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Abstract

The past decades have shown a rise in skin cancer. This creates the need
for prevention and efficient treatment. The most common skin cancer
(melanoma) can only be treated when detected early. In this thesis we

propose a method of increasing awareness for people with a high risk of
skin cancer as well as allowing for early detection.

Skin cancer is hard to detect, even for experiences healthcare
professionals. One of the signals of potential harm full lesions is change
over time. We propose to develop an application with which changes in

skin lesions can be identified early. By allowing patients to film their
body with a mobile phone camera we aim to track the development of
lesions. If a patient films their body regularly changes can be detected

and the application can urge the patient to consult a dermatologist.
In this thesis we explore the possibility of combining the frames of these

films into an overview displaying the patients complete back or arm.
Combining frames is called stitching. Different stitching techniques

found in literature are explored and tested for effectiveness. The
optimizations performed are reported and the final result is presented.

The location of the different lesions on an overview of the body is needed
to show the patient and the healthcare professional where potential

harmful lesions are located on the body. This allows for further
inspection at the dermatology department.
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Chapter 1
Introduction

Skin cancer is the most common form of cancer in the United States [1].
Also in Europe its incidence is high (around 16 in 100.000 people) and
increasing by (on average) 3% per year [2]; with the Netherlands as the
5th highest incidence in Europe [3]. Out of all skin cancer Melanoma is
the most aggressive and lethal. Especially here early detection and start of
treatment is necessary to increase the chance of a positive patient outcome.
Unfortunately diagnosing Melanoma proved difficult. With the naked eye
in Dutch dermatology clinics a sensitivity of .79 and a specificity of 0.96 is
achieved. And with the help of a dermoscope this is increased to a sen-
sitity and specivicity of resp. .86 and .98 [4]. Here sensitivity means: the
probability that a positive diagnose is correct when melanoma is present.
And specificity means that a negative diagnose is correct when melanoma
is not present.

To assist in a quick and accurate diagnose automated systems are pro-
posed [5] and developed [6] to support dermatologists. The german com-
pany FotoFinder even has a system on the market that performs compa-
rably to physicians in diagnosing melanoma from dermoscope images (a
sensivity and specificity of resp. 0.95 and 0.77) [7]. But the assessment of a
skin lesion by a dermatologist is only undertaken when a patient becomes
worried about his or her skin and visits their general practitioner (gp) and
secondly the gp refers the case to a specialist. While, as stated, early de-
tection and a quick treatment is very important. To allow for an earlier
detection self monitoring is proposed.

To aid the general public in self monitoring smartphone apps are de-
veloped, of which the most famous example is SkinVision [8]. This app
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2 Introduction

allows people to take photos of skin lesions and based on the result of an
AI algorithm the app might suggest to contact a specialist. The perfor-
mance of SkinVision is suggested to be comparable to FotoFinder (sens:
0.95 and spec: 0.78) [8], although it is suggested that this performance
might be overestimated [9].

In this thesis we propose an new way of self monitoring: STARPeo-
ple. We combine image recognition techniques with analysis algorithms
from astronomy to allow users to map skin lesions on their body and sig-
nal changes. We motivate this approach in section 1.2, which gives an
introduction into skin lesions and dermatology. Then we introduce source
extractor in section 1.3. This software is used in astronomy and can help
segment skin lesions. Consequently we explain which image processing
techniques will be used in section 1.4. Chapter 2 explains the methods
used in the proposed solution. Namely: data collection 2.1, image mosaic-
ing 2.2 and sharpness detection ??. The results are presented in chapter 3
and discussed in chapter 4. Finally we draw conclusions in chapter 5.

This project is a collaboration between Leiden Observatory [10] and the
Dermatology department of the LUMC [11]. Patients have volunteered to
collaborate to the study. As such all data is strictly confidential and will
remain within the LUMC. The images shown in this thesis are for illustra-
tive usage and not actual patient data.

1.1 Research objective

STARPeople users will scan their body by filming their arms and back with
their mobile phone. This will result in a sequence of pictures (the frames in
the movie) capturing an entire body part. From these pictures a catalogue
of detected lesions will be created. It is essential to present the location of
the detected lesions on the body to the user and the dermatologist. One
way to achieve this would be to combine the frames in the movie into one
common reference frame. Lesions found in different frames will overlap,
so doubles can be removed and all frames combined will be a picture of
the entire body part.

The aim of this thesis is to combine multiple pictures from a movie
scanning a patients back or arm into one common reference frame. There-
for multiple techniques are explored. A literature search is performed to
find possible solutions and the different solutions are tested to finally pro-

2

Version of August 2, 2023– Created August 2, 2023 - 19:29



1.2 Skin lesions 3

pose the technique to implement.

1.2 Skin lesions

Skin lesions are parts of the skin that have abnormal growth or appearance
compared to the skin around it. Most lesions are harmless, for instance
birthmarks, moles, acne, freckles, skin tags (or: acrochordons), cherry An-
gioma’s (small red bumps that commonly appear after age 30). But they
can be malignant. In that case they are called skin cancer. Skin cancer is
the most common type of cancer. There are three types:

• squamous cell carcinoma (scc) is overproduction of squamous cells
in the top layer of the skin (the epidermis). It can appear anywhere
on the body, it usually develops on parts of the skin that have en-
dured prolonged sun exposure. It’s visual marking are diverse and
might be a bump or growth which might crust over, a growth that’s
higher than the skin around it but sinks down in the middle, a wound
or sore that won’t heal or an area of skin that is flat, scaly and red and
larger then about 2.5 cm. It grows slowly and is easily curable espe-
cially if caught early. If left untreated it can spread to other area’s of
the body and be lethal, but this is very rare.

• basal cell carcinoma (bcc) causes a lump, bump or lesion to form
on the epidermis. Again this happens on the parts of skin that en-
dure sun exposure. It looks like a small bump or scaly flat patch on
the skin that slowly grows over time. Bcc rarely spreads to other re-
gions. Though if left untreated it can grow into the body or develop
to become more aggressive.

• melanoma is by far the most dangerous form of skin cancer. It grows
quickly and has the ability to spread to any organ. The cancer devel-
ops from skin cells that produce dark pigment (melanocytes). Most
melanoma’s are black or brown, but they can also be pink, red, pur-
ple or even skin-colored. 30% of melanoma’s develop from existing
moles. But in the other 70% of cases the melanoma has started in nor-
mal skin. They appear as moles, scaly patches, open sores or raised
bumps.

All skin cancer is most commonly seen in sun-exposed area’s. This is be-
cause the suns UV-light damages the skin. The risk factors for developing
skin cancer are (among others):
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4 Introduction

• Spend a considerable amount of time in the sun

• Get easily sunburned; have a history of sunburns

• Live in a sunny or high-altitude climate

• Tan or use tanning beds

• Have light-colored eyes, blond or red hair and fair or freckled skin

• Have many moles or irregular-shaped moles

• Have actinic keratosis (skin growths that are rough, scaly, dark pink-
to-brown patches

All forms of skin cancer are very diverse in appearance and, as might
be clear from the above descriptions, can look very similar to each other
and to benign skin conditions. This is what makes it difficult for health-
care professionals (and automated systems) to make the correct diagnose
and start the right treatment. To make the distinction between benign or
malignant a mnemonic method is used: the ABCDE shown in figure 1.1
[12] .

A healthcare professional uses the list shown in figure 1.1 to assess
the risk a lesion has on being malignant, but for a definite diagnose a
biopsy is needed. As the list shows one of the risk factors is that the le-
sion changes over time and an other is that the lesion differs from other
lesions present on the patients body. The two systems that are mentioned
earlier (FotoFinder and SkinVision) are not able to take this information in
account. SkinVision processes a picture of a single lesion, so there is no
comparison to other lesions or assessment of change. FotoFinder might
compare a lesion to other lesions on the body, as the software works with
a complete body image, but it is not able to compare to pictures taken
earlier in time.

