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Abstract

In scientific research, interpretability and high predictive performance are difficult to
combine: while black-box models perform better than interpretable models, only the lat-
ter allow for transparency and inference, which are necessary tools when these models
are used in decision-making or in hypothesis testing. Models such as RuleFit [I] combine
the flexibility of a black-box tree ensemble with the interpretability of a sparse, LASSO
linear regression. Later work substitutes Bayesian regression for the LASSO regression,
thus further improving the model’s prediction (Horserule, [2]). The work in this thesis
was two-sided: on the one hand, we applied a different Bayesian prior (the informative
Horseshoe prior) to the linear step of the RuleFit model, which can naturally take the
structure of RuleFit into account. On the other hand, we used Shapley values to measure
the contribution of each predictor in the RuleFit model and combined these values with
the Bayesian regression to build inferential tools. The new machinery was tested on both
synthetic data and the dataset from the Helius study [3].

The predictive performance of the resulting model was observed to be higher than
that of the original RuleFit model, but lower than that of Horserule. Compared to
Horserule, the proposed model excessively favours trees over linearity, but in doing so it
more strongly enforces the choice of simpler trees. Shapley values were also compared to
other importance measures mentioned in the RuleFit literature, and shown to be more
accurate in reconstructing the contributions as defined in the synthetic datasets.

Keywords: RuleFit, Shapley values, Tree Ensembles, Inference, Bayesian Regres-
sion, Informative Horseshoe
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Introduction

Since access to more powerful computers has become more widespread, statistical and
machine learning models have been able to reach new levels of complexity, and in doing
so solve more difficult tasks with higher precision. As these models typically aim at max-
imum predictive accuracy, they do not usually take other aspects into account. Unlike
humans, for instance, most statistical models cannot incorporate factors like ethics, legal-
ity or justice in the training process. The “Correctional Offender Management Profiling
for Alternative Sanctions” (COMPAS), for example, a software used in the state of New
York for more than a decade, was shown to have racially biased predictions for the risk of
committing a crime [][5]. As it is essential to guarantee that statistical predictions are
as free as possible from such biases, the interpretability of a model is key to performing
post-hoc checks needed to ensure that a model adheres to human standards and principles.

As mentioned in [0], there are further reasons to aim for model interpretability. Often,
for instance, the aim of a model is not simply that of accurately predicting a phenomenon,
but also to gain insight into how the predictors and the outcome are linked. While a
model often does not allow for causal attributions, it may still give clues and insight which
may lead to further scientific research. Another important aspect of the interpretability
of a model is that it allows us to examine its robustness against different settings or
discrepancies between training and real-world data. Moreover, further insight into the
model is also helpful when checking vulnerability against adversarial manipulation: in
[7], Deep Neural Networks were shown to be susceptible to almost humanly imperceptible
manipulations. Even tree-based ensemble learners were shown to be efficiently evaded by
adversarial manipulations, in the sense that it is possible to find the smallest perturbation
to apply to a datapoint in order to change its binary classification, even without having
access to how the tree ensemble is defined [8]. Lastly, interpretability plays a critical role
in the communication of scientific results. An ideal model would be accurate in prediction
but also transparent, in terms of having a mechanism that is easily explained, and easily
visualized, by producing clear pictures that give insight into the connections that the
model builds between the predictors and the outcome. All the elements discussed above
are ideally also inserted in an inferential framework, that can offer a scale to compare
estimates against and ease the separation between noise and information. This includes
tools such as hypothesis testing and credible intervals.

In this thesis, we explore RuleFit [I], an extension of a sparse linear model that en-
riches the predictor space with rules taken from a tree ensemble. The aim of this model is
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to keep easily interpretable linear effects when possible, while also enhancing prediction
by adding a few simple, easily-explained rules that capture non-linearity. In doing so,
one may not only obtain high predictive performance but also high interpretability. The
main challenge of this machinery, however, is to enforce the use of linear terms over that
of rules, since the latter are typically trained on the same data that is used for selecting
the final model and therefore have an unfair advantage in terms of already fitting the
training samples well. Subsequent implementations of RuleFit like HorseRule [2] address
this challenge, as the LASSO regression fitted to estimate the final ensemble is replaced
by a Bayesian regression with a differential Horseshoe prior that penalizes rules more
strictly, according to two tunable hyperparameters.

In exploring this model and its variations, we propose an alternative prior (the Infor-
mative Horshoe prior [9]) that can naturally take into account the different nature of the
predictors, and therefore needs no shrinkage parameters to be tuned in order to shrink
linear terms and rules differently. Moreover, we develop tools that yield further insight
into the model and quantify the importance of each predictor in the model. More specif-
ically, we combine Shapley values and Bayesian regression to produce credible intervals
for the estimated contribution of each predictor to the final prediction. An explicit for-
mula for more direct computation of marginal Shapley values of tree ensembles is derived.

Chapter 1 contains a description of how the RuleFit model works. This includes
an overview of how variable importance is measured within this context, together with
the current limitations of this machinery. Chapter 2 covers the Horseshoe prior, its
current use with RuleFit (HorseRule), and how it may be extended by the use of co-
data, using the Informative Horseshoe prior. Chapter 3 gives an introduction to Shapley
values, the TreeSHAP estimation algorithm and an explicit formula for the estimation of
marginal Shapley values. It also ties in with Chapter 2, as uncertainty is included in the
estimation of variable importance, and new inference-based measures are defined. The
machinery described so far is applied to synthetic data in order to evaluate predictive
performance, sparsity of the model and accuracy of the newly introduced importance
measures. Chapter 4 shows the results of such simulations. Chapter 5 contains a small
application of this model to the dataset from the Helius study [3], while Chapter 6 ends
this work with a discussion of the resulting model, its advantages and its limitations.
The code used to run the experiment may be found on the GitHub page linked in the
Appendix, for reproducibility.



Chapter 1

An introduction to RuleFit

1.1 What is Rulefit

In 2008, Friedman and Popescu proposed their approach RuleFit as an extension of linear
regression that can capture nonlinearity and complex interactions in an interpretable way.
More specifically, it comprises of the following steps:

e A Boosted Tree Ensemble, or alternatively a Random Forest, is fitted on the dataset;
o All the rules/nodes from every tree of the ensemble are extracted;

e All these rules are coded as dummy variables and added to the predictor space;

e A LASSO linear model is fitted to the extended predictor space

The idea behind such a model is that it combines the best of both worlds: on the one
hand, incorporating the rules from a tree ensemble enables us to gain some of that accu-
racy that is typical of a black-box method. On the other hand, the sparse use of linear
terms and dummy variables allows for a more straightforward interpretation of the model.

Before the discussion is taken further, let us define some notation. Throughout this
work, we consider the setting in which a dataset of n samples is used. We denote the

samples by (), ..., z("). Each sample is a p-dimensional vector z(9) = (xgi), e ,xéi)).
A generic p-dimensional point has no specific sample index ¢, and is thus simply denoted
by = (x1,...,2p). The generic j-th predictor is therefore x;.

To illustrate how rules can be extracted from an ensemble of trees, we present a
simplified example. A boosted tree ensemble has been fitted to five predictors, comprising
only two trees, as shown in Figure This ensemble produces six rules:



Yes No Yes No

Figure 1.1: Simplified example of a boosted tree ensemble, containing only two trees of
depth two and one, respectively.

ri(x) == I(z1 = 3),
ro(x) := I(z1 < 3),
rg(z) == I(z1 < 3) - I(x3 < 2),
ra(x) == I(z1 < 3) - I(x3 = 2),
r5(x) == I(zg > 4),
re(z) := I(z3 < 4).

Table [I.1] shows how an example dataset of five samples is transformed by adding the
extra components accordingly. Note how rules r1, 73, and r5 would have been enough to
represent the six perfectly collinear rules. However, this is not a concern since a sparse
model performs selection across these collinear terms.

A possible last step in pre-treating the predictors is the winsorization of the linear
terms: to avoid outliers, a continuous predictor x; may be altered by replacing all extreme
sample values with less extreme values. More specifically, z; is substituted for:

Li(z;) = min(éj,max(é},xj)) =<x; if 5;’ <zj < 5; , (1.1)
5;7 if x; > 6;



I X2 I3 Ty Is 1 T2 T3 Ta Ts5 Te6
—0.5 2 5 3.1 —-1.3 0 1 0 1 1 0
3.7 1.5 —0.1 4 24 1 0 0 1 0 1
1.8 0.1 1 0 0.8 0 1 1 0 0 1
4.1 —-0.9 2.9 2.2 2.1 0 1 0 1 0 1
3 —0.4 4.2 1.6 —-0.6 1 0 0 1 1 0

Table 1.1: Example of how five exemplary datapoints in a 5-dimensional feature set would
be extended to an 11-dimensional set by adding the rules defined on page [2} as taken
from the tree ensemble shown in Figure [[.1]

X1 i) T3 Ty Is
—0.27 1.95 4.92 3.1 -—-1.23
3.7 1.5 0.01 3.91 2.37
1.8 0.1 1 0.16 0.8
4.06 —0.85 2.9 2.2 2.1
3 —04 4.2 1.6 —0.6
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Table 1.2: Example of how the datapoints from Table are winsorized for 8 = 0.025.
The numbers in bold have been winsorized.

where §;" and 5;“ are the B-quantile and the (1— 3)-quantile of {x§1), e ,xgn) }, for a small
value of 5. While this step is strictly necessary, Freidman and Popescu apply this step
in the interest of robustness, with a suggested default of 5 = 0.025. Table shows the
winsorized terms for 8 = 0.025. The numbers in bold are the ones that the winsorization
actively changed, as they were beyond the quantiles. Note how the winsorization happens
after the rule generation, meaning that winsorization does not change the status of a rule.

Once the predictor space is extended and winsorized, it is time to use a sparse linear
regression model to select many of the rules, and possibly winsorized predictors, out of
the model. This way, the rules only play a supporting role to the linear terms, whenever
interactions and/or non-linearities are suggested by the data. From our example, the
final model would take the form:

F(z) =g =ao+ Y, agri(x) + Y, bil(a)). (1.2)
k=1 j=1

In this work, we refer to the terms b;l;(x;) as linear terms and to the terms a;r;(x)

as rules.

Friedman and Popescu suggest LASSO for estimating the coefficients in Equation
Since LASSO tends to favour predictors with higher variance, predictors are typically
standardized before regression. Standardizing a rule ; means dividing it by the quantity:

1 & )
(1 —7), where 7; = — Y7 (). (1.3)
i=1
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The quantity 7; is the observed mean of the rule r; on the training set and thus coincide
with its observed support when the rule is 0—1 coded as above. Dividing by the observed
standard deviation, however, may be an unstable process. For this reason, Friedman and
Popescu instead suggest limiting ourselves to rescaling the linear terms to make sure that
they have the same variance as the average rule. More specifically, the average variance
of a rule, assuming that its support 7; is uniform in [0, 1], is:

1 oo™ 1 1 1
J 71 —=7;)dr; = (i*i‘ =5 -2=¢%
0 2 3o 2 3 6
This means that the average variance of a rule is reached when the standard deviation
equals 4/1/6 ~ 0.4. The linear terms are thus re-scaled accordingly:

Li(z)
U(x;):=0. 47] 1.4
In this way, linear terms have similar variance as rules and LASSO is applied to the
extended predictor space, producing the linear model in Equation

1.2 Variable importance in a RuleFit model

As mentioned above, the goal of RuleFit is to pair accuracy levels that are typical of black-
box models with higher interpretability. A common approach to obtain interpretability
is variable importance, a measure that represents how much a predictor is relevant in
our model’s prediction of the outcome. For linear terms, variable importance may be
computed as one would typically do for standardized coefficients in a linear model:

1 = by - sd(l ().
The analogue measure for rules is:
R . — _
17 = |- sd(r) = ;] /75(1 = 7).

