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Introduction

Expander graphs are graphs that entertain two seemingly contradictory properties; they are
sparse graphs that are highly connected. When we refer to sparsity, we generally mean that they
have a small number of edges relative to the number of vertices. On the other hand, their high
connectivity arises from their large edge expansion, which means that each set of vertices expands
by a proportionate amount relative to its size.

Strong expanders exhibit numerous interesting graph properties such as high robustness, low
diameter, and large girth. Moreover, they behave like random graphs, which has been apparent
in various findings such as the Expander Mixing Lemma [AC88] and its inverse [BL06], as well as
the Random Walk Sampling Theorem [AKS87]. These two facts have motivated extensive research
in this area and made probabilistic techniques a natural approach for their exploration. In 1973,
M. Pinsker [Pin73] was the first to prove the existence of expanders using such techniques and
counting arguments. Surprisingly, a random graph is a good expander with high probability [Lub94].

Nevertheless, in applications, one needs explicit constructions of expander graphs, which were
proved to be a considerably more challenging mission than the existential results. In particular,
on the majority of the known constructions, while the definition of the graphs at hand is relatively
easy, the analysis of their expansion is highly non-trivial and depends on various deep results of
mathematics.

The first such construction was given in 1973 by G. Margulis [Mar73]. Margulis used the
Kazhdan’s Property (T) [Kaz67] of the group SL3(Z) to prove that his construction was indeed an
expander family. However, his proof was existential and did not explicitly bounded the expansion
of these graphs. In 1981, O. Gaber and Z. Galil [GG81] followed Margulis’ approach and using with
tools from harmonic analysis they gave a lower bound on the spectral gap of these graphs. Another
construction of expanders was given in 1988 by A. Lubotzky, R. Philips, and P. Sarnak [LPS88]
and independently by Margulis [Mar88], who gave an expander family of Cayley graphs over the
projective special linear group PSL2(Fp). These graphs constitute the first construction of Ra-
manujan graphs, which are the optimal expanders and will be the the main object of interest of
this thesis. The proof on the bound of the expansion for these graphs relies on the Ramanujan-
Petersson Conjecture, proved by P. Deligne [Del73]. In 1994, Lubotzky [Lub94] managed to show
a similar result to the one of Margulis [Mar73], giving another family of Cayley expander graphs
on SL2(Fp). Here, SL2(Z) fails to have the Kazhdan Property (T), as it is the case for SL3(Z) and
was used by Margulis, but Lubotzky managed to use Selberg’s 3/16 Theorem [Sel65] to bound the
spectral gap of his graphs in an identical way as Margulis. Note that Selberg’s 3/16 Theorem is
essentially a special case of the Ramanujan-Petersson Conjecture, see [Kat76, p. 297]. It is also
worth mentioning the first combinatorial construction of a family of expanders due to O. Reingold,
S. Vadhan and A. Wigderson [RVW02]. This is an iterative process that uses their newly defined
zig-zag product on graphs and a simple algebraic observation about the eigenvalues of this product.

Using explicit constructions, expanders have found applications in a wide range of fields in ap-
plied and pure mathematics, as well as in computer science. We name here a few such applications.
The LPS construction [LPS88] gave an “explicit" improvement over the known graphs of P. Erdős
and H. Sachs [ES63], which are graphs with large girth. M. Gromov [Gro09] used expanders in
order to give a counterexample to the generalized form of the Baum-Connes conjecture [Val02]. In
complexity theore, O. Reingold [Rei08] used expanders to show the equality of complexity classes
SL = L and I. Dinur [Din07] to prove the PCP theorem [AS98]. In network theory, expanders serve
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as the key building block of robust superconcentrators [HLW06] and in particular in the celebrated
AKS sorting network [AKS83].

As mentioned earlier, Ramanujan graphs are the optimal expanders in the sense that they
obtain the optimal expansion constant. Regardless what the name suggests their nature is not
number-theoretic. The name is derived from their first explicit construction [LPS88], which uses the
Ramanujan conjecture to establish the expansion bound. Remarkably, every explicit construction
of constant-degree Ramanujan families existing in the literature, depends on this conjecture and its
generalizations. Based on the preceding discussion, the need of explicit constructions of Ramanujan
graphs is apparent.

Their history dates back a little further. In 1986, N. Alon conjectured in [Alo86] that “most"
(n, d)-graphs are nearly-Ramanujan, leaving however what “random" means undetermined. Fried-
man [Fri03] proved the conjecture true, where he also specifies what model of random graphs one
should take.

As previously stated, the first explicit construction of a sequence of Ramanujan graphs is due to
A. Lubotzky, R. Philips, and P. Sarnak [LPS88], and independently due to Margulis [Mar88]. These
graphs are Cayley graphs over PSL2(Fp) of degree p + 1, where p is an odd prime, and although
it is easy to define them, the proof that they are indeed Ramanujan relies on the Ramanujan-
Petersson Conjecture. Using a generalization of the LPS construction, P. Chiu [Chi92] gave an
explicit construction for the remaining case p = 2, i.e. a family of 3-regular Ramanujan graphs.
Morgenstern [Mor94] used similar techniques passing on function fields to give a family of Cayley
Ramanujan graphs over PSL2(Fq(x)) of degree q + 1, where q is a prime power. His construction
again depends on the Ramanujan-Petersson Conjecture but over global function fields, which was
proved by Drinfeld [Dri88]. Another construction, again depending on the Ramanujan-Petersson
conjecture, was given by A. Pizer [Piz90]. One of the two main theorems of this thesis is the proof
that Pizer’s graphs are indeed Ramanujan. We note here that Pizer’s graphs is the first explicit
construction of non-Cayley Ramanujan graphs, see [Piz90, Section 6]. There have been very few
other explicit constructions of Ramanujan graphs known in the literature [JL97,JY18,BKS16]. The
first two papers [JL97,JY18] generalise the LPS Ramanujan graphs and again use the Ramanujan-
Petersson conjecture to establish the expansion bound, while the latter [BKS16] introduces a new
family of Ramanujan graphs of unbounded degree though, which depends on Deligne’s bound, again
based on Deligne’s work [Del73]. Some more elementary constructions of Ramanujan graphs exist
but all of them are of unbounded degree, see [dR97,Gun05,BST09,MS18,HLL19].

The goal of this thesis is to describe the construction of Pizer [Piz98], prove that these graphs
are indeed Ramanujan, and derive that the so-called supersingular isogeny graphs are Ramanujan
likewise.
Pizer graphs. Pizer graphs are multigraphs defined by the so called Brandt matrices associated
to Eichler orders over quaternion algebras. In order to use the Ramanujan-Petersson conjecture we
define a space of theta series that corresponds to the elements of the class set of the Eichler order,
in which space the action of the Hecke operators is given by the Brandt matrices. Then, the result
is derived by the R-P conjecture for cusp forms of weight 2 for a specific congruence subgroup,
proved by [Del73].
Supersingular isogeny graphs. Supersingular elliptic curves are elliptic curves over finite
fields that correspond to maximal orders in quaternion algebras. Supersingular isogeny graphs
are the graphs with vertices equivalence classes of supersingular elliptic curves and edges isoge-
nies between them. We prove that these graphs are Ramanujan by using the Deuring Corre-
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spondence [Deu41], which shows that these graphs are isomorphic to a certain subclass of Pizer’s
graphs.

This thesis is structured as follows:
We start, in Section 1, by an introduction to spectral graph theory, which enables us to study

graphs via the spectrum of their adjacency matrix. In this section, we introduce the notion of the
expander graph and prove the Alon-Boppana bound (Theorem 1.34), which gives an asymptotic
bound on their expansion constant. Graphs that attain this bound are called Ramanujan and are
the graphs

In Section 2, we examine quaternion algebras. We prove how their local behaviour characterizes
them, but we primarily study their arithmetic theory: lattices, orders, and ideals. Finally, we
introduce and characterize (locally) two important classes of orders, maximals orders and Eichler
orders, where the latter constitutes a generalization of the former. Eichler Orders will serve as the
base ground where we will define the Pizer graphs.

In Section 3, we study elliptic curves and in particular supersingular elliptic curves. These
are elliptic curves such that their endomorphism algebra corresponds to quaternion algebras in
contrast to their complement, namely ordinary elliptic curves, which correspond to quadratic fields.
We continue by studying the arithmetic properties of their endomorphism algebras as quaternion
algebras. Finally, we review the results of C. Waterhouse [Wat69] about kernel ideals, using group-
schemes; this will allow us to prove the Deuring correspondence in (5.2.2) and their connection to
the Eichler orders.

