Universiteit

4 Leiden
The Netherlands

An educational program on magnetic resonance for students
Hoekstra, Alex

Citation
Hoekstra, A. (2023). An educational program on magnetic resonance for students.

Version: Not Applicable (or Unknown)
) License to inclusion and publication of a Bachelor or Master Thesis,
License: 2023

Downloaded from: https://hdl.handle.net/1887/3674221

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/license:7
https://hdl.handle.net/1887/3674221

An educational program on
magnetic resonance for students

THESIS

submitted in partial fulfillment of the
requirements for the degree of

BACHELOR OF SCIENCE
in

PHYSICS
Author : Alex Hoekstra
Student ID : 52033283
Supervisor : Dr. ML.I. Huber
2" corrector : Dr.ir. PSSW.M. Logman

Leiden, The Netherlands, December 15, 2023

An educational program on
magnetic resonance for students

Alex Hoekstra

Huygens-Kamerlingh Onnes Laboratory, Leiden University
P.O. Box 9500, 2300 RA Leiden, The Netherlands

December 15, 2023

Abstract

In this project, the simulation software MRI2D was developed. It is a
program that allows students to simulate the motion of spins during the
magnetic resonance imaging experiment. Already available tools did not
model multiple spins rotating to image tissues. Besides filling this niche,
other design requirements were taken from existing educational tools. All
requirements have been met. MRI2D is open-source software and can be

downloaded for free. It comes with a manual for downloading and
installing and three example exercises directly for classroom use. MRI2D
is ready to now be implemented in education. Further development
suggestions are given.

Contents

Introduction

Background

2.1 Equations for simulating MRI with compass motion
2.1.1 Physics for a compass: harmonic oscillator
2.1.2 Relevant MRI mechanics and equations

2.2 Physical demonstrations
221 MRI scanner

2.2.2 Existing physical magnetic resonance demonstrations

2.3 MRI computer simulation approach

2.3.1 Choice of programming language and graphics library

2.3.2 Existing MRI simulation software
2.4 Education theory
2.5 Summary of design requirements

Methods - Structure and design of MRI2D

3.1 Developing a program
3.1.1 Interpreted language or compiled language
3.1.2 Code structure
3.1.3 Developing and organising code

3.2 MRI implementation
3.2.1 Simulation physics (S.1,S5.2,5.3,5.4, S.5)
3.2.2 Visualizing resonance (5.3, S.4)

3.2.3 Integration of model and graphics into one program

3.2.4 Interpretation of units in MRI2D
3.3 Implementation of requirements regarding ease of use
3.4 Exercise development

p—

—_ O 0 O 0 0 NI 01 W WwWwWw

—_

NN DNDNDNRFR PR 2 2
O ON Ul O IJO W WwWWw

vi CONTENTS
4 Results 31
4.1 Fulfilment of simulation requirements 32
4.1.1 Resonance without tissue (S.1,5.2,5.3,5.4) 32
4.1.2 Resonance with tissue (S.5) 33
4.2 Fulfilment of educational requirements 34
4.2.1 Safe and robust (E.1) 34
4.2.2 Available (E.2) 35
4.2.3 Affordable (E.3) 35
424 Easily distributed (E.4) 35
4.2.5 Flexible in use (E.5) 35
4.3 Possible demonstrations using MRI2D 36
43.1 Exercise 1: Demonstration of magnetic resonance 36
4.3.2 Exercise 2: Determine resonance frequency and mag-
netic field correlation 36
43.3 Example answer to exercise 2 38
434 Exercise 3: Performing an MRI scan with MRI2D 39
43.5 Teacher only: Defining tissues 40
43.6 Exercises tested 40
5 Discussion 43
5.1 Simplification of spin precession frequency for modelling 43
5.1.1 Dimensions of precession in MRI2D 44
5.1.2 Complications with modelling precession frequency 44
5.2 Possible code environments 45
521 Other approaches to Object-Oriented Programming
in Python 45
5.2.2 Possible structure improvements when using other
applications for Python 46
5.2.3 Choice of download format 46
5.3 Education research 47
5.3.1 Suggestions for testing MRI2D education effectiveness 47
5.3.2 Possible exercises to be developed 47
6 Conclusion 51
A User guide 57
A.1 Installing the program 57
A.2 Running the program 58
A.3 Graphical user interface 58
A.3.1 Runtime screen 58
A.3.2 Analysis screen 59

vi

CONTENTS vii

A.4 Magnetic Resonance Exercises 61
A.4.1 Exercise 1: Demonstration of magnetic resonance 61
A.4.2 Exercise 2: Determine resonance frequency and mag-
netic field correlation 61
A.4.3 Exercise 3: Performing an MRI scan with MRI2D 62
B Video demonstration details 63

B.1 Measurement 1: Resonance frequency at By magnitude 0.5T 63
B.2 Measurement 2: Resonance frequency at By magnitude 1.0 T 64

C Python code 65
C.1 Initialisation: Help programs 65
C.2 Simulation 66

C.21 Main program 66

C.2.2 Programs containing essential classes and functions 70

Vil

Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is an important imaging technique,
as it is used for diagnosing diseases in the brain, heart, muscles and more
organs because of its ability to image soft tissues with great detail, in any
direction and without ionizing radiation. However, MRI scans take longer
than other medical imaging techniques e.g. ultrasound [1]. The longer
duration can lead to patient discomfort, especially because MRI scanners
are cramped spaces and make loud noises during a scan.

Most people do not know how MRI works, some are even afraid of
electromagnetic fields in general [2] [3]. Education can help alleviate these
fears, but MRI education has a problem. Aside from the general pub-
lic, there are non-physics students that need to understand MRI for their
field, and they already find the underlying physics of Nuclear Magnetic
Resonance (NMR) difficult, especially spin-magnetic field interactions [4].
Therefore we will develop a tool that can help explain these physics.

There is a natural need to simplify the situation to explain an aspect of
a complicated topic well. When isolated, spin-magnetic field interactions
can be fully explained, and still be helpful in understanding the whole
subject later. Compasses are very useful in teaching students magnetic
resonance as they are the simplest representation of the spin of an electron
or nucleus [5] [6].

Another demonstration with compasses used it as a stepping stone to
software further explaining the quantum nature of MRI [7]. They found
that this was possibly too big a step, and more support is needed. Es-
pecially measuring the frequency better was suggested to give students a
better idea of how to create the resonance condition. Software can help in
this regard, as all physical constants can be scaled to make the frequency
easy to see, and the exact motion can automatically be recorded on the

1

2 Introduction

computer.

That need for clarity is why we developed MRI2D, a program that em-
ulates MRI quantum mechanics with a classical physical model to bring
the advantages of software to education with the compass analogy.

In this thesis, we will explain which aspects of MRI quantum mechan-
ics we simulate, the design requirements based on the gaps left by avail-
able educational demonstrations and programs, which tools and techniques
were used to develop MRI2D, and how to use our program in education.

This thesis is structured as follows: in chapter 2 the choice of approach
is discussed by exploring the physics and the relevant existing resources,
leading to design requirements. In chapter 3 the design requirements
are specified and quantified further by discussing their implementation,
which means section 3.3 and section 3.4 are the only sections suitable for
readers who do not have experience in programming. In chapter 4 the de-
sign requirements are tested and the behaviour of the program is shown.
In chapter 5 choices in development are discussed and compared to alter-
native options, accompanied by suggestions for future research and devel-
opment. In chapter 6 a brief summary of the results of this thesis is given
and contextualised.

Chapter 2

Background

In this chapter we will be looking at established literature covering reso-
nance physics, MRI demonstrations, MRI simulation software, and educa-
tion theory to determine design requirements for MRI2D.

2.1 Equations for simulating MRI with compass
motion

In this section, we will connect the physics of a compass to the quantum
mechanics of MRI. First we explore how forces create different kinds of
oscillators and what their resonance frequencies are. Then the importance
of the Larmor frequency for MRI is explained using the relevant quantum
mechanics.

2.1.1 Physics for a compass: harmonic oscillator

The compasses are placed in two magnetic fields, which we call By and
B; to relate it to the MRI principle, despite some differences in the setup.
One strong static field (Bp) is present, which aligns the compasses with
this field, as it is much stronger than the earth magnetic field. These fields
differ by three orders of magnitude, as they are roughly 1073 Tvs 107 T.
This By alignment is caused by the magnetic torque T experienced by the
compass with a magnetic moment 71, pointing from south to north of the
compass, when written as vector, in a field By:

T = i x B 2.1)

3

4 Background

Then a second magnetic field (B;) is used to cause an excitation. The
result is that these moments can be summed to give the total torque the
compass experiences:

T = W x By + i x By (2.2)

The trick of this setup consists of the fact that the magnetic fields are
orthogonal to each other. When writing out the cross products (assuming
By is along the x-axis and B; along the y-axis, we can calculate that the
resulting torque component in the z-axis now is:

. . (T
T, = mBysin (—60) + mBjsin <§ — 9) (2.3)

When ignoring friction, as compasses are built in a way to minimise

the friction of the rotation, the equation of motion then becomes:

J6 = mBysin (—6) + mB; sin (g—e) (2.4)

To estimate the resonance frequency for small excitation angles 0, we
can use the following approximations:

sin(—0) ~ —6 (2.5a)
sin (g — 6) = cos(f)~ 1 (2.5b)

Substituting these approximations in equation 2.2 gives:

J O = —mBof + mBy(t)
J 6 + mByd = mBy(t)
mBog _ mBy (t)
J J

The left side can be solved to arrive at the resonance frequency of this
harmonic oscillator:

wzzmT&)@w:«/mT&)@ZNZMmTBO (2.7)

Thus the expression for the resonance frequency in Hz becomes:

. 1 mBo
f=5- T (2.8)

(2.6)

0 +

2.1 Equations for simulating MRI with compass motion 5

However, this is for a zero-friction situation. In this zero-friction sit-
uation, frequencies other than the resonance frequency are not damped
out and would continue to be present in the oscillations of the compasses
making it harder to distinguish the resonance frequency from the other
frequencies. Therefore, introducing a little friction adds to the realism and
facilitates finding the resonance frequency.

Introducing friction also affects the resonance frequency:

J6 = —mByd — k6 + mBy(t)
JO + kO + mBy® = mB(t)
k . mBo mBl()

0 + 79 5
2.9
o mBo (2.9)

4mBo
k?.
4 m BO * Who friction

This shows that when the damping constant k, used to simulate fric-
tion, is sufficiently small in comparison with mBy/ |, the effect on the reso-
nance frequency is minimal. On top of that, a compass demonstrator also
only shows the principle of magnetic resonance and not the actual values
as in an MRI experiment, so this is not considered to be a problem while it
increases the realism of the simulator.

Thus compasses are able to demonstrate the principle of magnetic reso-
nance, despite the compasses oscillating in the same plane as the magnetic
fields. Insofar they differ from the three-dimensional precession of spins.
Its 2D character also makes it suitable for a digital demonstrator on a 2D
screen, where the students can set and interact with the values of strength
of the magnetic fields and the frequency of the excitation signal B;(t) in-
teractively to verify this principle and see its effects and sensitivity to the
settings. Added benefits are the configurable friction and also that other
physical quantities and constants can be changed easily.

0 —

2.1.2 Relevant MRI mechanics and equations

For MR, the only particle we have to look at is the proton. As a hydrogen
nucleus, it mostly is present in water but also in lipids. A proton has an

intrinsic angular momentum P, which gives rise to a magnetic moment ji

5

6 Background

due to the charge of the proton. The value of this magnetic moment is de-
cided by the intrinsic angular momentum, also known as spin, multiplied
by the gyromagnetic ratio +y.

ji =P (2.10)

When a nucleus is placed in a magnetic field, its magnetic moment
will align at an angle of 54.7° with By and precess around By as shown in
Figure 2.1. The spin can also point in the opposite direction, but that is the
higher energy state, so it will be less populated in equilibrium.

torque created

c®

]
]
]
]
v
a b gravity

Figure 2.1: Precession: quantum (a) and classical (b). Torque is created when a
rotating object is not aligned with a vertical force, causing precession. Page 209

[1]

The rate at which this precession occurs is called the Larmor frequency.
Via the cross product of ji and By, the Larmor frequency is found:

w =2nf =By (2.11)

While all the protons in a sample or patient are indeed precessing around
By as described (with a small number in the opposite z-direction), they will
not be in the same phase. This means the net magnetization of all the pro-
tons in equilibrium is simply a positive z-component.

The forces leading to this equilibrium being the lowest energy state
depend on the surroundings of each particular proton. This means that
when they are brought out of equilibrium by an electromagnetic field B,
perpendicular to By, the time it takes them to return to equilibrium reveals

6

2.2 Physical demonstrations 7

information about the surroundings of each proton. In clinical MRI this
aspect is used to differentiate between healthy and diseased tissues [1].

Perpendicular magnetic fields, and tissue differences leading to differ-
ent relaxation times in MRI brings us to our first two design requirements
for MRI2D.

Our simulated spins should be exposed to two perpendicular adjustable
magnetic fields By and By (5.3) whose excitations cause different motion de-
pending on the tissue (S.5) each spin is a part of. We number each design re-
quirement for easy reference in following chapters. The S denotes design
requirements that are related to the simulation of physics, which make
up one of two types of design requirements we specify, the other being
requirements relevant to ease of use in education.

2.2 Physical demonstrations

2.2.1 MRI scanner

Real MRI scanners may seem the best choice for MRI education, but the
request for MRI education alternatives wouldn’t be as large if it were that
simple. There are indeed many advantages to working with the device it-
self, since every part of the experience should be valuable as training.Hence
the downsides listed here will be of a logistical nature, not about the sim-
ulation physics.

One of the concerns with full-scale MRI scanners is safety [8]. Intricate
safety procedures are harder to follow with younger or larger groups of
students. Failure to follow these procedures could result in injuries [9].

This led to our first educational design requirement (E.1): our design
should be safe and robust. Any accidental misuse should not have serious
consequences.

The second hurdle for demonstrations with a real MRI scanner is the
varying degree of availability of these devices. Efforts to reduce waiting
lists for patients show the limited availability of MRI scanners in time [10].
Besides the aspect of time there is an aspect of travel distance as well.

The design intended in this thesis therefore must be readily available,
preferentially at the educational institution itself (E.2).

The final problem with MRI scanners is the price. With prices ranging
from 30,000 to 700,000 euros, purchase is rarely feasible for use only in a
purely educational setting [11]. Smaller systems unfit for imaging human
bodies can be used for education to reduce costs. For example, an NMR

7

8 Background

spectrometer has been used for imaging small samples, letting students
get acquainted with signal processing [12]. A spectrometer for Electron
Paramagnetic Resonance (EPR) has also been used by students to study
the influence of coils on a magnetic resonance image [13]. Such a device
could already be present in an institute for its intended research use, but
otherwise it would likely still be too costly to acquire solely for MRI edu-
cation.