In their initial work [I], Friedman and Popescu also discuss local measures, i.e. measures
that show the contribution of a predictor to the prediction of the outcome for any given
datapoint, individually. Since the contributions are additive, these are simply computed
as the difference between the point-specific contribution and the average contribution,
for the individual term. In other words, linear terms have a local importance measure
defined as: . R

19 (@) = |bil(25) = byly| = [bsl - 11 (w;) — 151, (1.5)

where [; is the observed mean of I;(z;) over the training data. Rules, on the other hand,
have a local importance measure defined as:

1 (x) = |agrj(z) — a;7] = lag| - Irj(z) — 7. (1.6)

The local and global measures are connected by the formula:




While these importances are useful and intuitive, we also need to keep in mind that

one is typically not interested in the importance of one individual rule or linear term, but
rather in the importance of a predictor as a whole, which in this model would typically
appear in both multiple rules and the linear term.
Friedman and Popescu propose to sum up the contributions together, while equally split-
ting the importance of a rule across the predictors it involves. This approach seems
intuitive and compensates for rules that involve many predictors. The overall local im-
portance of the j-th predictor for a datapoint x is therefore defined as:

(R)
I 7 (x)
Ji(@) = 1P () + ) S (1.8)
k s.t. k
TFETE

where my, denotes the number of predictors involved in the k-th rule and, with an abuse
of notation, x; € r;, is meant as “the j-th predictor is involved in the rule r;”.

A global analogue is also suggested, by replacing the local importances with the global
ones:

Jp=1P 4 Y (1.9)

1.3 Current limitations and challenges

While the machinery described above is already quite effective at producing interpretable,
accurate models, some limitations may remain. Firstly, one might be concerned with the
LASSO fit: while it is true that linear terms are re-scaled to make the terms more com-
parable, it is important to keep in mind that this rescaling is only based on the theoretical
average variance of the rules, which therefore does not necessarily well reflect the actual
variances of the rules. Furthermore, the rules are originated from the same dataset that
is also used for the linear regression, which gives an advantage to the rules in terms of
fitting. This advantage should be countered for instance by reducing the shrinkage on
linear terms, but the rescaling suggested by Friedman and Popescu goes in the opposite
direction. Moreover, even if comparability between linear terms and rules were not a
problem, it would still not be true that the rules are comparable with each other, since
they have not been standardized (see for instance [I0]). Friedman and Popescu do how-
ever explicitly address this, and mention that this is a deliberate choice so that rules with
extreme support are penalized more than rules with a more balanced support, a choice
that favours stability [I].

The variable importance measures also seem to present some limitations: for instance,
the connection in Equation|l.7|between local and global importance for I j(.R) and 1 J(L) does
not apply to J;: intuitively, the problem is that we cannot sum up the local importance
of the different terms together, since the terms are typically are correlated. Furthermore,
we have to keep in mind that these measures are all defined based on the intuition that



the contributions of the rules should be equally split across the predictors involved, which
does not necessarily have to be the case.

Lastly, neither the coefficients nor the importance measures can benefit from uncer-
tainty quantification: the bias induced by the frequentist LASSO regression makes the
variance of the estimation unreliable in inferential statements [11], and LASSO’s Bayesian
counterpart, i.e. the Laplace prior, is also inadequate for uncertainty quantification [12].



Chapter 2

Bayesian linear regression:
changing the sparse model

2.1 Why go Bayesian?

As we have mentioned above, LASSO is an efficient way of performing sparse linear re-
gression, but it also has limitations: more complex structures and relationships between
the data may require coefficients to be shrunken in different ways. This is a context
where Bayesian approaches thrive: within this realm, we are allowed to specify complex
priors that may very accurately reflect our prior knowledge about the data or, like in this
case, the desired structure of the coeflicients (think, for instance, of differentiation be-
tween linear terms and rules, but also between more general and more specific rules). An
advantage of using priors is that these differentiations can be formulated hierarchically
in Bayesian models: to better represent heterogeneity in the predictors, we may decide
to not only define a prior distribution for the coefficients of our linear model but also to
establish prior distributions for the hyperparameters of said priors, as a way to indicate
that some coeflicients should be shrunken more than others. This represents a drastic
departure from LASSO regression, which does not penalize each predictor individually
and therefore tends to overshrink large effects.

Inducing specific prior knowledge is also helpful in contexts where the sample size is
small, especially when we are performing regression on a large predictor space (which
may very easily be our case, as we expand it by adding many binary rules). In these
situations, maximum likelihood solutions (and LASSO estimates, as pointed out in [13])
tend to be infeasible or less stable. Lastly, using Bayesian regression yields not only
a point estimate for the coefficients but rather the full distribution of the coefficient
estimates and, therefore, of any quantity that depends on said coefficients. From this
distribution, we may compute credible intervals and perform inference, tools that all go
towards the direction of more transparent, interpretable machine learning.



2.2 The Horseshoe prior

The Horseshoe prior was first implemented by Carvalho, Polson and Scott in 2009. As
described in [I4], the Horseshoe prior is particularly good at avoiding overshrinkage of
larger coefficients and being stable in its estimate.

The way this prior is defined, for a coefficient vector 3, goes as follows:

BjilAj, T, o? ~ N(0, )\?7202),
/\j ~ C+ (07 1)a

T~C"(0,1),

0% ~ o %do?.
In other words, the shrinkage of a coefficient 3; has two components: a global shrinkage,
represented by the parameter 7, and a local shrinkage, represented by the parameter
Aj, which is individual to each coefficient. The idea behind this prior is that some co-
efficients need much more shrinkage than others, therefore A; determines how much the
global shrinkage 7 needs to be dampened or amplified.

In [2], Nalenz and Villani implement such horseshoe prior in the context of RuleFit,
while also customizing the prior in a way that more aggressively shrinks coefficients to
zero when they involved rules that were not as valuable for interpretability and accuracy.
More specifically, they favour rules that have:

e less extreme support: rules with low variance (i.e. that cover almost every
datapoint or that, conversely, only cover very few) might be more unstable and
induce overfitting. Furthermore, the fewer rules are used, the more interpretable
is the model, suggesting therefore that the model should focus only on rules that
really make a difference in many training samples.

e fewer predictors: if many predictors are involved in the definition of a rule, then
the rule becomes less interpretable, and should therefore not be included unless
strictly necessary.

In order to do so, the horseshoe prior was redefined by changing the prior distribution
of the local shrinkage parameters A;, which takes the form:

Aj ~CT(0,4;), (2.1)

where A; may be defined as a quantity that is low for very unfavourable predictors and
high for very favourable ones. Note that A; is the median value of a random variable
with distribution C*(0, A;), meaning that a higher value of A; likely induces a higher
Aj, which in turn makes the prior 8; ~ N(0, )\?7'202) less informative and reduce the
shrinkage. The choice that Nalenz and Villani make in [2] is to give linear terms a value
of A; =1, while for rules the formula is:
: ENY
4 - (2 min(1 —7;,7;)) 7 (2.2)
(m;)"




where m; denotes the number of predictors involved in the definition of the j-th rule.
The parameters g, > 0 may be set manually according to how heavily one wants to
shrink rules with extreme support or many predictors. These two hyperparameters may
also be determined by cross-validation, however the authors report high accuracy with
the default of 4 = 1,7 = 2. The definition of Aj; is designed so that A; < 1 always
holds, for any values of y and 7, with A; = 1 being satisfied only for rules of depth one
that have the most evenly distributed support possible (which is 7; = 1 —7; = 0.5). In
particular, linear terms are being penalized as much as these types of ideal rules, and less
than any other rule.

The method of using this type of structured horseshoe regularization on the extended
predictor space obtained from the Rulefit machinery is part of what the authors Nalenz
and Villani named Horserule. Aside from the use of this horseshoe prior with structured
penalization, another innovation of the Horserule method is that it not only collects rules
from a boosted tree ensemble but also from a Random Forest. According to Nalenz
and Villani, the Random Forest brings additional randomness and diversity in the rules,
therefore increasing predictive performance. We, however, do not focus on this aspect of
the Horserule model, and instead keep our discussion simply on the use of the structured
horseshoe regularization.

There is one last fundamental difference between Horserule and Rulefit: while the lat-
ter rescales the linear terms as shown in Equation|1.4]in order to make them comparable
to the rules, the former approach simply centers and standardizes everything, both rules
and linear terms. Concerns about the instability of this type of approach have already
been raised above, in the context of LASSO regression, but in Horserule the structured
penalization also helps reducing instability. To discuss this further, let us notice that the
HorseShoe prior may be conveniently rewritten to incorporate the re-scaling of predic-
tors. Let us study the conditional density of 3, for any given A = (A1,...,),), in the case
where the predictors 1, ..., ), are re-scaled by some coefficients a1, ...,a,. We write it
up to a multiplicative constant, and before it is integrated over all values of A:

.
57 BIN) o e~z =R bl e (515%)

(ajb;)?
5  __1 P WA
— e oz lv=X o @i (et | T 2o ( i=1 <ajxj>2)

o« fa((azbj)j=1,. . plajri)j=1. . p)-

In other words, multiplying a predictor x; by a scaling parameter a; before fitting a
Horseshoe model is equivalent to directly fitting the Horseshoe model with an individual
shrinkage parameter that is scaled by the same parameter. The coefficient estimate
also automatically accommodates the new scale of the predictor, if we do so, as b; is
replaced by a;b;. Within the context of using Horserule, this means that standardizing
the predictors before regression is equivalent to replacing A\; ~ C*(0, A;) with:

/ )‘j AJ' )

A ~ (Ct
Y= ) ¢ S

Now we apply this equivalence to our Horserule setting: assuming that p > 0.5, we



notice that, for a rule r;, standardization is equivalent to a local shrinkage parameter
N~ C*(0, AY), where:

A;
sd(r;)
A
(1 —=7;5)
(2min(7;,1 —7;))*

m]\/Ti(1 —7;) (2.3)

(len(rj,lfr y1=0.5) \/len T, 1—T;)

Al =

m T 1—7"3

B (2m1n(rj,1—7" VA 05)
B mj max(7;, 1

In other words, up to a multiplicative factor , / max(r = , standardization has the effect

of only reducing the parameter y by 0.5. This multlphcatlve factor, however, is quite

stable and has little span across different supports: Figure compares the function

2 . . 1 . .
e, 175) with the function W=t Considering that the latter represents how

much shrinkage is dampened when performing standardization before LASSO, we see
how standardizing rules beforehand does not produce the significant instability that the
classical Rulefit had to address.

2.3 Informative HorseShoe: using co-data

Complementary data, or just co-data, as described for instance by [15] and [16], is a term
typically referring to prior information that one has about the predictors. This informa-
tion may be used to structure the prior in a Bayesian model with more insight and to
take advantage of historical/expert knowledge that would otherwise be lost. Examples of
co-data could for instance be -omics annotations, but also p-values or estimates from a
previous experiment. In our context, our prior knowledge includes (but is not necessarily
limited to) the different nature of the predictors (linear terms vs. rules, rules of different
depth, rules with different support).

