, x1 − y1, ..., xn − yn), which shows that σ∨(x1 − sa1y1, ..., xn − sanyn) ⊆ (t − s, x1 − y1, ..., xn − yn). In
particular, this shows that (x1− sa1y1, ..., xn− sanyn) ⊆ (σ∨)−1(t− s, x1− y1, ..., xn− yn). But on the left of this
inclusion we have a maximal ideal, which is contained inside some prime ideal. Therefore, the only possibility is
(σ∨)−1(t− s, x1 − y1, ..., xn − yn) = (x1 − sa1y1, ..., xn − sanyn), which is exactly what we wanted. We conclude
that, on points, we are working with the map s · (y1, ..., yn) = (sa1y1, ..., s

anyn).

With the reverse statement you’d have to be a bit careful. Notice that giving the ’action’ s · (y1, ..., yn) =
(sa1y1, ..., s

anyn) only gives us the information that (σ∨)−1(t−s, x1−y1, ..., xn−yn) = (x1−sa1y1, ..., xn−sanyn)
holds for all s ∈ k× and y1, ..., yn ∈ k. This makes it seem quite difficult to define σ∨. Luckily, Proposition 1.14
tells us that it must be given by xi 7→ xi ⊗ tai if it is any morphism at all.

And even more is true! If we consider Grm = Spec(k[t1, ..., tr, t
−1
1 , ..., t−1

r ]) acting on Ank = Spec(k[x1, ..., xn])
given by xi 7→ xi⊗ t

a1,i
1 · · · tar,ir and follow the process above similarly, we can show that this action can be given

on points by (s1, ..., sr) · (y1, ..., yn) := (s
a1,1
1 · · · sar,1r y1, ..., s

a1,n
1 · · · sar,nr yn).

As a conclusion, we find a relation between an action of a group variety on a variety and the action given on
points. In particular, in this case the action on points is enough to describe the entire action.

Definition 1.21. Let G be a group variety. We call G solvable if for all schemes T/k, the group G(T ) is
solvable. The radical of G will be the identity component of its maximal solvable subgroup scheme. We call G
reductive if its radical is isomorphic (as group schemes) to Grm for some r ∈ Z≥0.

Example 1.22. The r-torus Grm is trivially reductive. Some other examples include the group variety GL(n, k)
and subgroup variety SL(n, k), the group of invertible n × n matrices over k and n × n matrices over k with
determinant 1 respectively. Here, SL(n, k) is defined analogous to GL(n, k) as in Example 1.3. The radical of
GL(n, k) is isomorphic to Gnm by considering the diagonal matrices and the radical of SL(n, k) is trivial.

For a non-example, we can consider any positive integer n and the additive group Gna := Gna,k. This group
is Abelian and therefore its own radical. However, it is not isomorphic to Grm for some r. There is also the
non-example Bn ⊂ GL(n, k) being the subgroup variety consisting of all upper-triangular matrices that have
only ones on the diagonal.

Definition 1.23. Let G be a group variety. A representation of G will be a group homomorphism G →
GL(n, k) for some n ∈ Z≥0. We call G linearly reductive if any representation of G is completely reducible.
That is, for any representation with induced action on Ank we have the property that if G leaves some subspace
Amk ⊂ Ank invariant, then it leaves invariant a complementary subspace An−mk .

In general we don’t have to worry about checking for the linear reductive property, as there is a nice equivalence
when working over a field of characteristic 0.

Proposition 1.24 (GIT, [5], Appendix A page 191). Suppose k is of characteristic 0. Then a group variety G
is reductive if and only if it is linearly reductive.

Definition 1.25. Let G be a group variety acting on a variety X, and let F be a quasi-coherent OX -module.
Write p23 : G×k G×k X → G×k X for the projection on the second and third coordinates. Note that we have
equalities of morphisms:

p2 ◦ (µ× idX) = p3 = p2 ◦ p23 : G×k G×k X → X;

σ ◦ p23 = p2 ◦ (idG × σ) : G×k G×k X → X;

σ ◦ (µ× idX) = σ ◦ (idG × σ) : G×k G×k X → X.

The last equality follows by the first property of a group action.

An equivariant structure of G on F is an isomorphism ϕ : σ∗F ∼−→ p∗2F of OG×kX -modules such that the
diagram

(σ ◦ (IdG × σ))∗F (p2 ◦ (IdG × σ))∗F (σ ◦ p23)∗F (p2 ◦ p23)∗F

(σ ◦ (µ× IdX))∗F (p2 ◦ (µ× IdX))∗F

(IdG×σ)∗ϕ p∗23ϕ

(µ×IdX)∗ϕ
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commutes, also called the cocycle condition. If F is an invertible sheaf, then we will also call a G-equivariant
structure on F a G-linearization of F or simply a linearization of F when there is no confusion. A G-
equivariant sheaf on X (respectively G-linearized invertible sheaf) will be a quasi-coherent OX -module
with a given G-equivariant structure (respectively an invertible sheaf with a given linearization).

The main objects of interest here will be the G-linearizations of invertible sheaves. If we consider two G-linearized
invertible sheaves, the tensor product naturally provides a G-linearization on the tensor product of the invertible
sheaves. Moreover, the trivial invertible sheaf OX has a natural ”trivial” G-linearization by viewing the canonical
isomorphisms σ∗OX

∼= p∗2OX
∼= OG×kX , and the inverse of a G-linearized invertible sheaf L carries a natural

G-linearization which is ”inverse” to the G-linearization of L up to isomorphism. Therefore, we get a group
structure.

Definition 1.26. Let G be a group variety acting on a variety X. The group of isomorphism classes of G-
linearized invertible sheaves is denoted by PicG(X).

If seeing this definition for the first time, it might be tempting to show that Pic(X) ⊆ PicG(X) holds. But this is
in general not true! It is completely possible that there exists no G-linearization for some invertible sheaf, but it
would be a lot of effort to show that this is the case for a given sheaf. The other way around is also not necessarily
true; we may find multiple G-linearizations of some invertible sheaf. Luckily, the following proposition helps us
to put some restrictions on G concerning the amount of G-linearizations.

Proposition 1.27 (GIT,[5], Proposition 1.4). Let G be a connected group variety acting on a variety X. If there
is no surjective homomorphism G ×k Spec(k) → Gm,k, then each invertible sheaf L on X carries at most one
G-linearization.

At this point, it is not (yet) so easy to give examples. In the next section we shall see a different approach to
invertible sheaves, called line bundles, which will also help us understand these linearizations in an easy manner.

Let G be a group variety acting on some variety X, and let L be a G-linearized invertible sheaf on X. Consider
the following composition.

Γ(X,L) Γ(G×k X,σ∗L) Γ(G×k X, p∗2L) ∼= Γ(G×k X, p∗1OG ⊗ p∗2L) Γ(G,OG)⊗k Γ(X,L)σ∗ ϕ ∼

where the last map is the isomorphism following from the Künneth formula. Then we obtain the notion of a
G-invariant section of L.

Definition 1.28. Let G,X,L as above. We call a section s ∈ Γ(X,L) G-invariant if the image of s under the
composition above equals 1⊗ s. The subset of Γ(X,L) consisting of all G-invariant sections will be denoted by
Γ(X,L)G.

We need to be a bit careful here whenever we use the structure sheaf L = OX . For example, if X = Spec(R) is
affine, any action G×kX → X corresponds to a ring map R→ R⊗k OG(G). This gives us another notion of an
action, and it is at a first glance not clear whether it agrees with the definition above. Moreover, it does not agree
with the definition in general! Notice that this action of G on OX(X) does not depend on the linearization of
OX , so ϕ does not play any role for this action. Luckily, we know what this ring map does correspond to, namely
the trivial linearization. Hence, given the trivial linearization of OX for some affine scheme X, the G-invariant
sections Γ(X,OX)G ⊆ Γ(X,OX) = R form a subring. If no G-linearizations are mentioned, we shall mean the
trivial linearization. Finally, we have a nice result on affine schemes over k.

Theorem 1.29 (GIT,[5], Theorem 1.1 & Amplification 1.3). Let X/k be an affine scheme and let G be a
reductive group variety acting on X. Then the categorical quotient of X by G exists, and is isomorphic to the
pair (Spec(OX(X)G), π) where π is the natural map induced by the inclusion OX(X)G ↪→ OX(X). Moreover,
this quotient is a geometric quotient if and only if the orbits of all geometric points of X by G are closed.

1.4 Line bundles

There is a nice geometric interpretation possible for any invertible sheaf on a variety, called a line bundle, which
have useful applications. Any G-linearization given on an invertible sheaf also directly translates with something
we call a bundle action on this line bundle. The other way around will hold as well, so that we get a G-linearization
given some bundle action. Therefore, instead of working with the rather difficult definition of a G-linearization,
we can give a bundle action on a line bundle. We will also talk shortly about vector bundles, but as we do not
use them, they will not be defined properly. We shall follow the process of Brion closely, see [4].

Definition 1.30. Let X be a variety. A line bundle on X is a scheme L over k together with a k-morphism
π : L → X such that X admits an open cover {Ui}i∈I , called a trivializing cover of L, and for all i ∈ I
an isomorphism ϕi : π−1(Ui) ∼−→ Ui ×k A1

k such that for all i, j ∈ I the restriction of the composition (ϕi ◦
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ϕ−1
j )|(Ui∩Uj)×kA1

k
: (Ui ∩ Uj) ×k A1

k → (Ui ∩ Uj) ×k A1
k is given on points by (x, t) 7→ (x, aij(x)t) for some

aij ∈ OX(Ui ∩ Uj)×.

If X,Y are varieties, and f : Y → X is a morphism, then the pullback f∗L of some line bundle L on X will be
defined as the fiber product Y ×X L. A morphism L → M, where L is a line bundle on X and M is a line bundle
on Y will be a cartesian square

M L

Y X

Note that we can obtain L by gluing the so-called trivial line bundles Ui×kA1
k together via the transition functions

aij . This also gives the inspiration to get more line bundles by using different transition functions. Suppose L,M
are line bundles on a variety X. Let us choose a trivializing cover for both L and M simultaneously. For example,
this can be done by choosing {Ui ∩ Vj}i∈I,j∈J , if {Ui}i∈I is a trivializing cover for L and {Vi}i∈J is a trivializing
cover for M.

Let aij denote the transition functions of L and let bmn denote the transition functions of M. We define the
tensor product L ⊗ M as the line bundle by gluing the (Ui ∩ Vm) ×k A1

k via the transition functions aijbmn.
Similarly, we let L∨ denote the line bundle by gluing the Ui ×k A1

k via the transition functions a−1
ij . Note that

L ⊗ L∨ is isomorphic to the trivial line bundle X ×k A1
k → X. This puts a group structure on the set of line

bundles up to isomorphism on X, we will denote this group by Line(X).

Suppose that L is an invertible sheaf. Choose a trivializing cover {Ui}i∈I of L and for all i ∈ I choose a generator
si ∈ Γ(Ui,L) as OX(Ui)-module. Then, for all i, j ∈ I, there exist an element gij ∈ OX(Ui ∩ Uj)× such that
si|Ui∩Uj

= gij · sj |Ui∩Uj
. Define a map f : Pic(X) → Line(X) by sending an invertible sheaf to the line bundle

obtained from gluing the trivial line bundles Ui ×k A1
k → Ui via the transition functions g−1

ij . We shall give a
remark at the end of this construction as to why we have an inverse here. Note that, up to isomorphism, this
does not depend on choice of the si or choice of representative L. In other words, f is well-defined. Furthermore,
if L,M are invertible sheaves giving transition functions gij and hmn respectively, we see that L ⊗M will give
the transition functions g−1

ij h
−1
mn. So f is a group homomorphism.

Our function f is clearly injective, as we can obtain the trivial line bundle if and only if gij = 1 for all transition
maps. Surjectivity follows readily as well. If L is a line bundle, we may define the invertible sheaf L by
L(U) := {k-morphisms σ : U → L | π ◦ σ = idU}. Then f(L) = L. Hence f is an isomorphism, giving us a nice
correspondence between line bundles and invertible sheaves (up to isomorphism).

Using this isomorphism it is natural to try to replicate definitions meant for invertible sheaves. In particular,
G-linearizations of invertible sheaves have a nice interpretation on line bundles.

Suppose G is a group variety acting on a variety X, and let L be a G-linearized invertible sheaf given by the
isomorphism ϕ : σ∗L ∼−→ p∗2L. Write π : L → X for the corresponding line bundle (up to isomorphism). The
cocycle condition of ϕ shows that a G-linearization of L corresponds to a bundle action of G on L. In other
words, we have a G-action Σ : G×X L → L such that the diagram

G×k G×X L G×X L

G×X L L

G×k G×k X G×k X

G×k X X

IdG×Σ

µ×IdL Σ

Σ

µ×IdX

IdG×σ

σ

σ

commutes, and that is fiberwise linear meaning that for k-points x ∈ X the induced action of G on π−1({x}) ∼= A1
k

is a linear (since ϕ is OG×X -linear) automorphism.

Even more so, we can replicate this entire process whenever E is a locally free sheaf of finite rank n. That is, for a
trivializing cover {Ui}i∈I of E we obtain morphisms Ui×k Ank → Ui which may be glued via transition functions.
In this case, any such E will give us a so-called vector bundle on X. These objects are interesting, and are
used quite a lot in literature, but they do not play a massive role in this paper. As a result, we shall not dive
more deeply into their definition.
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There is another construction of the line bundle corresponding to an invertible sheaf, which is used a bit more
widely in literature. Suppose we have any sheaf E on X. Then we can consider the relative spectrum of the
symmetric algebra of this sheaf, namely Spec(Sym E). For anyone not familiar with these constructions, we shall
refer to Algebraic Geometry by Hartshorne, see [13]. The notation for Spec(Sym E) might be V (E) in some texts.

Notice that whenever E is a locally free sheaf of rank n on X, this process will give us a vector bundle of rank n
on X (together with the natural map Spec(Sym E) → X). Moreover, if G is a group variety acting on a variety
X and E has some G-equivariant structure, then we get a natural G-action on Spec(Sym E). It is a nice exercise
to check that for G-linearized invertible sheaves E , the line bundle Spec(Sym E) will be isomorphic to the line
bundle as obtained with the construction above, and that the G-linearization induces the same G-action on the
line bundle. Hence we may shift between these constructions and choose whichever one we prefer.

Remark 1.31. Let L be an invertible sheaf on a variety X and let L be the corresponding line bundle. The main
reason we defined L by gluing along transition functions g−1

ij coming from the transition functions gij from L is
that the process from invertible sheaves to bundles is a contravariant process. In the next chapter we will define
a Mumford weight that comes with invertible sheaves and line bundles that have some kind of structure on them
coming from G. We would like these weights to agree, which we can do with our choice of gluing. We could’ve
also defined L by gluing along the gij , but we should then also invert the weights. So this will be our convention.

Example 1.32. Let X := Pnk with homogeneous coordinates (x0 : ... : xn) and consider the invertible sheaf
L := OX(1). gluing some D(xi) to some D(xj), this sheaf is glued by

Xi 7→ XijXj

where Xij represents Xi/Xj . Therefore, the corresponding line bundle L can locally be given by D(xi)×A1
k for

i = 0, ..., n, and it is obtained by gluing D(xi)× A1
k to D(xj)× A1

k via the maps

(v, s) 7→
(
v,
Xj(v)

Xi(v)
s

)
.

Here Xj(v), Xi(v) are the maps that send v to its value on the j-th coordinate and i-th coordinate respectively.

We end this section on line bundles by giving two general computations of PicG(X) where G is a torus making
use of this construction. The first example will involve any variety with a trivial Picard group.

Example 1.33. Let r ∈ Z be a positive integer and consider some action of G := Grm on a variety X with
trivial Picard group. Consider the structure sheaf L := OX , with corresponding line bundle L := X × A1

k. A
bundle action of G on L must be given by its action on A1

k, since it has to commute with the action on X on
points. Therefore Example 1.20 shows that a linearization is simply given by an r-tuple of integers. Hence we
get PicG(X) ∼= Zr.

Next, we shall see what happens on projective space.

Proposition 1.34. Consider G := Gm acting on X := Pnk by t · (x0 : ... : xn) = (tr0x0 : ... : trnxn). Then
PicG(X) ∼= Z2.

Proof. For i = 0, ..., n, write Ui := D(xi) for the standard affine open subsets of X, and consider some invertible
sheaf L := OX(d) for d ∈ Z. The corresponding line bundle L is given by gluing schemes Ui × A1

k by the
isomorphism

ϕij : ((x0 : ... : xn), s) 7→

(
(x0 : ... : xn),

xdj
xdi
s

)

where we go from Ui × A1
k ⊃ (Ui ∩ Uj) × A1

k → (Ui ∩ Uj) × A1
k ⊂ Uj × A1

k. Now we want to give L a bundle
action. Since this action has to commute with the action on Pnk via the projection map, we only need to act
on A1

k. As we’ve seen in Example 1.20, we get that for i = 0, ..., n the bundle action on Ui × A1
k is given by

t · ((x0 : ... : xn), s) = ((tr0x0 : ... : trnxn), t
ais) for some ai ∈ Z. We do have some restrictions with this, namely

that this action agrees on the overlap (Ui ∩ Uj) × A1
k for all other j. The gluing map tells us exactly how this

overlap should happen.

Consider some 0 ≤ i, j ≤ n and let ((x0 : ... : xn), s) ∈ (Ui ∩ Uj) × A1
k. If we first act on this element with the

bundle action, and then apply the gluing isomorphism, we will get;

ϕij(t · ((x0 : ... : xn), s)) = ϕij((t
r0x0 : ... : trnxn), t

ais)
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=

(
(tr0x0 : ... : trnxn),

tdrjxdj
tdrixdi

tais

)
=

(
(tr0x0 : ... : trnxn),

xdj
xdi
tai+drj−dris

)
.

If we first apply the gluing isomorphism, and then act via the bundle action, we will get;

t ·ϕij((x0 : ... : xn), s) = t ·

(
(x0 : ... : xn),

xdj
xdi
s

)
=

(
(tr0x0 : ... : trnxn), t

aj
xdj
xdi
s

)
.

Hence, we should have aj = ai + drj − dri. In particular, the bundle action is characterized by choice of the
element a0 ∈ Z (or any other ai). It should be noted that we have only computed what should happen if we try to
define a bundle action, not that it actually exists. For this the equations aj = ai+drj−dri should not contradict
one another. Luckily, if we write al = aj+drl−drj for some l, then al = (ai+drj−dri)+drl−drj = ai+drl−dri
gives us the exact equation we wanted. So this bundle action is well-defined.

Let d1, d2 ∈ Z. Suppose we have G-linearizations of OX(d1) given by a ∈ Z and G-linearization of OX(d2) given
by b ∈ Z respectively, corresponding to the value of a0 as in the construction above. Making use of the line
bundle construction and their definition of the tensor product, it can be readily seen that the tensor product
(and therefore the product of PicG(X)) gives us the line bundle OX(d1 + d2), with G-linearization given by the
integer a+ b corresponding to the value of a0. Since Pic(X) ∼= Z, we conclude that PicG(X) is isomorphic to Z2

via the isomorphism PicG(X) → Pic(X) × Z sending a G-linearized invertible sheaf L with value a to the pair
(L, a) (where on the first coordinate we forget the linearization).

Remark 1.35. Note that this proposition can be improved by letting Grm act on Pnk for some positive integer r.
Similarly as in the proof above, we would get (t1, ..., tr) acting on some ((x0 : ... : xn), s) ∈ Ui × A1

k, which will

now be given by integers a1,i, ..., ar,i. The statement would then be that PicG
r
m(Pnk ) ∼= Zr+1 by the isomorphism

sending some G-linearized invertible sheaf L to the underlying sheaf without the G-linearization, and the r-tuple
(a1,0, ..., ar,0) ∈ Zr.

2 Geometric Invariant Theory

Our next goal is to build upon the theory of chapter one and look at the quotients we find interesting. We will
look at something we call the GIT-quotient, and how to obtain it. In general this requires the use of semi-stable
points; geometric points that have some kind of property. In the first section we will talk about how to obtain
such points and what to do with them. The second section gives us a geometric interpretation of the structure
of these points, and finally the last section describes shortly what happens within this interpretation.

2.1 The GIT-quotient

As we’ve stated before, categorical and geometric quotients do not always exist. This makes it natural to ask the
question when they do exist, resulting in the definitions of semi-stable and stable points.

Definition 2.1. Let G be a reductive group variety acting on a variety X. Let x be a geometric point of X,
and suppose we have an invertible sheaf L on X with a G-linearization ϕ. If s is any global section of L, we let
Xs denote the set of geometric points of X such that sx generates Lx as OX,x-module.

(i) We call x semi-stable if there exists an n ∈ Z>0 and an invariant section s ∈ H0(X,Ln)G such that sx ̸= 0
and Xs is affine. The set of semi-stable points will be denoted by Xss(L).

(ii) We call x stable if it is semi-stable, the orbits of all geometric points y ∈ Xs are closed under the action
of G, and the stabilizer of x is finite. The set of stable points will be denoted by Xs(L).

(iii) We call x unstable if it is not semi-stable. The set of unstable points will be denoted by Xus(L).

We make a quick remark on the definition of stable points, as they aren’t exactly the same as classically used
in [5]. Our definition of stable points will correspond to their definition of something they call properly stable
points. But it seems that the properties of non-properly stable points are not desirable, which led modern texts
to use the notion of properly stable points as if they were just stable points.

Following these definitions, we have a result from GIT using the semi-stable points. As a consequence, we may
finally define GIT quotients.
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Theorem 2.2 (GIT,[5], Theorem 1.10). Let X be a variety and let G be a reductive group variety acting on X.
Assume we have a G-linearized invertible sheaf L on X. Then a categorical quotient of Xss(L) by G exists.