This is how we come to propose an alternative automated system: STARPeo-
ple.

1.3 Analogy between dermatology and astronomy
images

Lesions are (at least on white skin) dark features on a light background.
The inverse of a photograph of skin with lesions is a dark background
with bright features. As shown in figure 1.2 such an image is very similar

4
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1.3 Analogy between dermatology and astronomy images 5

Figure 1.1: ABCDE used to classify skin lesions

to an image of stars. As the images are visually comparable it is sensible
to explore whether techniques used in astronomy can be applied to der-
matology images.

Astronomy analyses digital images captured by the CCDs in telescopes.
These sensors produce a high amount of data that needs processing. So ef-
ficient software has been developed to automate this. A commonly used
application is Source Extractor or SExtractor developed in 1996 [13]. The
software is able to automatically perform object detection, segmentation
and photometry and is primarly used for large scale galaxy-survey data
images. SExtractor works in 6 steps. Firstly the background and image
noise is measured and subtracted from the image. Then the resulting im-
age is filtered to smooth out small perturbations or distortions. Thirdly
objects are detected with a thresholding algorithm. Because SExtractor is
used for object detection of light sources each pixel is assumed to be the
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6 Introduction

Figure 1.2: Visualization of comparability between skin images and sky images.

sum of the background noise and the different objects found in its vicin-
ity. So deblending is applied to separate objects that are close together
and might be detected as one object. Then the photometry is calculated to
describe all found objects. For each object characteristics like magnitude,
ellipse shape, size and angle are computed. Consequently each object is
classified as either a star or a galaxy. This is performed by a pre-trained
neural network. Finally all objects are catalogued.

In this project SExtractor will be applied to efficiently process skin pho-
tos. We aim to develop software with which people can scan their body
for features with their mobile phone. Our software will detect lesions,
map and catalogue them and store them. SExtractors background detec-
tion will be used to detect the skin and remove it from the image. The
features that are left will be lesions. They will be detected and catalogued.
The next time the user scans their body the detected lesions can be com-
pared to the catalogue. So newly appeared lesions or lesions that changed
in color or shape can be detected. This way our software would be able to
give an early warning to contact a dermatologist for a consult.

1.4 Image mosaicing

As stated in paragraph 1.1 the research objective of this thesis is to explore
techniques for combining different images. This process is called image
mosaicing or image stitching in literature and Pandey [14] has written a
complete overview of the current field in 2019. The process consists of 3
steps:

1. Image registration defines the projections that can transform the im-
ages from their local coordinate system to common global coordi-
nates.

2. Warping or reprojection projects the images to the global coordinate

6
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1.4 Image mosaicing 7

Figure 1.3: Source extractor pipeline visualizing the 6 steps: Background Subtrac-
tion, Filtering, Object detection, Segmentation and Photometry

system. When two images are projected to a common surface, per-
ceptible edges might appear.

3. Blending or seam smoothing is the process that aims to smooth out
those edges to produce a visually appealing mosaic.

The last few decades a lot of techniques that can perform these steps have
been developed and applied in different areas. Even so not all problems
have been solved and not one technique fits all use cases. Still exist-
ing problems are for instance illumination variation, camera rotation and
zoom and moving objects in the scene [14]. This means different appli-
cations require different mosaicing algorithms depending on the specific
challenges involved.

Mosaicing has many different fields of application. For example it is
available in almost any smartphone to create panoramic pictures, it is used
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8 Introduction

for aerial and satellite images to combine different images into a single
map or terrain overview, and it is used in astronomy for instance for al-
ligning and combining different images from the Hubble Space Telescope
[15]. In the medical and biometric field image mosaicing is used for in-
stance for confocal microscopes to extend the field of view [16].

1.4.1 Projections

A very detailed overview of techniques used for registration and stitch-
ing is given in this paper by Szeliski [17]. Figure 1.4 and table 1.1 are taken
from this publication. As stated during the registration step the projections
that can transform images from their local coordinate systems to common
coordinates are defined. Figure 1.4 shows the names and examples for dif-
ferent projections between the coordinate systems of two 2D images. Each
consequent projection allows for more mutations and thus more degrees
of freedom (D.O.F.). In computer vision coordinates are often expressed as
homogeneous coordinates (also called projective coordinates). A point on
the Euclidean plane defined by: X = (x, y) is represented in homogeneous
coordinates as: X̃ = (zx, zy, z) for any non zero real number z. This coordi-
nate system is used in computer vision to more easily represent projective
transformations by matrices.

Figure 1.4: Basic set of 2D planar transformations. Taken from [17]

1. Translation is a pure translation of the image. The projection can be
written as: x‘ = x + t or:

x‘ =
[

1 0 tx
0 1 ty

]
x̃

where x̃ is expressed in the homogeneous coordinate system.
This projection has 2 D.O.F, as is clearly shown by the matrix.

8

Version of August 2, 2023– Created August 2, 2023 - 19:29



1.4 Image mosaicing 9

2. rigid or Euclidean is a combination of translation and rotation. It
can be written as: x‘ = Rx + t or:

x‘ =
[

cosθ −sinθ tx
sinθ cosθ ty

]
x̃

The rotation introduces an extra variation, so 3 D.O.F.

3. similarity introduces one extra projection: scaling. It can be ex-
pressed as: x‘ = sRx + t or:

x‘ =
[

s · cosθ −s · sinθ tx
s · sinθ s · cosθ ty

]
x̃

D.O.F = 4.

4. affine allows for all of the above plus skewing in two directions, thus
adding 2 D.O.F. The mathematical representation is straightforward:
x‘ = Ax̃ or:

x‘ =
[

a00 a01 a02
a10 a11 a12

]
x̃

With the limitation that A has to be invertible so that A−1A = 1. (The
projection is reversable). Under affine transformation parallel lines
are conserved.

5. projective also known as perspective transform or homography. This
transformation additionally allows for changing the angle between
two non parallel lines. The angle for a line can be altered between
both the X and the Y axes, so this this transformation adds 2 D.O.F.
and so can be represented by x̃‘ ∼ H̃x̃. Where both coordinates are
homogeneous and even H is. The scale of H is fixed by setting the
9th element to 1:

x̃‘ =

h00 h01 h02
h10 h11 h12
h20 h21 1

 x̃

A summary of these projections is given in figure 1.1.
There are multiple approaches for registration. A complete overview

is given by Pandey [14]. Here we will present two methods in more detail.
Firstly the direct method and secondly the feature based method.
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Table 1.1: Projections for 2D coordinate transformations. Taken from [17]

1.4.2 Direct method

The direct method aims to find the registration of two images (I1 and I2) by
minimizing the pixel intensity discrepancies. This technique is commonly
used in healthcare for instance for combining imaging data from different
systems (MRI, CT-scans). A widely used application has been developed
by Marius Staring (LUMC) and Stefan Klein (ErasmusMC): Elastix [18].
Finding the translation projection between two images would be done by
moving I1 over I2 such that the following equation is minimized:

E2 = ∑
x,y
[I1(u, v)− I2(x, y)]2 (1.1)

where (u, v) = P[(x, y)] and P is the projection that maps the coordinate
system of I1 to I2. As this is an iterative process the technique is best used
for images that are fairly similar, e.g.: only rigid transformation or, for
transformations with more D.O.F., a projection that is close to the identity
matrix. The challenge of using the mean square error 1.1 as error function
is that difference in illumination between two images will lead to an incor-
rectly large error. This can be prevented by using the (normalized) mutual
information as an error function; which will be introduced in section 2.3.