In Section 4, we introduce the theory of modular forms. We begin by defining modular forms
over congruence subgroups and subsequently Hecke operators and how they act on the space of cusp
forms. We continue by stating the Ramanujan-Petersson Conjecture, which as mentioned above
is the main ingredient in the proof of the central theorem of this thesis (Theorem 5.24): Pizer
graphs are Ramanujan. We conclude this section by reviewing the theory of theta series arising
from quadratic forms.

The last section (Section 5) consists of the definitions of Pizer graphs and supersingular isogeny
graphs and the proofs that these graphs are Ramanujan. In particular, in (5.1) we start by defining
the Brandt matrices associated to orders in quaternion algebras over Q. Then, we define the
Brandt graphs, which are our Pizer graphs, and, under specific technical conditions, are the graphs
with adjacency matrix the Brandt matrices. We conclude this subsection by proving the first
main theorem of this thesis (Theorem 5.24). Finally, in (5.2), we define the supersingular isogeny
graphs and we prove the Deuring correspondence, which gives an isomorphism between the Brandt
graphs and supersingular isogeny graphs. We conclude, by proving the second main theorem of
this thesis (Corollary 5.29): supersingular isogeny graphs are Ramanujan.
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1 Spectral Graph Theory

We start by introducing some preliminary notions in graph theory. We follow J.-P. Serre [Ser94] and
Pizer [Piz98].

Definition 1.1. An (undirected) multigraph G is a quintuple G = (V,E, o, t, ·), where V is a finite
set of vertices, E is a finite set of edges, o, t : E → V , and · : E → E are functions such that for
each edge e ∈ E it holds that e ̸= ē, ¯̄e = e, o(ē) = t(e), and t(ē) = o(e). The order of G, denoted
by |G|, is the cardinality of V .

For vertices u, v ∈ V , a (u, v)-edge is an edge e such that o(e) = u and t(e) = v. Every (u, u)-edge
is called a loop. If for vertices u, v ∈ V there exists a (u, v)-edge then we say that u and v are adjacent
and we write u ∼ v. The neighborhood of a vertex u ∈ V is the set NG(u) := {e ∈ E : o(e) = u}.
The degree of a vertex u ∈ V is defined as degG(v) := #NG(u). If v, u ∈ V we also define the set
of edges between them as EG(v, u) := {e ∈ E : o(e) = u, t(e) = v}.

We call a multigraph G, a simple graph, if G does not have loops and no multiple edges, i.e. for
each vertices u.v ∈ V there exists at most one (u, v)-edge.

When there is no confusion we may refer to a multigraph as just a graph.

Definition 1.2. Let G,G′ be multigraphs. A morphism of graphs ϕ : G→ G′ is a pair of functions
f : V (G)→ V (G′), g : E(G)→ E(G′) such that for every e ∈ E(G) it holds that f(o(e)) = o(g(e)),
f(t(e)) = t(g(e)), and g(e) = g(e). A morphism of graphs ϕ = (f, g) : G → G′ is called an
isomorphism if f : V (G)→ V (G′) is a bijection and g is a local bijection, i.e. for every u, v ∈ V (G)
the induced map

g : EG(u, v) −→ E′
G(f(u), f(v))

are bijections.

Let G be a multigraph and let u, v ∈ V (G). A (u, v)-walk W of length r in G is a sequence of
edges (e1, . . . , er) such that o(e1) = u, t(er) = v, and for each i = 1, . . . , r − 1, t(ei) = o(ei+1). We
say that W is a closed walk if o(e1) = t(er). We also say that W has a backtracking if there exists
i = 1, . . . , r−1 such that ei+1 = ei. A walk is called to be without backtracking (or just a w.b. walk)
if it doesn’t have backtracking. A cycle of length r is a closed w.b. walk (e1, . . . , er) such that the
vertices t(ei)’s are pairwise distinct.

Below, we define some graph parameters that we will use.

• Girth. The girth of a graph G is the length of a shortest cycle in G, that is girth(G) :=
min{r ≥ 0; ∃ cycle of length r}.

• Diameter. The distance between two vertices u, v ∈ V is defined as the length of the shortest
(u, v)-walk in G and is denoted by distG(u, v). If there does not exist such walk we write
distG(u, v) =∞. The diameter of G is defined as the maximum distance between vertices in
G, i.e.

diam(G) := max
u,v∈V (G)

distG(u, v).

• Independence number. A subset I ⊆ V (G) is said to be independent set if no vertices I
are adjacent. The size of a maximum independent set in G is called the independence number
of G and is denoted by α(G).

4



• Chromatic number. Given a positive integer k, we say that a function c : V (G) →
{1, . . . , k} is a proper k-coloring of G if for every adjacent vertices u, v ∈ V (G) it holds that
c(x) ̸= c(y). The maximum value k for which there exists a proper k-coloring of G is called
the chromatic number of G and is denoted by χ(G).

1.1 Adjacency Matrix

We start by giving the basic definitions of spectral graph theory and examine some basic properties
of them. To each multigraph we assign a matrix that determines it uniquely and allows us to study
graph properties algebraically.

Definition 1.3. Given a multigraph G of order n, we define its adjacency matrix as the n-by-n
the matrix A(G) on the set of vertices V (G), where for each u, v ∈ V (G),

A(G)u,v = #{e ∈ E; o(e) = u, t(e) = v}.

Remark 1.4. Given multigraph G, A(G) is a real symmetric matrix with even diagonal. Conversely,
a symmetric matrix A with non-negative integer entries and even diagonal determines a unique
multigraph with adjacency matrix A.

Let G be a multigraph and set A := A(G), For a non-negative integer r, Ar counts the number
of walks of length r in the graph G. This follows from the computation

Ar+1
u,v = (ArA)u,v =

∑
w∈V

Ar
u,wAw,v,

and the fact that a (u, v)-walk of length r + 1 is concatenation of a (u,w)-walk of length r and a
(w, v)-edge.

However, if we want to count the number of w.b. walks the task becomes slightly more difficult.
We define the n-by-n matrices Ar := Ar(G) on V by setting Ar(G)u,v to be the number of w.b.
(u, v)-walks of length r in G. For length r = 1 all walks of length 1 are w.b. and so A1(G) := A(G).
For length r = 2 we distinguish 2 cases: if we have a (u, v)-walk of length 2, where u ̸= v, then it
is obviously w.b. and so it is counted in A(G)2

u,v; in the other case, where u = v, the (u, u)-walks
that have backtracking correspond to the edges e ∈ NG(u) and so the number of w.b. (u, u)-walks
of length 2 equals to A(G)2

u,u − degG(u). For the general case we prove the following:

Proposition 1.5. Let G be a multigraph of order n. Then, we have the following recursive relations
for the matrices Ar:

A1 = A(G), A2 = A2
1 −D, and

Ar+1 = ArA1 −Ar−1(D − I), r ≥ 2,

where D is the n-by-n diagonal matrix on V defined by D := (degG(u))u∈V .

Proof. The cases r = 1, 2 have been established above. So let r ≥ 2. For vertices u, v ∈ V (G), we
need to prove that ∑

w∈V

(Ar)u,wAw,v = (Ar+1)u,v + (Ar−1)u,v(deg(v)− 1). (1)
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A (u, v)-walk counted in the left sum is of the form P = (e1, . . . , er, er+1), where P ′ = (e1, . . . , er)
is a w.b. (u,w)-walk of length r and er+1 is a (w, v)-edge. We distinguish two cases:

Case 1: er+1 ̸= er. Then, P is a w.b. (u, v)-walk of length r + 1. which is counted in (Ar+1)u,v.
Case 2: er+1 = er. In this case P is not a w.b. walk and so it is not counted in (Ar+1)u,v.
Moreover, P ′′ = (e1, . . . , er−1) is a w.b. (u, v)-walk, since t(er−1) = o(er) = o(er+1) = v, and so er

is a (v, w)-edge different from er−1. The number of these edges equals deg(v)− 1 and so the walk
P in this case is counted in the second summand of (1).

The next lemma is a generalization of a standard lemma in graph theory, the so called Hand-
shaking Lemma, which will be helpful in our calculations in (1.2).

Lemma 1.6 (The Handshaking Lemma). Let G be a multigraph, A its adjacency matrix, and
k ∈ RV ×V a matrix. Then it holds that∑

u,v∈V

Au,vku,v =
∑
e∈E

ko(e),t(e).

