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Abstract

Marginal structural models (MSMs) combined with the method of inverse probability
of treatment weighting (IPTW) are frequently used to estimate the causal effects of
treatment in longitudinal studies. The validity of the IPTW estimator relies heavily on
the positivity assumption, that does not always hold in practice, especially in a longi-
tudinal setting with time-varying treatments and confounding. The aim of this thesis is
hence to investigate and assess the effect of structural positivity violations on the IPTW
estimator in a longitudinal survival setting, where multiple treatments are sequentially
assigned over time and time-dependent confounding is present.

Two simulation approaches to generate longitudinal data from a known survival MSM
under the violation of the positivity assumption are introduced. Specifically, the simula-
tion algorithms proposed by Havercroft and Didelez (2012) [1] and Keogh et al.(2021) [2]
are extended to incorporate positivity violations. To investigate the effect of structural
violations on the performance of the IPTW estimator, several simulation scenarios are
considered by increasing the severity of the violation and varying the sample sizes. Two
performance measures (i.e., bias and mean square error) are used to assess the violation
effect on the accuracy of the IPTW estimator.

Results showed that as the degree of positivity violation intensifies, both the bias and
mean square error of the IPTW estimate for causal parameters tend to increase. Increas-
ing the sample size mitigates the bias and the mean square error of the IPTW estimator
but does not eliminate the violation issues. Indeed, the bias of the IPTW estimator is
composed of two parts: the bias arising from the structural positivity violation and the
bias due to the finite sample bias. Only the second one can be mitigated by increasing
sample size. Furthermore, the performance of the IPTW estimator using simulation
approach II is less sensitive to varying sample size compared to the IPTW estimator of
simulation approach I. This difference is attributed to the different treatment receiving
mechanisms employed by the two simulation procedures.

In conclusion, this study suggests violating the positivity assumption has a detrimental
impact on the accuracy of the IPTW estimator in a longitudinal survival framework.
Therefore, it is imperative for analysts to systematically evaluate the presence of posi-
tivity violations at all time-points when conducting causal analyses using real data.
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Chapter 1

Introduction

Relying on the counterfactual framework, several causal inference approaches for estimat-
ing causal effects in longitudinal studies have been developed. Due to its straightforward
implementation, marginal structural models (MSM) estimated using inverse probability
of treatment weighting method (IPTW) have become a standard tool for investigating
the causal effect of a time-dependent treatment (or exposure) on the clinical outcome of
interest in the presence of time-dependent confouders [3, 4]. This approach is based on
three key assumptions, also named identifiability assumptions: positivity, consistency,
and (conditional) exchangeability [4, 5, 6]. Specifically, positivity is satisfied when, for
any combination of the covariates, there exists a non-null probability of receiving each
possible treatment or being unexposed. However, in clinical research, it is common to en-
counter challenges in obtaining adequate data support to ensure positivity. This can pose
a risk of violating the positivity assumption, leading to substantial bias and increased
variance in the IPTW estimator [7]. In fact, the accuracy of the IPTW estimator relies
heavily on this assumption [8] and, when it is violated, the IPTW estimator is undefined.

There exist two types of positivity violations. Structural violations of positivity cor-
respond to situations in which a subject is prevented to receive a certain treatment,
for example, if certain characteristics of this subject construct a contraindication to a
particular treatment. On the other hand, practical violations of positivity represent sit-
uations in which the allocation of a certain treatment to a given subgroup of subjects
is not observed by chance, even though it is theoretically possible for this subgroup to
receive such treatment. Several simulation studies have been conducted to investigate
the impact of positivity violation on IPTW estimator of casual effect in the point treat-
ment setting. Neugebauer and van der Laan (2005) has shown that both practical and
structural positivity violations can lead to substantial bias in the IPTW estimator in the
point treatment setting [9]. Léger et al. (2022) illustrated that even a near-violation of
the positivity assumption can impact the bias and precision of the IPTW estimator [10].
Petersen et al. (2012) discussed that the sparsity in the data due to positivity violations
may increase bias with or without an increase in the variance of the IPTW estimator
[7].
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The main aim of this thesis is to extend these investigations into a longitudinal sur-
vival context, where multiple treatments are sequentially assigned over time and time-
dependent confounding is present. Assessing the effect of positivity violations on IPTW
estimator in a longitudinal setting is not straightforward. In practice, practical viola-
tions of positivity can readily occur in a setting with multiple time-points. This is due
to the sequential form of the positivity assumption, which requires that the conditional
probability of each potential treatment history remains positive. Consequently, it be-
comes easy to obtain a small conditional probability that spans multiple time-points.
This affects the weights used in IPTW, which are determined by the product of time
point-specific treatment probabilities given the past.

To evaluate the impact of structural positivity violations in longitudinal studies, it is
essential to employ a well-defined simulation procedure. Havercroft and Didelez (2012)
[1] and Keogh et al. (2021) [2] proposed two simulation algorithms to generate longi-
tudinal data from a known MSM for survival outcomes in the presence of time-varying
confounding. By carefully setting up positivity violations whithin these procedures, we
can effectively assess the effect of structural positivity violations on the performance of
the IPTW estimator in a longitudinal survival context. Our simulation study designs
are hence extensions of the approaches by Havercroft and Didelez (2012) [1] and Keogh
et al. (2021) [2] where structural violations of the positivity assumption are intentionally
introduced into the simulation procedures. Several simulation scenarios, i.e., by increas-
ing the severity of the violation and varying the sample sizes, are then investigated to
examine the effect of these violations on the performance of the IPTW estimator per-
forming multiple repetitions. Results for the various scenarios are evaluated using two
metrics: the bias and the mean square error [11]. Furthermore, the various simulation
settings and the special properties of MSM between the two simulation algorithms will
be compared and discussed.

The remainder of this thesis is organised as follows. In Chapter 2, we introduce the
basic notions and the mathematical notation of causal inference and marginal structural
models. In Chapter 3, we illustrate the basic concepts of survival analysis and explain
the related models in the simulation procedures. In Chapter 4, we introduce the idea
of simulation study and provide a general explanation on the simulating mechanisms of
the two simulation algorithms by Havercroft and Didelez (2012) [1] and Keogh et al.
(2021) [2]. In Chapter 5, we describe the violation of positivity assumption setup and
we extend the two simulation algorithms by including violations. Results for the two
extended algorithms under different simulation scenarios are presented in Chapter 6. In
Chapter 7, we concludes this thesis discussing the implications of our study and possible
future extensions.
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Chapter 2

Causal inference

The aim of this chapter is to introduce the basic notions and the mathematical notation of
causal inference and marginal structural models. First, we discuss the concepts of causal
effect, counterfactual outcomes, and identifiability assumptions. Then, we illustrate an
important type of causal diagram called directed acyclic graphs and the concept of
confounding. We end the chapter by introducing marginal structural model estimated
by inverse probability of treatment weighting.

2.1 Causal effect

In the counterfactual framework [12], the cause usually refers to an action, an exposure
or a state. The effect is then a consequence of the defined cause. The causal effect of an
exposure A on an outcome Y is defined as a contrast between what would potentially
happen under competing actions or states (i.e., exposed or unexposed).

To make the causal intuition amenable to mathematical and statistical analysis we now
introduce some notation. Let us consider a dichotomous treatment variable A (for ex-
ample, 1 if treated, 0 if untreated) and a dichotomous outcome variable Y (for example,
1 if death, 0 if survival). Let us define:

• Y a=1 as the outcome variable that would have been observed under the treatment
value a = 1;

• Y a=0 as the outcome variable that would have been observed under the treatment
value a = 0.

The variables Y a=1 and Y a=0 are referred to as potential outcomes or counterfactual
outcomes. The term “potential” is to emphasize that, depending on the treatment that is
received, only one of these two outcomes can actually be observed and the other remains
potential. The term “counterfactual” is to emphasize that these outcomes represent
situations that may not actually occur, which is the counter-to-the-fact situations. In
fact, for each individual there are two possible ways that treatment A could be assigned
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Table 2.1: Potential outcomes for a single subject.

A Y Y a=0 Y a=1

0 0 0 ?
0 1 1 ?
1 0 ? 0
1 1 ? 1

and two possible outcomes Y that can be observed. The resulting four combinations are
shown in Table 2.1 along with the corresponding factual and counterfactual outcomes,
where “?” represents the missing data for the potential outcome that is not observed. In
the following we will refer to Y a to indicate the counterfactual outcome under treatment
A = a.

We can now provide a formal definition of the causal effect of a binary treatment A for
a single subject.

Definition 2.1.1 The binary treatment A has a causal effect on the outcome Y of an
individual if

Y a=1 ̸= Y a=0. (2.1)

We notice that only one counterfactual outcome is observed for each individual. Due to
the unobserved counterfactual, the causal contrast Y a=1 − Y a=0 cannot be individually
evaluated. Nevertheless, in general the interest is directed towards the average causal
effect for a population rather than for a single individual.

Definition 2.1.2 The binary treatment A has an average causal effect in a population
if and only if

E[Y a=1] ̸= E[Y a=0]. (2.2)

Since we are considering the case of dichotomous Y , condition (2.2) can be rewritten as:

P (Y a=1 = 1) ̸= P (Y a=0 = 1). (2.3)

In the following, we refer to P (Y a) as the counterfactual risk of experiencing event Y = 1
under treatment A = a.

2.1.1 Causation versus association

When considering the relationship between treatment and outcome, it is important to
distinguish between association and causation. Causation implies that the treatment
variable causes the direct effect in the outcome. For a binary treatment A and a dichoto-
mous outcome Y , this means that condition (2.3) holds. Statistical association implies
that knowing the value of the treatment variable provides information on the value of the
outcome, but does not necessarily imply that the former causes the latter. We say that
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Figure 2.1: Comparison between causation and association [12] in a population of interest with
binary treatment A and binary outcome Y .

treatment A and outcome Y are associated when P (Y = 1|A = 1) ̸= P (Y = 1|A = 0).
Figure 2.1 depicts the causation-association difference. Causation corresponds to a con-
trast between the pseudo-group had all individuals been treated and the pseudo-group
had all individuals been untreated, whereas association corresponds to a contrast be-
tween two disjoint subsets of the population: the observed treated group and the ob-
served untreated group.

Randomized experiments are considered perfect for establishing causation. In a ran-
domized experiment, study participants are randomly assigned to different treatment
groups, which creates two (or more) comparable groups with similar characteristics,
both observed and unobserved. As a result, causation coincides with association and
effect measures can be consistently estimated despite the missing data. This is not true
for observational studies: when drawing causal inferences from observational data, it is
essential to ensure that causation coincides with association.

2.2 Identifiability assumptions

We need three assumptions to ensure that an observational study can be viewed as a
randomized experiment: (conditional) exchangeability, consistency, and positivity. Un-
der randomized experiment, the missing data occurs by chance. As a result, the measure
effect can be consistently estimated despite the missing data. These three assumptions
are referred to as identifiability assumptions [12].
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Exchangeability means that the risk of death in the treated group would have been
the same as the risk of death in the untreated group had individuals in the treated group
received the treatment given to those in the untreated group. This implies that

P (Y a = 1|A = 1) = P (Y a = 1|A = 0) = P (Y a = 1), (2.4)

which is equivalent to
Y a ⊥⊥ A ∀a. (2.5)

Consistency means that the observed outcome for every treated individual equals the
outcome if individual receive the treatment, and that the observed outcome for every
untreated individual equals the outcome if individual has remained untreated. In other
words

P (Y a = 1|A = a) = P (Y = 1|A = a), (2.6)

which is equivalent to
Y a = Y if A = a. (2.7)

By combining exchangeabability (2.5) and consistency (2.7) assumptions, it results in

P (Y a = 1) = P (Y a = 1|A = a) = P (Y = 1|A = a). (2.8)

This means that under the exchangeability and consistency assumptions, the causal ef-
fect can be estimated via observed values.

We now consider the presence of a prognostic factor L, which was measured before treat-
ment was assigned (for example, 1 if the individual was in critical condition, 0 otherwise).
A randomized experiment where the randomization is conditional on a prognostic factor
L is referred as as the conditionally randomized experiment. In a conditionally random-
ized experiment, randomization probabilities vary among different subsets of subjects
based on the values of prognostic factor L. Within each subset, a marginally random-
ized experiment is assumed to be conducted. Thus, although conditional randomization
does not guarantee marginal exchangeability (2.5), it guarantees conditional exchange-
ability.

Conditional exchangeability holds if and only if

P (Y a = 1|A = 1, L = l) = P (Y a = 1|A = 0, L = l) = P (Y a = 1|L = l) ∀l, (2.9)

which is equivalent to
Y a ⊥⊥ A|L ∀a. (2.10)

Similarly to (2.8), under conditional exchangeability (2.9), we can imply that

P (Y a = 1|L = l) = P (Y = 1|A = a, L = l). (2.11)

In marginal randomized experiments, the probabilities P (A = 1) and P (A = 0) are both
positive by design. In conditional randomized experiments, the conditional probabilities
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P (A = 1|L = l) and P (A = 0|L = l) are also positive by design for all levels of the
variable L that are eligible for the study. Thus the positivity assumption can be defined
as follows.

Positivity means the probability of receiving every value of treatment is greater than
zero, i.e., positive. Positivity holds if and only if

P (A = a|L = l) > 0 (2.12)

for all values l with P (L = l) ̸= 0 in the population of interest.

In observational studies where stratification given by prognostic factor L is present, the
causal effect cannot be computed in subsets L = l in which there are only treated, or
untreated, individuals. Mathematically this can be view expanding (2.11) as follows:

P (Y a = 1|L = l) = P (Y = 1|A = a, L = l) =

=
P (Y = 1, A = a, L = l)

P (A = a, L = l)
=

P (Y = 1, A = a, L = l)

P (A = a | L = l)P (L = l)
(2.13)

that is undefined when P (A = a|L = l) = 0, i.e., if the positivity assumption is violated.

Provided that the three identifiability conditions hold, the marginal counterfactual risk
is obtained in each strata L = l. Then, averaging across all strata defined by L yields
the correct marginal counterfactual risk in the population

P (Y a = 1) =
∑
l

P (Y a = 1|L = l)P (L = l). (2.14)

2.3 Directed acyclic graphs

Causal effects, as explained in the preceding sections, can be effectively represented
using graphs. Causal graphs provide a powerful visual tool for understanding causal
relationships between variables in complex systems. Figure 2.2 shows an example of
causal graphs, also known as directed acyclic graphs (DAGs) [13]: the vertices (nodes)
represent variables and the edges represent direct causal effects. “Directed” means the
edges imply a direction. For example, the arrow pointing from L to A indicates that L
may cause A, but not the other way around. “Acyclic” means there are no cycles, which
indicates that a variable cannot cause itself, either directly or through another variable.

Figure 2.2: Directed Acyclic Graph (DAG).
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A fundamental property of causal DAG is that, conditional on its direct causes, any
variable on the DAG is independent of any other variable that is not its cause. This
assumption, referred to as the causal Markov assumption, implies that in a causal DAG
the common causes of any pair of variables in the graph must be also in the graph. This
is mathematically equivalent to the Markov factorization:

P (L,A, Y ) = P (L)P (A|L)P (Y |A,L).

DAGs offer a distinct advantage by providing a natural framework for simulating data,
as they explicitly encode conditional independencies within the graph structure.

It is also important to note that in Figure 2.2, the association between treatment A
and outcome Y arises from two types of sources: (i) the causal path A −→ Y that
represents the causal effect of treatment A on outcome Y , and (ii) the non-causal path
A ←− L −→ Y that links treatment A and outcome Y through their common cause
L. This non-causal path, which has an arrow pointing into the treatment, is commonly
referred to as “backdoor path”.

2.4 Confounding

The primary limitation in conducting causal analysis through observational studies lies
in the presence of confounding.

Definition 2.4.1 Confounding is the bias that arises when treatment and outcome share
common causes.

In the presence of confounding factors, the association is not causation even if the study
population is arbitrarily large. In general, a confounding variable or confounder is a
variable correlated with both the dependent and independent variables. As in Figure
2.2, the treatment A and the outcome Y share a common cause L. If the common cause
L did not exist, then the only path between treatment and outcome would be A −→ Y
, and thus the entire association between A and Y would be due to the causal effect of
A on Y . But the presence of the common cause L here creates an additional source of
association between the treatment A and the outcome Y , which is referred to as con-
founding for the effect of A on Y , so association is not causation.