1.4.3 Feature based method

Where the direct approach uses all pixels to register two images, the fea-
ture based method calculates the projection matrix (H̃) by finding 4 com-

10
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1.4 Image mosaicing 11

mon points in the two images. As projective transformation has 8 degrees
of freedom and each point is described by two coordinates (x, y) so 4 com-
mon points lead to 8 linear equations that can be solved to calculate H̃.
Selecting 4 common points can be done manually. But to process large
amount of images, or in our use case frames from a movie, an automated
method for finding and describing features is required. The challenge here
is that the features need to be compared across different images, so differ-
ent coordinate systems, this means the detection and description of the
features needs to be independent of the chosen coordinate system.
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Chapter 2
Methods

2.1 Data collection

For this project the data was collected in 2020-2021. This was done by
filming volunteering patients at the LUMC, with a then popular phone;
the iPhone7, Samsing Galaxy a71 and Huawei P30 Lite where used. The
patients body parts were scanned, either the back, arms or legs. Stickers
have been applied on the body to help the camera focus, this prevented the
camera from focusing on the background and encouraged to keep the skin
area in focus. Eight patients volunteered to be filmed and all are filmed
with two cameras. The photos shown as examples in this thesis are not
patient images.

The data is stored and processed on a virtual server at the LUMC to
assure the data is secure and private. On the server Python version 3.8.10
is used and most processing is done with OpenCV 4.5.3. This python im-
plementation of OpenCV offers the algorithms introduced in paragraph
1.4 like SIFT and calculating and projecting homographies.

The fact that the data was captured with a handheld mobile phone
gives challenges that need to be solved in the mosaicing algorithm:

• The camera corrects focus often and not always focuses on the skin
(even with the stickers applied). When the skin is out of focus there
might not be enough clear features.

• It happens often that a part of the frame is in focus, while other parts
are out of focus. This can even be the case if the frame has only skin
in view. The camera might focus on a particular feature on the skin
while other parts are blurred.
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14 Methods

• The distance from the camera to the skin changes drastically. This
is by intention, the camera is moved close on skin patches to bring
details clearly on screen. However this requires feature descriptors
to be independent of zoom and robust for large changes.

• The camera tilts and rotates in any direction. This means feature de-
scriptors have to be independent of tilt and rotation and the projec-
tion matrix must be able to correct these difference between frames.

• Features can also be found in the photo area that shows background
(wall / floor) by the parallax effect these features would distort the
calculation of the projection. So masking (based on color) has been
applied to only select areas of the frames that show skin.

• Most of the time the camera moves slow, but sometimes a lot of dis-
tance is covered. This makes it that the pipeline should be robust for
both situations. If the camera travels a lot while close to the skin it
might be impossible to calculate a proper projection.

• To define the projection between two frames four matched features
are needed, as explained in section 1.4.1. But if one (or more) of those
features is an outlier (mismatch) the projection will be very distorted.
So both a sanity check on the projection matrix is needed and more
then 4 matched features are needed to be robust for outliers.

• The frames in the movie are high resolution (1920 x 1080 pixels),
which means the processing scripts can need a lot of computer mem-
ory. For instance loading a 1 minute movie into memory uses about
10GB.

• If all frames are projected into the frame of reference for the first
frame, the orientation of that reference frame decides what the point
of view for the entire image is. If the first frame of the movie is tilted,
this makes the entire image tilted.

2.2 Mosaicing methods

As introduced in paragraph 1.4 building a mosaic takes three steps: regis-
tration, warping, and blending. In this section I will explain the methods
to realize these steps.

14
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2.2 Mosaicing methods 15

2.2.1 Feature detection

In this thesis registration is mainly realized by feature selection and map-
ping. To allow for feature matching across coordinate systems Lowe in-
troduced a (by now widely used) algorithm called Scale Invariant Feature
Transform (SIFT) [19]. The reasoning behind the algorithm is that in or-
der to find scale invariant features, features on different scales should be
selected and described in a method independent of scale. This is done
by building a set of scale space images, L(x, y, σ) by convolving the input
image I(x, y) with a variable-scale Gaussion G(x, y, σ):

L((x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.1)

where ∗ is the convolution operation in x,y and

G(x, y, σ) =
1

2πσ2 e−(x2+y2)/2σ2
(2.2)

This is done for increasing σ and the set of Gaussians, produced is shown
as the left stack in figure 2.1. So in essence the first Gaussian convolution
removes fine grain features and with each increasing σ coarser grained
features are removed. Each layer has less fine grained features. Now by
subtracting Ln+1 from Ln a difference-of-Gaussian (DOG) D(x, y, σ) is cal-
culated.

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ)
(2.3)

This way the Gaussian convolution has removed fine grain features and
the subtraction has removed the coarse grained features. Now features are
shown per scale. Consequently extrema are selected in the space build up
from the DOG. If a pixel is a local minimum or maximum compared to all
26 neighbors (8 in the same scale and 9 each in the scales above and below)
the pixel is selected as a possible feature. On these pixels filtering methods
are applied to remove features that are sensitive for noise or features that
are on edges. These methods are described in detail in Lowe’s paper [19].

2.2.2 Feature description

Now that we have detected features in all different length scales we need
to describe them independent of scale (and orientation) to allow for com-
parison of features found in different images. This is done by firstly defin-
ing them in the scale in which the extrema was found (L(x, y)). In this
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16 Methods

Figure 2.1: For each scale octave gausian filtering is applied with an increasing
kernel size producing a stack of ’Gaussians’. Adjacent Gaussian images are sub-
tracted to produce the difference-of-Gaussian images on the right, fig. 1 from [19]

.

scale for the feature a gradient magnitude and orientation are calculated:

m(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2

θ(x, y) = tan−1((L(x, y + 1)− L(x, y− 1))/(L(x + 1, y)− L(x− 1, y)))

With the location (x, y), the magnitude m and the orientation θ the features
can be localized in the original image. Now the descriptor can be created.
Around the location all gradients magnitudes and orientations are calcu-
lated, using the scale of the feature to select the level of Gaussian blur for
the image. In order to achieve orientation invariance, the coordinates of
the descriptor and the gradient orientations are rotated relative to the fea-
ture orientation θ. Now the different gradients per 4 x 4 square are added
together as shown in figure 2.2. The figure shows eight directions for each
orientation histogram, with the length of each arrow corresponding to the
magnitude of that histogram entry. The magnitudes are combined into a
vector as a feature descriptor. A 128 element feature vector is created by
combining 8 of these 4 x 4 direction histograms.

After the introduction of SIFT other feature detection methods have
been developed and implemented. In this thesis also FAST [20] and ORB
[21] will be covered. FAST is an implementation of the Harris corner detec-
tion method [22] with a focus on computational speed (hence the name)

16
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2.2 Mosaicing methods 17

Figure 2.2: Schematic representation of the calculation of the features descriptor
used by SIFT. Fig. 7 from [19]

and ORB is a later improvement on FAST, adding a feature descriptor,
which was not part of the FAST algorithm and more optimization on com-
putation time, in order to make it possible to run feature detection on a
live camera feed. A lot of publications have compared these (and other)
techniques in different use cases, for instance [23], [24] and [25]. Showing
that different techniques excel in different scenario’s. Although most pub-
lications conclude that SIFT is the most accurate and robust technique, but
comes with an higher computational burden on the system.

2.2.3 Warping

Features found in consequent frames are matched to each other with near-
est neighbor matching; the euclidean distance is taken between the vectors
describing the features. With this method a match for each feature is se-
lected; even if there is no corresponding feature in the other frame. To filter
the wrongfully matched features Lowe introduced a step called Lowe’s ra-
tio [19]. This step selects only the features for which the distance between
the nearest neighbour is smaller then 80% of the distance between the sec-
ond neighbour. This forces the difference between the best neighbor and
the second best to be large. The reasoning is that the distance between two
wrongfully matched features is, in general, more similar then the distance
between a rightfully matched set of features and a wrongfully matched
set. Examples demonstrating the effectiveness of this filter are shown in
appendix ?? in figures 1, 2 and 3.