Proof. This result follows by a simple double counting argument. In the left sum we add the term
ku,v, Au,v times for each pair of vertices (u, v) ∈ V 2 such that Au,v ̸= 0, which means that for each
pair (u, v) ∈ V 2 we add the term ku,v for each (u, v)-edge in G. The result follows.

By taking the all 1 matrix k = (1)u,v∈V , Lemma 1.6 indeed implies the classical Handshaking
Lemma, which states that ∑u∈V degG u = |E|.

Corollary 1.7. Let G be a multigraph, A its adjacency matrix, and x ∈ RV a vector. Then, the
following hold:

1. xTAx = ∑
u,v∈V Au,vxuxv = ∑

e∈E xo(e)xt(e)

2.
∑

u∈V deg(u)x2
u = 1

2
∑

e∈E(x2
o(e) + x2

t(e))

3. xTAx = ∑
v∈V deg(u)x2

u − 1
2
∑

e∈E(xo(e) − xt(e))2.

4. xTAx = −∑v∈V deg(u)x2
u + 1

2
∑

e∈E(xo(e) + xt(e))2

Proof. (1) follows immediate from Lemma 1.6 by taking the matrix (xuxv)u,v∈V . (2) follows from
the identities ∑u∈V deg(u)x2

u = ∑
u∈V (∑v∈V Au,v)x2

u, ∑e∈E x
2
o(e) = ∑

e∈E x
2
t(e), and Lemma 1.6 for

the matrix (x2
u)u,v∈V . (3) follows from (1) and (2) and the identity 2∑e∈E xo(e)xt(e)− 1

2
∑

e∈E(x2
o(e)+

x2
t(e)) = ∑

e∈E(xo(e) − xt(e))2. (4) follows in a similar way as (3).

In this thesis our main focus will be on regular multigraphs and graphs:

Definition 1.8. Let k be a non-negative integer. A multigraph G is called k-regular if for every
vertex u ∈ V , degG(u) = k, or equivalently, ∑v∈V Au,v = k. The number k is called the valency
of G.

Remark 1.9. It is important to note that a multigraph G is k-regular if and only if the unit vector
1 is an eigenvector of A(G). This is indeed the case, since if v ∈ V , then (A1)v = ∑

u∈V Au,v .
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1.2 Graph Spectrum

There are many combinatorial properties of a given graph that are determined by its spectrum.
In this section, we mention some of these properties as long as some limitations of the spectral
approach.

Definition 1.10. Given a multigraph G, we define its graph spectrum as the spectrum of its
adjacency matrix A(G), i.e. the set of the eigenvalues of A(G) counted with multiplicities. We
write spec(G) = {(λ1)m1 , . . . , (λk)mk} for the multiset of the spectrum of G, where λi are the
eigenvalues of A(G) and mi their multiplicities, respectively.

Let G be a multigraph with eigenvalues λn ≤ · · · ≤ λ1 (counted with multiplicity) and adjacency
matrix A. As we have seen in Remark 1.4, A is a real symmetric matrix and thus the (finite-
dimensional) Spectral Theorem tells us that A has an orthonormal basis of eigenvectors; hence it is
diagonalizable. In particular, the eigenvalues of G are real numbers and there exists an orthonormal
eigenbasis x1, . . . , xn of RV .
Remark 1.11. Moreover, since A is diagonalizable, the algebraic multiplicity of an eigenvalue λ
equals its geometric multiplicity, i.e. the multiplicity of a root λ in the characteristic polynomial
det(xI −A) of A equals the dimension of the eigenspace Eλ := {x ∈ RV : Ax = λx} of λ.

The following characterization of the eigenvalues of an arbitrary symmetric matrix A ∈ Rn×n

will be of great use for us. For a vector x ∈ Rn we will write RA(x) (or just R(x)) for the Rayleigh
quotient of A on x defined by

RA(x) := xTAx

x · x
.

Theorem 1.12 (Variational Characterization of the Spectrum). Let A ∈ Rn×n be a symmetric
matrix, let λn ≤ · · · ≤ λ1 be the eigenvalues of A, and let x1, . . . , xn be eigenvectors of A that form
an orthonormal basis of Rn such that Axi = λixi, for each i = 1, . . . , n. Then, we have that

λk = max
x∈⟨x1,...,xk−1⟩⊥

x̸=0

RA(x).

Proof. We first make the following observation for two eigenvectors xi, xj , 1 ≤ i, j ≤ k,

xT
i Axj = λjx

T
i xj =

{
λj , i = j
0, i ̸= j

Consider now a non-zero vector x ∈ ⟨x1, . . . , xk−1⟩⊥. Since {x1, . . . , xk} is an orthonormal basis for
Rn, we may write x = ∑n

i=k aixi for some ak, . . . , an ∈ R. Thus, we get that

RA(x) = xTAx

x · x
=
∑

k≤i,j≤n aiajx
T
i Axj∑

k≤i,j≤n aiajxT
i xj

=
∑n

i=k a
2
ix

T
i Axi∑n

i=k a
2
i

=
∑n

i=k a
2
iλi∑n

i=k a
2
i

≤ λk.

The result follows from the fact that RA(xk) = λk for each k = 1. . . . , n.

Using the variational characterization of the eigenvalues we can prove the following properties
of the spectrum as follows.
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Proposition 1.13. Let δ = δ(G) and ∆ = ∆(G) be the minimum and the maximum degree of G,
respectively. Then, the following hold:

1. tr(Ak) = ∑n
i=1 λ

k
i is the number of closed walks in G of length k.

2. −∆(G) ≤ λn ≤ · · · ≤ λ1 ≤ ∆(G).

3. δ(G) ≤ λ1 ≤ ∆(G)

Proof. (1) follows directly from our observation that Ak
u,v equals the number of (u, v)-walks in G.

For (2), by applying Theorem 1.12 to A and to −A we get that

λ1 = max
x ̸=0

RA(x) and λn = min
x ̸=0

RA(x)

and thus in order to prove that −∆ ≤ λn ≤ λ1 ≤ ∆ we need to prove for every x ̸= 0 that
−∆ ≤ RA(x) ≤ ∆. This follows from Corollary 1.7(3,4) as for a non-zero vector x ∈ RV we get
that

RA(x) = xTAx

x · x
≤
∑

u∈V deg(u)x2
u∑

u∈V x
2
u

≤ ∆∑
u∈V x

2
u∑

u∈V x
2
u

= ∆

and similarly that RA(x) ≥ −∆.
For (3), the inequality λ1 ≤ ∆ has been proved above, so is suffices to prove that δ ≤ λ1. As

above, we have that λ1 = maxx ̸=0RA(x) and so by applying the unit vector 1 to the Rayleigh
quotient RA(x) we get that

λ1 ≥ RA(1) = 1
TA1

1T1
=
∑

u,v∈V Au,v∑
u∈V 1 =

∑
u∈V degG(u)

n
≥ nδ

n
= δ.

Hence, indeed λ1 ≥ δ.

Regular Graphs. As the graphs of interest in this thesis are regular graphs, the following
proposition, which states the basic properties of the eigenvalues of a regular graph, will play an
important role.

Proposition 1.14. Let G be a d-regular multigraph and let A = A(G) be its adjacency matrix with
eigenvalues λn ≤ · · · ≤ λ2 ≤ λ1. Then, the following hold:

1. λ1 = d and A1 = d1.

2. −d ≤ λn.

3. The multiplicity of the eigenvalue d equals the number of connected components of G.

4. λn = −d iff G has a bipartite connected component. Moreover, if G is connected, then G is
bipartite iff spec(G) is symmetric around 0.

Proof. (1,2.) This is a direct corollary of Proposition 1.13, since δ(G) = d = ∆(G) and Remark 1.9.

8



(3.) For every connected component C of G consider the indicator vector for this component
xC ∈ {±1}V defined by (xC)v = 1 ⇐⇒ v ∈ V (C). Each such vector is an eigenvector of G
corresponding to the eigenvalue d. Indeed, for each v ∈ V we compute

(AxC)v =
∑
u∈V

Au,v(xC)u =
∑

u∈V (C)
Au,v =

{
deg(v) = d, v ∈ V (C)

0, v ̸∈ V (C)

which shows that AxC = dxC . Observe that these vectors are linearly independent. We claim
that these eigenvectors span the eigenspace Ed and thus they form a basis of it. It is enough
to prove that if x ∈ Ed, then x is constant on each connected component of G. So let x ∈ Ed

be a non-zero eigenvector and observe that RA(x) = d. By Corollary 1.7, we get that

RA(x) =
d
∑

v∈V x
2
u − 1

2
∑

e∈E(xo(e) − xt(e))2∑
u∈V x

2
u

≤ d

where equality holds if and only if ∑e∈E(xo(e) − xt(e))2 = 0. Thus, for every e ∈ E we get
that xo(e) = xt(e). If now u, v ∈ V belong to the same connected component, then there exists
a walk W = (e1, . . . , en) such that o(e1) = u and t(en) = v; hence

xu = xt(e1) = · · · = xo(en) = xv,

which implies the claim. Therefore, we have that dimEd = #{connected components of G}.
The result then follows from Remark 1.11.