Remark 2.3. Not only is this a strong theorem, it also explicitly computes the quotient for us. In general, the
construction gives us a quotient of the form

Proj

( ∞⊕
n=0

Γ(X,Ln)G
)
.

Notice that whenever L = OX , this becomes Proj Γ(X,OX)[z]G where z keeps track of the grading. The action
of G on z is determined by the bundle action when viewing OX as a line bundle X × A1

k → X.

Definition 2.4. Let G be a reductive group variety acting on a variety X, and suppose we have a G-linearized
invertible sheaf L on X. The GIT-quotient of X by G with respect to L, will be defined (up to isomorphism)
as a categorical quotient of Xss(L) by G. The notation will be X//LG := Xss(L)/G or X//G when it is clear
what G-linearized invertible sheaf is involved.

Example 2.5. Suppose we have some affine X over k and a reductive group variety G acting on X. Due to
Theorem 1.29, it might be tempting to say that there is only one quotient X//LG up to isomorphism for any
given line bundle L. But this quotient actually also depends on the linearization that is chosen!

For an (easy) example, consider X = A2
k = Spec(k[x, y]) and let G = Gm. We let G act on X on points by

t · (x, y) := (tx, ty). The corresponding dual map k[x, y] → k[x, y] ⊗k k[t] is given by x 7→ x ⊗ t and y 7→ y ⊗ t.
As every invertible sheaf on X is trivial, we let L = OX . A G-linearization of L is now a bundle action of G
on X × A1

k. This corresponds to a (linear) action of G on A1
k, and therefore it is given by a choice of an integer

r. From this we take two choices; if r = 0, then we are considering the trivial G-linearization. If r = −1,
then we take the bundle action t · (x, y, z) = (tx, ty, t−1z). We claim that these G-linearizations provide different
quotients.

For r = 0, Theorem 1.29 tells us that X//OX
G ∼= Spec(k[x, y]G) = Spec(k) is a point. Notice that we use that all

points are semi-stable here, which follows since 1 ∈ OX(X) is G-invariant. For r = −1 we get k[x, y]G = (x, y),
since G acts on 1 in the same way the bundle action acts on the extra variable z. Looking at the definition, we
see that the set of semi-stable points will be the set of points with either the first or second coordinate nonzero.
Therefore, it is X \ {(0, 0)}. Notice that this set is already different from the set of semi-stable points for r = 0
(which is X). The quotient can be given by Proj k[x, y][z]G = Proj k[xz, yz] ∼= Proj k[x, y] ∼= P1

k, and therefore
we get something different.

It now seems fair to want to compute the set of semi-stable points. However, in some more complex situations
it might be difficult to compute it using our definition above. To help us be able to compute these sets, we will
dive into the theory of the numerical criterion.

Definition 2.6. Let G be a group variety. A one-parameter subgroup of G or 1-PS of G for short will be a
non-trivial group homomorphism λ : Gm → G.

Definition 2.7. Assume that we have a group variety G acting on a variety X that is proper over k. Let x ∈ X
be a closed point and let λ : Gm → G be a 1-PS. Let ϕx : G→ X denote the composition G ∼= G×k Spec(k) →
G×kX → X given by σ◦(IdG×x). We get a map λ◦ϕx : Gm → X. Since X is proper, the valuative criterion for
properness induces an extension to a map A1

k → X. Let y ∈ X denote the image of 0 and write lim
t→0

λ(t) ·x := y.

Next, we notice that y is fixed under the induced action of Gm on X via λ. If L is a G-linearized invertible sheaf
with corresponding line bundle π : L → X, then Gm gives us a linear action on π−1(y) ∼= A1

k. Hence this will
give us some integer, which we will denote by µ(L, λ, x). This is called the Mumford weight of x with respect
to the 1-PS λ and invertible sheaf L.

This weight has some functorial properties as seen in definition 2.2 of GIT [5]:

(i) For k-points α of G we have µ(L, λ, σ(α, x)) = µ(L, α−1λα, x);

(ii) If we fix x and λ, then the map PicG(X) → Z given by L 7→ µ(L, λ, x) is a group homomorphism;

(iii) If f : X → Y is a G-invariant morphism of schemes on which G acts, and if L is a G-linearized invertible
sheaf and x is a closed point of x, then µ(f∗L, λ, x) = µ(L, λ, f(x));

(iv) If σ(λ(α), x) → y as α→ 0, then µ(L, λ, x) = µ(L, λ, y).

Similarly to the notion of stable points, we don’t exactly follow the classical text [5] here. Our number µ(L, λ, x)
would equal −µ(L, λ, x) in that text. The difference is not massive, though the benefit to our definition is that
we can interpret this number geometrically as a distance of some sort.
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Remark 2.8. In practice, we are not just interested in actions on proper varieties. If X is not proper, then for
any 1-PS λ we can define a subset Yλ ⊆ X(k) consisting of all points x ∈ X(k) such that limt→0 λ(t) ·x exists.
With this restriction it makes sense to define µ(L, λ, x) for any invertible sheaf L on X, any 1-PS λ : Gm → G
and any x ∈ Yλ.

Recall the definition of a very ample invertible sheaf on a variety X. This will be an invertible sheaf L such that
there exists an immersion i : X → Pnk for some n such that L ∼= i∗(OPn

k
(1)). We call an invertible sheaf ample,

if some positive power of the sheaf is very ample. Notice that the invertible sheaves OPn
k
(m) are (very) ample if

and only if m > 0. See [13] for more details. The next theorem uses these sheaves for a very strong result.

Theorem 2.9 (GIT,[5], Theorem 2.1). Let G be a reductive group variety acting on a proper variety X. Suppose
we have some ample G-linearized invertible sheaf L on X. Then for all closed points x ∈ X we have:

• x ∈ Xss(L) if and only if for all 1-PS λ of G we have µ(L, λ, x) ≤ 0;

• x ∈ Xs(L) if and only if for all 1-PS λ of G we have µ(L, λ, x) < 0.

We call this (Mumford’s) numerical criterion.

Instead of using the numerical criterion right away, it would benefit us to generalize semi-stable and stable points
using this criterion.

We follow the construction as in the paper by Ressayre, see [21]. Consider a maximal torus T of G. Write
χ∗(T ) and χ∗(G) for the sets of 1-PS’s of T and G respectively. First let us consider the real vector space
χ∗(T )R := χ∗(T ) ⊗ R. If we let W := N(T )/Z(T ) = N(T )/T denote the Weyl group of T , then W is a finite
group acting linearly on χ∗(T )R. By finiteness, there exists a W -invariant Euclidean norm ||.|| on our vector
space. Now if λ is a 1-PS of G, then λ maps a torus into G. Therefore since T is a maximal torus, there exists a
g ∈ G such that g ·λ · g−1 is a 1-PS of T . Even more so, any two elements of χ∗(T ) that are conjugated by some
element of G are also conjugated by an element of N(T ). See [15]. Hence we may define a norm ||.|| on χ∗(G)R
by using the norm above, and using the formula ||λ|| = ||gλg−1||.

Definition 2.10. For G-linearized invertible sheaves L we shall define

M(L, x) := sup
λ∈χ∗(G)

µ(L, λ, x)
||λ||

.

It is known that these values are finite, see [7]. Using these functions, we may reformulate the numerical criterion.

Theorem 2.11 (Numerical criterion). Let G be a reductive group variety acting on a proper variety X. Suppose
we have some ample G-linearized invertible sheaf L on X. Then for all closed points x ∈ X we have:

• x ∈ Xss(L) if and only if M(L, x) ≤ 0;

• x ∈ Xs(L) if and only if M(L, x) < 0.

Definition 2.12. Let G be a group variety acting on a varietyX, and suppose we have two G-linearized invertible
sheaves L,M. We call L1,L2 G-algebraically equivalent if there exists a connected variety Y , closed points
y1, y2 ∈ Y , and a G-linearized invertible sheaf L on Y ×k X such that L|{y1}×kX = L1 and L|{y2}×kX = L2.

This defines an equivalence relation on PicG(X), and we shall denote NSG(X) for the quotient of PicG(X) by
this relation. This group is called the Néron-Severi group of X with respect to the action of G.

Before we provide the following lemma which shows that the Mumford weight is locally constant with respect
to the set of fixed points, we shall have to consider multi-dimensional Mumford weights. In particular, what
happens when we replace the line bundle in the definition of the Mumford weight with a vector bundle of rank n?
We can still follow the same procedure, but end up (locally) with a Gm action on Ank . As seen in Example 1.20,
this can be given on points by an n-tuple of integers. So we could have defined µ(L, λ, x) ∈ Zn in this case! This
is a nice construction, but does not provide any other applications in this thesis compared to the one-dimensional
version. However, it is good to mention it for anyone interested in further research. The following lemma can
also be extended to such vector bundles.

Lemma 2.13. Suppose that G is a group variety acting on a variety X. Let λ be a one parameter subgroup of
G, and write Xλ for the set of geometric points of X that are fixed under the induced action of λ. Let E be a
G-equivariant sheaf of X that is locally free of finite rank n. For any two points x, x′ ∈ Xλ that lie in the same
connected component we have

µ(E , λ, x) = µ(E , λ, x′).
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Proof. Let x ∈ Xλ and consider the restricition E|Xλ . This will again be a locally free sheaf of finite rank n.
Choose a neighbourhood U ⊆ Xλ of x so that the corresponding vector bundle is isomorphic to U ×k Ank . The
induced Gm action on Xλ is trivial, hence the induced Gm-structure on E|Xλ will be given by an action of Gm on
U ×k Ank that is constant on U . Therefore, it is given by a (linear) action of Gm on Ank . But then for any x′ ∈ U
the weight µ(E|Xλ , λ, x′) = µ(E , λ, x′) is simply given by this Gm action. We conclude that µ(E , λ, x′) = µ(E , λ, x)
for any x′ ∈ U , so that the assignment x′ 7→ µ(E , λ, x′) is locally constant.

Proposition 2.14. Let G be a reductive group variety acting on a complete variety X. Let x ∈ X be a closed
point and λ ∈ χ∗(G). Suppose we have L1,L2 ∈ PicG(X) that are G-algebraically equivalent. Then

µ(L1, λ, x) = µ(L2, λ, x).

Proof. Let L be a G-linearized invertible sheaf and Y be a connected variety with closed points y1, y2 ∈ Y as in
the definition of G-algebraic equivalence. We have been given the natural G-action on Y ×kX where G acts trivial
on Y . Write x0 for the limit limt→0 λ(t)x ∈ X (which exists due to completeness). Then x0 ∈ Xλ. By Lemma
2.13 we get that the assignment y 7→ µ(L, λ, (y, x0)) is locally constant on Y λ = Y , and therefore constant since
Y is connected. We conclude that

µ(L1, λ, x) = µ(L, λ, (y1, x)) = µ(L, λ, (y2, x)) = µ(L2, λ, x).

This allows us in particular to define µ(L, λ, x) for L ∈ NSG(X) by choosing a lift. By linear continuation we
may define a map µ(•, λ, x) : NSG(X)R → R. Therefore we may also defineM(L, x) for ∈ NSG(X)R by using the
same formula as before. This allows us to define semi-stable and stable sets for such elements. If L ∈ NSG(X)R,
we let:

Xss(L) := {x ∈ X(k) |M(L, x) ≤ 0};

Xs(L) := {x ∈ X(k) |M(L, x) < 0}.

Definition 2.15. Let X be a variety acted on by a linearly reductive group variety G. A variation will be
defined as a pair (L−,L+) of ample quasi-coherent G-linearized invertible sheaves. For t ∈ [−1, 1] we define

Lt := L
1−t
2

− ⊗ L
1+t
2

+

in NSG(X)R. We say that (L−,L+) satisfies the DHT condition if the following properties hold:

(i) For any s, t ∈ [−1, 0) we have Xss(Ls) = Xss(Lt), we shall denote it by Xss(−). Similarly for any s, t ∈ (0, 1]
we have Xss(Ls) = Xss(Lt), which we shall denote by Xss(+). Write Xss(0) := Xss(L0).

(ii) For any x ∈ Xss(0) \ (Xss(+) ∪Xss(−)), the stabilizer of x is isomorphic to Gm.

(iii) The set Xss(0) \ (Xss(+) ∪Xss(−)) is either empty or connected.

Example 2.16. Suppose that X is a variety acted on by a linearly reductive group variety G, and suppose we have
an ample quasi-coherent G-linearized invertible sheaf L. Then (L,L) is a variation satisfying the DHT condition.

Example 2.17. Consider the G := Gm action on X := P1
k with homogeneous coordinates (x : y) by t · (x : y) :=

(tx : t−1y) and consider the corresponding line bundle to the sheaf L := OX(1). We may give a G-linearization
on invertible sheaf by choice of an integer a ∈ Z as we did in Proposition 1.34. Let’s recall the proof and result
of this proposition in this particular case.

Our line bundle has a trivializing cover D(x) ∪ D(y), and is given by the gluing map D(x) × A1
k ⊃ (D(x) ∩

D(y)) × A1
k → (D(x) ∩ D(y)) × A1

k ⊆ D(y) × A1
k given by ((x : y), s) 7→ ((x : y), yxs) (and the inverse is

given similarly). A G-linearization of L is a G-action on this line bundle can therefore be given by two integers
a, b so that t · ((x : y), s) = ((tx : t−1y), tas) on D(x) and t · ((x : y), s) = ((tx : t−1y), tbs) on D(y). But,
we have one more restriction, namely that this action agrees with the gluing map. This will give the relation
a = b+ 1 · 1− 1 · (−1) = b+ 2, see the proof for more details.

This integer also gives us a way to compute the semi-stable sets of X, which we will do via the numerical
criterion. Since raising a 1-PS to a positive power does not change the limit, we notice that (in our case) we have
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µ(L, λn, x) = nµ(L, λ, x) for all x ∈ X(k), 1-PS λ, and positive integers n. Therefore, it suffices to compute the
Mumford weights for the 1-PS λ : t 7→ t and λ−1 : t 7→ t−1 of G.

First of all, a quick observation shows us that

µ(L, λ, (1 : 0)) = a = −µ(L, λ−1, (1 : 0));

and
µ(L, λ, (0 : 1)) = a− 2 = −µ(L, λ−1, (0 : 1)),

using that (1 : 0), (0 : 1) are fixed points for the action of G. Notice that this shows that (1 : 0) or (0 : 1) can
only be semi-stable points if a = 0 or a = 2 respectively. For some (x : y) ∈ D(x) ∩D(y) we have

µ(L, λ, (x : y)) = µ(L, λ, (0 : 1)) = a− 2;

and

µ(L, λ−1, (x : y)) = µ(L, λ−1, (1 : 0)) = −a.

Here we used functorial property (iv) from the definition of the Mumford weight. We conclude that such (x : y)
is semi-stable if and only if a− 2 ≤ 0 and a ≥ 0, giving us the restriction 0 ≤ a ≤ 2.

Consider G-linearized invertible sheaves L+,L− on X, both being OX(1) as sheaves, but L+ being linearized
with a = 1 and L− being linearized with a = −1. We claim that (L−,L+) is a variation satisfying the DHT
condition, let’s show this. For t ∈ [−1, 1], define:

Lt := L
1−t
2

− ⊗ L
1+t
2

+ ∈ NSG(X)R.

As a matter of fact, for this example it will not be important to compute NSG(X), as we can simply work with
the equivalence classes of PicG(X). Our first task is to compute the Mumford weight for Lt with respect to λ±1

and all x ∈ X(k). By definition the Mumford weight is extended linearly, so for (1 : 0) using the computations
above we get;

µ(Lt, λ, (1 : 0)) = −1− t

2
+

1 + t

2
= t = −µ(Lt, λ−1, (1 : 0)),

and for (0 : 1) we get;

µ(Lt, λ, (0 : 1)) = −3 ·
1− t

2
− 1 ·

1 + t

2
= t− 2 = −µ(Lt, λ−1, (0 : 1)).

For (x : y) ∈ D(x) ∩D(y) we get;

µ(Lt, λ, (x : y)) = −3 ·
1− t

2
− 1 + t

2
= t− 2;

and

µ(Lt, λ−1, (x : y)) =
1− t

2
− 1 + t

2
= −t.

Next, we have;

M(Lt, (1 : 0)) = sup
ρ∈χ∗(G)

µ(Lt, ρ, (1 : 0))

||ρ||
.

In our case, G itself is a torus, so the Weyl-group acting on χ∗(G) is trivial. Therefore the Euclidean norm ||.||
can be chosen to be the ”natural” absolute value. We can identify χ∗(G) with Z by writing an element as a
power of λ. Then we expand to χ∗(G)R, which we can view as a copy of R, with ||.|| being the absolute value.
Therefore, ||λn|| = |n|. As discussed before, we have nµ(L, λ, x) = µ(L, λn, x) for positive n, so this shows that
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M(Lt, (1 : 0)) = max
ρ∈{λ,λ−1}

µ(Lt, ρ, (1 : 0)) = max {t,−t} = |t|.

Similarly we get

M(Lt, (0 : 1)) = |t− 2|;

and for (x : y) ∈ D(x) ∩D(y) :

M(Lt, (x : y)) = max{t− 2,−t}.

Recall the (improved) numerical criterion. Then we have (1 : 0) as semi-stable point if and only if t = 0. Since
t ∈ [−1, 1], (0 : 1) will never be a semi-stable point, and (x : y) ∈ D(x) ∩D(y) will be a semi-stable point if and
only if t ≥ 0. Hence;

Xss(Lt) =

 ∅, if t ∈ [−1, 0);
D(x), if t = 0;

D(x) ∩D(y), if t ∈ (0, 1].

We conclude that this variation satisfies the DHT condition.

Variations satisfying the DHT condition carry a lot of structure. In particular, the paper by Ballard, Favero and
Katzarkov covers a theorem similar to their main theorem on variations satisfying the DHT condition. We shall
mention it in Chapter 4. We will also see that in some cases they correspond to something called “crossing a
wall” in a setting we will define in the next section.

We have not really mentioned or used the stable points, and these points will also be left out of the rest of the
theory used in this thesis. It is not that they are not interesting. As a matter of fact, they give us an analog to
the use of semi-stable points in the sense of the following theorem.

Theorem 2.18 (GIT, [5], Theorem 1.10). Let X be a variety and G a reductive group variety acting on X. Let
L be a G-linearized invertible sheaf on X. Write (Y, ϕ) for a categorical quotient of Xss(L) by G. Then, there

exists an open subset Ỹ ⊆ Y such that Xs(L) = ϕ−1(Ỹ ) and such that (Ỹ , ϕ|Xs(L)) is a geometric quotient of
Xss(L) by G.

In particular, we could also shift our attention to the study of geometric quotients instead of categorical quotients,
but this will not be our goal in this thesis.

2.2 HKKN stratifications

The next bit of theory in the sense of GIT will be that of HKKN stratifications. These indicate an interesting
subdivision of a variety.

Definition 2.19. Let G be a group variety, and let λ be a one parameter subgroup of G. We define

P (λ) := {g ∈ G(k) | lim
t→0

λ(t) · g ·λ(t)−1 exists}

and

U(λ) := {g ∈ G(k) | lim
t→0

λ(t) · g ·λ(t)−1 = e}

where e ∈ G(k) is the identity element. Also define C(λ) to be the centralizer of λ in G.

Definition 2.20. Let G be a group variety acting on a variety X, and let λ : Gm → G be a one parameter
subgroup of G. Write Xλ for the set of closed points of X that are fixed under the induced action of λ. Consider
some connected component Z0

λ of Xλ and define

Zλ := {x ∈ X(k) | lim
t→0

λ(t) ·x ∈ Z0
λ}.

We will call this the contracting variety (with respect to Z0
λ). On top of this, we define

S0
λ := G ·Z0

λ, and Sλ := G ·Zλ.
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In general, there will not be a natural choice for Z0
λ. Hence we shall always define this variety to avoid confusion.

Suppose we have the same situation as in the previous definition, and consider the action of P (λ) on G ×k Zλ
given on points as p · (g, z) := (gp−1, pz). Then we get a quotient stack [(G×k Zλ)/P (λ)], which we shall denote
by G×P (λ)Zλ. Thanks to the work of Thomason in [25], we know that this stack is in general an algebraic space,
and we have a natural map τλ : G×P (λ) Zλ → Sλ given on points by (g, z) 7→ g · z.

Definition 2.21. Let G be a group variety acting on a variety X. An HKKN stratification of X, denoted by
K, will be a sequence

X = XK
0 ⊇ XK

1 ⊇ ... ⊇ XK
n

of G-invariant open subvarieties together with for each 1 ≤ i ≤ n a one parameter subgroup λi and a choice Z0
λi

of connected component of (XK
i−1)

λi such that:

• XK
i = XK

i−1 \ Sλi
;

• For all 1 ≤ i ≤ n, the morphism τλi
defined above is an isomorphism;

• For all 1 ≤ i ≤ n, Sλi is a closed subvariety of XK
i−1.

An elementary HKKN stratification will be a HKKN stratification with n = 1. In this case we shall often
leave out K from the notation and write X = Xλ ⊔ Sλ.

Even though HKKN stratifications give very nice results in dividing our space, only the elementary wall crossings
will get our attention in this thesis as they provide intuition on crossing a wall.

Definition 2.22. Let G be a group variety acting on a variety X. An elementary wall crossing will be a pair
of elementary HKKN stratifications (X+ ⊔Sλ, X− ⊔Sλ−1) corresponding to the same one parameter subgroup λ
together with the same choice of connected component. That is, Z0

λ = Z0
λ−1 .