With the features in two frames matched we can calculate the projec-
tion. As described in paragraph 2.1 the camera has free movement, which
means translation, rotation, tilt and zoom can change between frames. It
follows from paragraph 1.4.1 that the projection between two frames is
projective and is described by a 3x3 homography matrix. To calculate the
projections we require 4 matched points. If more then 4 matches are avail-
able the RANSAC algorithm can be used to make the projection calcula-
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tion robust for outliers (eg. wrongly matched features) [26]. RANSAC
stands for Random sample consensus, and works by repeatably sampling
4 random points multiple projections are calculated. The best one is se-
lected by using each projection to project all points from frame 1 onto the
reference frame of frame 2. The projection that leads to the least outliers is
selected as best.

A digital image is a discreet representation of a view on a continuous
world. The view is encoded as a grid where each cell (pixel) represents
either a color intensity or gray scale value on a scale from 0 to 255. This
grid has an origin (0, 0) and a X- and Y-axis, stretching from 0 to 1920 (for
the X-axis) and 0 to 1080 (for the Y-axis). When an image is projected into a
new reference frame the pixels will not exactly line up with the new grid,
so interpolation is necessary. In this thesis we used linear interpolation.

Another phenomena that has to be corrected for is that the origin and
outer border will not align. As the camera shifts in any direction the next
frame will often be projected outside of the original grid. To make grid
available for the new pixels, the grid has to be extended along the X and or
Y axis. And, as negative axes do not exist, if the next frame is lower and/or
to the left of the original image, the original image has to be translated.

This is done by first projecting the 4 outer corners onto the new grid.
Based on their location the size and translation of the new grid is calcu-
lated and, if required, a translation projection matrix is created to shift the
original image. This procedure is represented in algorithm 1

2.2.4 Blending

As described in paragraph 1.4 blending aims to smooth edges that appear
in the resulting image from combining multiple images. This is a delicate
procedure; as the human eye is very sensitive for contrast difference along
lines. Robust blending techniques are part of ongoing research. In this
thesis image edge smoothing is left for future research.

In this thesis we blend images by either copying the second image
over the first, or by selecting the sharpest of the two images first and
then adding the parts from the less sharp image that do not appear in
the sharpest.

2.3 Projection quality

As mentioned in section 1.4.2 a metric to quantify how good two images
have been mapped onto each other is the mean squared intensity differ-

18
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Algorithm 1 Find image dimensions, with H as the homography matrix

procedure FINDDIMENSIONS(image, homography, base img)
Determine image dimensions y, x
Initialize image corners base p1, base p2, base p3, base p4
Initialize max x, max y, min x, min y as None
for pt in [base p1, base p2, base p3, base p4] do

Project point hp←H ·pt
Update max x, max y, min x, min y if necessary

end for
Set min x, min y to 0 or minimum values
Adjust max x and max y by base image size
Initialize translation matrix move H as identity matrix
if min x < 0 then

Update move H[0, 2] and max x
end if
if min y < 0 then

Update move H[1, 2] and max y
end if
return (min x, min y, max x, max y, move H)

end procedure
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ence or mean squared error. However it is sensitive to illumination dif-
ferences between the images. For a more robust metric we can use the
property mutual information, defined in information theory.

Information theory is the field of science that studies ways of quantify-
ing, storing and communicating of information. The field was introduced
by Claude Shannon in his groundbreaking paper ”A Mathematical The-
ory of Communication” in 1948. One of the key concepts is entropy, which
measures the amount of uncertainty or randomness in a system. One way
of quantifying entropy in a set of variables X in terms of bits is Shannon
entropy:

H(X) = − ∑
x∈X

PX(x)log2(PX(x))

Where PX is the probability distribution for collection X. An other way of
phrasing this is that the entropy is the amount of information that is stored
in the collection of variables and Shanons entropy shows the minimum
amount of bits required to store that information. The mutual information
(MI) between two sets of variables (X, Y) quantifies the amount of infor-
mation obtained about one set if the variables of the other set are known.
It is defined as:

MI(X.Y) = ∑
y∈Y

∑
x∈X

P(X,Y)(x, y)log

(
P(X,Y)(x, y)
PX(x)PY(y)

)

Where P(X,Y) is the joint probability distribution. MI is symmetric so:
I(X, Y) = I(Y, X) and it is non negative. I(X, Y) = 0 means no infor-
mation is gain about Y by knowing X. So X and Y are completely inde-
pendent. With this definition MI is unbound: MI ∈ [0... inf), which makes
it hard to assess when the registration is good. To solve this normalized
mutual information (NMI) is often used[27] [28]. To normalize the MI is
divided by the individual entropy’s:

NMI(X.Y) =
MI(X, Y)

H(X)H(Y)

We can use this metric for the area of overlap between two images. If the
images are projected correctly the NMI between the two images is close to
1.

20
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2.4 Implementation

2.4.1 Image registration

For registration we have tested the direct implementation with Elastix [18]
and we have compared different feature based approaches. SIFT (as intro-
duced in section 2.2.1) is compared to newer and faster methods: FAST
[20] and ORB [21]. The different feature selection methods are compared
on robustness and speed and this is done quantitatively (average amount
of features found, minimum amount of features found and frames with
less then 4, 10 or 20 features found, processing time) and qualitatively (vi-
sual inspection of selected features).

Subsequently the features are described and matched. This too is re-
ported up on: the average amount of matches before and after Lowe’s
ratio is reported, and again the number of frames with less then 4 and 8
matches. Matching is done with a FLANN (Fast Library for Approximate
Nearest Neighbors) algorithm for accelerated nearest neighbors matching
in high dimensional spaces [29].

2.4.2 Blending

Initially the projected image was added completely over the base image.
However this meant that if the second frame was out of focus, while the
first was sharp, the resulting image would lose details. This is solved by
calculating the sharpness in the area of overlap for both images. As a
measurement for sharpness the gradient is calculated. An image with a
higher gradient for the same skin surface will be sharper than an image
with a lower gradient. Eventually, to accord for the fact that often images
were sharp for parts of the frame, I divided the area of overlap in nine
pieces as shown in image 2.3 and selected for each subsection the sharpest
section. As a measurement for sharpness I have used edge detection with
a Sobel operator in the x- and y-direction. The total sharpness of a patch
is calculated by taking the mean of the sum of the absolute values in each
direction.

2.4.3 Pipeline

With all elements described we can combine them into a mosaicing pipeline.
The algorithm is shown in algorithm 2. We start with initializing the
FLANN feature matcher and by reading first frame. The first frame is
named ’result’ because all subsequent frames will be added to this one.
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Figure 2.3: Example of dividing the overlap between two frames in 9 patches and
selecting the sharpest patch to add to the result image.

A mask is created based on color to select the area that contains skin and
discard background. The mask is calculated in the YCbCr color space with
fine tuning by trail and error. Values between [0, 133, 77] and [235, 173, 127]
are regarded as skin. After selecting these colors the holes are filled, as
some lesions and shadow area’s are to dark to be detected as skin.

Subsequently in the while loop each step the next frame is read, masked
and the projection from this frame to the previous is calculated. With the
inverse projection the resolution of the new image is calculated, as this is
required for warping both frames. The new frame is combined with the
existing result and this combination is renamed as result. If no homogra-
phy could be found all next steps are skipped and the next frame is read.