(4.) This follows as in (3) by considering specific indicator vectors for the parts of the bipartite
graph, see [HLW06].

Cospectral graphs. There are some limitations on the information we can get from the eigen-
values of a graph G. To this end we say that two graphs are cospectral if they have the same
spectrum. Consider the graphs K1,4 and C4 ⊔K1 depicted below:

Figure 1: Two cospectral graphs. K1,4 (left) and C4 ⊔K1 (right).

These graphs are represented by the matrices

A(K1,4) =


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 and A(C4 ⊔K1) =


0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 0 1 0 1
0 1 0 1 0


Thus, computing the spectrum of these two graphs we conclude that they are cospectral with

spectrum equal to {−2, (0)3, 2}. From this example, we can see that, despite the fact that the
number of closed walks in a graph G is completely determined by its spectrum (Proposition 1.13),
the number of cycles cannot be computed by the spectrum alone, as in C4 ⊔K1 there is a cycle of
length 4, whereas in K1,4 there’s none.
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1.3 Expanders

Fix a d-regular multigraph G with adjacency matrix A = A(G) and order n = |V |.

1.3.1 Edge Expansion.

A motivating question for defining expander graphs is the following:
· Question: What fraction of the edges should one remove in order to get two "large" connected
components?

In order to formalise this question we need the notion of the edge expansion of a cut of G. A
cut of a graph G is a pair (S, S), where S ⊆ V and S = V \S. For S, T ⊆ V we define EG(S, T ) :=
{e ∈ E : o(e) ∈ S, t(e) ∈ T} and set eG(S, T ) := |EG(S, T )|. We also define EG(S) := EG(S, S)
and eG(S) := |EG(S)| for a subset S ⊆ V .
Definition 1.15. Let S ⊆ V be a non-empty vertex set of G such that S ̸= V . We define the edge
expansion of the cut (S, S) as follows:

ϕG(S) := eG(S, S)
d ·min{|S|, |S|}

.

The edge expansion of G is then defined as

ϕ(G) := min
∅⊊S⊊V

ϕG(S) = min
1≤|S|≤n/2

ϕG(S).

Note 1.16. 1. Note that in the definition of the edge expansion of a vertex set S ⊆ V , such that
1 ≤ |S| ≤ n/2, the denominator plays the role of the maximum number of edges that can
leave S, as G is d-regular. Thus, 0 ≤ ϕ(G) ≤ 1. Note also that ϕ(G) = 0 if and only if G is
disconnected.

2. There are other definitions of the expansion of a graph in the literature, which are all essen-
tially equivalent up to a constant. The basic idea is that every subset of vertices of G expands
by some fixed amount relatively to its size.

To answer our starting question now, we provide the following lemma, which states rougly that
if the edge expansion of G is c then removing any 0 < ϵ < c fraction of the edges leaves a "large"
enough connected component:
Lemma 1.17. Suppose that ϕ(G) = c ∈ (0, 1] and let E′ ⊆ E be a subset of edges with |E′| < dn

2 ε,
where 0 < ε < c. Then, G \ E′ has a connected component of at least (1− ε

2c)n vertices.

Proof. Let C1, C2, . . . , Cr be the connected components of G\E′. Assume that |C1| ≥ |C2| ≥ · · · ≥
|Cr|. By the definition of ϕ(G) we have that for each i = 1, . . . n, eG(Ci, Ci) ≥ cdmin(|Ci|, |Ci|). If
|C1| ≤ n/2 then

|E′| =
∑

1≤i<j≤r

eG(Ci, Cj) = 1
2
∑

1≤i≤r

eG(Ci, Ci) ≥
cd

2
∑

1≤i≤r

|Ci| =
cdn

2 >
εdn

2 ,

which is a contradiction. Thus, |C1| > n/2 and so

cd|C1| ≤ eG(C1, C1) ≤ |E′| ≤ εdn

2 .

Therefore, |C1| ≤ εn/2c and hence |C1| > (1− ε
2c)n.
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1.3.2 Expander Graphs.

The above discussion leads to the following definition of a certain class of graphs.

Definition 1.18. An (n, d)-graph is a d-regular graph of order n. An (n, d, c)-expander graph is an
(n, d)-graph such that ϕ(G) ≥ c.

Remark 1.19. Every connected d-regular multigraph is an (n, d, c)-expander for some trivial c ∈
(0, 1], for instance we could take c = ϕ(G). However, the notion of interest is that of an infinite
sequence of (ni, di, c)-expanders with di’s preferably small, c fixed, preferably as large as possible,
and ni → ∞. In practice, one may want di = d to be a fixed small number and sometimes
ni+1/ni → 1, in which case we say that the sequence of expanders is linear.

Definition 1.20. A family of (constant-degree) (d, c)-expanders is a family of multigraphs {Gn}∞n=1
such that each Gn is a (|Gn|, d, c)-expander and |Gn| → ∞.

Naturally, we want to describe the properties of an (n, d, c)-expander using its adjacency matrix
A. There is a direct combinatorial property of the adjacency matrix that describes exactly an
(n, d, c)-expander: as we have observed in Proposition 1.14, for the regularity of G, we want the
unit vector 1 to be an eigenvector of G; for the edge expansion to be at least c we just want, for every
vertex set S ⊆ V , to exist at least cd · |S| non-zero columns in A. However, this straightforward
combinatorial property of the adjacency matrix A requires us to test all these 2Ω(n) possibilities. In
fact, it turns out that determining the exact value of ϕ(G) is an NP-hard problem, see [BKV+81].

Surprisingly enough, there is a strong connection between the second largest eigenvalue of G
and its edge expansion ϕ(G). This connection follows from Cheeger’s inequalities, which are the
discrete analogue of Cheeger’s isoperimetric inequalities on compact Riemannian manifolds, proved
by Cheeger [Che71] and Buser [Bus82]. The theorem below was proved by Dodziuk in [Dod84] and
independently by N. Alon and V. D. Milan in [AM85] and [Alo86].

Theorem 1.21 (Cheeger’s Inequalities). Let λn ≤ · · · ≤ λ2 ≤ λ1 = d be the eigenvalues of G.
Then, the following holds

d− λ2
2d ≤ ϕ(G) ≤

√
2(d− λ2)

d
.

The first inequality is known as the “easy direction", while the second as the "hard direction".
Below we provide a proof of the easy direction of Cheeger’s inequality and we refer the reader
to [HLW06] for the a proof of the hard direction. It is interesting to note that the proof of the
latter is algorithmic and makes use of the Spectral Partitioning Algorithm. This gives a set S of
vertices of edge-expansion ϕG(S) = O(

√
ϕ(G)).

Before we proceed to the proof of the easy direction it will be convenient for us to define the
notion of sparsity of G. For a cut (S, S) of G we define its sparsity as

σ(S) := eG(S, S)
d
n |S||S|

.

Note that σ(S) = σ(S). We thus define the sparsity of G as σ(G) := min∅⊊S⊊V σ(S). Note that for
a subset S ⊆ V with 1 ≤ |S| ≤ n/2 we have that 1/2 ≤ |S|/n < 1 and so σ(S)/2 ≤ ϕ(S) ≤ σ(S),
which in turn implies that

σ(G)
2 ≤ ϕ(G) ≤ σ(G).
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In particular, this tells as that the sparsity σ(G) and the edge expansion ϕ(G) of a graph measure
essentially the same thing.

Proof of Theorem 1.21 (Easy direction). We prove that

d− λ2
d

≤ σ(G),

which implies the desired result. By Proposition 1.14, we have that λ1 = d and that the unit vector
1 is an eigenvector for this eigenvalue. Thus, Theorem 1.12 implies that

λ2 = max
x∈⟨1⟩⊥\{0}

xTAx

x · x
.