The traditional definition of confounder refers as a variable which meets the following
three conditions: (1) it is associated with the treatment, (2) it is associated with the out-
come conditional on the treatment, and (3) it does not lie on a causal pathway between
treatment and outcome. Adjusting for confounders is hence crucial for causal inference.

We can also relate the confounding to exchangeability. If there is no common causes
of treatment and outcome, it is a marginally randomized experiment in which marginal
exchangeability holds and confounding is not expected. Therefore, marginal exchange-
ability is equivalent to no confounding by either measured or unmeasured covariates.
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Furthermore, if there are common causes of both the treatment A and the outcome
variables Y , but a subset L of measured variables (which are non-descendants of treat-
ment A) is sufficient to block all backdoor paths, then conditioning on the covariates
L will block all backdoor paths. Consequently, conditional exchangeability will hold.
For this reason, the conditional exchangeability assumption is also called no unmeasured
confounding.

2.5 Time-dependent treatment and confounding

We now consider a time-dependent dichotomous treatment variable Ak that may change
at every time-point k of the follow-up, where k = 0, 1, 2, ...,K. Let Āk = (A0, A1, ..., Ak)
denote the treatment history as from time 0 to time k. In observational studies, deci-
sions about treatment often depend on prognostic factors which may change over time.
Let Lk be the vector of covariates at time k, whose history at time k is denote by
L̄k = (L0,L1, ...,Lk). In this time-dependent setting, it can be assumed that the treat-
ment Ak at time k depends on the evolution of an time-dependent covariates L̄k, and
DAGs can again be used to represent the interconnections between treatment, prognos-
tic factors and outcome variables.

For example, Figure 2.3 represents a randomized experiment in which treatment Ak at
each time k depends on prior treatment Ak−1 and measured covariate history L̄k. At
each time point k, treatment Ak shares unmeasured causes Uk with the outcome Y ,
which indicates the confounding. However, the backdoor path, for example, of A0 is
A0 ←− L0 ←− U0 −→ Y , which can be blocked by conditioning on L0, which is mea-
sured. Thus, if data on L0 is collected for all individuals, there would be no unmeasured
confounding for the effect of A0. We then say that L0 is the confounder for the effect of
A0.

If we consider all time points and we want to estimate the causal effects on the outcome
Y of treatment strategies, then, at each time k, the covariate history L̄k and treatment
history Āk−1 will be needed to block the backdoor paths between treatment Ak and the
outcome Y to ensure no unmeasured confounding. We then say that the time-dependent
covariates in Lk are time-dependent confounders for the effect of the time-dependent
treatment Ā on outcome Y at several times k in the study.

2.5.1 Sequential identifiability assumptions

In the presence of time-dependent treatment and confounding, the identifiability assump-
tions presented in Section 2.2 must be adapted to a sequential setting. Indeed, causal
inference with time-dependent treatments requires adjusting for the time-dependent co-
variates L̄k to achieve the identifiability assumption at each time point k, i.e., sequential
identifiability assumptions.
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Figure 2.3: DAG for time-dependent treatment and time-dependent confounding.

Sequential conditional exchangeability means that, for any strategy g, the treated
and the untreated at each time k are exchangeable for Y g conditional on prior covariate
history L̄k and any observed treatment history Āk−1 = g(Āk−2, L̄k−1) compatible with
strategy g:

Y g ⊥⊥ Ak|Āk−1 = g(Āk−2, L̄k−1), L̄k (2.15)

for all strategies g and k = 0, 1, ...,K.

In addition to sequential exchangeability, causal inference involving time-dependent
treatments also requires a sequential version of consistency assumption and positivity
assumption.

Sequential consistency requires that for any strategy g:

Y g = Y if Ak = g(Āk−1, L̄k) (2.16)

at each time k.

If for static strategies, the identification of effects of time-varying treatments on Y re-
quires weaker consistency conditions:

Y ā = Y if Ā = ā (2.17)

Sequential positivity requires that

P (Ak = ak|Āk−1 = āk−1, L̄k = l̄k) > 0 (2.18)

for all (āk−1, l̄k) with P (Āk−1 = āk−1, L̄k = l̄k) ̸= 0 in the population of interest.

2.5.2 Causal effects of time-dependent treatment

Let ā = (a0, a1, . . . , aK) denote the complete treatment strategy, where element ak is
the treatment at time k (k = 0, . . . ,K). In this situation, there are many possible
causal effects for the time-dependent treatment, each of them is defined by a contrast of
outcomes under two particular treatment strategies.
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Definition 2.5.1 The average causal effect for a time-dependent treatment is given by

E[Y ā1 ]− E[Y ā2 ] (2.19)

and compares complete treatment strategies ā1 and ā2, with ā1 ̸= ā2.

In case of time-dependent binary treatment, elements ak are 1 if the subject is treated
at time k, or 0 if untreated. An average causal effect commonly considered for that case
is the comparison of always treated strategy (i.e., ak = 1 for all k = 0, . . . ,K) versus
never treated one (i.e., ak = 0 for all k = 0, . . . ,K):

P
(
Y ā1=(1,1,...,1)

)
− P

(
Y ā2=(0,0,...,0)

)
. (2.20)

2.6 Inverse Probability Treatment Weighting

Inverse Probability of Treatment Weighting (IPTW) is a statistical method used in causal
inference to address confounding in observational studies. Under the identifiability as-
sumptions, IPTW allows to create a hypothetical population in which every individual
appears as a treated and as an untreated individual. This hypothetical population is
known as the pseudo-population. By making the treated and untreated groups compara-
ble, the effects of confounders L on treatment A are mitigated in the pseudo-population.

The pseudo-population is created by weighting each individual by the inverse of the
probability of receiving the treatment level received conditional on confounders. These
weights are computed as

WA =
1

f(A|L)
, (2.21)

where f(A|L) is the conditional density of treatment A given covariates L. These weights
are called unstabilized weights and the pseudo-population thus created is twice as large
as the original population under a dichotomous treatment.

Since the mean of WA is expected to be 2, we introduce the stabilized weights whose
mean is expected to be 1. The pseudo-population created by the stabilized weights has
the same size as the original population, and maintains the same estimate of the causal
effect as in the case of the unstabilized weights. Stabilized weights is defined as:

SWA =
f(A)

f(A|L)
, (2.22)

where f(A) is the density of treatment A.

Under the identifiability assumptions, association is causation in both the pseudo-population
and the original population. To create the pseudo-population, we need to calculate the
stabilized weights for each subject i:

swA
i =

f(Ai = a)

f(Ai = a|Li = li)
, (2.23)
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where li is the observed values of covariates Li. However, in the observational studies,
both f(A) and f(A|L) are generally unknown. In case of binary treatment, we can fit a
logistic model (or an equivalent binary regression model) to estimate P (Ai = a|Li = li)
for each individual i:

logitP (Ai = 1|Li = l) = α0 +α1l. (2.24)

To estimate P (Ai = a) we can use a non-parametric estimator based on the empirical
data or fit a saturated logistic model for P (Ai = 1) with only the intercept. Finally, to
create the pseudo-population, the treated individuals with covariates L are weighted by
P̂ (A = 1)/P̂ (A = 1|L), and the untreated by [1− P̂ (A = 1)]/[1− P̂ (A = 1|L)].

2.6.1 IPTW for time-dependent treatment

In the context of time-dependent treatment and confounders, the model cannot possibly
be saturated and the stabilized weights could result in narrower confidence intervals than
unstabilized weights. For this reason,stabilized weights are preferred usually here.

When treatment and confounders are time-dependent, the IPT weights for time-fixed
treatment in Equation (2.22) need to be generalized. For a time-dependent treatment
Ā = (A0, A1, ..., AK) and time-dependent confounders L̄ = (L0,L1, ...,LK) with times
k = 0, 1, ...,K, the stabilized weight is given by:

SW Ā =
K∏
k=0

f(Ak|Āk−1)

f(Ak|Āk−1, L̄k)
, (2.25)

where A−1 is defined to be 0.

When the identifiability conditions hold, these IPT weights create a pseudo-population
ps where the mean of Y ā is identical to that in the actual population. Thus the average
causal effect E[Y ā1 ]−E[Y ā2 ] in Equation (2.19) is equivalent to the average causal effect
in the pseudo-population, i.e., Eps[Y

ā1 ]− Eps[Y
ā2 ].

To estimate the stabilized weights in the case of binary treatment, similarly to before,
we can fit a logistic regression model to estimate the conditional probability of a di-
chotomous treatment P (Ak = 1|Āk−1, L̄k) at each time k, and use it as the estimate of
f(Ak|Āk−1, L̄k). The numerator of the weights can be estimated in a similar way.

2.7 Marginal structural models

Models for the marginal mean of a counterfactual outcome are referred to as marginal
structural models. IPTW is commonly used in conjunction with Marginal Structural
Models (MSMs) to estimate the causal effect of an exposure or treatment on an outcome
of interest, while accounting for (time-dependent) confounders.
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2.7.1 MSM with time-fixed treatment

A linear MSM for the mean outcome under the dichotomous treatment a can be expressed
as:

E[Y a] = γ0 + γ1a. (2.26)

In this model, parameter γ1 is equal to E[Y a=1]−E[Y a=0], which is the average causal
effect of treatment A on outcome Y . To estimate γ1, we can use IPTW to construct a
pseudo-population (see Section 2.6), and then fit a regression model

E[Y |A] = θ0 + θ1A (2.27)

to the pseudo-population data to estimate θ1. The estimate θ̂1 of the associational pa-
rameter in the pseudo-population is also a consistent estimator of the causal effect γ1 in
the original population. In addition, the MSM in Equation (2.26) is saturated since the
number of the unknown parameters (the counterfactual quantities) are the same on the
right and on the left of the equations.

In case of dichotomous outcome Y , we can consider Equation (2.26) as a marginal
structural logistic model like

logit [P (Y a = 1)] = γ0 + γ1a, (2.28)

whose parameters can be estimated from the logistic regression model

logit [P (Y = 1|A)] = θ0 + θ1A (2.29)

fitted on the pseudo-population.

2.7.2 MSM with time-dependent treatment

When treatment is time-dependent, the linear MSM in Equation 2.26 can be rewritten
considering the complete treatment strategy ā as follows:

E[Y ā] = γ0 + g (γ; ā) (2.30)

where g(·) is a function (to be specified) of the complete treatment strategy that combines
information from the time-dependent treatment. For example, by hypothesizing that the
effect of treatment history ā on the mean outcome increases linearly as a function of the
cumulative treatment cum(ā) =

∑K
k=0 ak, MSM in (2.30) can be rewritten as

E[Y ā] = γ0 + γ1cum(ā) (2.31)

for all strategy ā. In this setting, the average causal effect E[Y ā]−E[Y ā=¯̄0] is equal to
γ1cum(ā).
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To estimate the parameters of MSM in Equation (2.31), as before, we can fit a regression
model to the pseudo-population created by IPTW:

E[Y |Ā] = θ0 + θ1cum(Ā), with cum(Ā) =
K∑
k=0

Ak, (2.32)

where Ak is the treatment value at time k. Under the identifiability conditions, the
estimate of θ1 is consistent for the causal parameter γ1.

In case of dichotomous outcome Y , we can consider Equation (2.31) as a marginal
structural logistic model like

logit
[
P (Y ā = 1)

]
= γ0 + γ1cum(ā), (2.33)

whose parameters can be estimated from the logistic regression model

logit
[
P (Y = 1|Ā)

]
= θ0 + θ1cum(Ā) (2.34)

fitted on the pseudo-population.

2.8 Collapsibility

Collapsibility is a property of certain statistical estimators, including those used in
MSMs, where the adjustment for other variables does not affect the estimated asso-
ciation of interest. In the case of collapsible estimators, the conditional and marginal
associations are equal, and thus the marginal measure can be expressed as a weighted
average of the conditional measures. In the context of MSMs, collapsibility refers to
the property that the estimate of the causal effect of a treatment A on an outcome Y
remains unchanged, regardless of whether additional covariates are adjusted for or not,
as long as these additional covariates are not affected by treatment A.

Collapsibility . Let us consider a generalized linear model for the regression of outcome
Y on treatment A and a set of covariates L

g [E(Y |A = a,L = l)] = γ0 + γ1a+ γ2l, (2.35)

and the corresponding regression model omitting L

g [E(Y |A = a)] = γ∗0 + γ∗1a. (2.36)

Model (2.35) is said to be collapsible for γ1 over L if

γ1 = γ∗1 ,

otherwise it is non-collapsible.
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Collapsibility is a desirable property in causal inference as it simplifies the analysis and
interpretation of results. It is particularly useful when dealing with time-dependent
confounders and helps ensure that the estimated causal effects are robust to different
modeling choices. In this thesis, we employ two simulation algorithms [1, 2] to simulate
longitudinal data from desired MSMs, both relying on a conditional model specifica-
tion. The proved collapsibility property of these model specifications ensures that the
simulated data will be consistent with the properties of the desired MSMs.
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Chapter 3

Survival analysis

This chapter will illustrate the basic concepts of survival analysis and discuss the related
models. First, we introduce the concepts of censoring and truncation, and illustrate
two important functions in survival analysis: the survival function and the hazard rate
function. Then, we discuss the non-parametric and parametric (regression) estimation
methods for survival function and hazard function. In the end, the marginal structural
hazard models are described.

3.1 Survival analysis

Survival analysis (or time-to-event analysis) refers to a set of statistical methodologies
for studying the duration of time elapsed from a so-called origin event until the occur-
rence of a well-defined event of interest, i.e., the so-called survival time. Many examples
exists in many research fields. For example, when doing research in the survival time
under cancer, the survival time can be defined as the time from the the diagnosis of
cancer until the death of the patient. Other examples are: the time until a specific event
(e.g., disease progression, relapse, or death) between the treatment and control groups
in clinical trial; the time until unemployment, namely the job duration, in economics;
the time until failure for mechanical system or electronic device in the field of engineering.

It has to be notice that survival time data usually come as a mixture of complete and
incomplete observations. If individuals have experienced the event during period of
observation, their data is complete observations. However, it is common that the event
have not occurred during the period of observation for some subjects, and their real
survival time will be unknown to us when we want to analyze the data. This phenomenon
is called censoring and may arise in different ways.

3.1.1 Censoring and Truncation

Censoring occurs when we only have partial information about an individual’s event
time: we know that the event has happened after or before a specific time point, but
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we do not know the exact event time. Some general reasons may lead to censoring:
the individual did not experience the event during the study; the individual was lost to
follow-up during the study; the individual dropped out of the study.

There are three types of censoring: right censoring, left censoring, and interval censoring.

Definition 3.1.1 Right censoring occurs when an individual has not experienced the
event of interest by the end of the study.

Definition 3.1.2 Left censoring occurs when an individual has already experienced the
event of interest before entering into the study.

Definition 3.1.3 Interval censoring occurs when the exact event time of an individual
is not known but is known to fall within a specific interval.

Another common phenomenon in survival analysis is truncation. Truncation occurs
when the information of individual can only be observed within a certain observational
interval.

Definition 3.1.4 Right truncation occurs when values of random variable can only be
observable when they are smaller than a specific upper bound τR.

Definition 3.1.5 Left truncation occurs when values of random variable can only be
observable when they are larger than a specific lower bound τL.

In this thesis we will deal with right censoring. In particular we will consider the so-called
type I censoring where the event is observed only if it occurs prior to a pre-specified time
point, the censoring time.

3.1.2 Time-to-event outcome notation

We now introduce the notation for the time-to-event outcome considered in this thesis.
For a specific individual under study, we assume that there is a lifetime X and a right
censoring time Cr, and thus the exact lifetime X of the individual will be known if, and
only if, X is less than or equal to Cr. We use T = min(X,Cr) to represent the survival
time, i.e., if the lifetime X is observed within the study, the survival time T is equal to
X, and to Cr if it is censored. In addition, we use δ to indicate whether the lifetime
X corresponds to an event (δ = 1) or is censored (δ = 0). Hence, the time-to-event
outcome can be conveniently represented by pairs of random variables (T, δ).

