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Abstract

Indoor thermal environment plays an important role in pigs’ health,

welfare, production, and reproduction, and ventilation system focuses on

ensuring the comfort of animals by using exhaust fans and air inlets com-

monly in livestock buildings. Model-free method Deep Reinforcement Learn-

ing(DRL), well known for the performance in game-playing and robotics

control, recently has applied in buildings heating, ventilation, and air con-

ditioning (HVAC) systems control. This study explored the effectiveness

of a DRL algorithm, Deep Q-Network(DQN), in ventilation system con-

trol for pig buildings. The results showed that the DQN agent managed

to maintain the room temperature within the comfortable range in 99.13%,

90.1%, 92.01% of test days in winter, spring and summer, respectively. The

DQN agent outperformed the baseline method with the saving of power con-

sumption by 17.66%, 30.04%, 6.89% in the test days of winter, spring and

summer, respectively. The DQN algorithm applied the same neural network

architecture and hyperparameter settings and was trained and tested in dif-

ferent periods of time, indicating the generalization capability of the DQN

algorithm.

Keywords: Deep Reinforcement Learning (DRL), Pig Building, Ventilation sys-

tem control, Thermal Discomfort, Energy Consumption
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Chapter 1

Introduction

One of the most significant livestock industries worldwide is pig production. Pork

made up around 32% of all meat production (FAO, 2022 [1]) and more over a

quarter of the total protein consumed globally (Bruinsma, 2003 [2]). The expected

growth in the world population and rising incomes in developing countries will

likely increase the demand for meat and animal protein (United Nations, 2019 [3]).

In China, about 53.8% of total meat products consumed were pork, and over the

last decade, the market share of stocking of large-scale pig farms has risen from

20% to 60-80% (National Bureau of Statistics, PRC, 2021 [4]).

Indoor thermal environment plays an important role in pigs’ health (Carroll et

al., 2012 [5]), welfare (Huynh et al., 2005 [6]), production (Baxter et al., 2015 [7]),

and reproduction (Zhao et al., 2015 [8]). When pigs are in thermal equilibrium,

their body temperature remains constant, and when the environment is in pigs’

comfort zone, their production performance and growth rate are at their peak

(Renaudeau et al., 2012 [9]). Pigs would begin a thermal regulation system, such

as limiting feed intake, which slows growth, causes heat stress that can harm their

health or even result in mortality, if the environment got hot and humid (Gonçalves

de Oliveira et al., 2021 [10]; Lucas et al., 2000 [11]).

Livestock ventilation focuses on ensuring the comfort of animals by considering

their welfare, behavior, and health, and was related to conversion ratio, growth

5



CHAPTER 1. INTRODUCTION 6

rate, and mortality of animals (Clark, 1981 [12]). The primary goal of a ventila-

tion system is to provide sufficient oxygen, eliminate moisture and odors, prevent

heat accumulation, and reduce the concentration of air-borne disease-causing or-

ganisms. By regulating the exchange rate of air and the pattern of airflow, the

optimal livestock indoor environment can be maintained, ensuring thermal com-

fort (based on temperature) and indoor air quality (based on contaminant gas

concentration) within the ventilated structure (Tan and Zhang, 2004 [13]).

Traditionally, ventilation can be achieved through natural or mechanical meth-

ods. Natural ventilation relies on natural forces like thermal buoyancy and wind

flow, but its effectiveness depends on the building design and it has limited use due

to its passive nature and uncertain performance results. Mechanical ventilation

controls air temperature and air movement using fans, thermostats, and air inlets.

The most common method of mechanical ventilation is to use fans to exhaust air

out of the livestock building, while fresh air is drawn in through inlets. Mechanical

ventilation can be designed independently of the building and allows for flexibility

in modification, but it is costly in terms of energy consumption.

Afram and Janabi-Sharifi (2014) [14] comprehensively reviewed the control

techniques in heating, ventilation, and air conditioning (HVAC) systems, includ-

ing classical control methods (i.e., on/off, P, PI and PID control), hard control

methods (i.e., model predictive control (MPC), optimal control, robust control,

nonlinear control and gain scheduling control), soft control methods (i.e., fuzzy

logic (FL) control and neural network (NN) control), hybrid control methods (i.e.,

adaptive neuro, adaptive fuzzy, and fuzzy PID control), and other control methods

(i.e., reinforcement learning (RL) control, two parameter switching control, pre-

view control, pattern recognition adaptive controller, pulse modulation adaptive

controller, direct feedback linear control).

Several control techniques, for example MPC, FL, and NN, have been applied

on livestock buildings indoor climate control. Wu et al. (2006) [15] designed an

MPC strategy for the hybrid ventilation systems and indoor climate of poultry

barns, and applied thermal comfort parameters and a multi-zone method to de-

velop a dynamic model which described the nonlinearity of ventilation and indoor

climate. Yang et al. (2009) [16] applied a single-zone model to develop an opti-
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mal control for the indoor climate of a large-sized livestock stable, and used the

energy balance and the mass balance principle to simulate the thermal dynamic

of the environment. Li et al. (2015) [17] used an MPC approach to control the

CO2 concentration, temperature, and wind velocity in coops, and pointed out

that the approach was advantageous for stabilizing the control of wind velocity-

temperature-gas, and was able to forecast the trend of each variable. Mushtaq

et al. (2016) [18] designed a FL controller by using FL based Mamdani model

to produce the suitable temperature, humidity and air flow of a livestock shed.

