
Comparing Learning Curve Extrapolation Methods in different
Contexts
Kielhöfer, Lionel

Citation
Kielhöfer, L. (2024). Comparing Learning Curve Extrapolation Methods in different
Contexts.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master Thesis,
2023

Downloaded from: https://hdl.handle.net/1887/3665257
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/3665257


Comparing Learning Curve
Extrapolation Methods in different

Contexts

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

PHYSICS

Author : Lionel Kielhöfer
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Abstract

Learning curves are important for decision making in supervised machine
learning. They show how the performance of a machine learning model
develops over a given resource. In this work, we consider learning curves
that model the performance of a machine learning model as a function of
the number of data points used for training. For decision making, it is of-
ten useful to extrapolate learning curves, which can be done, for example,
by fitting a parametric model based on the observed values, or by using
an extrapolation model trained on learning curves from similar datasets.
We perform an analysis comparing these two techniques with different ob-
servations and prediction objectives. When only a small number of initial
segments of the learning curve have been observed we find that it is better
to rely on learning curves from similar datasets. Once more observations
have been made, a parametric model, or just the last observation, should
be used. Moreover, we find that using a parametric model is mostly use-
ful when the exact value of the learning curve itself is of interest. Lastly,
we use this knowledge to improve machine learning on a particle physics
dataset.
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Chapter 1
Introduction

Research into machine learning and its development is prominent in areas
such as particle physics. Particle physics, which is the study of fundamen-
tal particles, has in recent years felt the effect of modern technology vastly
increasing the amount of available data. It is usually inefficient to process
this by standard means. Machine learning provides a solution to do this
efficiently [1].

Learning curves are used for various types of decision making in super-
vised learning. They show how the performance of a machine learning
algorithm develops over a given resource, for example the number of
epochs, run time, or number of data points used for training. In this work,
we look specifically at learning curves across data points. They are gener-
ally used in the following three decision making situations [21, 29]:

• Early stopping [13, 25]; for determining when training a given ma-
chine learning model on more budget would not cause significant
improvement.

• Early-discarding [15, 22, 27]; this situation focuses on picking the
best learning algorithm from a set of options. Instead of training all
of the learning algorithms on the entire dataset, which is computa-
tionally costly, they are trained on increasing budgets. The learning
algorithms that are predicted to perform the worst can then be dis-
carded early on.

• Data-acquisition [18, 30]; in this situation the focus is on predicting
if acquiring additional data would significantly increase the perfor-
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8 Introduction

mance of a machine learning algorithm.

In all decision situations, we typically have an incomplete learning curve,
and want to extrapolate how the performance of the algorithm develops
when more budget is provided.

Various model types are capable of extrapolating such curve segments,
for example parametric models [9], meta-learning models [19] or special-
ized classifiers [16]. Parametric models are usually fit to the points of the
curve segment and can then be used to make extrapolations. A popu-
lar parametric model used for learning curves is the inverse power law
(IPL) [7, 13]. Another approach utilizes learning curves from earlier en-
countered datasets [19]. With this technique, learning curves constructed
from other datasets, using the same algorithm, are combined to extrapo-
late the curve segment.

Mohr et al. [23] performed an in-depth comparison between parametric
models for the extrapolation of learning curves. They empirically evalu-
ate several parametric models over various datasets, and come to the con-
clusion that the IPL model is outperformed by the Morgan-Mercer Flodin
model (MMF). This was an extension to the work of Gu et al. [9], who
had previously performed this comparison on a smaller database with less
parametric models and came to the opposite conclusion.

This paper complements the previous studies of Mohr et al. [23] by com-
paring parametric extrapolation with meta-learning based extrapolation.
We provide insight to when it is beneficial to use a parametric model ver-
sus a meta-learning model across various extrapolation settings, which are
defined by the available learning curve segment, the prediction target (the
point to be extrapolated to) and the prediction objective. We do this by
answering the following research questions:

• How does the curve segment (and thereby the availability of data)
influence the performance of parametric and meta-learning models
for the extrapolation of learning curves?

• How does the prediction target (i.e., the point towards which the
learning curve needs to be extrapolated, this dictates the size of the
learning curve) influence the performance of the aforementioned mod-
els?

• How is this influenced by the prediction objective (i.e., in some deci-
sion situations we need exact value prediction resulting in a regres-
sion task, and in others it suffices to pick the best learning algorithm

8

Version of November 30, 2023– Created November 30, 2023 - 11:50



9

from a set of several options, resulting in a classification task.)

• Can this knowledge be applied to improve machine learning on a
particle physics dataset?

To compare these two extrapolation model types we take the best perform-
ing parametric model according to current insights from the literature,
namely MMF [9]. We will compare it to the Meta-Learning on Datasam-
ples (MDS) model developed by Leite and Brazdil [19]. This is the only
model we are aware of that utilizes learning curves from other datasets.
As an additional baseline, we include a simple model that horizontally
extrapolates from the last observation in the curve segment.

We find that using learning curves on other datasets with the meta-learning
model is beneficial when only little parts of the learning curve have been
observed. However, once more observations have been made, a para-
metric model, or just the last observation, outperforms the meta-learning
model. Mohr et al. [23] found that MMF is the best performing parametric
model in the setting that they considered, but in this work we show that
by generalizing across settings, using a parametric model is in particular
beneficial when the objective is to find the exact value of the learning curve
itself. When the objective is to pick the best algorithm from a set of two
algorithms, the surprising finding is that simply choosing the algorithm
with the best score on the curve segment is better than picking the best
one according to an extrapolation obtained from a parametric model, no
matter how few observations have been made.
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Chapter 2
Related Work

Learning curve extrapolation is performed in many different contexts of
machine learning. Various methods have been developed in this regard.
Our main focus is on learning curve extrapolation methods that can be
used in general, these are usually tested on simple machine learning algo-
rithms. In this section we show research done into learning curve extrap-
olation in the different contexts that we could find.