Existing magnetic resonance hardware is too costly for educational in-
stitutes, our design should use more affordable options (E.3).

2.2.2 Existing physical magnetic resonance demonstrations

Educational setups for magnetic resonance do not have the high require-
ments that professional instruments do. One option would be to build an
EPR spectrometer instead of purchasing one [14]. This line of thinking
could be taken further, by simplifying the device to its constituent parts,
a functional setup can be constructed with more standard lab equipment
[15]. Reducing the amount of specialised tools solves monetary concerns,
but both of these described methods require considerable time to prepare
before the setup can be used by students. Preferably, each student should
be able to work on their own unit.

As such, it should be easy to distribute multiple copies of our design (E.4).

That distribution requirement pushes us away from spectrometers, so
we will take a look at simple physical models of quantum mechanics. A
variety of options for simulating the effects of magnetic fields on a single
spin have been developed over the years. Rotation of a magnet in a plane
has allowed studying the resonance frequency in different magnetic field
strengths against the torque of a glass fibre suspension [16]. Later three-
dimensional demonstrations of single spins were created, using airflow to
suspend a ball with almost no friction that would inhibit easy rotation [17]
[18].

The niche that seems unfulfilled is a setting that allows for multiple nuclei
to be observed at the same time (S.2). Gradients in magnetic fields could then
be used to show the difference in behaviour that leads to the signal in MRI
more clearly, without requiring parameter changes. A grid of nuclei could
also be used to represent the pixels of a very low resolution image.

2.3 MRI computer simulation approach 9

2.3 MRI computer simulation approach

2.3.1 Choice of programming language and graphics library

Software is an easy first option to fulfil our requirements. An important
choice in developing software is choosing the programming language.
Which of the languages, such as C, C#, C++, Java, Python would be the
best option is not explored here, as the author was already proficient in
Python with little experience in the other popular choices and the Leiden
Institute of Physics uses Python in education.

Other considerations when picking a programming language are dis-
cussed in section 3.1.

Of course, visualization tools are also needed. Building a program
for displaying graphics from the ground up is unnecessary in Python,
as Pygame offers modules allowing the Simple DirectMedia Layer (SDL)
library to be accessed smoothly [19]. This is not a novel choice, since
Pygame has been a popular choice for physics simulations for some time
now [20] [21] [22] [23] [24].

2.3.2 Existing MRI simulation software

A wide range of MRI simulation software is already available. This means
requirements should be chosen such that our program is filling a gap, to
ensure it adds to the existing software.

Our exploration of physical demonstrations in subsection 2.2.2 ended
with setups using a single ball with a magnet embedded. A software
equivalent of that kind of experiment has already been developed [25].
This software leads us to the same requirement as the physical demon-
stration did: our program should feature multiple nuclei in a grid to offer
something new. That kind of simulator was found to complement tradi-
tional education [26]. This affirms our choice for the software approach in
an educational environment.

Other software has visualised what happens with the data gathered
in MRI scans as fully as possible [27]. Especially training software that
helps in teaching the interpretation of images is abundant [28] [29] [30].
While images do represent reality, putting too much focus on images and
the layout of tissues skips important steps in the complicated concepts

9

10 Background

behind MRI. Software that helps explain how received frequencies lead to
an image via Fourier transform already exists [31].

The existing simulation software thus reduces our niche to exploring
the quantum mechanics generating these frequencies. To accomplish that,
our model will have to describe the situation in the time and space domain
(5.1), before Fourier transforms to and from the frequency domain.

Finally, there is one simulation in the literature that seems to conform
to most of the requirements listed [32]. The PhET project offers many dif-
ferent simulations in many fields of physics, but for us the relevant sim-
ulation is named Simplified MRI. It offers a grid of nuclei in adjustable
magnetic fields. And, to demonstrate how MRI interacts with different
kinds of tissue, it simulates tumours as more densely packed nuclei with-
out changing any of the resonance characteristics. As described in subsec-
tion 2.1.2, we will aim to show that nuclei in different tissues resonate at
different frequencies.

Our software will differentiate itself from the simulations by fulfilling
all previous requirements in addition to showing visible oscillations of nuclei
(5.4). We can simulate the spin motion instead of having a quantum me-
chanical like Simplified MRI where motion is omitted in favour of energy
levels. Our approach should allow students to get a grasp of the magnetic
resonance phenomenon as required to understand MRI, without requiring
abstract quantum mechanical knowledge.

2.4 Education theory

In the interest of the educational value of the software that will be devel-
oped, it would be wrong not to take research in physics education into
account.

The last mentioned existing software in subsection 2.3.2 has already
given some brief insight and general suggestions for the use of an MRI
simulation in education. Most importantly, it is indicated that there must
be a balance between letting students discover by themselves and giving
them guidance [32].

The importance of freedom in choices from a psychological perspec-
tive is well documented. Self-determination theory explains the value of
autonomy for well-being [33].

What we can learn from this is that giving students freedom is paramount
to the usefulness of a simulator. Instruction can always be made more ex-

10

2.5 Summary of design requirements 11

plicit by detailed exercises or teachers. Software programmed with a re-
strictive lesson plan can never be used freely, while flexible software can
be accompanied by any level of guidance.

To ensure software can be used in education with the optimal balance
of freedom and guidance, the software itself will have to allow users to make
a lot of choices (E.5). These choices must also be presented to students with-
out the need for much explanation; if they are not aware of options they
can use, they will not profit from the possibilities those options offer.

2.5 Summary of design requirements

Table 2.1: All described design requirements categorised in the order of devel-
opment and testing (not the order in which they were described above). The
rightmost column lists numbers for referencing.

Category Requirement #
Simulation Time domain S.1
Simulation Multiple nuclei S.2
Simulation | Adjustable magnetic fields | S.3
Simulation Visible resonance S4
Simulation Tissue differences S.5

Educational Safe and robust E.l
Educational Available for education E.2
Educational Affordable E.3
Educational Easily distributed E.4
Educational Flexible in use E.5

All requirements are described in more detail in chapter 3.

11

Chapter 3

Methods - Structure and design of
MRI2D

The design requirements (see section 2.5, Table 2.1) that arose from the
analysis and overview of existing approaches in chapter 2, are specified
further when necessary as their implementation is discussed.

In section 3.1 context is provided for choice of software and strategy
used for developing the program, useful to readers looking to develop
programs themselves. The most technical text is in section 3.2, where the
code implementing each requirement is discussed for experienced pro-
grammers who want to understand the whole program. In section 3.3 the
educational requirements are quantified, making this section suitable for
researchers and teachers. For readers planning to develop their own ex-
ercises with MRI2D, section 3.4 describes how the example exercises (sec-
tion A.4) were developed in detail.

3.1 Developing a program

3.1.1 Interpreted language or compiled language

Python is an interpreted language, unlike C, C#, C++ and Java. That
means an interpreter simply reads the program in the order it was written
and executes the program in the same step. This is different from a com-
piled language, which uses a compiler that first translates the code into
another language before it can be executed. Compiled languages can exe-
cute faster, but the compiling takes a lot of time. Compilers tend to be the
choice for commercial products that go to non-programmers, as the code

13

14 Methods - Structure and design of MRI2D

will not be edited, and it will be run many times. Interpreted languages
are thus often preferred by scientists who write scripts for analyzing their
data, since it is closer to a one-time use program, or it is edited before be-
ing used again. An edited program would have to be compiled again if
created with a compiled language [34].

To summarise the difference: interpreted languages are faster with writ-
ing or editing time included, while compiled languages could be faster if
run by a large amount of clients unfamiliar with programming.

3.1.2 Code structure

Interpreted languages lack the kind of code check that compiling has. Sim-
ply writing a long list of instructions for the computer without structure
leads to code that is very difficult for people to understand. The first step
to make a program more readable, is to put a subroutine that is used of-
ten inside a function. This way, instead of repeating the code each time,
the function can be called. Not only does this reduce the size of code, but
by giving the subroutine a comprehensive name people will more easily
understand the actions the program performs. Functions take in variables
called arguments, and from this they can produce an output.

If functions need to take in and edit the same groups of variables, it
gets tiresome to write and hard to read when every output variable needs
to become the input (arguments) for other functions. Added difficulty in
writing and reading can lead to more bugs and slower debugging for the
programmer themselves, and make it even harder for other people to work
with the program. Therefore we place the functions in a structure with the
variables they often output and need as input. This categorises variables
in a group, and show more clearly what the difference is in arguments
needed for different functions (because the large group stays the same and
need not be mentioned explicitly, any variables from outside the group
will stand out as arguments).

Object-Oriented Programming (OOP) can be used in Python to give a
program this described structure. A structured program is easier to de-
velop, debug and maintain, because OOP gives you the ability to easily
test smaller parts of the program separately.

As alluded to, OOP can categorise code even further than functions by
using Classes. Classes contain attributes and methods. Attributes are vari-
ables inside the class, methods are functions inside the class. The different
names exist because methods can access attributes without each attribute
needing to be listed as an argument. The way to program OOP is to make

14

3.1 Developing a program 15

clear choices on how to split your code into Classes. There is not neces-
sarily one way to do this correctly, as long as it leads to good performance
and readability. More on possible OOP structures in subsection 3.1.3.

On top of providing graphics support at a low level, Pygame offers the
Sprite module as an option for OOP. Sprite Classes assume you will create
an instance of the Class for each object on the screen. The benefit of this
approach is access to Sprite’s support of collision detection and rendering
groups. Both of those benefits are only relevant to programs where the
elements on screen can move in such a way that they can overlap. As
stated before, our program will have nuclei locked in a grid, able to rotate
but not translate, therefore gaining no benefit from what the Sprite module
offers. If another structure has advantages for our program, it should be
used instead of the Sprite Classes. The chosen OOP structure without the
Sprite module will be discussed now along with the implementation of all
requirements.

3.1.3 Developing and organising code

Object-Oriented Programming (OOP) was used to develop a structured
program in Python. However, the structure is different from the Pygame
Sprite classes mentioned in the previous section. This project does not
have many different types of elements on the screen, rather many ele-
ments of the same type: nuclei are the only type necessary. Also, the
same equations are used for all nuclei, only with different numbers. The
data structure that Python offers for vectorised calculation is NumPy ar-
rays. Since the Pygame examples outline a different use case, the Sprite
module is not compatible with NumPy arrays in this way. Not taking
advantage of this vectorised calculation that Python offers would mean a
slower program, therefore another structure was used, shown in Figure 3.1
where graphics.py uses Pygame modules and model. py takes advantage
of NumPy arrays. The precise content of the python files is described in
detail in section 3.2.

15

16 Methods - Structure and design of MRI2D

PowerPoint
Help programs: | ptt2py.py:
b01-b04, b11-b14,... BO, B1, freq
settings.py:
BO, B1, freq
}
RunSim.py > sim.py:
Initialize/create instances of:
graphics.py: GUI class
clock() Model class
Arrowimg: update Plotter class
GULI: textpanel, Simulation loop:
drawarrows, clock()
clearscreen, plotter.tableupdate
updatescreen,
getkeys update time, if > timestep:
model.update
model.py.: gui.clearscreen
Model: readtissue, gui.textpanel
force, update gui.drawarrows
gui.updatescreen
plotter.py: gui.getkeys: All user interactions
Plotter: tableupdate,
tabletreset, plotdata plotter.plotdata

Figure 3.1: File structure of the code, following object-oriented programming.
Pygame is used most in graphics.py and NumPy is used most in model.py. The
simulation requirements are implemented as methods in model.py and graph-
ics.py, which are called in sim.py.

16

3.2 MRI implementation 17

3.2 MRI implementation

The way simulation requirements were implemented is explained in this
section. To do that, the code is described in detail, particularly the Model
class in model . py and the GUI class in graphics. py.

One instance of the Model class handles all physics calculations, satis-
tying all simulation design requirements (5.1, S.2, 5.3, S.4 and S.5).

The Graphical User Interface (GUI) in MRI2D is the only instance of the
GUI class, part of which helps with the implementation of two simulation
requirements: S.3 Adjustable magnetic fields by providing buttons and the
current values, and S.4 Visible resonance by displaying spins at the right
angle at every moment as calculated by the Model class.

3.2.1 Simulation physics (S.1, S.2, S.3, S.4, S.5)

The simulation can quickly be summarised as a grid of compasses (arrows)
representing nuclei, influenced by two perpendicular magnetic fields By
and By. By is the driving magnetic field, which means its strength increases
and decreases according to the B frequency controlled by the user.

The Model class in model.py holds the code representing physical re-
ality. This means the five simulation requirements are implemented here,
except for some visual aspects of requirements S.3 and S.4.

The Model class is the only content of this file. It contains four methods
(Constructor, readtissue, force and update) to calculate the necessary
physics.

Before diving into the explanation of these methods, let us clarify what
the necessary physics mean in terms of the simulation requirements.

The Model class is built around the force method, which calculates
the torques compasses experience due to the magnetic field at that mo-
ment; constantly changing as a result of the driving magnetic field B;. The
torque returned by the force method leads to an acceleration in the update
method, which is integrated to an angular velocity, in turn integrated to
an angle change for each timestep. This chain integration to evolve angles
through time step by step is intended to satisfy the requirement for time
domain simulation (S.1).

The other simulation requirements are also implemented in the code
delivering NumPy arrays to the force method for vectorised calculation
described at the beginning of this section. The Constructor®, always the

*Represented in Python by __inif__. The underscores indicate it is a hidden method,

17

18 Methods - Structure and design of MRI2D

first method of the class, initialises magnetic fields with perpendicular gra-
dients to match their orientation. This should let each compass experience
a unique magnetic field (5.2).

As mentioned before, the implementation of magnetic fields that are
adjustable during simulation (S.3) also involves code in graphics.py, but
for model . py it entails the force method accepting magnetic field arrays as
an argument, instead of always using the same arrays whose initialisation
was just mentioned.

Visible resonance (S.4) also depends graphics.py, but our work with
the equations in section 2.1 showed that compasses experiencing torque as
implemented in the force method should lead to resonance.

For the final simulation requirement, the Constructor calls on readtissue
to implement the tissuemask array chosen by the user. It alters the torque
arrows experience in the update method accordingly. Because the update
method is run every frame, this effect of tissue differences will be present
throughout the simulation run giving nuclei in different tissues different
resonance frequencies (S.5).

Table 3.1: Parameters for the constructor of the Model class grouped according
to their purpose, which is described in the second column.