Gorczyca and Gebremedhin (2020) [19] highlighted that neural networks and ran-

dom forests had the best accuracy among four machine learning algorithms in

predicting the physiological responses of dairy cows, and revealed that the impact

of air temperature on dairy cows’ physiological responses ranked highest in envi-

ronmental conditions. Lee et al. (2022) [20] developed recurrent neural network

(RNN) models to predict the thermal and moisture environment in naturally and

mechanically ventilated duck houses.

The use of Model-based Predictive Control (MPC) algorithm was gaining pop-

ularity in the agricultural building applications due to its efficient and flexible

handling of system nonlinearities and constraints. However, MPC needs to use

precise environmental models. While basic models have been created to estimate

factors such as ammonia emissions in naturally ventilated livestock buildings, the

intricacies and interrelationships between various environmental parameters make

it challenging to fully understand the underlying mechanisms of these models. Re-

inforcement learning (RL) control have been investigated for the control of thermal

energy storage in commercial buildings (Henze and Schoenmann, 2003 [21]; Liu

and Henze, 2006 [22]), and deep reinforcement learning (DRL) have been studied

for building HVAC control (Wei et al., 2017 [23]; Gao et al., 2019 [24]; Masburah

et al., 2021 [25];Luo et al., 2022 [26]; Zheng, 2022 [27]). However, there has been

little discussion on applications of (deep) reinforcement learning control for HVAC

system in livestock buildings.

This thesis aimed to propose an efficient and effective ventilation system control

using deep reinforcement learning, in order to improve livestock building indoor

climatic conditions, increase animal welfare, and optimize energy consumption.
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Chapter 2 introduced some theories of reinforcement learning and deep reinforce-

ment learning. Chapter 3 described the mathematical model that can simulate the

indoor thermal environment within a livestock building, the control problem for-

mulation and the deep reinforcement learning algorithm. Chapter 4 elaborated the

experiment setup and the experiment results. Chapter 5 summarized the conclu-

sions, and discussed the limitations and future work, of this study. The application

of reinforcement learning was the most innovative part of the work and had signif-

icant contribution, as it provided an alternative solution for the livestock building

HVAC control problem.



Chapter 2

Background

This chapter included some theories of Reinforcement Learning and Deep Rein-

forcement Learning.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is about an agent learning an optimal policy for

decision making problems by interacting with the environment through trial and

error and receiving negative or positive rewards as feedback for performing actions.

[28]

2.1.1 Problem Setup

Figure 1 showed the RL process, which is also called a Markov Decison Process

(MDP). At each time step t, the agent observes a state st in a state space S and

takes an action at from an action space A, following a policy π(at|st), which is

the agent’s brain, i.e., a mapping from state st to actions at telling the agent to

select what action based on the given state. The agent gets a scalar reward rt

9
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from reward function R(s, a), and the environment changes to the next state st+1,

according to state transition probability P (st+1|st, at). [28]

Figure 1: The RL process: a loop of state, action, reward and next state, reprinted
from Sutton and Barto (2018) [29, Figure 3.1]

In an episodic problem, this process starts and ends when the agent reaches

a terminal state in an episode. The return Rt defined as Equation 2.1 is the

discounted cumulative reward, with the discount factor γ ∈ (0, 1] indicating how

much the agent values the long-term reward. The goal of the agent is to maximize

the expected return from each state. [28]

Rt = rt + γrt+1 + γ2rt+2 + ... =
∞∑
k=0

γkrt+k (2.1)

2.1.2 Value Function

A value function is the expected, cumulative, discounted, future reward, implying

how good a state s or a state-action pair (s, a) is. The state value function Vπ(s) =

E[Rt|st = s] is the expected return for an agent starting at state s and following

policy π for all time steps. According to the Bellman equation, Vπ(s) can be

written as Equation 2.2. [28]

Vπ(s) = E[rt + γVπ(st+1 = s′)|st = s] (2.2)

The action value function Qπ(s, a) = E[Rt|st = s, at = a] is the expected

return for an agent starting at state s, choosing action a and then following policy

π for all time steps. Qπ(s, a) can be decomposed as Equation 2.3 according to the

Bellman equation. [28]

Qπ(s, a) = E[rt + γQπ(st+1 = s′, at+1 = a′)|st = s, at = a] (2.3)
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An optimal state value function V ∗(s) = maxπVπ(s) = maxaQ
∗(s, a) is the

maximum state value achieved for state s over all policies. An optimal action

value function Q∗(s, a) = maxπQπ(s, a) is the maximum action value achieved for

state s and action a over all policies. An optimal policy is denoted as π∗, and

π∗(s) = argmaxaQ
∗(s, a) represents the link between the optimal policy and the

optimal action value function. [28]

2.1.3 Temporal Difference Learning

Temporal difference (TD) learning is essential in RL, and it updates value function

V (s) at each step with TD target, which is an estimate of the expected return of

an entire episode using bootstrapping. The update rule is shown in Equation 2.4,

V (st)← V (st) + α[rt + γV (st+1)− V (st)] (2.4)

where α is a learning rate, rt + γV (st+1) is TD target, and rt + γV (st+1)− V (st)

is TD error. Precisely, this is TD(0) learning, i.e. one-step TD. [28]

TD learning is the learning strategy for value function update in Q-learning.

Q-learning is an off-policy method which trains action value function Q(s, a), i.e.