Firstly we cover the research done into modeling learning curves. Sec-
ondly, we will go over the meta-learning research done into extrapolating
from other learning curves. Lastly, we will go over methods that use a
probabilistic model to form uncertainties of learning curve extrapolations.
These are usually used in hyperparameter optimization and neural archi-
tecture search.

2.1 Parametric models for learning curves

Learning curves have often been modelled by low parameter models. Power-
law models have successfully been used in model selection to efficiently
allocate resources to promising models [22]. They have also been used for
early-stopping to stop the training of learning algorithms once it is highly
probable that their performance will not significantly increase [13]. Theo-
retical works into the shapes of learning curves back up this line of work,
as they suggest that learning curves usually have power-law behaviour,
however, they also suggest that learning curves can have exponential be-
haviour [4, 12]. Mohr et al. [23] compare all the parametric models used
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12 Related Work

for learning curves that they could find in the literature. They perform this
comparison by looking at the model selection capabilities of each learning
curve model. They find that, in practice, there are parametric models that
can outperform power-law and exponential models.

Recently, research into learning curve models has received renewed at-
tention in the domain of deep learning [11, 14]. It has been shown that
power-law behaviour is also very common in this domain [10, 17].

2.2 Meta-learning models for learning curves

When completed learning curves are available, one can use these to ex-
trapolate partial learning curves. Leite and Brazd [19] started this line of
work with their Meta-Learning on Datasamples (MDS) method. To ex-
trapolate a partial learning curve, they introduce a distance measure to
datasets for which the completed learning curve is known. They use this
to pick out the k closest learning curves. The mean of these k curves at the
target is then taken as the extrapolation.

Leite and Brazd [20] build upon their work by also including meta-features
of the datasets. These are features that describe the dataset and can be used
to find similarities between datasets. . Rijn et al. [28] build on this work
by introducing an algorithm that can rank a portfolio of classifiers.

Chandrashekaran and Lane [6] introduce a method that is very similar to
MDS [19] for hyperparameter optimization. The main difference is that the
distance measure is to completed learning curves on other hyerparameter
settings instead of datasets.

2.3 Probabilistic models for learning curves

Since deep learning algorithms have many architecture and hyperparam-
eter choices, finding the optimal choice is difficult. Hyperparameter op-
timization and neural architecture search are algorithmic approaches of
solving this problem. Since the search space is usually continuous, or close
to it, advanced methods apply a probabilistic model. This is done to make
a confidence bound that dictates in what area of the search space to look
next, thus narrowing down the search space. However, with the addition
of learning curves these confidence bounds have also been used to discard
sub optimal choices early in training. We cover some notable methods that
use learning curves in this regard.

12
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2.3 Probabilistic models for learning curves 13

We note that, in this work, we do not include these probabilistic models,
as our focus is on the extrapolation of learning curves outside of deep
learning. In our case, the learning algorithms are also already assumed to
be optimal. Due to this, the relationship between similar hyperparameters
or architectures does not exist in our setting.

Synonymous to Leite and Brazdil [19], Chandrashekaran and Lane [6] pick
completed learning curves that are similar to their partial learning curve,
and make a probabilistic model from their extrapolation. The difference is
that, in the context of hyperparameter tuning, they use a measure to find
similar learning curves on already tested hyperparameter settings. Thus,
these are on the same dataset.

Baker et al. [2] use support vector machines, random forests and simple
linear regression to perform learning curve extrapolation for neural ar-
chitecture search. They perform this regression not only on the partial
learning curve, but also on meta features that dictate the architecture. This
regression is then used to form confidence bounds.

A popular approach used in hyperparameter tuning and neural architec-
ture search is Bayesian optimization [26]. This is used to form a surrogate
model that predicts the performance of hyperparameters or network arhi-
tectures. When combined with learning curves, this approach inherently
uses previously completed learning curves to fit its surrogate model. Thus,
this is a form of combining learning curve modelling and other learning
curves. We will now cover methods that use Bayesian optimization with
learning curves.

Domhan et al. [8] use a mixture of several learning curve models as their
surrogate model. They use a prior that favors well behaved learning curves,
which are saturating and increasing. This work has been extended by
Klein et al. [16] who use a neural network to fit the weights of the mix-
ture.

The work of Domhan et al. [8] has also been applied in neural architecture
search by using learning curves of neural networks on different datasets
[32].

Other surrogate models that have been used in the context of learning
curves are gaussian processes [15, 27] and support vector machines [5].
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Chapter 3
Background

Learning curves show the performance of a learning algorithm over dataset
size. In this section, we will provide the mathematical background and
definitions for them. These definition are adapted from Mohr and van
Rijn [21]. Table 3.1 shows a summary of all the mathematical notation and
definitions that we cover here.

At the end of this section we will apply this to LCDB to get the learning
curves that we use.

3.1 Learning Curves

In supervised learning, a task T is formally given by the triplet T =
(PX×Y ,X ,Y), where X is the set of inputs called the instance space, Y is
the set of output labels called the label space, and PX×Y is a probability
distribution over X ×Y . A dataset d ⊂ {(x, y) | x ∈ X , y ∈ Y} is made by
sampling this probability distribution. Generally, it is assumed that this
sampling is done identically and independently. We say that D is the set
of all possible datasets. Using this, we can say that a learning algorithm
is a function a : D × Ω → H, where Ω is a source of randomness, and
H = {h | h : X → Y} is the set of all possible hypotheses.