2.5 Different experiments undertaken for robust
mosaicing

To successfully produce one image out of a movie of between 500 to 1500
frames, each of the frames has to be projected correctly to a common ref-
erence frame. And as mapping the frames is a recurrent process each mis-
matched frame might lead to either a accumulating error in the final image
or a complete break in the mapping process. A lot of experiments are per-
formed to come to a robust process. Tested mosaicing variations:

22
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Algorithm 2 Video Mosaicing Pipeline

procedure PIPELINE(VideoPath)
f lannIndex ← createFlannMatcher()
video ← readVideo(videoPath)
f rame← readFrame(video)
mask← getMask( f rame)
result← applyMask( f rame, mask)
while video hasNextFrame do

f rame2← readFrame(video)
mask2← getMask( f rame2)
H, success← findHomography(result, f rame2, mask, mask2, f lannIndex)
if success then

H−1 ← computeInverseProjection(H)
(Xmin, Ymin, Xmax, Ymax, moveH)← findDimensions(H−1)
resultWarp← warpPerspective(result, moveH, (imgW, imgH))
resultMask← warpPerspective(mask, moveH, (imgW, imgH))
f rame2Warp← warpPerspective( f rame2, H−1, (imgW, imgH))
mask2← warpPerspective(mask2, H−1, (imgW, imgH))
overlap← resultMask ·mask2
result← combine(resultWarp, f rame2Warp ·mask2, overlap)

end if
end while
return result

end procedure
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• Minimizing pixel intensity discrepancies using s-ITK and Elastix as
introduced in section 1.4.2.

• Different feature selection matching methods: SIFT, FAST and ORB
are compared to select the most robust.

• Initially for each frame the projection to the previous frame was cal-
culated. First I looped over all frames and calculated all projections
from f rameN+1 to f rameN. Then I warped f rameN+1 to f rameN, the
result would be warped to f rameN−1, this result to f rameN−2, etc.
However this led to an accumulating error. All the imperfections in
each projection added up and the final result was very distorted.

• I solved this by combine each frame to the complete image. So I
calculate the projection from f rame2 to f rame1 and combine them.
Then I calculate the projection from f rame3 to the result, and so for
each following frame.

• I improved the pipeline by skipping frames that have less then 10
features, as they are often out of focus.

• I tried to further improve by skipping frames that give only a small
translation, the idea was that combining multiple largely overlap-
ping frames would add more noise then data. But this did not im-
prove stability.

• I tried to refine the masking of the background (non skin parts of the
image) based on color detection. I extracted the 10 most occurring
colors and only included areas of the image that where close enough
to these colors (with a euclidean distance threshold). After filtering
I filled the holes in the mask to include skin areas, because the non
skin areas are always on the edge. It did work, but was computa-
tional heavy so added an hour on average of processing time.

• some even with RANSAC and enough features, sometimes the calcu-
lated projection would be way off. To prevent using these projections
the homography matrix is checked. If zoom is more then a factor 1.2
or less then a factor 0.8 I drop the frame.

• from two matched frames select sharpest area of overlap.

• from two matched frames select sharpest area of overlap per patch.

The results of these experiments will be shown and discussed in the chap-
ters Results and Discussion.

24
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2.6 Lesion catalogue

As described in section 1.3 the software Source Extractor will be used for
lesion detection. The steps for building the lesion catalogue are as follows:

1. For each frame mask the none skin elements.

2. Invert the image in all three color channels.

3. Apply Source Extractor background subtraction to remove the skin
from the image.

4. Remove hairs with canny edge detection as they give a falls detec-
tion.

5. Source Extractor object detection in each color channel.

6. Source Extractor object description.

7. Remove overlapping findings from the different channels and keep
the largest.

8. Warp all lesions for every frame to the common reference frame.

9. Remove overlapping lesions and keep the largest again.

With these steps a catalogue of all lesions found on the patients body
part can be build. Each lesion is described by source extractor with char-
acteristics used for describing galaxies for instance among others: flux as
a measurement for brightness and size; x and y coordinates (centre, min
and max); a,b as the major and minor axes, as the found object is approx-
imated to be an ellipse and theta as the angle between the major axis and
y-axis. These characteristics can be used along with thumbnails from one
or multiple frames as shown in figure 2.4.
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Figure 2.4: Figure displaying an example of the lesions found by source extractor
on 1 frame.

26
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Chapter 3
Results

As addressed in section 2.1 the data collected for this thesis is patient data
and as such sensitive. To be able to support the explanations and results
with examples, I have recorded a movie of my own back in the same man-
ner as the actual data was collected. Figures showing body images will be
taken from this example movie. Figure 3.1 shows frames taken from this
movie as to give a clear picture of the material. Every 40 frames a thumb-
nail is shown, with the frame number in the top left. The sequence of
images shows how the camera moved along the body area. Something to
notice is that the white balance can change during recording (for instance
as is visible in the last 4 thumbnails). It is clear that in this example every
frame greatly overlaps with the previous one. This is not the case in all
data points, as mentioned in the list of challenges in section 2.1.

In this chapter I will present the results. First I will present the result
from the comparison of the different feature detection techniques, then I
will evaluate the matching process and consequently the mosaicing pro-
cess. And finally I will elaborate on further improvements made during
the process.

3.1 Feature detection

As explained in section 2.4.1 there are different feature extraction meth-
ods. To compare these methods I have selected three promising algo-
rithms mentioned in literature and available in OpenCV. I have analysed
all movies with each method (SIFT, FAST and ORB). The results are shown
in figure 3.2. The amount of features found differs greatly, SIFT and FAST
can find thousands of features but also just 2. As we are interested in find-
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Figure 3.1: Figure showing a thumbnail for every 40 frames from the movie used
as example material. The frame number is shown in the top left.

ing at least enough features to calculate a good homography between two
overlapping frames, the plots are limited to frames where 200 or less fea-
tures have been found. For how many frames this is the case differs per
method. In each graph the amount of frames incorporated in the plot is
shown in the text box, along with the amount of movies.

The results have been separated per phone type and per body part to be
able to detect differences between these. In each graph the continues lines
represent the density plots and the dashed lines give the mean amount
of features found over the frames in the graph. The density plot is the
amount of features found in each frame, normalized to set the surface be-
low the graph to 1.

28
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3.1 Feature detection 29

Figure 3.2: Density plots showing the amount of features found in each frame for
different body locations and different phones. Only frames where less then 200
features where found are shown, as we are selecting a feature detection method
that finds enough features in frames were features might be hard to detect.
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The ORB graphs always show a peak at 109 features because the method
is limited to detecting 109 features per default, to optimize for computa-
tional speed. The plots and means for movies recorded with the Huawei
phone have a significantly lower mean amount of features found. The
reason for this is that Huawei has a skin smoothing filter build into the
camera to remove lesions from pictures. We were unable to disable this
mechanism and as the project revolves around detecting and labeling le-
sions this phone seems not suitable for data acquisition, movies from the
Huawei phone will be left out further analysis. Something else to notice is
that there is only 1 movie taken with the iPhone for legs, so this graph has
less data then the others and thus a less smooth distribution.

Looking at means in the different plots it stands out that there is no
clear ’best’ method. All methods sometimes have lowest and in other
graphs highest mean. Anytime we do not find at least 4 features in com-
mon between two frames the homography will break, and with exactly 4
there is no outlier detection. This can lead to the wrong homography and
will lead to a distorted result. It does stand out that ORB often has the
highest peak for frames with 0 features, so this method most often cannot
find any features or at least 4.

Figure 3.3: Histograms showing the fraction of frames for each movie with less
then a certain value of features found.

Figure 3.3 shows histograms counting the amount of movies for dif-
ferent fractions of frames with less then a certain value of features found.
For instance the graph to the left shows that around 30 movies have a
fraction between 0 and 0.1 with less then 4 features found for SIFT and
FAST, while ORB has only 15 movies with that same fraction. We see the

30
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amount of movies with this fraction between 0 and 0.1 quickly drops if we
raise the amount of features. To make a correct mosaic with all frames, all
frames would need to have an adequate amount of features. This graph
shows this will be challenging (if not impossible) for the collected data.
The graph clearly shows FAST and SIFT outperform ORB in detecting the
minimum required amount of features.

Figures 3.4 and 3.5 show 2 examples of images and the detected fea-
tures. The features are marked with a circle and a line. For SIFT and ORB
the circle size represents the size of the feature and the line represents the
orientation. The orientation is defined by the axis along which the gradient
is sharpest. The colors of the different features are appointed at random.
It is visible that as soon as clothing with structure appears in view the
amount of features explodes, especially for the FAST method. The figures
with SIFT features demonstrated that SIFT detects features on different
length scales.