Q function, to find the optimal policy. The Q function update rule in Q-learning

is demonstrated in Equation 2.5,

Q(st, at)← Q(st, at) + α[rt + γmaxa′Q(st+1, a
′)−Q(st, at)] (2.5)

where maxa′Q(st+1, a
′) means Q learning uses a greedy policy to select the highest

state-action value for the next state. [28]

2.1.4 Value Function Approximation

Value function approximation is an approach to estimate the value function, when

state and action spaces are very large or continuous, it’s impractical to use the

tabular method such as Q-learning which stores the state-action pair values in a ta-

ble. The approximate of the action value function is parameterized with parameter

vector θ as Q(s, a; θ).
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Both linear functions or non-linear functions (for example neural networks)

can be used as the function approximations with the parameters θ. Linear func-

tion approximates had been applied primarily in RL because they can converge.

Deep neural networks, such as multilayer perceptrons (MLP), convolutional neu-

ral networks (CNNs) and recurrent neural networks (RNNs) have recently been

commonly served as function approximations for RL tasks since the convergence

problems solved. [30]

2.2 Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning (DRL) combines reinforcement learning and deep

learning, which uses deep neural networks to approximate any components of re-

inforcement learning including value functions V (s; θ) or Q(s, a; θ), policy func-

tion π(a|s; θ), state transition function and reward function [28]. Recent work

included model-free methods: Deep Q-Network (Mnih et al., 2015 [31]), Asyn-

chronous Advantage Actor Critic (Mnih et al., 2016 [32]), Proximal Policy Opti-

mization (Schulman et al., 2017 [33]), Deep Deterministic Policy Gradient (Lilli-

crap et al., 2015 [34]), Twin Delayed DDPG (Fujimoto et al., 2018 [35]) and Soft

Actor-Critic (Haarnoja et al., 2018 [36]), and model-based methods: Imagination-

Augmented Agents (Weber et al., 2017 [37]), Model-Based RL with Model-Free

Fine-Tuning (Nagabandi et al., 2017 [38]), Model-Based Value Expansion (Fein-

berg et al., 2018 [39]) and AlphaZero (Silver et al., 2017 [40]).



Chapter 3

Methods

This chapter included the environment model, the Markov Decision Process (MDP)

modeling of the ventilation system control problem in the pig buildings, and de-

tails of the Reinforcement Learning (RL) algorithms, the baseline method and

evaluation metrics used in this thesis.

3.1 Environment Modeling

Xie et al. (2019) [41] [42] developed a dynamic thermal exchange model based on

the energy balance equation (EBE) to simulate the heat transfer and the thermal

environment in a pig building and tested it in three different seasons. This thesis

used this model as the environment model, which defined the interactions between

the output of the ventilation system and the thermal changes in the pig buildings,

to train and test the Reinforcement Learning (RL) algorithms for swine buildings

ventilation system control.

13
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3.1.1 Pig Building Description

According to Xie et al. (2019) [41], “the swine building was located at the Animal

Research and Education Center, Purdue University, West Lafayette, Indiana, USA.

The pig building was a mixed steel and wood structure, and the ventilation system

was closed mechanical ventilation. The dimensions of the building were 73.2 m ×
24.4 m × 2.7 m (L × W × H) and the roof peak was 5.1 m high”. Figure 2 was a

photo of the pig building. According to Xie et al. (2019) [41], “the building had

12 pig rooms facing north or south, and each room had a capacity of housing 60

finishing pigs with a 11.0 m × 6.1 m × 2.7 m (L × W × H) pig living space (PLS).

The building had two rows of 6 pens on each side and a center alley, and two 1.8 m

deep manure pits below the PLS separated with a slatted concrete floor”. Figure

3 showed the internal structure of the swine building.

Figure 2: Photo of the pig building, reprinted from Xie et al. (2017) [43, Figure 3a]

According to Xie et al. (2019) [41], “two air inlets that located on top of the east

and west doors enabled fresh air to enter into the building, and air supplied to each

room from ceiling and hallway inlets. Each room had two wall fans with single-

speed to provide ventilation, one with 356-mm diameter (180 W) and another with

508-mm diameter (430 W), two pit fans with variable-speed and 250-mm diameters

to provide room with minimum ventilation, and a heater to provide supplemental

heating in winter”.

Based on this swine building, we made some modifications for the pig building

in this thesis. To simplify the building design, each room had one wall fan with

different ventilation levels to provide minimum and maximum ventilation, there
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Figure 3: Stucture diagram of the swine building from top view, reprinted from
Xie et al. (2019) [42, Figure 2a]

were no pit fans and manure pits, and floors were considered closed instead of

slatted. The heater was turned off.

3.1.2 Model

According to Xie et al. (2019) [41], “heat exchange took place in the confined

swine building through radiation, convection, conduction, and evaporation. In-

door temperature changes were significantly affected by solar radiation, heating

system, ventilation, and conductive and radiative heat transfer between pigs and

the buildings’ interior structure”. Figure 4 showed the heat transfers in the pig

buildings.

Now we introduced the EBE model developed by Xie et al. (2019) [41] [42] to

simulate the thermal environment in pig buildings. Firstly, according to the first

law of thermodynamics, the difference of the heat gain and loss per unit of time

was used to calculate the energy balance in the pig room as Eq.(3.1) [41].

ρa · V · cp
dTi

dt
= Qh +Qr +Qp +Qs +Qf +Qg (3.1)

where ρa represented air density, kg/m3; V represented air volume of pig build-

ing, m3; cp represented air specific heat capacity, J/(kg ·◦C); Ti represented indoor

air temperature, ◦C; dTi

dt
represented temperature change rate, ◦C/s; Qh, Qr, Qp

denoted heat gain in unit time from heating system, outside building envelope
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Figure 4: Diagram of heat exchange in swine building reprinted from Xie et al.
(2019) [41, Figure 1]

received solar radiation, and pig body surface respectively, W ; Qs, Qf , Qg denoted

heat loss in unit time from pig building envelop, ventilation system, and floor

respectively, W [41].