For a learning curve we need the performance. Generally, the performance
of a hypothesis is expressed using the (true) risk, or out-of-sample error:

Rout(h) := E
(x,y)∼PX×Y

[loss(y, h(x))] (3.1)

Version of November 30, 2023– Created November 30, 2023 - 11:50
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16 Background

We can extend this to learning algorithms. In the context of learning curves
we are interested in the performance, given a specific size s for the dataset.
By including this we get the following:

C(a, s) := E
ω∼PΩ,d∼PX×Y ,|d|=s

[Rout(a(d, ω))] (3.2)

Where PΩ is the probability distribution of the random source Ω. The
learning curve can now be defined as the function C(a, ·) : N → R.

3.2 Empirical Learning Curves

In practice, it is not possible to calculate the out-of-sample error, as we
usually do not have access to the probability distribution PX×Y . There-
fore, we need to use an estimator. We call this estimator the empirical risk,
or internal error.

To calculate the internal error, we sample the distribution to get a dataset
d. For a hypothesis h we then have:

Rin(h)d :=
1
|d| ∑

(x,y)∈d
loss(y, h(x)) (3.3)

Usually, we also use d for our learning algorithm to calculate h. Therefore,
to forego some bias, it is beneficial to split the dataset into dtr and dte, such
that dtr ∩ dte = ∅, and dtr ∪ dte ⊆ d. We use one for the learning algorithm
and the other for the internal error. We say dtr is the train set, used for
the learning algorithm, while dte is the test set, used for the internal error.
From this, we define a test error:

Rin(a(dtr, ω))dte =
1

|dte| ∑
(x,y)∈dte

loss(y, a(dtr, ω)(x)) (3.4)

Similarly, we define a train error:

Rin(a(dtr, ω))dtr =
1

|dtr| ∑
(x,y)∈dtr

loss(y, a(dtr, ω)(x)) (3.5)

From equation 3.2, we see that the learning curve, at a given dataset size,
is given by the expected value over the out-of-sample error. As we cannot
calculate this directly, we need to use an estimator. The internal error al-
ready serves as an estimator for the out-of-sample error, so we can simply

16
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3.2 Empirical Learning Curves 17

use the sample mean, as it is an unbiased estimator of the expected value
for i.i.d. samples. This gives us the following estimator:

Ĉ(a, s)D :=
1

|D(s)| ∑
(dtr,dte,ω)∈D(s)

Rin(a(dtr, ω))dte (3.6)

Here we have a splitting technique D : N → D × D × Ω, where D(s)
returns a subset of {(dtr, dte, ω) | dtr ∩ dte = ∅, dtr ∪ dte ⊆ d, |dtr| = s, ω ∈
Ω}. The idea of this splitting technique is that there are multiple methods
of performing a split and keeping |dtr| = s. One could split d in k folds, use
a k’th as dte, then use all combinations of size s of the rest for the different
splits of dtr. However, one could also change what fold is used for dte
in each split. If all combinations of folds for dte and dtr are used, and
dte ∪ dtr = d, then this is called a k-fold cross-validation.

Lastly, as is done by Mohr and van Rijn [21], the dataset size will be refered
to as the anchor point. We will continue to denote it as s.

Table 3.1: Notation and Definitions

Notation Meaning

d Dataset, d ⊂ {(x, y) : x ∈ X , y ∈ Y}, where X is an in-
stance space and Y a label space.

dtr, dte

Train and test set. One can define a test error for a
learning algorithm a as Rin(a(dtr, ω))dte and train error as
Rin(a(dtr, ω))dtr . a always uses dtr.

a
Learning algorithm, given by a : D × Ω → H or H+ (D
set of all possible datasets, Ω source of randomness, H all
possible hypotheses)

Rout Out-of-sample error, given by E
(x,y)∼PX×Y

[loss(y, h(x))]

C(a, s) Learning curve for algorithm a at anchor point (dataset
size) s, given by E

ω∼PΩ,d∼PX×Y ,|d|=s
[Rout(a(d, ω))]

Rin(h)d
Internal error with respect to some dataset d. Given by
1
|d| ∑

(x,y)∈d
loss(y, h(x))

Ĉ(a, s)D

Empirical learning curve for algorithm a at anchor point
(dataset size) s given a set of random seeds Λ and a splitting
technique D. Given by 1

|D(s)| ∑
(dtr,dte,ω)∈D(s)

Rin(a(dtr, ω))dte .
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18 Background

3.3 Learning Curve Database (LCDB)

LCDB contains the performance of 20 unique learning algorithms and 248
unique datasets. However, not each learning algorithm was used on each
dataset, thus, some datasets might contain less learning algorithms. In
this section we will show how we use the data given by LCDB to form the
learning curves.

For each dataset LCDB uses a splitting technique D* that creates 125 unique
splits per anchor. Thus, for any given anchor s and dataset d in LCDB, the
splitting technique D will create the sets given by D(s) ⊂ {(dtr, dte, ω) |
dtr ∩ dte = ∅, dtr ∪ dte ⊆ d, |dtr| = s, ω ∈ Ω} with |D(s)| = 125, for some
source of randomness Ω. For each of these splits, LCDB shows the train
and test error given by equation 3.5 and 3.4†. To get the value of the em-
pirical learning curve Ĉ(a, s)D we simply follow equation 3.6 and take the
average over the 125 unique test errors. This is also referred to as a 5-fold
Monte-Carlo Cross Validation (MCCV) [23].

This results in one unique empirical learning curve per dataset for each
learning algorithm that was used on that dataset. However, we do not
have the full empirical learning curve. LCDB contains only anchor points
at sizes ⌈2

7+k
2 ⌉ for each k ∈ N, until the maximum dataset size is reached.

Additionally, there are anchor points representing certain percentages of
the maximum dataset size.

*In addition to creating dtr and dte it also creates an extra set called the validation data.
We can ignore it for our purpose.

†LCDB contains multiple different loss functions, we use the default which is accuracy.