Parameters Description
bOset, blset, flset | Starting values for the three configurable quantities
m,n Dimensions of the arrow grid
Xmax, ymax The largest coordinates available to the grid in terms of pixels
tissuefile Which optional phantom (tissuemask) is used
gui The instance of the GUI class, concerning graphical operations
model.py

With that in mind, let us look at the methods in the Model class:

e Constructor(bOset, blset, flset, m, n, xmax, ymax, tissuefile,
gui):
As described in Table 3.1, the first three arguments are the initial
values of the magnetic fields; By magnitude, B; magnitude and

not for use outside of the class. It initialises attributes: variables inside the class. It is
called upon when an instance of the class is created.

18

3.2 MRI implementation 19

B; frequency. Next follow the dimensions of the grid of arrows,
the position of the grid on the screen, a possible tissue to simulate
and an instance of the next class to be discussed, the GUI class.
With all of those parameters an instance of the Model class can
be created: a Python object that governs the arrows, fields and
tissue using the methods discussed next. For more realistic be-
haviour, not every compass arrow is exactly identical: some vari-
ation ("noise”) is added to simulate minor variations in magnetic
moment or inertia. Angles and angular velocities are initiated at
180 degrees (down) and zero speed. Using the screen size and
the dimension of the arrow array (m,n), each arrow is placed at
their screen coordinates to form a grid. The actual images of the
rotated arrows are stored in the imglist with bitmaps for com-
putational speed, this process is part of the GUI code discussed
later.

e readtissue(tissuefile):

If a tissuefile is selected, this reads one of the .tis files from the
data folder to create the tissuemask.These files each contain an
array of factors, simulating the effect of different kinds of tissues
on magnetic behaviour. A tissue file is disguised to hide them
from students by using the .tis extension, where it is in fact a
simple comma separated value file (.csv) which can be edited in
any text editor. 1 is the normal value, expectations for different
tissues are between 0 and 1.

e force(bx, by, theta):
This function takes in 3 arrays By, B; and theta. All three arrays
contain unique values for each arrow. Using these, it returns the
torque on each:

construct magnetic vector in polar coordinates
forcerad = np.arctan2(by, bx)
forcemag = np.sqrt(bx ** 2 + by *x* 2)

convert to radians for sine

thetarad = theta / 360 * 2 * np.pi

anglediff = thetarad - forcerad

for sine, so outside of O to pi domain is fine

19

20 Methods - Structure and design of MRI2D

force = forcemag * np.sin(anglediff)
return force

e update(tsim, dt):
This function contains the numerical integration for the time
step tsim to tsim + dt. First it gets the forces on the arrows, to
calculate the accelerations. With the accelerations, the angular
velocities are updated. Then the arrows are rotated. Finally, the
bitmaps are also updated by calling the update function of the
arrowlist for each arrow.

dt is the time a frame stays on screen. Due to time control
in sim.py, dt can be as small as the computer allows or if the
computer is very slow, MRI2D sets the simulated timestep to
maxdt, a tenth of a second, in which case simulated time becomes
different from actual time. Setting a maximum limit is necessary
because real physics doesn’t have timesteps: a slow computer
with noticeable timesteps would not be an accurate simulator.
Often operating systems have a minimum of a hundredth of a
second [35]. Therefore MRI2D has a framerate in between 100
Hz and 10 Hz in simulated time.

Also note that while angular velocities refers to an array, the ve-
locity per arrow is a scalar whose sign indicates direction. The
dimensionality of the velocities array is there only because of the
grid.

3.2.2 Visualizing resonance (S.3, S.4)

The visual aspects of the program are handled in graphics.py, in the Arrowimg
class and the GUI class. Arrowimg handles the compass motion, while
GUI connects user input to the physics simulation and displays the result
of the physics calculation by using Arrowimg.

Setting up, clearing and drawing the screen requires a lot of code.
graphics.py is the file with the most lines. The size does not necessarily
make it the most important, since most of this code is standard Pygame

20

3.2 MRI implementation 21

syntax and screen coordinates for the images.

The two requirements whose implementation depends on graphics.py
also are magnetic fields being adjustable during simulation (S.3), and res-
onance in motion being visible (S.4).

The getkeys method of GUI changes the values of magnetic fields if
the user clicks on buttons on screen, or uses the keyboard shortcuts.

Rendering the resonating motion of compasses is a task for the entire
program, but for the most relevant code, the Arrowimg class is called in
model.py as discussed earlier. GUI’s Constructor creates imglist, a list of
360 rotated arrow images with which the Arrowimg object is initialised.
The images are rotated before the program fully starts to save computa-
tion time when the program is running. The GUI’s drawarrows method
contains code to draw (”blit”) every arrow in the list on the screen.

graphics.py

The purpose of graphics.py is to show the runtime screen. Most of the
code is inside GUI, but graphics.py also contains:

e clock function:
Pygame measures in milliseconds, this function converts to sec-
onds. A very simple and short procedure, but otherwise this con-
version would have to be done for each physics equation. A func-
tion named clock and time in seconds will both make the program
more readable.

o Arrowimg class:
Most of the arrow graphics. This class handles the image and the
Rect from Pygame. Needs the imglist so it can quickly update
an arrow to the correct angle; loading a premade image is fast,
unlike creating a rotated image from the original.

— update method: takes in any float theta and loads the near-
est integer angle, as imglist contains 360 images.

The GUI class is defined which can set up, clear, update and draw the
screen. The constructor of GUI initialises the following members:

e The Pygame graphics library

21

22

Methods - Structure and design of MRI2D

e The screen (set-up)

e 360 pre-rotated images of which the closest to the calculated an-
gle is chosen

e Bitmaps of display panel with indicators and buttons for mag-
netic field strength

e Switches (toggle buttons) for turning the magnetic fields on/off
e Positions of display panel and button

e Font objects
The functions/methods of this class are:

e textpanel(self,b0mag,blmag,blfreq,bOon,blon):
Displays the text panel, the keyboard controls on the left, the
Bo/B; on/off buttons and the RESET button on the right.

e drawarrows(self,arrowlist,m,n):
Goes through the nested list (to represent the two dimensions)
with the Arrowimg objects and displays each one at the correct
angle and position with the nested list slicing. It puts the images
on the screen and blits the image and Rect.

e clearscreen(self):
Pygame doesn’t get rid of the previous frame by itself, so this
function is needed to clear the screen. Done here by simply filling
the screen with black, so every screen frame starts off as a clean
black rectangle.

e updatescreen(self):
The screen is drawn in a buffer. This function moves the pointer
of the visual screen to this buffer (flips the screen) when the frame
is finished. The speed of this action avoids a flickering screen
during the updating of the screen frame.

o getkeys(self):
Regulates every functionality both with the mouse as well as
with the optional key control. It returns one or more commands
(as keys can be pressed simultaneously) of the following:

22

3.2 MRI implementation 23

- 'RIGHT’, '"LEFT’ = Increase, decrease By field

- "UP’, ' DOWN'’ = Increase, decrease B, field

- 'PLUS’,’MINUS’ = Increase, decrease frequency of By field
- "V’ = Set speeds to zero

- ‘B’ = Show for debugging actual precise float values

- "ESC’ = Quit program

— 'RESET’ = Reset speed to zero and angle to non-zero

- 'B0” = Switch BO field on or off

— 'B1” = Switch B1 field on or off

Note that the last three do not correspond to keys, they are just cus-
tom names for functionalities only accessible via the clickable buttons
on screen.

plotter.py

An additional module to help show resonance is plotter.py. This mod-
ule generates plots to provide an overview of the simulation when it is
finished.

The Plotter class maintains tables with a specific plotter (minimum)
time step to avoid occupying too much memory when the time step is
small.

It contains three functions/methods next to the constructor:

e Constructor(tsims, dtplot):
Stores the time, plotter time step and creates the empty tables.

e tableupdate(tsim, b0mag, blmag, theta, blfreq):
Appends the current values of simulated time and model state to
the tables if enough time has passed (more than dtplot, default
0.1 second).

e tabletreset(tsim):
Reset events are drawn as red lines. Whenever the reset button
was pressed, this function was called to store the timestamp in a
separate list.

23

24 Methods - Structure and design of MRI2D

e plotdatal):
Shows the final results in three rows of formatted subplots (num-
ber of subplots can be adjusted if necessary). The plots help in
finding resonance, and can even show the different resonance fre-
quencies for different arrows in case a tissuemask was used.

3.2.3 Integration of model and graphics into one program

As seen in Figure 3.1, sim.py contains the main function. RunSim. py calls
this main function with the contents of settings.py as the arguments.
Calling the main function with arguments in a Python console is the man-
ual way of controlling the initial settings. It can also be called without ar-
guments, using the default values in the definition of main. This program
controls the simulation. It maintains the time, contains the simulation loop
with the updating of the model and screen, as well as getting the user key-
board or mouse inputs, all by using the previously explained modules as
shown in Figure 3.1.

sim.py

Before the loop the following objects are initialised:

Parameters of the graphical user interface (GUI)

The GUI itself

Model using the Model class from model.py
The clock

The plotter is prepared
During the loop the following actions take place every frame:

e Get system time, and with a time step (actual or limited) update
the simulation time

e Update plotter tables here so the initial values are also in the plot

24

3.2 MRI implementation 25

e Update simulated time tsim

e When there is a time step detected, to show change, update:

— Model

— Screen

e The getkeys method from GUI is used to get controls. Mouse ac-
tions are also translated into keys/commands, with names. Next,
depending on which keys/commands have been found, adjust-
ments are made to e.g. the magnetic fields By and B;. The reset
command resets the speed to zero and the angle to a non-zero
value, which is useful when looking for the resonance frequency.

e The ESC command & key, sets the flag running to False which
means the loop will stop repeating.

After the loop is terminated, two actions take place:

e The GUI screen is closed by deleting the (only) instance of the
GUI class.

e Plotter screen is started, showing the time histories of the simu-
lation, which helps in finding the right parameters for resonance.

3.2.4 Interpretation of units in MRI2D

Requirement S.4 in Table 2.1 states that resonance has to be visible. This
means that the resonance frequency should be well below 25 Hz we choose
a minimum of around 1 Hz and a maximum of around 10 Hz; a slower
oscillation is easier to see, but a higher frequency leads to a resonance
steady state faster. This unit for frequency is a given because time in the
simulation is equivalent to real time.

MRI2D needs the values for the magnetic field magnitudes to be in the
thousands for the resonance frequency to be around 1 Hz. This power of
ten raises some questions about the unit for the magnetic field, as MRI
scanners have By fields in the order of single digits expressed in Tesla.

The magnetic moment of the nuclear spin does not have any meaning
in this simulation, because a two-dimensional harmonic oscillator (equiv-

25

26 Methods - Structure and design of MRI2D

alent to a compass) is used. Strictly following the compass analogy, a rea-
sonable mass for compasses could be estimated, and added to the force
method. There is no guarantee this would lead to a satisfying scale of
numbers for MRI education, and was not tried due to time constraints
and tester availability as all preset software would have to be changed
and experiments retested.

Therefore the magnetic field units in MRI2D are 10~ T to match real
By values in MRI scanners.

3.3 Implementation of requirements regarding ease
of use

The educational requirements found in chapter 2 are almost automatically
tulfilled by virtue of it being free software. However, further clarification
or quantization of these requirements is necessary before we can test if
they are fulfilled.

Safe and robust (E.1)

MRI2D is safe because it is Open Source and therefore all code can be
viewed by users. Safety seems easily demonstrated at first, as a computer
program is unlikely to bring physical harm to people. Software however
has a risk of malware, and it can be difficult to know which programs to
trust. If a user has security concerns, they can read the commented code of
MRI2D to find out exactly what the program does and does not execute.

Robustness comes at the cost of less flexibility. For that reason, differ-
ent starting methods are provided for the teacher to choose how robust
the program needs to be for their students, or how much freedom their
students can have without making critical mistakes. With the most robust
option, which is to execute RunSim.py to start the program with default
settings, MRI2D will always start and thus is robust.

Available for education (E.2)

MRI2D needs to be able to be run on computers already owned by educa-
tional institutes or students to truly be available nearby and without wait-
ing list. Computers and operating systems differ per institute but MRI2D
being programmed in Python means it should run on Windows, Linux
and macOS without any extra effort.

26

3.3 Implementation of requirements regarding ease of use 27

Affordable (E.3)

MRI2D is free of charge. Institutions have different budgets, but there is
no need to research a reasonable price for them as all similar software dis-
cussed in Background is free. Only physical setups or software for highly
specialised professionals (pertaining to scan image interpretation) had a
cost. MRI2D is neither of those, so it needs to be free like other software at
the same educational level.

Easily distributed (E.4)

An installation guide needs to be created for ease of distribution. Send-
ing the program to multiple computers is trivial, the question is whether
students can use the program. The installation guide provided has to al-
low a majority of students to set up the software by themselves. The guide
will be tested by individual users instead of a classroom, but with minimal
supervision the situations should not be too different.

Flexible in use (E.5)

Three quantities pertaining to the magnetic field allow adjustments dur-
ing runtime as the simulation requires (5.2); magnitude for constant mag-
netic field By, magnitude or amplitude of driving magnetic field B; and
frequency of the driving magnetic field B;.

Other quantities have to be set before starting the program, preferably
as an argument when called or as a number in the text-like file settings.py.
Otherwise changing a number in the code itself is required.

Tissue shapes need to be able to be made without programming, as
they decide how many ”“imaging” exercises can be done. At least 3 preset
tissue files need to be provided with MRI2D so the teacher can use exer-
cises without spending time on preparing the program itself.

This specification of E.5 should allow for a wide variety of possible
exercises.

27

28 Methods - Structure and design of MRI2D

3.4 Exercise development

The exercises were developed in accordance with the findings of section 2.4,
concerning Self-Determination Theory (SDT) and the value of agency in
exercises for students [33].

Three exercises of different levels are created to show the scope of
MRI2D and to give an example of an MRI2D lesson structure.

A teacher can first perform a qualitative demonstration, before stu-
dents carry out quantitative measurements. Without a tissue, every arrow
represents one nuclear spin and each nuclear spin oscillates in the same
way if they experience identical magnetic fields, making these two exer-
cises useful for general NMR education, not just MRIL

Lastly, tissue differences are studied to lead into the subject of MRI. A
phantom, a mask to simulate tissue, changes the magnetic forces spins ex-
perience depending on their location. When simulating differences in the
resonance properties of different locations in the phantom, the principle
of imaging based on resonance can be explored. The qualitative aspect of
this exercise can also be done by students, as finding the shape of the tis-
sue should be an easy task after having completed the previously recom-
mended measurements. An optional qualitative measurement on tissue
will also be provided.