Qr was defined following the radiation law as Eq.(3.2), where ρr represented

envelope material transmission coefficient, Sr represented envelope surface of pig

building that received solar radiation, m2; and ID represented solar irradiance,

Wm−2 [41].

Qr = ρr · Sr · ID (3.2)

Eq.(3.3) expressed Qh as the heating system used air convection to heat the

pig room, where mh represented mass of heated air, kg/s; and Th represented

temperature of heater surface, ◦C [41]. Qh = 0 in this thesis because the heater

was switched off.

Qh = mh · cp · (Th − Ti) (3.3)

Because heat is always transferred from the higher temperature side of an en-

velope to the lower temperature side, Qs was associated with the temperature

difference between the interior and exterior surfaces of the envelope and the heat

transfer surfaces as Eq.(3.4), where ks represented heat transfer coefficient of build-

ing envelope, Wm−2K−1; To represented outdoor air temperature, ◦C; and Fs

represented area of building envelope, m2 [41].

Qs = ks · (Ti − To) · Fs (3.4)
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Eq.(3.5) showed the primary heat exchange mechanism between a pig and

the indoor air occurs through the pig’s skin, where n represented pig number, n;

Qpr represented the radiative heat exchange of the pig’s body surface, W ; and

Qpc represented the convective heat exchange between the pig’s body surface and

the air, W [41]. In Eq.(3.6), Ap represented area of pig body surface, m2, Ap =

0.105 ·k · 3

√
W 2

t ; ε represented thermal emissivity of pig body surface; σ represented

Stefan-Boltzmann constant, Wm−2K−4; and Tpig represented temperature of pig

body surface, ◦C [41] [42]. In Eq.(3.7), hc represented convective heat transfer

coefficient,Wm−2◦C−1, hc =
3
√
270 · v2 + 23, v represented air speed,m/s [41] [42].

Therefore, Qp was calculated as Eq.(3.8) [41].

Qp = n(Qpr +Qpc) (3.5)

Qpr = Ap · ε · σ[(Tpig + 273)4 − (Ti + 273)4] (3.6)

Qpc = Ap · hc · (Tpig − Ti) (3.7)

Qp = n · Ap

{
ε · σ[(Tpig + 273)4 − (Ti + 273)4] + hc(Tpig − Ti)

}
; (3.8)

Qf was impacted by how efficiently the pit fans and wall fans operated as

Eq.(3.9), where Lw and Lp represented ventilation rates of wall fans and pit fans,

respectively, m3/s; Thw and Tp represented air temperatures of hallway and pit,

respectively [41]. In this thesis, Thw = To to simplify the model, and Lp = 0 since

we did not consider pit fans and pits.

Qf = ρa · cp · [Lw · (Ti − Thw) + Lp · (Ti − Tp)] (3.9)

Qg was calculated as Eq.(3.10), where Sg represented floor area inside pig

building, m2; hg represented heat exchange coefficient of floor, Wm−2◦C−1; given

the model assumption which considered the floor temperature Tg and the pit air

temperature Tp the same [41]. Qg = 0 in this thesis since we considered floors were

closed instead of slatted, and no pits below floors.

Qg = Sg · hg · (Ti − Tp) (3.10)

Figure 5 showed all the thermal exchanges in the pig building. Based on the

energy balance Equations (3.1) to (3.10), this thesis used Python as the program-

ming language to simulate the thermal exchanges in the pig room. The differential
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Eq.(3.1) was numerically solved with a fourth-order using the classic Runge-Kutta

method. The model was solved using parameter values described in the following

at a fixed step of 5 minutes. The measured outdoor air temperatures and solar

radiations were the model’s input values. At t = 0, the initial value of the indoor

air temperature was set to 20◦C. The calculated indoor temperature at the current

time step served as the next time step’s input value.

Figure 5: Thermal exchange in swine building, reprinted from Xie et al. (2019) [41,
Figure 3]

3.1.3 Parameters

In this thesis, we selected Room 11 shown in Figure 3, because some detailed

parameters of this room were provided by Xie et al. (2019) [42]. According to

Xie et al. (2019) [42], Room 11 had 58 pigs with weight from 97.8 kg to 101.2 kg.

The values of some parameters used in this thesis were collected from Xie et al.

(2019) [41] [42] and shown in Table 1.
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Parameter Description Value [unit]
cp Air specific heat capacity 1012 [Jkg−1◦C−1]
Fs Area of the envelope 92.34 [m2]
n Pig number 58
Sg Floor area inside the pig room 67.1 [m2]
Tp Pig body surface temperature 30 [◦C]
V Volume of the pig room 181.17 [m3]
Wt Average weight of pigs 98 [kg]
ε Thermal emissvity of pig body surface 0.95
σ Stefan-Boltzman constant 5.67× 10−8 [Wm−2K−4]
Sr Envelope surface receiving solar radiation 29.7 [m2]
hg Heat exchange coefficient between the floor and indoor air 6 [Wm−2]
ks Heat transfer coefficient of the building envelope 0.405 [Wm−2K−1]
ρr Envelope material transmission coefficient 0.48
k Pig body surface correction factor 0.66
v Air speed 0.15 [ms−1]

Table 1: Parameters for the environment model

3.2 Markov Decision Process (MDP)

The building HVAC control problem can be seen as a Markov Decision Process

(MDP) [23], and we formulated the details of the MDP process in the following.