18
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Chapter 4
Extrapolation techniques

The extrapolation techniques that we use are: Morgan-Mercer Flodin (MMF),
Meta-Learning on Datasamples (MDS) and the performance at the last
available anchor. The last anchor is considered a baseline, which we refer
to as ’Last’. In this section we will give an overview of these techniques.
Figure 4.1 shows each technique used on a learning curve.

MMF is a parametric model that is used for the extrapolation of learning
curves. It was picked over others as [23] found it to be the best performing
parametric model in their analysis. MDS is an extrapolation technique that
uses meta-data. This was picked as it uniquely does not use a parametric
model, and has not been compared to techniques that use them. Last is
a very simple extrapolation technique that is commonly used. We have
included it as a baseline.

4.1 Morgan-Mercer Flodin (MMF)

MMF fits the parameters of the parametric model to the data in the curve
segment. This parametric model is given by:

fθ = (ab + cxd)/(b + xd) (4.1)

where θ := (a, b, c, d).

Given the anchor points s1, ..., sm for a curve segment, the loss associated
with parameters θ for the learning curve of some learning algorithm a is
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20 Extrapolation techniques
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Figure 4.1: Learning curve extrapolation performed by MMF, MDS and Last for
the given curve segment and target anchor. The blue line is the extrapolation
performed by MMF. The green line the extrapolation performed by Last. The
smaller circles represent the k-nearest curves MDS uses to make its prediction,
which is given by the red cross.

defined as

loss(θ) =
m

∑
i=1

(Ĉ(a, si)− fθ(si))
2 · wi, (4.2)

where wi is the weight given to anchor si. Here, we follow Mohr et al. [23]
and set wi = 2i, which implies that the i-th observation is as important as
all the observations prior to si together. Exploring other weighing schemes
could be interesting future work.

Mohr et al. [23]* use the Levenberg-Marquadt algorithm , we use the AdamW
optimizer in PyTorch [24] to optimize for the parameters of the model in-
stead. We found that this performs better.

4.2 Meta-Learning on Datasamples (MDS)

To predict the performance of a learner at a target anchor on dataset d,
MDS [19]† uses learning curves of this same learner from other datasets.
This approach is parameter-free, so predictions can only be made for an-
chors for which the curve segments of the other datasets contain an ob-
served performance. In particular, it is hence required that the other curves
contain performances for the target anchor.

*The authors use the name mmf4 for the version of MMF that is used in our work
†The authors use the name A MDS for the version of MDS used in our work

20
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4.2 Meta-Learning on Datasamples (MDS) 21

Among all the available curves of other datasets, the most relevant ones
for the prediction task are determined based on the similarity of the al-
ready observed curve segments. Suppose that, for some learner a, the
performances on dataset d have been observed for anchors s1, ..., sm. Then
the (lack of) relevance of another dataset d′ for the prediction task can be
assessed through the dissimilarity of the learning curves, which in turn
can be measured as the squared anchor-wise deviations:

Ra(d, d′) =
m

∑
i=1

(Ĉ(a, si)d − Ĉ(a, si)d′)
2 (4.3)

Given that the k nearest datasets are d1, ..., dk, MDS takes the mean perfor-
mance of a at the target anchor s on these datasets and makes the extrapo-
lation 1

k ∑k
i=1 Ĉ(a, s)di .

Leite and Brazdil [19] improve their technique by scaling curves on other
datasets before using the distance measure. Given a learning curve on a
dataset d′ ̸= d, each point of that curve is multiplied by the following
constant:

f =
∑N

i=1(Ĉ(a, si)d · Ĉ(a, si)d′) · wi)

∑N
i=1(Ĉ(a, si)d′ · wi)

(4.4)

We also include this scaling in our implementation. The weighting mech-
anism used by the authors is given by wi = i2. However, we use the
weighting mechanism Mohr et al. [23] uses as it improves performance
and to apply the same weighing technique as used in MMF.

For the case of binary classification, one can refine the definition of dissim-
ilarity since two learning curves are known. The technique applied here is
to simply sum up the algorithm-wise dissimilarities:

Ra1,a2(d, d′) =
m

∑
i=1

(Ĉ(a1, si)d − Ĉ(a1, si)d′)
2 +

m

∑
i=1

(Ĉ(a2, si)d − Ĉ(a2, si)d′)
2

(4.5)

Two remarks are due with respect to the computation of nearest neigh-
bors. First, we use a value of k = 4 in our experiments as it provides
the best results in preliminary experiments. However, it is conceivable
that neighbors are not chosen based on a fixed number but that they must
meet a certain quality (or at least not be significantly worse than the near-
est neighbor). Second, the curve scaling in Eq. 4.4 could be applied before
or after the computation of nearest neighbors. We apply it before the com-
putation of the neighbors.
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22 Extrapolation techniques

This work has been extended in several directions, i.e., to determine the
best learning algorithm from multiple options and to include meta-features [20],
as well as to include different scoring criteria including run time [28].

4.3 The last anchor baseline

A trivial baseline is to extrapolate the known part of the learning curve
simply with a horizontal line at the performance of the last available an-
chor. Accordingly, we call this baseline “Last” as was done by Mohr et
al. [23]. For any target anchor, Last predicts the value of the largest anchor
point in the given curve segment. Similar to the other two techniques, this
prediction can either be used in a binary or regression prediction objective.

22
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Chapter 5
Experiments

We will describe the experimental setup, results and discuss these*.

5.1 Experimental Setup

The performance of an extrapolation technique depends on the context of
the extrapolation setting. The context is defined by (at least) the following
variables:

• Target anchor. The anchor point to extrapolate to. Does not have to
be a specific anchor point if, for example, the limit performance is of
interest.

• Curve segment. The anchor points for which the curve is already
given. Extrapolation is performed from this segment to the target
anchor.