Table 3.2: Attributes of MRI2D example exercises. Exercise numbers indicate
order of complexity, starting from simplest. The first exercises are done with
roughly identical spins, 3a and 3b feature a tissue-mimicking phantom. Qual-
itative explorations are fit for demonstrations, while quantitative exercises are
best suited to students carrying out the measurements themselves. Descriptions
are very brief to keep the table readable. 3b is optional, it is mentioned mostly for
students who finish the mandatory exercises early.

| Phantom Activity Description

1 | Nomask | Demonstration | Notice resonance

2 | Nomask | Measurements | Find correlation resonance frequency and By
3a | Tissue | Demonstration | Imaging, find shape of tissue
3b | Tissue | Measurements | Find resonance frequencies of different tissues

This way the exercises are ordered from simplest to most complex.
Quick demonstrations can easily be used for qualitative observations if
time is the largest constraint. Otherwise, if there is more time a more sci-
entific quantitative exercise can be performed where the students gather
data points and record them to gain understanding of the model.

28

3.4 Exercise development 29

When students have found the ideal values for resonance without tis-
sue, they can accurately image tissues as the spins which do not resonate
at the same values. With the experience of the quantitative exercise the
students should be able to find the resonance frequency of the deviating
spins in tissue. The last part, finding the resonance frequency of the tis-
sue, is not required. The students can know the shape of the tissue by the
non-resonating spins that will stand out already. This optional task makes
it a good final exercise with its flexibility in duration per student to reduce
the amount of students finishing early and possibly distracting others.

The people testing the exercises were the author, two experts and a
layperson individually; not in a classroom setting. The latest version of
Python in which MRI2D was tested is 3.9.13.

29

Chapter I

Results

Here we describe the program MRI2D created for this thesis, the test re-
sults and the ways in which it can be used in education. It was tested

successfully by different users. The reader can download MRI2D for free
[36].

Table 4.1: All described design requirements categorised in the order of develop-
ment and testing. The rightmost column lists numbers for referencing. Copied
from section 2.5.

Category Requirement #
Simulation Time domain S.1
Simulation Multiple nuclei S.2
Simulation | Adjustable magnetic fields | S.3
Simulation Visible resonance S.4
Simulation Tissue differences S.5

Educational Safe and robust E.1
Educational Available for education E2
Educational Affordable E.3
Educational Easily distributed E.4
Educational Flexible in use E.5

Test results for each of the requirements found in chapter 2, listed in Ta-
ble 4.1, will be given. The simulation requirements are explicitly shown in
video format (see Appendix B), but screenshots showing similar situations
are included in this text. The educational requirements are more difficult
to show in such a manner, and their tests are therefore described. Example
exercises are also provided to show MRI2D can be used in education.

31

32 Results

S
m—
2.0Hz ,T
W R EEN B

[ol
R =

(a) (b)

Figure 4.1: Screenshots at maximum amplitude: (a) for non-resonant spins and
(b) at the resonance frequency for the same magnetic field magnitudes. 1.35 Hz
is the resonance frequency for these magnetic fields, and 2.0 Hz is far from it.
Shown by the larger amplitude at resonance (b). Not pictured: when only the
static magnetic field By is enabled, the spins point straight down.

4.1 Fulfilment of simulation requirements

41.1 Resonance without tissue (S.1, S.2, S.3, S.4)

As shown in Figure 4.1 and the video in Appendix B, the magnetic fields
Bp and B; lead to torque on the nuclear spins. The resulting motion con-
forms to the expected driven harmonic oscillator with damping discussed
in section 2.1. The modelled forces leading to realistic motion in the time domain
means the first requirement (S.1) is satisfied.

Though the video in Appendix B shows it better than Figure 4.1, spins
in different lattice locations experience slightly different magnetic fields
due to gradients. Each nuclear spin also has small random noise in their
damping factor, maximally 1.5% more or less than the set damping factor.
MRI2D simulates multiple nuclear spins each experiencing unique forces due to
their lattice location (S.2).

Besides the keyboard controls shown in the top-left of the MRI2D win-
dow (Figure 4.1), buttons of a Graphical User Interface (GUI) are featured
in the remaining space along the top. Digital dials show the current values
for By magnitude, B; magnitude and B; frequency. Below each physical
quantity dial there are two buttons to decrease or increase the value while the
simulation is running (S.3). Buttons to turn the magnetic fields on or off are

32

4.1 Fulfilment of simulation requirements 33

located at the top-right, along with a RESET button which sets the speed of
all spins to 0, and their displacement angle to an arbitrary 40 degrees to see
if they resonate to higher amplitudes, or get damped to lower amplitudes.

Comparing both images in Figure 4.1, the nuclear spins in Figure 4.1a
have a smaller displacement angle at their maximum amplitude than the
spins in Figure 4.1b. As Figure 4.3 further on in this chapter shows, the
expected resonance frequency for these magnetic field values is close to
1.35 Hz (the driving frequency in the second image). So what Figure 4.1
shows, is that nuclear spins display a higher amplitude at their resonance fre-
quency (S.4).

BOFIELD
5000

(a) (b)

Figure 4.2: Screenshots of MRI2D modelling tissue differences. The middle two
arrows are a different tissue, with a rotational inertia factor of 0.60 as opposed
to 1.00. On either side of them are four arrows that only slightly differ from the
normal spins, as their factor is 0.90. The entire outside border is still the same
as in Figure 4.1. (a) The different central tissue does not resonate with the other
spins. (b) At the resonance frequency of the central tissue we see the inverted
situation in which the central tissue is resonating, while now the other spins are
not.

4.1.2 Resonance with tissue (S.5)

When a tissuemask is applied, nuclear spins experience the magnetic fields
differently depending on the factor specified for the tissue at their location.
As Figure 4.2 shows, these tissue differences cause the specified nuclear spins to
have a different resonance frequency (S.5).

33

34 Results

4.2 Fulfilment of educational requirements

4.2.1 Safe and robust (E.1)

Since MRI2D is a program, not a piece of equipment, any possible safety
issues would derive from malware like computer viruses. The source code
of MRI2D is viewable in Appendix C, online before downloading and can
be inspected locally after downloading and before running the program.
This open nature makes the code transparent and avoids the risk of hid-
den malware that could be contained in an executable program, a file type
where the code cannot easily be viewed.

By robustness we mean that the code does not crash and the program
starts and runs without glitches after finishing installment. Robustness
can come at the cost of freedom or user control, which is why MRI2D offers
four different levels of starting methods. The most robust starting method
still offers the flexibility required in chapter 3, as that pertains to control
over three quantities during runtime. Other levels of starting methods can
offer greater control at the risk of user errors. The novice user should start
MRI2D at level 1.

Level 1: Start with default values
This level is set by running sim.py or RunSim.py in Python.
¢ No additional options beyond runtime control over By, B; and frequency:.
e No possible user error, because there is no custom input at this level.

Level 2: Selecting different presets
For this level a teacher needs to prepare scripts to edit settings.py, to give
the students the choice with which damping and tissue file to start, in ad-
dition to starting values for By, B; and frequency. The students run these
scripts, possibly via Powerpoint buttons. In summary:
e Limited presets provided for tissue files, damping, By, B; and frequency.
e No possible user error.

Level 3: Edit starting parameters in a script
Students can write any starting values in code in two different ways, ei-
ther by manually editing settings.py or calling sim.py main function with
arguments from a Python console, best done when students are familiar
with an Integrated Development Environment (IDE). In summary:
e Any values available for tissue files, damping, By, B; and frequency.
e Only syntax errors possible. The program checks for syntax errors before
starting to prevent faulty simulations.

34

4.2 Fulfilment of educational requirements 35

Level 4: Edit the program itself to add options
This can be done by editing sim.py. Changing any numbers should not
cause problems. Code in the other scripts could be edited, but they gov-
ern physics, graphics and the plots. Changes in files other than sim.py
lead to a different simulation, instead of the same simulation with differ-
ent physical constants, and are therefore discouraged. In summary:
e Full control over any values in MRI2D, including spin lattice dimensions,
which require a matching tissue file. For example, the provided tissue files
assume a 5 x 4 lattice.
¢ Any kind of Python error becomes possible, and such errors can be hard
to detect.

4.2.2 Available (E.2)

MRI2D has been tested on different Windows computers and across ver-
sions, on Windows 10 and 11. No tests have taken place on other plat-

forms, but all of the used Python modules are compatible with Linux and
macOS.

4.2.3 Affordable (E.3)

The MRI2D software is free, like most software used for educational pur-
poses as described in subsection 2.3.2. Educational institutions already in
possession of computers can use MRI2D without incurring any additional
costs.

4.2.4 Easily distributed (E.4)

We found that new users were able to install MRI2D with minimal guid-
ance when using the user guide, found in Appendix A. The guide also
contains comments on any peculiarities encountered during testing, but
of course we strove to prevent them as much as possible.

4.2.5 Flexible in use (E.5)

The magnitude of both By and By, in addition to the frequency of B; can
all be edited freely during runtime. The degree of flexibility required is
therefore met exactly, and as described in the definition of requirement E.1

35

36 Results

in subsection 4.2.1, more quantities can be changed before starting MRI2D.
To show that MRI2D really is flexible, we will discuss a series of exercises
in the following section to prove this requirement has been met.

4.3 Possible demonstrations using MRI2D

A number of example exercises is discussed to illustrate how MRI2D could
be used in education.

4.3.1 Exercise 1: Demonstration of magnetic resonance

The fastest and most simple exercise is a qualitative demonstration of mag-
netic resonance. Students can get an intuitive understanding of the sim-
ulation by observing how the By magnitude, the B; magnitude and the
driving frequency can lead to resonance. The students can do this them-
selves, but it is faster when a teacher demonstrates this exercise.

Any starting method will suffice here: simply running the program
with default settings is enough, but buttons with hyperlinks (Ctrl+K) in
Powerpoint can be used to quickly show different preset situations. An
example interactive slideshow has been provided, which runs a set of pro-
grams that change the settings.py and similarly a button with a hyperlink
to start the simulation.

The teacher can show what resonance is using the example settings and
they can explain the buttons to students.

4.3.2 Exercise 2: Determine resonance frequency and mag-
netic field correlation

The student can determine the relation between By and the resonance fre-
quency without any tissues present. As explained in section 2.1, the res-
onance frequency can be approximated by linearising the equation to a
harmonic oscillator.

freso =C- BOP (4-1)

But in reality, for larger angles 0 the sine and cosine approximations
might not hold, in which case students will disprove this hypothesis. First
exploring this relation experimentally will make the theory easier to un-
derstand and remember. An example lesson is described in the following
paragraph.

36

4.3 Possible demonstrations using MRI2D 37

The assignment for the lesson would be to determine the resonance fre-
quency per Bg magnitude for a series of By magnitudes. It is good experi-
mental practice to record all quantities for reproducibility, even though By
magnitude does not show up in the simplified theoretical solutions. See
Table 4.2 for an example table provided to students.

Table 4.2: Example table to fill with measurements for exercise 2. For regression
analysis, the By magnitude will be the independent variable. The B, frequency
at which the largest amplitude is recorded is the resonance frequency, and will
be the dependent variable. The B; magnitude is kept constant, but should be
recorded at least once for repeatability. Its value here is chosen to be as high as
possible without making measurements at By magnitude 2000-10~* T impossible,
because determining resonance frequency becomes hard when B; magnitude is
larger than half of the By magnitude.

By magnitude (10~* T) | B; magnitude (10~* T) | B; frequency (Hz)
2000 1000 0.80
5000 1000
10000 1000
20000 1000
50000 1000
100000 1000

In order to find the functional relationship of By and resonance fre-
quency, a curve fitting step will also be necessary.

Any software can be used for fitting, we suggest two of the many
options: Python module or WolframAlpha. Python with scikit-learn
makes sense, if teaching Python was also a goal. Otherwise WolframAl-
pha is the easiest, since it is available online to everyone without the need
to install any software. Simply query “power fit” with the collected points
(B, frequency).

If fitting is too complicated for the students, the teacher could collect
the students’” data points into one collection, and use that collection when
fitting the data. In that case one could encourage the students to measure
at different Byp magnitudes. If different groups of students have measured
at different By magnitudes, then their measurements are recognisable in
the final graph, which could enhance the students’ feeling of contribution.

37

38 Results

4.3.3 Example answer to exercise 2

Table 4.3: Example answers of exercise 2. Frequency was measured in steps of
0.05 Hz initially.

Bp magnitude (1074 T) | By magnitude (1074 T) | By frequency (Hz)
2000 1000 0.80
5000 1000 1.35
10000 1000 2.10
20000 1000 2.90
10000 1000 4.60
12000 1000 6.50

Now that we have the measurements in Table 4.3, we can put them into
our software of choice for curve fitting. Equation 4.2 gives the expected
power relation, so we try a power fit.

Figure 4.3 shows that the program behaviour is as expected. The re-
gression fit gave the following parameters when rounded off to significant
decimals:

freso =20- BOO'5 (4~2)

The coefficient 2.0 relates to the magnetic moment, but in the MRI2D
simulation model, this is not a parameter that has a quantitative meaning.
Educationally valuable is the power found in the fit: 0.5. This value is as
expected because the resonance frequency scales with the square root of
the By magnitude as shown in Equation 2.8. Linear and parabola fits are
not shown as they do not match the data points.

Important to note with fitting is the number of free parameters versus
the number of data points. Standard second degree polynomial fitting will
have three parameters, making it easy to minimise residual errors. This er-
ror reduction is artificial in the case of few data points. Fortunately, even
when an inverted parabola appears to be the best fit, it can be easily shown
that the shape implies unexpected behaviour at high By magnitudes. Be-
yond the maximum, the resonance frequency would reduce as the By mag-
nitude increases, and even go negative if it followed a parabola in relation
to By, which is nonsensical.

Therefore the better model fits to compare the data to would be linear
and power, with the latter being the expected relation as a result of the har-
monic oscillator physics. Both only have two fitting parameters, making

38

4.3 Possible demonstrations using MRI2D 39

® Resonance frequency|
Allometric fit

-
|

o [a]
| 1 L

.
1

Resonance frequency (Hz)

Model Allom etrict
34 Equaticn v=a*='b
Plot Resonance frequenc
a 2,01265 = 0,03748
2 b 0,51325 = 0,01179
Reduced Chi-Sq 1,95301
1 R-Square(COD) 0,99739
Adj. R-Square 0,99736
0 J j T T T T T T T T T
0 2 4 6 8 10

BO magnitude (T)

Figure 4.3: Example answers to exercise 2. Hypothesis was b = 0,5. Origin 2016
was used to obtain this curve fit and plot from the data in Table 4.3. Important
to note that the choice of decimal point for By magnitude can multiply or divide
parameter a by 10 to the power b: for our expected power that becomes a factor

of /10 ~ 3.

their fit equally justified from a statistical standpoint for the same number
of data points, unlike the second degree polynomial. The consequences of
a linear relation would be less problematic than a second degree polyno-
mial: the only issue arises around By magnitudes near zero, but practically,
it would be hard to see the impact of By in that range without lowering the
magnitude B; as well.