From now on, let us denote the co-data as a collection {Z (d)}d=1 ,,,,, p of matrices
Z(d) ¢ Rp*ha containing categorical and/or continuous information about the p predic-
tors. Many steps have already been taken in the direction of incorporating co-data in
one’s analysis, both for a single source of co-data (see [I7] [I8] for grouped LASSO, for
categorical co-data, and [19] [20] [21], for Bayesian use of co-data) and multiple sources
of co-data (see [22] and [9]). Since we have multiple types of information about the pre-
dictors and since further, experiment-specific sources could also be available in a general
setting, we focus on multiple sources of co-data.
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Figure 2.1: Plot of the functions y = 1/4/7;(1 —7;) (blue, solid line) and y =
,/W (red, dotted line). Given the observed frequency 7; of a rule r;. The

red line, which represents the change in shrinkage induced by the standardization under
structured penalization of rules, is much more stable than the blue line, representing
the change in shrinkage induced by the standardization when no penalization of rules is
present.
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Both [22] and [9] proceed with a prior similar to the one written above, but then
connect the parameter A; with a linear combination obtained from the co-data matrices.
In [9], for instance, the informative horseshoe prior is defined as:

ylX, B,0% ~ N(XB,0%1), (2.4)

ﬂj|/\j,7’,02 NN(O,)\?T2U2), (25)
2, (d

N1 Zy ~ et (D2 ), 1), (2.6)

d=1

7d|"$?l ~ N(0, K/led)’ (2.7)

kg~ ZG(1,1), (2.8)

T ~C%(0,1), (2.9)

o? ~ o %do?. (2.10)

In this approach, unlike HorseRule, the differentiation in the distribution of ); is made at
the level of the location of the Cauchy distribution, rather than its scale. As mentioned
in [9], this is more intuitive in contexts where covariates are not only categorized into
strong and insignificant but also allow for more nuanced, weaker contributions. With this
in mind, the informative Horseshoe regression developed by Busatto and van de Wiel in
[9] seems to be a potential improvement to Horserule, since multiple types of information
about our setting may be specified, and since this opens up our model to further, external
sources of information.

As we replace the Horseshoe prior with this co-data-based counterpart, we may also
decide whether we want to keep the structured penalization or not: thanks to our dis-
cussion about shrinkage and scaling from our previous chapter, we can consider the
structured penalization of the rules as an ordinary horseshoe fit, where the linear terms
are being standardized and the rules are being rescaled by a factor A; as defined in
Equation With this mindset, the horseshoe fit may be replaced with the informative
horseshoe. Alternatively, one may consider the natural adaptiveness of the informative
horseshoe prior and write undesirable properties like extreme support, high depth and
rule-like nature as co-data sources. In this manner, specifying the structured penalization
can be avoided altogether. Since there is no structured penalization, standardization of
rules may be unstable and should therefore be avoided in this case. As mentioned above,
this naturally favours rules with more balanced support. Not standardizing rules also
naturally favours linear terms, a phenomenon that Friedman and Popescu have countered
by shrinking the linear terms by a factor of 0.4. When using the informative Horseshoe
prior, however, the co-data naturally creates a distinction in shrinkage between rules and
linear terms.
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Chapter 3

Interpreting individual
contributions: Shapley values

3.1 What are Shapley values

As discussed above, a key feature of Rulefit is that high predictive performance is paired
with better interpretability. Yet, the above-discussed limitations of the current variable
importance measures motivate looking further into other ways to interpret a predictor’s
effect in our model. A significant step in the direction of interpretable machine learning
was the introduction of Shapley values for fitted regression models.

Shapley values were first introduced by game theorist Lloyd Shapley [23] as a way to
measure the individual contribution of multiple players in a game. They were only later
proposed as a way to make black-box models more transparent (see for instance [24] and
[25]). In particular, they defined the so-called SHAP, SHapley Additive exPlanations,
to be the Shapley values for the specific game of using the fitted model to predict the
outcome. The different players of the game are, in this context, the individual predictors,
and they are each assigned their contribution to the prediction. Because SHAP values
are a specific case of Shapley values, the two names are often used interchangeably in
the Machine Learning literature. That being said, “SHAP” tends to refer to more spe-
cific, practical algorithms to estimate Shapley values, while “Shapley” is used in a more
theoretical context. Variations of the original Shapley values tend to retain the original
name, as is the case for Marginal Shapley values or Baseline Shapley values. Following
this common practice, we mainly use the expression “Shapley values” and resort to using
“SHAP” when referring to well-established practices, libraries and algorithms.

To illustrate the reasoning behind the definition of Shapley values, let us consider a
fitted model F(z). For any datapoint z* and any predictor index j, Shapley values are
a local measure that tries to estimate how much the j-th predictor contributes to the
specific prediction F(z*). An intuitive way of computing such contributions would be
fitting two models: a model F(z1,...,x,) which uses the j-th predictor and a second
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model Fj(z1,...,2j-1,%;+41,...,%p) which is fit without x;. Then a possible measure
could be:

Li(x*) = F(af,...,x5) = Fj(x], ... 2], 2, 20).

This measure, however, requires fitting a new model for every predictor whose importance
we need to measure. More importantly, it does not properly consider the collinearity
between two predictors: let us consider an example where a linear model is fitted on data
with the following structure:

Y = X1+ Xs, X; = 2Xo.

In this context, F(x1,x2) := x1 + xo,F1 (x2) = %l‘g and Fy(x1) = 3z share the same im-
age, meaning that the importance I;(z*) as defined above would always be null. Another
option is to replace F; with the marginalization of the model F'(z) over the predictor z;,
as a way to “remove” the extra information given by the j-th predictor. This method
does not require re-fitting the model, and results in the measure:

L(x*) = F(af,...,x5) —E[F(z1,...,2xp)|z; = 2}Vi # j]. (3.1)

p

Applying this measure to the linear model built above, however, still produces null con-
tributions:

I (z*) = F(a7,23) — E[F (21, 22)|22 = 23]
=z} + 25 — E[z) + x2|19 = 23]

o +ad — (2 + %)

0.

This problem goes beyond collinearity and is generally related to the fact that this mea-
sure still does not pick up cooperation between predictors very well, even when predictors
are independent. Let us consider the following example, where x, and x5 are independent
predictors:

F(x1,22) = I(x1 >0 v 22 <0).

The contribution of the first predictor to the outcome prediction for the datapoint x* =
(1,—1), as defined in Equation would be:

I'(2*) = F(2},25) — E[F (21, x2)|x1 = 27]
=I(1>0v-1<0)—E[I(1>0vay<0)]
=1-E[1] = 0.

The same would happen for the second predictor, implying a model where no pre-
dictor is important. The problem here is that both predictors add no further relevant
information if the other predictor is already there. Their power relies on adding infor-
mation when no predictor is being used yet. In other words, to make this more general,
different predictors may work together towards prediction and therefore the effect of a
predictor x; may depend on which predictors x; is being added to.
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Therein lies the novelty of Shapley values, where contrasts between marginalizing
and not marginalizing z; are not only computed once, while fixing all other predic-
tors. Instead, Shapley values compute this contrast for any combination of all remaining
predictors being used or marginalized. More specifically, the Shapley value of the j-th
predictor for a datapoint xz* is computed as:

1
bi(z*) = — (E[F(2)|zs = 2%, 2; = 2}] — E[F(z)|zs = %] ), (3.2
@)= N (Bl = aba =af] Bl =a3]). (2

where the notation xg = =¥ means z;, = x} Vk € S. The weights T}(Tl,l) are denoted by

S
wp(S), or simply w(S) when p is clear from the context. In this forr‘n‘ula, these weights
serve the purpose of taking into account the fact that there are fewer subsets S where
|S] is very small or very large. A set S here represents which predictors are not being
marginalized for a specific contrast, and therefore are playing a role in determining F'(z*).
This is why the sets S are typically referred to as sets of active players.

There are multiple benefits to Shapley values as defined in Equation |3.2
First, they allow for an intuitive interpretation: they may be described as the average
change in prediction that is induced in the model when an unknown number of the
predictors is expanded by adding the j-th predictor.
Second, Shapley values account for cooperation between predictors: going back to our
example with F(z1,22) = I(x1 > 0 v 22 < 0) and z* = (1, —1), the Shapley value for
the first predictor is:

61(a%) = 3 (BIF@)fr = 2%, > = 73] ~ E[F(2)l = o))
+ 2 (B[P(@)fs = %] ~ E[F())
= S (F) ~E[F @)z = 23]) + 5 (BIF ()| = 1] - BF ()
~ S BLF @)l = o7] ~ ELF ().

We indeed see how the formula for Shapley values has produced an extra non-null term
that gives non-null importance to z1, and analogously to .

Lastly, Shapley values have the following four properties:

e Efficiency: Summing up all values produces the overall deviation from the average
prediction: >.0_, ¢;(z*) = F(z*) — E[F(2)];

e Symmetry: Two predictors that equally change the prediction when added to any
same coalition of active players S have the same Shapley value;

e Dummy: If a predictor does not alter the prediction when added to any coalition
of active players, then its Shapley value is zero. This is a very helpful property,
as it gives us a natural null against which to contrast significant predictors, in an
inferential framework;
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e Additivity: Computing the Shapley values for the model F + G is equivalent to
adding up the Shapley values from the model F' and the model G, computed sepa-
rately. Thus, for RuleFit, the Shapley values for the full model may be computed
by summing up the Shapley values of the individual linear terms and the rules.

Shapley values are the only type of measure in game theory to have these four prop-
erties [23], which makes them a particularly desirable measure.

3.2 Limitations, challenges and alternatives for Shap-
ley values

Despite the many benefits described above, there are two main issues that complicate
the use of Shapley values:

e Conditional expectations: Expanding on the previous point, one needs to not
only make assumptions about the distribution of the predictors but also be able
to estimate the conditional means in Equation [3.2] which may be very challeng-
ing, especially when the model F' is sophisticated or these expectations are being
conditioned on continuous predictors.

e Computational cost: In most cases, the summation in Equation [3:2] does not
simplify, and has to be explicitly computed over all possible subsets S. The num-
ber of subsets, however, is 2?7 and thus grows exponentially with the number of
predictors, making these values hard to compute in most applications.

These two challenges have motivated researchers to find approximations of Shapley val-
ues that are computationally more affordable. The computational cost was reduced by
approximations such as sampled Shapley Values [24][25], which estimates Shapley values
from only sampling some active player subsets S. Starting from m points ¢V, ... ¢(™)
selected uniformly at random and m orderings 71, ..., T, selected uniformly at random
from the group S, of all permutations of the p predictors, the sampled Shapley values
for a point x* for the j-th feature are computed as:

m

2 t9, m)) — f( (2%, 10, m))),

i=1

¢j($*) =

with 7(z*,t®, 7)) and 7/(z*,t®,7;)) are p-dimensional vectors whose k-th entry is
defined as:

xzf if k= j or k is before or j w.r.t. m;

)

(r(z*, D 7)) = {

yr  otherwise

(' (2 £, i) = {x: if k is strictly before j w.r.t. m; .

yr ~ otherwise

Implicitly, the set of active players S is the set of all predictors that come before the
j-th feature, in the randomly extracted feature order m;. This way of defining S from a

16



permutation allows for the sampling of S to fairly distribute between different sizes of
active players sets, so that no weighting w(S) is needed.

KernelSHAP [26][27] also shortens computation times by taking advantage of the
Sampling of active player subsets, but combines it with a clever rewriting of Shapley
values as matrix product and the use of statistical modelling to approximate the joint
distribution of the features. In doing so, the conditional expectations are quite accurately
accounting for dependencies between predictors, but the computational cost is still con-
siderable [27].