• Prediction objective. What the extrapolation is used for. The extrap-
olation can be an intermediate step in a comparison between various
learning algorithms. In this case, the only result of interest is what
learning algorithm will perform better at the target anchor, essen-
tially making this a classification task. We will explore binary ver-
sions of this task i.e., where the best algorithm out of a pair of two
must be selected. In other cases, we are interested in the exact per-
formance value, essentially making this a regression task.

*Full details: https://github.com/quantagenmtg/AMLthesis
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24 Experiments

• Metadata. The type of additional data that can be used for the ex-
trapolation task. For example, a meta-dataset of completed learning
curves for the learning algorithms of interest on other datasets.

Our analysis is based on the Learning Curve Database (LCDB) [23]. It
contains learning curves of 20 learning algorithms on 248 unique datasets.
The extent to which we analyse each context variable is detailed below.

5.1.1 Target anchor

To get a balanced overview of how the extrapolation techniques work in
different extrapolation settings, we consider a broad set of target anchors.
For each of 248 datasets and each of the 20 algorithms, LCDB contains
scores for anchor points at sizes ⌈2

7+k
2 ⌉ with k ∈ {1, 2, ..} until the maxi-

mum dataset size is reached. We pick the anchor points that are present
in at least half the datasets (i.e., leaving out anchor points at higher values
that are only obtained at the larger datasets) as possible target anchors.
This leaves us with the following anchor points:

{16, 23, 32, 45, 64, 91, 128, 181, 256, 362, 512, 724, 1024, 1448, 2048, 2896, 4096}

We do not consider the first anchor point (16) as a target anchor, as we
need at least one anchor point in the curve segment to make a prediction.
The remaining anchors will be considered candidates for the target anchor.

5.1.2 Curve segment

Intuitively, we assume that the extrapolation techniques work better when
presented with performance results at more anchors and performance re-
sults at larger anchors. To investigate the exact dynamics, we will explore
various curve segments including a range of anchors.

We start off with a curve segment containing just the anchor point 16. We
add 23 to get a curve segment that includes 16 and 23. We continue adding
the next anchor point until we have 16 different curve segments, each hav-
ing one additional anchor over the previous one. We don’t include the
anchor point 4096 as then there would be no possible target anchor.

5.1.3 Prediction objective

There are mainly two possible prediction objectives in the context of learn-
ing curves. The first is to use the known curve segment of a learner to pre-
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5.2 Metrics 25

dict its performance at some target anchor. This is a regression task and is
important for data-acquisition to predict how much the performance can
improve with more data. The second objective is to use the curve seg-
ments of two algorithms to predict which of them will exhibit the better
performance at the target anchor. This is a binary classification task and
important for early discarding in model selection.

However, instead of addressing the classification problem through binary
classification, we compare the extrapolated and determine the one with
the best extrapolated performance at the target anchor.

We will analyse how each extrapolation technique performs in the binary
and regression prediction objectives. We have limited ourselves to these
prediction objectives as these can be addressed with the introduced ex-
trapolation techniques.

5.1.4 Metadata

The metadata that we are interested in is other learning curves. Specifi-
cally, we would like to know if using learning curves from other datasets
is better than using a parametric model. To this extent we compare MDS
to MMF. Note that we specifically presume that we do not have learning
curves from the same dataset, which is required for the learning curve
Bayesian neural networks [16].

techniques that use other metadata, such as dataset meta-features and fea-
tures describing the learning algorithms, also exist. For example, Leite and
Brazdil [20] have extended MDS to include some other relevant metadata.
We do not include these in our analysis as we are purely interested in the
use of other learning curves.

5.2 Metrics

Let s be some target anchor and a some learning algorithm (or a1, a2 two
learning algorithms that are being compared). If the estimated and true
prediction performances of a at anchor s are given by ŷ(a, s) and Ĉ(a, s)
respectively, then the loss of the extrapolation model is defined as:

• Absolute error (a, s) = |ŷ(a, s)− Ĉ(a, s)|

• Binary error (a1, a2, s) =

{
0 if arg maxi ŷ(ai, s) = arg maxi Ĉ(ai, s)
1 else
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• Risk (a1, a2, s) =

{
0 if arg maxi ŷ(ai, s) = arg maxi Ĉ(ai, s)
|Ĉ(a1, s)− Ĉ(a2, s)| else

The absolute error is used in the regression prediction objective while the
binary error and risk are used in the binary prediction objective. We use
these two metrics in the binary objective as we are interested in (1) how
often the extrapolation techniques pick the worse learning algorithm and
(2) the loss in performance if that learning algorithm were used instead of
the better one.

26
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Chapter 6
Results and Discussion

We show our results in a series of figures. Each incrementing figure has an
additional aggregation. Additional figures can be found in Appendix A.

Our main results are found in the last figure, Figure 6.3. However, a lot of
underlying information is lost in this figure because of aggregations. We
thus start by showing the results for specific extrapolation setting and then
generalizing step by step. For each figure we either show the performance
and / or the relative performance of the extrapolation techniques. The rel-
ative performance takes two extrapolation techniques then subtracts their
performance from each other.