3.2.1 State space

The state space was a vector of time, environmental conditions (i.e. solar irradia-

tion and outdoor temperature) and indoor temperature, represented as

S = (t, ID, To, Ti), st ∈ S (3.11)

where st represented the state at time t, and the range of each variable were

described in Table 2, and they were floating numbers. The measurements of solar

irradiation and outdoor temperature in West Lafayette, Indiana, USA of 2021 were

downloaded from National Solar Radiation Database (NSRDB) 1 and they were

collected every 5 minutes, so the time interval of our MDP was 5 minutes. West

Lafayette had a continental humid climate with four distinct seasons, with the

lowest temperature -22.8 ◦C, and the highest temperature 34.7 ◦C, in 2021.

1https://nsrdb.nrel.gov

https://nsrdb.nrel.gov
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Variable [unit] Description Min Max
t [h] Time 0 24
ID [Wm−2] Solar irradiation 0 1050
To [◦C] Outdoor temperature -30 40
Ti [

◦C] Indoor temperature -30 40

Table 2: State space description

3.2.2 Action space

We considered the ventilation system of a pig room was a exhaust fan with four

discrete levels of ventilation rates, i.e. 0.3m3/s, 0.6m3/s, 1.2m3/s, 1.8m3/s, to

provide ventilation for the pig room. Therefore, the action space of the ventilation

system control can be represented as

A = {0, 1, 2, 3} , at ∈ A (3.12)

where at represented the action at time t. The minimum ventilation rate was

0.3m3/s, and the maximum ventilation rate was 1.8m3/s. Table 3 showed the

ventilation rates and power consumption of the fan under each action.

Action Ventilation rate, m3/s Power consumption, kW
0 0.3 0.1
1 0.6 0.18
2 1.2 0.36
3 1.8 0.54

Table 3: The ventilation rates and power consumption of the fan

3.2.3 Reward function

A well-designed reward function is essential to achieve a good performance in

reinforcement learning. The reward function included two parts, the penalty of

the power consumption of the fan and the penalty of the temperature deviation

from the comfortable range, as shown in Equation (3.13).
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rt = −wPt −


0 if T ≤ Ti ≤ T̄ ,

Ti − T̄ if Ti > T̄ ,

T− Ti if Ti < T

(3.13)

where rt represented the reward at time t, w was the weight of the power

consumption in the reward function, Pt was the power consumption at time t, T̄

and T were the upper bound and lower bound of the desired temperature range.

More penalty was put on power consumption when w was a big value, less penalty

was put on it if w was a small value, and w represented the trade-off between the

importance to minimize energy consumption and to keep pig’s thermal comfort.

The goal of the reinforcement learning was to maximize the cumulative reward,

so in this MDP problem was to keep the temperature inside the desired range as

much time as possible while minimizing the power cost.

3.3 Deep Q Network (DQN)

In Deep Q Network (DQN), the artificial neural network was used to approximate

the Q values as shown in Figure 6. The neural network can output the Q values

for all possible actions at a given state.

Figure 6: Deep Q Network

The DQN algorithm we used was based on the DQN algorithm proposed by

Mnih et al. (2015) [31], and the pseudocode of the DQN algorithm was shown

in Algorithm 1. The outer loop showed the number of training episodes, and the

inner loop performed the training at each time step inside one episode.
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Algorithm 1 Deep Q-Network (DQN), adapted from Mnih et al.(2015) [31]

1: Initialize memory D to capacity N
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with random weights θ̂ = θ
4: for episode=1,M do
5: Reset environment to initial state s1
6: for t = 1,T do
7: With probability ϵ select a random action at
8: otherwise select at = argmaxaQ(st, a; θ)
9: Execute at in environment and observe reward rt and next state st+1

10: Store transition (st, at, rt, st+1) in D
11: Sample random minibatch of transitions (sj, aj, rj, sj+1) from D

12: Set yj =

{
rj, if episode terminates at step j + 1

rj + γmaxa′Q̂(sj+1, a
′; θ̂), otherwise.

13: Perform a gradient descent step on (yj − Q(sj, aj; θ))
2 with respect to

network parameters θ
14: Every C steps reset Q̂ = Q
15: end for
16: end for

3.3.1 Initial setup

Before the training process, we first initialized an empty replay memory M , a

neural network Q with random weights θ to approximate the action value function

as Equation 2.3, and a neural network Q̂ with weights θ̂ by copying the neural

network Q and its weights to approximate the target action value function, as

shown in Line 1-3 of Algorithm 1. At the beginning of every episode of training,

as shown in Line 5 of Algorithm 1, the environment was set to the initial states s1 =

(t, ID, To, Ti), where t, ID, To were time, solar radiation, and outdoor temperature

from the external data, and Ti = 20 as we initialized the indoor temperature to

20◦C.

3.3.2 Training process

During the training process, Line 7-8 of algorithm 1 indicated that the ϵ-greedy

policy was applied to select the action, so the agent chose a random action with
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probability ϵ to explore the action space, and chose the action with the maximum

output value from the network Q, i.e. highest Q value, with probability 1− ϵ. The

exploration rate ϵ gradually decreased during the training process until reaching

the minimum value ϵmin.

Then in Line 9 the action at was passed into the environment defined in Sec-

tion 3.1 which calculated the temperature changes based on the given ventilation

rate, and the environment changed from the current state st into a new state st+1

and provided the reward rt defined in Equation 3.13 to the agent. Line 10 showed

the memory M stored the transition tuples ⟨st, at, rt, st+1⟩, where st, at, rt, st+1

represented for current state, current action, current reward, and next state, re-

spectively. Then random minibatch of transitions were sampled from memory M

for training the network Q, as Line 11 of Algorithm 1.