Another popular alternative is Marginal Shapley values, also called Random Baseline
Shapley values [28], which simply do not take conditional expectations, but rather the
expectations E[F (2%, xs/)], where F (2%, xs) denotes the function F'(x) where the entries
in the set S have been fixed to the value x¥, while the others are left as variables. This
substitution in expectations is de facto the same as assuming independence between pre-
dictors when computing the expectations. This approach may allow for simplifications
in the definition of Shapley values from Equation [3.2] as discussed in the next sections.

It is important to point out that these simplifications come at the cost of less accu-
rate estimates, especially when predictors are highly correlated, since marginal Shapley
values ignore correlation when computing the expectations. However, the fact that the
marginal Shapley values may differ from their exact counterpart does not necessarily
need to be a source of concern: in the context of a linear model, for instance, marginal
Shapley values coincide with the interpretation that we already give to the coefficients,
Le. ¢;(2*) = B2} —7;) [27]. Exact Shapley values, on the other hand, account for
the correlation between predictors and therefore do not coincide with our former notion
of the contribution of a linear term. In particular, this means that if the purpose is to
have a measure that generalizes the way we already interpret coefficients for the linear
terms in a linear model, then we should use marginal Shapley values, rather than the
exact ones. The use of marginal Shapley values instead of exact ones is also important for
consistency: for the linear terms, only the marginal Shapley values are readily available,
and their exact counterparts would need methods such as KernelSHAP to be computed
[27]. Adding marginal Shapley values for the linear terms to non-marginal Shapley values
for the rules would thus hinder the interpretability of our importance measure.

3.3 TreeSHAP

While Shapley values can be difficult to compute for a generic model, the problem is sim-
plified in the context of RuleFit: by additivity of Shapley values, we can compute said
importance measure for the linear model and for the tree ensemble separately. Since the
marginal Shapley values for the linear terms are readily computed from the regression
coefficients, the problem is reduced to estimating the marginal Shapley values for the
tree ensemble. Thanks to their simpler structure, it is easier to estimate Shapley values
for trees. An example of this is given by [29], who produce an explicit formula for com-
puting marginal Shapley values. This formula, however, is only applicable to oblivious
(also called symmetric) trees. In Section we take a different approach and propose a
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simpler formula that applies to any kind of tree and, by the additivity of Shapley values,
tree ensembles.

The most widely used estimation of Shapley values for trees and tree ensembles, how-
ever, is TreeSHAP. Firstly introduced by Lundberg, Erion and Lee [30], TreeSHAP is
an approximation of Shapley values for trees that tries to both account for correlations
between features and, simultaneously, speed up computations. Its main strength is that
it does not directly have to sample through all subsets S of active players, but rather
runs through an individual tree in a top-down manner, and for every splitting node, it
acknowledges the contribution that the associated predictor would bring if it were added
to a coalition. The weighting of the contributions according to the size S is stored sepa-
rately. Another strength is that the expectations partially account for the conditioning on
xg = x¥: the quantities E[F(z)|xs = x%] are approximated by averaging the predictions
F(t) from all samples ¢ that satisfy the same rules as z* for the predictors that are active
players. More specifically, as explained in [31], the algorithm is equivalent to estimating
a single conditional mean E[F(x)|xg = z%] of a single tree F(x) by agglomerating the
nodes in a bottom-up manner. A parent of two terminal nodes collapses into a newly
generated terminal node whose prediction F(z) is determined as follows:

o if the splitting predictor is not an active player (and therefore needs to be marginal-
ized), the new F(x) is the weighted average of the two predictions of the child nodes.
The average is weighted according to how many points belong in each node.

e if the splitting predictor is an active player (and therefore its rule needs to be en-
forced by discarding the points that do not follow it), the new F'(x) is the prediction
of the child node whose defining rule is satisfied by z*.

This collapsing process is repeated until only a single terminal point is left. Its predic-
tion value estimates the conditional mean. Figure depicts how an exemplary tree un-
dergoes the process, for the active player subset S = {1,4} and the point 2* = (3,2,1,0).
In this example, the estimate for E[F(z)|xs = 2%] is 7.7. Instead of repeating the process
in Figure for every possible subset S, TreeSHAP is built to scan through every tree in
a top-down matter, and keep track of these conditional means as the scanning proceeds.
These conditional means are being approximated by another similar quantity which is
sometimes referred to as TreeSHAP game value [29].

The algorithm drastically reduces computation times, while also partially accounting

for the conditioning in the expectations that appear in the definition of Shapley values
as in Equation [3.2] This algorithm, however, has been shown to have flaws such as:
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X =3 X; =3

No Yes No Yes

Figure 3.1: Example of how TreeSHAP approximates the conditional mean E[F(z)|zs =
x¥] for * = (3,2,1,0) and S = {1,4}. In the first step, two nodes are collapsed: the two
left-most leaves result from a split on the inactive player xo; they are collapsed into their
parent node whose prediction becomes the weighted mean of the two child nodes. The
middle two leaves result from a split on the active player z4; they are collapsed into their
parent node whose prediction becomes the prediction of the child node x* was sent to.
In the second step, the two right-most leaves result from a split on the inactive player xs;
they are collapsed into their parent node whose prediction becomes the weighted mean
of the two child nodes. The resulting value is the estimate of E[F(x)|zs = x%]. Here, it

is estimated as 7.7.

e False influence of predictors: Even when a predictor does not actually con-

tribute to the outcome, TreeSHAP may produce (typically small) non-zero esti-
mates of its Shapley value [32].

Structure dependence: TreeSHAP is not implementation-invariant [29]. In other
words, trees that split the predictor space in exactly the same way and with exactly
the same predictions may produce different Shapley value estimates, if the split-
ting predictors are re-arranged in order (e.g. the tree splits by predictor 1 before
predictor 3, instead of the other way around). More specifically, TreeSHAP tends
to attribute more importance to the predictors that appear earlier in the trees.
Combining this with the fact that trees are greedy and therefore strongly corre-
lated predictors tend to be split first, this results in an underestimation of small
contributions and an overestimation of larger ones [33].

Loss of interpretability and bias: Since this algorithm is using TreeSHAP game
values instead of the conditional means, we are technically estimating a quantity
that is conceptually different from Shapley values, and therefore bound to be a
somewhat biased approximation [29]. In the context where non-marginal Shapley
values are really needed, which is when features are strongly correlated, TreeSHAP
may still be inaccurate in estimating the conditional means and the bias may there-
fore be quite substantial [27].

These considerations add to the aforementioned hesitations about the use of non-

marginal estimations of Shapley values.
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It is important to point out that Lundberg, Erion and Lee also implemented a version
of TreeSHAP that computes marginal Shapley values. This version is not structure-
dependent anymore and alleviates the problem of loss of interpretability. For marginal
Shapley values, however, we show in the next section that a more explicit formula can
be derived.

3.4 A formula for marginal Shapley values

In this section, we compute an explicit formula for marginal Shapley values. In particular,
we focus on the Shapley values for an individual rule. This represents no loss of generality,
as a tree ensemble is a (weighted) sum of trees and a tree may be seen as a linear
combination of individual, 0-1-coded rules: consider for instance the two trees in Figure
[[I on page 2] They can explicitly be written as:

Tl(x) =5'I(l‘1 23)4’7[(131 <3,£C3 <2)+8[(l‘1 <37l’322)7
To(x) =9-I(xz3 >4)+ 7.5 -I(x; < 4).

Since Shapley values are additive, this means that we can focus on the contributions of
the individual rules, which is especially convenient in our context, where RuleFit only
retains the most relevant rules in the model.

Before we prove the formula, let us first note that marginal Shapley values allow us
to focus only on the predictors that really are involved in the definition of a rule:

Lemma 1. Consider a function F : R — R, and take ¢ < p such that F(z1,...,xp)
only depends on q of the p total predictors, say x;j,,...,z; . Then the Shapley values for
F may be computed by only focussing on xj,,...,x; : if j € {j1,...,Jq}, then:

1
$i(a*) = ) v (BIF (o, mp )l = o, s = ]
Sl i N\ a(%s))
SS{j1ye-dg g} AN IS

—E[F(a1,...,2,)les = o5]).

Ifj ¢ {jr,-- - Jq}, then ¢;(x*) = 0.
Proof. See Subsection [] of the Appendix. O

This Lemma becomes convenient as it bridges the gap between intuition and practice:
if a rule only focuses on some predictors, then it should only alter the importance of said
predictors, and the contribution should not be different according to how many correlated
noisy predictors are included in the model.

Before we prove our result, we present a variation of Vandermonde’s identity, also
required in order to simplify the Equation [3.2] defining Shapley values:

Lemma 2. For any a,b,c € N such that ¢ < b, the following equality holds:
ZC: (a+l> (b—l) B <a+b+1)
=\ c—1 c

20



Proof. See Subsection [] of the Appendix for a combinatorial argument. O

With this last Lemma in our toolbox, we can now prove our main result. Let us prove
it in the case where a rule involves all p predictors. Thanks to Lemma (I} we already
know that, even if that is not the case, we may focus on the involved predictors only,
when computing the Shapley values of a rule.

Theorem 3. Assume to have a dataset T of size n. Consider a 0-1 coded rule of the
form R(x1,...,zp) = H§:1 Rj(x;), with Rj : R — {0,1}. Then an unbiased estimator of
the marginal Shapley value of F(x) = SR(x) for the j-th predictor and the datapoint x*

18!
N 1 R;(x}) — R;(t))
(@) =8\ S =@ 2 ot g )
P—4 eT st ( p—a;(z%) )
(1) 20(*)’

where Q(t) and Q(x*) are sets of predictor indices defined as:
Q) ={ke{l,....p}Re(tx) =1}, Q%) ={ke{l,... p}Re(z}) = 1},
and q;(t) and gj(x*) are set sizes defined as:

q; () = 1QWO\IH, g (@) = QTN
Note that Q(x*)" denotes the complementary subset of Q(x*) with respect to {1,...,p}.
Proof. See Subsection [] of the Appendix. O

The theorem and its proof do not depend on the choice of dataset T used to estimate
the marginal means. In particular, this implies that 7 does not need to coincide with
the training set, but rather may be chosen to be a subset of the observations that more
accurately reflects the distributional properties of the whole population.

The formula in this theorem only selects the datapoints ¢ for which the specific con-
dition Q(z*)" < Q(t) holds. This condition is symmetric:

Qt) € Qa*) = Q*) < Q).

which means that ¢ contributes to the Shapley value of * if and only if z* contributes to
the Shapley value of t. In such a case, the contributions are precisely identical but swap
signs. This contribution only depends on the sample size n, the number of predictors
involved in the rule and the quantities g;(t), ¢;(z*). The function ¢;(z) counts how many
sub-rules Ry are activated by the datapoint x, if we exclude the j-th predictor. Let us
clarify these definitions with an example. Consider the following rule:

R(xy, 22, 23) = Ri(21) - Ra(x2) - Ra(x3),

Rl(xl) = I(Z‘l > 0), Rg(xg) = I(.%‘g < 0.4), R3(.’1?3) = I(.’I}g = 1).