Let now (S, T ) be a cut of G and set s := |S| and t := |T | = n − s. Consider the vector x ∈ RV

such that xv = −t, for v ∈ S, and xv = s, for v ∈ T , and observe that x ⊥ 1 and that

x · x =
∑
u∈S

t2 +
∑
u∈T

s2 = st2 + ts2 = (t+ s)st = nst. (2)

Using Corollary 1.7 we compute the value xTAx for this specific vector as follows

xTAx =
∑
e∈E

xo(e)xt(e) = 2t2e(S) + 2s2e(T )− 2st · e(S, T ).

We need to get rid of the terms e(S) and e(T ). In order to do this, consider the quantity Q =∑
u∈S deg(u). On the one hand Q = ds as G is d-regular and on the other Q = ∑

u∈S

∑
v∈V Au,v =∑

u,v∈S Au,v +∑u∈S,v∈T Au,v = 2e(S) + e(S, T ). Thus, ds = 2e(S) + e(S, T ). Similarly, we find that
dt = 2e(T ) + e(S, T ). Hence,

xTAx = t2(ds− e(S, T )) + s2(dt− e(S, T ))− 2ste(S, T ) = dstn− n2e(S, T ) (3)

Since x ⊥ 1, combining (2) and (3) we get that

λ2 ≥ RA(x) = xTAx

xTx
= dstn− n2e(S, T )

nst
= d− de(S, T )

d
nst

= d− d · σ(S)

and so d−λ2
d ≤ σ(S). Result follows from the fact that (S, T ) is an arbitrary cut of G.

Note 1.22. Both sides of the above inequality are essentially tight.

• Tight bound on the easy direction: The n-dimensional hypercube graph Qn is the simple
graph with vertex set {0, 1}n, where two vertices x, y ∈ {0, 1}n are adjacent iff they differ at
exactly 1 coordinate. This is clearly an n-regular graph and its spectrum is {2k − n : k =
1, . . . , n}}; so λ2(Qn) = n − 2. Now, for k ∈ {1, . . . , n} and for the cut (S, S), where
S = {x ∈ {0, 1}n : xk = 0}, we have that

ϕ(Qn) ≤ ϕ(S) = e(S, S)
n|S|

= 2n−1

n2n−1 = 1
n
,

which attains the bound n−λ2(Qn)
2n = 2

2n = 1
n .
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• Essentially tight bound for the hard direction: The n-cycle Cn is the simple graph with
vertex set Zn, where two vertices x, y ∈ Zn are adjacent if and only if x − y = ±1. Take n
to be an even number. The graph Cn is clearly a 2-regular graph and it is easy to see that
S = {x1, . . . , xn/2} gives an optimal cut; hence

ϕ(Cn) = ϕ(S) = e(S, S)
2|S| = 2

2n/2 = 2
n

= O(1/n).

Now, the eigenvalues of Cn are of the form ωk +ω−k = 2 cos(2πk
n ), for k = 0, . . . , n− 1, where

ω is a primitive n-th root of unity. Thus, λ2(Cn) = 2 cos(2π/n) and so using the Taylor
expansion for the cos function we find that

√
2(2−λ2(Cn))

2 =
√

2− 2 cos(2π/n) = O(1/n), as
1− cos(2π/n) = O(1/n2).

The quantity d − λ2(G), i.e. the difference of the largest and the second largest eigenvalue, is
called the spectral gap. As it can be seen from Theorem 1.21, the edge expansion of G is large if
and only if the spectral gap is large, or equivalently λ2 is much smaller than d. More precisely, we
have the following.

Corollary 1.23. 1. Any d-regular graph G on n vertices is an (n, d, c)-expander with c = d−λ2
2d .

2. If G is an (n, d, c)-expander then d− λ2 ≥ dc2/2.

The above analysis suggests that in order to study the edge expansion ϕ(G) of a regular multi-
graph G we may study instead its second largest eigenvalue, or more generally the behavior of its
eigenvalues.

Randomness of expanders. There are plenty results in the literature which suggest that ex-
pander graphs behave like random graphs. The main such result is the standard Expander Mixing
Lemma, see [AC88]. Consider the following two random experiments on the d-regular graph G:

• Pick a vertex u ∈ V and then pick a vertex v ∈ V such that u ∼ v.

• Pick independently two vertices u, v ∈ V .

Now consider two subsets S, T ⊆ V . What is the probability that (u, v) ∈ S × T in the above
situations? In the first experiment the probability equals 1

ndeG(S, T ) and in the second one equals
µ(S) · µ(T ), where µ(S) := |S|/n and µ(T ) := |T |/n is the density of S and T in G, respectively.
Expander Mixing Lemma (Theorem 1.24) below shows that if G is a good expander, i.e. λ2(G) is
small, by Corollary 1.23, these two probabilities are close to each other, which means that its edges
are spread out, a hallmark of random graphs.

Theorem 1.24 (Expander Mixing Lemma). Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of G. For
two sets S, T ⊆ V we have ∣∣∣∣e(S, T )− d|S| · |T |

n

∣∣∣∣ ≤ λ2

√
|S| · |T |. (4)

Proof. Let {x1, . . . , xn} be an orthonormal basis of eigenvectors for RV such that Axi = λixi for
each i = 1, . . . , n. By Proposition 1.14, we have that λ1 = d and we may assume that x1 =

1√
n
1. Consider now, the characteristic vectors xS , xT ∈ RV of S, T , respectively. Note then that
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xT
SAxT = ∑

v∈S,u∈T Au,v = e(S, T ). Writing xS = ∑n
i=1 aixi and xT = ∑n

i=1 bixi we have that
a1 = x1 · xS = 1√

n
1 · xS = |S|/

√
n and similarly, b1 = |T |/

√
n; hence,

e(S, T ) = xT
SAxT =

∑
1≤i,j≤n

aibjx
T
i Axj =

n∑
i=1

λiaibi = d
|S| · |T |

n
+

n∑
i=2

λiaibi.

Therefore, by the Cauchy-Schwarz inequality we get∣∣∣∣e(S, T )− d|S| · |T |
n

∣∣∣∣ =
∣∣∣∣∣

n∑
i=2

λiaibi

∣∣∣∣∣ ≤ λ2

n∑
i=2
|aibi| ≤ λ2∥xS∥ · ∥xT ∥ = λ2

√
|S| · |T |.

Note 1.25. The left hand-side of the inequality (4) measures the discrepancy between the number
eG(S, T ) of edges between the sets S, T in G and the expected number of edges between S and T

in a random graph of edge density d/n, namely d|S||T |
n .

The Expander Mixing Lemma implies some significant results about the relation of the graph
properties of a d-regular graph and its spectrum.
Corollary 1.26. Let G be an (n, d)-graph with λ2(G) ≤ λ.

1. The independence number of G satisfies α(G) ≤ λn/d.

2. The chromatic number of G satisfies χ(G) ≥ d/λ.

3. The diameter of G satisfies diam(G) ≤
⌈

log n
log(d/λ)

⌉
.

Proof. 1. This follows from the fact that if I ⊆ V (G) is an independent set, then e(I, I) = 0
and so the Expander Mixing Lemma implies the bound.

2. Let c : V (G) → {1, . . . , k} be a proper k-coloring of G. Then, by definition, each c−1(i),
1 ≤ i ≤ k, is an independent set of G and so from the above we get that n = ∑k

i=1 |c−1(i)| ≤
kλn/d, which implies the bound.

3. For a proof see [HLW06].(1)

When λ2(G) is close to λ1(G) = d, then the upper and the lower bound in Theorem 1.21 do
not give an accurate approximation of the edge-expansion ϕ(G) of G; that means that a graph can
be an excellent expander but still has a small spectral gap. The following theorem, which is also
a converse of the Expander Mixing Lemma, provides a tighter approximation of λ2, giving also
another combinatorial description of it.
Theorem 1.27 (Converse of Expander Mixing Lemma, [BL06]). Let α ∈ [0, d) be a constant. If
for any disjoint vertex sets S, T ⊆ V it holds that∣∣∣∣e(S, T )− d|S| · |T |

n

∣∣∣∣ ≤ α√|S| · |T |,
then, λ2 ≤ O(α(1 + log(d/α)). The bound is tight.

By Theorem 1.24 and Theorem 1.27, we see that λ2 and α differ by at most a logarithmic factor,
which makes this approximation better.

(1)We mention that this result was first proved by Chung in [Chu89].
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1.3.3 Constructions of Expander Graphs.