Figure 3.4: Example frames with the difference in detected features for the differ-
ent methods (SIFT, FAST and ORB).
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Figure 3.5: Second set of example frames with the difference in detected features
for the different methods (SIFT, FAST and ORB).

3.2 Feature matching

In this section I show the results for feature matching done with both the
SIFT feature detection and description and the ORB detection and descrip-
tion. I have opted to compare SIFT and ORB because they are very differ-
ent. SIFT is optimized for quality at the cost of computation time. While
ORB is designed to run at live camera feeds, it is an implementation of
the same detection algorithm that FAST uses, but slightly enhanced and
optimized for speed. It also comes with it’s own descriptor mechanism
[23].

Graph 3.6 shows the result of feature matching between two sequential
frames. The large peak at zero far exceeds the y-axis, so the value for zero
is given in the text boxes. If less then 9 features were found the amount of
features was set to zero and no homography is calculated. My reason for
choosing 9 as minimum is as follows: to allow for outlier detection more
then half of the features need to be correct. So we chose 7 as a minimum.
Next assume that 80% of the frames overlap then these 7 features need
to appear in the overlap area, which means that both frames would need
7/.8 = 8.75 features evenly spread out.

32
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The plot unfortunately demonstrates that very often we will not be able
to calculate the homography from one frame to the next. An example of a
frame without enough features is shown in 4 in the appendix 5.2 . It shows
that if both the skin is smooth and the camera is out of focus the feature
detection algorithms do not find enough features. In the patient videos the
camera moves closer to the skin regularly, so there are more frames that are
out of focus. This explains the high peak. The graph extends a long way
along the x-axis to a maximum of 7184 (features found in 1 frame), but our
region of interest lies in the frames were features are sparse. So the plot is
limited to 100 features. Two things stand out:

• SIFT finds features more often then ORB, this matches with the find-
ings in section 3.2 and confirms SIFT is a better feature selection
mechanism then ORB for the research question at hand. As such I
will use SIFT for the mosaicing process, results are presented in the
next section.

• In movies recorded with the iPhone 9 or more features are more of-
ten found. This shows that the iPhone camera produces movies in
which features are better detectable. Features are in essence detected
by gradient, so this suggests that the iPhone movies are sharper in
general.

3.3 Mosaicing

From the performed analysis it is evident that not all frames can be used
for the mosaicing process, as for some frames (around 10% on average)
SIFT does not detect enough features and for others not all features can
be matched to the features found in the frames before or afterwards. As
described in paragraph 2.2 I solved this by ignoring frames with less then
9 frames. But between the remaining frames there still were not always
enough matching features between sequential frames. The difficulty of a
linear stitching process (combing frame N to N− 1, and N− 1 with N− 2)
is that a break between frames would cause the and of the process. I cre-
ated a more robust process by looking further for frames with feature that
could be matched. If no homography could be calculated between frame
N and N− 1, we would try again with the homography of N + 1 to N− 1,
and kept trying until we reached N + 20.
If still no projection could be established, we would try between N + 1
and N− 2, and then N + 2 and N− 2, and so forth until eventually N + 50
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Figure 3.6: Graphs showing the amount of times a certain amount of features is
matched. The amount of matched features is on the x-axis. The amount of times
it occurs is on the y-axis.

would be match to N − 50. And if even then no match could be found
or if the homography found for the combination with the highest amount
of matches was incorrect I started a new mosaic with the next frame. Ho-
mographies are tested for unrealistic amount of translation (more then 500
pixels) or to much skewing (more than a factor 2.5).

The result of this process on our example movie is shown in figure
3.7. It shows that from the movie 5 images have been constructed. The
first is a combination of 83 frames, leading into what seems to be proper
reconstruction of the patients shoulder. Then there is a break of apparently
some frames that are to much out of focus. The next constructed images is
the result of 166 combined frames and this picture shows the weakness of
combining each frame to its predecessor. There is no correction for small
errors in the homography and so they can start to add up. In this example
it is visible that the frames start to shear and this increases with each next
frame being add on.

The combination in the bottom right is the last one made before OpenCV
crashes without an exit code or error message. The last frame combined
is the result of a miscalculated homography with to much zoom and rota-
tion. I suspect that to make room for the next frame (which will be even
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more deformed, and thus hugely spread out) the image canvas is increased
by so much that it exceeds the maximum image size that Opencv allows
for.

From these results we can learn 2 things:

1. Combining the N + 1th frame to the Nth frame comes with the dis-
advantage of accumulating calculation errors.

2. When two frames have, in theory, enough features the calculated
homography sometimes still is completely off. In the patient data I
have seen more extreme examples.

Figure 3.7: Results of warping each frame to the reference frame of the previous
and combining all frames into the reference frame of the first.
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3.4 Mosaicing improvements

To avoid the accumulating error we have switched to calculating the ho-
mography between the result image (with all previously combined frames)
and the next frame. This has an additional advantage: if the next frame
overlaps with earlier frames, that information will be in the image and so
can be used for feature matching.

One thing I noticed was that features found in the background cause
deformation. This follows from the theory discussed in 1.4. Homography
projects a plane onto plane in another reference frame. So if the features
used for calculating the projection are not in a single plane the parallax
effect between the features deforms the projection. To prevent this from
happening we created a masking filter. Based on color we selected the
parts of the image that have skin for feature detection and prevent features
from being detected in the background.

As described in section 2.1 not all frames are in focus and often only
parts of the frame are in focus. In the previous approach the next frame
was always added on top, so overwriting all information that was already
in the picture. To correct for out of focus image parts we have calculated
the sharpness of the image in 9 parts as described in section 2.4.2. The
example is shown in figure 2.3. Only these parts that are sharper than the
existing image are added to the mosaic. The parts that are less sharp are
ignored.

In the previous section I showed that a erroneous projected image in-
terrupts the stitching process. To avoid erroneous projected frames from
being added to the result image, I aimed to verify the validity of the calcu-
lated homography. I hypothesised that the matrix giving the final projec-
tion in figure 3.7 will be significantly different from normal projections, as
normally the differences between two frames will be very small.
I have analysed how to recognise incorrect homography matrices and cre-
ated a function to check the matrix and reject it if certain thresholds are
exceeded. To analyse the homographies I have referred back to the differ-
ent projection matrices explained in section 1.4.1. Using these relations I
have calculated for a projection matrix the zoom, angles and the transla-
tion:

H =

x0,0 x0,1 x0,2
x1,0 x1,1 x1,2
x2,0 x2,1 x2,2


• Zoom = (x0,0 ∗ x1,1) + (x0,1 ∗ x0,1)

• Angle1, Angle2 = cos(x0,0/Zoom), cos(x1,1/Zoom)

36
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• Angle3, Angle4 = sin(x1,0/Zoom),−sin(x1,1/Zoom)

• Translation : dx, dy = x0,2, x1,2

If we plot these for every projection we see a smooth trajectory for cor-
rect projections and sudden deviations for errors. As shown in figure 3.8

Figure 3.8: The homography characteristics plotted for every frame in a movie.
The frames are on the X-axis.

From the outliers in the graph we can make safe estimations for toler-
ance values above which homogrpahy matrices should be rejected. After
analysing multiple movies I came to these values:

• Zoom > 0.5 or Zoom < 1.5
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• abs(dx− dxprevious) > 500

• abs(dy− dyprevious) > 500

• fit quality < 0.3

The result of the mosaicing process with all improvements implemented
is shown in figure 3.9. It shows that even with these improvements the
process does not run successful for an entire movie. Even so the result
is improved. Three images show combinations of more then 100 frames
that seem to be reasonable correct. The first (a combination of 267 frames)
looks very well combine and one wonders why the mosaic could not be
build further. I will show what happened in the next frames in the discus-
sion. The first result is followed by a period of images with not enough
features. They result in a lot of dropped frames and some combinations of
a smaller amount of frames, this is the case after each break. Examples of
shorter combinations are shown in the right column of figure 3.9. In gen-
eral around 100 frames are dropped between to successful results. After
some time the algorithm picks up again, in a combination of 85 frames,
that becomes very distorted. Once the image is so distorted that the next
match cannot be made the process breaks again.