3.2 Basic functions

For time-to-event data, conducting standard analysis, such as ordinary linear regression,
will not always work, since the censored survival time might underestimate the true but
unknown time to event. The collection of statistical methods specifically applied for
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such time-to-event outcome is called survival analysis. The survival time T is generally
modelled by two related functions, the survival function S(t) and the hazard rate func-
tion λ(t).

The survival function S(t) is used to describe the survival experience of a study cohort
in practice.

Definition 3.2.1 The survival function is defined as the probability of an individual
surviving to time t, which can be formulated as:

S(t) = P (T > t). (3.1)

The survival function can also be expressed using the probability density function of
survival time f(t):

S(t) =

∫ ∞
t

f(x) dx = 1− F (t), (3.2)

where F (t) is the cumulative probability distribution of survival time T . This implies

f(t) = − dS(t)

dt
. (3.3)

The hazard rate function λ(t) is primarily used for specifying a model for survival analysis
to describe the distribution of life time.

Definition 3.2.2 The hazard rate function is defined as the chance an individual of age
t experiences the event in the next instant of time, which can be formulated as:

λ(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
. (3.4)

Definition 3.2.3 The cumulative hazard function at time t corresponding to (3.4) is

Λ(t) =

∫ t

0
λ(x) dx. (3.5)

Additionally, the cumulative hazard function λ(t) and the survival function S(t) can be
transformed to each other via a specific equation. It can be proved that the relationship
between the survival function and the cumulative hazard function is

S(t) = exp{−Λ(t)}, (3.6)

which implies that

f(t) = − dS(t)

dt
= λ(t) · exp{−Λ(t)} = λ(t) · S(t). (3.7)

This means hazard function share the same information as survival function, but from
a different perspective.
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3.3 Non-parametric estimation

This section will illustrate the procedure of how to estimate the survival function S(t)
and the cumulative hazard function Λ(t) using the non-parametric approach.

The Kaplan-Meier estimator [14] is a non-parametric estimator that can be used to
estimate the survival function from censored survival data. Sometimes, it is also called
the product-limit estimator.

Definition 3.3.1 Suppose that the events occur at D distinct times t1 < t2 < · · · < tD.
At time ti there are di events and Yi is the number of individuals who are at risk at time
ti. The Kaplan-Meier estimator is defined as:

Ŝ(t) =

{
1, if t < t1,∏

ti≤t[1−
di
Yi
], if t ≥ t1,

(3.8)

where the quantity di
Yi

provides an estimate of the probability that an individual who
survives to just prior to time ti experiences the event at time ti.

By using the equation (3.6), the Kaplan-Meier estimator can also be used to estimate
the cumulative hazard function Λ(t).

To directly estimate the cumulative hazard function, the Nelson-Aalen estimator [15]
can be used.

Definition 3.3.2 The Nelson-Aalen estimator is defined as:

Λ̂(t) =

{
0, if t < t1,∑

ti≤t
di
Yi
, if t ≥ t1.

(3.9)

3.4 Regression models for the hazard function

Regression models for the hazard function are usually used to describe the relationship
of covariates to a survival or other censored outcome. In the following we will introduce
the semi-parametric Cox proportional hazard model [16] and the Aalen’s additive hazard
model [17].

3.4.1 The Cox proportional hazard model

One of the most widely used models in survival analysis is the Cox proportional hazard
regression model [16].

Definition 3.4.1 Proportional hazards assumption states that the ratio of two hazards
HR = λ2(t)/λ1(t) does not depend on time t, but is constant over time.
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Under the proportional hazards assumption, the Cox model can be used to model the
relationship of covariates to survival or other censored outcome. Suppose that Xi(t) is
the vector of covariates for the i-th individual at time t which may affect the survival
distribution of the survival time T . The Cox model assumes the hazard for individual i
as

λi(t|Xi(t)) = λ0(t) exp{β ·Xi(t)},

where λ0(·) is the baseline hazard function and β is the vector of regression coefficients.
The effect of the covariates is to act multiplicatively on the baseline hazard.

This model is a semi-parametric model, as the baseline hazard does not assume any
shape or parametric form. It is also called the proportional hazards (PH) model as the
hazard ratio for two subjects i and j with time-fixed covariate vectors Xi and Xj

HR =
λi(t)

λj(t)
=

λ0(t) exp{Xiβ}
λ0(t) exp{Xjβ}

=
exp{Xiβ}
exp{Xjβ}

= exp{β · (Xi −Xj)} (3.10)

is constant over time, satisfying the definition.

The estimation of the coefficients β is based on maximizing the logarithm of the partial
likelihood, given by:

L(β) =

D∏
k=1

exp{Xkβ}∑
j∈R(tk)

exp{Xjβ}
, (3.11)

where t1 < t2 < · · · < tD denote the ordered true event times, and R(tk) denotes the
risk set at time tk, namely the set of all individuals who are still under study at a time
just prior to tk.

3.4.2 The Aalen’s additive hazard model

As an alternative to proportional hazard models, in 1989 Aalen proposed the additive
hazard model [17]. For each subject i, let us consider a vector of p time-dependent
covariates Xi(t) = (Xi1(t), · · · , Xip(t)). The hazard in the additive framework is more
directly similar to a linear model and can be expressed as:

λ(t|Xi) = α0(t) + α1(t)Xi1(t) + · · ·+ αp(t)Xip(t), (3.12)

where α0(t) is the baseline hazard corresponding to the hazard rate of an individual with
all covariates identically equal to zero, and αj(t) is the regression function related to the
j-th covariate (j = 1, · · · , p), which can vary over time. The key idea of Aalen’s additive
hazard model is that the hazard rate for an individual i with observed covariates xi(t)
at time t is assumed to be a linear combination of the covariates xij(t), with j = 1, · · · , p.

Parameter estimation is based on least-squares based technique. Instead of directly esti-
mating αj(t), which is difficult in practice, their cumulative version Aj(t) are estimated
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by least-squares technique at first, where

Aj(t) =

∫ t

0
αj(u) du, j = 1, . . . , p.

The crude estimates of αj(t) are given by the slope of the estimate of Aj(t), while the
better estimates of αj(t) can be derived by kernel-smoothing technique [18].

It should be notice that in the Cox model the hazard rate is necessarily non-negative,
while the additive hazard model does not have this natural restriction. The Aalen hazard
rate can occasionally be negative values, especially when the model fit is not very good.
On the other hand, additive hazard model has some appealing properties compared to
Cox model. One main advantage is that the parameters of additive hazard model are
collapsible [19] (see Section 2.8), while hazard ratios are non-collapsible, implying that
the Cox model does not have this property.

3.5 Marginal structural hazard models

Marginal structural hazards model are causal models for the marginal distribution of the
counterfactual variables of survival time T ā, where T ā represents the subject’s time-to-
event had the subject followed the treatment history Ā = ā from the start of follow-up.

Similarly to Section 2.6.1, to model for the marginal distribution of counterfactual vari-
ables T ā for survival time in the presence of time-dependent confounders L̄k, we need
to create a pseudo-population by IPTW using the stabilized weights

swi(t) =

⌊t⌋∏
k=0

P (Ak = ak,i|Āk−1 = āk−1,i)

P (Ak = ak,i|Āk−1 = āk−1,i, L̄k = l̄k,i)
, (3.13)

where swi(t) represents the IPT-weight for subject i at time t, ⌊t⌋ is the largest integer
less than or equal to t, and A−1 is defined to be 0 [20]. In the pseudo-population thus
created, the effects of time-dependent confounding are balanced, so association in hazard
regression models is causation.

3.5.1 MSMs based on Cox PH model

Given treatment history ā, we can define a marginal structural Cox proportional hazard
model as:

λT ā(t) = λ0(t) exp
{
g
(
β̃A; ā⌊t⌋

)}
, (3.14)

where λ0(t) is the baseline hazard function, ā⌊t⌋ denotes treatment pattern up to the
most recent visit prior to time t, g(·) is a function (to be specified) of treatment pattern
ā⌊t⌋, and β̃A is a vector of log hazard ratios.
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For example, we can assume a Cox MSM where the hazard at time t is specified to

depend only on the current level of treatment by setting g
(
β̃A; ā⌊t⌋

)
= β̃A1 · a(t). In

that case, exp{β̃A1} can be interpreted as the causal hazard ratio at any time t had all
subjects been continuously exposed to treatment compared with the hazard rate at time
t had all subjects remained unexposed.

3.5.2 MSMs based on Aalen’s additive model

Given treatment history ā, we can define a marginal structural Aalen’s additive hazard
model as:

λT ā(t) = α̃0(t) + g
(
α̃A(t); ā⌊t⌋

)
(3.15)

where α̃0(t) is the baseline hazard at time t, ā⌊t⌋ denotes treatment pattern up to the
most recent visit prior to time t, g(·) is a function (to be specified) of treatment pattern
ā⌊t⌋, and α̃A is a vector of log hazard ratios whose values can vary over time.

Similar to the Cox MSM example, we can assume an Aalen MSM where the hazard at
time t is specified to depend only on the current level of treatment. Another example is
for the hazard at time t to depend on the history of treatment up to time t through the
main effect terms for treatment at each visit, by using g

(
α̃A(t); ā⌊t⌋

)
=
∑t

j=0 α̃Aj(t)at−j .

3.5.3 Counterfactual survival probability

The Cox MSM provides estimates of the log hazard ratios β̃A, and the Aalen MSM
yields estimates of cumulative regression coefficients

∫ t
0 α̃A(s) ds. However, both of these

hazard-based estimands do not have a direct causal interpretation. To derive a causal
estimand from the estimates obtained through MSM, we can utilize the concepts of
counterfactual survival probability and marginal risk difference.

Definition 3.5.1 The counterfactual survival probability at time t is defined as the sur-
vival probability at time t under the possibly counter-to-fact treatment ā, i.e., Pr(T ā ≥ t).

Specifically, the counterfactual survival probability at time t based on Cox MSM in
(3.14) is given by

Pr(T ā ≥ t) = exp

(
− eg(β̃A;a0)

∫ 1

0
λ0(s) ds− eg(β̃A;ā1)

∫ 2

1
λ0(s) ds (3.16)

− · · · − eg(β̃A;ā⌊t⌋)

∫ t

⌊t⌋
λ0(s) ds

)
,

24



while the counterfactual survival probability at time t based on the Aalen MSM in (3.15)
is given by

Pr(T ā ≥ t) = exp

(
−
∫ t

0
α̃0(s) ds−

∫ 1

0
g(α̃A(s); a0) ds (3.17)

−
∫ 2

1
g(α̃A(s); ā1) ds− · · · −

∫ t

⌊t⌋
g(α̃A(s); ā⌊t⌋) ds

)
.

Definition 3.5.2 The marginal risk difference at time t is defined as the difference in
counterfactual survival probabilities if all individuals had been treated up to that time
compared to when none of the individuals have been treated up to that time, i.e.,

Pr(T ā=1 ≥ t)− Pr(T ā=0 ≥ t).

c
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Chapter 4

Simulating from marginal
structural models

In this chapter, we will briefly recall the idea of simulation study, and present the
simulation mechanisms of the two algorithms introduced to generate longitudinal data
from known Marginal Structural Models (MSMs).

4.1 Introduction to simulation study

In statistical research, mathematical theory is the cornerstone of supporting and eval-
uating statistical methods addressing well-defined problems. However, in longitudinal
studies, the complexity of statistical modelling often hinders the derivation of corre-
sponding mathematical evidence to support the behaviour of the considered statistical
method under certain assumptions. In such cases, a simulation study becomes an appro-
priate approach to evaluate the statistical methods. Simulation studies are useful when
theoretical arguments alone are insufficient to determine the validity of the method in
a real-life application or when violations of the assumptions underlying the available
theory may affect the validity of the results [21].

The key idea behind a simulation study is to generate synthetic data sets with known
properties to investigate how different methods perform when applied to them. By
repeatedly sampling from a specified probability distribution and applying a certain
method or function, a simulated distribution of desired estimator can be created, and
its expected value can be used as the final estimate. Since the true value of the setting
is known, the simulation study enables us to evaluate whether the research methods
recover the known truth, and explore the behavior of the estimator under different con-
ditions, such as varying sample sizes or violations of certain assumptions. For example,
longitudinal data can be generated based on a specific DAG, where the treatment effect
is pre-specified. Then, the performance of MSMs, estimated by Inverse Probability of
Treatment Weighting (IPTW), can be evaluated to assess how accurately they estimate
this known effect.
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When performing simulation studies, it is hence crucial to assess how well the estimators
perform. Two common performance measures used for this purpose are bias and mean
square error [11].

Bias is a measure of the systematic difference between the expected value of an esti-
mator and the true value of the effect. It is used to quantify whether the estimator
targets the true value on average. A biased estimator may consistently overestimate or
underestimate the true value, resulting in inaccurate results. In a simulation study with
B repetitions, the bias of estimator θ̂ can be estimated as:

Bias =
1

B

B∑
b=1

θ̂b − θ (4.1)

Mean square error (MSE) is the sum of the squared bias and variance of estimator θ̂.
It is a way to integrate both measures into one summary performance measure. A low
MSE indicates a high prediction accuracy. In a simulation study with B repetitions, the
mean square error of estimator θ̂ can be estimated as:

MSE =
1

B

B∑
b=1

(θ̂b − θ)2. (4.2)

In the following sections, we will illustrate two simulation algorithms designed to generate
longitudinal data from a given MSM with defined causal parameters. These algorithms
can be used to evaluate the effectiveness of the IPTW estimator in determining the causal
effect of time-varying treatment in longitudinal studies where time-varying confounding
is present.

4.2 Simulating from MSMs

Simulating longitudinal data from MSMs when the data-generating process exhibits
time-dependent confounding is challenging, especially in the context of survival analysis
using proportional hazards or pooled logistic regressions. The data generating process
based on a special DAG relies on the conditional model specification. However, this may
not be compatible with the desired MSM. Noncollapsibility (see Section 2.8) is one of
the factors that can contribute to this issue. For example, the regression in Equation
(2.35) can refer to the conditional model that we sample from, while the regression in
Equation (2.36) can represent the desired MSM.

In survival analysis, the hazard functions or their discrete equivalent based on generalized
linear models, such as pooled logistic regression model, are typically noncollapsible.
This can result in conditional distributions used to draw the simulated data that are
incompatible with the desired properties of the given marginal model. Consequently, it
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is difficult to simulate data from MSMs in the context of survival outcomes. The two
algorithms we present in the following Sections 4.3 and 4.4 address this issue by using
different methods to overcome the noncollapsibility problem and successfully simulate
longitudinal data from given MSMs.

4.3 Simulation algorithm by Havercroft and Didelez (2012)

The first simulation algorithm considered in this thesis was proposed by Havercroft and
Didelez (2012) [1]. Based on the data structure of the Swiss HIV Cohort Study [22], the
authors developed an algorithm to simulate longitudinal data with a survival outcome
from a given discrete-time hazard model. The algorithm is built on a specific DAG that
exhibits time-dependent confounding in the data-generating process.

Emulating the Swiss HIV Cohort Study, this simulation algorithm generates the data of
HIV patients to investigate the effect of highly active antiretroviral therapy (HAART)
versus no treatment on survival, with the only measured time-dependent confounding
by CD4 cell count. The data structure operates in discrete time, considering a follow-up
with t = 0, 1, . . . ,K time points.

Notation: The four processes included in the simulation process are as follows.

• {At} corresponds to the binary treatment indicator process. At = 1 means the
subject is on treatment at time t, otherwise (At = 0) the subject is not on treat-
ment. Once treatment has started for a subject, it continues until failure or end
of the follow-up period.

• {Lt} represents the CD4 cell count in the Swiss HIV Cohort Study. Lt is the
subject’s CD4 count in cells/µL at time t. The normal CD4 count for healthy
adults and teens is between 500 cells/µL to 1200 cells/µL, while a lower value
indicates more severe illness.

• {Yt} is the binary survival outcome process, where Yt = 1 indicates that death has
occurred before time t, while Yt = 0 otherwise.