4.3.4 Exercise 3: Performing an MRI scan with MRI2D

In this exercise, students will be creating a resonance image. Students are
provided one or more tissue masks, either the default set or custom ones
made by the teacher. By applying what they learned from exercise 2, stu-
dents are expected to bring into resonance the arrows that are unchanged
by the tissue mask. By looking at the arrows not in resonance, they can
find the tissue shape.

39

40 Results

Table 4.4: Example of student answer for exercise 3a. Cells are coloured according
to the resonance frequencies of the nuclear spins at the respective positions.

For exercise 3b, students can find the resonance frequencies of the dif-
ferent tissues. Use a similar method to exercise 2, but make sure to pay
attention only to the spins of one tissue.

4.3.5 Teacher only: Defining tissues

As a teacher you can make your own tissue files (see below for its use).
They are located in the MRI2D/data/ subfolder. You can edit these files
manually or use the tissue tool to aid in editing them. The files are simple
CSV (comma separated values) files which can be edited with Notepad,
Excel or any text editor:

Table 4.5: The contents of an example tissue file, where the tissue is a diagonal
line from the top-right corner to the centre of the bottom row.

1.00 1.00 1.00 1.00 0.80
1.00 1.00 1.00 0.80 1.00
1.00 1.00 0.80 1.00 1.00
1.00 0.80 1.00 1.00 1.00

The force an arrow experiences is multiplied by the factor at the corre-
sponding position (meaning a factor of one keeps the behaviour the same,
as without a tissue file).

The file extension is set to . tis to hide the format for the students. Tis-
sues can be detected by watching which arrows behave differently. These
observations can be confirmed in the analysis screen. If there is a problem
with the tissue files, for example when they do no match the lattice di-
mensions, running resettings.py will restore default values to solve the
problem.

4.3.6 Exercises tested

The exercises were successfully completed by four testers: the author, two
experts and a layperson. Exercise 2 takes 30 minutes when performed in a

40

4.3 Possible demonstrations using MRI2D 41

competent and precise manner: understanding MRI2D controls and mea-
suring in steps of 0.1 Hz around the estimated resonance frequency.

Appendix A contains instructions for downloading and installing MRI2D
and its prerequisite software. The exercises are described in section A.4 in
a format that can be given to students directly.

41

Chapter 5

Discussion

In this thesis, a program was developed, MRI2D, that simulates magnetic
resonance with compass analogues to help in MRI education.

It was tested individually by users of different levels of expertise with
minimal instruction and performed to the satisfaction of all users. The
program closes the gap that the existing educational tools to teach MRI
leave as described in subsection 2.3.2. It does not require instruments, and
does not use images from MRI scans, but instead looks at the motion of
nuclear spins in the time domain.

5.1 Simplification of spin precession frequency
for modelling

Our model does not fully correspond to the physics of reality. It simulates
a simpler situation by modelling the three-dimensional precession as an
oscillation in two dimensions. MRI2D explains the most important aspects
of MRI. Logically, other physical phenomena could have been chosen here,
like how the three-dimensional rotation of a spin leads to it getting flipped.
Many of those choices are valid, as MRl is a vast enough subject that even
with the extensive MRI educational software out there, not everything is
covered at levels well below expert. The two aspects of simplification that
we will discuss here are the consequences of the choice of dimension and
frequency.

43

44 Discussion

5.1.1 Dimensions of precession in MRI2D

The real situation involves three dimensions, as spins precess around the
direction of the static magnetic field By. This three-dimensional precession
of spins can only be seen well for a maximum of around four spins, and
that is not enough to show imaging. So instead of three-dimensional mo-
tion, we have made a two-dimensional model to make differences in reso-
nance frequency visible for a five by four grid of nuclear spins on a screen.
Reducing by one dimension was necessary to fulfil these requirements for
multiple spins (5.2) and visibility (S.4). Simulating the precession in this
way also has influence on the absolute numbers of resonance frequency
and magnitudes of the two magnetic fields By and B;. Frequencies of
around 1 Hz and units of 10~* T were chosen to end up with magnetic
tields from 0.1 T to 10 T as described in subsection 3.2.4.

An alternative approach is using colour to represent frequency, effec-
tively adding a dimension. A large grid or lattice of spins should not make
it much harder to see the colours, unlike with a three-dimensional motion.
This way the model retains the physics of three dimensions, without hav-
ing to visually show motions in three dimensions on a two-dimensional
screen. The colour approach was not the first choice here as it is not as
clearly visible as two dimensional movement, so it would go against what
we wanted (requirement S.4). It was not explored in practice because of
time constraints, but it could be an interesting addition for the future.

5.1.2 Complications with modelling precession frequency

Our approach to frequency was to handle spins as if they were compasses
in a magnetic field. This was a simple way to avoid modelling quantum
mechanical behaviour and is accessible for students who did not (yet) have
quantum mechanics. Also, compasses had been used in MRI education
before, using physical compasses in conjunction with magnets and coils
in physical demonstrations described in subsection 2.2.2. Obviously, in
MRI2D many more situations and quantities could be explored.

However, this choice also brought some complications with it. The res-
onance frequency of a harmonic oscillator scales with the square root of the
static magnetic field. That power relation is unlike the Larmor frequency
of the precession in reality, which scales linearly with the static magnetic
tield By. There are two possible solutions to this problem: projecting the
magnetization vector ji in a plane (a) or use a model containing unrealistic

physics (b) described below.

44

5.2 Possible code environments 45

a) Projection is possibly the simplest fix. By keeping physics true to the
three-dimensional situation, the relation is conserved. And to make it eas-
ily visible on a screen, the motion is simply projected to two dimensions.
Ignoring the third dimension can make the oscillation look unnatural, but
it should not make it any harder to distinguish frequency.

b) The other option of uncoupling the displacement angle of the com-
pass from frequency is more complicated, and would have to use a lot of
tricks unique to software models. What we mean by this is that the oscil-
lating motion of the displacement angle itself does not have to follow the
frequency of the driving magnetic field but can instead always be oscillat-
ing at the resonance frequency of that particular spin. Resonance would
still be found by writing down the physical quantities at which maximum
amplitude occurred, which would be when the driving frequency matches
the resonance frequency of spins. Whether such fake physics is harder or
easier to program is hard to guess, but it would be a lot easier to image
tissues in such a model than in MRI2D.

5.2 Possible code environments

We have chosen for a standard project structure for a Python program con-
sisting of multiple . py files and folders for images. This structure was cho-
sen for safety from malware, compatibility with many operating systems,
costs and flexibility (E.1, E.3 and E.5 from Table 2.1). Although using an
exectuable file would avoid user errors better (E.1 and E.4), the other re-
quirements would not be satisfied nearly as well. Here we will mention
some considerations for alternative Object-Oriented Programming (OOP)
structures, code environments or distribution packages.

5.2.1 Other approaches to Object-Oriented Programming
in Python

MRI2D uses Classes and functions as explained in subsection 3.1.3 regard-
ing Object-Oriented Programming (OOP). The most notable aspect there
was not following the Sprite Class examples used in Pygame documenta-
tion [19]. This was done because Sprites would make the code run more
slowly. Sprite Classes are not the only other option for organising code,
and if NumPy array mathematics are kept, other OOP structures should

45

46 Discussion

not be noticeably slower or faster than MRI2D currently is. Therefore the
choices should be decided by ease of developing, bug fixing and updating
or editing. When done by one developer these choices are highly personal,
so we cannot offer any further guidance for this other than the expecta-
tion that a different code structure may be better if design requirements
change.

5.2.2 Possible structure improvements when using other
applications for Python

Advanced Python users can consider editing MRI2D to better use inter-
face applications like Jupyter Notebook. The current MRI2D structure is
suitable for any Python application, but that means that it could be im-
proved if a specialised application is the only one used. Jupyter Notebook
can divide one program into multiple cells, which can be selectively run
while still sharing variables like a normal program. This is mentioned
here, as sim.py has a very clear split between initialisation and the simula-
tion loop, which could be put in different cells. If Pygame code is changed
to work well with the Jupyter Notebook environment, this could mean
loading the images only happens once per lesson, instead of each time
the program is started. Right now there seems to be no need for this as
the loading time is less than 10 seconds even in non-ideal conditions, but
if changes happen that make the loading time a large enough obstacle,
Jupyter Notebook should be the first option to explore.

5.2.3 Choice of download format

Other than safety, an important reason for MRI2D to be distributed as the
raw code files is that Python can be installed on many platforms (Win-
dows, Linux, macOS and more). However, it does make installing MRI2D
a multiple step process. An executable file would be simpler in his as-
pect, but it could have safety issues (malware) and would be platform
specific. One way around this problem would be a teacher making such
an executable file for the platform used by the school or university com-
puters. The downsides of executable files like malware concerns are al-
leviated when a teacher created the file. The final option would be a
web application. This is best for larger or paid projects, as web applica-
tions need maintenance and updates to stay safe and working, as internet
browsers change. They also need more development time to be compatible
with multiple platforms. This additional development time and contin-

46

5.3 Education research 47

ued maintenance for web applications is why this format was not a good
choice for MRI2D. Pygame on the other hand is not expected to update in
a way that breaks the program. If MRI2D becomes incompatible with a
newer version of Python, an older version of Python will have to be used
until MRI2D is updated.

5.3 Education research

MRI2D exercises have been tested by individuals, but not in a classroom
setting. MRI2D was designed to complement other educational software
as described in subsection 2.3.2: to teach aspects of MRI physics that have
not yet been simulated, but also combining good implementation ideas
of multiple tools. It is expected that MRI2D is beneficial to education,
as existing software covering different subjects in MRI was found to be
a helpful addition to traditional education [26]. Nevertheless, this area
is not explored in this thesis, as organising proper classroom tests was
outside the scope of a thesis describing the development of the software.
The simulation software is ready to be tested in educational settings.

5.3.1 Suggestions for testing MRI2D education effective-
ness

To find out if MRI2D adds to education, and at which level it is best used,
tests will have to be conducted. Ideally in situations most closely resem-
bling classroom circumstances, most importantly that means: one teacher
for 30 high school students, or a lecturer with teaching assistants for a large
group of bachelor students. Whether MRI2D is best as the students’ first
contact with MRI principles, or as a follow-up to an introductory lesson
can also be studied.

Methodologies for this kind of experiment have already been pub-
lished, an example could be the already mentioned research by Ferndndez
et al. [26]. We do not provide a test form for checking students” informa-
tion retention. Since the specific learning goals of courses can vary, a test
form should be made to fit the courses at the institution conducting the
education experiment.

5.3.2 Possible exercises to be developed

The provided example exercises were merely created to give an idea of
what a lesson with MRI2D could look like. As mentioned, we designed

47

48 Discussion

the program with a lot of flexibility in mind, so more exercises than have
been discussed are certainly possible. Here we will discuss ideas for two
other exercises, one more for exploring general resonance principles with
trigonometric functions, and the other more focused on MRI simulation.

The first idea that could be turned into an exercise has to do with the
method of measuring the resonance frequency. The example exercises
asked students to try different driving frequencies, and see which pro-
duced the highest steady amplitude. However, information about the res-
onance frequency can still be gathered when the driving frequency is mis-
matched. With multiple oscillators in a system, a beat wave will emerge.
By knowing the driving frequency and measuring the frequency of the
beat wave, the resonance frequency can be calculated. How to measure
the beat wave frequency with enough precision has not been figured out
yet. Therefore, this exercise idea is mentioned here as an inspiration to
future developers.

The other exercise idea is about the influence of B; magnitude on reso-
nance frequency. B; does not appear in the resonance frequency obtained
from the near-zero approximation of the harmonic oscillator in section 2.1.
However, that is an approximation, and we have found that the B; mag-
nitude can have an effect on the resonance frequency in MRI2D. The exact
correlation has not been explored, as it is unsure if the non-approximated
mathematics hold up in a discrete environment: in software, time hap-
pens in steps instead of continuously. Additionally, if By is too small com-
pared to By, it is hard to find the resonance frequency, as there will be
a range of driving frequencies at which the maximum amplitude of the
spins will exceed 180 degrees, and seemingly chaotic behaviour occurs.
The edges of this range can be identified, but where in this range the res-
onance frequency lies depends on the correlation that the exercise is look-
ing for. Maybe this is not a big problem, as the relation between the By
magnitude and the resonance frequency is known and can easily be found
by performing exercise 2. The effect of the damping factor can also be
explored in this context, but is best done separately as performing an ex-
periment with three changing quantities can become hard to follow for
students and is in general not good scientific practice.

Finding the relation between resonance frequency and By magnitude
was thought to be sufficiently interesting and complicated for an MRI2D
exercise at this stage, but if the program was changed or other software
was developed with the choices mentioned at the end of subsection 5.1.2,
resonance frequency measurements would be a lot easier. That could make
the provided example exercises less interesting, but it would be better for
exploring the effect of the B; magnitude.

48

5.3 Education research 49

The examples described here are still the same format as exercise 2 in
subsection 4.3.2, i.e. measuring the resonance frequency. MRI2D could
be used for other concepts, but because it was made for this kind of ex-
ercise, other software (see subsection 2.3.2) might complement other exer-
cises better.

MRI2D is suitable for exercises showing magnetic resonance in an imag-
ing context by showing the motion of spins. This can give students a better
understanding of the mechanics behind signals in MRIL

49

Chapter

Conclusion

A real-time two-dimensional simulation of the basic quantum mechanics
behind MRI was developed, with adjustable magnetic fields and the capa-
bility to model tissues.

Made in Python using the Pygame module for rendering graphics, the
program shows magnetic resonance in the time domain utilizing the an-
gular movement of arrows. These are equivalent to compasses as used
in demonstrations of MRI, and thus analogous to spins in the quantum
world. This representation of spin motion can give a deeper understand-
ing even to students unfamiliar with energy levels in quantum mechanics.

The simulation is free to download as open-source software [36]. It is
safe, robust and available to anyone with a device compatible with Python.
Due to the nature of software, providing an entire class of students with
their own digital environment is as easy as providing it to only one indi-
vidual.

Three example exercises have been provided for use in education and
to illustrate a lesson template that can be adjusted for different audiences
by focusing on the basic quantum mechanics behind MRI. Already avail-
able software focuses on the data analysis side of MRI, so MRI2D is made
to complement them and cover part of the gap in MRI education.