We define an exemplary dataset T consisting of the following 4 points:

tM = (0.5,0,1), t® =(-0.5,0.2,1), t® = (1,0.6,0), t® = (—0.3,0.1,0),
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and choose z* = (0.2,0,0), for which:
Ry(zF) =1, Ry(z3) =1, R3(x%) = 0.
This means that:
Q@) ={1,2}, Q") ={3},
a(@®) =2} =1,  @@)={1}l=1  g@@)=[{L2}|=2

Table shows the objects 2, Q) and ¢ as described in Theorem [3| for all the datapoints
in T, together with which ones contribute to the marginal Shapley values of x*. Note
that, for instance, t(®) and ) do not contribute to the estimation of the marginal Shapley
values of z*, since R3(z¥), Rg(té?))) and Rg(t:(;l)) are all null.

O R(tY) R(t) Rs(t) QD) 0@y 01)20@*) @) ¢(tV) ¢t®)

@™ 1 1 1 {1,2,3} %] Yes 2 2 2
() 0 1 1 {2,3} {1} Yes 2 1 1
) 1 0 0 {1} {2,3} No 0 1 1
@ 0 1 0 {2} {3,1} No 1 0 1

Table 3.1: Example of Q,Q" and ¢; for the datapoints defined on page as defined in
Theorem The column “Q(t) 2 Q(x*)"” denotes whether the sample t\%) satisfies the
condition Q(t) 2 Q(z*)’ and therefore contributes in the formula to compute ¢;(z*),
for any j.

The intuition behind the condition Q(z*)" < Q(t) was already given in the proof: it is
satisfied by a pair of datapoints if, excluding the predictor whose Shapley value is being
computed, every predictor z; has Ryp(z;) = 1 for at least one of the two datapoints in
the pair. It is important to point out, however, that satisfying this condition is only
equivalent to two samples contributing to each other’s Shapley values, it is no guarantee
that the contribution is nonzero. For that, looking at Theorem [3| we need to also have
Rp(x5) # Ry(ty). In the next section, we develop a possible implementation for an
algorithm that computes the formula from Theorem

3.5 Vectorial re-writing of the condition (¢) = Q(z*)’

Now that we have an explicit formula to compute marginal Shapley values, let us describe
an algorithm that computes the contribution to the Shapley values of each rule. In
particular, the main challenge of computing them is identifying which datapoints give a
contribution; these contributions then need to be summed up. Knowing that the following
equality between logical statements:

Av B =~((=A) A (-B)),
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we can re-write the condition Q(x*)" < Q(t) for contributing to the estimated Shapley
value as:

Q) € Q) — (Ru(al) =1) v (Ru(ty) = 1) Yk e {1,....p}

1= (1= Re(af)) - (1 - Ri(ty)))
— p=p— >, ((1=Ri(z})) - (1 - Ri(tx)))
k=1

— > ((1 = Ri(x})) - (1 = R(ty))) = 0.
k=1

This new formulation is particularly convenient, as it allows a faster algorithm imple-
mentation. Define V as:

V:iRP — {0,1)7, V(@) = (Ry(z1),. .., Ry(zy)).

Then, using a dataset 7, we may estimate marginal Shapley values for a datapoint x*
as follows:

1. Compute {V(x*),V(t)) for all samples t € T, then filter out all datapoints in T for
which (V(z*), V(t)) = 0 does not hold.

2. For each of the datapoints ¢ mentioned in step 1, compute the contribution as
R;(z¥)—R;(t;)
(2p—qj(m*)—q]'(t>—1)
p—q;(z*)

. The Shapley value estimate needs to be updated by this value.

The computations in step 1 may be written in matrix notation, which makes the compu-
tation of Shapley values for multiple datapoints easier to optimize.

3.6 Advantages and limitations of our approach

The main issue with the non-marginal TreeSHAP algorithm that we raised was the in-
compatibility between the marginal Shapley values for linear terms and the exact Shapley
values which TreeSHAP tries to estimate. The use of marginal Shapley values estimates,
which is what we are proposing, solves this issue, together with the issue of loss of in-
terpretability and structure dependence. On the other hand, this comes at the cost of
estimating a quantity that still does not coincide with the exact Shapley values, since the
means are not conditional.

The already existing TreeSHAP machinery is a very fast algorithm: the non-marginal
approach has computational complexity O(TLD?), where T is the number of trees, L is
the maximum number of leaves appearing in a tree and D is the maximum depth of a tree.
Our approach, on the other hand, is slower. More specifically, our implementation has to
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repeat the steps described on page for every individual rule. The cost of estimating
the marginal Shapley values for a datapoint z* from a background dataset 7 is, for a
single rule:

e O(|T|- D) operations in order to compute the scalar products (V(z*), V(t)) in step
L

e O(|T| - D) binomial coeflicients and subtraction, in the most time-consuming sce-
nario where every sample is compatible with z* in step 1, and every predictor has
to be updated. Let us interpret the computation of a single binomial coefficient as
a single operation.

Overall, this means that we use O(|T]| - D) operations for every rule, and there are
O(TL) rules from the whole tree ensemble, meaning that our algorithm takes O(T'LD|T])
operations to run. Since the background dataset T most likely needs to have multiple
datapoints per leaf in any tree, we can say that |7| > L ~ 2P which makes our algo-
rithm slower. If we compare our approach to the marginal version of TreeSHAP, however,
the computational complexity is the same [31]. This, however, is a pessimistic estimate
in which no sparsity is induced: if a small number of rules is selected, then the com-
putational gain may be higher for our algorithm than for TreeSHAP. However, as both
algorithms are quite fast and applicable to the same settings, this difference might not
be relevant.

Our version, on the other hand, has other advantages:

e Diagnostics and transparency: The marginal Shapley values may now be seen
by the individual contribution of each rule: if a particular rule is overshrinking or
overinflating the estimates, this can be easily ascertained.

e Convergence and sampling: Re-writing the Shapley values as means of indi-
vidual quantities over all points in the sample allows us to use convergence-like
arguments and, for instance, gradually add new samples to the background dataset
until some convergence criterion is satisfied. Similarly, this formula may also be
used to compute marginal Shapley values under theoretical joint distributions of
the predictors and take advantage of approaches like importance sampling to reach
better estimates more rapidly.

e Compatibility with (Bayesian) RuleFit: In the context of using Bayesian
regression on RuleFit, not using our formula would mean re-converting the rule
ensemble into a tree ensemble, and then applying TreeSHAP. More importantly,
in order to produce the posterior distribution of the Shapley values estimates, this
procedure would have to be repeated for each individual MCMC draw that was
produced for Bayesian regression. Our method, on the other hand, can store the
weights for every rule, meaning that the algorithm only has to be run once.

3.7 Showing Shapley values

As discussed in [6], a typical way of enhancing the interpretability of a model is through
visualizations. As Shapley values became more and more commonly used, some types of
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visualizations of the Shapley contributions have become golden standards. Some typical
examples of how variable importance is displayed are:

e Force plots: For the prediction of a given datapoint z*, the individual Shapley
value of every predictor may be seen as a contribution to the estimated outcome
F(z*). In doing so, these individual contributions are seen as “forces” that push
the estimate either below or above the average, and either work together or against
each other. These forces are represented by bars.

e Heatmaps: A heatmap with all samples on the x-axis and predictors on the y-axis,
where the colour represents the intensity (and sign) of the Shapley value associated
with the pair of sample 2* and predictor ;.

e Scatter plots: For a given j-th predictor, a scatterplot is produced where the x

* and the y axis shows ¢;(x*).

axis shows x i

e Summary plots: A sina plot with the predictors on the y axis and the Shapley
value on the x axis. Colour is used to represent whether the feature has higher or
lower values.

o Feature importance values: For any j-th predictor, the average |¢;(«*)| across
all datapoints z* is computed as a measure of deviation that is induced by a pre-
dictor. These measures are plotted in a histogram.

Examples of such plots are shown in Chapter 4. In the next section, we focus on how
these visualizations may be enhanced through means of credible intervals and uncertainty
measures.

3.8 Credible intervals for Shapley values

On page [7] we discussed how substituting a Bayesian regression for a LASSO regression
grants us a posterior distribution of the coefficients. On the other hand, Theorem
provides an explicit formulation of Marginal Shapley values that only depends on the
coefficients. Combining these two elements within the RuleFit framework allows us to
deduce the posterior distribution of the Shapley values for each datapoint and each pre-
dictor. Since Shapley values have a natural null that we can contrast influence against,
credible intervals for Shapley values become a powerful tool for measuring the significance
of predictors in the prediction of the outcome F(z*).

The benefits of using credible intervals trickle down to the Shapley visualizations
discussed above: feature importance values can now be presented with credible intervals,
both locally and globally. Furthermore, the uncertainty described by the credible intervals
may actively be incorporated into the definition of importance itself. For instance, let
us denote the credible interval for ¢;(x*) as [¢}V (z*), ¢;* (z*)]. Then one may define a
local importance measure given by:

F®) it P > (%) 2 0
Vi(z*) = o7 (x*)  if 0= ¢jP(a*) = oW (%) .
0 if 9iP(z*) = 0= ¢V (2*)
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In other words, 1;(2*) is the (signed) distance of the credible interval from the null refer-
ence point 0, i.e. the minimum effect that can be estimated within the chosen confidence
level. This distance is therefore null if 0 lies in the interval.

This significance-sensitive measure may be used instead of Shapley values in all the
plots within the SHAP machinery, to specifically highlight the predictors that signifi-
cantly contribute to the model. An example may be the following alternative to Feature
importance values:

1 < ,
CI-Dist,; := — ()], 3.3
sty i= 7 X s(e?) (33)
where (1) ... 2(™ is a given representative dataset. Another useful source of informa-

tion is how many samples () have 1;(x(")) # 0, i.e. the proportion of datapoints with
a value of ¢, () that significantly differs from zero. The two measures, combined, may
give an overview of variable importance within a more inferential framework.
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Chapter 4

Empirical evaluation

4.1 Methods
RuleFit-based models

The models that were compared were RuleFit as described by Friedman and Popescu,
Horserule as described by Nalenz and Nillani and informative Horseshoe RuleFit, as de-
scribed in Chapter 2. All three models included winsorization of linear terms by Equation

with 8 = 0.025.

Rule generation

In order to fit the three models, the set of rules to be added to the predictors had to be
determined. Since the packages pre and horserule generate rules in different ways and
rule generation is not part of our focus for this work, we decided to fit both models and
combine their rules. The rules in pre and in horserule were built under standard settings,
which thus produced an esnemble of rules produced by partykit’s ctree function [34] (from
pre), zgboost [35] (from horserule) and randomForest [36] (also from horserule). The aim
is to ensure that such a diverse set of rules produces more general comparisons of the
different linear regressions that do not depend on how the rules are generated. This
initial ensemble of rules was thus kept constant for all three models.

RuleFit

RuleFit was implemented manually by fitting a LASSO regression with the cv.glmnet
function from the glmnet package [37]. This was applied on the set of predictors and
rules described just above. RuleFit required the tuning of the ¢; penalization parameter
A, which is cross-validated by the cv.glmnet function. The 1 standard error rule was
applied, and the optimal A was chosen to be as strong as possible within 1 standard
deviation of the MSE from the optimal performance.
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Horserule

Horserule was implemented manually by fitting the Horseshoe model from the horseshoe
package [38], on the predictors rescaled by the factor A} as in Equation This was
shown above to be equivalent to the HorseRule structured penalization. HorseRule re-
quired the tuning of p and n. We tried out five choices in total: the suggested default of
(1,m) = (1,2) and then four variations in which p and n were in turn doubled or halved:

(,m) € {(0.5,2),(2,2),(1,1),(1,4)}.
Informative Horseshoe RuleFit

The informative Horseshoe RuleFit was implemented by fitting a Bayesian linear re-
gression with informative Horseshoe prior through means of the package infHS, avail-
able on [39]. The regression was performed both with and without structured pe-
nalization of rules. Structured penalization (combined with standardization) was ap-
plied by rescaling the predictors by the factor A;- as in Equation In this case,
the model was fit for the same hyperparamweter choices as Horserule, i.e. (u,n) €
{(1,2),(0.5,2),(2,2),(1,1),(1,4)}. When no structured penalization was applied, rules
were left unstandardized.