Line 12 showed we used the target network Q̂ to estimate the target Q value

as

yj =

 rj, if episode terminates at step j + 1

rj + γmaxa′Q̂(sj+1, a
′; θ̂), otherwise.

(3.14)

and the loss function is defined as the mean-squared error between the output

value of the network Q and the target Q value as shown in Equation 3.15.

L(θ) = Eπ[(yj −Q(s, a; θ))2] (3.15)

Line 13 showed the weights θ of the network Q was trained by using a gradient

descent method, which was used to minimize the loss function and updated the

parameters θ following the rule θ ← θ − α∂L(θ)
∂θ

, where α is the learning rate, and

the gradient was defined as Equation 3.16 with respect to the parameters θ. [30]

∂L(θ)

∂θ
= E[(yj −Q(s, a; θ))]

∂Q(s, a; θ)

∂θ
(3.16)

Line 14 suggested that the weights θ̂ of the target network Q̂ were updated by

copying the weights θ of the network Q every C steps, and C was a hyperparameter

to be defined.
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3.4 Baseline method

The baseline method was a rule-based method designed according to climate guide-

lines for pig buildings (2021) by Varkenshouderij Klimaatplatform 2. In warm and

hot days like spring and summer, the rules were shown in Table 4a, we selected

the ventilation level to be 3 when the room temperature was higher or equal to

24◦C; and we selected the ventilation level to be 2 when the room temperature was

higher or equal to 21.5◦C but lower than 24◦C; we took the ventilation level to be

1 when the room temperature was higher or equal to 19◦C but lower than 21.5◦C;

we kept the fan on the minimum ventilation rate when the room temperature was

lower than 19. In cold days like winter, rules were shown in Table 4b. Since the

outdoor temperature was very low, high ventilation rate level 2 and 3 were not

necessary, so we selected the ventilation level to be 1 when the room temperature

was high or equal to 19◦C; and we kept the fan on the minimum ventilation rate

if the room temperature was lower than 19 ◦C.

Temperature (◦C) Action
Ti ≥ 24 3
21.5 ≤ Ti < 24 2
19 ≤ Ti < 21.5 1
Ti < 19 0

(a) In Spring and Summer

Temperature Action
Ti ≥ 19 1
Ti < 19 0

(b) In winter

Table 4: Baseline rule-based control

3.5 Evaluation Metrics

The evaluation metrics used in this thesis to indicate the performance of controllers

are:

1. Temperature violation rate: it was defined by the proportion of the

temperature out of the comfortable range during the test time period with the

unit %.
2https://www.wur.nl/nl/show/Richtlijnen-klimaatinstellingen-varkenshouderij.

htm

https://www.wur.nl/nl/show/Richtlijnen-klimaatinstellingen-varkenshouderij.htm
https://www.wur.nl/nl/show/Richtlijnen-klimaatinstellingen-varkenshouderij.htm
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2. Power consumption: it represented the total power consumption of the

HVAC system during the test time period with the unit kWh.

3. Thermal discomfort: it means the cumulative temperature deviation out

of the comfortable rage during the test time period with the unit ◦C.



Chapter 4

Results

This chapter included the hyperparameter settings in the experiment setup and

presented the experiment results.

4.1 Experiment Setup

The comfortable temperature range for pigs was between 15◦C (T) and 23◦C (T̄ )

according to Chinese national standard of environmental management for intensive

pig farms [44], and the weight of the power consumption in the reward function

w was 10 by default. We used the same neural network architecture applied by

Wei et al. (2017) [23] for building HVAC system control. The network Q and

the target network Q̂ had four fully-connected hidden layers, and each layer had

50, 100, 200, 400 neurons respectively. We used the rectified linear unit (ReLU)

activation function in each hidden layer. The optimizer was Adam optimizer. We

trained the DQN algorithm 400 episodes and the length of each episode was 48

hours. Table 5 shows the hyperparameter settings of the DQN algorithm. Buffer

size was the size of the replay memory, batch size was the size of the minibatch

for each gradient update, gamma was the discount factor, target update interval

meant the target network get updated every that number of steps, exploration

26
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max was the initial value of random action probability, exploration min was the

final value of random action probability, max grad norm was the maximum value

for the gradient clipping which helped stabilize the training process.

Hyperparameter Value
Batch size 144
Buffer size 144*31
Learning rate 0.003
Gamma 0.99
Exploration max 1
Exploration min 0.1
Target update interval 144*5
Max grad norm 10
Net [50,100,200,400]

Table 5: Parameters of DQN Algorithm

We trained three DQN algorithms using the same hyperparameter settings on

three different months, i.e. January, April and July in 2021 to evaluate our DQN

algorithm performance in different seasons such as spring, summer and winter.

Table 6 showed the descriptive statistics for weather conditions such as solar ra-

diation and outdoor temperature for these months. The heater was turned off all

the time because the room had 58 finished pigs with the average weight of 98 kilo-

grams so there were a lot of heat gain from those pigs’ skin. We used the January,

April and July in 2021 as the training data for the DQN algorithm, and we tested

both the baseline method and the trained DQN agent on February 1 and 2, May

1 and 2, August 1 and 2 in 2021 to evaluate their performances.
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Solar radiation, Wm−2 Outdoor temperature, ◦C
Period: 01/01/2021 - 31/01/2021
Min 0 -12
Max 566 7.3
Mean 66.03 -2.10
SD 125.05 3.25
Period: 01/04/2021 - 30/04/2021
Min 0 -5.4
Max 993 27.2
Mean 220.80 10.90
SD 301.92 6.90
Period: 01/07/2021-31/07/2021
Min 0 11.9
Max 996 31.4
Mean 260.90 23.30
SD 316.61 4.13

Table 6: Summary statistics of weather data

4.2 Experiment Results

Outdoor temperatures in February 1 and 2, May 1 and 2, August 1 and 2, were

shown in Figure 7a, 8a, and 9a, respectively. We can see from Figure 7a that

outdoor temperatures in test winter days were below 0 ◦C mostly. Figure 8a

showed large outdoor temperature differences between day and night on the fist

spring test day. Figure 9a showed outdoor temperatures ranged between 14 ◦C

and 28 ◦C on the summer test days.