51

Bibliography

[1]

2]

[3]

[4]

[5]

N. B. Smith and A. Webb, Introduction to Medical Imaging: Physics,
Engineering and Clinical Applications, Cambridge Texts in Biomedical
Engineering, Cambridge University Press, 2010.

S. Weinberger, Mind Games: a community of people who believe the gov-
ernment is beaming voices into their minds, The Washington Post (Jan-
uary 16, 2007).

A. Boyle, Reality check on Russia’s "zombie ray gun’ program, NBC News:
Cosmic Log (April 7, 2012).

S. Faleti¢, M. Michelini, and D. Buongiorno, Nuclear Magnetic Reso-
nance as an Applicative Topic in the Physics Curriculum for Students of Life
Sciences, pages 754-755, 2010.

E. Cookson, D. Nelson, M. Anderson, D. L. McKinney, and I. Bar-
sukov, Exploring magnetic resonance with a compass, The Physics
Teacher 57, 633 (2018).

S. Murphy, D. L. Jones, J. Gross, and D. Zollman, Apparatus for inves-
tigating resonance with application to magnetic resonance imaging, Amer-
ican Journal of Physics 83, 942 (2015).

D. McBride, S. Murphy, and D. Zollman, Student Understanding of the
Correlation between Handsdon Activities and Computer Visualizations of
NMR/MRI, AIP Conference Proceedings 1289, 225 (2010).

D. Grainger, Safety Guidelines for Magnetic Resonance Imaging Equip-
ment in Clinical Use, Technical report, Medicines and Healthcare prod-
ucts Regulatory Agency, London, United Kingdom, 2021.

53

54 BIBLIOGRAPHY

[9] J. G. Delfino, D. M. Krainak, S. A. Flesher, and D. L. Miller, MRI-
related FDA adverse event reports: A 10-yr review, Medical Physics 46,
5562 (2019).

[10] H. Bhullar, B. County, S. Barnard, A. Anderson, and M. E. Seddon,
Reducing the MRI outpatient waiting list through a capacity and demand
time series improvement programme, 134, 1537 (2021).

[11] LBN Medical, @ MRI Machine Price, https://lbnmedical.com/
how-much-does-an-mri-machine-cost/, 2023, [Accessed: 2023-12-
12].

[12] D.E. Vincent, T. Wang, T. A. Magyar, P. I. Jacob, R. Buist, and M. Mar-
tin, Birdcage volume coils and magnetic resonance imaging: A simple ex-
periment for students, Journal of Biological Engineering 11 (2017).

[13] A. I Smirnov, R. L. Belford, and I. Morse, Reef (Philip D., Magnetic
resonance imaging in a hands-on student experiment using an EPR spec-
trometer, Concepts in Magnetic Resonance 11, 277 (1999).

[14] Z.]Jang, Design and construction of low-cost EPR spectrometers for educa-
tion, New Physics: Sae Mulli 68, 225 (2018).

[15] R. A.Butera and D. H. Waldeck, An EPR Experiment for the Undergrad-
uate Physical Chemistry Laboratory, Journal of Chemical Education 77,
1489 (2000).

[16] J.]. Hill, A Magnetic Resonance Demonstration Model, American Journal
of Physics 31, 446 (1963).

[17] O. Ennemoser and W. Ambach, Magnetic resonance imaging in medical
education: A demonstration experiment for students, European Journal of
Physics 12, 52 (2000).

[18] CERN Teachers Lab, Electron Spin Resonance model experiment,
https://indico.cern.ch/event/36368/contributions/1777448/
attachments/723409/992912/electron-spin-resonance-qrg.pdf,
2008, [Accessed: 2023-12-12].

[19] P. Shinners, About Pygame, https://www.pygame.org/wiki/about,
[Accessed: 2023-12-12].

[20] N. Elkunchwar, V. Iyer, M. Anderson, K. Balasubramanian, J. Noe,
Y. Talwekar, and S. Fuller, Bio-inspired source seeking and obstacle avoid-
ance on a palm-sized drone, in 2022 International Conference on Unmanned

54

https://lbnmedical.com/how-much-does-an-mri-machine-cost/
https://lbnmedical.com/how-much-does-an-mri-machine-cost/
https://indico.cern.ch/event/36368/contributions/1777448/attachments/723409/992912/electron-spin-resonance-qrg.pdf
https://indico.cern.ch/event/36368/contributions/1777448/attachments/723409/992912/electron-spin-resonance-qrg.pdf
https://www.pygame.org/wiki/about

BIBLIOGRAPHY 55

[21]

[24]

[27]

[28]

Aircraft Systems, ICUAS, pages 282-289, Institute of Electrical and
Electronics Engineers Inc., 2022.

M. S. Tanveer, S. M. Kabir, and A. S. Shihavuddin, Determination of
initial projectile velocity in the presence of static fields using deep actor critic
method, in 2020 11th International Conference on Electrical and Computer
Engineering, pages 455-458, Institute of Electrical and Electronics En-
gineers Inc., 2020.

D. H. Perico, T. P. Homem, A. C. Almeida, 1. J. Silva, C. O. Vilao,
V. N. Ferreira, and R. A. Bianchi, A Robot Simulator Based on the Cross
Architecture for the Development of Cognitive Robotics, pages 317-322,
Institute of Electrical and Electronics Engineers Inc., 2016.

A. Joshi and M. Kshirsagar, Mathematical Modeling for Planetary Motion
using Python’s PyGame Module, Matplotlib and Linux Shell Scripting, In-

ternational Journal of Innovative Science and Research Technology 7
(2022).

C. Wang, X. Zhang, Z. Jia-wei, Z. Ding, and A. Lanxuan, Navigation
behavioural decision-making of MASS based on deep reinforcement learning
and artificial potential field, Journal of Physics: Conference Series 1357,
012026 (2019).

L. G. Hanson, A graphical simulator for teaching basic and advanced MR
imaging techniques, Radiographics : a review publication of the Radi-
ological Society of North America, Inc 27 (2007).

D. Trecefio-Fernandez, J. Calabia-Del-campo, F. Matute-Teresa, M. L.
Bote-Lorenzo, E. Gémez-Sanchez, R. de Luis-Garcia, and C. Alberola-
Loépez, Magnetic Resonance Simulation in Education: Quantitative Eval-

uation of an Actual Classroom Experience, Sensors (Basel, Switzerland)
21 (2021).

J. Johansson and M. Bath, Simulated MIRI-Scanning: Visualising signal
sampling and image reconstruction of a human brain, Master’s thesis,
University of Gothenburg, Gothenburg, Sweden, 2017.

F. Liu, J. V. Velikina, W. F. Block, R. Kijowski, and A. A. Samsonov,
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange
Tissue Model, IEEE Transactions on Medical Imaging 36, 527 (2017).

55

56 BIBLIOGRAPHY

[29] Psychology Software Tools Inc., IACI MRI Simulation Software,
https://pstnet.com/products/iaci-mri-simulation-software/,

2007, [Accessed: 2023-12-12].

[30] S. M. Smith, M. Jenkinson, M. W. Woolrich, C. E. Beckmann, T. E.
Behrens, H. Johansen-Berg, P. R. Bannister, M. D. Luca, I. Drobnjak,
D. E. Flitney, R. K. Niazy, J. Saunders, J. Vickers, Y. Zhang, N. D. Ste-
fano, J. M. Brady, and P. M. Matthews, Advances in functional and struc-
tural MR image analysis and implementation as FSL, Neurolmage 23,
S208 (2004).

[31] D. Moratal, A. Vallés-Luch, L. Marti-Bonmati, and M. E. Brummers,
k-Space tutorial: an MRI educational tool for a better understanding of k-
space, Biomedical Imaging and Intervention Journal 4 (2008).

[32] S. B. McKagan, K. K. Perkins, M. Dubson, C. Malley, S. Reid,
R. LeMaster, and C. E. Wieman, Developing and researching PhET sim-
ulations for teaching quantum mechanics, American Journal of Physics
76, 406 (2008).

[33] E.L.Deciand R. M. Ryan, The "What"” and "Why" of Goal Pursuits: Hu-
man Needs and the Self-Determination of Behavior, Psychological Inquiry
11, 227 (2000).

[34] Q. Larson, Interpreted vs Compiled Programming Languages:
What's the Difference?, https://www.freecodecamp.org/news/
compiled-versus-interpreted-languages/, 2020, [Accessed: 2023-
12-12].

[35] P. Shinners, pygame.time - pygame documentation, https://wuw.
pygame.org/docs/ref/time.html, 2003, [Accessed: 2023-12-12].

[36] A. Hoekstra, MRI2D repository, https://github.com/MRI2D/MRI2D,
2023, [Accessed: 2023-12-12].

[37] A. Hoekstra, MRI2D Video Demonstration, https://vimeo.com/
893059133, 2023, [Accessed: 2023-12-12].

56

https://pstnet.com/products/iaci-mri-simulation-software/
https://www.freecodecamp.org/news/compiled-versus-interpreted-languages/
https://www.freecodecamp.org/news/compiled-versus-interpreted-languages/
https://www.pygame.org/docs/ref/time.html
https://www.pygame.org/docs/ref/time.html
https://github.com/MRI2D/MRI2D
https://vimeo.com/893059133
https://vimeo.com/893059133

Appendix A

User guide

A.1 Installing the program

The program can be downloaded as a zip file and extracted to any folder.
To make the program run, it needs an installed version of Python, with
some modules, as a runtime environment. To install the program therefore
follow the steps below:

1.

Download MRI2D from the github page by clicking on the green
Code button, and selecting Download zip: https://github.com/MRI2D/MRI2D

. Extract the MRIDemonstrator.zip to a folder.

. Download the Python Windows installer or the Python installer for

your platform from the Downloads page on the official Python site:
https://www.python.org/downloads/

. Very important: When running the installer in the first screen select

the Python folder to be added to the PATH.

Then open a Run as Administrator Command prompt (Windows, in
Apple/Linux: a console), and Enter the following command:

pip install numpy matplotlib pygame

. This should now run a set of installation scripts. If not, the Python

folder was likely not added to PATH during installation.

57

58 User guide

A.2 Running the program

The program can be run by double clicking on: RunSim.py. Start-up set-
tings and tissues files can be specified in settings.py. This file is a config-
uration file, so leave the format intact while editing it. If something goes
wrong with this file, run resettings.py to restore the default settings.

A.3 Graphical user interface

The program has two main interfaces: the Runtime screen and the Analy-
sis screen.

A.3.1 Runtime screen

The runtime screen looks as follows:

- : O

Cr
400.0 1.0 Hz

ey

Figure A.1: Screen when program starts

From top to bottom, the screen contains the elements listed below:

58

A.3 Graphical user interface 59

Shortcut information on keys

Three displays to show the current values of:

- By field strength
- B field strength

- By frequency

Each of the displays has two buttons, to be selected and pressed with
the mouse, to increase (+) or decrease (-) the value logarithmically

On the right side three more buttons are shown, which act as switches:

— By field on/off
— B field on/off

— Reset/swing button: resets arrow speeds and swings them to
45 degrees to test resonance

Field with 4 rows of 5 simulated magnetic arrows which can resonate
using the right settings (e.g. 4000/400/1.229).

The simulation can be ended using the close window button or the
ESCape key. Quitting the simulation will prompt the analysis screen.

A.3.2 Analysis screen

When the program is ended it will show three time-history plots (Figure
A.2) to help in analysing, saving and understand the simulation results.

The analysis screen is a matplotlib plot screen, with the following con-
trols on the top row:

e Home/Back/Forward: to go back and forward when selecting, pan-
ning and zooming through plots. Home restores the default start
value for these display settings.

e Pan button (with arrows)
e Zoom button: select an area to zoom in.
e Layout settings: spacing, etc.

o Axis settings: ticks, titles, etc.

59

60 User guide

e Save image button: saves the plot as an image.

%, Figure 1 - o x

A€ Q=X B

BO field

6000 -

5000 1

4000 1

6 lb Zb B1 freq [B&z] 4‘0 Sb

0.5 4
0.0 1

[¢] 10 20 Theta30 40 50

250 1

200

150

Figure A.2: Analysis screen, shown after each simulation

In the example plot it can be seen which combination of By (field strength)
and B; frequency lead to resonance. The vertical red lines indicate the se-
lection of the Reset/Swing button. It can be seen that for most combina-
tions the oscillation is quickly damped, but not for the previously men-
tioned 4000-400-1.229 settings for By, By and B; frequency at t=31 seconds.
When B, is turned off, the B; frequency graph drops to zero. The presence
of different tissues can also be seen in the angle theta-plot, with the red
oscillation not reaching the same amplitude as the blue oscillation. The
shape of the tissue cannot be found here as the locations of the arrows are
not indicated.

Tissue can be detected in the runtime screen by the different behaviour
of the magnetic arrows.

60

A.4 Magnetic Resonance Exercises 61

A.4 Magnetic Resonance Exercises

A.4.1 Exercise 1: Demonstration of magnetic resonance

Run the program by selecting RunSim.py. Experiment with the controls
and settings to find a qualitative relation between By and the resonance
frequency. If By magnitude is increased, should B; frequency be decreased
or increased to give the nuclear spins a larger amplitude?

A.4.2 Exercise 2: Determine resonance frequency and mag-
netic field correlation

Let us hypothesise the formula for the resonance frequency is given by:

freso =C- BOP (A-l)

The assignment is now to determine the resonance frequency per By
magnitude for a series of By magnitudes. Write down the resonance fre-
quency for each By magnitude in a table like Table A.1

Table A.1: Example table to fill with measurements for exercise 2. The B; fre-
quency at which the largest amplitude is recorded is the resonance frequency, and
will be the dependent variable. The B; magnitude is kept constant, but should be
recorded at least once for repeatability. Its value here is carefully chosen to be
as high as possible without making measurements at By magnitude 2000-10~* T
impossible.

Bp magnitude (1074 T) | By magnitude (1074 T) | By frequency (Hz)
2000 1000 0.80
5000 1000
10000 1000
20000 1000
50000 1000
100000 1000

When you have collected enough data points, you can use a program to
fit a curve to these points. Use By magnitude as X and resonance frequency
as Y. Try a linear fit and a power (also called allometric) fit. Check if the
hypothesised Equation A.1 was correct, and which value you have found
for p. Does it match up with harmonic oscillator theory?

61

62 User guide

A.4.3 Exercise 3: Performing an MRI scan with MRI2D

Now that you have measured the normal situation with magnetic reso-
nance, you are ready to image shapes of different tissues. Enable a tissue
mask as instructed by your teacher.

First use data from Exercise 2 to bring the unchanged nuclear spins to
resonance. Look carefully which spins do not behave like the others. The
smaller the amplitude, the darker you can colour the pixel in the lattice
location of that spin. For example, if the four top-right spins barely move,
while a diagonal of top-left to bottom-middle oscillates a little, but not as
much as the other spins, your answer should be Table A.2.