For a nice use of HKKN stratifications as a whole, we will refer to the following theorem. If the reader is interested
in the theory behind it, we recommend to look at Theorem 2.1.28 of the paper by Ballard, Favero and Katzarkov
in [3].

Theorem 2.23 (BFK, [3], Theorem 2.1.28 and Corollary 2.1.29). Let G be a linearly reductive group variety
acting on either a smooth projective variety X or the affine variety X = Ank for some integer n. Let L be a
G-linearized ample invertible sheaf. Then, there is an HKKN stratifcation

X = XK
0 ⊃ XK

1 ⊃ ... ⊃ XK
m = Xss(L)

for some non-negative integer m.

Now in the literature a couple of choices could be made for the next topic that we should approach. Variations
satisfying the DHT condition have some very nice properties, and we could study them further. We could look
at so-called GIT-fans, in which we study the space NSG(X)R by dividing it into chambers and rooms. We are
going to study the GIT-fans at first, and from the next chapter onwards we will build our way to the study of
derived categories involving GIT.

2.3 The GIT-fan

The idea behind the GIT-fan is to divide the vector space NSG(X)R := NSG(X) ⊗Z R into walls and chambers
in a specific manner. The semi-stable set of any two points in the same chamber will be the same, and crossing
a wall will give the intuition of changing this set in a ”small” way. We will first provide some definitions to let
these sentences make sense. After that we give some explicit examples so that the intuition can stick.

Definition 2.24. Let G be a linearly reductive group variety acting on a variety X. Consider the Neron-Severi
group NSG(X).

• We shall write NSG(X)+R for the convex cone generated by the classes of ample G-linearized invertible

sheaves in NSG(X).

• We call a point l ∈ NSG(X)R ample if it belongs to NSG(X)+R .

• A polyhedral cone C of NSG(X)+R is a subset defined by a finite number of linear inequalities. We call
C rational if the inequalities can be chosen to be rational.

• A face of a polyhedral cone C is a subset F ⊆ C such that there exists a linear form f on NSG(X)+R that
is non-negative on C and satisfies f(c) = 0 for all c ∈ F .
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• We call a point l ∈ NSG(X)+R effective if Xss(l) ̸= ∅ and define the G-ample cone CG(X) as the set of
effective points.

• We shall call two points l, l′ ∈ NSG(X)+R GIT-equivalent if Xss(l) = Xss(l′). The GIT-class of some

point l ∈ NSG(X)+R is the set of all l′ ∈ NSG(X)+R that are GIT-equivalent to l.

We will use the following definitions to indicate the structure of what our fan will be.

Definition 2.25. Let G be a linearly reductive group variety acting on a variety X.

• For any point x ∈ X(k) we define the stability set of x to be

Ω(x) := {l ∈ NSG(X)+R | x ∈ Xss(l)}.

• We define a wall of CG(X) to be a stability set of codimension one in CG(X).

• We define a chamber to be a GIT-class of codimension 0 in CG(X).

So far we have not given any reason why we should call them walls and chambers. The next proposition shows
that this is actually not so weird when looking at the G-ample cone.

Proposition 2.26. Let W ⊆ CG(X) denote the union of the walls. The chambers are exactly the connected
components of CG(X) \W .

There is some detail missing now. We have defined walls and chambers, but not the structure they form. In a
slightly more general sense we can define fans.

Definition 2.27. We define a fan ∆ in NSG(X)+R to be a finite set of rational convex polyhedral cones in

NSG(X)+R such that

(i) The face of each polyhedral cone in ∆ is again a polyhedral cone in ∆;

(ii) The intersection of two polyhedral cones in ∆ is a face of each of these two polyhedral cones.

Our walls and chambers give us a specific fan, which is the result of a theorem from the paper by Ressayre.

Theorem 2.28 (Ressayre, [21], Theorem 4). Let X be a normal projective variety and let G be a reductive group
variety acting on X. Then:

(i) For all l ∈ CG(X) the set
C(l) := {l′ ∈ CG(X) | Xss(l) ⊆ Xss(l′)}

is a closed rational polyhedral convex cone in CG(X).

(ii) The convex cones C(l) form a fan covering CG(X).

(iii) All GIT-classes are relative interiors for the cones C(l).

We call this fan the GIT-fan for the action of G on X.

In this general sense, we have not yet said what the walls and chambers actually look like in the GIT-fan. We
will give some examples that can hopefully clarify this a bit. We still refer to Ressayre in [21] if the reader is
interested in a more broad explanation.

Example 2.29. Let’s compute the GIT-fan of the action given in Example 2.17, recall that the action was
t · (x : y) = (tx : t−1y) given by G := Gm acting on X := P1

k. Write O(n, a) for the G-linearized invertible sheaf
on X given by the invertible sheaf OX(n) with linearization given by the integer a. Consider such invertible sheaf
that is ample, which is in this case equivalent to n > 0. Let λ : t 7→ t denote the identity 1-PS. Then we observe;

µ(O(n, a), λ, (1 : 0)) = a;

µ(O(n, a), λ, (0 : 1)) = a− 2n;

µ(O(n, a), λ−1, (1 : 0)) = −a;
µ(O(n, a), λ−1, (0 : 1)) = −a+ 2n;

following mainly from how we computed a in the proof of Proposition 1.34 to begin with. We may also compute
limit points;

lim
t→0

λ(t) · (x : y) =

{
(0 : 1) , y ̸= 0;
(1 : 0) , y = 0.

lim
t→0

λ−1(t) · (x : y) =

{
(1 : 0) , x ̸= 0;
(0 : 1) , x = 0.
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Using the properties of the Mumford weight, we have now computed the Mumford weight for any point (x : y).
Using this, the numerical criterion tells us the following.

• D(x) ∩D(y) ⊆ Xss(O(n, a)) if and only if a− 2n ≤ 0 and −a ≤ 0. Therefore this holds when 0 ≤ a ≤ 2n.

• D(x) ⊆ Xss(O(n, a)) if and only if a, a− 2n ≤ 0 and −a ≤ 0. Therefore this holds when a = 0.

• D(y) ⊆ Xss(O(n, a)) if and only if a− 2n ≤ 0 and −a,−a+ 2n ≤ 0. Therefore this holds when a = 2n.

• X = Xss(O(n, a)) if and only if a, a− 2n ≤ 0 and −a,−a+ 2n ≤ 0. Therefore this holds when a = 0 and
a = 2n, which does not occur as n > 0.

It might seem weird to only consider these cases. However, all limit points rely only on whether some coordinate
is zero or non-zero. Hence using the numerical criterion all semi-stable sets will be some intersection or union of
D(x) and D(y).

We get;

Xss(O(n, a)) =


D(x) ∩D(y) if 0 < a < 2n;

D(x) if a = 0;
D(y) if a = 2n;
∅ if a < 0 or a > 2n.

Now we know all the GIT-classes of ample line bundles. Before we can actually start drawing the fan, note that
NSG(X)+ = PicG(X)+ by Proposition 2.14 (where the plus in PicG(X)+ means that we only consider the ample
invertible sheaves). Indeed, if O(n, a) and O(m, b) give the same class in NSG(X)+, then

a = µ(O(n, a), λ, (1 : 0)) = µ(O(m, b), λ, (1 : 0)) = b

and
a− 2n = µ(O(n, a), λ, (0 : 1)) = µ(O(m, b), λ, (0 : 1)) = b− 2m

so that a = b and n = m. Since the Mumford weight is extended linearly to NSG(X)R, for any r ∈ R>0 and
x ∈ X(k) we get

M(rO(n, a), x) = max
ρ∈{λ,λ−1}

µ(rO(n, a), ρ, x) = r max
ρ∈{λ,λ−1}

µ(O(n, a), ρ, x) = rM(O(n, a), x).

Where we have used some observations on M(O(n, a), x) as in the example before. This tells us that the GIT-
classes form actual convex cones. Now using the bullet points above, we can directly draw out the fan. See
Figure 1.

Figure 1: The GIT-fan for a Gm-action on P1
k.
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Here we see NSG(X)R ∼= R2 drawn out. The variable a covers the horizontal axis and n covers the vertical axis.
We have two lines, a = 0 and a = 2n, that make up the walls of our fan. The areas A and C consist of all classes
with an empty semi-stable set. The area B consists of all classes with a semi-stable set equal to D(x) ∩ D(y).
As a result, B together with the walls equals CG(X). These walls are the stability sets of (1 : 0) and (0 : 1).

Looking at this fan, we can see exactly what happened with our variation satisfying the DHT condition. We
have L− = O(1,−1) and L+ = O(1, 1). Then Lt crosses the wall a = 0 exactly when t = 0. This will give the
intüıtion of an elementary wall crossing as we will see in the main theorem of Chapter 4.

Example 2.30. Consider a G := Gm action on X := P2
k given by t · (x : y : z) = (tx : t−1y : t2z). By Proposition

1.34 we can again write our invertible sheaves as O(n, a) corresponding to the invertible sheaf OX(n) with
linearization given by a. Consider a sheaf O(n, a) with n > 0, in other words, such that the sheaf is ample. Let
λ : t 7→ t denote the identity 1-PS. We compute the Mumford weights similarly as in the previous example;

µ(O(n, a), λ, (1 : 0 : 0)) = a;

µ(O(n, a), λ, (0 : 1 : 0)) = a− 2n;

µ(O(n, a), λ, (0 : 0 : 1)) = a+ n;

µ(O(n, a), λ−1, (1 : 0 : 0)) = −a;
µ(O(n, a), λ−1, (0 : 1 : 0)) = −a+ 2n;

µ(O(n, a), λ−1, (0 : 0 : 1)) = −a− n.

The limit points are also always one of these points:

lim
t→0

λ(t) · (x : y : z) =

(0 : 1 : 0), y ̸= 0;
(1 : 0 : 0), y = 0, x ̸= 0;
(0 : 0 : 1), x = y = 0.

lim
t→0

λ−1(t) · (x : y : z) =

(0 : 0 : 1), z ̸= 0;
(1 : 0 : 0), z = 0, x ̸= 0;
(0 : 1 : 0), x = z = 0.

Now we consider the different cases again, using the numerical criterion;

• D(x)∩D(y)∩D(z) ⊆ Xss(O(n, a)) if and only if a− 2n ≤ 0 and −a− n ≤ 0. Which is the same as saying
−n ≤ a ≤ 2n. Note that this is the same restriction as for the open set D(y) ∩D(z).

• D(x) ∩ D(y) ⊆ Xss(O(n, a)) if and only if a − 2n ≤ 0 and −a,−a − n ≤ 0. Giving us the restriction
0 ≤ a ≤ 2n.

• D(x) ∩D(z) ⊆ Xss(O(n, a)) if and only if a, a− 2n ≤ 0 and −a− n ≤ 0. Giving us −n ≤ a ≤ 0.

• D(x) ⊆ Xss(O(n, a)) if and only if a − 2n, a ≤ 0 and −a − n,−a ≤ 0. Therefore a = 0 is the only value
making this hold.

• D(y) ⊆ Xss(O(n, a)) if and only if a − 2n ≤ 0 and −a,−a + 2n,−a − n ≤ 0. Giving us the restriction
a = 2n.

• D(z) ⊆ Xss(O(n, a)) if and only if a, a− 2n, a+n ≤ 0 and −a−n ≤ 0. Thus a = −n is the only value that
works.

• Xss(O(n, a)) = P2
k will never hold, since then we need a = 0 and a = 2n similarly to the previous example.

We get the following cases;

Xss(O(n, a)) =



D(z) ∩ (D(x) ∪D(y)) if −n < a < 0;
D(y) ∩ (D(x) ∪D(z)) if 0 < a < 2n;

D(z) if a = −n;
D(x) if a = 0;
D(y) if a = 2n;
∅ if a < −n or a > 2n.

Using the exact same logic as in the previous example shows that we can draw the fan directly by extending the
GIT-classes linearly. See Figure 2 for the GIT-fan.

Now sections A and D correspond to empty semi-stable sets, and sections B and C correspond to different
chambers of our fan. As a result, the walls are the stability sets of (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1). We can
actually find a sweet pattern here.
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Figure 2: The GIT-fan for a Gm-action on P2
k.

Proposition 2.31. Consider a G := Gm action on X := Pnk by t · (x0, ..., xn) = (ta0x0 : ta1x1 : ... : tanxn) for
integers a1, ..., an ̸= 1 that are pairwise distinct. Then the GIT-fan of this action is given by n + 1 walls of the
form a = (a0 − ai)n for i = 0, 1, ..., n, separating n chambers.

Proof. We could change our action to the form t · (x0, ..., xn) = (tx0 : ta1x1 : ... : tanxn) by multiplying every
coordinate by t1−a0 . Then the result would follow directly by applying the method from the examples above.
Alternatively, we can give a general proof.

Let ei ∈ Pnk (k) denote the point (x0 : ... : xn) with xi = 1 and xj = 0 for j ̸= i. Since all ai are pairwise distinct,
the set of fixed points is exactly {e0, ..., en}. Let n be a positive integer and consider the invertible sheaf OX(n)
on X. We give it a G-linearization with the element a ∈ Z and denote this by O(n, a). Let λ denote the 1-PS
given by t 7→ t. Then for any i = 0, ..., n the Mumford weights are observed to be;

µ(O(n, a), λ, ei) = a− (a0 − ai)n;

and

µ(O(n, a), λ−1, ei) = −a+ (a0 − ai)n.

As they are fixed points, the numerical criterion immediately tells us that ei ∈ Xss(O(n, a)) if and only if
a− (a0 − ai)n ≤ 0 and −a+ (a0 − ai)n ≤ 0. In other words, this holds only when a = (a0 − ai)n. By linearity,
the stability set Ω(ei) is given by this line. This gives us n+ 1 walls.

Now let x ∈ X(k) and consider the stability set Ω(x). We immediately know that limt→0 λ(t)x = ei and
limt→0 λ(t)

−1x = ej for some i, j ∈ {0, 1, ..., n}. Therefore, the stability set is given by the inequalities

a ≤ (a0 − ai)n; a ≥ (a0 − aj)n.

This will be a line if and only if i = j, and therefore provides a wall if and only if Ω(x) = Ω(ei). Now consider
two walls w1 : a = (a0 − ai)n and w2 : a = (a0 − aj)n that are next to each other. Without loss of generality
assume that w2 lies directly after w1, looking at the walls clockwise. Then, this implies that aj < ai. The region
between these walls is given by the inequalities

−a+ (a0 − ai)n ≤ 0; a− (a0 − aj)n ≤ 0.
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But using aj < ai, we can do the following. Let x denote the element (x0 : ... : xn) with xi = xj = 1 and
xl = 0 for all l ̸= i, j. Then limt→0 λ(t)x = ej and limt→0 λ(t)

−1x = ei. Hence the stability set of x is given
by the equations a − (a0 − aj)n ≤ 0 and −a + (a0 − ai)n ≤ 0, which was exactly the condition of the region
between the walls! Therefore the region between these walls forms a chamber, as the semi-stable set of any point
is non-empty. We obtain n chambers from this method.

Finally, we only have to show that all points of the final two regions which are closed in by a wall and the line
n = 0 have empty semi-stable sets. First consider the most left wall when looking at the walls clockwise. Then
in particular for any j ̸= i we must have aj < ai and the region can be given by the inequalities a < (a0 − ai)n
and n > 0. Thus given some a, n that satisfy these parameters, the value a − (a0 − aj)n is maximal whenever
j = i and therefore −a + (a0 − aj)n is minimal for j = i. But −a + (a0 − ai)n > −(a0 − ai)n + (a0 − ai)n = 0
and hence the Mumford weight µ(O(n, a), λ−1, x) will always be strictly positive for such a, n. We conclude that
the semi-stable sets are always empty in this region. The same follows for the most right region by flipping the
argument with ai being the minimal aj .

Example 2.32. We finish this section on GIT-fans with a final example of G := Gm acting on a product of
projective n-spaces. We shall consider an action on X := P1

k × P2
k by t · ((x0 : x1), (y0 : y1 : y2)) = ((tx0 :

t−1x1), (ty0 : t−1y1 : t2y2)) as we’ve seen the actions on the different factors in previous examples, but what we
will do can be done in general similarly to how we got the previous corollary. As this example can become quite
large if worked out exactly, we give a relatively short sketch.

The invertible sheaves on P1
k × P2

k are given by a pair of integers n,m via the pullbacks on the factors. That
is, the sheaves p∗P1

k
(OP1

k
(1)) and p∗P2

k
(OP2

k
(1)) generated Pic(X) making it isomorphic to Z2 (where pP1

k
and pP2

k

are the projection maps). We write such an invertible sheaf by OX(n,m). These sheaves are obtained by gluing
D(xi1)×D(yj1)× A1

k to D(xi2)×D(yj2)× A1
k by the map

((x0 : x1), (y0 : y1 : y2), s) 7→

(
(x0 : x1), (y0 : y1 : y2),

xni2
xni1

ymj2
ymj1

s

)
.

This shows that again all actions of t on D(xi) × D(yj) × A1
k are related similarly as before. That is, the

linearization is again given by a single integer a. We denote such linearized invertible sheaf by O(n,m, a) and
compute;

x µ(O(n,m, a), λ, x) µ(O(n,m, a), λ−1, x)

((1 : 0), (1 : 0 : 0)) a −a
((1 : 0), (0 : 1 : 0)) a− 2m −a+ 2m
((1 : 0), (0 : 0 : 1)) a+m −a−m
((0 : 1), (1 : 0 : 0)) a− 2n −a+ 2n
((0 : 1), (0 : 1 : 0)) a− 2n− 2m −a+ 2n+ 2m
((0 : 1), (0 : 0 : 1)) a− 2n+m −a+ 2n−m

The GIT-fan will reside in a 3-dimensional space, and since all limits are pairs of points in projective space with
a 1 as a coordinate and a 0 everywhere else, the stability sets of these points make up all the walls. Therefore,
we get a GIT-fan with walls given by equations a = 0, a = 2m, a = −m, a = 2n, a = 2n+ 2m and a = 2n−m.
This shows that the GIT-fan of the product has walls given by mixing the walls of the GIT-fans by restricting
to a factor!

As a final note, let’s talk about variations satisfying the DHT condition. Since we know what the fan looks like,
we can have some idea on how such variations look like. Suppose that (L−, +) is a variation satisfying the DHT
condition. Also assume that L−,L+ are not GIT-equivalent, making this a little bit more interesting. Define Lt
as in the definition of the DHT condition. Since Lt for t ∈ [−1, 0) is GIT-equivalent to any Ls for s ∈ [−1, 0)
and the same for t ∈ (0, 1] with s ∈ (0, 1], we can say for certain that L0 has to lie inside a wall of our GIT-fan.
Moreover, by our choice L− and L+ have to lie in neighbouring chambers. Hence, the only thing we have to do
is check whether Xss(0) \ (Xss(+) ∪Xss(−)) is connected or empty, and check if Xss(0) \ (Xss(+) ∪Xss(−)) is
contained in the fixed locus of G = Gm.

Let’s look at something concretely, like (O(1, 3, 1),O(5, 5, 3)) with L0 = O(3, 4, 2). These invertible sheaves are
seperated by the wall a = 2n −m, which is the stability set of the point ((0 : 1), (0 : 0 : 1)). It can be checked
that these invertible sheaves are indeed in neighbouring chambers, an easy way of doing this is by filling in the
table above in our general case, and then comparing it for these two invertible sheaves. Since the signs differ

24



in exactly one row, namely the row of a − 2n + m and −a + 2n − m, these must be neighbouring chambers.
Now suppose we have some x ∈ Xss(0) \ (Xss(+) ∪Xss(−)). If we fill in the table as above for L0, linearity will
tell us that we get the same table, but with the bottom row containing only 0. Hence, we get a requirement
on x that limt→0 λ(t)x = ((0 : 1), (0 : 0 : 1)) and limt→0 λ(t)

−1x = ((0 : 1), (0 : 0 : 1)). This can only be
x = {((0 : 1), (0 : 0 : 1))}, which gives a connected set and the point in this set is a fixed point. Hence we have
found a variation satisfying the DHT condition rather easily.

It can be checked that this is true more generally. That is, if in our example L− and L+ reside in neighbouring
chambers, such that L0 lies in exactly one wall, then we get the DHT condition for free. This follows since our
action was quite ”nice”. All walls are given by the stability set of the so-called standard elements ((1 : 0), (1 : 0 :
0)), ((1 : 0), (0 : 1 : 0)), ((1 : 0), (0 : 0 : 1)), ((0 : 1), (1 : 0 : 0)), ((0 : 1), (0 : 1 : 0)), ((0 : 1), (0 : 0 : 1)). Therefore
since L0 lies in exactly one wall, the set Xss(0) \ (Xss(+) ∪ Xss(−)) will the singleton given by the standard
element that gives the wall by its stability set. All these standard elements are fixed, and therefore we get the
DHT condition.

2.4 Flips

In this final section of this chapter we consider the notion of a flip. The idea is to explain the occurrence of
change in GIT-quotient when crossing a wall. We shall talk shortly about the case when G = Gm acts on an
affine variety X = Spec(R) and refer to Thaddeus’ work in [24] for a detailed analysis of the general case.

There are two definitions here that might not have been given on an introductory course of scheme theory. A
birational morphism will be similar to that of the case when talking about classical varieties, so we shall think
about our varieties as in this classical sense. The definition of a Cartier divisor will take a lot of definitions and
propositions to define properly and give some intuition on. However, in the general sense, we can think about
invertible sheaves as the corresponding groups are isomorphic if X is integral or if X is projective. If the reader
is still interested in these divisors, we refer to the definitions of Hartshorne, starting on page 140 of [13].