• {Ut} represents a latent general health process, with Ut ∈ [0, 1]. A value of Ut

close to 0 indicates a poor health status at time t, while a value close to 1 indicates
good health at time t.

In addition, kc denotes the time interval for regular check-ups. Confounder Lt and
treatment At are measured and updated at each check-up point (i.e., every kc-th time
points). On the other hand, Ut and Yt are measured at each time point t, regardless of
the check-up schedule.
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Marginal structural model: The authors proposed a simulation procedure to generate
longitudinal data from the following logistic MSM:

λā
t = logit−1(γ0 + γ1[(1− at)t+ att

∗] + γ2at + γ3at(t− t∗))

= logit−1(γ0 + γ1d1,t + γ2at + γ3d3,t),
(4.3)

where at is the binary treatment at time t, t∗ is the treatment initiation time, d1,t =
min{t, t∗} represents the time elapsed before treatment initiation, and d3,t = max{t −
t∗, 0} represents the time elapsed after treatment initiation. This model structure indi-
cates that the hazard depends on a summary of the treatment history, rather than only
on the current treatment.

Simulation procedure: For each subject i = 1, . . . , n, the simulation procedure with
K discrete time points and kc check-up times is as follows.

• At baseline (time t = 0):

1. Initialize a baseline value for latent general health variable from standard
uniform distribution:

U0,i ∼ Uniform[0, 1].

2. To approximate the sample distribution of baseline CD4 counts in the Swiss
HIV Cohort Study [22], generate a baseline CD4 cell count as a transformation
of U0,i by the inverse cumulative distribution function of Γ(k = 3, θ = 154)
distribution plus an error ϵ0,i ∼ N (0, 20):

L0,i ← F−1Γ(3,154)(U0,i) + ϵ0,i.

3. Draw the binary treatment decision based on

A0,i ∼ Bernoulli(PA0,i), PA0,i = logit−1(θ0 + θ2(L0,i − 500)),

where θ0 and θ2 are the parameters to be defined. Specifically, θ2 should be
negative since a lower value of CD4 cell count L0,i indicates more severe illness
and thus the subject is more likely to receive the treatment. If A0,i = 1, the
treatment initiation time T ∗i is set as 0.

4. Compute the hazard of the subject as

λ0,i = logit−1(γ0 + γ2A0,i),

where γ0 and γ2 correspond to the parameters in MSM (4.3) for time t = 0.
If λ0,i ≥ U0,i, we assume the death has occurred in the interval t ∈ (0, 1] and
set Y1,i ← 1. Otherwise, the subject survived and set Y1,i ← 0.

• If the subject is still alive (Yt,i = 0), for each time point t = 1, 2, 3 · · ·K:
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1. Draw Ut,i ← min{1,max{0, Ut−1,i+N (0, 0.05)}}, representing the value of the
latent general health status at time t that depends on Ut−1,i and is constrained
within [0, 1] .

2. If t is not a check-up time point, treatment and CD4 cell count are not
updated: At,i ← At−1,i and Lt,i ← Lt−1,i. Else,

– if treatment has not started yet,

Lt,i ← max(0, Lt−1,i +N (100(Ut,i − 2), 50)),

where the Gaussian drift term implies that the closer Ut,i is to 0 (i.e., bad
general health condition), the stronger the negative drift in CD4. Then
draw a binary treatment decision based on

At,i ∼ Bernoulli(PAt,i), PAt,i = logit−1(θ0+θ1t+θ2(Lt,i−500)). (4.4)

– Otherwise, if treatment has started at previous check-up, the subject
remains on treatment so At,i ← 1, and

Lt,i ← max(0, Lt−1,i + 150 +N (100(Ut,i − 2), 50))

where the addition of 150 indicates the positive effect of starting a treat-
ment on CD4.

If treatment starts at this check-up, set treatment start time T ∗i ← t.

3. Compute the hazard of subject at time t based on

λt,i = logit−1(γ0 + γ1[(1−At,i)t+At,iT
∗
i ] + γ2At,i + γ3At,i(t− T ∗i )), (4.5)

where γ0, γ1, γ2 and γ3 correspond to the parameters in MSM (4.3).

4. Compute the survival probability up to time t+ 1:

Si(t) =
t∏

j=0

(1− λj,i)

If 1−Si(t) ≥ U0,i, we assume the death has occurred in the interval t ∈ (t, t+1]
and set Yt+1,i ← 1. Otherwise, the subject survived and set Yt+1,i ← 0.

The complete pseudocode of the simulation process is reported in Algorithm 1. Specif-
ically, in the original paper [1], the authors considered the following input parameters
for their simulation studies:

• K = 40: follow-up occurs over 40 time points;

• kc = 5: check-up every 5th time points;
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Algorithm 1: Simulation algorithm by Havercroft and Didelez (2012) [1].

Input:
K: number of time points during follow-up
kc: check-up times
n: number of subjects
(γ0, γ1, γ2, γ3) : parameters of MSM hazard in Equation (4.3)
(θ0, θ1, θ2): parameters of the conditional distributions of treatment in Equation (4.4)
Result: The longitudinal dataset of n subjects

Simulation process:
for subject i ← 1 to n do

U0,i ∼ Uniform[0, 1] (simulate baseline latent health status)
ϵ0,i ∼ N (0, 20)
L0,i ← F−1

Γ(3,154)(U0,i) + ϵ0,i (simulate baseline CD4 cell count)

Draw the baseline binary treatment decision based on Equation (4.4) at time t = 0
A0,i ∼ Bernoulli(logit−1(θ0 + θ2(L0,i − 500)))

if A0,i = 1 then
T ∗
i ← 0 (indicates treatment starts at time point 0)

end
Compute the hazard based on Equation (4.5) at time t = 0
λ0,i = logit−1(γ0 + γ2A0,i)
if λ0,i ≥ U0,i then

Y1,i ← 1 (subject is dead)
else

Y1,i ← 0 (subject is still alive)
end
for t ← 1, . . . ,K do

If subject still alive, continue sampling the data
while Yt,i = 0 do

∆t,i ∼ N (0, 0.05)
Ut,i ← min{1,max{0, Ut−1,i +∆t,i}}
if t mod kc ̸= 0 then

If not at a check-up time point, Lt,i and At,i remain the previous values
Lt,i ← Lt−1,i

At,i ← At−1,i

else
If treatment has started at the last check-up, CD4 count will have a shift of 150
ϵt,i ∼ N (100(Ut,i − 2), 50)
Lt,i ← max{0, Lt−1,i + 150At−kc,i(1−At−kc−1,i) + ϵt,i}
if At−1,i = 0 then

Draw a binary treatment decision based on Equation (4.4)
At,i ∼ Bernoulli(logit−1(θ0 + θ1t+ θ2(Lt,i − 500)))

else
At,i ← 1 (subject remains on treatment once started)

end
if At,i = 1 and At−kc,i = 0 then

T ∗
i ← t (indicates treatment starts at time point t)

end

end
Compute the hazard to generate the survival outcome based on Equation (4.5)
λt,i ←logit−1(γ0 + γ1[(1−At,i)t+At,iT

∗
i ] + γ2At,i + γ3At,i(t− T ∗

i ))
if 1−Πt

j=0(1− λj,i) ≥ U0,i then
Yt+1,i = 1 (subject is dead)

else
Yt+1,i = 0 (subject is still alive)

end

end

end

end
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• The parameters for the conditional distributions of treatment in Equation (4.4)
are

(θ0, θ1, θ2) = (−0.405, 0.0205,−0.00405)

to ensure the treatment assignment probabilities not close to 0 or 1 and calibrate
the logistic function such that P (A0 = 1|L0 = 500) = 0.4, P (A0 = 1|L0 = 400) =
0.5 and P (A10 = 1|L10 = 500) = 0.45;

• The parameters of MSM in Equation (4.3) are

(γ0, γ1, γ2, γ3) = (−3, 0.05,−1.5, 0.1)

to address the nontrivial scenario where initiating treatment results in a one-time
decrease in λā

t and also increases the rate at which λā
t increases over time.

Figure 4.1 displays the DAGs representing the data-generating process for two specific
cases where the follow-up occurs over different time points K (panel a: K = 1; panel
b: K = 2) with check-ups at each time (kc = 1). In particular, the DAG in panel (b)
extends the one in panel (a) by including an additional follow-up time point. Note that
Lt depends on Lt−1, At−1 and At−2 in the case of kc = 1. Following such pattern, the
DAG expands as K increases.

(a) (b)

Figure 4.1: Directed Acyclic Graphs (DAGs) representing the simulation algorithm proposed
by Havercroft and Didelez (2012) [1] in two cases: (a) K = 1, kc = 1; (b) K = 2,
kc = 1. Dot arrowheads represent deterministic relationships and circled nodes
represent latent variables.

This algorithm efficiently samples survival data from the MSM given in Equation (4.3).
The key mechanism lies in how the treatment history Ā and survival outcome history Ȳ
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depend on U0,i, while CD4 cell count Lt,i sufficiently adjusts for confounding. U0,i acts
as a probability threshold against the survival function, calculated from the conditional
hazard, to generate the survival outcome history Ȳ . Under this mechanism, it can be
proved that the conditional distributions that we relies upon to simulate the longitu-
dinal data are compatible with the desired properties of the marginal model, enabling
us to generate samples from the desired MSM. This simulation procedure can also be
considered as one way of matching the left-hand side with the right-hand side in the
following equation:

P (Y a) =
∑
u

P (Y |U = u,A = a)P (U = u), (4.6)

which implies that the conditional model specification here is collapsible.

The main contribution of this algorithm lies in its ability to address the noncollapsibility
of the pooled logistic regression model. This noncollapsibility makes it challenging to
confirm whether the data generated from this conditional model specification is compat-
ible with the desired marginal model. However, by using U0,i as a probability threshold
to determine the survival outcome, the generating procedure in Algorithm 1 can be
proved to simulate from the desired marginal model, and thus the conditional model
specification is collapsible.

4.4 Simulation algorithm by Keogh et al. (2021)

The second simulation algorithm considered in this thesis has been proposed by Keogh
et al. (2021) [2]. The authors proved that if longitudinal data are simulated from a
conditional additive hazard model, then the corresponding marginal hazard model is
also additive and hence can be correctly specified. The algorithm simulates longitudinal
data with a event time outcome from a given conditional hazard model, specifically an
Aalen additive hazard model. It is built on a specific DAG that exhibits time-dependent
confounding in the data-generating process with event times generated in continuous
time.

Compared to Algorithm 1, this simulation algorithm generates longitudinal data in a
general setting, with a single time-dependent continuous confounding representing a
biomarker. Besides, event (death) times are generated in continuous time. The data
structures considers a follow-up with t = 0, 1, . . . , 4 time points, with an administrative
censoring at time 5.

Notation: The three processes included in the simulation process are as follows.

• {At} corresponds to the binary treatment indicator process. At = 1 means the sub-
ject is on treatment at time t, otherwise (At = 0) the subject is not on treatment.
Unlike simulation algorithm 1, there is no requirement for subject to maintain the
treatment once they initiate it.
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• {Lt} denotes a biomarker value process at time t. In this case, a high value of
the biomarker Lt is associated with higher propensity to receive the treatment and
higher hazard. The biomarker value tends to rise over time, but it can be reduced
through treatment.

• {Yt} is the binary survival outcome process, where Yt = 1 indicates that death has
occurred before time t, while Yt = 0 otherwise.

In addition, U is an unmeasured continuous variable representing a subject frailty term.
It does not vary over the simulation process. Lt , At and Yt are updated at each time
point t, which corresponds to the case of kc = 1 in Algorithm 1.

Marginal structural model: Keogh et al. (2021) proved that if the conditional hazard
model is additive, the corresponding MSM is also additive. Furthermore, even if the
conditional hazard model depends only on the current level of treatment, the MSM
depends on the whole treatment history. Based on a conditional additive hazard model
of this form:

λ(t|Ā⌊t⌋, L̄⌊t⌋, U) = α0 + αAA⌊t⌋ + αLL⌊t⌋ + αUU, (4.7)

where Ā⌊t⌋ and L̄⌊t⌋ denote the treatment and time-dependent covariate history up to
the most recent visit prior to time t (i.e., ⌊t⌋ is the largest integer less than t), their
simulation procedure generate data from the following Aalen’s additive MSM:

λT ā(t) = α̃0(t) +

⌊t⌋∑
j=0

α̃Aj(t)a⌊t⌋−j , (4.8)

where T ā denotes the counterfactual event time had an individual followed treatment
regime ā from visit 0 onwards, α̃0(t) corresponds to the baseline hazard and α̃Aj(t) are
the risk coefficients correspond to the treatment with a j-time-point lag.

Simulation procedure: For each subject i = 1, . . . , n, the simulation procedure with
K + 1 as administrative censoring time is as follows.

• At baseline (time t = 0):

1. Initialize the individual frailty term from a normal distribution with mean 0
and standard deviation 0.1:

Ui ∼ N (0, 0.1).

2. Initialize the biomarker value from a normal distribution with mean Ui and
standard deviation 1:

L0,i ∼ N (Ui, 1).

3. Draw a binary treatment decision based on

A0,i ∼ Bernoulli(PA0,i), PA0,i = logit−1(γ0 + γLL0,i). (4.9)
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4. Compute the hazard of the subject, i.e., λi(t = 0|A0,i, L0,i, Ui), based on
Equation (4.7), where α0, αA, αL and αU are the parameters to be defined.

5. Generate event time in the period of (0, 1) as follows:

– Generate V0,i ∼ Uniform(0, 1).

– Calculate ∆T0,i =
−log(V0,i)

λi(t=0|A0,i,L0,i,Ui)
.

– If ∆T0,i < 1, we assume the death has occurred in the interval t ∈ (0, 1),
then the event time is set to be T̃i ← ∆T0,i and survival outcome is set
to be Y1,i ← 1. Else, the subject remains at risk at time t = 1 and set
Y1,i ← 0.

• If the subject is still alive (Yt,i = 0), for each time point t = 1, 2, 3 · · ·K:

1. Update the biomarker value:

Lt,i ∼ N (0.8Lt−1,i −At−1,i + 0.1t+ Ui, 1).

2. Draw a binary treatment decision based on

At,i ∼ Bernoulli(PAt,i), PAt,i = logit−1(γ0 + γAAt−1,i + γLLt,i)). (4.10)

3. Compute the hazard of subject at time t, i.e., λi(t|At,i, Lt,i, Ui), based on
Equation (4.7).

4. Generate event time in the period of [t, t+ 1) as follows:

– Generate Vt,i ∼ Uniform(0, 1).

– Calculate ∆Tt,i =
− log(Vt,i)

λi(t|At,i,Lt,i,Ui)
.

– If ∆Tt,i < 1, we assume the death has occurred in the interval t ∈ [t, t+1),
then the event time is set to be T̃i ← ∆Tt,i + t and survival outcome is
set to be Yt+1,i ← 1. Else, the subject remains at risk at time t+ 1 and
set Yt+1,i ← 0.

• If the subject does not have an event time generated in the period (0,K + 1), the
subject is administratively censored at time t = K + 1.

The complete pseudocode of the simulation process is reported in Algorithm 2. Specif-
ically, in the original paper [2], the authors considered the following input parameters
for their simulation studies:

• K = 4: longitudinal data are generated at 5 visits t = 0, · · · , 4 and administrative
censoring is at time 5;

• The parameters for the conditional distributions of treatment in Equation (4.10)
are

(γ0, γA, γL) = (−2, 1, 0.5);
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Figure 4.2: Directed Acyclic Graphs (DAGs) representing the simulation algorithm proposed
by Keogh et al. (2021) illustrated for a discrete-time setting where Yt = I(T > t)
in the case of K = 5 visits.

• The parameters of conditional hazard model in Equation (4.7) are

(α0, αA, αL, αU ) = (0.7,−0.2, 0.05, 0.05)

to ensure the probability of obtaining a negative hazard is negligible under this
simulation setting.

Figure 4.2 displays the data-generating process for the case with 5 visits. Please note
that this DAG is presented in the discrete-time setting where Yt = I(T̃ > t), with T̃
representing the event time and t being the visit time. However, in the actual generating
process, it will be generalized to a continuous-time setting, meaning that the event times
are generated in continuous time, and the corresponding outcome Yt = I(T̃ > t) can be
observed.