Table A.2: Example of student answer for exercise 3. Cells are coloured according
to the resonance frequencies of the nuclear spins at the respective positions.

To be sure you have the right shades, try lower driving frequencies.
Find the resonance frequencies of the different tissues using a similar method
as you did for exercise 2.

62

Appendix B

Video demonstration details

This appendix provides supplementary information for section 4.1. The
video can be viewed online [37].

The video shows two resonance frequency measurements, each at a
different By magnitude. The spins will show the highest amplitude when
the frequency of the driving B; field matches the resonance frequency of
the spins.

B.1 Measurement 1: Resonance frequency at By
magnitude 0.5 T

0:00 - 0:10 Configuration. The default settings are changed. By magnitude
is set to 5000 - 10~ T and the B; frequency is set to 1.25 Hz in settings . py.
The program is started with these settings by executing RunSim. py.

0:10 - 2:25 Experiment. When the arrows appear to be in a steady state, the
RESET button is pressed. This step is repeated thrice before the frequency is
increased to ensure accurate measurements of the steady state amplitude
at each B; frequency. The frequency is increased in steps of around 0.05
Hz.

2:25 - 4:00 Analysis. The Theta-plot is analysed to find the highest am-
plitude in steady state. The plot coordinates of the cursor are displayed
at the bottom of the window to measure the amplitude. The resonance
frequency for a By magnitude of 5000 - 10~* T is around 1.35 Hz.

63

64 Video demonstration details

B.2 Measurement 2: Resonance frequency at By
magnitude 1.0 T

4:00 - 4:15 Configuration. By magnitude is set to 10000 - 10~* T and the
B; frequency is set to 2.0 Hz in settings.py. The initial By frequency
was increased because a higher resonance frequency is expected for this
Bp magnitude.

4:15 - 5:45 Experiment. As per section B.1, the frequency is increased in
steps of 0.05 Hz and the RESET button is used thrice per B; frequency to
ensure accurate measurements. With a higher By magnitude than in sec-
tion B.1 and the same B; magnitude, the amplitudes of the spins are lower.
The approximation used to find Equation 2.8 assumed displacement an-
gles around 0, so it gets more relevant the larger By magnitude is com-
pared to B; magnitude. The resonance frequency is easier to see in this
measurement because of this larger ratio between the By and B; magni-
tudes.

5:45 - 6:37 Analysis. Once again the plots are analysed to find the By fre-
quency corresponding to the highest amplitude shown by the spins in a
steady state. The spins reached steady states faster than in section B.1
because of the higher resonance frequency induced by the higher By mag-
nitude. The resonance frequency for By magnitude of 10000 - 10~* T is
around 2.0 Hz.

64

Appendix

Python code

C.1 Initialisation: Help programs

AR W N =

= S © o

N N NN N s
DN ~

'

N

import os

def setvar(name, value):
Takes in a 2—character long variable name (string),
then writes the given value (integer or float)
to the right spot in settings.txt
dir_path = os.path. dirname(os.path.realpath(__file__))
os.chdir(dir_path)

sets = open(”settings.py”, "r”)
lines = sets.readlines ()
sets.close ()

news = open(”settings.py”, "w”)
for line in lines:

line = line.rstrip ()
if line[:2] == name:

newline = name+” = "+str (value)
else:

newline = line

news. write (newline+”\n")
news. close ()

scripts/ppt2py.py

Initial value of BO
b0 = 5000

66 Python code

Initial value of Bl
bl = 1000

Initial value of Bl frequency
f1 = 1.0

Tissuefile
tf = ’“tissue2’

s|# Friction damping (0 — 1.0, normal = 0.6)

kd = 0.6

scripts/settings.py

from sim import main
from settings import b0,bl,fl , kd, tf
import os

Protect against PowerPoint starting in wrong working directory
dir_path = os.path. dirname(os.path.realpath(_-_file__))
os.chdir(dir_path)

List of BO magnitude, Bl magnitude, Bl frequency, Damper and
Tissue file
settings = [b0,bl,fl kd, tf]

s|# Call main with these settings

main (* settings)

scripts/RunSim.py

C.2 Simulation

C.2.1 Main program

aa

MRI 2D by Alex Hoekstra

Python 3.9.13

import time

import numpy as np

from graphics import GUI, clock
from model import Model

from plotter import Plotter

66

24
25

26

53

maxdt = 0.1 # time step max so slow PCs won’t have big time
steps
running = True

Create a plotter
dtplot = 0.1 #delta time for tables with plot data
plotter = Plotter (tsim, dtplot)

Main simulation loop
while running:
Time control in loop

t = clock ()
dt = min(t—t0 ,maxdt) # set maximum limit to dt
t0 =t

Plot data to be added
plotter .tableupdate (tsim, model.bOon*model.bOmag,

C.2 Simulation 67

def main(bOset = 4000, blset = 1000, flset = 1, kdamper = 0.6,
tissuefile=""):
"’’Main function containing simulation loop’”’
Dimensions of compass arrow grid (m,n)
m n =5, 4
Initialize GUI window with a caption, xmax,ymax
xmax,ymax = 1000,800
Create model and gui
#model = Model (xmax, ymax,m,n)
gui = GUI("MRI (Magnetic Resonance Imaging) 2D simulation”,
Xmax , ymax)
Not starting from 0 as then the unaffected arrows are
quite boring
model = Model(bOset, blset, flset, kdamper, m,n,xmax,ymax,
tissuefile , gui)
factor for speed of control by keys and mouse
adjustfactor = np.sqrt(2) # Doubling in 2 seconds. factor
per second, >1 for logical behaviour
Set up timer for loop
print(”Starting simulation”)
tstart = clock ()
t0 = tstart
tsim = 0 # simulated time for harmonic oscillation of Bl

model. theta , model.blon+*model.blfreq

67

90
91

92

94
95
96
97
98

99

68

Python code

than

draw

Simulated time, also protected for time steps larger
maxdt
tsim = tsim + dt

If a real timestep has been made, we calculate and
if dt>0:

Update compass arrows model
model . update (tsim , dt)

Update GUI
gui.clearscreen ()
gui. textpanel (model.bOmag, model.blmag, model.blfreq

, model.bOon, model.blon)

gui.drawarrows (model. arrowlist ,m,n)
gui.updatescreen ()

Key inputs
B_0 magnitude with right/left
keyspressed = gui.getkeys()

if 'RIGHT’ in keyspressed:

model .b0mag *= adjustfactors*xdt
if 'LEFT’ in keyspressed:

model .bOmag /= adjustfactor*xdt

B_1 magnitude with up/down
if 'UP’ in keyspressed:

model .blmag *= adjustfactor*x*dt
if 'DOAN’ in keyspressed:

model .blmag /= adjustfactorxdt

Frequency (B_1) with +/—
if 'PLUS’ in keyspressed:

model.blfreq *= adjustfactor*x(dt/1.4)
if 'MINUS’ in keyspressed:

model. blfreq /= adjustfactorxx(dt/1.4)

B_0 on/off switch
if ”B0” in keyspressed:
model.b0on = not model.b0Oon

B_1 on/off switch
if ”B1” in keyspressed:
model.blon = not model.blon

Angular velocity reset
if "V” in keyspressed:

68

100
101
102
103
104
105
106

107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137

138
139

C.2 Simulation

69

model.v = model.v x 0#

Total reset: angular velocity & position

if "RESET” in keyspressed:
model.v = model.vx0
model. theta = 140+0+model. theta

plotter . tabletreset (tsim) # Keep track of reset

times for plots

Magnetic fields details
Debug messages
if ”B” in keyspressed and t%.2>.18:

#time requirement so the message isn’t printed too

often
print(” ____________________ \n”,

B0 magnitude | ”

”"B1 magnitude |

"Bl frequency

A)

Quit with Esc
if "ESC” in keyspressed:
running = False

”

Runtime limit
if t>300:
running = False

Exit when loop is ended
close screen

, round (bOmag,5), ”\n”,
, round (blmag,5), ”\n”,
| 7, round(blfreq,5),

print (”Simulation ran”,t—tstart ,”seconds”)

del gui

Plot store tables with data
plotter . plotdata ()
print (”Ready.”)

7If this program is run, run main.”
Checking this makes it easier to keep this
for importing

.py file in folders

if __name__ == "__main__":
main ()
scripts/sim.py

69

70 Python code

C.2.2 Programs containing essential classes and functions

Model

import numpy as np
from graphics import Arrowimg
sl import os

N

class Model () :

i

ul

7 This class contains all physics.

8 It sets start values for physical quantities and contains
calculations

9 that are called upon every frame. It needs the time and

timesteps as inputs,
10 they are not regulated within this class. (See sim.py, the
main program.)

i

12 def __init__(self, bOset, blset, flset, kdamper, \

13 m, n, xmax, ymax, tissuefile , gui):

14 # Array size

15 self .m,self .n = m,n

16

17 # Adjustable values

18 self .bOmag, self.blmag, self.blfreq = bOset, blset,
flset

19 self .kdamper = kdamper

21 # Pixel distance between compass arrows

2 xdist = xmax / (self.m + 1)

23 ydist = ymax / (self.n + 2)

24

25 # + 1 because the centers are half distance from borders
on each side

2 # Arrays with the x and y pixel positions of the compass
arrows

27 xposarr = np.arange(xdist, xmax, xdist)

28 yposarr = np.arange(2.0 % ydist, ymax, ydist)

29

30 # Setting up the arrows

31 # Saving them in a 2D list so using the physics arrays
will be easier

2 self .arrowlist = []

33 for i in range(m):

34 self.arrowlist.append ([])

35 for j in range(n):

36 self .arrowlist[i].append (Arrowimg(xposarr[i],

yposarr[j], gui.imglist))

70

39
40
41
4

43

60

NN N NS
@© ~ N Ql

~
©

C.2 Simulation 71

Simulating tissue in the grid
self.readtissue(tissuefile)

Starting the magnetic field arrays
Optional x gradient and y gradient to build magnetic
fields on
self .bOgradient, self.blgradient = np.zeros([m, n]), np.
zeros ([m, n])
for i in range(m):
self .bOgradient[i, :] = np.linspace(.1, 1, n)
for j in range(n):
self .blgradient[:, j]

np.linspace (.1, 1, m)

For realism, not every compass arrow is exactly
identical , so add noise

Use gradient factor for noise

self .noise = 0.03

self .bOgradient = 1 + self.noise % (np.random.rand(m, n)
— 0.5)

self .blgradient

1 + 0 % self.blgradient

Start with BO and Bl on
self .bOon = True
self .blon = True

Set up physics variables

Angles and angular velocities

theta0 = 180.

self .theta, self.v = np.ones([m, n]) x thetaO, np.zeros

([m, n])

def readtissue(self ,tissuefile):
Imports the file containing the properties of compasses
by their coordinates, to simulate different tissues, and
“image” them.
Read tissue file or set to one
if tissuefile == "":
self .tissuemask = np.ones([self.m, self.n])
else:
Check for .csv or .tis extension, if not add ”.tis

filename = os.path.join(”data”,tissuefile)
if not (”.tis” in filename) and \

not (”.csv” in filename):

filename += ”.tis”

Read lines from tissuefile

71

72 Python code

80 f = open(filename,”r”)

81 lines= f.readlines ()

82 f.close ()

8 print (”"Reading ”“+filename)

84

85 # Read tissue data from lines from tissue CSV file

86 # Use list for appending

87 tissuelist = []

88 for line in lines:

89 if line.strip () [0]=="#":

90 continue # Comment line skip to next

91 else:

92 row = []

93 columns = line.split(”,”)

94 for col in columns:

95 row . append (float (col))

96

97 # Add row of data

98 tissuelist.append (row)

99

100 # Convert list to numpy array

101 # Row,column = x,y so transpose data from file

102 self .tissuemask = np.array(tissuelist).T

103

104

105 #if tissuesimulation:

106 # tissuemask[int(m / 3):2 *x int(m / 3), int(n / 3):2
x int(n / 3)] = .1

107 # # This picks one or a few center arrows to
experience a lot less force

108 # print (”Simulated tissue:”, tissuemask)

109

110

111 def force(self, bx, by, theta):

112 # Force function

113

114 Takes in 3 arrays BO, Bl and the angles of the arrows.

115 Returns the torque on each.

116

117 # arctan2 is the inverse tangent that can automatically
deal

118 # with any quadrant

119 forcerad = np.arctan2(by, bx)

120 forcemag = np.sqrt(bx *x 2 + by *x 2)

121

122 # theta was in degrees, we work with radians for numpy
sine

123 thetarad = theta / 360 % 2 x np.pi

124 # angle between the spin (thetarad) and the force

72

C.2 Simulation 73

125 anglediff = thetarad — forcerad

126 # doesn’t have to be smallest angle, or any specific
domain

127 # since it will go into a sine function

128

129 # possible to add extra factors here

130 force = forcemag * np.sin(anglediff)

131 return force

132

133 def update(self, tsim, dt):

134

135 Time integration from acceleration, to velocity, to
theta.

136 "

137 # Model update function

138 if dt > 0.:

139 # Update magnetic field arrays, separate for x and y
(BO and B1)

140 self .b0 = self.bOmag * self.bOgradient

141 self .bl = self.blmag * np.cos(2 * np.pi * self.
blfreq * tsim) * self.blgradient

142 a = self.tissuemask * self.force(self.bOon % self.b0
, self.blon % self.bl, self.theta))

143 — self .kdamper * self.v

144

145 # can add a factor here if necessary to simulate Mol

146

147 self .v = self.v + a x dt

148 self .theta = self.theta + self.v x dt

149

150 # Now all array calculations are done

151 # We have to switch to loops/lists for graphics

152

153 # Set all arrows from arrowlist to their new angle

154 for i in range(self.m):

155 for j in range(self.n):

156 # Update the arrow for this iteration

157 # Slicing looks different because arrowlist
a nested list

158 self .arrowlist[i][j].update(self.thetal[i, j
)

scripts/model.py
Graphics

il import os
2| import pygame as pg

73

74 Python code

from fastfont import Fastfont

Some colours in RGB values

black = (0,0,0)

white= (255,255,255)

blue = (91,155,213) #RGB value from display panel image

pg.init ()

Clock function

def clock():
Uses pygame ticks to get time units.
Because physics use time, not ticks.
time = pg.time. get_ticks () *0.001
return time

#Class
class Arrowimg() :
Most of the arrow graphics. This class handles the image and
the ”“Rect”.
Needs the imglist so it can quickly update to correct angle.
def __init__(self ,posx,posy,imglist):
self .imglist = imglist
fname = os.path.join(’'bitmaps’, ’arrow.png’)
img_source = pg.image.load (fname).convert_alpha ()
self .img = img_source.copy ()
rectarrow = pg.Rect(posx,posy,10,10)
img_rect = img_source. get_rect(center=rectarrow.center)
self . rect = self.img.get_rect(center=img_rect.center)

def update(self, theta):
Takes in any float theta and
Loads the nearest integer angle,
as imglist contains 360 images.
angle = int(theta+.5)%360
self .img = self.imglist[angle]
self . rect = self.img.get_rect(center=self.rect.center)

class GUI() :

i

Graphical User Interface class,
set up, clear update and draw screen.