The 20 algorithms from LCDB on which the analysis is based on are shown
in table 6.1

6.1 Relative performances of extrapolation tech-
niques for a fixed curve segment and target
anchor

Figure 6.1 shows the relative performance of the three extrapolation tech-
niques for the binary prediction objective for a fixed target anchor size
of 4096 and a fixed curve segment. The size of the largest anchor in this
curve segment is 724. This is shown individually for each possible pair
of learning algorithms, we refer to these pairs as the “binary pairings”.
Additionally, the relative performances are also summarized in boxplot
distributions over the binary pairings. For each comparison “A vs B” the

Version of November 30, 2023– Created November 30, 2023 - 11:50

27



28 Results and Discussion

Table 6.1: Learning algorithms and their abbreviations

learning algorithm abreviation
SVClinear SVCl
SVCpoly SVCp
SVCrbf SVCr
SVCsigmoid SVCs
ExtraTreesClassifier xTrs
GradientBoostingClassifier GrBo
RandomForestClassifier rFor
LogisticRegression LogR
PassiveAggressiveClassifier PaAg
Perceptron Perc
RidgeClassifier Ridg
SGDClassifier SGD
BernoulliNB Bern
MultinomialNB MuNo
KNeighborsClassifier KNei
MLPClassifier MLP
DecisionTreeClassifier dTre
ExtraTreeClassifier xTre
LinearDiscriminantAnalysis linD
QuadraticDiscriminantAnalysis QuaD

binary error of B is subtracted from the binary error of A at each binary
pairing. After this the mean is taken over the datasets. Positive values
(red) favor B while negative values (blue) favor A. The sets of these means
are then used to make the boxplots.

We see from the boxplots that, for this particular curve segment and target
anchor, Last clearly outperforms MDS and MMF. This can be seen as the
means and median are well above the 0 line.

We also see that in the comparison between MMF and MDS there is a slight
advantage for MMF as the mean and median are slightly above the 0 line.

28
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Figure 6.1: Relative performances of the extrapolation techniques for a fixed
curve segment with largest anchor of size 724, and fixed target anchor of size
4096. Shown are the results for the binary prediction objective with binary error
as metric. The colorbar refers to the figures in the left column and the top right
figure. Names of learning algorithms are abbreviated.

6.2 Performances of extrapolation techniques for
increasing curve segments and a fixed target
anchor

Figure 6.2 now offers a slightly more generalized view on the situation
than Figure 6.1 by varying over different curve segments. The target an-
chor remains fixed at a size of 4096. The left and middle columns are for
the binary prediction objective, and the right column for the regression
prediction objective. The left column uses the risk as metric, the middle
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Figure 6.2: Performances of extrapolation techniques for moving curve segments
and a fixed target anchor of size 4096. Thick lines represent the average, dotted
lines the median, and the shaded areas show the interquartile performances.

the binary error, the right the absolute error. Results are aggregated by
first computing the mean over the datasets per binary pairings (as in Fig-
ure 6.1) or per learners (for the regression prediction objective). The means
obtained for these binary pairings or learners are then aggregated again in
the plot as follows; thick lines represent the average, dotted lines the me-
dian, and the shaded areas show the interquartile performances. The top
row are the individual performances of the extrapolation techniques, and
the bottom row are relative performances between each technique. In the
bottom row, a comparison of “A vs B” means that positive values favor B
while negative values favor A. For these results the metric values of B are
subtracted from A before any aggregation is performed.

We ignore the very first value in the regression prediction objective for
MMF and any comparison with MMF, this is because with only one anchor
in the curve segment MMF is unable to perform an extrapolation.

We see that MMF outperforms Last on average for the regression predic-
tion objective but is outperformed by Last on the binary prediction objec-
tive. For regression, the quartiles suggests Last does outperform MMF at
times at some smaller curve segments. The reason for this is because there
are quite a few learning curves in LCDB that descend at the beginning and
then start rising at a later anchor point. When only the descending part of
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the learning curve is available MMF will extrapolate into the wrong direc-
tion. In these cases another parametric model should be used. Even so, at
smaller curve segments an improvement of around 0 − 4% accuracy can
be expected for the prediction.

For the binary prediction objective we see that MMF never improves over
Last even at smaller curve segments. By looking at the quartiles we see
that for any curve segment Last outperforms MMF for around 75% of
cases. Last has quite a high error at lower curve segments, larger than
30%. However, it seems that MMF cannot improve on this.

Furthermore we see that MDS seems to outperform both MMF and Last
on smaller curve segments. For the regression prediction objective we
can also see that MDS is a lot more precise and accurate at these smaller
curve segments. It starts at an error of around 0.1 and has closer quartiles
than the other techniques. As the learning curves represent accuracy, this
means that MDS can predict the accuracy of a learning algorithm within
±10% with one anchor point. For the binary prediction objective we see
that the binary error of MDS is still quite high at the lower curve segments,
but it stays about 5-10% lower than the other techniques. Even though the
binary error is large here we see that the risk is under 1.5%, which is quite
low. This shows that even though MDS predicts wrong over 20% of times
at lower curve segments, when it predicts wrong the loss in accuracy is
only under 1.5%.

6.3 Relative performances of extrapolation tech-
niques for increasing curve segments and tar-
get anchors

Figure 6.3 now further generalizes the previous view by additionally rang-
ing over different target anchor sizes. The leftmost column again shows
the risk for each binary pairing per extrapolation technique. Similarly to
before, a comparison of “A vs B” means that the risk of B is subtracted
from the risk of A. The mean of this is then taken over the datasets and the
binary pairings. Positive values (red) favor B while negative values (blue)
favor A. For the second column the same aggregation is performed but for
the binary error. For the last column the same is done for the absolute er-
ror, and instead of the binary pairings the mean is taken over the learners
as there are no binary pairings in the regression prediction objective. The
colorbar shows two different scales, the left side is used for the risk values
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Figure 6.3: Relative performances of extrapolation techniques for moving curve
segments and target anchors. The left column uses the risk as metric, the middle
the binary error, the right the absolute error. The left side of the colorbar is for the
risk and the right side for both binary and absolute error.

and the right for the absolute and binary error values. Values falling out-
side of the bounds given by the colorbar have been set to the value of the
nearest bound. As in the previous section, for the regression prediction
objective we ignore the curve segment that only contains the anchor 16 for
any comparison that include MMF.