Definition 2.33. Let f : X → Y be a birational morphism of varieties. Let E ⊆ Y be the smallest closed subset
such that the restriction

f |X\f−1E : X \ f−1E → Y \ E

is an isomorphism. If this exists, then we define the exceptional set of f to be f−1E.

Definition 2.34. We shall call a birational morphism of varieties small, if the exceptional set has codimension
greater than one.

Definition 2.35. Let f : X → S be a morphism of schemes. We call some invertible sheaf L ∈ Pic(X) relatively
ample if f is quasi-compact, and for all affine open subspaces V ⊆ S the restriction L|f−1(V ) is an ample line
bundle.

Definition 2.36. Let f : X → Y be a small birational proper morphism of varieties. Let D be a Q-Cartier
divisor class on X such that O(−D) is relatively ample with respect to f . A D-flip is a variety Z with a small
birational proper morphism Z → Y such that;

(i) O(D) is relatively ample over Y .

(ii) If g : X → Z is the induced birational map, then the divisor class g∗D is Q-Cartier.

Example 2.37. Consider a G := Gm action on an affine variety X = Spec(R). As seen in Lemma 1.3, this is the
same as providing a Z-grading of the k-algebra R. Denote this by R = ⊕∞

i=1Ri. We shall consider linearizations
of the structure sheaf OX , which has corresponding line bundle X ×A1

k. Therefore, a G-linearization of OX will
correspond to an action of G on A1

k := Spec(k[x]), which corresponds to a choice of integer. By Remark 2.3, the
GIT quotient of X by G with respect to this linearization will then be Proj R[x]G, where the grading of x is the
same as the grading given by the linearization. If we let −n ∈ Z denote the grading of x, then the quotient will
be

Proj

∞⊕
i=0

Rnix
i.

Actually, we do not need to consider many values of n. As seen in exercise 5.13 of section II in Hartshorne, see
[13], we know that these constructions only depend on the sign of n. So we get three possible cases; n = 0, n = 1
and n = −1. Denote these quotients by X//0, X//+ and X//− respectively. Let X± ⊆ X denote the subvarieties
given by the ideals ⟨Ri | ∓i > 0⟩.
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Proposition 2.38 (Thaddeus, [24], Propositions 1.1 & 1.6). Suppose X//+, X//− are both nonempty. There is
a natural birational map f : X//− → X//+. If both X± ⊂ X have codimension greater or equal to 2, then f is a
flip with respect to O(1).

Proposition 2.39 (Thaddeus, [24], Proposition 1.7). Let Y be a normal and affine variety. Suppose we have a
flip f : Y− → Y+ of normal varieties over Y . Then there exists an affine variety X with a G-action such that
Y ∼= X//0 and Y± ∼= X//±.

In particular, working with normal affine varieties gives us a way of generating flips with GIT-quotients and
similarly generate GIT-quotients of such varieties using flips. There are generalizations of these propositions,
explored in the paper by Thaddeus, see [24].

Example 2.40. Consider the action of G := Gm on A4
k := Spec(k[x, y, z, w]) given on points by t · (x, y, z, w) =

(tx, t−1y, tz, t−1w). Then we have the Z-grading of R := k[x, y, z, w] where x, z have grading 1 and y, w have
grading -1. Therefore X+ is given by the subvariety Spec(R/(y, w)) ∼= A2

k, which can also be given as the
subvariety where y = w = 0. By symmetry X− ⊂ X has codimension 2 as well. We can also compute the
quotients, namely;

X//0 = Spec(R0) = Spec(k[xy, xw, zy, zw]) = Spec(k[a, b, c, d]/(ad− bc));

X//+ = Proj

∞⊕
i=0

Rin
i = Proj k[xy, xw, zy, zw, xn, zn] = Proj k[a, b, c, d, e, f ]/(ad− bc, ed− bf);

X//− = Proj

∞⊕
i=0

R−in
i = Proj k[xy, xw, zy, zw, yn,wn] = Proj k[a, b, c, d, e, f ]/(ad− bc, ed− cf).

There is a clear natural isomorphism f : X//− → X//+ here, and the proposition tells us that this is a flip.

The example above is also another way of showing why flips are interesting. Notice that the Néron Severi group
is one-dimensional, and the fan is given by a wall in the origin separating two chambers. So what happens when
we consider a quotient with respect to some invertible sheaf in one chamber, compared to that of an invertible
sheaf in the other chamber? The example clearly shows that the quotients are isomorphic, so the answer could
be “nothing”. However another way of viewing it is that they are isomorphic quotients that are a flip away from
one another, meaning that we can actually distinguish between them in this sense.

3 Categories and factorizations

In the next couple of chapters, we will introduce and apply the subject of variations of GIT in the sense of derived
categories. The idea will be to apply main theorems of papers such as that of Ballard, Favero and Katzarkov
in [3]. In this chapter we start with some simple notions of triangulated categories and derived categories, and
eventually make our way up to factorizations.

3.1 Triangulated categories

Our first goal will be to define triangulated categories. For a reference, we shall follow closely the procedure of
Huybrechts, see [16].

Definition 3.1. An additive category is a category A together with the structure of an Abelian group on
Hom(A,B) for any pair of objects A,B of A, such that:

(i) For any triple of objects A,B,C of A the composition map Hom(A,B) × Hom(B,C) → Hom(A,C) is a
bilinear map.

(ii) The category A contains a zero object 0.

(iii) For any pair of objects A,B of A, their product and coproduct exist, and are isomorphic via the canonical
map

A⊕B → A×B.

A functor F : A → B will be called additive, if for any pair of objects A,B of A the induced map Hom(A,B) →
Hom(F(A),F(B)) is a group homomorphism.
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Definition 3.2. Let A be an additive category. A shift functor of A will be an additive functor F : A → A
which is an equivalence of categories. Given an object A of A, a shift functor F and an non-negative integer n
we shall write A[n] := Fn(A) if F is clear from the context. Here Fn denotes the n-times composition of F .
Similarly for such F ,n and an arrow f : A→ B in A we shall write f [n] := Fn(f) : A[n] → B[n].

Definition 3.3. Let A be an additive category, and suppose we have a shift functor F of A. A triangle of A
will be a diagram

A B C A[1]

of objects in A. If we have two triangles Ai → Bi → Ci → Ai[1] for i = 1, 2, then a morphism between these
triangles is a triple of morphisms (f : A1 → A2, g : B1 → B2, h : C1 → C2) such that the diagram

A1 B1 C1 A1[1]

A2 B2 C2 A2[1]

f g h f [1]

commutes. It will be an isomorphism when f, g, h are all isomorphisms.

Definition 3.4. Let A be an additive category. The structure of a triangulated category on A is a shift
functor F , and a set of triangles of A called the distinguished triangles such that the following axioms T1-T4
hold:

(T1) i. For any object A of A, the triangle

A A 0 A[1]
idA

is distinguished.

ii. Any triangle isomorphic to a distinguished triangle is distinguished.

iii. If we have a morphism f : A→ B in A, then f can be completed to a distinguished triangle

A B C A[1]
f

(T2) A triangle

A B C A[1]
f g h

is distinguished if and only if the triangle

B C A[1] B[1]
g h −f [1]

is distinguished.

(T3) Suppose we have a commutative diagram

A B C A[1]

A′ B′ C ′ A′[1]

of arrows in A where the two horizontal triangles are distinguished. Then there exists an arrow f : C → C ′

in A such that f makes the diagram above into a morphism of triangles.

(T4) Suppose we have distinguished triangles

A B C ′ A[1]
f

B C A′ B[1]
g

A C B′ A[1]
g◦f

Then there exists a distinguished triangle

C ′ B′ A′ C ′[1]

such that the following diagram commutes:
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A B C ′ A[1]

A C B′ A[1]

B C A′ B[1]

C ′ B′ A′ C ′[1]

f

idA g idA[1]

f

g◦f

idC f [1]

g

idA′

We call this axiom the octahedral axiom. Even though this axiom looks quite intimidating, we shall
not use it in this thesis. The purpose of including it here is purely for the completeness of the definition.
Readers interested in this axiom are advised to read the book by Kashiwara and Shapira, see [17].

We call A a triangulated category if it is endowed with the structure of one.

There are a couple of definitions involving triangulated categories that we will see in future chapters. We mention
them here as they are more related to the general theory of these categories.

Definition 3.5. Let A be a triangulated category, and let B be a full subcategory of A. We call B a thick
subcategory if B is a triangulated subcategory (in other words, the triangulated structure of A naturally puts
a triangulated structure on B) and if B is closed under taking summands.

Definition 3.6. Let A be a triangulated category. A semi-orthogonal decomposition of A is a sequence
A1, ...,Ar of full triangulated subcategories such that;

• For all 1 ≤ i < j ≤ n and all Ai ∈ Ai, Aj ∈ Aj , we have Hom(Aj , Ai) = 0.

• The smallest full triangulated subcategory of A that contains all A1, ...,An equals A.

In such situations we shall write A = ⟨A1, ...,An⟩.

For the rest of this section, we care to define tilting objects. We need some more definitions to be able to define
them.

Definition 3.7. A k-linear triangulated category A is a triangulated category A together with the structure
of a vector space over k on Hom(A,B) for any pair of objects A,B of A.

Definition 3.8. Let A be a k-linear triangulated category such that for any pair of objects A,B of A the vector
space Hom(A,B) is finite dimensional.

• We call an object E of A exceptional if Hom(E,E[n]) = 0 for any n ̸= 0 and Hom(E,E) = k · idE .

• We call a sequence (E1, ..., Er) of exceptional objects of A an exceptional collection if for all n ∈ Z and
all 1 ≤ i < j ≤ r we have Hom(Ej , Ei[n]) = 0.

• We call an exceptional collection (E1, ..., Er) ofA strong if for all n ̸= 0 and all i, j we have Hom(Ej , Ei[n]) =
0.

• We call an exceptional collection (E1, ..., Er) of A full if the smallest thick triangulated subcategory of A
is A itself. In other words, if the Ei generate A.

• We call an object T of A a tilting object if the following three conditions are satisfied:

(i) T generates A. In other words, A is the smallest thick subcategory of A that contains T .

(ii) For any n ̸= 0 we have Hom(T, T [n]) = 0.

(iii) The algebra Hom(T, T ) has finite global dimension.

Finally, here we can find a reason why we should be interested in exceptional collections and semi-orthogonal
decompositions if we want to look for tilting objects.

Lemma 3.9 (FKK,[10], Proposition 2.5). Let A be a k-linear triangulated category so that for any pair of objects
A,B, the vector space Hom(A,B) is finite dimensional. If A admits a full and strong exceptional collection, then
it admits a tilting object.

Proof. Write (E1, ..., Er) for the collection and define T := ⊕ri=1Ei. We claim that this is a tilting object. First
of all, T generates A since all Ei generate A. Secondly, if n ̸= 0, then

Hom(T, T [n]) = Hom(⊕ri=1Ei,⊕rj=1Ej [n]) = ⊕ri,j=1Hom(Ei, Ej [n]) = 0.
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Finally, the finite global dimension is clear as Hom(T, T ) has dimension n.

We shall see in chapter 5 why we care about tilting objects in our case.

3.2 Verdier quotients of triangulated categories

Our derived categories will formally be known as absolute derived categories. These mimic the properties of
derived categories, but are obtained in a different way via something known as a Verdier quotient. We can think
of these as a quotient of two categories. Since not all categories come with a naturally nice structure, we shall
have to assume some properties before we can take a quotient.

We will follow the procedure used by the Stacks Project [23, Tag 05RA]. If the reader is not familiar with the
notion of a multiplicative system of a category we also refer to the Stacks Project [23, Tag 04VB].

Definition 3.10. Let C be a category and let S be a multiplicative system of C. Define X as the collection of
pairs of morphisms (f : X → U, s : Y → U) where s ∈ S and f is some morphism in C. We define a relation on X
by stating (f : X → U, s : Y → U) ∼ (g : X → V, t : Y → V ) if there exists another pair (h : X →W, r : Y →W )
and morphisms u : U →W, v : V →W of C such that the diagram

U

X W Y

V

u

h

f

g

r

s

t
v

commutes. The composition of equivalence classes of (f : X → U, s : Y → U) and (g : Y → V, t : Z → V ) will be
defined as the equivalence class of the pair (h ◦ f : X →W, r ◦ t : Z →W ) where r ∈ S and h are chosen so that
r ◦ g = h ◦ s. This choice is possible since S is multiplicative, and this equivalence class is actually well defined
(it does not depend on the choice of r and h).

We define the category S−1C as the category with the same objects as C, and a morphism X → Y being defined
as a pair (f : X → U, s : Y → U) with s ∈ S and f in C up to the equivalence above. The identity morphism
X → X will be the equivalence class of the pair (idX , idX).

Definition 3.11. Let C be a triangulated category, and B a full triangulated subcategory. Define a set of arrows
S consisting of all arrows f : X → Y in C such that there exists a distinguished triangle

X Y Z X[1]
f

in C such that Z is isomorphic to an object of B. Then S is a multiplicative system, and we define the Verdier
quotient C/B := S−1C.

3.3 Derived categories

On top of triangulated categories, derived categories will take a big part of the thesis. Our approach is to first
define derived categories in general to give the idea behind the construction and afterwards give a definition that
we shall work with. A slight knowledge of category theory is expected to understand this chapter.

Definition 3.12. Let A be an additive category. We call A Abelian if for any morphism f : A → B between
objects of A we have the following two properties.

(i) Both its kernel and cokernel exist.

(ii) The natural map Coim(f) → Im(f) is an isomorphism.

We note that the image Im(f) is a kernel of the natural map B → Coker(f). Similarly Coim(f) is a cokernel
of the natural map Ker (f) → A. Hence images and coimages exist by the first property, so that the second
property makes sense to state.

Definition 3.13. Let A be an Abelian category. The category of (cochain) complexes Kom(A) is defined as
follows.

• Its objects will be diagrams of the form

· · · An−1 An An+1 · · ·
dn−1
A dnA
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with dnA ◦ dn−1
A = 0 for all n ∈ Z. Such objects shall usually be denoted by A•.

• A morphism f• : A• → B• consists of morphisms fn : An → Bn such that fn ◦ dn−1
A = dn−1

B ◦ fn−1 for all
n ∈ Z.

Proposition 3.14 (Huybrechts, [16], Proposition 2.3). The category of complexes of an Abelian category is again
Abelian.

Definition 3.15. Let A be an Abelian category and let A• ∈ Kom(A). The cohomology groups of A• are
the quotients Hn(A•) := Ker (dnA)/Im(dn−1

A ) ∈ A. Note that a morphism f• : A• → B• induces a natural
morphisms Hn(f) : Hn(A) → Hn(B) for all n ∈ Z. We call such a morphism a quasi-isomorphism if these
induced maps Hn(f) are all isomorphisms.

Definition 3.16. Let A be an Abelian category, and let f•, g• : A• → B• be two morphisms between two
complexes. We call f• and g• homotopy equivalent there exist homomorphisms hn : An → Bn−1 in A for all
n ∈ Z such that

fn − gn = hn+1 ◦ dnA + dn−1
B ◦ hn.

The homotopy category of complexes K(A) will be the category with the same objects as Kom(A), but
with the morphisms being the morphisms up to homotopy equivalence.

Definition 3.17. Let A be an Abelian category.

(i) We call a complex A• ∈ Ob(Kom(A)) bounded below if there exists an n0 ∈ Z such that An = 0 for all
n ≤ n0. Let Kom+(A) be the full subcategory of Kom(A) consisting of complexes that are bounded below.

(ii) We call a complex A• ∈ Ob(Kom(A)) bounded above if there exists an n0 ∈ Z such that An = 0 for all
n ≥ n0. Let Kom−(A) be the full subcategory of Kom(A) consisting of complexes that are bounded above.

(iii) We call a complex A• ∈ Ob(Kom(A)) bounded if there exists an n0 ∈ Z such that An = 0 for all |n| ≥ n0.
Let Komb(A) be the full subcategory of Kom(A) consisting of complexes that are bounded.

(iv) For ∗ = +,−, b, we let K∗(A) be the full subcategories of K(A) of which the objects are the complexes
bounded below, bounded above, and bounded respectively.

Theorem 3.18 (Huybrechts, [16], Theorem 2.10). Let A be an Abelian category. There exists a category D(A),
called the derived category of A, and a functor Q : Kom(A) → D(A) such that the following properties hold:

(i) The image Q(f•) of any quasi-isomorphism f• : A• → B• is an isomorphism.

(ii) Suppose we have another functor F : Kom(A) → D (where D is some category) satisfying (i). Then there
exists a unique functor G : D(A) → D, up to isomorphism, such that G ◦Q ≃ F .

Remark 3.19. Note that a derived category is a special case of Verdier quotient by considering the category
C = Kom(A) and B to be the full subcategory of complexes quasi-isomorphic to 0.

Definition 3.20. Let A be an Abelian category and let f• : A• → B• be a morphism of complexes. The
mapping cone of f• is the complex C(f)• with C(f)n = An+1 ⊕Bn and

dnC(f) =

(
−dn+1

A 0
fn+1 dnB

)
.

The derived category of some Abelian category A is in general not Abelian, but we do have a natural structure
of a triangulated category on D(A). This can be done similarly to a triangulated structure on K(A). To do so,
we shall first have to define the distinguished triangles.

Definition 3.21. Let A be an Abelian category. For a complex A• of A we shall define the complex A•[1] by
(A•[1])n := An+1 and dnA[1] := −dn+1

A . This defines a shift functor. Then, a triangle

X• Y • Z• X•[1]

in K(A) or D(A) shall be called distinguished if it isomorphic to a triangle of the form

A• B• C(f)• A•[1]
f τ π

in K(A) or D(A) respectively, where τ is given by the natural map Bn → An+1 ⊕ Bn = C(f)n and π is given
by the natural map C(f)n = An+1 ⊕Bn → An+1 = (A•[1])n.

At last, Huybrechts showes that these nice constructions give us triangulated categories.
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Proposition 3.22 (Huybrechts, [16], Proposition 2.24). Let A be an Abelian category. Then the distinguished
triangles given in Definition 3.21 together with the shift functor A• 7→ A•[1] makes both K(A) and D(A) into
triangulated categories.

3.4 Stacks

Stacks will play a massive role in this thesis. These are somewhat nice categories to work with, making sure that
categorical quotients always exist. Their constructions are very specific, and it is not necessary to understand
them in their fullest to understand this thesis. Therefore, we shall not introduce stacks formally. For anyone
interested in the definitions we are working with, we refer to [9].

In general, a stack is denoted by [X] where we use the brackets to indicate that this is a stack. The description
of a stack is in literature often denoted in the same fashion as the functor of points for a scheme. For example,
the functor of points for a scheme X gives us a stack associated to X. Since stacks representing a scheme are
representable, we denote these stacks by X instead of [X]. In our case we let X be some variety. As stated,
quotients of a variety stack X by a group variety stack G exists in the category of stacks and will be denoted by
[X/G]. To get some intuition on sheaves on these quotients, it would be nice to think about them as G-equivariant
sheaves on X. For the space itself, note that it can be dangerous to think about the quotient as a quotient of
a scheme by an action, as these quotient stacks cannot be representable in all cases (for example whenever the
quotient of a variety X by a group variety G doesn’t exist).

3.5 Factorizations of LG-models

The next terms we will discuss are those of factorizations of gauged Landau-Ginzburg models. These factorizations
are designed to mimic the matrix factorizations first introduced by Eisenbud in [8]. In this section we shall follow
the work of Ballard, Favero and Katzarkov. See [3] and [2].

Definition 3.23. Let X be a variety, and let G be a reductive group variety acting on X. Let L be a G-linearized
invertible sheaf onX and ω ∈ Γ(X,L)G a G-invariant global section of L. A gauged Landau-Ginzburg model,
or gauged LG-model, is the tuple (X,G,L, ω). Instead of this tuple, we shall denote such models by ([X/G], ω).

Definition 3.24. Let ([X/G], ω) be a gauged LG-model. A factorization of this model is a diagram

E−1 E0 E−1 ⊗ L
ϕE
−1 ϕE

0

of G-equivariant morphisms of G-equivariant and quasi-coherent OX -modules such that the compositions ϕE0 ◦ϕE−1

and (ϕE−1⊗L)◦ϕE0 are both given by mulitplication with ω. For such factorization we shall either write the tuple
(E−1, E0, ϕE−1, ϕ

E
0 ) or E if there is no confusion.

A morphism f : E → F of factorizations will be a pair (f−1 : E−1 → F−1, f0 : E0 → F0) of morphisms of
quasi-coherent G-equivariant sheaves, so that the diagram

E−1 E0 E−1 ⊗ L

F−1 F0 F−1 ⊗ L

ϕE
−1

f−1

ϕE
0

f0 f−1⊗L
ϕF
−1 ϕF

0

commutes. This gives us a category of factorizations of the gauged LG-model, denoted by Fact(X,G, ω). We can
also consider the full subcategory where the OX -modules are coherent, which we shall denote by fact(X,G, ω). We
define a shift functor on Fact(X,G, ω) (and fact(X,G, ω)) by E [1] being the factorization given by the quadruple
(E0, E−1 ⊗ L,−ϕE0 ,−ϕE−1 ⊗ L).

For a morphism of factorizations, we have a natural cone construction.

Definition 3.25. Let ([X/G], ω) be a gauged LG-model, and let E ,F be factorizations of this model. The cone
of a morphism f : E → F is defined to be the factorization

C(f) :=

(
E0 ⊕F−1, E−1 ⊗ L⊕ F0,

(
−ϕE0 0
f0 ϕF−1

)
,

(
−ϕE−1 ⊗ L 0
f−1 ⊗ L ϕF0

))
.