In this section we describe, without proving, some known constructions of expander graphs men-
tioned in the introduction.
• Margulis-Gaber-Galil Construction [GG81]. For every positive integer n we define the 8-
regular multigraph Gn with vertex set Vn = Zn×Zn as follows: consider the linear transformations

T1 =
(

1 2
1 0

)
and T2 =

(
1 0
2 1

)

and connect each vertex v = (x, y) ∈ Vn with T1v, T2v, T1v + e1, T2v + e2, T
−1
1 v, T−1

2 v, T−1
1 v −

e1, T
−1
2 v − e2, were e1, e2 is the standard basis of the vector space Vn = Zn × Zn. Gaber and Galil

proved that this is a family of (8, 8−5
√

2
16 )-expander multigraphs.

Note 1.28. The original definition of these graphs by Margulis [Mar73] differs a bit from the above
on the linear transformations T1 and T2 but it is essentially the same. Let us also note that the
graphs Gp, where p is a prime number, were originally derived as Cayley graphs on the group
SL3(Fp).

• Lubotzky-Phillips-Sarnak Construction [LPS88]. Let p, q ≡ 1 (mod 4) be different prime
numbers. Consider the Diophantine equation

x2
0 + x2

1 + x2
2 + x2

3 = p.

To every integer solution α = (a0, a1, a2, a3) ∈ Z4 to the above equation we associate a matrix

α̃ =
(
a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

)
∈ PGL2(Z/qZ)

Consider then the set

S =
{
α̃ : α = (a0, a1, a2, a3) ∈ Z4,

a2
0 + a2

1 + a2
2 + a2

3 = p,
a0 > 0 odd, a1, a2, a3 even

}
.

By Jacobi’s 4-square Theorem it can be seen that the cardinality of S is exactly p+ 1. Moreover, it
can be easily seen that S is a symmetric subset of PGL2(Z/qZ). Thus, we define the graphs Xp,q

as the Cayley graphs

Xp,q :=

 Γ(PSL2(Z/qZ), S),
(

p
q

)
= 1

Γ(PGL2(Z/qZ), S),
(

p
q

)
= −1

The graphs Xp,q are (p+ 1)-regular connected graphs, with optimal expansion. This is an example
of a Ramanujan graph, which we define in the next section.
• Lubotzky Construction [Lub94]. For every prime p define the graph Yp with vertex set
V (Yp) = P1(Zp) = Zp ∪ {∞} and connect every vertex x ∈ P(Zp) to x + 1, x − 1,− 1

x . Then,
the sequence {Yp}p, indexed by the prime numbers, is a family of 3-regular expander graphs with
λ2 < 1− 1/104.
• Reingold-Vadhan-Wigderson Construction [RVW02]. We will demonstrate how this re-
cursive construction works using their theorem about the properties of the zig-zag product, without
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defining it. For an (n, k)-multigraph G and a (k, d)-multigraph H we denote their zig-zag product
by G z H. Given a multigraph G, we also define the multigraph G2 as the multigraph with adja-
cency matrix A(G2) = A(G)2, see Remark 1.4. Observe that if G is an (n, d)-multigraph then G2

is an (n, d2)-multigraph with second largest eigenvalue λ2(G2) = λ2(G)2. We will use the following
theorem:

Theorem (The Zig-Zag Theorem, [RVW02]). Let G be an (n, k)-multigraph with
λ2(G)/d ≤ α and H be a (k, d)-multigraph with λ2(H)/d ≤ β. Then, the zig-zag
product G z H is an (nk, d2) with λ2(G z H)/d ≤ α+ β + β2.

So, take a (d4, d)-multigraph H with λ2(H)/d ≤ 1/5 and define recursively the sequence (Gn)
as follows:

G1 := H2 and Gn+1 = (Gn)2 z H.

This is a family of (d2, 1/4)-expander multigraphs. First note that each zig-zag product is well-
defined, since each (Gn)2 has degree d4 which equals the order of H, and that each Gn has order
d4n. To prove that ϕ(Gn) ≥ 1/4, we need to prove that λ2(Gn) ≤ d/2. This follows by induction
and the Zig-Zag Theorem as

λ2((Gn)2 z H)/d ≤ 1/22 + 1/5 + 1/52 = 49/100 < 1/2.

Note 1.29. In the case where the graphs are Cayley, the notion of the zig-zag product is related to
that of the semi-direct product of groups, see [ALW01].

1.4 Ramanujan Graphs.

As we have established in the previous sections, see Corollary 1.23, in order to study expanders we
may study their spectrum. Thus, the natural question now to ask is:

· Question: How large can the spectral gap of an (n, d, c)-expander be?

If we allow our graphs to be infinite then the infinite d-regular tree, denoted by Td, see Figure 2,
provides the answer and in a way it is the "ultimate" expander (although it is a tree), as we will
see below.

In order to define Td we construct it from a finite d-regular multigraphG as follows. let v ∈ V (G)
and define V (Td) to be the set of w.b. walks in G starting at v. Two vertices w,w′ ∈ V (Td) are
adjacent if and only if there exists an edge e ∈ E(G) such that w′ occurs from w by concatenating
e, that is w′ is a single step extension of w. It is easy to see that this construction is independent
of the vertex v and that the obtained graph is an infinite d-regular connected acyclic graph; thus
it is indeed Td.
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Figure 2: The infinite 3-regular tree.

Note 1.30. Obviously there is a more direct combinatorial way to define the infinite d-regular tree
Td but this way enables us to realise it as the universal cover of every d-regular multigraph, which
will play an essential role in the proof of Theorem 1.34.

In the case of an infinite graph G we generalize the edge expansion as

ϕ(G) := inf
S⊆V

|S|<∞

eG(S, S)
d|S|

.

So to compute ϕ(Td) consider a finite subset S ⊆ V (Td). The induced subgraph, denoted by
Td[S], from S in Td can be assumed to be connected, since it can be seen that otherwise it
wouldn’t minimize the above fraction. Thus, Td[S] is a finite tree and so |E(Td[S])| = |S| − 1.
Hence, e(S, S) = |S|d− 2(|S| − 1) = |S|(d− 2) + 2 and therefore,

ϕ(Td) = lim
k→∞

(
d− 2
d

+ 2
k

)
= d− 2

d
.

Thus, indeed Td serves the role of the "ultimate expander", as it has the maximum expansion. Let
us examine next its spectrum.

For the spectrum of Td, let AT be its (infinite) adjacency matrix and consider it as a linear
operator on the space L2(Td) = {f : V (Td)→ C : ∑x |f(x)|2 <∞}. Then, as above, we generalize
the spectrum of an infinite graph as

spec(AT) :=
{
λ ∈ C : (AT − λ id) ∈ L2(Td) is non-invertible

}
.

Equivalently, λ ∈ spec(AT) if and only if the operator ker(AT − λ id) ̸= 0.

Theorem 1.31 (Cartier, [Car72]). The spectrum of AT is the closed interval

spec(AT) = [−2
√
d− 1, 2

√
d− 1].
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For a proof of Theorem 1.31 we also refer to [Fri91]. The fact that T is the universal cover
of d-regular graphs together with the 2

√
d− 1 for its spectrum will give us the asymptotic bound

2
√
d− 1 for finite graphs too.
Now, we return to finite d-regular multigraphs and ask again how large can the spectral gap be,

or more generally is there an (asymptotic) bound for their non-trivial spectrum? By non-trivial
spectrum of a d-regular multigraph G, we mean the set of the eigenvalues of G different from ±d,
see Proposition 1.14. For that purpose we define the parameter

λ(G) := max{|λ| : λ ∈ spec(G), λ ̸= ±k}.

Note 1.32. By Proposition 1.14, for a connected d-regular multigraph G, we have that λ(G) =
max{|λ2|, |λn−1|}, if G is bipartite, and λ(G) = max{|λ2|, |λn|}, if G is not bipartite.

Observe that if λ(G) is small then so is λ2(G). Our purpose is to bound λ(G) asymptotically,
that is as the order of G goes to infinity. In order to do this, we will approximate a d-regular graph,
specifically its eigenvalues, by Td, interpreting it as its universal cover.

So, consider a d-regular multigraph G and interpret both G and Td as 1-dimensional CW-
complexes. Then, the map p : Td → G sending a walk w ∈ V (Td) to its end-vertex defines a
covering map. This is easy to see as for each vertex w ∈ V (T d), the restriction map p|NTd (w) :
NTd(w)→ NG(p(w)) is a bijection. See [HLW06] for a more concrete analysis. Now, the fact that
Td is a tree is equivalent to the fact that Td is simply connected as a CW-complex. Thus, we’ve
established the following.

Proposition 1.33. The infinite d-regular tree Td is the universal cover of every d-regular multi-
graph.