Solar radiations in February 1 and 2, May 1 and 2, August 1 and 2, were shown

in Figure 7b, 8b, and 9b, respectively. The figures showed that solar radiations

were 0 during the night hours, increased during the day hours, and reached the

peak values in a day around the noon hours. We can see that solar radiations

were relatively low in winter test days with the maximum values close to 600

Wm−2 from Figure 7b, solar radiations were medium in spring test days with the

maximum values around 800 Wm−2 from Figure 8b, and solar radiations were

highest in summer test days with the maximum values close to 1000 Wm−2 from

Figure 9b.

Figure 7c, 8c, and 9c showed the temperatures in the pig room in February 1

and 2, May 1 and 2, August 1 and 2, respectively, where the baseline rule-based
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method performed control to operate the ventilation fan into different ventilation

rate levels. We can see from 8c, and 9c that in spring and summer test days,

the room temperatures had large deviations from the comfortable range when the

solar radiation and outdoor temperature were relatively high in a day.

Figure 7d, 8d, and 9d showed the ventilation rate levels of the fan in the pig

room in February 1 and 2, May 1 and 2, August 1 and 2, respectively, where the

baseline rule-based method performed control to operate the ventilation fan. We

can see from Figure 8d and 9d that during the spring and summer test days, the

fan was mostly operated at the ventilation level 3 during the time when the solar

radiations and outdoor temperatures were relatively high in a day.

Figure 7e, 8e, and 9e showed the temperature in the pig room in February 1 and

2, May 1 and 2, August 1 and 2, respectively, where the DQN algorithms performed

control to operate the ventilation fan into three ventilation rate levels. We can see

that the DQN algorithms were effective in keeping the room temperature within the

comfortable range for pigs in test days of winter, spring and summer, suggesting

that the DQN algorithm can also generalize very well since we used the same

hyperparameter settings for all seasons.

Figure 7f, 8f, and 9f showed the ventilation rate levels of the fan in the pig

room in February 1 and 2, May 1 and 2, August 1 and 2, respectively, where

the DQN algorithms performed control to operate the ventilation fan. We can

see from Figure 7f that during the winter test days, the fan was at the minimum

ventilation level for the most of the time, and at ventilation level 1 during the

time when the solar radiations and outdoor temperatures were relatively high

in a day. We can see from Figure 8f that during the spring test days, the fan

was mostly operated at the ventilation level 2 during the time when the solar

radiations and outdoor temperatures were relatively high in a day. We can see

from Figure 9f that during the summer test days, the fan needed to operate at the

maximum ventilation level during the time when the solar radiations and outdoor

temperatures were relatively high in a day to maintain the temperature within

the comfortable range. By comparing Figure 8d with Figure 8f, we can see that

the fan operated more hours at the maximum ventilation level using the baseline

rule-based control, compared to the DQN control, in spring test days.
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(a) Outdoor temperature

(b) Solar radiation

(c) Indoor temperature using baseline con-
trol

(d) Fan ventilation rate levels using baseline
control

(e) Indoor temperature using DQN algo-
rithm control

(f) Fan ventilation rate levels using DQN al-
gorithm control

Figure 7: Results on February 1 and 2
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(a) Outdoor temperature

(b) Solar radiation

(c) Indoor temperature using baseline con-
trol

(d) Fan ventilation rate levels using baseline
control

(e) Indoor temperature using DQN algo-
rithm control

(f) Fan ventilation rate levels using DQN al-
gorithm control

Figure 8: Results on May 1 and 2
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(a) Outdoor temperature

(b) Solar radiation

(c) Indoor temperature using baseline con-
trol

(d) Fan ventilation rate levels using baseline
control

(e) Indoor temperature using DQN algo-
rithm control

(f) Fan ventilation rate levels using DQN al-
gorithm control

Figure 9: Results on August 1 and 2
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Figure 10 compared the average frequency of uncomfortable temperature of

the baseline strategy and the DQN algorithm. We can see that the DQN algo-

rithms were able to keep the average frequency of uncomfortable temperature in

the test days of all the three different seasons in a low level. To be more specific,

the uncomfortable proportion of the room temperature under the baseline control

method were 19.10%, 43.06%, and 56.60%, in the test days of winter, spring, and

summer respectively. While the DQN algorithms had 0.87%, 9.90%, 7.99% average

proportion of uncomfortable temperature in the test days of winter, spring, and

summer respectively.

Figure 10: Comparison of the proportion of temperature out of the comfortable
range between the baseline method and the DQN algorithm on the test days of
three seasons

Figure 11 showed the total power consumption of the ventilation fan in the

test days between the baseline method and the DQN algorithm. We can see

that the DQN algorithms resulted in significant energy consumption reduction

in the test days of spring, minor energy consumption reduction in the test days

of winter and summer compared with the baseline method. In detail, the total

power consumption of the baseline method was 6.57 kWh, 19.44 kWh, and 20.47

kWh for the test days in winter, spring, and summer, respectively. The total

power consumption of the DQN algorithms were 5.41 kWh, 13.60 kWh, 19.06

kWh for the test days in winter, spring, and summer, respectively. Therefore, the
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DQN algorithms achieved 17.66%, 30.04%, 6.89% power consumption reduction

compared with the baseline approach in the test days of winter, spring and summer,

respectively.