Definition 3.26. Let

· · · 0 0 E−n E−n+1 · · · E0 0 0 · · ·g−n g−n+1 g−1
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be a bounded complex of factorizations for some non-negative integer n. We define a new sequence of factorizations

recursively. First, let us define T−1 := C(g−1). Then, repeatedly apply the following procedure. We let g̃i be
the composition

E i[−1− i] E i+1[−1− i] T i+1gi[−1−i]

and define T i := C(g̃i). Here, the last morphism follows from the natural morphism E i+1[−2− i][1] → C(g̃i+1) =
T i+1 using E i+1[−2− i][1] = E i+1[−1− i].

Then define the totalization of the complex of factorizations to be the factorization T−n.

Definition 3.27. Let ([X/G], ω) be a gauged LG-model. We call a factorization E of this model acyclic, if
it lies in the smallest thick subcategory of K(Fact(X,G, ω)) containing the totalizations of all exact complexes
from Fact(X,G, ω). Define Acyc([X/G], ω) as the thick subcategory of K(Fact(X,G, ω)) consisting of acyclic
factorizations. The (absolute) derived category of quasi-coherent factorizations will be defined as the
Verdier quotient

D([X/G], ω) := K(Fact(X,G, ω))/Acyc([X/G], ω).

In analogy to the derived category as defined in the general case, we call a morphism in Fact(X,G, ω) which
becomes an isomorphism in D([X/G], ω) a quasi-isomorphism.

Instead of looking at factorizations of quasi-coherent OX -modules, it will benefit us to look at those factorizations
that have coherent components. Using the same constructions as above we define the derived category of
coherent factorizations as D(coh[X/G], ω).

There is an extremely useful theorem given in the paper by Ballard, Favero and Katzarkov that we will use in
the final chapters. The following corollary is an immediate consequence of this theorem.

Theorem 3.28 (BFK, [3], Corollary 2.3.12). There exists an equivalence

Db(coh[X/G]) ≃ D(coh[X/(G×Gm)], 0)

where Gm acts trivially on X.

Sketch. This theorem is a special case of Theorem 2.3.11 of [3] by choosing E = 0 for some G-equivariant locally
free sheaf E . In this specific case, the proof goes as follows. Firstly, we define a functor J : coh[X/G] →
coh([X/(G×Gm)], 0) by

F 0 F

0

0

This functor extends to the category of cochain complexes Kom(coh[X/G]) by taking the totalization of each
complex. Moreover, this functor descends to a functor J : Db(coh[X/G]) → D(coh[X/(G × Gm)], 0) as it sends
acyclics to acyclics. Thanks to the work of Mirković and Riche as in section 4.3 of [20], we obtain an equivalence
of categories.

4 Variation of GIT

We can almost formulate the main idea of this thesis. The last bit of theory we should cover is that of grade
restricted windows, and weights of factorizations induced by the windows. These subjects are not necessary to
understand the theorem, but they are essential to help us sketch a proof of the main theorem. We shall be
following the process of the paper from Ballard, Favero and Katzarkov, see [3].

With the variation of GIT, or VGIT for short, we mean the variation of the G-linearized invertible sheaves. As we
have seen, varying these sheaves or even only the linearizations on the sheaves may give very different semi-stable
sets. Therefore, it is interesting to see what the difference is between these semi-stable sets. In chapter 2 we
saw the use of the GIT-fan, which helps us to visualize the these differences. In this chapter we shall be looking
at an interesting use of elementary wall crossings, which gives us a theorem that relates derived categories of
factorizations to one another.
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4.1 Grade windows

In this paragraph, we shall let G denote a group variety, now acting on a smooth variety X. As usual, we let L
be a G-linearized invertible sheaf, and let ω ∈ Γ(X,L)G.

The main theorem which we shall prove and use in this thesis makes a lot of use of something which are called
windows. The definitions of these windows are quite technical and are therefore difficult to fully understand. As
a consequence, we shall assume a couple of results following from the paper of Ballard, Favero and Katzarkov in
[3]. These will help us use the power of grade windows without fully understanding them.

Let’s first introduce some notation. Let λ be a 1-PS of G and suppose that λ induces an elementary HKKN
stratification K given by X = Xλ⊔Sλ, with a choice Z0

λ of connected component of Xλ. We shall assume that Sλ
is a (non-empty) smooth closed subvariety of X, and let N∨

Sλ/X
be the conormal sheaf of this closed subvariety.

For a construction, see the definition on page 182 of Hartshorne [13]. Next, we define ωSλ/X := ∧codimSλN∨
Sλ/X

.
This will be an invertible sheaf on Sλ, also called the relative canonical sheaf of the embedding Sλ → X. We
define t(K) := µ(ωSλ/X , λ, x), where x is any element of Z0

λ. Note that this doesn’t depend on x by Lemma 2.13.
We observe that t(K) < 0 will hold (as long as Sλ ̸= ∅) since by definition of Zλ the normal vectors to Sλ must
have negative weight with respect to λ along Z0

λ.

Here we run into some very technical notation. We define NS0
λ/X

:= V (N∨
S0
λ/X

), using the notation V (E) :=

Spec(Sym E) as in Section 1.4. Next, restrict NS0
λ/X

to Z0
λ and complete it along the zero section, which we shall

denote by N̂0. Finally, for any open subset V ⊆ Z0
λ we let N̂0

V denote the corresponding open subscheme of N̂0.

Definition 4.1. Suppose we are in the situation described above. Let E ∈ fact(X,G, ω) and let I ⊆ Z be a

subset. We shall say that E has weights along N̂0 in I if there exists an open affine cover {Uj}j∈J of Z0
λ

such that E|
N̂0

Uj

is λ-equivariantly quasi-isomorphic to some λ-equivariant factorization with locally finite rank

components Fn satisfying µ(Fn, λ, x) ⊆ I for all j ∈ J , n ∈ Z and any x ∈ Z0
λ.

Definition 4.2. We define the I-window, or I-grade restricted window, notation Wλ,I(X,G, ω) or just
Wλ,I when the context allows it, as the full subcategory of D(coh[X/G], ω) consisting of all factorizations that

have weights along N̂0 in I.

The first important lemma which we shall use gives us an idea of how these windows are given insideD(coh[X/G], ω),
assuming some conditions. The proof of this lemma would require us to consider a lot more theory, relying on
local hypercohomology. As this is not the point of this thesis, we shall not cover the proof of this lemma.

Lemma 4.3 (BFK, [3], Lemma 3.2.1). Let λ be a 1-PS of G and assume that λ induces an elementary HKKN
stratification K given by X = Xλ ⊔ Sλ with choice Z0

λ of connected component of Xλ. Assume that S0
λ admits

a G-invariant affine open cover and that µ(L, λ, x) = 0 for any x ∈ Z0
λ. Let I, I ′ ⊂ Z be subsets and let

E ∈ Wλ,I ,F ∈ Wλ,I′ .

If I ′ − I := {u− v ∈ Z | u ∈ I ′, v ∈ I} ⊆ [t(K) + 1,∞), then the pullback

i∗ : Homfact(X,G,ω)(E ,F) → Homfact(Xλ,G,ω|Xλ
)(E|Xλ

,F|Xλ
)

induced by the inclusion i : Xλ → X is an isomorphism.

This fact immediately gives us a corollary for the derived categories by taking I ′ = I.

Corollary 4.4 (BFK,[3], Corollary 3.2.2). Suppose we are in the same situation as Lemma 4.3, and assume that
sup{u− v | u, v ∈ I} < −t(K). Then the restriction

i∗|Wλ,I
: Wλ,I → D(coh[Xλ/G], ω|Xλ

)

of the pullback induced by the inclusion i : Xλ → X is fully-faithful.

Of course it would be nice if this functor would be something more than fully-faithful. The proposition underneath
tells us that we actually get an equivalence of categories, as long as we put a larger restriction on I. For integers
u and v we shall write [u, v] := {n ∈ Z | u ≤ n ≤ v}. Similarly to the lemma before, we will not give a proof of
this statement.

Proposition 4.5 (BFK,[3], Proposition 3.3.2). Let λ be a 1-PS of G and assume that λ induces an elementary
HKKN stratification K given by X = Xλ ⊔ Sλ with choice Z0

λ of connected component of Xλ. Assume that S0
λ

admits a G-invariant affine open cover and that µ(L, λ, x) = 0 for any x ∈ Z0
λ. Finally, fix c ∈ Z. Then the

restriction
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i∗|Wλ,[c+t(K)+1,c]
: Wλ,[c+t(K)+1,c] → D(coh[Xλ/G], ω|Xλ

)

of the pullback induced by the inclusion i : Xλ → X is essentially surjective.

As a final part of this section, we will show some relation between windows obtained from different 1-PS’s.

Proposition 4.6. Suppose we are in the same situation as Proposition 4.5 with two different 1-PS’s λ and λ′.
Assume that Z0

λ = Z0
λ′ and Sλ = Sλ′ . Fix d, d′ ∈ Z. Then we have an equivalence;

Wλ,[d,−t(Kλ)+d−1] ≃ Wλ′,[d′,−t(Kλ)+d′−1−µ]

where µ := −t(Kλ) + t(Kλ
′
). In other words, we can replace λ by λ′ if we decrease the window size by µ.

Proof. This follows from Corollary 4.4 and Proposition 4.5 as both windows are equivalent to the same derived
category.

Remark 4.7. Notice that we also get a relation Wλ,I = Wλ−1,−I , by flipping all weights in the definition of a
window. Therefore the previous proposition can be improved upon by including all 1-PS’s λ′ such that S(λ′)−1 =
Sλ and Z0

λ = Z0
(λ′)−1 .

4.2 Weights of factorizations

The weights of factorizations will be necessary to help us to relate different graded windows with one another.
The main ideas are Lemma 4.10, showing that the weights are related to something we know a bit better, and
Proposition 4.11, which decomposes a window in a semi-orthogonal decomposition by making the window smaller.

Lemma 4.8. Any object E of D([Z0
λ/C(λ)], w|Z0

λ
) can be split as a direct sum

E ∼=
⊕
n∈Z

En

so that each En is a factorization with quasi-coherent components that are locally isomorphic to OX(n)mn for
some mn ∈ Z. Moreover, this splitting can be chosen to be functorial and λ-equivariant.

Proof. This is the contents of Lemma 3.4.2 of BFK [3].

As a direct consequence, we can define weights on these categories.

Definition 4.9. For any d ∈ Z we define

D([Z0
λ/C(λ)], w|Z0

λ
) := {E ∈ D([Z0

λ/C(λ)], w|Z0
λ
) | E = En}

as the full subcategory of D([Z0
λ/C(λ)], w|Z0

λ
) consisting of those factorizations that have weight n.

These weights have quite interesting properties, and can be used to understand other categories. In particular the
subcategory of weight 0 factorizations can be seen as the category of factorizations with respect to [Z0

λ/(C(λ)/λ)].
On top of this, the weights have some periodic behavior.

Lemma 4.10 (BFK, [3], Lemma 3.4.4). We have an equivalence

D(coh[Z0
λ/(C(λ)/λ)], ω|Z0

λ
) ≃ D(coh[Z0

λ/C(λ)], ω|Z0
λ
)0

If we assume that there exists some character χ : C(λ) → Gm such that χ ◦ λ is given by t 7→ tr for some integer
r, then for any d ∈ Z we obtain an equivalence

D(coh[Z0
λ/C(λ)], ω|Z0

λ
)d ≃ D(coh[Z0

λ/C(λ)], ω|Z0
λ
)d+r.

As a final proposition we can shorten a window in certain cases by compensating with a semi-orthogonal
decomposition. In the next sections this together with the periodicy of the weights will give us the idea to
compare different windows via such decompositions.
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Proposition 4.11. Fix n ∈ Z and assume that S0
λ admits a G-invariant affine cover. There exists a functor

Υn : D(coh[Z0
λ/C(λ)], ω|Z0

λ
)n → D(coh[X/G], ω)

that is fully-faithful and has essential image in Wλ,[n+t(K),n].

If on top of this we consider n,m ∈ Z such that n −m > −t(K), then the functor Υn induces a natural semi-
orthogonal decomposition

Wλ,[m,n] = ⟨Υn(D(coh[Z0
λ/C(λ)], ω|Z0

λ
)n),Wλ,[m,n−1]⟩.

Proof. This is the contents of Lemma 3.4.5, Lemma 3.4.6 and Proposition 3.4.7 of the paper by Ballard, Favero
and Katzarkov. For the details, see [3].

4.3 Relations between elementary wall crossings

We will now move on to the main theorem of this thesis. The idea is to use the variations of GIT, namely
elementary wall crossings, to provide either an equivalence or semi-orthogonal decomposition between derived
categories of factorizations. Instead of proving the main theorem, we shall provide a sketch based on the proof
as given in the paper. The theorem is stated as follows.

Theorem 4.12 (BFK, [3], Theorem 3.5.2). Let G be a linearly reductive group variety acting on a smooth,
quasi-projective variety X. Suppose we have a G-linearized invertible sheaf L on X and let ω ∈ Γ(X,L)G. Let λ
be a 1-PS of G and choose some connected component Z0

λ of Xλ. Fix d ∈ Z.

Assume:

• λ induces an elementary wall crossing (K+,K−) := (X+ ⊔ Sλ, X− ⊔ Sλ−1);

• for any x ∈ Z0
λ we have µ(L, λ, x) = 0;

• S0
λ admits a G-invariant affine open cover.

Then;

(a) If t(K+) < t(K−), there exist:

a fully faithful functor
Φ+
d : D(coh[X−/G], ω|X−) → D(coh[X+/G], ω|X+

);

for all −t(K−) + d ≤ j ≤ −t(K+) + d− 1, fully faithful functors

Υ+
j : D(coh[Z0

λ/C(λ)], ω|Z0
λ
)j → D(coh[X+/G], ω|X+);

and a semi-orthogonal decomposition

D(coh[X+/G], ω|X+
) = ⟨Υ+

−t(K−)+d, ...,Υ
+
−t(K+)+d,Φ

+
d ⟩.

(b) If t(K+) = t(K−), there exists an exact equivalence

Φ+
d : D(coh[X−/G], ω|X−) → D(coh[X+/G], ω|X+

).

(c) If t(K+) > t(K−), there exist:

a fully faithful functor
Φ−
d : D(coh[X+/G], ω|X+) → D(coh[X−/G], ω|X−);

for all −t(K+) + d ≤ j ≤ −t(K−) + d− 1, fully faithful functors

Υ−
j : D(coh[Z0

λ/C(λ)], ω|Z0
λ
)j → D(coh[X−/G], ω|X−);

and a semi-orthogonal decomposition

D(coh[X−/G], ω|X−) = ⟨Υ−
−t(K+)+d, ...,Υ

−
−t(K−)+d,Φ

−
d ⟩.
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Sketch. Observe that (c) is the same statement as (a), but flipped. Hence we may assume that t(K+) ≤ t(K−).

Next, we use Corollary 4.4 and Propostion 4.5 to get equivalences ofD(coh[X+/G], ω|X+) andD(coh[X−/G], ω|X−)
to windows. The main difference between these windows is that the first window is a window with respect to
the 1-PS λ, and the second is a window with respect to the 1-PS λ−1. To relate these windows, we make the
observation that Wλ−1,I = Wλ,−I holds for any subset I ⊆ Z by flipping all weights. If we chose a suitable
c as in Proposition 4.5, this will provide us with an inclusion of windows. This inclusion of windows induces
the fully faithful functor Φ+

d : D(coh[X−/G], ω|X−) → D(coh[X+/G], ω|X+), which is an exact equivalence if
t(K+) = t(K−).

The inclusion of windows will now make repeated use of Proposition 4.11. We can repeatedly ’shrink’ the window
corresponding to D(coh[X+/G], ω|X+) exactly −t(K+) + t(K−) times until the last subcategory in the semi-
orthogonal decomposition is the window that corresponds to D(coh[X−/G], ω|X−). The fully faithful functors
Υ+
j are given by the same functors as the ones from this proposition.

This theorem can be difficult to understand, and even more difficult to use. The following proposition helps us
reduce certain problems so that the theorem above can be used more freely.

Proposition 4.13 (FKK, [10], Proposition 2.6). Let X be a smooth variety over k := C and consider the action
of an affine group variety G on X. Let L be a G-linearized invertible sheaf on X, and let ω ∈ Γ(X,L)G. Let U
be any G-invariant open subvariety of X containing the singular locus of ω, and write i : U ↪→ X for the open
immersion. Finally, assume that [X/G] has enough locally free sheaves. Then i induces an equivalence

i∗ : D(coh[X/G], ω) → D(coh[U/G], ω|U )

of categories.

Proof. Consider a factorization E = (E−1, E0, ϕE−1, ϕ
E
0 ) of the gauged LG-model ([X/G], ω) where E0 and E−1 are

locally free. In particular ϕE0 ◦ϕE−1 is given as multiplication by ω. Therefore, the Leibniz rule shows that dω can
be written as dϕE0 ◦ ϕE−1 + ϕE0 ◦ dϕE−1, which will (locally) be a map E → E ⊗ ΩX . Now writing dω = dω − 0, we
get a homotopy from dω to 0 given by the maps dϕE0 and dϕE−1. By definition, morphisms that are homotopic
will be the same in the dervied category, showing that dω annihilates E . If E has support on some non-singular
point of ω, then dω provides a bijective map at this stalk, which is impossible by our earlier discovery. Therefore
since [X/G] has enough locally free sheaves, any factorization must be supported on the critical locus of ω.

Now suppose E is any factorization of the model above, and consider the unit of the adjunction f : E → i∗i
∗E

evaluated at E . By axiom T1 of a triangulated category, we obtain a factorization C(f) so that E → i∗i
∗E →

C(f) → E [1] is a distinguished triangle (this object C(f) is also called the cone of f). One can check that some
stalk of C(f) is trivial if and only if f induces an isomorphism at that same stalk. We explicitely get that f
induces an isomorphism at some stalk x if x ∈ U , and equals the zero map if x /∈ U , which shows that C(f) is
supported on X \ U . Hence C(f) is supported on X \ U and the critical locus of ω. Since they do not intersect,
we get C(f) = 0. But then f must be an isomorphism. Hence the unit id → i∗ ◦ i∗ is a natural isomorphism.

Since i is an open immersion, the counit always gives a natural isomorphism i∗ ◦ i∗ → id. We conclude that i∗ is
an equivalence of categories.

Given a gauged LG-model ([X/G], ω), an interesting question could be whether or not the derived category
D(coh[X/G], ω) has an exceptional collection. With the help of Theorem 4.12 and Proposition 4.13, we can
answer this question with a yes in some cases. For example, if ω ∈ k[x1, ..., xn] is a so-called invertible polynomial
in the sense of the paper by Favero, Kaplan and Kelly, then we can already show that the singularity category
D(coh[Ank/Γω], ω) has an exceptional collection. Even more so, the length of this exceptional collection will be
given by some number associated to the dual polynomial ωT . For more information, see [10].

5 Applications of VGIT

In this chapter we finish off the thesis by providing some explicit applications of the main theorem. In the first
couple of sections we will follow the process of Favero, Kaplan and Kelly in [10]. After this we consider some
other application given by Ballard, Favero and Katzarkov and talk about any direction future research could go
into.
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5.1 Invertible polynomials

In this section we shall give some examples with inspiration coming from the paper by Favero, Kaplan and Kelly,
see [10]. Before we do this, we should introduce some definitions and notation.

Definition 5.1. Fix some positive integer n and let ω ∈ k[x1, ..., xn].

• We shall call ω quasi-homogeneous, if there exist positive weights qi for xi making ω homogeneous. In
other words, if there exist q1, ..., qn ∈ Z>0 such that ω(xq11 , ..., x

qn
n ) is a homogeneous polynomial.

• We shall call ω quasi-smooth, if the induced map ω : Ank → A1
k has the origin as only singular point.

Definition 5.2. Fix some positive integer n and consider a polynomial ω ∈ k[x1, ..., xn] of the form

ω =

n∑
i=1

n∏
j=1

x
aij
j ,

and consider the matrix Aω := (aij)1≤i,j≤n. We shall call ω invertible, if ω is quasi-homogeneous, quasi-smooth
and if Aω is invertible over Q.

As has been talked about in the paper by Favero, Kaplan and Kelly, we are mostly interested in invertible
polynomials because of Kontsevich’s Homological Mirror Symmetry Conjecture. If ω is an invertible polynomial
as above, then we define the transpose polynomial to be

ωT :=

n∑
i=1

n∏
j=1

x
aji
j .

The conjecture then predicts that the Fukaya-Seidel category of ωT , see [22], is equivalent to D(coh[Ank/Γω], ω)
(where Γω is some affine group we shall consider in the next section). The case where n = 1 has been proven
by Futaki and Ueda in [11]. The case where n = 2 has been proven by Habermann and Smith in [12]. Both
methods involed matching tilting objects of the corresponding categories, so therefore it is desirable to obtain
tilting objects for D(coh[Ank/Γω], ω).

After talking about the properties of invertible polynomials in this section, the next section will provide some
examples of equivalences and decompositions of these categories following the same procedures as Favero, Kaplan
and Kelly. Here they analysed the derived categories of factorizations using only methods from VGIT, and found
tilting objects in specific cases. In particular, the case when n = 1 can easily be proven. See section 3.1 of [10].
On top of that we show some examples of what happens when we take polynomials that are not invertible.

Remark 5.3. When considering invertible polynomials, it is important that the form condition is satisfied to rule
out duplicates. For example, the polynomial ω = xy ∈ k[x, y] is (quasi-)homogeneous and quasi-smooth, but it
is not invertible. Even if we wanted n terms, we could write ω = xy/2 + xy/2. This does still not comply to the
form condition, and it would be a hassle to have to check every way a polynomial can be written.