For both the penalized and unpenalized case, multiple sources of co-data were tried:

e A Linear vs. Rule co-data source, indicating whether the predictor is a rule or a
linear term;

e A depth co-data source, distinguishing between rules of different depth (linear terms
and depth-one rules are on the same level: they are equally favourable in terms of
simplicity, and the first source already distinguishes between them);

o A co-data source for support, set to 1 for linear terms and to min(7;,1 —7;) for
rules.

The sources were added sequentially, in the order listed above, for a total of three
different models, ranging from one to three sources of co-data.
Experiment

The machinery described in the previous chapters was tested on two synthetic datasets:
e Friedman dataset 1 (D1): First introduced in [40], with:
Z1,...,x5 ~U(0,1),
e ~ N(0, 02),

y = 10sin(rziz2) + 20(z3 — 0.5)2 + 1024 + bas + €.

By default 0> = 1. However, this produces an irreducible error of less than 5%
of the total variance. We therefore chose o2 = 5, which produces about 17% of
irreducible error, for a more realistic setting.
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e Extra dataset (D2): Proposed by us, to stimulate conflicting effects between
rules and linear terms, but also to test interactions where splitting the importance
evenly as RuleFit does might be unfair:

T1y.-+5L10 ~Z/[(071),
e~ N(0,2),

y =2x1(1 — sin(37xq))
+ 4z,
4 (2 I(z3 < 0.5)
+4-(x3>=05))xs
+4I(zq > 0.5)24
+4I(|zs — 0.5 > 0.25)x5
+ 4I(z7 > 0.75)z6
+ €.

Both datasets were extended to have p = 100 predictors by adding noisy predic-
tors from a uniform distribution in [0,1]. For this experiment, the models were fit on
n = 1000 training samples. All predictors were generated independently.

The methods mentioned above were compared to two tree ensembles:

Random Forest, as implemented in the randomForest function from the package
randomForest[30]. Default values for the number of trees and the number of bagged
predictors per split were chosen and the trend of the Out-of-Bag error over the
increasing number of trees (Figure suggests that the choice was appropriate.

XGBoost tree ensemble, as implemented in the zgboost function from the zg-
boost package [35]. The extreme gradient boosting was also chosen with its default
parameters. A maximum depth of three was set, to facilitate interpretability.

The second part of our experiment consisted of a comparison of local and global im-
portance measures. For this goal, we focussed on an informative Horseshoe RuleFit with
a single co-data source, as further sources did not produce relevant changes. Moreover, as
the purpose was a comparison between measures in contexts where multiple rules interact
together and compensate eachother, this informative HorseShoe fit entailed no structured
penalization of rules. For this comparison, the local importance measure suggested by
Friedman and Popescu was compared to Shapley values. Friedman and Popescu’s mea-
sure was computed twice: once in its original form, where absolute values were taken for
every coefficient as in Equations[I.5] [[.6] and [I.8] and once in a sign-sensitive manner that
did not take the absolute value into account, but still split the effect of the rule equally
across predictors, in the spirit of Friedman and Popescu’s definition. These measures
were compared to the original contributions in the generating functions that defined the
synthetic data, on page 28
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Shapley values and Friedman and Popescu’s measures were also compared globally.
In this case, however, there is no ideal measure to compare these importance metrics
to. In the context of the effects of individual predictors, one might wish the following
properties to hold:

e For a contribution f;(z;) of the predictor x; that is centered (i.e. E[f(z;)] = 0),
the importance of the contribution should be proportional to the domain it covers:
if we halve its support, for instance, then the importance should also be halved.

o For a centered contribution f;(x;) of the predictor z;, the importance of the contri-
bution should be proportional to the magnitude of f;: the contribution g; := 2- f;,
for instance, should have twice as much importance as the contribution f;.

These two properties combined require the importance to be proportional to the
area under the centered contribution function f;(z;). One may therefore define a target
importance measure as E;,[|f;(z;)|], for contributions of an individual predictor. The
measure we are proposing as benchmark for our experiment thus consists of the expected
contribution of x;, in absolute value. With this in mind, one might generalize this
expected contribution to two-way interactions by marginalizing the expectation over the
other predictor. If z; forms a two-way-interacting contribution with x; denoted by
fijr(zj,25), then this would mean writing this benchmark as E,; [E; | ;. (25, z;)[]]-
However, in marginalizing |f; j/(x;,z;/)|, we do not have a centered function anymore.
In other words, a more sensible extension would be:

Exj [‘Earj/ [fj,j’ (CCJ’7 mj’)] - Exj [Ezj/ [fj,j’ (xj’ CL’j’)]] I,

which simplifies to Ey, [|Es, [f;,/ (2, 2;)][] if we again consider f; ;(2;,2;) to be cen-
tered. Note that, due to the presence of the absolute value, the importance of two
predictors contributing in a two-way contribution is not the same. This measure was
used as a benchmark against which to compare the candidate measures of global impor-
tance. While it is true that this generalization to two-way contributions is completely
arbitrary, it did not impact the observed results, as these were also observed in the case

of univariate contributions.

Inferential measures were also incorporated in the experiment, as te minimum effect
1 (x*) substituted ¢;(x*) both for the computation of global imortance measures and
for some local importance visualizations.

4.2 Results

Predictive accuracy

The comparison was firstly restricted to HorseRule and unpenalized informative Horse-
shoe. Table [£] shows the different mean squared errors on a test set of 10000 new
samples, for the fitted models listed above. In particular, we observe that our approach
outperforms RuleFit, but not HorseRule. Moreover, the use of further sources of co-data
does not seem to alter the resulting model: a distinction between rules and linear terms
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Figure 4.1: Out-of-bag Mean Squared Error of the Random Forest fits on the D1 dataset
(left) and D2 dataset (right). The MSE is shown against the number of trees in the
Random Forest.

is sufficient.

Table shows the test Mean Squared Error when the same training and test sets
are used for an informative Horseshoe RuleFit model with structrued penalization. The
5 combinations of parameters u,n tried above were tested together with the use of one,
two and three sources of co-data. Upon correct specification of the hyperparameters pu, n,
the introduction of structured penalization improves the performance of the model on
the dataset D2, but worsens it for the dataset D1. Compared to Horserule, our model
also shows more variation under different shrinkage hyperparameters.

Coefficient distribution

For RuleFit, HorseRule and Informative Horshoe RuleFit, it is also possible to explore
the distribution of the coefficients: the stacked bar charts in Figure [£:2 and [£-3] show the
distribution of the 10% highest absolute values of the coefficients, on a square-root scale,
for HorseRule and unpenalized Informative Horshoe RuleFit fitted on the D1 dataset.
RuleFit, on the other hand, performs explicit variable selection, and it selects 103 terms
out of 2651 for dataset D1 and 110 terms out of 3173 for dataset D2. Figures [£.4] show
the distribution of its few non-zero coefficients for the datasets D1 respectively. We once
again observe no significant difference between the case of one, two and three co-data
sources, which in particular means that adding the second and third sources does not
penalize more complex rules any further. As we can see, the Informative HorseShoe
RuleFit relies less on linear terms, compared to HorseRule, while RuleFit does not select
any linear terms at all.

When a stronger penalization of (complex) rules is enforced by augmenting the In-
formative HorseShoe RuleFit with structured penalization, the coefficient distributions
change, as shown in Figure for dataset D1. The figure only shows the distribution
of the coefficients for the use of a single source co-data, as we once again point out no
significant difference when multiple co-data sources are introduced. From these figures,
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Model Test MSE (D1) Test MSE (D2)

Random Forest 0.358 0.397
XGBoost 0.270 0.269
RuleFit 0.242 0.253
Horserule, p = 1,71 =2 0.225 0.224
Horserule, 4 = 0.5, = 2 0.225 0.224
Horserule, p = 2,7 =2 0.230 0.225
Horserule, p=1,7=1 0.227 0.228
Horserule, p =1,n =4 0.232 0.220
Inf. Horseshoe RuleFit, 1 source 0.234 0.244
Inf. Horseshoe RuleFit, 2 sources 0.233 0.244
Inf. Horseshoe RuleFit, 3 sources 0.232 0.244

Table 4.1: Mean Squared Error in prediction for a test set of n = 10000 samples, gen-
erated from the Friedman D1 generating function and the extra D2 generating function
(see page . The outcome is scaled to have variance equal to 1, and the irreducible
error amounts to about 0.173 for D1 and 0.177 for D2.

Friedman Dataset (D1) Extra Dataset (D2)
B 1 source 2 sources 3 sources 1 source 2 sources 3 sources
1 2 0.239 0.240 0.238 0.235 0.234 0.234
0.5 2 0.238 0.236 0.236 0.230 0.230 0.229
2 2 0.253 0.252 0.252 0.253 0.253 0.253
1 1 0.239 0.239 0.237 0.235 0.234 0.234
1 4 0.257 0.257 0.257 0.244 0.244 0.244

Table 4.2: Mean Squared Error in prediction applied to test sets of n = 10000 samples,
generated from as discussed on page The fitted model is an Informative Horshoe
Rulefit, with a further structured penalization of complex rules, given by parameters

s 1)
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we note that the informative HorseShoe prior gives more room for penalization of rule
complexity, compared to its HorseRule counterpart, as the differentiation in shrinkage
of rules of different complexity becomes stronger. Linear terms, however, are not relied
picked up more.

Figures and [6.4]in the Appendix show the same same plots for the dataset
D2.

Local and global importance measures

Figure shows the scatterplots for said local importance measures for the defining
predictors and three noise variables, on dataset D2. The measures are compared against
the true contributions (in purple), as defined in the data-generating function. Since pre-
dictors 1 and zo from dataset D1 and x¢ and x7 from dataset D2 have a joint effect,
local importances are summed up and compared to the joint effect (all the importance
measures used are additive) and shown separately in Figure While all importance
measures are adequately good at giving little to no importance to noise variables, these
figures show Shapley values to be consistently more accurate estimations of the original
contributions defined by the data generating functions on page since the original
measure by Friedman and Popescu flattens and overinflates the contributions while the
sign-sensitive variant underestimates them.

Shapley values and the importance measure defined by Friedman and Popescu were
also compared globally. Figure [4.8] compares the SHAP Feature Importance values
(“Shapley”, in blue) and the global importance measure introduced by Friedman and
Popescu (“Friedman-Popescu”, in yellow) to the benchmark measure discussed in the
Methods section (“Target”, in purple), for dataset D2. This figure also contains the mea-
sure defined in Equation [3.3] (“CI distance”, in red) and the frequency of datapoints with
a significantly non-null Shapley value (“Percentage significant”, in green), which can take
into account the uncertainty in the estimation. The SHAP Feature Importance values
and the proposed CI distance measure prove to match the shape of the target measure
quite accurately, while the original measure suggested by Friedman and Popescu overin-
flates feature importance when linear terms are combined with rules. This can be seen for
instance from the extra dataset D2, where the contribution of x; is a nonlinear perturba-
tion of x5 which amounts to about the same effect in practice but is defined to encourage
the concurrence of rules and the linear term. The Friedman-Popescu importance score
for x1 is nonetheless considerably higher than its counterpart for xs.