This simulation algorithm provides an effective approach to evaluate causal inference
methods in a broad simulation scenario. Building on the work from Martinussen and
Vansteelandt (2013) [19], which established the relationship between conditional and
marginal additive hazard models in the point-treatment setting, the authors extended
the results to the longitudinal setting with time-dependent confounding. They proved
that using conditional Aalen additive hazard models for simulation also yields an ad-
ditive form for the MSM, allowing for correct specification and fitting using standard
software. In contrast, a MSM derived from a conditional Cox model is no longer a Cox
model and lacks a closed-form expression in general.

This algorithm relying on the conditional Aalen additive hazard models offers signif-
icant advantages. It enables the simulation of longitudinal data with time-dependent
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Algorithm 2: Simulation algorithm by Keogh et al. (2021) [2].

Input:
K: number of time points during follow-up
n: number of subjects
(α0, αA, αL, αU ): parameters of conditional hazard model in Equation (4.7)
(γ0, γA, γL): parameters for the conditional distributions of treatment in Equation (4.10)
Result: The longitudinal dataset of n subjects

Simulation process:
for subject i ← 1 to n do

simulate individual frailty
Ui ∼ N (0, 0.1)
initialize a value for biomarker
L0,i ∼ N (Ui, 1)
draw treatment decision based on Equation (4.9)
A0,i ∼ Bernoulli(logit−1(γ0 + γLL0,i))
compute conditional hazard based on Equation (4.7)
λi(t = 0|A0,i, L0,i, Ui) = α0 + αAA0,i + αLL0,i + αUUi

V0,i ∼ U(0, 1)
∆T0,i = − log(V0,i)/λi(t = 0|A0,i, L0i, Ui)
if ∆T0,i < 1 then

T̃i ← ∆T0,i

Y1,t = 1 (indicates subject i died within the period 0 < t < 1, with event time as T̃i)
else

Y1,t = 0 (indicates subject i remains at risk at next visit time (t = 1))
end
for t ← 1 . . .K do

if no event occurred, continue sampling the data
if T̃i = null then

Lt,i ∼ N (0.8Lt−1,i −At−1,i + 0.1t+ Ui, 1)
draw treatment decision based on Equation (4.10)
At,i ∼ Bernoulli(logit−1(γ0 + γAAt−1,i + γLLt,i))
compute conditional hazard based on Equation (4.7)
λi(t|Āt,i, L̄t,i, Ui) = α0 + αAAt,i + αLLt,i + αUUi

Vt,i ∼ U(0, 1)
∆Tt,i = − log(Vt,i)/λi(t|Ās,i, L̄s,i, Ui)
if ∆Tt,i < 1 then

T̃i ← t+∆Tt,i

Yt+1,i = 1(subject i died within the period [t, t+ 1), with event time as T̃i)
else

Yt+1,i = 0 (subject i remains at risk at next visit time (t+ 1))
end

end

end
if still no event occurred, subject i is administratively censored at time t = K + 1
if T̃i = null then

T̃i = K + 1
end

end
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confounding, where the MSM specifying the marginal hazard is known. This also al-
lows us to evaluate the performance of IPTW estimator under different scenarios. It is
worthy to note that, compared to previous algorithms for simulating longitudinal data
corresponding to specified Cox MSMs [1, 23, 24], this algorithm based on additive haz-
ard models does not require restrictive assumptions about the longitudinal relationships
between variables or the distributions of variables, and can be applied in more general
simulation settings.

However, using additive hazard models also has some drawbacks. It can not inherently
restrict the hazard to be non-negative, which may lead to calculated survival probabilities
greater than one. A feasible solution proposed by Keogh et al. (2021) is to carefully
select a set of proper values for the parameters in the hazard model and the parameters
determining the distribution of observed covariate Lt. This ensure that the probability
of obtaining a negative hazard is small and negligible, mitigating the issue of unrealistic
survival probabilities.

4.5 Comparison of the two simulation algorithms

The two simulation algorithms presented in Sections 4.3 and 4.4 both demonstrate good
performances in simulating longitudinal data with time-dependent confounding from the
desired MSMs. As summarized in Table 4.1, the algorithms differs in several aspects,
including the key mechanism of the data-generating processes, the DAG structures, the
used conditional hazard models, and their flexibility in simulation scenarios.

The main difference between these two algorithms lies in the different structure of their
DAGs, which indicates distinct dependency setting and, consequently, different simulat-
ing procedures. Although the settings in both DAGs are similar, a key difference is that
the DAG of Keogh et al. (2021) includes the direct arrow from Lt to Yt+1, which is
omitted in the DAG of Havercroft and Didelez (2012). This makes the setting of Keogh
et al. (2021) more realistic than the other. In addition, as shown in Figure 4.1, the
algorithm proposed by Havercroft and Didelez (2012) defines Ut as a time-dependent
variable and specifies the dependence of survival outcome Yt on only U0. Conversely,
for the DAG in Figure 4.2, U is constant over time and consistently affects the survival
outcome Yt across time.

Moreover, the mechanisms of data-generating process simulating from the desired MSM
differ. By using U0,i as a probability threshold to determine the survival outcome,
the algorithm by Havercroft and Didelez (2012) successfully simulates longitudinal data
with time-dependent confounding from the desired MSM incorporating a well-defined
conditional pooled logistic hazard model. On the other hand, taking advantage of the
attractive property of Aalen’s additive hazard model, where the derived MSM remains
in additive form and can be correctly specified, the data-generating process presented by
Keogh et al.(2021) simulates longitudinal data with time-dependent confounding from
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Table 4.1: Comparison between the simulation algorithms by Havercroft and Didelez (2012)
and Keogh et al. (2021).

Havercroft and Didelez (2012) Keogh et al. (2021)
DAG structure Omit the direct arrow Include the direct arrow

from Lt to Yt+1 from Lt to Yt+1

Conditional hazard Pooled logistic regression model Aalen’s additive hazard model
model (hazard within (0, 1)) (hazard could be negative)

Key mechanism U0 as a probability threshold in MSM derived from Aalen’s
determining survival outcome additive hazard model is also

additive and can be
correctly specified

Simulation scenarios Limited Versatile

a known MSM specifying the marginal hazard under a conditional model simulation
setting.

According to the generalization of algorithms, the algorithm by Havercroft and Didelez
(2012) aims to generate data that closely match the Swiss HIV Cohort Study [22].
Achieving this requires restrictive assumptions on some variable distributions, limiting
its generalizability to other scenarios. In contrast, the algorithm by Keogh et al. (2021)
does not have these restrictions, and is expected to have better generalization properties,
making it more versatile in simulating data across various settings.

Finally, it is worth noting that the additive hazard model can produce negative hazard
values, whereas the pooled logistic regression model restricts the hazard within the range
of (0, 1). This characteristic of the models should be taken into account while simulating
data and interpreting the results.

39



Chapter 5

Simulating from MSMs under
positivity violation

In this chapter, we will provide an introduction to the violations of positivity assumption,
and describe the approaches used to introduce the positivity violations into the two
simulation Algorithms 1 and 2 presented in Chapter 4. Finally we illustrate the various
simulation scenarios employed to investigate positivity violations.

5.1 Violations of the positivity assumption

When estimating the causal effects of joint treatments over time based on the longitudi-
nal data with time-dependent confounding, directly fitting the standard regression model
to the data is not appropriate due to the presence of confounding. Instead, the most
commonly used estimation approach is to employ marginal structural models (MSMs),
estimated using Inverse Probability of Treatment Weighting (IPTW).

As explained in Section 2.6, IPTW enables us to reweight individuals using time-
dependent weights as in Equation (2.22), to account for the confounding and estimate the
causal effects accurately. By reweighting the data, IPTW aims to balance the treatment
and control groups, effectively creating a pseudo-population in which the distribution of
covariates is independent of treatment assignment. This balancing leads to the unbiased
estimation of the treatment effect by removing the bias introduced by the confounding
variables. However, the use of this method to estimate the causal effect requires three
key identifiability assumptions introduced in Section 2.2 (or in Section 2.5.1 for the time-
dependent sequential setting): consistency, conditional exchangeability and positivity.

Specifically, the (sequential) positivity assumption for time-dependent treatment and
confounder in Equation (2.18), i.e.,

P (At = at|Āt−1 = āt−1, L̄t = l̄t) > 0,

states that, for any combination of values of the observed covariates and the previous
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treatment history, there should be a non-zero probability of receiving any treatment level
at any given time point. In other words, all potential treatment levels must be feasible
for all individuals at each time point, given their observed characteristics and prior
treatment history. Therefore, violating the positivity assumption for certain subsets of
the population means that those subsets have a zero probability of receiving a specific
treatment. In the sequential setting, the stabilized weights used in IPTW are given by:

sw(t) =

⌊t⌋∏
k=0

P (Ak = ak|Āk−1 = āk−1)

P (Ak = ak|Āk−1 = āk−1, L̄k = l̄k)
. (5.1)

Therefore, if certain subsets have a zero probability of receiving a specific sequence of
treatments (i.e., individuals with certain covariate history to receive a given exposure
history of interest are impossible to be observed), the denominator in stabilized weight
(5.1) will become zero and the thus the weights according to the subsets will be undefined.

5.1.1 Types of positivity violations

There are two forms of positivity violation: structural violation and practical violation
[7]. Structural violation occurs when it is impossible for a certain subject to receive
certain treatment. For example, certain patient characteristics may act as contraindi-
cation for specific treatment. In clinical trials, various indicators are used to assess and
monitor the health condition of patients. These indicators serve as valuable measures to
evaluate the efficacy and safety of treatments being tested. If the indicator values of a
patient surpass or fall below a specific threshold, it may indicate a deteriorating health
condition. In such cases, it might be necessary to withhold certain specific treatments to
avoid potential harm to the patients. On the other hand, practical or random violation
refers to the situation where the assignment to specific treatment for patients in a certain
subgroup is theoretically possible but is not observed in the data due to randomness.
Increasing sample size is likely to ameliorate this problem.

In the following sections, our focus is on the structural positivity violations occurring
when there is a threshold τ above or below which (depending on the role of the con-
founder) no subject in specific subgroups is unexposed to the treatment.

5.2 Structural positivity violation by thresholding

We now intentionally introduce the violation of the positivity assumption as the form
of structural violation into the simulation procedures presented in Sections 4.3 and 4.4,
aiming to investigate the impact of such violation on the performance and robustness
of the approach of IPTW. By deliberately creating scenarios where the treatment as-
signment probabilities approach zero or one, we seek to gain insights into the potential
biases and limitations that the IPTW method may encounter in real-world situations.
Through these intentional violations, we can explore the sensitivity of the IPTW ap-
proach to structural positivity violations and understand the potential consequences of
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such violations in practical applications.

Specifically, we extend the Algorithms 1 and 2 proposed by Havercroft and Didelez (2012)
(Section 4.3) and by Keogh et al. (2021) (Section 4.4), respectively, by deterministically
assigning the treatment for specific subgroups of subjects with a confounder above or
below (depending on the role of the confounder) a given threshold value τ .

5.2.1 Simulation approach I

Simulation approach I extends the one proposed by Havercroft and Didelez (2012) (see
Section 4.3; Algorithm 1) by introducing structural positivity violation by thresholding
as we explain in the following.

According to the DAG in Figure 4.1, the data-generating process of Algorithm 1 ensures
that the measured covariate Lt is sufficient to adjust for confounding, and treatment
decision At depends on its previous treatment At−1 and Lt. In this process of emulating
the Swiss HIV Cohort Study [22], Lt represents the subject’s CD4 count in cells/µL at
time t. Briefly, CD4 count is a blood test that measures the number of CD4 cells in
a sample of the subject’s blood [25]. Healthy adults and teens typically have a normal
CD4 count ranging from 500 cells/µL to 1200 cells/µL. It is mostly used to assess the
health of the immune system in patients infected with human immunodeficiency virus
(HIV). HIV attacks and destroys CD4 cells, and a low CD4 count indicates the patient’s
immune system may be weakened, making them susceptible to develop serious infec-
tions from viruses, bacteria, or fungi that typically do not cause problems in healthy
individuals. Hence, a low value of CD4 count Lt implies a more severe illness in the
subject. In this scenario, it is reasonable to start treatment for the subjects when their
measured CD4 count Lt falls below a certain threshold, provided they have not started
it yet (subjects remains on treatment once initiated).

The idea of imposing the violation of positivity assumption in this data-generating pro-
cess is to control a threshold τ for the CD4 count Lt. Below this threshold, subjects are
always exposed to treatment. Since this disease scenario requires that once a subject
started treatment, they remain on treatment until failure or end of follow-up, the struc-
tural positivity violation by thresholding can be specified as follows: if the subject is not
yet on treatment at time t (i.e., At−1 = 0), there should be a structural zero probability
that a subject will remain unexposed when his or her CD4 count Lt falls below or equals
τ , i.e.,

P (At = 1|Lt ≤ τ,At−1 = 0) = 1, and (5.2)

P (At = 0|Lt ≤ τ,At−1 = 0) = 0.

This means that we force the subject to start the treatment when their health condition
is poor (i.e., low CD4 count).
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The complete pseudocode for simulation approach I under the violation of positivity
assumption in Equation (5.2) is reported in Algorithm 3. The pseudocode in purple
highlights the parts where structural positivity violations by thresholding τ is introduced.
In other words, below the threshold exposure is assigned deterministically and above the
threshold exposure is assigned stochastically.

5.2.2 Simulation approach II

Simulation approach II extends the one proposed by Keogh et al. (2021) (see Section
4.4; Algorithm 2) by introducing structural positivity violation by thresholding as we
explain in the following.

According to the DAG shown in Figure 4.2, the simulation process proposed in Algo-
rithm 2 ensures that the measured covariate Lt is sufficient to adjust for confounding,
and treatment decision At depends on its previous treatment At−1 and Lt. In this sce-
nario, the time-dependent confounder Lt represents a biomarker, and higher values of
this biomarker are associated with both a higher hazard and a higher propensity to
receive the treatment.This implies that a high value of the Lt indicates a poor state of
the patient’s health and can be considered a compelling reason to initiate the treatment.
In contrast to the previous case, the strustural positivity violation by thresholding is
imposed in an opposite manner here.

In this simulation process, instead of controlling a threshold for CD4 count below which
subjects are always exposed to treatment, we now control a threshold τ for the biomarker
Lt, above which the subjects are exposed to treatment. In addition, the simulation pro-
cess by Keogh et al. (2021) does not require that the subject should remain on treatment
until failure or end of follow-up once the subject has started treatment. Therefore, the
violation rule in this second scenario is different. Regardless of the subject’s previous
treatment status at time t, there should be a structural zero probability that a subject
will be unexposed when his or her biomarker value Lt is greater than or equal to τ , i.e.,
for all treatment a

P (At = 1|Lt ≥ τ,At−1 = a) = 1, and (5.3)

P (At = 0|Lt ≥ τ,At−1 = a) = 0.

This means that we will force the subject to receive the treatment at time t when their
health condition is poor (i.e., high biomarker value Lt).

The complete pseudocode for simulation approach II under the violation of positivity
assumption in Equation (5.3) is reported in Algorithm 4. The pseudocode in purple
highlights the parts where structural positivity violations by thresholding τ is introduced.
In other words, above the threshold exposure at time t is assigned deterministically, and
below the threshold exposure at time t is assigned stochastically.
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Algorithm 3: Simulation approach I with structural positivity violation by
thresholding τ in Equation (5.2) (shown in purple).