If we remove the form condition and the condition that Aω needs to be invertible, we could get examples like
ω = x5y6 + y8z5 + x6z6 + x10 + y12 + z15 ∈ k[x, y, z] which is quasi-homogeneous of degree (6, 5, 4, 60) and
quasi-smooth, but not invertible (it has too many terms).

Remark 5.4. It is at a first glance not obvious that the polynomial ω = x5y6 + y8z5 + x6z6 + x10 + y12 + z15 ∈
k[x, y, z] is quasi-smooth. Therefore we would like to provide a method of showing this.

The first idea is to argue that all singular points (x, y, z) that has 0 as one of its coordinates needs to be the
origin. This can be done very generally by taking one coordinate equal to 0, and then use the partials to show
that the other two must be zero. For the next part we assume that for some singular point (x, y, z) all coordinates
are non-zero. In this case, if we substitute y = rx and z = srx for some s, r ∈ k×, we can use the equations to
obtain two polynomials in the variable s6x and use the resultant that these polynomials do not share a zero over
an algebraically closed field of characteristic zero.

This method can become quite a lot of work. Therefore it would be nice to have some kind of classification. While
this doesn’t exist for quasi-smooth polynomials on their own, it does exist for invertible polynomials, which we
call the Kreuzer-Skarke classfication. Before we can introduce this, let us introduce the polynomials of atomic
type.

Definition 5.5. We shall call a polynomial ω ∈ k[x1, ..., xn] of atomic type, if it can be written as one of the
following types:

• Fermat type: ω = xr1 for some r ∈ Z≥0 and n = 1.
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• Chain type: ω = xa11 x2 + xa22 x3 + ...+ x
an−1

n−1 xn + xann for a1, ..., an ∈ Z≥1 and n ≥ 2.

• Loop type: ω = xa11 x2 + xa22 x3 + ...+ x
an−1

n−1 xn + xann x1 for a1, ..., an ∈ Z≥1 and n ≥ 2.

Definition 5.6. Let X,Y be affine varieties and consider sections ω ∈ Γ(X,OX) and υ ∈ Γ(Y,OY ). We define
the Thom-Sebastiani sum of ω and υ as the element ω + υ := ω ⊗ 1 + 1 ⊗ υ ∈ Γ(X ×k Y,OX×kY )

∼=
Γ(X,OX)⊗k Γ(Y,OY ).

As referenced in the paper by Favero, Kaplan and Kelly, the Kreuzer-Skarke classification as in [18] tells us
that any invertible polynomial, up to a permutation of its variables, is a Thom-Sebastiani sum of polynomials
of atomic type, assuming that k = C. However, it can be observed that the reverse is not true, for example by
considering the Fermat type polynomial x ∈ k[x]. By explicit computation, one can show the following.

Lemma 5.7. We have the following reverse statement of the Kreuzer-Skarke classification.

• A Fermat type polynomial is invertible if and only if r ≥ 2.

• A chain type polynomial is invertible if and only if an ≥ 2.

• A loop type polynomial is invertible if and only if n is odd, or n is even and we have ai, aj ≥ 2 for some
1 ≤ i, j ≤ n with i even and j odd.

Proof. • The statement on Fermat polynomials is trivial.

• Consider a polynomial of chain type ω = xa11 x2 + xa22 x3 + ...+ x
an−1

n−1 xn+ xann for some a1, ..., an ∈ Z≥1 and
n ≥ 2. Let Aω denote the corresponding matrix, and observe that Aω is invertible over Q. Suppose that ω
is quasi-homogeneous with weights q1, ..., qn for x1, ..., xn respectively, then there exists some integer r so
that

Aω ·

q1...
qn

 =

r...
r


Hence we get a general formula;

q1...
qn

 = A−1
ω ·

r...
r


A simple calculation shows that we have

A−1
ω =



1
a1

−1
a1a2

1
a1a2a3

· · · (−1)n−2

a1···an−1

(−1)n−1

a1···an

0 1
a2

−1
a2a3

· · · (−1)n−3

a2···an−1

(−1)n−2

a2···an

0 0 1
a3

· · · (−1)n−4

a3···an−1

(−1)n−3

a3···an
...

. . .
. . .

0 · · · 0 0 1
an−1

−1
an−1an

0 · · · 0 0 0 1
an


Since Aω is invertible, there is exactly one solution (in Q) for the qi given any r. Therefore we may take
r = det(Aω) = a1 · · · an to get a solution for the weights. For any i = 1, ..., n this will give

qi = a1 · · · ai−1(ai+1 · · · an − ai+2 · · · an + ...+ (−1)n−i).

Recall that we required all weights to be positive. If any value for r gives a non-positive qi, then that qi
will stay non-positive for all other r with the same sign. So qn−1 = a1 · · · an−2(an − 1) shows that an ≥ 2
must hold for ω to be quasi-homogeneous. If we let an ≥ 2, we can readily see that for all i we have qi > 0.

Therefore it suffices to show that ω is quasi-smooth given an ≥ 2. For the partials we get;

dω

dx1
= a1x

a1−1
1 x2,

dω

dxn
= x

an−1

n−1 + anx
an−1
n

and for 1 < i < n;
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dω

dxi
= x

ai−1

i−1 + aix
ai−1
i xi+1.

Consider some tuple (x1, ..., xn) in the singular locus. Note that if xi = 0 for some 2 < i ≤ n, then the
partial with respect to xi−1 shows that xi−2 = 0 holds as well. Now as an ≥ 2, the n-th partial shows that
if xn = 0, then xn−1 = 0. So xn = 0 now implies that for all i we have xi = 0. This also shows that the
reverse is true. If xn ̸= 0, then xn−1 ̸= 0 so that xi ̸= 0 for all i holds by considering the other partials.
But the first partial shows that either x2 = 0 or xa1−1

1 = 0, and therefore we cannot have xi ̸= 0 for all i.
Hence the singular locus consists only of the origin, showing that ω is invertible.

• Now consider a polynomial of loop type ω = xa11 x2+x
a2
2 x3+ ...+x

an−1

n−1 xn+x
an
n x1 for some a1, ..., an ∈ Z≥1

and n ≥ 2. The matrix Aω is now equal to



a1 1 0 0 · · · 0 0
0 a2 1 0 · · · 0 0
0 0 a3 1 · · · 0 0
...

. . .
. . .

0 0 0 0 · · · 1 0
0 0 0 0 · · · an−1 1
1 0 0 0 · · · 0 an


which has determinant a1 · · · an + (−1)n+1. Therefore Aω is invertible if and only if n is odd or n is even
and for some i we have ai ≥ 2.

For the homogeneity, we compute the inverse again, we get;

det(Aω)A
−1
ω =



a2 · · · an −a3 · · · an a4 · · · an · · · (−1)n−2an (−1)n−1

(−1)n−1 a1a3 · · · an −a1a4 · · · an · · · (−1)n−3a1an (−1)n−2a1
(−1)n−2a2 (−1)n−1 a1a2a4 · · · an · · · (−1)n−4a1a2an (−1)n−3a1a2

...
...

...
...

...
...

a2 · · · an−2 −a3 · · · an−2 a4 · · · an−2 · · · a1 · · · an−2an −a1 · · · an−2

−a2 · · · an−1 a3 · · · an−1 −a4 · · · an−1 · · · (−1)n−1 a1 · · · an−1


In particular, for some 1 ≤ i ≤ n we get the weight:

qi = a1 · · · ai−1ai+1 · · · an − a1 · · · ai−1ai+2 · · · an + ...+ (−1)n−ia1 · · · ai−1

+(−1)n−i−1a2 · · · ai−1 + ...+ (−1)n−1.

If we pair up the 2j-th term with the (2j +1)-term in this sum for j ≥ 0, then we can readily see that this
weight must be non-negative as all these pairs add up to something non-negative. If n is odd, it is clear
that it should always be positive because of the final term.

If n is even, we can only get 0 for qi if all these pairing add up to 0. If we look at this case, then the
difference between two members of the same pair as above is the exclusion of some aj where j has the
same parity as i. Moreover, the pairs run over all such j. Therefore, in this case we get a sum of zero
if and only if aj = 1 for all j with the same parity as i. So whenever n is even, we conclude that ω is
quasi-homogeneous if and only if there are ai, aj ≥ 2 for some i even and j odd.

For the partials we now get;

dω

dx1
= a1x

a1−1
1 x2 + xann ,

dω

dxn
= x

an−1

n−1 + anx
an−1
n x1

and for 1 < i < n;

dω

dxi
= x

ai−1

i−1 + aix
ai−1
i xi+1.
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Consider some (x1, ..., xn) in the singular locus. Looking at the i-th partial, we get that xi+1 = 0 implies
that xi−1 = 0. Furthermore the n-th partial shows that x1 = 0 ⇒ xn−1 = 0 and the first partial shows
that x2 = 0 ⇒ xn = 0. Hence if n is odd, then xi = 0 for some i implies that for all j we have xj = 0. If i
is even, it only implies that for j having the same parity as i we have xj = 0. However, we are assuming
there is some aj ≥ 2 with j having the same parity as i. Hence we get that xj−1 = 0 (or xn = 0 if j = 1)
by looking at the j-th partial, which implies that for j having a different parity we also get xj = 0. It now
suffices to check that there are no solutions when for all i we have xi ̸= 0.

The n-th partial shows that x
an−1

n−1 = −anxan−1
n x1. We can substitute this into the (n − 1)-th partial to

obtain;

x
an−2

n−2 = −an−1x
an−1−1
n−1 xn =

an−1anx
an
n x1

xn−1
.

Doing the same for the (n− 2)-th partial gives

x
an−3

n−3 =
−an−2an−1anx

an
n x1

xn−2
,

so we can repeatedly substitute this until we get

xa11 =
(−1)n−1a2 · · · anxann x1

x2

Finally, the first partial gives

xann =
(−1)na1a2 · · · anxann x1

x1
= (−1)na1 · · · anxann

and therefore we have the equation
1 = (−1)na1 · · · an.

This will never hold if n is odd or when n is even and for some i we have ai ≥ 2. Hence the singular locus
consists only of the origin, showing that ω is invertible.

Remark 5.8. Notice that the Thom-Sebastiani sum of invertible polynomials is again invertible, and similarly
that all Thom-Sebastiani summands of an invertible polynomial must be invertible polynomials. Therefore the
lemma above helps us to classify and understand any invertible polynomial.

5.2 Examples of singularity categories

For all examples in this section, we shall fix some positive integer n, and consider some polynomial ω ∈
k[x1, ..., xn]. The group we are considering shall be

Γω := {(t1, .., tn+1) ∈ Gn+1
m | ω(t1x1, ..., tnxn) = tn+1ω(x1, ..., xn)}.

We let Γω act naturally on X := Ank via the homomorphism Γω → GL(n, k) given by projection on its first
n coordinates and then mapping to the diagonal matrices. Our main object of interest will be the singularity
categories.

Definition 5.9. For any polynomial w ∈ k[x1, ..., xn], the singularity category of w is defined to be the
category D(coh[Ank/Γw], w).

Example 5.10. Let’s start off by showing why we are in the case of Theorem 4.12.

• Firstly, since Γω is Abelian, it is solvable. Hence it is linearly reductive if and only if Γω ∼= Grm for some
r ∈ Z≥0. We will assume this for now. Also notice that C(λ) = Γω, which we shall use later.

• The invertible sheaf we will choose is going to be the structure sheaf OX , but (in general) with a non-trivial
linearization. Writing X = Ank = Spec(k[x1, ..., xn]), we can consider the linearization given by xi 7→ xi⊗ ti
and 1 7→ 1⊗ t−1

n+1. Then the definition of Γω shows that ω is Γω-invariant.

• As a quick observation, the linearization above corresponds to the Γω action on X × A1
k given on points

by (t1, ..., tn+1) · (x1, ..., xn, y) = (t1x1, ..., tnxn, tn+1y). Therefore, if λ : Gm → Γω is a 1-PS given by
t 7→ (tr1 , ..., trn+1), we must have rn+1 = 0 to get the requirement of µ(OX , λ, x) = 0.
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• Using some 1-PS λ : t 7→ (tr1 , ..., trn , 1) as above, we can already calculate Sλ very generally. First of all,
the fixed locus Xλ will be the set of (x1, ..., xn) where xi = 0 if ri ̸= 0. Since this is connected, we get
Z0
λ = Z(xi | ri ̸= 0). We notice that S0

λ = Γω ·Z0
λ is affine. Moreover, Zλ := {x ∈ X | limt→0 λ(t) ·x ∈

Z0
λ} = Z(xi | ri < 0) and hence Sλ = Z(xi | ri < 0). We claim that Sλ gives an elementary HKKN

stratification.

• Sλ is now a closed subvariety of X given by the ideal generated by all xi such that ri < 0. Let us denote
xi1 , ..., xis for these generators. This shows that ωSλ/X is an invertible sheaf on Sλ generated by the section
xi1 ∧ xi2 ∧ ... ∧ xis . Hence this generator has Mumford weight the sum of the Mumford weights of the xil .
Since the induced action of λ on xi is given by xi 7→ xi ⊗ tri , we may conclude that t(K+) =

∑
ri<0 ri.

Totally analogously we get that t(K−) =
∑
ri>0 −ri.

As the reader might have noticed, Theorem 4.12 gives us an equivalence or semi-orthogonal decomposition of
derived categories of factorizations with respect to the subspaces X± ⊂ X. If X± = Ank \ Z(xi), we can actually
reduce X± to An−1

k .

Lemma 5.11 (FKK, [10], Lemma 2.2). Consider a quasi-homogeneous polynomial ω. Then we have an isomorphism

[(Ank \ Z(xi))/Γω] ∼= [An−1
k /Γωi

]

of stacks induced by the natural inclusion, where ωi := ω(x1, ..., xi−1, 1, xi+1, ..., xn).

Using our knowledge of the theorem so far, it is possible to find an exceptional collection in the case when n = 1.
It has been shown in the paper by Favero, Kaplan and Kelly in [10], but we shall show the method here again in
some more detail.

Example 5.12. When n = 1, there is only one polynomial, and that is ω := xr ∈ k[x] for r ∈ Z≥2. Notice that
this is a Fermat polynomial, and observe that it would not be invertible if r = 0, 1. We consider the polynomial
W := xry ∈ k[x, y]. Then ΓW ∼= G2

m via the projection on the first two coordinates. Let λ denote the 1-PS given
by t 7→ (t, t−r, 1). As computed in our first general example, we get Z0

λ = {(0, 0, 0)}, Sλ = Z(y) and Sλ−1 = Z(x)
together with an elementary HKKN stratification (K+,K−). This will give us t(K+) = −r and t(K−) = −1. We
obtain the following semi-orthogonal decomposition using d = 0.

D(coh[D(y)/ΓW ],W |D(y)) = ⟨Υ+
1 , ...,Υ

+
r−1,Φ

+
0 (D(coh[D(x)/ΓW ],W |D(x)))⟩.

The key observation is that [D(y)/ΓW ] ∼= [A1
k/Γxr ] and [D(x)/ΓW ] ∼= [A1

k/Γx] using Lemma 5.11. But the
singular locus of x is empty, so Proposition 4.13 implies that D(coh[A1

k/Γx], x) = 0. We are left to identify the
subcategories Υ+

j for 1 ≤ j ≤ r − 1. Note that the character χ : ΓW → Gm given by projection on the first
coordinates implies that the weights of factorizations have period 1 by Lemma 4.10. Hence all these subcategories
are equivalent to the category D(coh[Z0

λ/(ΓW /λ)],W |Z0
λ
). It is clear that [ΓW /λ] ∼= Gm by simply showing an

isomorphism of groups. Now since Z0
λ consists only of the origin, and W |(0,0,0) = 0, we get an equivalence

D(coh[Z0
λ/(ΓW /λ)],W |Z0

λ
) ≃ D(coh[(0, 0, 0)/Gm], 0).

Using Theorem 3.28, this category is equivalent to Db(coh[Spec(k)]), since (0, 0, 0) is a k-point. This bounded
derived category is classically known to have an exceptional object k, let’s denote it by Ej taking into account
that we started off with Υ+

j . Hence we get an exceptional collection;

D(coh[A1
k/Γxr ], xr) = ⟨E1, ..., Er−1⟩.

In the same paper by Favero, Kaplan and Kelly they looked for and found some exceptional collections in specific
cases. In general they first considered Fermat polynomials as we have, and after that looked at the other two
polynomials of atomic type with parameters ai ≥ 2. However, as we’ve seen in Lemma 5.7, these are not the
only invertible polynomials that exist. Therefore it is interesting to see what happens in the cases when we have
ai = 1 for some i. As an example, we get the following.

Example 5.13. Fix some positive odd integer n and consider the polynomial

W = x1x2 + x2x3 + ...+ xn−1xn + xnx1xn+1 ∈ k[x1, ..., xn+1].

Next, let ω := Wn+1 = x1x2 + ... + xn−1xn + xnx1, which is an invertible polynomial of loop type, and Wn =
x1x2 + ...+ xn−1 + x1xn+1 which is a non-invertible polynomial. Let’s compute the singular locus of W .
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We get Z(dW ) = Z(x2 + xnxn+1, x1 + x3, x2 + x4, ..., xn−1 + xn+1x1, xnx1). By the last condition, either xn = 0
or x1 = 0. Since n is odd, we can follow the other equations to get

xn = 0 ⇒ xn−2 = 0 ⇒ ...⇒ x1 = 0

But from the first equation we also obtain x2 = 0, showing that

x2 = 0 ⇒ x4 = 0 ⇒ ...⇒ xn−1 = 0.

If x1 = 0, the equations give

x1 = 0 ⇒ x3 = 0 ⇒ ...⇒ xn = 0 ⇒ x2 = 0 ⇒ ...

In the end, we find that Z(dW ) = Z(x1, ..., xn). Next, define the 1-PS λ by t 7→ (t−1, t, t−1, t, ..., t−1, t2, 1).
This will give us t(K+) = −(n + 1)/2 and t(K−) = −(n + 1)/2 − 1. We also get X+ = ∪i oddD(xi) and
X− = ∪i evenD(xi). Hence X+ ∩Z(dW ) = ∅ and X− ∩Z(dW ) = D(xn+1). In particular Proposition 4.13 shows
that D(coh[X+/ΓW ],W |X+) = 0. By Theorem 4.12 and Lemma 5.11, we get a semi-orthogonal decomposition

D(coh[Ank/Γω], ω) ≃
〈
Υ+

0

〉
where Υ+

0
∼= D(coh[Z0

λ/ΓW ],W |Z0
λ
)0 ∼= D(coh[Z0

λ/(ΓW /λ)],W |Z0
λ
) ∼= D(coh[Spec(k)/Gnm], 0) ∼= Db(coh BGn−1

m )
using the same lemmas and proposition as before. We conclude that ω = x1x2 + ...+ xn−1xn + xnx1 gives

D(coh[Ank/Γω], ω) ≃ Db(coh BGn−1
m ).

However, our goal will not be to consider all cases, as there are simply too many similar cases to the ones
presented in the paper. On the other hand, it could be interesting to study cases even when the polynomials are
not invertible as it could provide us with some intuition on what these categories look like.

Example 5.14. Consider the polynomial W = x1x2 + x2x3 + ... + xn−1xn + xnx
2
n+1. Then Wn,Wn+1 are both

non-invertible, but we will still get something interesting as we will see at the end of this example.

Define the 1-PS λ by t 7→ (t2(−1)n , t2(−1)n+1

, ..., t−2, t, 1). In particular, if n is odd, we get t(K+) = −n − 1
and t(K−) = −n. If n is even, we get t(K+) = −n and t(K−) = −n − 1. Similarly to the previous example,
we get X+ = D(xn) ∪ D(xn−2) ∪ ... and X− = D(xn+1) ∪ D(xn−1) ∪ .... With a quick calculation we get
Z(dW ) = Z(x2, x1 + x3, x2 + x4, ..., xn−1 + x2n+1, 2xnxn+1) ⊂ Z(x2, x4, x6, ...).

For odd n we get Z(dW ) ∩X+ ⊆ Z(x2, x4, x6, ...) \ {(0, ..., 0)} ⊆ D(xn) and Z(dW ) ∩X− = ∅. For even n we
get Z(dW ) ∩X+ = ∅ and Z(dW ) ∩X− ⊆ D(xn+1).

Putting everything together in the same way as in the previous example will give us two results. For odd n we
have an equivalence

D(coh[Ank/ΓWn
],Wn] ≃ Db(coh BGn−1

m )

and for even n we have an equivalence

D(coh[Ank/ΓWn+1 ],Wn+1] ≃ Db(coh BGn−1
m ).

Therefore the derived categories of factorizations of these polynomials are also equivalent. It is very interesting to
see that it is apparently not very rare to have equivalent categories for different polynomials. Moreover, using the
last example we have the category of an invertible polynomial, which was also equivalent to Db(coh BGn−1

m ) (for
odd n). Hence being invertible does not mean the corresponding category is different compared to the category
corresponding to a non-invertible polynomial.

Example 5.15. Let W = x1x2 + x2x3 + ... + xn−1xn + x2nxn+1. Then ω := Wn+1 is an invertible polynomial of

chain type. Consider the 1-PS λ : t 7→ (t(−1)n , t(−1)n+1

, ..., t−1, t2, 1). For odd n we get t(K+) = −(n+ 1)/2 and
t(K−) = −(n+ 1)/2− 1 and for even n we get t(K+) = −n/2 and t(K−) = −n/2− 2. We see that

Z(dW ) = Z(x2, x1 + x3, x2 + x4, ..., xn−2 + xn, xn−1 + 2xnxn+1, x
2
n).