Theorem 1.34 below employs Proposition 1.33 and uses the path-lifting property of covering
spaces to achieve an asymptotic lower bound on λ(G). The result below was first proven by Alon
and Boppana [Alo86], and has been proved in many ways since, see for example [LPS88, Piz98,
Nil91,HLW06,Ser97,Lub94]. Here we follow the proof of [LPS88].

Theorem 1.34 (Alon-Boppana bound). Let {Gn}∞n=1 be a sequence of connected d-regular multi-
graphs such that |Gn| → ∞. Then,

lim inf
n→∞

λ(Gn) ≥ 2
√
d− 1.

Proof. We assume, without loss of generality, that for each n ∈ Z≥1, |Gn| = n. By Proposition 1.13,
we have that the number of closed walks in Gn of length 2l is equal to

tr(A(Gn)2l) =
∑

v∈V (Gn)
A(Gn)2l

v,v =
n∑

i=1
λ2l

i (Gn),

where by the discussion on (1.1), A(Gn)2l
v,v is equal to the number of closed walks in Gn from v to v

of length 2l. Denote then by tl the number of closed walks in Td from a certain vertex x ∈ V (Td)
to itself of length 2l (note that tl is independent of the particular vertex x). Then, since Td is the
universal cover of Gn, by Proposition 1.33, we have that for each v ∈ V (Gn), A(Gn)2l

v,v ≥ tl and so
n∑

i=1
λ2l

i (Gn) ≥ ntl.
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Now, by Proposition 1.14, we have that λ1(Gn) = d and λn(Gn) ≥ −d, thus we find that

2d2l + (n− 2)λ(Gn)2l ≥ 2d2l +
n−1∑
i=2

λ2l
i (Gn) ≥ ntl ≥ (n− 2)tl,

which in turn implies that

λ(Gn)2l ≥ tl −
2d2l

n− 2 . (5)

We compute the number t′l of closed walks in Td from a certain vertex x to itself of length 2l
that visits x exactly 2 times. It is easy to see that t′l = dkl−1, where kl denotes the number of closed
walks in Td−1

y , the infinite complete (d− 1)-ary rooted sub-tree of Td with root y, from y to itself
of length 2l. Thus, we have to compute the number kl. To do this we find a recurrence relation for
kl. Observe that to make such a closed walk we have first to pass through a neighbor z of the root
y, then make a closed walk in Td−1

z from z to itself of length 2i, then return to y, and then make
again a closed walk in Td−1

y from y to itself of length 2l− 2i− 2 = 2(l− i− 1). Thus, we find that

k0 = 1 and kl+1 = (d− 1)
l∑

i=0
kikl−i.

Now, it is easy to see that the sequence Cl = kl/(d − 1)l satisfies the recurrence relation Cl+1 =∑l
i=0CiCl−i with C0 = 1, which is exactly the recurrence relation defining the Catalan numbers

Cl = 1
l+1
(2l

l

)
, see [Sta15]. Hence, kl = 1

l+1
(2l

l

)
(d− 1)l and so

t′l = d(d− 1)l−1 1
l

(
2l − 2
l − 1

)
.

Obviously, tl ≥ t′l and therefore we get from (5) that

λ(Gn)2l ≥
(√

d− 1
)2l 1

l

(
2l − 2
l − 1

)
− 2d2l

n− 2 .

Result follows from that fact that
(2l

l

)1/2l l→∞−−−→ 2.

Note 1.35. 1. For tighter estimates for the bound on λ(G) see [HLW06] and [Nil91], where it is
proved that

λ(G) ≥ 2
√
d− 1(1−O(1/∆)),

where ∆ = diam(G) is the diameter of G.

2. It is worth mentioning a quantitative variation of Theorem 1.34 by J.-P. Serre, who is also
considered as the originator of the following theorem.

Theorem (J.-P. Serre, [Ser97]). For every ϵ > 0 and every integer d > 0
there is a constant c = c(ϵ, d) > 0, such that for every (n, d)-graph the
number of eigenvalues λ with λ > (2− ϵ)

√
d− 1 is at least c · n.

This essentially tells that for every ϵ > 0 every (n, d)-graph has a positive proportion of
eigenvalues larger than 2

√
d− 1− ϵ and thus implies the Alon-Boppana bound. For a proof

of this theorem of Serre see also [HLW06].

19



Motivated by the above analysis and Theorem 1.34 we define a specific kind of expanders, which
attain the Alon-Boppana bound.

Definition 1.36. A d-regular graph is said to be a Ramanujan graph if λ(G) ≤ 2
√
d− 1.

To put it differently, according to Theorem 1.31, a d-regular graph G is Ramanujan if its
non-trivial eigenvalues lie in the spectrum of its universal cover. In view of Theorem 1.34 and
Theorem 1.21, Ramanujan (multi)graphs are the optimal expander graphs.
Note 1.37. As in the case of expanders (see Remark 1.19), we are interested in sequences of constant-
degree Ramanujan multigraphs such that their orders tend to∞, i.e. sequences {Gn}n≥1 of d-regular
multigraphs such that λ(Gn) ≤ 2

√
d− 1 and |Gn| → ∞.

We conclude this section by stating an open problem about Ramanujan graphs.

• Open Problem. Lubotzky in Problem 10.7.3 of his book [Lub94] asked whether infinite fam-
ilies of d-regular Ramanujan graphs exist for every degree d > 2. Until 2013, the only known
infinite Ramanujan graph families remained to be of degree q + 1, for some prime power
q = pr, [LPS88, Chi92, Mor94]. Marcus, Spielman, and Srivastava in their breakthrough pa-
per [MSS15] proved Lubotzky’s conjecture true by proving the existence of infinite families
of bipartite Ramanujan graphs for every degree d > 2. They did it by proving the signing
conjecture of Bilu and Linial, who suggested in [BL06], a way of constructing Ramanujan
graphs through a sequence of 2-lifts, which are just 2-fold covering graphs, of a base Ra-
manujan graph. However, their construction uses a probabilistic result about 2-lifts and does
not provide an explicit construction. It remains yet an open problem to make an explicit
construction of Ramanujan of arbitrary degrees.
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2 Arithmetic of Quaternion Algebras

For the following notions we refer to [AM69] and [Voi21]. All rings considered in this text will
be associative and contain a multiplicative identity 1. Every ring-homomorphism preserves 1 and
every subring of a ring contains the same 1. Throughout the section every ring R will be assumed
to be a PID and every field F will be of charF ̸= 2, unless we mention otherwise. Fix also an
algebraic closure F of F.

The center of a ring R is the subring of R defined by

Z(R) := {r ∈ R : ∀s ∈ R (rs = sr)}.

An F-algebra is a ring A equipped with a ring-homomorphism ϕ : F → A such that imϕ ⊆ Z(A).
An F-algebra A is said to be central of Z(A) = F. An F-algebra homomorphism (or just an
F-homomorphism, ϕ : A1 → A2 between two algebra ϕ1 : F → A1 and ϕ2 : F → A2 is a ring
homomorphism that commutes with the action of F into A1 and A2, i.e. that ϕ ◦ ϕ1 = ϕ2. An
F-algebra A is said to be a division algebra if every non-zero element a ∈ A has a two-sided inverse,
i.e. there exists b ∈ A such that ab = ba = 1. We call A simple if the only two-sided ideals of A are
{0} and A.

2.1 Quaternion Algebras

Definition 2.1. A quaternion algebra B is an F-algebra that is generated as an F-algebra by two
elements i, j ∈ B satisfying the following relations

i2 = a, j2 = b, and ij = −ji, (6)

for some a, b ∈ F×. We denote this quaternion algebra by
(

a,b
F

)
and we call the generators i, j

which satisfy the relations (6) standard generators with respect to a, b.

Note 2.2. Given a quaternion algebra B =
(

a,b
F

)
, where a, b ∈ F×, with standard generators i, j,

one can see, via direct calculations, that the elements 1, i, j, ij are F-linearly independent [Voi21,
Lemma 2.2.5] and so the quaternion algebra B =

(
a,b
F

)
can be equivalently defined as an F-algebra

generated as an F-vector space by 1, i, j, k := ij, satisfying (6). Using the relations (6) between i
and j, we can calculate the multiplication table of the generators which is given as follows:

1 i j k

1 1 i j k

i i a k aj

j j −k b −bi
k k −aj bi −ab

Figure 3: Multiplication table for the quaternion algebra
(

a,b
F

)
.