74

51

53
54
55

56

59
60
61

62

64

82
83
84
85

86

87
88
89
90
91
92
93

94

C.2 Simulation 75

i

def __init__(self, caption ,xmax,ymax):

Initialize pygame
pg.init ()

Set up screen

self .xmax = xmax

self .ymax = ymax

self .screen = pg.display.set_mode ((xmax,ymax))
pg.display.set_caption(caption)
pg.display.set_icon (pg.image.load (”icon. gif”))

Load rotated images into imagelist for all angle 0-—-359
deg

self .imglist = []

print ("Loading rotated arrow images” ,end="")

Load original arrow image, for if rotation is
necessary

fname = os.path.join(’bitmaps’, arrow.png’)

img_source = pg.image.load (fname).convert_alpha ()

Loading all rotated images, if not exist, rotate and

save
for i in range(360):
Show progress bar with points
if i%30==0:
print(ll.llrend=llll)

Load from (or save in) sprites folder

spritename = os.path.join(’sprites’, ’arrow’ + str (i
) + “.png’)

if os.path.exists (spritename):
img = pg.image.load(spritename).convert_alpha ()
else:
img = pg.transform.rotate (img_source, 1i).
convert_alpha ()
pg.image.save (img, spritename)

Add to rotated arrow img to imglist
self.imglist.append (img)

pl‘int("”)

Display panel bitmap

75

96
97

98

99

103

104
105
106
107
108
109
110
111

113
114
115

116

118

119
120
121
122
123
124

125

126

76

Python code

self .panelimg = pg.image.load(os.path.join (’bitmaps”,’
displays—h130.png”))
self . panelrect = self.panelimg.get_rect ()

Light button images, same size, so we can use same
rect object)

self .imgbOon = pg.transform.scale(pg.image.load (os.path
.join ("bitmaps’, "BOon.png”)) ,(50,40))

self .imgb0off = pg.transform.scale (pg.image.load(os.path
.join ('bitmaps’, "BOoff.png’)) ,(50,40))

self .imgblon = pg.transform.scale(pg.image.load (os.path
.join ("bitmaps’, "Blon.png”)) ,(50,40))

self .imgbloff = pg.transform.scale (pg.image.load(os.path
.join ('bitmaps’, Bloff.png’)) ,(50,40))

self .imgreset = pg.transform.scale (pg.image.load(os.path
.join ('bitmaps’, 'RESET.png’)), (50, 40))

self .imgbrect = self.imgbOon. get_rect ()

Button positions

self .BOxy = self.xmax—50,26
self .Blxy = self.xmax—50,76
self .RESETxy = self.xmax—50,126

Calculate where panel starts

self .panelx0 = int(self.xmax/2)—int(self.panelrect.
width /2)+100

self .panely0 = 20

Create font objects

self . font = Fastfont(self.screen,’ Arial’,17,white, True,
False)

self .dispfont = Fastfont(self.screen,’ Arial’,25,white,
True,0,0) # 0,0 = center this font in x and y

(pygame screen, font,size, colour RGB, bold,
italic)

def textpanel(self ,bOmag,blmag,blfreq,bOon,blon):

Displays the text panel listing the key controls on the
left,

the BO/B1 on/off buttons and the RESET button on the
right.

(NOT the increase/decrease buttons for B0/Bl magnitude
and Bl freq)

i

76

129

155

156
157
158

159

160

161

162

163
164
165
166
167
168

C.2 Simulation

77

Blit background image for display panel, center of

screen

self . panelrect.centerx = int(self.xmax / 2) + 100

self .panelrect.y = self.panely0

self .screen.blit(self.panelimg, self.panelrect)

Text

Render text at x,y—position
xtxt = 6

y =25

dy = 15

self . font.printat(self.screen, xtxt,y,”=== KEY CONIROLS

”

y +=dy

self.font.printat(self.screen,xtxt,y,”B0 = Left/Right

keys”)
y +=dy

self . font.printat(self.screen,xtxt,y,”Bl = Down/Up keys

//)

y +=dy

self . font.printat(self.screen, xtxt,y,”Blfreq
Plus keys”)

y += dy
self . font.printat(self.screen, xtxt,y,”Quit =
y += dy

#self . font.printat(screen, xtxt ,y,” Reset vel:
Positon of values in displays

Use display panel x—coordinate to set text
coordinate

yb0 = self.panely0 + 26

xb0 = self.panelx0 + 99

xbl = self.panelx0 + 307

xb1lf = self.panelx0 + 521

self.dispfont. printat(self.screen, xb0, ybO,
bOmag, 3)))

self .dispfont. printat(self.screen, xbl, ybO,
blmag, 3)))

self .dispfont.printat(self.screen, xblf, ybo,

blfreq, 3)) + 7 Hz”)

Button for BO on/off
self .imgbrect.center = self.BOxy
if bOon:

= Minus/

ESC key”)

V//)

str (round (
str (round (

str (round (

self .screen.blit(self.imgbOon,self.imgbrect)

else:

77

169
170
171
172
173
174
175
176
177
178
179
180
181

182

184

186
187
188
189
190

191

192
193
194

195

196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

78

Python code

self .screen.blit(self.imgbOoff,self.imgbrect)

Button for Bl on/off

self .imgbrect.center = self.Blxy
if blon:

self .screen.blit(self.imgblon, self.imgbrect)
else:

self .screen.blit(self.imgbloff,self.imgbrect)

RESET button
self .imgbrect.center = self .RESETxy
self .screen.blit(self.imgreset, self.imgbrect)

def drawarrows(self ,arrowlist ,m,n):
Goes through the nested list (to represent the two
dimensions) with
Arrowimg objects and displays each one at the correct
position and angle.
for i in range(m):
for j in range(n):
Slicing looks weird because it’s a nested list
To put the image on the screen, we blit the
image and Rect
self .screen.blit(arrowlist[i][j].img, arrowlist[
i][j]. rect)

def clearscreen(self):

Pygame doesn’t get rid of the previous frame by itself,
SO a

function is needed to clear the screen unless. Done here
by simply

drawing a black rectangle over everything.

i

self.screen. fill (black)
rect = self.screen.get_rect()

Draw a border
dx = 4
pg.draw.rect(self.screen,hblue, rect,bdx)

def updatescreen(self):

i

Display all the prepared elements of a frame.

i

78

216

218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248

249

250

251

C.2 Simulation 79

pg.display. flip ()
def getkeys(self):

Regulates every functionality that has an optional key
control.
Buttons for increasing or decreasing B0O/Bl magnitude and
Bl frequency
are also part of this, since they require the same
limits on how much
they should change between frames when held down.
Use keynames to report which keys have been pressed
This dictionary translates key code in key names
keynames = { pg.KRIGHT: 'RIGHT",
pg.K_LEFT: "LEFT ",
pg.KUP: 'UP’,
pg - KDOWN: DOAN" ,
pg - KEQUALS: 'PLUS ",
pg - KMINUS: '"MINUS”,
pg-Kwv: 'V’
pg.Kb: "B,
pg . KESCAPE: "ESC”,
pg .KHOME: ’'RESET’,

}
Keys list to return
activekeys = []

Check events
for event in pg.event.get():
Quit event (closing window) is same ESCAPE key
if event.type==pg.QUIT:
activekeys .append (keynames|[pg.K-ESCAPE])

Mouse clicked on buttons
elif event.type == pg.MOUSEBUTTONUP:
mousex , mousey = event.pos
butnr = event.button
Check on buttons BO and B1l, size 50,40 with x,
y—distance to center of button
if abs(mousex—self.BOxy[0]) <25 and abs(mousey—
self .BOxy[1]) <20:
activekeys .append(”B0")
elif abs(mousex—self .Blxy[0])<25 and abs(mousey—
self .Blxy[1]) <20:
activekeys .append(”B1”)
elif abs(mousex — self . RESETxy[0]) < 25 and abs(
mousey — self .RESETxy[1]) < 20:

79

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

80 Python code

activekeys.append (”RESET”)

Check mouse buttons status and position for buttons
Translate to corresponding keyname
buttons = [”LEFT”,”RIGHT” ,”"DOAN",”UP” ,”MINUS” ,”PLUS”]

leftmousebutton = pg.mouse. get_pressed () [0]
if leftmousebutton:
Mouse positions in panel coordinates
xmouse = pg.mouse. get_pos()[0] — self.panelx0
ymouse = pg.mouse.get_pos()[1] — self.panely0
Positions of 6 buttons: size
ybuttons = 74
dybuttons = 50
xbuttons = list(range(5,5+5%x106+1,106)) # start
coordinates of + and — buttons
dxbuttons = 80
if ybuttons < ymouse < ybuttons+dybuttons:
for i in range(6):
if xbuttons[i]<= xmouse <=xbuttons[i]+
dxbuttons:
activekeys .append(buttons[i])
Check keys
pg.event.pump ()
keyboard = pg.key.get_pressed ()
for code in keynames.keys () :
if keyboard[code]:
activekeys .append (keynames|[code])
return activekeys
def __del__(self):
pg. display . quit ()
pg- quit ()
scripts/graphics.py
Plotter
import numpy as np
import matplotlib.pyplot as plt
Show plot at end of program to help in finding reso frequency

80

N

26
27
28
29

30

31
32

33

34
35

37
38
39
40
41
42
43
44
45
46
47

C.2 Simulation

81

class Plotter():
Handles everything necessary to create graphs after the
simulation is done,
to allow proper analysis.
Tracks and later displays B0 magnitude, Bl freq, and theta
through time.
Bl magnitude isn’t tracked, since its only requirement for
finding the
resonance frequency is being strong enough, not a specific
value.
def __init__(self tsim, dtplot):
Store starting time for plotting timer
self . dtplot = dtplot
self . tplot = tsim

Tabular data for plotting and timing
self.thetatab [

self .bOtab = []
self.fltab = []
self.timetab = []
self .devtab = []
self.treset = []

def tableupdate(self ,tsim ,bOmag, theta ,blfreq):
Adds a new data point in each plot if the time since
last update is
longer than dtplot, the time steps of the plots. Saving
data on every
tick would be a waste of storage.
Check whether it is time to store an update values to
tables for plotting
if tsim — self.tplot > self.dtplot:
Plotting timer
self . tplot = tsim

Plot data
self.timetab .append(tsim)
self .bOtab .append (bOmag)

reshape theta into one long 1D array for plotting
m,n = theta.shape
allthetas = theta.reshape(m * n)

self .thetatab .append(np.mod(allthetas ,360))
self .devtab.append (np.std (allthetas))

81

82 Python code

48 self.fltab.append(blfreq)

49

50 def tabletreset(self ,tsim):

51 "7’Tracks RESET button usage’’’

52 # Save the times of resetting arrows for red lines in
the plot

53 self . treset.append(tsim)

54

55 def plotdata(self):

5(7 177

57 Draws the saved data (B0 magnitude, Bl frequency and
theta) in 3 plots.

58 777

59

60 # Three or four rows with a plot, increase this number
to add a plot

61 nrows = 3

62

63 # Plot data

64 plt.subplot (nrows*100+11)

65 plt. title (”B0 field”)

66 plt.plot(self.timetab, self.bOtab)

67

68 plt.subplot (nrows*100+12)

69 plt.title ("Bl freq [Hz]”)

70 plt.plot(self.timetab, self.fltab)

71

7 plt.subplot (nrows*100+13)

73 plt.title ("Theta”)

74 plt.vlines(self.treset, np.min(self.thetatab), np.max(
self.thetatab), "r”)

75 plt.plot(self.timetab, self.thetatab)

76

77| # plt.subplot (nrows=100+14)

78| # plt. title ("Std Dev Theta”)

9| # plt.plot(self.timetab, self.devtab)

80

81 plt.show ()

scripts/plotter.py

82

	Introduction
	Background
	Equations for simulating MRI with compass motion
	Physics for a compass: harmonic oscillator
	Relevant MRI mechanics and equations

	Physical demonstrations
	MRI scanner
	Existing physical magnetic resonance demonstrations

	MRI computer simulation approach
	Choice of programming language and graphics library
	Existing MRI simulation software

	Education theory
	Summary of design requirements

	Methods - Structure and design of MRI2D
	Developing a program
	Interpreted language or compiled language
	Code structure
	Developing and organising code

	MRI implementation
	Simulation physics (S.1, S.2, S.3, S.4, S.5)
	Visualizing resonance (S.3, S.4)
	Integration of model and graphics into one program
	Interpretation of units in MRI2D

	Implementation of requirements regarding ease of use
	Exercise development

	Results
	Fulfilment of simulation requirements
	Resonance without tissue (S.1, S.2, S.3, S.4)
	Resonance with tissue (S.5)

	Fulfilment of educational requirements
	Safe and robust (E.1)
	Available (E.2)
	Affordable (E.3)
	Easily distributed (E.4)
	Flexible in use (E.5)

	Possible demonstrations using MRI2D
	Exercise 1: Demonstration of magnetic resonance
	Exercise 2: Determine resonance frequency and magnetic field correlation
	Example answer to exercise 2
	Exercise 3: Performing an MRI scan with MRI2D
	Teacher only: Defining tissues
	Exercises tested

	Discussion
	Simplification of spin precession frequency for modelling
	Dimensions of precession in MRI2D
	Complications with modelling precession frequency

	Possible code environments
	Other approaches to Object-Oriented Programming in Python
	Possible structure improvements when using other applications for Python
	Choice of download format

	Education research
	Suggestions for testing MRI2D education effectiveness
	Possible exercises to be developed

	Conclusion
	User guide
	Installing the program
	Running the program
	Graphical user interface
	Runtime screen
	Analysis screen

	Magnetic Resonance Exercises
	Exercise 1: Demonstration of magnetic resonance
	Exercise 2: Determine resonance frequency and magnetic field correlation
	Exercise 3: Performing an MRI scan with MRI2D

	Video demonstration details
	Measurement 1: Resonance frequency at B0 magnitude 0.5 T
	Measurement 2: Resonance frequency at B0 magnitude 1.0 T

	Python code
	Initialisation: Help programs
	Simulation
	Main program
	Programs containing essential classes and functions