Let’s compute this. Via the last equation we get xn = 0. Then the other equations give

xn = 0 ⇒ xn−2 = 0 ⇒ ...
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By the second to last equation we get xn = 0 ⇒ xn−1 = 0, so that

xn−1 = 0 ⇒ xn−3 = 0...

Hence Z(dW ) = Z(x1, x2, ..., xn). We observe thatX+ = D(xn)∪D(xn−2)∪... andX− = D(xn+1)∪D(xn−1)∪....
Therefore Z(dW ) ∩X+ = ∅ and Z(dW ) ∩X− ⊆ D(xn+1). We conclude that we get a different decomposition
based on the parity of n, namely;

D(coh[Ank/Γω], ω) ≃
{

Db(coh BGn−1
m ), if n is odd;

⟨Db(coh BGn−1
m ), Db(coh BGn−1

m )⟩, if n is even.

It is quite unique to see the bounded derived categories of classifying stacks pop up in a lot of examples.
Even though it wasn’t obvious at first, having Z0

λ = {(0, 0, ..., 0)} almost guarantees that the semi-orthogonal
decomposition contains subcategories equivalent to such categories.

As the Thom-Sebastiani sum of two invertible polynomials is again invertible, we could take a look on the effect
by taking a Thom-Sebastiani sum of an invertible polynomial and a non-invertible polynomial. Let us consider
the following example.

Example 5.16. Consider the polynomial w = xy + z2u + u2 ∈ k[x, y, z, u] with char k ̸= 2. Observe that w is
quasi-homogeneous of degree (2, 2, 1, 2). The singular locus is given by Z(y, x, 2zu, z2+2u). If we have (x, y, z, u)
in this singular locus, then zu = 0, so that either z = 0 or u = 0. Hence by z2 + 2u = 0 the other variable must
be zero as well. We conclude that w is quasi-smooth, however we may note that w cannot be invertible due to a
lack of terms. Note that w is the Thom-Sebastiani sum of the non-invertible polynomial xy and the chain type
polynomial z2u+ u2.

Now we fix r ∈ Z≥4 and let W := xy + z2u + u2vr ∈ k[x, y, z, u, v]. Define the 1-PS λ : Gm → ΓW by
t 7→ (t, t−1, t−a, t2a, t−4, 1). Using Z0

λ = {(0, 0, 0, 0, 0)} the induced HKKN stratifications have t(K+) = −1− a−
4 = −(a+ 5) and t(K−) = −1− 2a = −(2a+ 1). We have t(K+) ≥ t(K−) with equality if and only if a = 4. The
projection homomorphism ΓW → Gm on the first coordinate together with Lemma 4.10 gives us a period of 1.
The same computations as before give us D(coh[Z0

λ/ΓW ],W |Z0
λ
)0 ≃ Db(BG3

m). Hence Theorem 4.12 shows that
we have an equivalence

D(coh[(D(x) ∪D(u))/ΓW ],W ) ≃ ⟨Db(BG3
m), ..., Db(BG3

m), D(coh[(D(y) ∪D(z) ∪D(v))/ΓW ],W )⟩

where in the brackets we have a−4 times the term Db(BG3
m). The singular locus ofW is equal to Z(y, x, 2zu, z2+

2uvr, ru2vr−1). Notice that for (x, y, z, u, v) ∈ Z(dW ) ∩ Z(v) we have z = 0, due to the fourth term. Moreover,
x, y = 0 will always hold in the singular locus. This shows that Z(dW ) ∩ (D(x) ∪D(u)) ⊆ D(u) and Z(dW ) ∩
(D(y) ∪D(z) ∪D(v)) ⊆ D(v). Hence Proposition 4.13 shows that

D(coh[D(u)/ΓW ],W ) ≃ ⟨Db(BG3
m), ..., Db(BG3

m), D(coh[D(v)/ΓW ],W )⟩

Finally, using Lemma 5.11, we get the statement;

D(coh[A4
k/Γxy+z2+vr ], xy + z2 + vr) ≃ ⟨Db(BG3

m), ..., Db(BG3
m), D(coh[A4

k/Γw], w)⟩

We would get the opposite statement if we let 0 < r < 4. We are stretching new examples here, as both
polynomials are a Thom-Sebastiani sum of the polynomial xy (which is quasi-homogeneous, quasi-smooth, but
not invertible), and an invertible polynomial. However if we considered the polynomial xy on its own, the
statement we would get would be trivial. This may also be observed from the following corollary.

Corollary 5.17. Let w,w′ ∈ k[x1, ..., xn] and v, v′ ∈ k[y1, ..., ym] be polynomials. If Theorem 4.12 provides
semi-orthogonal decompositions

D(coh[Ank/Γw], w) ≃ ⟨A1, ...,Ar, D(coh[Ank/Γw′ ], w′)⟩

and

D(coh[Amk /Γv], v) ≃ ⟨B1, ...,Bs, D(coh[Amk /Γv′ ], v′)⟩,

then it also provides a semi-orthogonal decomposition of the form

D(coh[An+mk /Γw+v], w + v) ≃ ⟨C1, ..., Cr+s, D(coh[An+mk /Γw′+v′ ], w
′ + v′)⟩.
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Proof. Let λw : Gm → Γw, λv : Gm → Γv denote 1-PS’s which imply the decompositions via the theorem. Then
λw must be of the form t 7→ (ta1 , ..., tan , 1) and λv must be of the form t 7→ (tb1 , ..., tbm , 1) for some integers
a1, ..., an, b1, ..., bm. Define λ : Gm → Γw+v by t 7→ (ta1 , ..., tan , tb1 , ..., tbm , 1).

Let K+,K− be the HKKN-stratifications obtained from λ and note that these are well-defined as λw, λv give
HKKN-stratifications. Then by assumption−t(K+)+t(K−) = r+s, so we obtain the semi-orthogonal decomposition.

Remark 5.18. We assumed that the semi-orthogonal decompositions in the previous corollary are given by
Theorem 4.12, but it would be logical for this corollary to be true without assuming this. However, we have not
proved this so far.

Remark 5.19. To support the previous example, we note that we get a similar equivalence between just z2 + v4

and z2u+ u2. The equivalence between xy and itself is trivial, and also follows from Theorem 4.12.

Next we will go back to our analysis of D(coh[Ank/ΓW ],W ) for general polynomialsW . We show some interesting
examples which might shed some light on the way these categories present themselves.

Example 5.20. Our first example will concern the polynomial ω = x2yz ∈ k[x, y, z]. Choose the 1-PS λ given
by t 7→ (t, t−1, t−1, 1) so that t(K+) = −2 and t(K−) = −1. We can quickly see that Z0

λ = {(0, 0, 0)}, and that
Sλ = Z(y, z), Sλ−1 = Z(x). Choosing d = t(K−1) = −1, Theorem 4.12 implies that we get a semi-orthogonal
decomposition

D(coh[X+/Γω], ω|X+) =
〈
Υ+

0 (D(coh[Z0
λ/C(λ)], ω|Z0

λ
)0),Φ

+
−1(D(coh[X−/Γω], ω|X−))

〉
.

Observe that C(λ) = Γω ∼= G3
m, [Γω/λ]

∼= G2
m and that ω|(0,0,0) = 0. Using Theorem 3.28 and Lemma’s 5.11 and

4.10 we get equivalences;

D(coh[X+/Γω], ω|X+) ≃
〈
D(coh[Z0

λ/(Γω/λ)], ω|Z0
λ
), D(coh[A2

k/Γxy], xy)
〉

≃
〈
D(coh[Spec(k)/G2

m], 0), D(coh[A2
k/Γxy], xy)

〉
≃
〈
Db(coh[Spec(k)/Gm]), D(coh[A2

k/Γxy], xy)
〉

≃
〈
Db(coh BGm), D(coh[A2

k/Γxy], xy)
〉
.

We should of course not forget the isomorphisms that give this decomposition meaning, since the bounded derived
category of a classifying stack doesn’t naturally lie inside of D(coh[X+/Γω], ω|X+

). However, we do get a small
idea as to what the category looks like.

An interesting question might be if we can lengthen this decomposition in some way. As we know from Theorem
4.12, the length of the decomposition will be −t(K+) + t(K−) + 1, assuming t(K+) ≤ t(K−). So since these
numbers were only 1 apart in our previous case, the question will be if we can get t(K+) a lot smaller than t(K−).
This is possible in more ways than one by raising the weights. We will give two ways of doing this in the next
example.

Example 5.21. We come back to the polynomial ω = x2yz ∈ k[x, y, z], and fix some positive integer n. Choose
1-PS λ given by t 7→ (tn, t−n, t−n, 1), which is the 1-PS of our previous example raised to the n-th power.
Compared to this example the only real change is t(K+) = −2n and t(K−) = −n. Choosing d := t(K−) = −n
again, Theorem 4.12 gives us a semi-orthogonal decomposition

D(coh[X+/Γω], ω|X+
) ≃

〈
Υ+

0 , ...,Υ
+
n−1, D(coh[A2

k/Γxy], xy)
〉

where we have used Lemma 5.11 to get the derived category on the right. The triangulated subcategories Υ+
i are

now quite easy to understand. In this case we have Γω/λ ∼= G2
m, using that k is algebraically closed. Therefore,

as we’ve done before, for weight 0 we get the following equivalences by using Theorem 3.28 and Lemma 4.10:

Υ+
0 ≃ D(coh[Z0

λ/Γω], ω|Z0
λ
)0 ≃ D(coh[Z0

λ/(Γω/λ)], ω|Z0
λ
)

≃ D(coh[Spec(k)/(Gm ×Gm)], 0) ≃ Db(coh B(Gm)).
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However, Lemma 4.10 doesn’t tell us more, as any character χ such that χ ◦ λ is given by t 7→ tr makes r into a
multiple of n. Luckily, we can argue that Υ+

v = 0 for v = 1, ..., n− 1. We take note that λ gives us the weights of
the factorizations, by considering the induced weights on the components of the factorization. But we can write
λ as the composition of the map Gm → Gm : t 7→ tn and some 1-PS. Hence the induced weights will always be
multiples of n. This shows that raising the power of λ will give the same conclusion as λ itself.

As seen, we don’t really get to our goal of obtaining a larger decomposition. Therefore, we consider the following
example.

Example 5.22. Consider λ : t 7→ (tn, t−2n+1, t−1, 1). Then almost everything stays the same, including the
numbers t(K±). The main difference is that Γω/λ ∼= G2

m now holds, and that Lemma 4.10 gives a period of 1 by
letting χ be the projection on the third coordinate. So we will again get a decomposition

D(coh[X+/Γω], ω|X+) ≃
〈
Υ+

0 , ...,Υ
+
n−1, D(coh[A2

k/Γxy], xy)
〉

but this time all Υ+
i

∼= Db(coh BGm). Observe that we have a decomposition that is larger than the one we
found in Example 5.20, but it contains the same ingredients. The decomposition in that example consisted of
one copy of Db(cohB Gm) and a copy of D(coh[A2

k/Γxy], xy). In this example, we see the same happening, but
with more copies of Db(cohB Gm). This is a weird occurrence! We now get a larger decomposition, and it is not
quite obvious where the extra bounded derived categories of classifying stacks come from. We do not understand
what is happening here, but we can guess that something is happening here similar to a decomposition of Z into
copies nZ+ v for v = 0, ..., n− 1.

Example 5.23. This example will be something very similar, in the sense that the decomposition will be exactly
the same. This should give us an idea that similar decompositions for different polynomials are not (necessarily)
rare.

Fix some positive integer n and let ω = xn+1yz. Define the 1-PS λ by t 7→ (t, t−n, t−1, 1). Then X+ and X− are
the same as in the previous examples. Furthermore, t(K+) = −n − 1 and t(K−) = −1. Using Lemma 5.11 and
Theorem 4.12, we obtain a semi-orthogonal decomposition

D(coh[X+/Γω], ω|X+
) ≃

〈
Υ+

0 , ...,Υ
+
n−1, D(coh[A2

k/Γxy], xy)
〉
.

We note that Lemma 4.10 and Theorem 3.28 now tell us that Υ+
i
∼= Db(coh BGm). But we have seen this exact

decomposition in the previous example! This means that the derived categories of factorizations of x2yz and
those of xnyz have a similar decomposition when restricted to X+ = D(y) ∪D(z).

Finally, we have one last example which will showcase what the effect is of lowering the power of a variable on
the derived category.

Example 5.24. Consider any polynomial that can be written as

ω =

m∑
i=1

n∏
j=1

x
aij
j .

Choose l ∈ {1, ..., n} and define rl := gcdi∈{1,...,m} ail. In words, we are choosing rl to be the greatest common
divisor of the powers of xl that we have in ω. Define

W :=

m∑
i=1

x
ail
rl
n+1

n∏
j=1

x
aij
j ∈ k[x1, ..., xn+1].

Our idea will now be to replace xl by xn+1. To do this, define λ : t 7→ (1, ...1, t, 1, ..., 1, t−rl , 1), where the t sits
on spot l. We can compute that Z0

λ = Z(xl, xn+1), X+ = D(xn+1) and X− = D(xl). Furthermore, t(K+) = −rl
and t(K−) = −1. Hence, by Lemma 5.11 and Theorem 4.12 we get a decomposition

D(coh[Ank/ΓWn+1
],Wn+1) ≃

〈
Υ+

0 , ...,Υ
+
rl−2, D(coh[Ank/ΓWl

],Wl)
〉

where we can quickly check that Wn+1 = ω and Wl = ω(x1, ..., xl−1, x
1/rl
l , xl+1, ..., xn). The period on the

weights is 1, so Lemma 4.10 shows that for each i we have Υ+
i

∼= D(coh[Z(xl, xn+1)/(Γω/λ)],W |Z(xl,xn+1))
∼=

D(coh[An−1
k /Gnm], ν) where ν := ω(x1, ..., xl−1, 0, xl+1, ..., xn). In particular, if ω is a multiple of xl, then ν = 0

so that Theorem 3.28 gives Υ+
i
∼= Db(coh[An−1/Gn−1

m ]).
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As we have now seen, given such polynomial, we can deconstruct the derived category we started off with into a
decomposition containing the derived category of the polynomial where we lower the powers. This gives a similar
idea as the main idea of Theorem 4.12 where we consider a window and compare it to a different window by
making one of the two shorter. Notice that we could shift the analysis of all D(coh[Ank/ΓW ],W ) to that of all
those categories where any variable xi of W has coprime powers in the polynomial.

5.3 Exceptional collections for invertible singularity categories

We will now study the paper by Favero, Kaplan and Kelly a bit more. The goal of the paper is to prove an
interesting statement on singularity categories of invertible polynomials. For this section, all results are computed
over the field k = C, which we shall assume.

Theorem 5.25 (FKK,[10], Theorem 1). For any invertible polynomial ω, the singularity category of ω has an
exceptional collection with size the Milnor number of ωT .

This was a conjecture from the paper by Hirano and Ouchi in [14], but we can show it using techniques from
VGIT. We first need a definition.

Definition 5.26. Suppose w ∈ k[x1, ..., xn] has isolated singularities. Then the Milnor number of w is defined
to be

µ(w) := dim(k[x1, ..., xn]/(∂x1w, ..., ∂xnw)).

To support the theorem we should be able to compute some Milnor numbers. In particular, Milnor and Orlik
showed the following in the paper [19].

Theorem 5.27. If w = xr is a Fermat polynomial, then

µ(wT ) = µ(w) = r − 1.

If w = xa11 x2 + ...+ xann is a chain polynomial, then

µ(wT ) =

n∑
i=0

(−1)n−i
i∏

j=1

aj .

If w = xa11 x2 + ...+ xann x1 is a loop polynomial, then

µ(wT ) =

n∏
i=1

ai.

Now we have the ability to give these numbers for polynomials of atomic type, so the following lemma is useful
to compute them in general. The proof is a rather simple observation on tensor products, so we will leave this
out. It can be read in the paper.

Lemma 5.28 (FKK,[10], Lemma 2.10). Suppose w ∈ k[x1, ..., xn] and v ∈ k[y1, ..., ym] have isolated singularities.
Then µ(w + v) = µ(w)µ(v).

Next we consider the two remaining cases of atomic type polynomials. We shall show a statement on loop type
polynomials, and then claim a similar statement on chain type polynomials. Both techniques can be found in
the paper by Favero, Kaplan and Kelly.

Example 5.29. We consider the polynomial W := xa11 x2 + ... + x
an−1

n−1 xn + xann x1x
b
n+1 ∈ k[x1, ..., xn+1] for

a1, ..., an, b ∈ Z≥2. Notice that Wn+1 is a loop type polynomial and Wn is a chain type polynomial. Next,
we define the following integers:

di := (−1)i+n+1 · b ·
i−1∏
j=1

ai, for 1 ≤ i ≤ n;

dn+1 := a1 · · · an + (−1)n+1.

These di are chosen specifically so that (−1)i+n+1di is the determinant of the i-th maximal minor of AW i.e.
of the matrix obtained from AW after removing the (n + 1)-th row (which is a row full of zeroes) and the i-th
column. For i = 1, ..., n + 1 we define ci := di/ gcd(d1, ..., dn+1). As we will see, this will be useful for our 1-PS
to give us a period of 1 in the weights.
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We now observe that the 1-PS given by λ : Gm → ΓW defined by

t 7→ (tc1 , ..., tcn+1 , 1)

is well-defined. The ci alternate sign, with cn+1 being a multiple of a1 · · · an+1+(−1)n+1. Since we made the choice
to have ai ≥ 2 for all i, we see that cn+1, cn−1, cn−3, ... > 0 and cn, cn−2, cn−4, ... < 0. Therefore, as a consequence
of Example 5.10, we get Sλ = Z(xn, xn−2, xn−4, ...) and Sλ−1 = Z(xn+1, xn−1, xn−3, ...). Another consequence
gives us t(K+) = cn+cn−2+cn−4+... and t(K

−) = −cn+1−cn−1−cn−3−.... Define t0(K
+) := dn+dn−2+dn−4+...

and t0(K
−) := −dn+1 − dn−1 − dn−3 − ... and notice that t(K+) < t(K−), t(K+) > t(K−) or t(K+) = t(K−) hold

if and only if t0(K
+) < t0(K

−), t0(K
+) > t0(K

−) or t0(K
+) = t0(K

−) hold respectively. By Theorem 5.27 we get;

µ(WT
n+1)− µ(WT

n ) = a1 · · · an −
(
(−1)n + (−1)n+1b+ (−1)n+2ba1 + · · ·+ ba1 · · · an−1

)

= a1 · · · an + (−1)n+1 + (−1)n+2b+ (−1)n+3ba1 + ...+ ba1 · · · an−1 =

n+1∑
i=1

di = t0(K
+)− t0(K

−).

More specifically, we have µ(WT
n+1) < µ(WT

n ) if and only if t0(K
+) < t0(K

−) if and only if t(K+) < t(K−). The
other two statements for µ(WT

n+1) > µ(WT
n ) and µ(WT

n+1) = µ(WT
n ) hold naturally as well.

The singular locus of W can also be computed, this equals:

Z(a1x
a1
1 x2 + xann xbn+1, x

a1
1 + a2x

a2
2 , ..., x

an−1

n−1 + anx
an−1
n x1x

b
n+1, bx

an
n x1x

b−1
n+1).

Observe that for any x = (x1, ..., xn+1) in this singular locus we have xn = 0 ⇒ xn−2 = 0 ⇒ xn−4 =
0 ⇒ ... and similarly that xn+1 = 0 ⇒ xn−1 = 0 ⇒ xn−3 = 0 ⇒ ... . Therefore we conclude that
Z(dW ) ∩ Xλ ⊆ D(xn) and Z(dW ) ∩ Xλ−1 ⊆ D(xn+1). Hence D(coh[Xλ/ΓW ],W ) ≃ D(coh[Ank/ΓWn

],Wn)
and D(coh[Xλ−1/ΓW ],W ) ≃ D(coh[Ank/ΓWn+1

],Wn+1) by the same methods we’ve used before. Before we use
the main theorem, we can already discuss what the categories Υ+

j will look like. By the period of 1 for the
weights, following from our definition of λ, they will all be equivalent to one another. So by our main methods
we get Υ+

j ≃ D(coh[Spec(k)/(ΓW /λ)], 0) where we identify the origin with Spec(k), as this is the only point in

Z0
λ.

We shall now assume a black box. By Lemma 2.8 of the paper by Favero, Kaplan and Kelly, the category
D(coh[Spec(k)/(ΓW /λ)], 0) admits an exceptional collection. The length of this exceptional collection is given
by gcd(d1, ..., dn+1) as can be seen in the proof of Theorem 3.4 of this same paper. The proof uses some terms
we have not mentioned, and it is not the goal of this thesis to go into depth on this.

The amount of objects Υ+
j in the decomposition will be the difference |t(K+)− t(K−)| = |c1 + ...+ cn+1| so that

in total we have gcd(d1, ..., dn+1) · |c1 + ...+ cn+1| = |d1 + ...+ dn+1| = |µ(WT
n+1)− µ(WT

n )| exceptional objects
in the decomposition. We obtain the following result.

Theorem 5.30. Let W := xa11 x2 + ...+ x
an−1

n−1 xn + xann x1x
b
n+1 with a1, ..., an, b ≥ 2.

If µ(WT
n+1) < µ(WT

n ), then we have a semi-orthogonal decomposition

D(coh[Ank/ΓWn
],Wn) ≃ ⟨E1, ..., Eµ(WT

n )−µ(WT
n+1)

, D(coh[Ank/ΓWn+1
],Wn+1)⟩

where each Ei is an exceptional object.

If µ(WT
n+1) = µ(WT

n ), then we have an equivalence

D(coh[Ank/ΓWn
],Wn) ≃ D(coh[Ank/ΓWn+1

],Wn+1).