From this figure we see that the trend identified in the previous section
occurs for most target anchors. MDS outperforms both MMF and Last
on smaller curve segments. However, the smaller the target anchor the
smaller the anchor point at which Last or MMF become better than MDS.
This is because making the target anchor smaller means less observations
are needed to complete the learning curve, thus smaller curve segments
give more information than they would for larger target anchors. This
shows that a meta-learning model that uses other learning curves is useful

32
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when there is little information about the learning curve. As a rough esti-
mate we see that when the last anchor in the curve segment is under a 5th
or 10th the size of the target anchor, MDS performs better than the other
two extrapolation techniques.

It is clear that it is not beneficial to use a parametric model for the binary
prediction objective. This is because MMF is outperformed by simply us-
ing only the last anchor in the curve segment. We see that as more data
on the learning curve becomes available the last anchor becomes a better
estimation of the target anchor and thus outperforms MDS.

For the regression prediction objective it is better to use a parametric model
over just the last anchor. At larger curve segments MMF will slightly out-
perform MDS. Thus, as more data on the learning curve becomes available
it is better to use a parametric model if a high accuracy of prediction is re-
quired.

6.4 Learning curve crossing

To explain why the parametric model is worse than using Last in the bi-
nary prediction objective, we analyse learning curve crossing. We say that
two learning curves cross if the better performing algorithm is different at
the largest target anchor 4096 and largest anchor point in the curve seg-
ment. Last always predicts that learning curves will not cross due to its
horizontal extrapolation. Using the error of Last, we can check how prob-
able learning curve crossing is. This can be seen in Figure 6.4a. This fig-
ure shows the probability that two learning curves will cross beyond the
last anchor in the curve segment. We only check if the learning curves
have crossed between the last anchor point in the curve segment and the
anchor point 4096, our largest target. We can also check how well the
other two techniques predict learning curve crossing. This can be seen
in Figure 6.4b. This figure shows confusion matrices at the largest target
for different curve segments. The largest anchor in the curve segment is
stated above the respective matrices. 1 means learning curves cross after
the curve segment, 0 means they don’t. The matrices are normalized over
the rows.

Looking at Figure 6.4a we see that, in general, learning curves are unlikely
to cross. For the smallest curve segment there is already less than a 35%
chance. It becomes more unlikely that learning curves will cross the larger
the curve segment. This relationship seems to form an exponential decay.
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Figure 6.4: (a) Shown are the number of learning curves in LCDB that cross af-
ter the given curve segment, normalized. (b) The confusion matrices show how
how well MDS and MMF predict learning curve crossing per curve segment. The
values shown are the number of curves in LCDB that fall under that quadrant.

Figure 6.4b gives us some insight why MMf cannot improve over Last.
When there is no learning curve crossing MMF will usually detect this,
over 90% of times for any curve segment. When there is learning curve
crossing MMF will usually not detect this, under 40% of times for most
curve segments. Since there are a lot more learning curves that do not
cross Last is better, as it always gets those correct. The times when learning
curves do cross and MMF detects this do not make up for this loss, as MMF
often does not detect the crossing of learning curves.

Figure 6.4b also shows us why MDS is better at smaller curve segments.
We can see that at smaller curve segments MDS correctly predicts learn-
ing curve crossings around 45-50% of times, which is better than MMF.
It also detects when learning curves do not cross around 85-90% of times
similarly to MMF. Since learning curves are more likely to cross at smaller
windows than larger windows it is much more useful to detect this for
smaller windows. The 10-15% loss over Last for falsely predicting learning
curve crossing is thus compensated by the fact that learning curve crossing
happens more at smaller curve segments, and MDS can correctly predict
this half of the time.

We thus see that a meta-dataset of other learning curves is useful to de-
tect learning curve crossing when there are little observations available,
and less is known about the learning curve. However, as more data on
the learning curve becomes available learning curve crossing is much less
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likely to occur. This means predicting that learning curves will never cross
is better than risking the false negatives of MDS or MMF.
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Chapter 7
HIGGS dataset

We apply the learning curve extrapolation techniques on the HIGGS dataset
[31]. When particles collide at high energies in a collider there is a possi-
bility of rare particles to appear [3]. To find when this happens one has
to distinguish between noise and signal, to this extent machine learning
is used. HIGGS is a Monte Carlo simulated dataset providing measure-
ments of a collider and functions of these measurements. Each instance is
classified as either noise or signal.

To check if our results in the previous chapter apply to the HIGGS dataset
we make learning curves with the same 20 learning algorithms that are
used in LCDB. The anchor points will be the same as the ones from Sec-
tion 5.1.1.

We thus perform the same analysis as before but on 1 dataset instead of
248. For MDS we will be using the remainder of the datasets from LCDB
as the meta-dataset.

Figure 7.1 shows the relative performances of the extrapolation techniques
across each curve segment and target anchor similar to Figure 6.3 but only
for the HIGGS dataset. The leftmost column shows the risk. As before, a
comparison of “A vs B” means that the risk of B is subtracted from the risk
of A. The mean of this is then taken over the the binary pairings. Positive
values (red) favor B while negative values (blue) favor A. For the second
column the same aggregation is performed but for the binary error. For
the last column the same is done for the absolute error, and instead of the
binary pairings the mean is taken over the learners as there are no binary
pairings in the regression prediction objective. The colorbar shows two

Version of November 30, 2023– Created November 30, 2023 - 11:50

37



38 HIGGS dataset

different scales, the left side is used for the risk values and the right for
the absolute and binary error values. Values falling outside of the bounds
given by the colorbar have been set to the value of the nearest bound. As
in the previous chapter, for the regression prediction objective we ignore
the curve segment that only contains the anchor 16 for any comparison
that include MMF.

There are more anchor points in this figure as we have added all the an-
chors present in LCDB for the HIGGS dataset. We also note that for the
larger target anchors MDS has very little curves to pick from, as not a lot
of curves in LCDB contain those anchor points. Specifically for the last
target anchor there are no other curves in LCDB that also contain that an-
chor point, thus no data is shown for this anchor in any comparison that
includes MDS.