Input:
K: number of time points during follow-up
kc: check-up times
n: number of subjects
τ : the threshold of CD4 cell count Lt to determine the treatment decision mechanism
(γ0, γ1, γ2, γ3) : parameters of MSM hazard in Equation (4.3)
(θ0, θ1, θ2): parameters of the conditional distributions of treatment in Equation (4.4)
Result: The longitudinal dataset of n subjects

Simulation process:
for subject i ← 1 to n do

U0,i ∼ Uniform(0, 1)
ϵ0,i ∼ N (0, 20)
simulate baseline CD4 cell count
L0,i ← F−1

Γ(3,154)
(U0,i) + ϵ0,i

*Force assignment to treatment for CD4 cell count below τ or draw treatment decision based on
Equation (4.4)

if L0,i ≤ τ then
A0,i = 1

else
A0,i ∼ Bernoulli(logit−1(θ0 + θ2(L0,i − 500)))

end
if A0,i = 1 then

T ∗
i ← 0 (indicates treatment starts at time point 0)

end
calculate the hazard based on Equation (4.5)
λ0,i = logit−1(γ0 + γ2A0,i)
if λ0,i ≥ U0,i then

Y1,i ← 1 (subject is dead)
else

Y1,i ← 0 (subject is still alive)
end
for t ← 1, . . . ,K do

if no death occurred, continue sampling the data
while Yt,i = 0 do

∆t,i ∼ N (0, 0.05)
Ut,i ← min{1,max{0, Ut−1,i +∆t,i}}
if t mod kc ̸= 0 then

if not at a check-up time point, Lt,i and At,i remain the previous values
Lt,i ← Lt−1,i

At,i ← At−1,i

else
if treatment starts at the last check-up, CD4 count will have a shift of 150
ϵt,i ∼ N (100(Ut,i − 2), 50)
Lt,i ← max{0, Lt−1,i + 150At−kc,i(1−At−kc−1,i) + ϵt,i}
if At−1,i = 0 then

*Force assignment to treatment for CD4 cell count below τ or draw treatment
decision based on Equation (4.4)

if Lt,i ≤ τ then
At,i = 1

else
At,i ∼ Bernoulli(logit−1(θ0 + θ1t+ θ2(Lt,i − 500)))

end

else
At,i ← 1 (subject remains on treatment once initiated)

end
if At,i = 1 and At−kc,i = 0 then

T ∗
i ← t (indicates treatment starts at time point t)

end

end
compute the hazard to generate the survival outcome based on Equation (4.5)
λt,i ←logit−1(γ0 + γ1[(1−At,i)t+At,iT

∗
i ] + γ2At,i + γ3At,i(t− T ∗

i ))
if 1−Πt

τ=0(1− λτ,i) ≥ U0,i then
Yt+1,i = 1 (subject is dead)

else
Yt+1,i = 0 (subject is still alive)

end

end

end

end
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Algorithm 4: Simulation approach II with structural positivity violation by
thresholding τ in Equation (5.3) (shown in purple).

Input:
K: number of time points during follow-up
n: number of subjects
τ : the threshold of biomarker value Lt to determine the treatment decision mechanism
(α0, αA, αL, αU ) : parameters of conditional hazard model in Equation (4.7)
(γ0, γA, γL): parameters for the conditional distributions of treatment in Equation (4.10)
Result: The longitudinal dataset of n subjects

Simulation process:
for subject i ← 1 to n do

simulate individual frailty
Ui ∼ N (0, 0.1)
initialize a value for biomarker
L0,i ∼ N (Ui, 1)
*Force assignment to treatment for biomarker value above τ or draw treatment decision based on
Equation (4.9)

if L0,i ≥ τ then
A0,i = 1

else
A0,i ∼ Bernoulli(logit−1(γ0 + γLL0,i))

end
compute conditional hazard based on Equation (4.7)
λi(t = 0|A0,i, L0i, Ui) = α0 + αAA0,i + αLL0,i + αU ∗ Ui

V0,i ∼ U(0, 1)

∆T0,i =
−log(V0,i)

λi(t=0|A0,i,L0i,Ui)

if ∆T0,i < 1 then

T̃i ← ∆T0,i

Y1,t = 1 (indicates subject i died within the period 0 < t < 1, with event time as T̃i)
else

Y1,t = 0 (indicates subject i remains at risk at next visit time (t = 1))
end
for t ← 1 . . .K do

if no event occurred, continue sampling the data
if T̃i = null then

Lt,i ∼ N (0.8Lt−1,i −At−1,i + 0.1t+ Ui, 1)
*Force assignment to treatment for biomarker value above τ or draw treatment decision
based on Equation (4.10)

if Lt,i ≥ τ then
At,i = 1

else
At,i ∼ Bernoulli(logit−1(γ0 + γAAt−1,i + γLLt,i))

end
compute conditional hazard based on Equation (4.7)
λi(t|Āt,i, L̄t,i, Ui) = α0 + αAAt,i + αLLt,i + αUUi

Vt,i ∼ U(0, 1)

∆Tt,i =
− log(Vt,i)

λi(t|Ās,i,L̄s,i,Ui)

if ∆Tt,i < 1 then

T̃i ← t+∆Tt,i

Yt+1,i = 1(indicates subject i died within the period [t, t+ 1), with event time as T̃i)

else
Yt+1,i = 0 (indicates subject i remains at risk at next visit time (t+ 1))

end

end

end
if still no event occurred, subject i is administratively censored at time t = K + 1
if T̃i = null then

T̃i = K + 1
end

end
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5.3 Simulation scenarios

Algorithms 3 and 4 enable data simulation in a time-dependent survival context in
situations where the positivity assumption is structurally violated. In this section, we
present an overview of the various scenarios used to investigate positivity violations.
Specifically, we explore various scenarios by controlling different values of thresholds τ
to introduce more or less extreme violations of positivity. Additionally, we examine the
impact of different sample sizes n on the results. Detailed results for each scenario are
presented in Chapter 6.

5.3.1 Scenarios for simulation approach I

In Algorithm 3, the parameter τ controls the threshold of CD4 cell count below which the
subject is deterministically assigned to treatment following Equation (5.2). The normal
CD4 count for healthy adults and teens is between 500 cells/µL to 1200 cells/µL, while
a CD4 count of below 500 cells/µL is considered as a low CD4 count. To explore the
performance of the IPTW estimator under different scenarios with varying scales of
positivity violation, we conduct simulations using different values of the threshold τ ,
namely

τ = 500, 400, 300, 200, 100.

We simulate longitudinal data based on each threshold to explore how the IPTW esti-
mator behaves in different scenarios with varying degrees of positivity violation. Specifi-
cally, a threshold value τ = 100 can be considered as a mild case of positivity violations,
whereas τ = 500 corresponds to a more severe violation, as it indicates a larger propor-
tion of the sampling population being impacted by this structural positivity violation.

Furthermore, we repeat the experiment using different sample sizes:

n = 100, 200, 300, 500, 1000,

to assess the impact of sample size on the performance of the IPTW estimator in the
presence of positivity violation. By exploring the estimator’s behavior under different
sample sizes, we gain insights into how the precision and accuracy of the estimator are
affected in scenarios with varying degrees of positivity violation.

IPTW model

To obtain the IPTW estimator, the MSM in Equation (4.3) (Section 4.3) is fitted to each
simulated dataset using stabilized weights as described in Equation (5.1). As mentioned
in [1], the weight components at time k (i.e., numerator and denominator) are estimated
by employing logistic regression models for the probability of treatment initiation at time
k. In particular, following the approach introduced by [26], the numerator is modelled
as

logit(P (Ak = 1|Āk−1)) = θ0 + θ1k, (5.4)

46



and the denominator as

logit(P (Ak = 1|Āk−1, L̄k)) = θ0 + θ1k + θ2(Lk − 500), (5.5)

under the condition that treatment has not started yet (i.e., Āk−1 = 0) and event has
not yet occurred (i.e., Yk = 0).

5.3.2 Scenarios for simulation approach II

In Algorithm 4, the parameter τ controls the threshold of the biomarker value above
which the subject is deterministically assigned to treatment following Equation (5.3).
Since the biomarker value L used in this context does not have a direct interpretation in
the real world, the choice of the threshold τ relies on the distribution of L in this simu-
lation procedure. By simulating L using Algorithm 2 with 1000 subjects, we obtained a
distribution of L as shown in left panel of Figure 5.1. The according QQ plot shown in
right panel supports that L approximately follows a normal distribution.

Figure 5.1: Left panel: histogram of L sampled by Algorithm 2 with 1000 subjects. Right
panel: QQ-plot of L sampled by Algorithm 2 with 1000 subjects.

To set the thresholds τ , we use the approximated quantiles of the simulated L of order
{0.4, 0.55, 0.65, 0.75, 0.85}, resulting in respective values of

τ = −0.3, 0.3, 0.6, 1.0, 1.5.

These thresholds are then used to simulate the longitudinal data according to the speci-
fied violation rule in Equation (5.3). This allows us to explore how the IPTW estimator
behaves in different scenarios with varying degrees of positivity violation. Specifically,
a value τ = −0.3 can be considered as a more extreme case of positivity violations,
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whereas τ = 1.5 corresponds to a mild violation, as it indicates a smaller proportion of
the sampling population being impacted by the structural positivity violation.

Furthermore, we repeat the experiment using different sample sizes:

n = 100, 200, 300, 500, 1000,

to assess the impact of sample size on the performance of IPTW estimator under different
scenarios of positivity violation.

IPTW model

To obtain the IPTW estimator, the MSM in Equation (4.8) (Section 4.4) is fitted to each
simulated data set using stabilized weights as described in Equation (5.1). As specified
in the original paper [2], the weight components at time k are estimated using logistic
regression models for the probability of being on treatment at time k. In particular,
numerator is modelled as

logit(P (Ak = 1|Āk−1)) = γ0 + γAAk−1, (5.6)

and denominator as

logit(P (Ak = 1|Āk−1, L̄k)) = γ0 + γAAk−1 + γLLk, (5.7)

under the condition that event has not occurred yet (i.e., T ≥ k).
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Chapter 6

Results

In this chapter, we will provide a detailed explanation of the simulation results, focusing
on bias, MSE and counterfactual survival probabilities. These results will be presented
in two contexts: (1) under the violation scenarios outlined in Section 5.3.1, using data
generated through the simulation approach I in Algorithm 3, and (2) under the viola-
tion scenarios outlined in Section 5.3.2, using data generated thorugh the simulation
approach II as in Algorithm 4.

Statistical analyses have been performed in the R software environment [27]. The code to
reproduce the simulation studies is reported here: https://github.com/MillarHuang/
Thesis-project-simulation-.git.

6.1 Simulation studies

The objective is to assess the effectiveness of Inverse Probability of Treatment Weight-
ing (IPTW) under the different scenarios presented in Section 5.3. For each simulation
approach, we conducted B = 100 replications encompassing various combinations of
sample sizes and threshold values. As performance measures, we focused on bias in
Equation (4.1) and mean square error (MSE) in Equation (4.2) introduced in Section
4.1.

Bias serves as a measure for assessing the average deviation of the IPTW estimator from
the true value. It provides insights into whether the estimator consistently overestimates
or underestimates the actual true value. On the other hand, MSE serves as an indicator
of the precision of the IPTW estimator. It quantifies the overall accuracy of the estimator
by combining the squared bias and the variance of the estimator. Thus, MSE acts as a
comprehensive performance measure that summarizes both bias and variance.
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6.2 Results of simulation approach I

Below, we present the results of our simulation study based on simulation approach I
aimed at assessing the efficacy of the IPTW-estimator in estimating MSMs within a
time-dependent framework when the positivity assumption is imposed. The Algorithm
3 discussed in Section 5.2.1 is employed to generate data, enabling us to investigate the
scenarios detailed in Section 5.3.1. Moreover, we adopted the input parameter values
from the original paper by Havercroft and Didelez (2012), as outlined in Section 4.3.

6.2.1 Bias and MSE

The logistic MSM in Equation (4.3) used in simulation approach I presents four param-
eters to be estimated: γ0 that is the baseline intercept, γ1 related to the time elapsed
before treatment initiation, γ2 related to the current treatment value, and γ3 related
to the time elapsed after treatment initiation. Therefore, we focus our attention on γ2
because it is the parameter most directly related to the effect of treatment.

Table 6.1 shows the average bias for γ2 estimates under the simulation scenarios presented
in Section 5.3.1. It can be observed that for a given sample size n, as the threshold τ
increases (i.e., indicating a more severe violation of the positivity assumption), the IPTW
estimate of γ2 demonstrates an increasing positive bias tendency. This suggests that the
treatment effect becomes less effective when the positivity assumption is more severely
violated. A plausible explanation for this observation is that as τ increases, individuals
with CD4 counts below τ are compelled to initiate the treatment. Consequently, more
patients with lower CD4 counts, which typically correspond to poorer health conditions,
are included in the treatment group. This particular group of patients is more likely
to experience shorter survival times compared to the others. Therefore, including such
patients in the treatment group due to positivity violation can lead to an underestimation
of the treatment’s effectiveness. Furthermore, it is noteworthy that as the sample size n
increases, the bias of the IPTW estimator grows at a slower rate with increasing violation
(i.e., larger values of τ). This behavior aligns with expectations, as larger sample sizes
can partially mitigate the bias to some extent by minimizing finite sample bias.

Table 6.1: Bias of γ2 estimates produced by IPTW method under different scenarios.

Threshold τ

Sample size n 100 200 300 400 500

100 0.011 0.781 7.245 8.977 9.097
200 0.069 0.786 3.933 5.480 7.708
300 0.094 0.759 3.106 4.519 6.463
500 0.085 0.787 2.670 4.175 5.369
1000 0.127 0.848 2.564 3.260 3.428
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Table 6.2: MSE of γ2 estimates produced by IPTW method under different scenarios.

Threshold τ

Sample size n 100 200 300 400 500

100 0.164 0.837 93.516 116.440 127.152
200 0.067 0.741 28.987 50.351 86.313
300 0.065 0.650 13.102 32.340 64.741
500 0.039 0.656 7.639 24.922 46.244
1000 0.031 0.755 6.745 11.699 16.393

Table 6.2 reports the MSE for γ2 estimates under the simulation scenarios presented
in Section 5.3.1. MSE shows a similar trend as bias: under a certain sample size, the
MSE of IPTW estimate of γ2 increases as the degree of violation intensifies (i.e., higher
τ). Moreover, as the sample size increases, the rate at which the MSE of the IPTW
estimate of γ2 grows in response to the degree of violation decreases. This suggests
that in scenarios where the positivity assumption is violated, the precision of the IPTW
estimator could be compromised. However, increasing the sample size has the potential
to mitigate the detrimental effect caused by the violation.

The overall insight of bias and MSE for all causal parameters under different scenarios
are given in Figure 6.1 and Figure 6.2, respectively. In both figures, each panel refers
to a different MSM parameter (γ0, γ1, γ2, γ3) with different lines/colours representing
different sample sizes n ∈ {100, 200, 300, 500, 1000}. The general pattern observed in
absolute bias and MSE of γ0, γ1, and γ3 aligns with that of γ2. However, positivity
violations have a more significant impact on the magnitude of bias/MSE for γ2, i.e., the
parameter most directly related to the effect of exposure, and the intercept γ0.