Figures [6.5] [6.6] and [6.7] in the Appendix show the same trends for dataset D1, both
locally and globally.
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Figure 4.2: Stacked bars for the distribution of the absolute value of the coefficients,
for a HorseRule model fit on the Friedman D1 dataset. Structured regularization is
implemented with different combinations of parameters u,7n. The stacked bars are split
by colour: blue for rules and red for linear terms. Darker shades of blue represent deeper
rules. The coefficients are on a square-root scale.
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Figure 4.3: Stacked bars for the distribution of the absolute value of the coefficients, for an
Informative Horseshoe RuleFit model without standardization or structured penalization,
fit on the Friedman D1 dataset. The stacked bars are split by colour: blue for rules and
red for linear terms. Darker shades of blue represent deeper rules. The coefficients are
on a square-root scale.
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Figure 4.4: Stacked bars for the distribution of the absolute value of the non-zero coef-
ficients, for a RuleFit model fit on the Friedman D1 dataset. The stacked bars are split
by colour: blue for rules and red for linear terms. Darker shades of blue represent deeper
rules. The coefficients are on a square-root scale. In this case, no rules are present, as
they are all selected out of the model.
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Figure 4.5: Stacked bars for the distribution of the absolute value of the coefficients, for
an Informative Horseshoe RuleFit model with one source of co-data, fit on the Friedman
D1 dataset. Structured regularization is also implemented, and different parameters u,n
are tested. The stacked bars are split by colour: blue for rules and red for linear terms.
Darker shades of blue represent deeper rules. The coefficients are on a square-root scale.
The coefficient distribution for the use of two and three co-data sources are similar.
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Figure 4.6: Estimated local importance of the first ten predictors for all points of the D2
training set, compared to the true underlying contribution, as defined by the generation
function of the Extra dataset D2 (in purple). Predictors z¢ and x7, which share a joint
contribution, are excluded from the plot. Figure [£.7]is added to explicitly measure the
estimated joint effect of these two variables.
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an informative Horseshoe Rulefit model fit on the D1 dataset. In green, the percentage
of points that have a 95% credible interval not containing 0. In purple, a possible target
measure, as defined on page [30} based on the generating function.
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To conclude our experiment, we extended the incorporation of uncertainty to the
local importance measures, as discussed in Chapter 3. Figure shows how a Shapley
scatter plot may be enhanced with confidence bars. The heatmaps in Figure[6.9] and the
summary plot in Figure [6.10] are examples of how the SHAP plots discussed in Chapter 3
may be updated by substituting 1; for ¢;. As we can see, these plots maintain the same
trends depicted by the marginal Shapley values, but become more legible and produce
higher contrasts between significant and non-significant contributions.
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Chapter 5

Applying the machinery to the
Helius study

To showcase how RuleFit can be applied in practice, we fit this model to an altered
version of the data from the Helius study [3], where Cholesterol level was picked as the
target outcome. The variables in this dataset are a mix of continuous (cholesterol level,
packs of cigarettes smoked per year, age, systolic blood pressure on the logarithmic scale,
BMI), dichotomous (sex, smoking yes/no, coffee consumption yes/no) and categorical
predictors (ethnicity). The continuous variables were centered and standardized. The
dichotomous variables were contrast-coded with values -1 and 1, which centers and stan-
dardizes them as if they had balanced supports. The categorical predictor for ethnicity
was coded with four dummy variables. Each of them was centered and standardized as-
suming equal distribution among the five categories, using therefore a reference mean of
0.2 and reference standard deviation of ‘sqrt5/2. This dataset was then augmented with
five extra variables, synthetically generated from a standard normal distribution. Four
of such variables were kept as noise, while the fifth artificial predictor was used to syn-
thetically induce a quadratic effect on cholesterol. After being standardized, cholesterol
was replaced as follows:

1
chol < chol + gartificiaZQ.

The newly obtained outcome variable has a variance of approximately 1.033. In total,
this dataset contained p = 12 predictors of the outcome variable cholesterol. An Ordinary
Least Squares (OLS) linear model and an informative Horseshoe RuleFit with structured
rule penalization for p = 1,7 = 2 were fit on the same training subset of size n = 2000,
while the remaining 19570 observations were used as test samples to assess predictive
accuracy. Table [5| shows the test Mean Squared Error of both models. As we can see,
the informative HorseShoe RuleFit is better at prediction. Looking at the Shapley value
scatterplots in Figure [5.1] we can connect the higher accuracy of the informative Horse-
shoe with its ability to reconstruct the nonlinear contribution of age and the synthetic
predictor.

The global importance measure that we introduced in Chapter 3 is shown in Figure
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Model Test MSE ~ Test R?
Linear Model 0.950 0.090
Informative Horseshoe RuleFit 0.920 0.119

Table 5.1: Test Mean Squared Error and R squared score observed on 19570 of the 21570
observations from the Helius dataset. Performance is compared between an Ordinary
Least Squares linear model and an Informative Horseshoe RuleFit. The latter performs
sensibly better. The outcome variable has a variance of approximately 1.033.

(2] and suggests that age is by far the most influential predictor, followed by a moderate
contribution of the ethnicity and small contributions of the BMI and the quadratic,
artificial effect.
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Figure 5.1: Estimated local importance for all predictors and all training datapoints of
the Helius dataset, under an Informative Horseshoe RuleFit model.
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Figure 5.2: Estimated global importance for all predictors of the Helius dataset, under
an Informative Horseshoe RuleFit model.
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Chapter 6

Discussion

We presented a new approach that combines RuleFit, Horserule, co-data and Shapley
values. In doing so, we bridged rule standardization and structured shrinkage. Our
substitution of the horseshoe prior by the informative horseshoe renders a model whose
adaptive shrinkage can naturally distinguish between linear and rule-based terms. This
differentiation, however, currently favours rules over linear terms. This may be explained
by the fact that the rules have been generated on the same dataset as the final fit, and are
therefore prioritized by the adaptivity of the informative Horseshoe. On the other hand,
when combined with the structured penalization of rules, the use of co-data enhances
the structurization of shrinkage, leaving room for a more aggressive shrinkage of complex
rules. While the predictive performance of our approach is lower than that of HorseRule,
the model we introduce opens to the possibility of incorporating further sources of expert
knowledge on the predictors.

Our experiments also arguably gave us more insight into the contribution of each
feature in prediction: Shapley values were introduced in the context of RuleFit as a new
importance measure that has a more rigorous origin and a more easily communicable
interpretation, compared to their pre-existing counterpart suggested by Friedman and
Popescu. In our simulations, this new measure proved to be not only more accurate on a
local level but also to generalize better globally and to reflect the desirable properties of
scalability with respect to the magnitude and support. Combining Shapley values with
Bayesian regression also produces credible intervals, which enables us to both perform
inference and consider a parallel measure that takes into account the uncertainty in the
estimation. This measure also has an interpretable definition as minimum effect esti-
mated under a certain confidence level.

In implementing this machinery, we derived an explicit formula to estimate marginal
Shapley values for tree ensembles, and an algorithm to calculate them at a computational
speed that is comparable to the TreeeSHAP algorithm, while also being more suitable
to our context, where the tree ensemble is decomposed as a rule ensemble and where
a Bayesian regression requires the Shapley values to be re-computed multiple times.
Furthermore, this formula gives us more transparency with respect to the individual con-

46



tributions of each rule. As such, this allows to open up the black box of Shapley values,
which now can be traced back to the contributions of individual model components (rules
and or/linear terms). It also grants us a chance to decide convergence criteria and use
importance sampling when marginal Shapley values are computed under a predetermined
joint distribution of the predictors.

On the other hand, our approach comes with limitations: first, the use of the infor-
mative Horseshoe prior does not induce exact sparsity like the RuleFit based on LASSO
regression. This may be solved by performing posterior selection [9] [4I]. Second, even
when compared to another Bayesian regression such as HorseRule, the informative horse-
shoe still shrinks rules less, at the expense of linear terms, without any gain in predictive
performance.

In terms of feature importance scores, our uncertainty estimation is only measured in
terms of the posterior distribution of the coefficients, and the instability in the generation
of the rules is not taken into account. Without any quantification of this instability, it
is hard to tell whether the uncertainty is correctly estimated, especially since our experi-
ence suggests that the different ways of generating rules have an impact on the predictive
performance of the model.

The aforementioned limitations would suggest further research into how the rules are
being generated: for instance, a co-data matrix may be added to take the source of the
rule into account, so as to encourage a higher shrinkage of rules that are generated with
a less accurate algorithm. A broader, more diverse way to construct rules might dras-
tically reduce the uncertainty in rule generation. Furthermore, to encourage the use of
linear terms over rules, one could leave the linear terms unpenalized, to correct for the
unfair advantage of rules, or fit the the tree ensembles on the residuals from a linear
model, rather than on the full outcome y. The latter approach, however, might induce
more instability in the generation of rules, and might therefore require a more rigorous
analysis of how uncertainty propagates from the rule generation to the final model. An-
other possible direction for further research is the development of ways to use co-data:
more specifically, the information about predictors needs to be transferred to the rule
terms. For instance, such co-data may be defined as a weighted average of the co-data
of the predictors involved in each rule. The weights may be chosen as the support of
each sub-rule or, even better, the marginal Shapley values themselves, as they already
measure the contribution of each predictor in a rule. Hierarchical approaches, where the
first splitting predictor determines the co-data value for the rule, might also be justified
by the greedy implementation of most tree-generating algorithms.

Shapley-based importance measures may also be explored further: the manner in
which the importance is naturally decomposed into contributions of individual rules has
not yet been linked to interactions between predictors. Our formula can straightforwardly
be adjusted to also compute marginal Shapley interaction values, to give more insight
into moderation effects between predictors.
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on Chapter 4 are available and can be used to reproduce the code.
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HorseRule model fit on the Extra D2 dataset. Structured regularization is implemented
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coefficients are on a square-root scale.
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Proofs

Proof of Lemma (1]

Lemma. Consider a function F : RP — R, and take ¢ < p such that F(z1,...,x,) only
depends on q of the p total predictors, say xj,,...,z;,. Then the Shapley values for F
may be computed by only focussing on xj,,...,x; : if j € {j1,...,Jq}, then:
* 1 * *
0@ ) = Y =y (BLF (o, @)l = af,as = o]

q—1
seti i 4Usi)
—E[F(z1,...,2p)|zs = xg])

If.? ¢ {jl?"'ajq}7 L‘hen (bj(‘r*) = 0

Proof. Without loss of generality, we may assume that j; = 1,...,j, = ¢. Furthermore,
it suffices to prove this Lemma for ¢ = p — 1. If we then iterate the argument multiple
times and remove all non-contributing predictors one by one, the argument is generally
proven.

Let us also use the notation:

AEg := E[F(x1,...,2p)|z; = 2], 25 = 2§] — E[F(z1,...,2)|rs = 2§].

Note that ¢,(z*) = 0 is trivial, since the independence of F' from z, means that AEg =
0vs.

For the remaining cases, let us assume that we need to compute the Shapley value for
the first predictor, for simplicity.

Now we can write:

P1(2*) = —— AE
1 squ p}p(p\sﬁ) *

.....