Figure 11: Comparison of the total power consumption of the ventilation fan
between the baseline method and the DQN algorithm on the test days of three
seasons

Table 7 showed the cumulative temperature deviation from the comfortable

range during the test days, calculated by the sum of the absolute error between

the indoor temperature and the upper or lower bound of the desired range as the

second term in Equation 3.13, using the baseline method control and the DQN

control. We can see that DQN algorithm managed to achieve low cumulative

temperature deviation values in the test days of all three seasons, and had nearly

perfect performance in the test days of winter. On the other hand, baseline rule-

based control got quite large deviation sum values in the test days of all three

seasons, especially in the test days of spring and summer.

4.3 Discussion

The performance of the baseline rule-based method was surprisingly poor on main-

taining the temperature within the comfortable range, especially in the test days
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Baseline rule-based, ◦C DQN, ◦C
Winter (Feberuary 1 and 2) 123.56 0.84
Spring (May 1 and 2) 1242.37 15.65
Summer (August 1 and 2) 2044.34 32.81

Table 7: Sum of temperature deviation from the comfortable range during the test
days in three seasons using baseline rule-based control or DQN control

of spring and summer. We thought the possible reasons were:

1. We assumed the ventilation rate was controlled on discrete levels to simplify

the problem and save computation time, however, this could result in a underesti-

mate of the performance of the rule-based method in reality when the ventilation

rate can be controlled continuously.

2. The baseline rule-based method might have the problem of time lags since it

decided the action only based on the indoor temperature at the current time step.

On the contrary, the current time information incorporated in the states of the

DQN algorithm enabled the agent to learn the time-varying weather conditions

[23], so the agent might be able to decided the actions in a foreseeable way.

For example, we tested both the baseline method and the DQN approach on

May 1, one of the test day in spring, from 8:00 to 12:00 as shown in Figure

12. We can see in Figure 12d that from 8:00 to 10:30 the baseline method and

DQN algorithm chose different ventilation levels, the baseline method mainly chose

level 0 and level 3, while the DQN method mainly chose level 1, 2, and 3. Both

methods resulted in different indoor temperatures at 10:30 shown in Figure 12c,

and the indoor temperature at 10:30 of DQN control was much lower than the

baseline method which might imply the DQN method did not need to choose

the maximum ventilation rate for the time after 10:30. From 10:30 to 12:00, the

indoor temperatures under both the baseline method and DQN algorithm showed

an increasing trend probably due to the increasing outdoor temperature and solar

radiation.
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(a) Outdoor temperature

(b) Solar radiation

(c) Indoor temperature with baseline control and DQN control

(d) Fan ventilation rate levels with baseline control and DQN control

Figure 12: Results on May 1 8:00-12:00
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Conclusions and future work

In this chapter, we summarized the main research results of this thesis, discussed

the limitations of the study and proposed some future work.

5.1 Conclusions

In this thesis, we presented the possibility to utilize Deep Reinforcement Learn-

ing method to optimally control the ventilation system in pig buildings, and the

experiment results showed that:

1. The DQN agent managed to maintain the room temperature within the

comfortable range after training. In detail, it achieved 99.13%, 90.1%, 92.01%

average frequency of comfortable temperature, and 0.84◦C, 15.65◦C, 32.81◦C cu-

mulative temperature deviation from the comfortable range, in the test days of

winter, spring and summer, respectively.

2. The DQN algorithm outperformed the baseline with the saving of power

consumption by 17.66%, 30.04%, 6.89% in the test days of winter, spring and

summer, respectively.

3. The DQN algorithm applied the same neural network architecture and

hyperparameter settings and was trained and tested in different periods of time,

37
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indicating the generalization capability of the DQN algorithm.

5.2 Limitations

Although this thesis has made certain contributions to the ventilation system

control in pig buildings based on DRL, there are several limitations:

1. In this thesis we used discrete action space, however, it’s more practical

to use continuous action space as the ventilation rate usually can be controlled

between the minimum and maximum in reality.

2. In this thesis we only worked on the control for ventilation system, the study

will be more comprehensive if the control of heating system is added, since the

temperature can be too cold for pigs to live in the room in some cities with very

cold winter.

3. In this thesis we only used the DQN algorithm, we didn’t explore other RL

algorithms, such as policy-based method Proximal Policy Optimization (PPO),

actor critic method Advantage Actor Critic (A2C).

5.3 Future work

Besides the limitations we discussed above, we suggested some future work that

can be conducted on this topic further, as following:

1. Real price of electricity can be used to approximate the cost of power

consumption, and it can be different on peak hours and off-peak hours.

2. Besides the indoor temperature, we can consider some other conditions such

as humidity, carbon dioxide emission that can affect pigs’ comfort.

3. In this thesis, the pig building was closed with mechanical ventilation. Fur-

thermore, the ventilation system can be hybrid ventilation including both natural

ventilation and mechanical ventilation.



Appendix A

This project used Google Colab notebook to train the algorithms with GPU com-

puting, and the notebook can be found at url: https://colab.research.google.

com/drive/1kLBKthdqRBj-2SAnkK2VQ83H9kw1tcjH?usp=sharing.

39
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