6.2.2 Counterfactual survival curves for always and never treated

Based on the observation in Section 6.2.1, it is evident that the violation of positivity
introduces bias into the estimated causal parameters. Consequently, this bias can impact
the counterfactual survival curves computed using these estimated causal parameters.
To assess the influence of positivity violations on the counterfactual survival curves
and enable a more meaningful comparison with the results in Section 6.3.2 later on,
we proceed to estimate the counterfactual survival probabilities for the following two
treatment regimes:
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Figure 6.1: Bias of IPTW estimator under different scenarios presented in Section 5.2.1 using
data generated from simulation approach I in Algorithm 3. Each panel refers to a
different MSM parameter (γ0, γ1, γ2, γ3). Different lines and colours refer to sample
sizes n ∈ {100, 200, 300, 500, 1000}.
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Figure 6.2: MSE of IPTW estimator under different scenarios presented in Section 5.3.1 using
data generated from simulation approach I in Algorithm 3. Each panel refers to
a different MSM parameter (γ0, γ1, γ2, γ3). Different lines and colours refer to
different sample sizes n ∈ {100, 200, 300, 500, 1000}.
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• always treated with ā = (1, 1, . . . , 1) = 1:

Pr(T ā=1 ≥ t) =
∏
x≤t

[1− λ(x)] =
∏
x≤t

[
1−

(
logit−1(γ0 + γ1d1,x + γ2ax + γ3d3,x)

)]
=
∏
x≤t

[1−
(
logit−1(γ0 + γ2 + γ3x)

)
], t = 1, . . . , 40;

(6.1)

• never treated with ā = (0, 0, . . . , 0) = 0:

Pr(T ā=0 ≥ t) =
∏
x≤t

[1− λ(x)]

=
∏
x≤t

[
1−

(
logit−1(γ0 + γ1d1,x + γ2ax + γ3d3,x)

)]
=
∏
x≤t

[1−
(
logit−1(γ0 + γ1x)

)
], t = 1, . . . , 40;

(6.2)

Figure 6.3 displays the IPTW mean estimates of the counterfactual survival probabil-
ities of always treated (solid lines) and never treated (dashed lines) under the differ-
ent scenarios presented in Section 5.3.1. Each panel refers to a different sample size
n ∈ {100, 200, 300, 500, 1000} with different lines/colours representing various thresh-
olds τ ∈ {100, 200, 300, 400, 500}. The black lines represent the IPTW mean estimates
of counterfactual survival probabilities in the absence of positivity violations. It is
evident that as the extent of positivity violation increases (i.e., higher threshold τ),
the estimated counterfactual survival curves deviate further from the true counterfac-
tual survival curves for both treatment regimes. However, it is worth noting that the
counterfactual survival curves of never treated show a greater deviation compared to
those of always treated. Furthermore, in the presence of severe positivity violation (i.e.,
τ = 300, 400, 500), the rate of decline in survival probabilities over time is more gradual
for the never treated group compared to the always treated group. This observation
can be attributed to the parameter settings detailed in Section 4.3 and the performance
characteristics of the IPTW estimator in the presence of positivity violations as shown
in Figure 6.1. Based on Equations (6.1) and (6.2), the estimated counterfactual survival
probabilities of always treated primarily depend on the values of γ2 and γ3 as time pro-
gresses, while the estimated counterfactual survival probabilities of never treated mainly
depends on the values of γ1 over time. As depicted in Figure 6.1, when the positivity
violation become more severe, the estimated γ1 demonstrates a greater negative bias,
whereas the estimated γ2 and γ3 both exhibit an greater positive bias. Consequently,
it’s expected that the survival probabilities of never treated will exhibit a slower rate of
decline over time compared to those of always treated. Furthermore, with larger sample
sizes, the survival curves become more distinct across varying thresholds τ , showing a
more evident impact of positivity violations on the estimated survival probabilities.
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Figure 6.3: IPTW mean estimates of the counterfactual survival probabilities of always treated
(solid lines) and never treated (dashed lines) under the different scenarios presented
in Section 5.3.1 using data generated from simulation approach I in Algorithm 3.
Each panel refers to a different sample size n ∈ {100, 200, 300, 500, 1000}. Different
lines and colours refer to different thresholds τ ∈ {100, 200, 300, 400, 500}.

6.3 Results of simulation approach II

Below, we present the results of our simulation study based on simulation approach II
aimed at assessing the efficacy of the IPTW-estimator in estimating MSMs within a
time-dependent framework when the positivity assumption is imposed. The Algorithm
4 discussed in Section 5.2.2 is employed to generate data, enabling us to investigate the
scenarios detailed in Section 5.3.2. Moreover, we adopted the input parameter values
from the original paper by Keogh et al. (2021), as outlined in Section 4.4.
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6.3.1 Bias and MSE

Contrary to proportional hazard model or logistic hazard model where the risk coeffi-
cients are constant, the Aalen’s additive hazard MSM in Equation (4.8) presents risk
coefficients that are functions of time. This indicates that the effect of a covariate may
vary over time. In this case, the estimands of interest are the cumulative coefficients

C0(t) =

∫ t

0
α̃0(s)ds and CAj(t) =

∫ t

0
α̃Aj(s)ds with j = 0, 1, 2, 3, 4.

In particular, the longitudinal data are generated for a total of 5 visits with adminis-
trative censoring at time 5. Therefore, the cumulative coefficients are estimated at time
points t = 1, 2, 3, 4, 5 to evaluate the performances. In addition, interpreting these cu-
mulative coefficients is difficult, and to achieve a direct causal interpretation they have
to be translated into a more interpretable causal estimand, such as the counterfactual
survival probability (see Section 6.3.2 below). To be comparable with γ2 in the MSM of
simulation approach I, the cumulative estimand of main interest here is

CA0(t) =

∫ t

0
α̃A0(s)ds,

where α̃A0(t) represents the coefficient related to the current treatment at time t.

The results of ĈA0(t) from the simulation study are shown in Table 6.3 and Figure 6.4
(where each panel refers to a different time-point t with different lines/colours repre-
senting the various sample sizes n). In contrast to the previous simulation study, the
violation of the positivity assumption here arises from enforcing treatment on subjects
whose biomarker value Lt exceeds the threshold τ . The smaller the threshold τ is, the
more severe is the positivity violation. Based on these results, several observations can
be made. First, for a given sample size n and time t, the magnitude of bias in the
IPTW estimate of CA0(t) tends to slightly increase as the threshold τ decreases, due to
the more severe violation. This trend becomes more pronounced for later time points t,
as CA0(t) represents cumulative coefficients that accumulate bias information over the
entire time interval [0, t]. Moreover, with increasing sample size n, the IPTW estimate
of CA0(t) generally exhibits reduced fluctuation across different τ values, particularly for
a later time point t.

As shown in Table 6.4 and Figure 6.5 (where each panel refers to a time-points t with
different lines/colours representing the various sample sizes n), the MSE of the IPTW
estimate for CA0(t) tends to slightly increase as the degree of violation intensifies (i.e.,
with a smaller value of τ) and as time elapses. This trend becomes more pronounced
with a larger sample size. Furthermore, as the sample size increases, the MSE of the
IPTW estimate for CA0(t) decreases. These results suggest that when the positivity
assumption is more severely violated, the IPTW estimators exhibit higher bias. How-
ever, increasing the sample size has the potential to reduce the variance of the IPTW
estimator and mitigate the scale of bias associated with the violation effect.
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Table 6.3: Bias of CA0(t) estimates produced by IPTW method under the different scenarios
presented in Section 5.3.2 using data generated from the simulation approach II in
Algorithm 4.

Threshold τ

Time t -0.3 0.3 0.6 1 1.5

n = 100
1 0.034 0.022 -0.038 -0.048 -0.028
2 0.040 0.120 0.037 -0.111 -0.033
3 0.039 0.230 -0.002 -0.037 -0.078
4 0.010 0.245 0.020 0.035 -0.021
5 0.234 0.377 0.177 0.222 0.175

n = 200
1 0.048 0.073 0.051 0.040 -0.021
2 0.026 0.087 0.018 0.041 -0.092
3 0.038 0.112 0.066 0.050 -0.116
4 0.104 0.125 0.183 0.118 -0.023
5 0.271 0.235 0.260 0.235 0.130

n = 300
1 0.041 0.015 -0.039 -0.001 -0.029
2 0.074 0.149 -0.062 -0.004 -0.066
3 0.131 0.145 -0.061 -0.006 -0.024
4 0.185 0.235 -0.041 0.057 0.023
5 0.179 0.246 -0.040 0.217 0.069

n = 500
1 0.063 -0.044 -0.048 0.027 -0.022
2 -0.011 -0.054 -0.053 -0.049 -0.038
3 0.033 -0.054 0.016 -0.028 -0.050
4 0.066 0.043 -0.027 -0.051 -0.013
5 0.127 0.198 -0.037 0.017 0.094

n = 1000
1 -0.060 -0.037 -0.008 -0.042 0.011
2 -0.084 -0.043 -0.005 -0.086 -0.011
3 -0.098 -0.076 -0.045 -0.068 -0.010
4 -0.026 -0.221 -0.036 -0.030 0.006
5 0.091 -0.166 0.129 0.012 0.110
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Figure 6.4: Bias of IPTW estimator of CA0(t) under the different scenarios presented in Section
5.3.2 using data generated from simulation approach II in Algorithm 4. Each panel
refers to a different time-point t ∈ {1, 2, 3, 4, 5}. Different lines and colours refer to
different sample sizes n ∈ {100, 200, 300, 500, 1000}.

Figures displaying the bias and MSE for all the cumulative coefficients C0(t) and CAj(t)
(for j = 0, . . . , 4 and t = 1, . . . , 5) under the different scenarios are provided in Ap-
pendixes A.1.1 and A.1.2, respectively. Overall, the IPTW estimates of cumulative
coefficients exhibit a similar pattern to that of CA0(t) in terms of MSE. However, the
pattern observed in the bias varies across different cumulative coefficients. This vari-
ability could be attributed to the randomness inherent in the generated data and the
specific property of the Aalen’s additive hazard model.
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Table 6.4: MSE of CA0(t) estimates produced by IPTW method under the different scenarios
presented in Section 5.3.2 using data generated from simulation approach II in Al-
gorithm 4.

Threshold τ

Time t -0.3 0.3 0.6 1 1.5

n = 100
1 0.114 0.164 0.106 0.120 0.101
2 0.453 0.428 0.372 0.271 0.268
3 0.830 0.888 0.616 0.546 0.664
4 1.287 1.242 1.167 0.962 1.310
5 1.857 1.671 1.823 1.312 1.581

n = 200
1 0.090 0.143 0.136 0.111 0.063
2 0.321 0.346 0.352 0.340 0.189
3 0.804 0.546 0.703 0.526 0.400
4 1.227 0.989 1.096 0.899 0.916
5 1.941 1.364 1.755 1.483 1.185

n = 300
1 0.116 0.100 0.076 0.078 0.038
2 0.357 0.359 0.253 0.199 0.152
3 0.645 0.716 0.466 0.430 0.327
4 0.872 0.997 0.693 0.676 0.532
5 1.185 1.306 1.183 1.184 1.067

n = 500
1 0.100 0.085 0.084 0.062 0.027
2 0.319 0.206 0.260 0.175 0.090
3 0.614 0.562 0.608 0.323 0.208
4 1.091 0.781 0.862 0.568 0.417
5 1.667 1.258 1.226 0.852 0.689

n = 1000
1 0.067 0.069 0.045 0.033 0.017
2 0.338 0.218 0.214 0.101 0.047
3 0.634 0.449 0.459 0.293 0.138
4 0.914 0.873 0.726 0.548 0.336
5 1.360 0.956 0.985 0.797 0.563
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Figure 6.5: MSE of IPTW estimator of
∫ t

0
α̃A0(s)ds under the different scenarios presented in

Section 5.3.2 using data generated from simulation approach II in Algorithm 4.
Each panel refers to a different time-point t ∈ {1, 2, 3, 4, 5}. Different lines and
colours refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.

6.3.2 Counterfactual survival curves for always and never treated

As mentioned before, interpreting the cumulative coefficients C0(t) and CAj(t) is chal-
lenging and to achieve a more direct causal interpretation they need to be translated into
more interpretable causal estimands. To this purpose, we consider the counterfactual
survival probabilities in Equation (3.17) (see Section 3.5.3) for two treatment regimes:
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• always treated with ā = (1, 1, . . . , 1) = 1:

Pr(T ā=1 ≥ t) = exp{−Λ(t)} (6.3)

= exp

−
∫ t

0

α̃0(x) +

⌊x⌋∑
j=0

α̃Aj(x)

 dx

 , t = 1, . . . , 5;

• never treated with ā = (0, 0, . . . , 0) = 0:

Pr(T ā=0 ≥ t) = exp{−Λ(t)} = exp

{
−
∫ t

0
α̃0(x) dx

}
, t = 1, . . . , 5. (6.4)

Estimates of Equation (6.3) and (6.4) can then be used to obtain the marginal risk dif-
ference between these two regimes at time t, i.e., Pr(T ā=1 ≥ t)− Pr(T ā=0 ≥ t).

Figure 6.6 shows the bias of the IPTW estimates of counterfactual survival probabilities
for both regimes under the different scenarios. Each panel refers to a different time-point
t with different lines/colours representing the various sample sizes n. It is evident that
the IPTW estimate of survival probabilities for the always treated regime (solid lines)
tends to exhibit a larger bias compared to that of the never treated regime (dashed lines).
This can be attributed to the inclusion of both the current treatment and all the past
treatments in the hazard of the always treated regime, thereby introducing additional
bias and variability to the estimated survival probabilities. Moreover, the bias in the
estimated survival probabilities is approximately inversely proportional to the sample
size (i.e., proportional to 1/n). Consequently, as the sample size increases, the IPTW
estimates of survival probabilities for either regime generally exhibits a reduction in bias.

Figure 6.7 illustrates the MSE of the IPTW estimates of counterfactual survival proba-
bilities for both treatment regimes under the different scenarios. Each panel refers to a
different time-point t with different lines/colours representing the various sample sizes
n. It can be observed that when the sample size is small (e.g., n = 100), the MSE can
present a significant magnitude. This is primarily due to the fact that the MSE is the
sum of the variance and the square of the bias. As mentioned earlier, the bias of the
IPTW estimate of survival probabilities is approximately inversely proportional to the
sample size (1/n). Therefore, when the sample size decreases, the bias can increase,
resulting in a even higher MSE.

Figure 6.8 displays the IPTW mean estimates of counterfactual survival probabilities
for both regimes under the different scenarios. First, it can be noted that for small
sample sizes, the mean estimate of survival probabilities for the always treated regime
can present an unusual behavior: the survival curve can increase at certain time points.
This phenomenon arises as a result of the characteristic of the Aalen additive model,
which does not impose constraints on the estimated hazards to fall within the range of
0 and 1. When the sample size is small, the random sample effect can lead to negative

61



estimates of the hazard, which in turn results in an upward trend in the estimated sur-
vival probabilities over time.

Upon closer examinations of the estimated hazard components under the two treatment
regimes, we found that they exhibit distinct behaviors. For the survival probabilities
under the never treated regime, it solely relies on the baseline hazard α̃0(t). The esti-
mated cumulative coefficient Ĉ0(t) demonstrates an approximately monotonic increase
over time with minimal fluctuations (see Appendix A.1.3, Figure A.11). This explains
why the survival probabilities under the never treated regime consistently decrease mono-
tonically over time without any unusual upward trends. However, when considering the
survival probabilities under the always treated regime, which includes the effects of both
the current treatment and the lag treatments, the situation is different. As shown in
the previous section, the estimated cumulative coefficient associated with the current
treatment, i.e., ĈA0(t), exhibits a decreasing trend over time with relatively high fluctu-
ations. On the other hand, the estimated cumulative coefficients of the lag treatments,
i.e., ĈAj(t) where j = 1, 2, 3, 4, show diverse trends over time and generally exhibit con-
siderable fluctuations (see Appendix A.1.3, Figures A.12 to A.16). Consequently, under
a small sample size n, the higher variance associated with the estimated cumulative coef-
ficients ĈAt(t) lead the estimated cumulative hazard Λ̂(t) of the always treated regime to
decrease at certain time points and thus cause unusual survival probabilities over time.
This specifically occurs when the estimated hazard for always treated, i.e.,

λ̂T ā=1(t) = ˆ̃α0(t) +

⌊t⌋∑
j=0

ˆ̃αAj(t),

is negative.
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Figure 6.6: Bias of the IPTW estimates of counterfactual survival probabilities of always treated
(solid lines) and never treated (dashed lines) under the different scenarios presented
in Section 5.3.2 using data generated from simulation approach II in Algorithm 4.
Each panel refers to a different time-point t ∈ {1, 2, 3, 4, 5}. Different lines and
colours refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.
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Figure 6.7: MSE of the IPTW estimates of counterfactual survival probabilities of always
treated (solid lines) and never treated (dashed lines)under the different scenar-
ios presented in Section 5.3.2 using data generated from simulation approach II in
Algorithm 4. Each panel refers to a different time-point t ∈ {1, 2, 3, 4, 5}. Different
lines and colours refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.
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Figure 6.8: The IPTW mean estimates of counterfactual survival probabilities of always treated
(solid lines) and never treated (dashed lines)under the different scenarios presented
in Section 5.3.2 using data generated from simulation approach II in Algorithm 4.
Each panel refers to a different sample size n ∈ {100, 200, 300, 500, 1000}. Different
lines and colours refer to various thresholds τ ∈ {−0.3, 0.3, 0.6, 1, 1.5}.
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Chapter 7

Discussion

The objective of this thesis was to explore the impact of structurally violating the posi-
tivity assumption on the performance of the inverse probability of treatment weighting
(IPTW) estimator in longitudinal studies for survival outcomes. We proposed two sim-
ulation algorithms specifically designed to simulate longitudinal data exhibiting time-
dependent confounding from given marginal structural models (MSMs) formulated using
logistic regression and Aalen’s additive regression, i.e., Algorithms 3 and 4 respectively.
The investigation was conducted under different scenarios to provide a comprehensive
analysis and the IPTW-estimator performances for both mechanisms were assessed using
bias and mean square error (MSE).