This figure is not as clear as Figure 6.3 as we only regard one dataset.
However, we can still clearly see that the results from the previous chapter
also apply to the HIGGS dataset, which are as follows:

• MDS outperforms both MMF and Last on smaller curve segments

• Either Last or MMF outperform MDS on larger curve segments

• Last outperforms MMF in the binary prediction objective on any
curve segment except the first

38
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Figure 7.1: Relative performances of extrapolation techniques for moving curve
segments and target anchors solely on the HIGGS dataset. The left column uses
the risk as metric, the middle the binary error, the right the absolute error. The left
side of the colorbar is for the risk and the right side for both binary and absolute
error.
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Chapter 8
Conclusion

In this paper we have compared two distinct learning curve extrapolation
techniques, i.e., the parametric model MMF and the meta-learning model
MDS. Additionally we have included a baseline which takes the perfor-
mance at the last anchor of the learning curve as its prediction.

We have performed this comparison across different extrapolation set-
tings. In these settings we vary the availability of data for the extrapo-
lation, the size of the target anchor, and the prediction objective.

From this comparison we find that, for both prediction objectives, MDS is
the better performing extrapolation technique when little information is
available on the learning curve. While due to the amount of settings it is
hard to exactly quantify, loosely speaking MDS will perform better than
the other techniques when the largest anchor in the curve segment is up to
a 5th or 10th the size of the target anchor. Once more data becomes avail-
able, both MMF and the baseline generally outperform MDS. This goes
to show that, with more data available it is better to rely on a parametric
model, or just the last anchor, and with less data available it is better to
rely on a meta-learning model.

We find that, when predicting which of two learning algorithms is better,
the parametric model is often outperformed by just using the information
available on the last anchor. However, this is not the case when the objec-
tive is to find the exact value of the learning curve at the target. In that case
the parametric model outperforms using just the last anchor in almost all
cases.
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42 Conclusion

Lastly we find that these results also hold true for the HIGGS dataset and
can thus be used in the context of machine learning for particle physics.

Interesting further research could be

1. A conditional analysis that depends on the learners.

2. Including other parametric models in the analysis.

3. To study the impact of weights in the techniques. Here we used an
exponential decay of older anchors.

4. Performing the evaluation not in terms of curve segment / target
anchor combinations, but in therms of difficulty.

5. Including multi-class case in the analysis, where the goal is to predict
a ranking of the learning curves.

42
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Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim
Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke,
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Appendix A
Additional figures

In this appendix we provide additional and alternative results. For the
regression setting we provide plots for the first and second aggregation
individually for each learner. We also provide an alternative to Figure 6.2
where the mean is taken over the learners binary pairs instead of the
datasets. Lastly we provide the absolute performance instead of the rel-
ative performances seen in Figure 6.3.

In Figures A.1 to A.6 we use boxplots to show the distribution of the ab-
solute error for 3 different fixed curve segments and a fixed target anchor
size of 4096. This distribution is taken over the 248 datasets.

In Figures A.7 to A.10 we again fix the target anchor to a size of 4096 but
now we increase the curve segments. Instead of the entire distribution we
only show the mean over the datasets. This results in a curve which we
show individually for each learner.

In Figure A.11 we take the mean over the learners in the regression pre-
diction setting, and binary pairings in the binary prediction setting. The
distribution is then shown over the datasets. This is done the other way
round in Figure 6.2.

In Figure A.12 we display the absolute performances of the extrapolation
techniques instead of the relative performances, as was done in Figure 6.3.
As before, blue indicates a low value and red a large value.
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Figure A.1: Relative performances of extrapolation techniques per learner for
fixed target and curve segment in the regression prediction objective.
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Figure A.2: Absolute performances of extrapolation techniques per learner for
fixed target and curve segment in the regression prediction objective.
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Figure A.3: Relative performances of extrapolation techniques per learner for
fixed target and curve segment in the regression prediction objective.
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Figure A.4: Absolute performances of extrapolation techniques per learner for
fixed target and curve segment in the regression prediction objective.
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Figure A.5: Relative performances of extrapolation techniques per learner for
fixed target and curve segment in the regression prediction objective.

SVCl SVCp SVCr SVCs xTrs GrBo rFor LogR PaAg Perc Ridg SGD Bern MuNo KNei MLP dTre xTre linD QuaD
Learner

0.00

0.05

0.10

0.15

0.20

Ab
so

lu
te

 e
rro

r

MDS
MMF
Last

Last anchor in curve segment: 91, Target anchor: 4096

Figure A.6: Absolute performances of extrapolation techniques per learner for
fixed target and curve segment in the regression prediction objective.
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Figure A.7: Individual performances of extrapolation techniques for moving
curve segments and a fixed target anchor in the regression prediction objective
for 5 learners.
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Figure A.8: Individual performances of extrapolation techniques for moving
curve segments and a fixed target anchor in the regression prediction objective
for 5 learners.
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Figure A.9: Individual performances of extrapolation techniques for moving
curve segments and a fixed target anchor in the regression prediction objective
for 5 learners.
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Figure A.10: Individual performances of extrapolation techniques for moving
curve segments and a fixed target anchor in the regression prediction objective
for 5 learners.
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Figure A.11: Performances of extrapolation techniques for moving curve seg-
ments and a fixed target anchor of size 4096. Thick lines represent the aver-
age, dotted lines the median, and the shaded areas show the interquartile per-
formances.
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Figure A.12: Absolute performances of extrapolation techniques for moving
curve segments and target anchors. The left column uses the risk as metric with
an upper bound of 0.02, the middle the binary error with an upper bound of 0.3,
the right the absolute error with an upper bound of 0.15. Each has a lower bound
of 0.
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