3.5 Projection quality

As introduced in section 2.3 we aim to use normalized mutual informa-
tion as a measurement for projection quality. We hope to see that correct
projections score high in mutual information (close to 1) and erroneous
projections low (close to 0). Further more we would expect that if a lot of
features can be matched between frames, the homography calculation is
robust, so the resulting projection should score high.

In figure 3.10 the NMI and RMSE are plotted as functions of the log of
the amount of matched features between frames. The graph is very spread
out and there is no clear relation between the two entities; especially for
the Samsung Galaxy phone. For the iPhone there is a slight correlation, but
it is negative for the NMI and positive for the RMSE. Reversed from what
we expected. So are expectations were incorrect and it is questionable if
the NMI (or RMSE) can be a usefull measurement for projection quality.

In figure 3.11 the graphs for the amount of matches and NMI are plot-
ted for each frame that is added to the mosaic. It shows, for instance for
result 2 and 3, that a normal NMI lies between 0.2 and 0.8. And that values
both below and above are projections gone wrong.
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Figure 3.9: The result of adding improvements to the mosaicing pipeline.



40 Results

Figure 3.10: The normalized mutual information and root mean squared error
plotted versus the log of the amount of matched features between two frames. If
no match between the features could be found, both the NMI and the RMSE were
set to 0.
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Figure 3.11: Mosaic results with graphs showing the NMI and amount of matches
for each frame in the mosaic.
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Chapter 4
Discussion

In this chapter I will reflect on the results presented in chapter 3. I will
analyse the results per step in the mosaicing process. I will start with the
feature detection step where I select the most promising detection algo-
rithm. Then the learnings from feature matching will be evaluated and
finally the mosaicing process will be discussed. I close of with a reflec-
tion on possible options to further improve on the results presented in this
thesis.

4.1 Feature detection

In section 3.1 I have compared different techniques for automated feature
detection and shown that there are large differences in quality and compu-
tation time. By analysing all recorded movies we have seen that with the
techniques found in literature it will be impossible to combine all frames
in the movies into one image.

This might not be needed, as the time between frames is around 33
ms (the cameras record with 30 fps). This means that the frames are very
similar and we can freely discard frames that are to blurred or uniform.
Even so there are moments during the recording process were the camera
is moved quickly and very close to the surface, these moments might cause
a break in the process.

The methods popular in literature (SIFT, FAST and ORB) are compared
and the results shown in figures 3.2 and 3.3. From the results we conclude
that FAST and SIFT are most promising, while ORB under performs. We
select SIFT as detection mechanism because it detects features on different
length scales, evenly spread over the image and because it comes with a

Version of August 2, 2023– Created August 2, 2023 - 19:29

43



44 Discussion

good descriptor. Which means we can use the results for feature match-
ing. FAST is only a detection mechanism and does not have a descriptor
mechanism and no orientation for features as mentioned in [23]. ORB is a
implementation of FAST were orientation of the feature and a descriptor
are added, both optimized to be light in computation time at the cost of
quality. Our analysis show that in our use case we need the rigor of SIFT
and cannot afford to use the faster mechanisms. The choice for SIFT as
most robust is confirmed by papers covering a more elaborate comparison
like Tareen et al. [25] and Karami et al. [23] which both conclude that SIFT
is the most accurate and robust, at the cost of computation time.

4.2 Feature matching

To test different feature matching possibilities the features found with both
SIFT and ORB were used to find the matches between sequential frames.
Figure 3.6 shows the amount of features matched between two frames
both before and after applying Lowe’s ratio, as mentioned in section 2.2.
The graphs show a significant difference in quality between the iPhone
and the Samsung Galaxy. For the Galaxy phone twice as many frames do
not have enough matched features between them compared to the iPhone.
Even so, even for the iPhone with SIFT 6% of frames do not have enough
matched features (versus 27% for the Galaxy). With ORB these num-
bers are even higher: 29% with the iPhone versus 37% with the Samsung
Galaxy. From this we conclude that movies recorded with the iPhone have
higher potential to be mosaiced correctly and that SIFT is the only feature
detection and description technique that has potential to successfully cal-
culate the homography in 94% of frames.

4.3 Mosaicing

In the previous results and by care full visual assessment of the movie ma-
terial (findings listed in section 2.1) we already concluded that creating one
mosaic per movie will be challenging. The first approach we explored is
to calculate the homography from each frame to the previous. By iterative
warping f rameN to the reference frame of f rameN−1, and the combina-
tion to frame f rameN−2, etc. until we reach f rame1 we would combine all
frames into the same reference frame and could have combined them all
in one image.

The result of performing this process on our example movie is shown
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in figure 3.7. As discussed in section 3.3 this approach comes with the
problem of building up errors. Additionally we notice that even though
we check the homography for certain quality norms, still the result image
can become very deformed.

4.4 Experiments to improve mosaicing

We identified several improvements that were listed in section 3.4 and
helped improve the mosaicing proces. Not all experiments improved the
process though. For instance we tried to skip 10 frames each time, this
helped speed up the process and was no problem for parts of the movie
with sharp frames and slow movement. But it would break at the same
points, where frames were out of focus and movement was faster. Plus
there was no guarantee that the 10% of frames that were used were the
sharp images. To avoid breaks in area’s of faster camera movement we cal-
culated the translation and only added frames that were translated more
then 500 pixels. This way we hoped to prevent blurring by blending a lot
of frames and adding significant parts of the image with each merge of
frames. But again, it did not lead to less breaks in the mosaicing process
and also it seems that, if the homography calculation is correct, the blend-
ing of two frames does not add a lot of distortion to the resulting image.

I tried to calculate the mask dynamicaly for each frame (instead of
based on a one time set skin color), by selecting the 10 majority colors for
the frame and adding every pixel that had roughly that color to the image.
For the resulting mask I would fill the holes to come to a complete mask.
This gave rough edges, but further more worked very well. The disadvan-
tage though was computation time. it tripled the processing time for each
movie, which already was significant.

I tried if there was a difference between features found in color or gray
scale images. But the found feature were identical. I also varied the use
of padding. In most online examples i found, images where masked so
that the first and last rows and columns where not used (for instance the
first and last 100 rows/columns). I tried to leave this masking out, as
to have more area to search for features, but this gave lines around the
image where pixel intensity was to low or to high. I think this is the result
of interpolation. When the image is warped the new pixel grid does not
align with the original grid. So pixel intensities have to be interpolated.
For the pixels at the edge of the image no information is present for half of
the surrounding area. OpenCV uses nearest neighbor interpolation. This
will benefit from neighbors at all sides of the pixel. I assume that, given a
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masked area, the neighboring pixels are used for interpolation at the mask
edge. It thus is important to add the padding mask before warping, so it
can be used during the interpolation calculations projection.

4.5 Improved mosaicing

Figure 4.1: 4 examples of dropped frames in the mosaicing process.

The improved process still does not lead to a successful mosaic. As
mentioned in section 3.4 sequences of successful combined frames are fol-
lowed by sequences of dropped frames. For instance the first result in fig-
ure 3.9, combining 267 frames, combines frames 0 until 267 (frame nr 260 is
dropped because of a miscalculated homography). The detected features
in the dropped frames are shown in figure 4.1. They show a sudden drop
in amount of features, which is explained by the fact that the frames after
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Figure 4.2: 2 examples of the good matches for dropped frames during the mo-
saicing process.

frame 267 are slightly out of focus. The frames miss sharpness and this
results in fewer features found.