Findings from the simulation studies revealed a consistent trend: as the degree of vio-
lation of the positivity assumption becomes more severe, both the bias and the MSE of
the IPTW estimate for causal parameters tend to increase. This suggested that violat-
ing the positivity assumption has a detrimental impact on the accuracy of the IPTW
estimator. Furthermore, the results showed that with larger sample sizes the IPTW es-
timates demonstrate a smaller scale of bias and MSE in general, and potentially exhibit
a slower growth rate in terms of bias with increasing violation (Figure 6.1). This is due
to the fact that increasing the sample size mitigated the bias due to the finite sample
bias. However, the bias resulting from the structural positivity violation still remained.

Previous causal inference research has emphasized the need for an adequate exposure
variability within confounder strata [28, 29] as the violation of positivity assumption
can result in substantial bias, with or without a corresponding increase in variance, re-
gardless of the used causal effect estimator [7]. In fact, the consistency of the IPTW
estimator relies heavily on the positivity assumption. When the positivity assumption is
violated, the IPTW estimator is undefined. This occurs because the denominator of the
inverse probability weights reaches zero for some subjects. In that case, the observed
bias is mainly due to the positivity violation, with some additional bias due to the finite
sample bias [8]. Under the sequential version of the positivity assumption, the condi-
tional probability of each possible treatment history (i.e., the product of multiple time
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point-specific treatment probabilities given the past) is required to be positive regardless
of covariate history. However, achieving a small value for this probability becomes more
likely, especially when multiple time points are considered. Moreover, in the case of a
small sample size, certain combinations of treatment and covariate history have fewer
or even no observations in the given finite sample. Consequently, the weights of those
rarely observed combinations become extreme, resulting in a substantial bias and high
variability.

Differences in the results between the two simulation approaches can be due to the differ-
ent treatment decision mechanisms. Simulation approach I requires that once a subject
has started treatment, the subject will remain on treatment until failure or end of follow-
up. This indicates a narrower range of possible combinations of treatment history and
covariate history, making the IPTW estimator more sensitive to sample size as the vio-
lation severity increases. Under more severe violations, fewer combinations of treatment
and covariate history can be observed, and a limited sample size can exacerbate this
effect. Since the number of possible combinations is small, even a few combination miss-
ing in the observed data has an significant impact on the estimated effect, introducing
substantial bias and inflating the variance. On the other hand, simulation approach II
does not have any requirement on treatment decision mechanism, indicating a larger
range of possible combinations of treatment and covariate history. Consequently, the
bias and precision of its IPTW estimator under positivity violation is less sensitive to
sample size compared to the estimator in the first setting.

Furthermore, it is worthwhile to note other distinctions between these approaches and
the potential limitations they have in practice. The simulation approach I generates lon-
gitudinal data from a given discrete-time MSM overcoming the non-collapsibility issue
of the pooled logistic regression model by omitting the direct arrow from Lt to Yt+1 in
the direct acyclyc graph (DAG) in Figure 4.1. However, this omission is likely to be
unrealistic in practice. On the contrary, the simulation approach II avoids this issue (see
DAG in Figure 4.2) and highlights the benefits of using Aalen’s additive hazard model
in causal inference research, thanks to its collapsibility property. Moreover, simulation
approach II is applicable in a more general scenario, while simulation approach I aims to
generate data that closely match that of the Swiss HIV Cohort Study [22]. Nonetheless,
the linear form of the Aalen’s additive hazard model does not restrict the hazard to
be non-negative, sometimes resulting in unrealistic survival probabilities. To overcome
this issue, model parameter values need to be carefully selected so that the chance of
obtaining a negative hazard can be negligible.

Previous research on the effect of positivity violations on IPTW estimator of causal effect
has been limited to a point treatment setting. Wang et al. (2005) [8] and Petersen et
al. (2012) [7] demonstrated that data sparsity can increase both the bias and variance
of a causal effect estimator and that IPTW estimator is particularly sensitive to this
issue. This thesis extended their investigations into a longitudinal survival setting with
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time-varying treatments and covariates. Nonetheless, how to improve the identifiability
of parameters in the presence of positivity violations in the longitudinal setting still re-
mains a field to be explored, providing a challenge for future research. On the contrary,
several approaches have been proposed to estimate causal effects in the presence of posi-
tivity violations in a point treatment context. For example, trimming-related methods –
including propensity score-based trimming [30, 31], matching [32, 33], Bayesian additive
regression trees-based trimming [34, 35] – have been proposed to address the issue by
identifying and removing from the data the subgroup of subjects that violates positivity,
and drawing inference on the remaining population. These methods, however, limit the
subsample used to make inference to only those subjects for whom the positivity assump-
tion is valid, shifting the inference target to the population reflected by such subsample.
As an alternative, the so-called weighting scheme methods, which alter the covariate dis-
tribution by making certain characteristics more prominent, have been proposed [36, 37,
38]. However, these methods can also present the potential issue of shifting the target of
inference. Therefore, the use of trimming and weighting approaches must be limited to
situations of structral positivity violation. On the other hand, when there is a practical
posivity violation, certain combination of treatment and covariate categories are not ob-
served in the sample by chance and the treatment effect of these subjects must be taken
into account in order to preserve the original target of the inference. In such a case,
extrapolation methods are recommended, which consist of extrapolating trends in the
region of overlap to the subjects in non-overlap region using their observed variables [39,
40]. However these methods suffer from the additional uncertainty resulting from the ex-
trapolation. All these methods should be further investigated into a longitudinal setting.

In summary, this thesis investigated and assessed how positivity violations impact the
IPTW estimator in two longitudinal survival settings with time-varying treatment and
covariate. While this study proposed specific simulation procedures and revealed the
detrimental effect of violations on the estimates, it suggests a need for a more compre-
hensive framework to simulate longitudinal data from a flexible MSM to gain deeper in-
sights into this problem. In real practice, positivity violations are commonly observed in
clinical data with many covariates, especially in contexts involving multiple sequentially
assigned treatments over numerous time points. This often results in extreme weights
in the IPTW approach, leading to substantial bias in the causal estimate. Therefore, it
is imperative for analysts to systematically evaluate the presence of positivity violations
at all time-points when conducting causal analyses using real data.
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Appendix

A.1 Appendix Figures to Section 6.3

This appendix contains the plots of bias, MSE and mean estimate of all the cumula-
tive coefficients including C0(t) and CAj(t) (for j = 0, . . . , 4 and t = 1, . . . , 5) under
the different scenarios presented in Section 5.3.2 using data generated from simulation
approach II in Algorithm 4 .

A.1.1 Bias for all cumulative coefficients under different scenarios

Appendix A.1.1 contains the plots of bias for all the estimated cumulative coefficients
under the different scenarios presented in Section 5.3.2 using data generated from sim-
ulation approach II in Algorithm 4. In particular

• Figure A.1 shows the bias of estimated cumulative coefficients at time point t = 1.
Each panel refers to a different accumulative coefficient. Different lines and colours
refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.

• Figure A.2 shows the bias of estimated cumulative coefficients at time point t = 2.
Each panel refers to a different accumulative coefficient. Different lines and colours
refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.

• Figure A.3 shows the bias of estimated cumulative coefficients at time point t = 3.
Each panel refers to a different accumulative coefficient. Different lines and colours
refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.

• Figure A.4 shows the bias of estimated cumulative coefficients at time point t = 4.
Each panel refers to a different accumulative coefficient. Different lines and colours
refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.

• Figure A.5 shows the bias of estimated cumulative coefficients at time point t = 5.
Each panel refers to a different accumulative coefficient. Different lines and colours
refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.

The pattern observed in the bias varies across different cumulative coefficients. This
variability could be attributed to the randomness inherent in the generated data and
the specific property of the Aalen’s additive hazard model.

72



Figure A.1: Bias of IPTW estimator of cumulative coefficients at time point t = 1 and the
different scenarios of positivity violations presented in Section 5.3.2 using data
generated from simulation approach II in Algorithm 4. Each panel refers to a
different accumulative coefficient. Different lines and colours refer to different
sample sizes n ∈ {100, 200, 300, 500, 1000}.
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Figure A.2: Bias of IPTW estimator of cumulative coefficients at time point t = 2 and the
different scenarios of positivity violations presented in Section 5.3.2 using data
generated from simulation approach II in Algorithm 4. Each panel refers to a
different accumulative coefficient. Different lines and colours refer to different
sample sizes n ∈ {100, 200, 300, 500, 1000}.
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Figure A.3: Bias of IPTW estimator of cumulative coefficients at time point t = 3 and the
different scenarios of positivity violations presented in Section 5.3.2 using data
generated from simulation approach II in Algorithm 4. Each panel refers to a
different accumulative coefficient. Different lines and colours refer to different
sample sizes n ∈ {100, 200, 300, 500, 1000}.

75



Figure A.4: Bias of IPTW estimator of cumulative coefficients at time point t = 4 and the
different scenarios of positivity violations presented in Section 5.3.2 using data
generated from simulation approach II in Algorithm 4. Each panel refers to a
different accumulative coefficient. Different lines and colours refer to different
sample sizes n ∈ {100, 200, 300, 500, 1000}.
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Figure A.5: Bias of IPTW estimator of cumulative coefficients at time point t = 5 and the
different scenarios of positivity violations presented in Section 5.3.2 using data
generated from simulation approach II in Algorithm 4. Each panel refers to a
different accumulative coefficient. Different lines and colours refer to different
sample sizes n ∈ {100, 200, 300, 500, 1000}.
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A.1.2 MSE for all cumulative coefficients under different scenarios

Appendix A.1.2 contains the plots of MSE for all the estimated cumulative coefficients
under the different scenarios presented in Section 5.3.2 using data generated from sim-
ulation approach II in Algorithm 4. In particular

• Figure A.6 shows the MSE of estimated cumulative coefficients at time point t = 1.
Each panel refers to a different accumulative coefficient. Different lines and colours
refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.

• Figure A.7 shows the MSE of estimated cumulative coefficients at time point t = 2.
Each panel refers to a different accumulative coefficient. Different lines and colours
refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.

• Figure A.8 shows the MSE of estimated cumulative coefficients at time point t = 3.
Each panel refers to a different accumulative coefficient. Different lines and colours
refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.

• Figure A.9 shows the MSE of estimated cumulative coefficients at time point t = 4.
Each panel refers to a different accumulative coefficient. Different lines and colours
refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.

• Figure A.10 shows the MSE of estimated cumulative coefficients at time point
t = 5. Each panel refers to a different accumulative coefficient. Different lines and
colours refer to different sample sizes n ∈ {100, 200, 300, 500, 1000}.

In general, the MSE of cumulative coefficients CAj(t) (j = 0, . . . , 4) exhibit a similar
pattern to that of CA0(t).
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Figure A.6: MSE of IPTW estimator of cumulative coefficients at time point t = 1 and the
different scenarios of positivity violations presented in Section 5.3.2 using data
generated from simulation approach II in Algorithm 4. Each panel refers to a
different accumulative coefficient. Different lines and colours refer to different
sample sizes n ∈ {100, 200, 300, 500, 1000}.
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Figure A.7: MSE of IPTW estimator of cumulative coefficients at time point t = 2 and the
different scenarios of positivity violations presented in Section 5.3.2 using data
generated from simulation approach II in Algorithm 4. Each panel refers to a
different accumulative coefficient. Different lines and colours refer to different
sample sizes n ∈ {100, 200, 300, 500, 1000}.
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Figure A.8: MSE of IPTW estimator of cumulative coefficients at time point t = 3 and the
different scenarios of positivity violations presented in Section 5.3.2 using data
generated from simulation approach II in Algorithm 4. Each panel refers to a
different accumulative coefficient. Different lines and colours refer to different
sample sizes n ∈ {100, 200, 300, 500, 1000}.
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Figure A.9: MSE of IPTW estimator of cumulative coefficients at time point t = 4 and the
different scenarios of positivity violations presented in Section 5.3.2 using data
generated from simulation approach II in Algorithm 4. Each panel refers to a
different accumulative coefficient. Different lines and colours refer to different
sample sizes n ∈ {100, 200, 300, 500, 1000}.
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Figure A.10: MSE of IPTW estimator of cumulative coefficients at time point t = 5 and the
different scenarios of positivity violations presented in Section 5.3.2 using data
generated from simulation approach II in Algorithm 4. Each panel refers to a
different accumulative coefficient. Different lines and colours refer to different
sample sizes n ∈ {100, 200, 300, 500, 1000}.
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A.1.3 IPTW estimators for all cumulative coefficients under different
scenarios

Appendix A.1.3 contains the plots of all the IPTW estimated cumulative coefficients
under the different scenarios presented in Section 5.3.2 using data generated from sim-
ulation approach II in Algorithm 4. In particular

• Figure A.11 shows the IPTW estimated cumulative coefficient of C0(t) =
∫ t
0 α̃0(s)ds

over time under the different scenarios.

• Figure A.12 shows the IPTW estimated cumulative coefficient of CA0(t) =
∫ t
0 α̃A0(s)ds

over time under the different scenarios.

• Figure A.13 shows the IPTW estimated cumulative coefficient of CA1(t) =
∫ t
0 α̃A1(s)ds

over time under the different scenarios.

• Figure A.14 shows the IPTW estimated cumulative coefficient of CA2(t) =
∫ t
0 α̃A2(s)ds

over time under the different scenarios.

• Figure A.15 shows the IPTW estimated cumulative coefficient of CA3(t) =
∫ t
0 α̃A3(s)ds

over time under the different scenarios.

• Figure A.16 shows the IPTW estimated cumulative coefficient of CA4(t) =
∫ t
0 α̃A4(s)ds

over time under the different scenarios.

In general, the cumulative coefficient of baseline hazard C0(t) exhibits an approximately
monotonic increasing trend over time, while the cumulative coefficient of current treat-
ment CA0(t) exhibits a decreasing trend over time and the cumulative coefficients of the
lag treatments, i.e., CAj(t) where j = 1, 2, 3, 4, show diverse trends over time and exhibit
considerable fluctuations.
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Figure A.11: IPTW estimator of cumulative coefficient C0(t) =
∫ t

0
α̃0(s)ds under different

scenarios of positivity violations presented in Section 5.3.2 using data generated
from simulation approach II in Algorithm 4
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Figure A.12: IPTW estimator of cumulative coefficient CA0(t) =
∫ t

0
α̃A0(s)ds under different

scenarios of positivity violations presented in Section 5.3.2 using data generated
from simulation approach II in Algorithm 4
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Figure A.13: IPTW estimator of cumulative coefficient CA1(t) =
∫ t

0
α̃A1(s)ds under different

scenarios of positivity violations presented in Section 5.3.2 using data generated
from simulation approach II in Algorithm 4
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Figure A.14: IPTW estimator of cumulative coefficient CA2(t) =
∫ t

0
α̃A2(s)ds under different

scenarios of positivity violations presented in Section 5.3.2 using data generated
from simulation approach II in Algorithm 4

88



Figure A.15: IPTW estimator of cumulative coefficient CA3(t) =
∫ t

0
α̃A3(s)ds under different

scenarios of positivity violations presented in Section 5.3.2 using data generated
from simulation approach II in Algorithm 4
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Figure A.16: IPTW estimator of cumulative coefficient CA4(t) =
∫ t

0
α̃A4(s)ds under different

scenarios of positivity violations presented in Section 5.3.2 using data generated
from simulation approach II in Algorithm 4
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