1 1
= 2 — 1 AEs + 2 — 1 AEs
seizn) () SS{2.7) p(s))
P ap

Now let us write the subsets S € {2,...,p} containing p as S = Z u {p}. For these
subsets, |S| = 1 + |Z]. Furthermore, since F' does not depend on z,, we know that
AEg = AE .
1 1
1(z*) = Z ——AEg +

— AE.
5c{2,...,p—1} p(p|3\1)

zci{2,...p—1} p(ﬁ_\é\)
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Now both summations are over the same subsets, so we can join them:

1 1 1
¢j(x*) = | 7= + 75y JAE
’ SE{Q,.Z;,;D—I} p ( (ﬁs‘l) (1I~7+|:19)) ’

- % (st 1—1sp+ 181+ D — 2~ [S)E) AR

Sc{2,...,p—1}
S|'(p—2— 1S
Z ‘ |(p ' | D ((p_1_|5|)+(|5|+1))A]E5
p:
SQ{Q ..... pfl}
WO |.
3 [S|'(p —2 —|S])! P AR
p!
Sc{2,...,p—1}

I 1SI'(p — 2 —[S])!
SC{2,p—1} (=1

= 2 ;AES«

sc{2,...p—1} (p— 1)(%\1)

AEg

This concludes the proof, as the last step is precisely the formula for Shapley values for
the predictors x1,...,2p_1. O

Proof of Lemma [2]

Lemma. For any a,b,c € N such that ¢ < b, the following equality holds:

i (a+l> (b—l) 3 (a+b+1)

=N\ c—1) c '
Proof. Consider the setting where you have a + b elements and you want to count all
possible subsets of size ¢ that may be taken from these a + b elements. We know that
this number is, in total, (aib). Assume to partition these a + b elements into two groups,
G1 and Gg.
A more cumbersome way to compute this number of possible subsets would be to sum
over all possible numbers [ of elements that you take from the group G1, and then consider
in how many ways you may take [ elements from G; and the remaining ¢ — [ from Gs.
In other words, if we know that we're taking exactly [ elements from G and the remaining
¢ — [ elements from G5, then in total we have (‘Cill) (‘(:G_zll) ways of having such subsets of
the a + b elements. If we sum over all possible numbers of elements that we get from Gy,
we obtain a very similar summation to the one above, and it is equal to (“ng).
The only difference is: in the summation above G is not fixed: in the summation above,

we may interpret (a?'l) (zj) as the number of groups that can be taken if G; =: Ggl) is

made of the first a +{ elements and G =: Ggl) is made of the last b —{ elements. So, as {
increases, Ggl) also “steals” an elements from Ggl). This complicates calculations because
it means that some subsets are being counted twice, and therefore need to be subtracted
in order to have the total number of subsets be (atb).

More specifically, for a fixed [, we know that the sets that will also be counted again at
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the next iteration with [ + 1, and that therefore need to be subtracted from the count,
are the ones that have exactly [ elements in Ggl) but then will also have exactly | + 1
elements in Gglﬂ). This happens exactly when the (a+1+1)-th element (the one element

by which Gglﬂ) and Ggl) differ) is in the subset. Therefore, such type of double-counted
subset contains:

o the (a + !+ 1)-th element

e any [/ elements in Ggl)

e any ¢ — [ — 1 elements in Gglﬂ)

Figure [6] shows an example.

/=0

\ J J
LS pLg
Choose 0 Choose 4
| & J J
A g h g
Choose 1 Choose 3
and
Z = 1 \ Y J \mpd & Y J
Choose 0 Choose Choose 3

Figure 6.11: Example of subsets being counted twice for a = 5,b = 8, ¢ =4 and [l € {0, 1}.
A subset here is counted twice if it has no elements in G§°) and one element in Ggl), four

elements in Géo) and three elements in Gél). This happens when the purple element is
in the set, then no elements are on its left and 3 = ¢ — 1 elements are on the right.

This means that at every I-th iteration there is (alH) (i’j:}) subsets that need to be
removed from the count because they will also be counted at the next iteration. This
quantity is not subtracted at the last iteration, as there will be no next iteration to
double-count the subsets.

This means that we can write:
a+b Cla+D\(b—1\ & [fa+l\[(b—1-1
( ¢ >1§0< l )(—J‘;O( l >(c—l—1)
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Now that we have this formula, we can prove the equation above by induction on ¢. For
c = 0, we have:

O G R GRS G N i

So equality holds. For the induction step, we use the formula above:

S fa+ 1\ (b1 a+b\ G fa+l\[(b-1-1 a+b a+b
2 (0 1)~ 2y 1-1)~ et
= c— c = c—1— c c—
The 1 . . . . c—1 fa+I\ (b—1—1Y - .
e last equality holds by induction, since »;,_; ( . )(C_l_l) is exactly the summation

we are inductively calculating, but with b — 1 instead of b and with ¢ — 1 instead of c.
Using Pascal’s rule, we conclude that >;_ (l“_l) (b_l) = (“+b+1) O

l c—l1 c

Proof of Theorem [3

Theorem. Assume to have a dataset T of size n. Consider a 0-1 coded rule of the form
R(x1,...,xp) = H§=1 Rj(x;), with R; : R — {0,1}. Then an unbiased estimator of the
marginal Shapley value of F(x) = BR(x) for the j-th predictor and the datapoint x* is:

. 1 Rj(x]) — R;(t;)
s =4 <<p—q<>> oy <2P—q;ff;>(;zg<t>-l>>’

Q(t)2Q(z*)’
where Q(t) and Q(x*) are sets of predictor indices defined as:
Q) = {ke{l,....p}Re(tx) =1}, Q%) ={ke{l,... p}Re(c}) = 1},
and q;(t) and gj(x*) are set sizes defined as:
g;(t) = QN g (@") = Q)
Note that Q(x*)" denotes the complementary subset of Q(x*) with respect to {1,...,p}.

Proof. By linearity of marginal Shapley values, we can assume g = 1. For simplicity, let
us counsider j = p and write S’ := {1,...,p— 1}\S, for any subset S < {1,...,p— 1}. For
any subset of active players S, we have:

E[R(z)|zs = 2] = E[H Rj(zj)|rs = 5]
=[[RiHE[ [] Ri))las ==}

Jes Je{1,....p}\S

=[[RiGHEL [] Ryl

jes je{l,...pN\S
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Analogously, we have:

E[R(z)|xs = z§,xp = x3] n R;( nR z;)]

jeSu{p} jes’
We write these products more compactly by grouping up the indices: define Rg(z%) :=
[Ljes Bj(z}) and, consequently, Rs/(zs:) := [[;cq Rj(x;). Then ¢p(z*) may be re-

written as:
o@) = Y, w(S)(BIR@)es = a%,x, = 23] — E[R()|zs = 3]

w(S)E[R(z)|zs = 25,2y = 23]

Il
M

— Y w(S)E[R(2)|zs = 23]

I
]
=4
=
=
0
=
n*

)Ry ()E[Rs (x5)]

- Z w(S)RS(mg)E[RS’U{p}(ws’u{P})]'
Sc{1,....,p—1}

Let us treat the two summations separately; define the following:

A= > w(S)Rs(z§)Ry(x})E[Rs (xs)],

sci1,....p—1}

B= > w(S)Rs(@HE[Rs oy (s
Sc{l,....,p—1}
Note that the expectations that appear in these formulas can be unbiasedly estimated
by their sample means over the set 7. Let us focus on the first summation A, which is
therefore approximated by:

A~

A=) w(S)Rs(2%) Ry(¢%)E[Rs ()]

S#p
= Z RS xs Z RS/ tS’
Spp tET
Z Z S)Rs( JSS )R (tsr).
teTS$p

Now let us focus on C := Y g0 w(S)Rs(x§)Rs (ts), for a fixed datapoint . Define
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Q,(t) := Q(t)\{p}. By definition of Q,, we have:

where Q,(¢)" is meant as the complementary set with respect to {1,...,p —1}.

This means that w(S)Rg(z§)Rs/(zs) only gives a non-zero contribution for the data-
points ¢ such that Q,(t)’ < Q,(2*), in which case the only subsets S that contribute are
the ones such that Q,(t) € S < Q,(z*). Since all such sets S contain €,(¢)’, they can
all be uniquely identified by the indices that they have besides those in Q,(¢)’. In other
words, each S can be (uniquely) re-written as S = Q,(¢) U Z, with Z < Q,(z*)\Q,(t)".

For every size |Z| = I, there are exactly ('QP(I*)I\QP(”'\) - (qp(r*)“llp(t)*p“) possible
choices of Z, and they all have the same contribution w(S) = —Lrx = L .
P( IS| ) P(p—l—qp<t>+z)
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This means that we can write:

C= Z S)Rs(z%)Rs (tsr)
S#p
12 (2% )\ 2y ()] (qp(m*)mp(t)fpﬂ)
l

1=0 p(l+p—pf—1qp(t))

gp(x* ) +qp (t)—p+1 (qp(a;*)+qp(t)—p+1>
l

1=0 p(l+p—pf—1q,,(t))
_ (gp(@*) + gp(t) —p+1)!
p!
wEDTEOP (4 (1)~ Dp — 1~ gy(1) + 1)
= (gp(z*) + qp(t) —p+ 1 =D
_ (gp(@¥) +gp(t) —p+ 1)
p!

ap (2%)+ap (1) —p+1 _
. Z l(qp(x ) qp(t) —1 l)(p1*Qp(m*))!

= )+ qpt)—p+1—

. (p— 1 —qu(t) +l)(p— . _qp(t))!]

_ (@p®) +gpt) —p+ D p—1—qp()(p— 1 — gp(z*))!
p!

P :E* P - 1
e ([ 2O ()
=0 ap(7*) + qp(t) —p+1—1 l

Using Lemma [2] with a = p — 1 — g (t),b = gp(t), ¢ = gp(z*) + qp(t) — p + 1, we conclude:

C = Z RS IS Rsl(ts/)
S#p
_ (@p(a®) +gp(t) —p+ D'p—1—gp()(p — 1 — gp(z*))!
p!

(ured-re)
ap(z*) + qp(t) —p+1
(P =1=g()(p — 1 —gp(z*))!
(2p — gp(2*) — gp(t) — 1)!

1 1
=y _ #))  (2p—gp(@F)—qp(£)—1\
(= () (ron e )
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This allows us to conclude that:

~ 1 1
A=Ryz*) —— .
D e &, e g

Qp (1) SQp (a™) v

The sum is only over the datapoints with Q,(¢t)" < Q,(z*),
a null contribution. In a similar fashion, let us compute B:

B =Y w(S)Rs(z%)E[Rss(p)(sr0p))]

as the other datapoints have

S#p
= Y w(S)Rs(ah)~ Z Rsio i} (tsropy)
S#p teT
= Z w(S)Rg(zs)— Z Rs(2§)Rs/ (ts/)Ry(ty)
S%p teT
= N1 Rylty) 3 w(S)Rs(at) R (1),
tET S#p

As we can see, the expression now contains the exact same summation as before, which
immediately allows us to conclude that:

~ 1 R,(t,)
B L % lts)
n(p — gp(x*)) " 2p—qp (z*)—qp (t)—1
TRt O )

Combining the two expressions together gives us the formula:

/\

~ 1 R,(z*) — R,(t
Qsp( ): _B= Z p( p)* P( p) ]
n(p—gpa*) = (el mano)
2, (1) S0, (a%) P (@)

This expression coincides with the formula except for the summation condition: here,
it states Q,(t)" < Q,(x*) (or, equivalently, Q,(t) 2 Q,(z*)’) instead of Q(t) 2 Q(z*).
However, these two conditions are only different for the points ¢, z* such that R,(t,) =
Ry(x5) = 0, for which the contributions would be null anyway. It is therefore possible

to just add these points to the summation and obtain the equality presented in the
theorem. O
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