In figure 4.2 the matched features between the dropped frames and
the mosaic are shown. You can see that for frame 260, from the 309 fea-
tures found only a hand full can be matched to the existing result. This
small amount of features is apparently sensitive to errors and leads to
a miscalculated homography. But this miscalculation is detected by the
quality checks and the frame is dropped. The other example (frame 268)
does match all features to a feature in the result. You see one feature be-
ing matched to multiple features in the result. The fact that Lowe’s ratio
does not prevent these mismatches can be explained by the lack of cor-
rect matches. If the result of the nearest neighbor matching is 2 wrong
matches, the difference between the two matches will not be significant,
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so the matches will not be dropped. The fact that no correct matches can
be found is also explained by the lack of camera focus. The difference
in features found and feature descriptions is to big between the in focus
mosaic and out of focus new frames.

Another thing to notice is that the images where arms or the rounding
at the side of the back are in view are distorted. This is caused by the
fact that at those places the skin area cannot be approximated as a plane.
The homography projections projects a planar surface to another planar
surface. So the calculation of the projection works for surfaces or when
there is a large distance between the camera and the objects in view (as is
the case for astronomy or panorama camera’s). In our use case the camera
is very close to the surface. So if there is curvature (like the side of the
back) or differences in height (like the arms on the side) the homography
projection will distort. If the majority of the features is on the back and
all features on the arm can be considered outliers it’s just the arm that
will be projected wrongly. But if some features are on the arm/curvature
and some on the back the calculation will be based on a plane drawn up
along the matched features and all other points will be (slightly) distorted.
The feature detection mechanism, of course, detects edges. So often the
multitude of features will be found along the side of the back or arm. And
so the chances of this error occurring are significant.

4.6 Projection quality

The results presented in section 3.5 showed no or a negative correlation
between the normalized mutual information and the amount of matches
between frames. This warrants further inspection. We have seen in figure
3.11 not only a low but also a high fit quality might correspond to failed
projections. This might be caused by an empty area of overlap. The NMI
is calculated over the ares of the two images that overlap. If the new frame
is wrongly projected, it might be projected to a place in the reference frame
were no existing image information is. In that case two empty collections
will be compared and in the NMI is 1. This would mean that when the fit
quality is 1 the new frame should be rejected too.

Further more the graph for result 1 shows a declining NMI value, while
we also see that new frames are smaller with each successive frame. As I
have introduced in section 2.3 the NMI is normalized by division with
the product of the entropies of both collections under comparison. This
entropy increases with increasing collection size. This means that the NMI
of a smaller area of overlap will be lower then the NMI of a larger area of
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overlap for projections that are similar in quality. At the same time I have
shown that the frames for result 1 became more and more out of focus. So
it is likely that the declining NMI curve is a combination of both effects.

All and all we could use the NMI values for a safeguard of projection
quality by rejecting all projections where NMI < 0.2 and NMI = 1. But
we cannot state for two different NMI values the higher one corresponds
to a better projection.

4.7 Further improvements

All improvements incorporated thus far have not let to a successful mo-
saicing process. It seems like the challenges posted by the method of data
acquisition might be to big to tackle with the current mosaicing methods.
There are different possibilities to further explore though.

• Sticking to the current path more effort could be invested into ho-
mography matrices checks. By trial and error more sensibility checks
as discussed in 3.3 could be selected. So errors in the projection can
be prevented.
Further more, for frames were SIFT does not detect enough features,
FAST could be implemented as an additional detection mechanism,
with a SURF as a feature descriptor for features detected by FAST.
Another area that needs improvement is the fact that the aproxima-
tion as a surface breaks down for curvature or differences in heigth.
Here the direct method discussed in the introduction 1.4.2 could be
used as a refinement technique. In our analysis the direct method
had to many variables to optimize to work in our use case. But the
method could be used as fine tuning after the initial projection with
SIFT feature detection. The direct method implementation in Elastix
can be configured to take ’non rigid’ projections into account, with
this mechanism not only afine projections are calculated, but also lo-
cal deformations can be found and corrected. So adding this method
as a finetuning step could prevent the distortions in the mosaics. Fi-
nally more flexible blending teechnique could be implemented. For
instance the technique Wu et al. [24] introduced for image blending
with GANs.

• Even so I think a more promising route would be to develop an
app for the recording. In this app the user performing the recording
could get direct feedback. If the camera would move to fast or would
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go out of focus the user could be warned to go back and redo a cer-
tain part of the body. A similar mechanism is already available in the
panorama functions on mobile phones. This app might even use the
mobile phones gyroscope to read the phones movements between
frames and use these as an estimation for the expected homography.

• And finally a completely different approach that will be very inter-
esting to explore is proposed in a paper by Nguyen et al. [30]. They
train a deep convolutional neural network to calculate the homogra-
phy matrix based on the two images using the pixel intensity differ-
ence as the loss function and have spend great effort to be able to do
gradient descent optimization to find the best homography.
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Chapter 5
Conclusions and future work

5.1 Conclusion

The research objective for this thesis as stated in the introduction 1.1 is:

We aim to combine multiple pictures from a movie scanning a
patients back or arm into one common reference frame.

This process of combing pictures is called mosaicing. I started with a lit-
erature review in the introduction (chapter 1) were I explored the steps
needed to build a successful mosaic. These steps are:

1. feature detection

2. feature matching

3. calculating homography

4. warping images

5. image blending

In the chapter Methods (chapter 2) I explained the theory behind the tech-
niques and designed experiments to test whether different techniques are
suitable for the use case at hand. In the chapter Results (chapter 3) I re-
ported the results of the experiments and the further analysis. The results
showed that our aim would be difficult to achieve. I showed that all fea-
ture detection algorithms found zero features in a significant percentage
of frames. From the analysis and from literature I selected SIFT as the best
performing algorithm to use for further analysis. I showed that even the
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best performing algorithm with the telephone with the highest quality of
recording (the iPhone) could not match 6% of frames.

Given the circumstances I have tried various mosaicing methods to
come to an as good as possible result. These results are shown in section
3.3. The first is an intermediate result upon which I have made further
improvements.

Still the best result is not yet a combination of all frames in the movie.
The difficulty of creating one image out of a linear series (a movie) is that
there is no tolerance for holes. If the connection between frames is lost, the
result will be two (or more) images.

In this thesis I have shown that with the current method of data acqui-
sition it is impossible to combine the different frames into one reference
frame. The challenges of a very free form of data acquisition (a mobile
phone camera), a very uniform surface and a surface that cannot be ap-
proximated as a plane give handicaps that are to large for a process in
which a near 100% accuracy is necessary. While not all sequential frames
need to be matched, some can be skipped, enough do need to be linked.
And this link, in our practice, is quickly broken when the camera moves
fast or is very close to the skin.

5.2 Future work

The aim of the STARPeople project is to make early detection of skin can-
cer possible for people at home. To realise this aim there is more work to
be done. In the section 4.7 I have made suggestions for continuing this
research with the current methods. I see a lot of potential options for im-
proving the algorithm I have developed so far. By combining newer tech-
niques and adding more checks and fallback options, it is possible to make
the algorithm more robust and flexible.

Even so, I think the major issues will prolong. In some places the cam-
era loses focus, is to close to the skin and/or moves to fast. This will al-
ways be problematic. There for I would to suggest to develop a mobile
phone app that gives user feedback while recording. This way the patient
can go back to the parts of the skin were the camera lost focus or moved
to much and record these area’s again.
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Appendix 1

Figure 1: Example of feature detection on skin with SIFT.
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Figure 2: Detected features matched with nearest neighbour matching.

Appendix 2
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Figure 3: Application of Lowe’s ratio to filter out good matches.
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Figure 4: Two frames where SIFT did not find enough features to calculate the
projections to the reference frame of other frames.
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