If µ(WT
n+1) > µ(WT

n ), then we have a semi-orthogonal decomposition

D(coh[Ank/ΓWn+1 ],Wn+1) ≃ ⟨E1, ..., Eµ(WT
n+1)−µ(WT

n ), D(coh[Ank/ΓWn ],Wn)⟩

where each Ei is an exceptional object.
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As previously mentioned, we will not consider the other case in depth. The main idea of the paper is to show
that the example above can always be manipulated so that on the left we have some singularity category of a
loop polynomial and on the right we have the singularity category of a chain polynomial. Then the paper shows
via induction (and an example on loop polynomials) that for any loop polynomial w, the singularity category of
w has an exceptional collection of length µ(wT ). Together with the statement above and the trivial statement
on Fermat polynomials, we get that this holds true for any invertible polynomial, proving Theorem 5.25.

Let’s consider the result of the other case. This is given by the polynomial

W = xa11 x2 + xa22 x3 + ...+ x
an−1

n−1 xn + xann xbn+1.

The result is the following.

Theorem 5.31. Let W = xa11 x2 + xa22 x3 + ...+ x
an−1

n−1 xn + xann xbn+1 with a1, ..., an, b ≥ 2.

If µ(WT
n+1) < µ(WT

n ), then we have a semi-orthogonal decomposition

D(coh[Ank/ΓWn ],Wn) ≃ ⟨E1, ..., Eµ(WT
n )−µ(WT

n+1)
, D(coh[Ank/ΓWn+1 ],Wn+1)⟩

where each Ei is an exceptional object.

If µ(WT
n+1) = µ(WT

n ), then we have an equivalence

D(coh[Ank/ΓWn ],Wn) ≃ D(coh[Ank/ΓWn+1 ],Wn+1).

If µ(WT
n+1) > µ(WT

n ), then we have a semi-orthogonal decomposition

D(coh[Ank/ΓWn+1
],Wn+1) ≃ ⟨E1, ..., Eµ(WT

n+1)−µ(WT
n ), D(coh[Ank/ΓWn

],Wn)⟩

where each Ei is an exceptional object.

Notice that this is exactly the same statement, but now we are comparing different polynomials. The polynomial
Wn+1 is a chain polynomial, and Wn is a Thom-Sebastiani sum of a chain polynomial and a Fermat polynomial.
Since we already know Theorem 5.25 for Fermat polynomials, this gives us a reason to try to show the same for
chain polynomials using induction.

Example 5.32. Consider any chain polynomial w = xa11 x2 + ...+x
an−1

n−1 xn+xann with all ai ≥ 2 and n ≥ 2. Define
the polynomial W := xa11 x2 + ... + x

an−1

n−1 xn + xann xann+1 so that w = Wn+1. We claim that µ(WT
n+1) > µ(WT

n ).
To see this, we have to do a bit of algebra.

By Theorem 5.27 we get;

µ(WT
n+1) =

n∑
i=0

(−1)n−i
i∏

j=1

aj

and

µ(WT
n ) = (an − 1) ·

n−1∑
i=0

(−1)n−i−1
i∏

j=1

aj

sinceWn is the Thom-Sebastiani sum of the Fermat polynomial xann+1 and a chain polynomial given by a1, ..., an−1

in that order. Therefore, we get

µ(WT
n ) =

n−1∑
i=0

(−1)n−i−1an

i∏
j=1

aj +

n−1∑
i=0

(−1)n−i
i∏

j=1

aj .

Notice that the second sum equals the first n−1 terms from µ(WT
n+1). So to show µ(WT

n+1) > µ(WT
n ), it suffices

to show that

a1 · · · an >
n−1∑
i=0

(−1)n−i−1an

i∏
j=1

aj .

48



By dividing both sides by an and writing out the right side, we can reduce to the case of showing

a1 · · · an−1 > a1 · · · an−1 − a1 · · · an−2 + a1 · · · an−3 − a1 · · · an−4 + ...

where the last term is (−1)n−1. This inequality follows from our assumption that all ai ≥ 2 must hold. In
particular, we have;

−a1 · · · an−2 + a1 · · · an−3 − a1 · · · an−4 + ... = −(a1 · · · an−3)(an−2 − 1) +−(a1 · · · an−5)(an−4 − 1) + ...

Therefore each of these terms is strictly negative, showing that the entire sum is negative. Notice that this cannot
go wrong at the last term, since when n is odd, a (−1)n = 1 would pair with the negative term in front of it
(and we are assuming n > 1). We conclude that µ(WT

n+1) > µ(WT
n ). Now we can apply Theorem 5.31 to divide

the singularity category of w =Wn+1 into a semi-orthogonal decomposition with µ(WT
n+1)− µ(WT

n ) exceptional
objects and the singularity category of Wn. However, Wn is the Thom-Sebastiani sum of a Fermat polynomial
and a chain polynomial of length n− 1, so inductively this singularity category has a full exceptional collection
of length µ(WT

n ). Hence the singularity category of w has a full exceptional collection of length µ(wT ).

Example 5.33. Now let w = xa11 x2 + ... + x
an−2

n−2 xn−1 + x
an−1

n−1 xn + xann x1 be a loop type polynomial with all
ai ≥ 2 and define the polynomial W = xa11 x2 + ... + x

an−2

n−2 xn−1 + x
an−1

n−1 xn + xann x1x
an
n+1 so that w = Wn+1. In

a similar fashion as to the previous example, we can see that µ(WT
n+1) > µ(WT

n ). Therefore Theorem 5.30 now
holds, showing us that the singularity category of w has a semi-orthogonal decomposition with µ(WT

n+1)−µ(WT
n )

exceptional objects and the singularity category of the chain type polynomial Wn. But by the previous example
we know that the singularity category of the chain type polynomial Wn has a full exceptional collection of length
µ(WT

n ), and therefore we conclude that the singularity category of w has a full exceptional collection of length
µ(wT ).

We are now not actually done with Theorem 5.25, as Lemma 5.7 shows that there are invertible polynomials that
have ai = 1 for some i. However, as our examples in the previous have shown, the theorem is at least true for
the examples we have shown. For example when n is odd the polynomial x1x2 + ...+ xn−1xn + xnx1 has Milnor
number 1. We saw that it was equivalent to the category Db(coh BGn−1

m ) which has a full exceptional collection
of length 1.

Similarly the example on the polynomial x1x2 + x2x3 + ... + xn−1xn + x2n has a full exceptional collection of
length 1 if n is odd, and length 2 if n is even. This agrees with Milnor number. Indeed, by Theorem 5.27 the
Milnor number equals (−1)n + (−1)n−1 + ...+ 1− 1 + 2 which equals 1 if n is odd and 2 if n is even.

Now we will consider any invertible chain polynomial with some ai = 1 with a similar idea in mind.

Example 5.34. Let w = xa11 x2 + ... + x
an−1

n−1 xn + xann be a chain polynomial so that for some i we have ai = 1.
Consider the polynomial W := xa11 x2 + ...+ x

an−1

n−1 xn + xann xn+1 and define the integers:

di := (−1)n+i−1 ·
i−1∏
j=1

ai, for 1 ≤ i ≤ n;

dn+1 := a1 · · · an.

Define the 1-PS λ : Gm → ΓW by t 7→ (td1 , ..., tdn+1 , 1). Notice that projection on the first coordinate will give
us a character with a period of 1, since d1 = (−1)n. We can also make the following observation.

n+1∑
i=1

di = a1 · · · an +

n∑
i=1

(−1)n+i−1
i−1∏
j=1

aj = a1 · · · an +

n−1∑
i=0

(−1)n+i
i∏

j=1

aj = µ(wT )

making use of Theorem 5.27. With the help of Example 5.10 we can see that X+ = D(xn) ∪D(xn−2) ∪ ... and
X− = D(xn+1) ∪D(xn−1) ∪ ..., so we can see what happens when taking the intersection with Z(dW ). First we
compute that:

Z(dW ) = (a1x
a1−1
1 x2, x

a1
1 + a2x

a2−1
2 x3, ..., x

an−1

n−1 + anx
an−1
n xn+1, x

an
n ).

So for x = (x1, ..., xn) ∈ Z(dW ) we get the implications xn = 0 ⇒ xn−2 = 0 ⇒ xn−4 = 0 ⇒ ... and xn+1 = 0 ⇒
xn−1 = 0 ⇒ xn−3 = 0 ⇒ .... In particular the condition xann = 0 implies that xn = 0, so Z(dW ) ∩X+ = ∅ and
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Z(dW )∩X− ⊆ D(xn+1). We can also observe that t(K−) =
∑
di>0 −di <

∑
di<0 di = t(K+) and hence Theorem

4.12 gives us a semi-orthogonal decomposition

D(coh[Ank/Γw], w) = ⟨Υ−
1 , ...,Υ

−
µ(wT )

⟩

where we have used Proposition 4.13. Each object Υ−
j is equivalent to one another by the period of 1, and

therefore they are all equivalent to Db(cohBGnm). This category has a full exceptional collection of size 1, so the
singularity category of ω has a full exceptional collection of size µ(wT ).

Example 5.35. We can now look at the final case, where w = xa11 x2 + ...+ x
an−1

n−1 xn + xann x1 is a loop polynomial
where for some i we have ai = 1. We can start this example totally analogous to the previous example, let’s
apply a trick to find a suitable polynomial W . We would like to construct it so that w =Wn+1, and so that Wn

is a chain polynomial. However, we would need some ai ≥ 2 for this. Luckily, if for all i we have ai = 1, then we
are in the context of Example 5.13. This gave us the correct conclusion as we’ve talked about before, so we may
assume there is some i with ai ≥ 2. By switching variables, or looping the variables, we may assume an−1 ≥ 2.
Now do the following.

Consider the polynomial W := xa11 x2 + ...+ x
an−1

n−1 xn + xann x1xn+1 and define the integers:

di := (−1)n+i+1 ·
i−1∏
j=1

ai, for 1 ≤ i ≤ n;

dn+1 := a1 · · · an + (−1)n+1.

Define the 1-PS λ again using the formula t 7→ (td1 , ..., tdn+1 , 1). There is one key observation necessary here.
Since we are assuming an−1 ≥ 2, then wn is a chain type polynomial. Hence following the same process gives us
a semi-orthogonal decomposition

D(coh[Ank/Γw], w) = ⟨E1, ..., Eµ(wT )−µ(WT
n ), D(coh[Ank/ΓWn ],Wn)⟩

where each Ei is an exceptional object. The previous example shows the statement is true for chain type
polynomials, so therefore the decomposition above gives us a full exceptional collection for the singularity category
of w assuming that an−1 ≥ 2.

We conclude that Theorem 5.25 is true in general! That is, the singularity category of any invertible polynomial
w has a full exceptional collection of length µ(wT ).

The main goal of finding these collections was the construction of tilting objects. Keen readers may have noticed
that we are not done in finding these objects, as we have not shown whether or not our exceptional collections
are strong. There is a small section in the paper by Favero, Kaplan and Kelly showcasing that we can actually
get strong cases when looking at something called the Gorenstein case. Unfortunately, these cases are limited,
and we do not know if the result holds more broadly. For readers interested we strongly recommend to read
section 3.4 of [10].

5.4 Elementary wall crossings and GIT quotients

In this last section, we consider an immediate consequence of the main theorem and provide an example. The
theorem shows that in the case of a variation satisfying the DHT condition, the derived category of factorizations
with respect to the GIT quotients have a similar relation to that of the main theorem. Our goal here is to
showcase another strong theorem resulting from the main theorem.

Theorem 5.36 (BFK, [3], Theorem 4.1.5 & Theorem 4.2.1). Let G be a linearly reductive group variety acting
on a smooth and projective variety X. Suppose that (L−,L+) is a variation satisfying the DHT condition. Then
there exists a 1-PS λ : Gm → G and a choice of connected component Z0

λ of Xss(0)λ inducing an elementary wall
crossing

Xss(0) = Xss(+) ⊔ Sλ;
Xss(0) = Xss(−) ⊔ Sλ−1 .

Write (K+,K−) for this elementary wall crossing and set X//± := [Xss(±)/G]. Let L be a G-linearized invertible
sheaf, let ω ∈ Γ(X,L)G and fix d ∈ Z. If we also assume that µ(L, λ, x) = 0 for all x ∈ Z0

λ, then;

50



(a) If t(K+) < t(K−), there exist:

a fully faithful functor
Φ+
d : D(coh X//−, ω|X−) → D(coh X//+, ω|X+

);

for all −t(K−) + d ≤ j ≤ −t(K+) + d− 1, fully faithful functors

Υ+
j : D(coh[Z0

λ/C(λ)], ω|Z0
λ
)j → D(coh X//+, ω|X+

);

and a semi-orthogonal decomposition

D(coh X//+, ω|X+
) = ⟨Υ+

−t(K−)+d, ...,Υ
+
−t(K+)+d,Φ

+
d ⟩.

(b) If t(K+) = t(K−), there exists an exact equivalence

Φ+
d : D(coh X//−, ω|X−) → D(coh X//+, ω|X+).

(c) If t(K+) > t(K−), there exist:

a fully faithful functor
Φ−
d : D(coh X//+, ω|X+

) → D(coh X//−, ω|X−);

for all −t(K+) + d ≤ j ≤ −t(K−) + d− 1, fully faithful functors

Υ−
j : D(coh[Z0

λ/C(λ)], ω|Z0
λ
)j → D(coh X//−, ω|X−);

and a semi-orthogonal decomposition

D(coh X//−, ω|X−) = ⟨Υ−
−t(K+)+d, ...,Υ

−
−t(K−)+d,Φ

−
d ⟩.

Example 5.37. Let’s use an example of a variation satisfying the DHT condition as we have seen before. We can
consider a G := Gm action on P2

k given by t · (x : y : z) := (tx : t−1y : t2z). We know what the GIT-fan looks
like, as we have seen in Example 2.30. Our variation will be (L−,L+) with L+ = O(4, 1) and L− = O(2,−1). A
quick observation shows that this indeed satisfies the DHT condition. We cross a wall of the fan at L0 := O(3, 0),
and using our computations we already see that;

Xss(0) = D(x); Xss(+) = D(y) ∩ (D(x) ∪D(z)); Xss(−) = D(z) ∩ (D(x) ∪D(y)).

Now let’s first focus on the first statement of the theorem. We can immediately compute what Sλ and Sλ−1

should look like. Notice that Xss(0) ∩Xss(+) = D(x) ∩D(y) and Xss(0) ∩Xss(−) = D(x) ∩D(z). Therefore

Sλ = Xss(0) \Xss(+) = {(x : y : z) ∈ P2
k(k) | x ̸= 0, y = 0};

and

Sλ−1 = Xss(0) \Xss(−) = {(x : y : z) ∈ P2
k(k) | x ̸= 0, z = 0}.

We know that for any w ∈ X(k), and any 1-PS λ the limit point limt→0 λ(t) ·w is either e0 := (1 : 0 : 0), e1 :=
(0 : 1 : 0) or e2 := (0 : 0 : 1). These will always be the set of fixed points, unless λ is not injective, but this is not
a case we are interested in. Notice that e0 is the only point that is in Sλ and Sλ−1 . Therefore it is natural to let
Z0
λ = {e0}.

Our computations on limits from the example come in handy now, as it immediately shows that the sets Sλ
and Sλ−1 can be given by the 1-PS λ : t 7→ t. For our G-linearized invertible sheaf we want the property that
µ(L, λ, (1 : 0 : 0)) = 0, so our only option is to linearize it using a = 0. That doesn’t give us a lot of choice, so
let’s choose the G-linearized sheaf L := L0 = O(3, 0). Recall that the global sections of L are k[X0, X1, X2]3.
Therefore, for ω we have two very natural choices, namely the sections X3

0 and X1X
2
2 . We consider the section

ω := X1X
2
2 , as this section is only possible if we choose the first parameter of L to be a multiple of three.

If we identify D(x) with A2
k, then Sλ corresponds to the subvariety given by y = 0 and its sheaf of ideals is

therefore generated by the section y. The Mumford weight at (0, 0) corresponding to (1 : 0 : 0) equals −2, and
hence t(K+) = −2. Similarly we obtain t(K−) = −1. The theorem gives us a semi-orthogonal decomposition

D(coh X//+, ω|X+
) = ⟨Υ1, D(coh X//−, ω|X−)⟩
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by choosing d = 1. First of all, let’s consider Υ1. As a category, it is given by

D(coh[(1 : 0 : 0)/Gm], 0)1 ≃ D(coh[(1 : 0 : 0)/Gm], 0)0 ≃ Db(coh(Spec(k))) ≃ ⟨E⟩

where E is the exceptional object. The global sections of O(4, 1) are generated by sections of the form Xi0
0 X

i1
1 X

i2
2

where i0, i1, i2 are non-negative integers such that i0 + i1 + i2 = 4. Here we have given X0 weight 1, X1 weight
-1 and X2 weight 2. Therefore Γ(X,O(4, 1))G is generated by X2

0X
2
1 (any G-invariant section containing x2

needs at least two terms X1, and after that it is impossible to get a total weight of 0). The GIT quotient is now
computed as follows, using Remark 2.3:

X//+ = Proj

( ∞⊕
n=0

Γ(X,O(4, 1))G

)
= Proj k[X2

0X
2
1 ] = Proj k[x] = Spec(k).

Where we use that O(4, 1)n = O(4n, n). Similarly, the invariant global sections of O(2,−1) are generated by X2
2 ,

and therefore

X//− = Proj k[X2
2 ] = Proj k[x] = Spec(k).

The semi-orthogonal decomposition is therefore not immediately something you would expect. The difference
between the categories can only be seen by the difference of factorizations of the section X1X

2
2 in Xss(+) and

Xss(−) respectively.
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6 Discussion

We will now discuss everything that might be interesting for future research in this topic. First of all, in a very
general sense we do not know everything about GIT-quotients. When looking at the GIT-fan, you can imagine
some curve going through it. Then we could put some restriction on this curve. For example, what is the result
of restricting this curve so that it may not give an induced flip? Or what if we restrict this curve so that it may
only cross walls when it does induce a flip? Some other questions rely on the structure of the GIT-fan and its
walls. It seemed like in our cases the walls were specifically equal to the stability sets of the fixed points under
the action. This raises the following question.

Question 6.1. Let X be a projective variety and G a reductive group variety acting on X. What are the minimal
conditions on this action so that the walls of the corresponding GIT-fan are explicitly given by the stability sets
of fixed points?

Of course, this could simply be a coincidence as we were working with the action of a torus on our variety, and
this occurence might be rare whenever G is not a torus. Another interesting idea is whether there is a more
advanced version of the GIT-fan. There have been multiple fans, like the GKZ fan described in Chapter 5 of [3].
Maybe there is some more detailed version of the fan that not only describes the semi-stable sets, but also the
quotients obtained from the action.

An obvious different choice would be the choice of semi-stable points. We considered these points to obtain
categorical quotients we call the GIT-quotients. However it could be interesting to look at the difference when
only considering the stable points and obtain geometric quotients. As any stable point is also semi-stable, we
could overlap such a fan (if it is actually a fan) inside of the GIT-fan. Moreover, we can look at the effect of
a point that is purely semi-stable in comparison with a point that is stable to the stability sets. Some of these
properties are already known as shown by Ressayre in [21], but there could be some new techniques of identifying
quotients here.

One final point on such point is the exclusion of unstable points. In general the semi-stable points are constrained
to have the properties so that the quotient can be nice enough to exist as a variety. So then we get another
question about the unstable points.

Question 6.2. Let X be a variety and G a reductive group variety acting on X. Suppose x ∈ X(k) is a geometric
point which is unstable with respect to any G-linearized invertible sheaf on X.

Is there a variety Y with a G-action together with a G-linearized invertible sheaf L on Y and a G-invariant
morphism f : X → Y sending x to a geometric point f(x) ∈ Y (k) so that f(x) is not unstable with respect to L?
And if so, what kind of restrictions can we put on f and Y for this to still be true?

We used the term stacks in this thesis, but we have not actually done a lot using the stacks in particular.
Moreover, we know that quotients of the semi-stable points already give us categorical quotients. So is it possible
to replicate the methods used and proof a similar main theorem where we instead do not look at stacks? If this
is not possible in the case of semi-stable sets, could we do it for the stable sets?

In the final chapters we discussed some applications of variation of GIT, but these are not all of them. For
example, the paper by Ballard, Favero and Katzarkov goes on to talk about K-equivalences and D-equivalences.
These are special properties of smooth projective varieties, and they gave some thoughts on a nice conjecture
in our setting of elementary wall crossings. Research in this area could be quite interesting. On top of this the
paper by Favero, Kaplan and Kelly gives us some nice examples to work with, but maybe this can be generalized.
Can we give a similar statement for polynomials ω where µ(ωT ) is finite? And could we get tilting objects for
such general categories D(coh[X/G], ω)? Or maybe if we gave the action, variety and group some restrictions?

In conclusion, the field of GIT-quotients offers a lot possibilities for future research. The outstanding questions
and unexplored aspects hold great potential for new understandings of this area of mathematics. Moreover,
the insights gained from previous studies have already proven valuable to numerous branches of mathematics,
showing the significance and impact of further exploration in this field.

53



References
[1] Annette A’Campo-Neuen and Jürgen Hausen. Examples and counterexamples for existence of categorical

quotients. Journal of Algebra, 2000.

[2] Matthew Ballard, David Favero, and Ludmil Katzarkov. A category of kernels for equivariant factorizations
and its implications for hodge theory. Publications mathématiques de l’IHÉS, 2014.
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Vector bundle, 11

Verdier quotient, 29

Wall, 20
Windows, 33
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