Examples 2.3. 1. The F-algebra M2(F) of 2×2 matrices with entries in F is a quaternion algebra

isomorphic to
(

1,1
F

)
and is generated by the matrices

(
1 0
0 −1

)
and

(
0 1
1 0

)
.
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2. The quaternion algebra H :=
(

−1,−1
R

)
is called Hamilton’s quaternions and is the unique

division quaternion algebra over R, as we will prove in Corollary 2.5.

Proposition 2.4. Let a, b ∈ F×. Then, the following hold:

1.
(

a,b
F

)
≃
(

b,a
F

)
;

2.
(

a,b
F

)
≃
(

a,−ab
F

)
≃
(

b,−ab
F

)
;

3.
(

a,b
F

)
⊗F K ≃

(
a,b
K

)
for every field extension K/F;

4.
(

a,b
F

)
≃
(

ax2,by2

F

)
for every x, y ∈ F×;

5.
(

1,b
F

)
≃M2(F).

Proof. The isomorphisms in (1) and (2) are just given by permutation of the generators as one can
see by Figure 3. (3) is obvious. For (4) let i and j be standard generators of B =

(
a,b
F

)
and i′, j′

be standard generators of B′ :=
(

ax2,by2

F

)
. Then, the map B′ → B induced by

B′ → B; i′ 7→ ix, j′ 7→ jy

is an isomorphism. For (5), let i, j be standard generators of B =
(

1,b
F

)
. Then, the map ϕ : B =(

1,b
F

)
→M2(F) induced by

B →M2(F); i 7→
(

1 0
0 −1

)
, j 7→

(
0 b
1 0

)

is an isomorphism.

Since, now R×/R×2 = {±1} and F×/F×2 = {1}, for an algebraically closed field F, Propo-
sition 2.4(4,5) have the following consequence, that classifies the quaternion algebras over R and
F.

Corollary 2.5. Let B =
(

a,b
F

)
be a quaternion algebra over F with a, b ∈ F×.

1. If F = R then B ≃M2(R) or B ≃ H.

2. If F is algebraically closed then B ≃M2(F).

Reduced norm and trace. Let B =
(

a,b
F

)
be a quaternion algebra, where a, b ∈ F×. Let

α = t+ xi+ yj + zk ∈ B. We define its quaternion conjugate as α = t− xi− yj − zk. The map

· : B −→ B; α 7→ α (7)

is a standard involution in the sense that it satisfies the properties of the following proposition.

Proposition 2.6. The quaternion conjugation (7) is an F-linear map satisfying the following
properties:
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1. 1 = 1;

2. α = α for all α ∈ B;

3. αβ = β α for all α, β ∈ B;

4. αα = αα ∈ F for all α ∈ B.

Proof. The proof follows from straightforward calculations, see [Voi21, 3].

Definition 2.7. Let V be a finite-dimensional F-algebra. An F-linear map V → V satisfying the
properties (1)-(3) of Proposition 2.6 is called an involution and if it further satisfies (4) it is called
a standard involution.

Note 2.8. If · : B −→ B is a standard involution, then for all α ∈ B we have that αα ∈ F,
by Proposition 2.6 and moreover we have that α+ α ∈ F. Indeed, this follows from the formula

(α+ 1)(α+ 1) = (α+ 1)(α+ 1) = αα+ α+ α+ 1, (8)

since (α+ 1)(α+ 1), αα, 1 ∈ F.
We define the reduced norm and reduced trace of an element α = t+xi+yj+zk ∈ B as follows:

trd(α) := α+ α = 2t ∈ F
nrd(α) := αα = αα = t2 − ax2 − by2 + abz2 ∈ F.

Note that, by Proposition 2.6, the reduced trace map trd : B → F is F-linear and the reduced
norm map is multiplicative. More precisely, in (5.1.4), we will see that the reduced norm defines a
quadratic form over B
Remark 2.9. Let α ∈ B. Observe that α satisfies the polynomial

x2 − trd(α)x+ nrd(α) ∈ F[x]. (9)

This is called the reduced characteristic polynomial of α and is the minimal polynomial of α, if
α ∈ B \ F.
Example 2.10. Let B = M2(F). The adjugate map

adj : B −→ B; A =
(
a b
c d

)
7−→ adj(A) :=

(
d −b
−c a

)

defines a standard involution on B. Note that by Lemma 2.11, this is the unique standard involution
on B and so the reduced trace and norm in the matrix quaternion algebra M2(F) coincide with the
usual trace and determinant.

Structure of quaternion algebras. There is a non-explicit definition of quaternion algebras,
which, due to its more abstract nature, provides a further understanding of the notion and is
sometimes more useful than the explicit one with generators. First, we prove that a standard
involution in a quaternion algebra is unique.
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Lemma 2.11. Let B be a quaternion algebra. Then, the quaternion conjugation

α = t+ xi+ yj + zk 7→ α = t− xi− yj − zk

is the unique standard involution on B.

Proof. Let B ∋ α 7→ α̃ ∈ B be a standard involution on B. Since a standard involution is F-linear, it
is enough to prove that ĩ = −i, j̃ = −j, and k̃ = −k. We just prove it for i. We have that i2 = a ∈ F
and that i satisfies the characteristic polynomial (9), i.e. it holds that a = i2 = trd(i)i − nrd(i),
where nrd(i), trd(i) ∈ F, see (8). From the uniqueness of writing an element in B in terms of the
basis elements, we get that trd(i) = i+ ĩ = 0 and so ĩ = −i, as desired.

Theorem 2.12. Let V be a division F-algebra such that every element α ∈ B \ F satisfies a
polynomial of degree 2. Then, one of the following holds:

1. V = F;

2. V = K is a quadratic field extension of F; or

3. V = B is a division quaternion algebra over F.

Proof. See [Voi21, 3.5.1].

We state the following theorem due to J. Wedderburn and E. Artin in order to use to prove the
equivalent characterization of quaternion algebras. For a proof of Theorem 2.13 see [Voi21, 7.1.1].

Theorem 2.13 (Wedderburn-Artin). Let B be a finite-dimensional F-algebra. Then, B is simple
if and only if B ≃Mn(D), where n ≥ 1 and D is a finite-dimensional division F-algebra.

For a more elementary proof of the following corollaries, namely 2.15 and 2.14, without referring
to Theorem 2.13, see [Voi21, Corollary 7.1.2].

Corollary 2.14. Let B be an F-algebra. Then, the following are equivalent:

1. B is a quaternion algebra over F;

2. B ⊗F F ≃M2(F); and

3. B is a central simple F-algebra of dimension dimFB = 4.

Proof. (1) =⇒ (2). This follows from Proposition 2.4(3) and Corollary 2.5(2).
(2) =⇒ (3): By Examples 2.3 one can see that M2(F) is a central simple F-algebra of dimension

4. We prove that this also holds for B. First, it is straightforward to check that Z(B) = Z(B⊗FF)∩
B = F∩B = F and so B is central. Now, if I ⊆ B is a non-zero two-sided ideal of B then I⊗FF is a
non-zero two-sided ideal of B⊗FF and so I⊗FF = B⊗FF. By intersecting with B, the latter implies
that I = B and so B is simple. To conclude, we have that dimFB = dimFB⊗FF = dimFM2(F) = 4.

(3) =⇒ (1): Suppose that B is a central simple algebra of dimension dimFB = 4. By the
proof of Corollary 2.15 we get that B ≃ M2(F) or B is a division ring. If B ≃ M2(F) then it is
a quaternion algebra, so suppose that B is a division ring. Let now α ∈ B \ F and consider the
subalgebra F[α] of B generated by α. Then, F[α] is a commutative subalgebra of the 4-dimensional
division ring B. Thus, F[α] is a field, F[α] ̸= B, and dimF F[α] = 1, 2, or 3. But we have that[

B : F[α]
]
·
[
F[α] : F

]
= [B : F] = dimFB = 4
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and so dimF F[α] = [F[α] : F] = 1 or 2. Since α ∈ B\F we conclude that dimF F[α] = 2. This implies
that every elements α ∈ B \F satisfies a polynomial of degree 2 and so we may apply Theorem 2.12
to conclude that B is a quaternion algebra.

Corollary 2.15. A quaternion algebra B is either a division ring or isomorphic to B ≃M2(F).

Proof. By Corollary 2.14, we have that B is a simple algebra and so by Theorem 2.13, it follows
that B ≃ Mn(D), for some division F-algebra D. Comparing dimensions we get the equality
4 = dimFB = n2 dimFD. Hence, either n = 1, in which case B ≃ D is a division algebra or n = 2
and dimFD = 1, in which case D ≃ F and B ≃M2(F).

2.2 Lattices and Orders

Fix a PID R, F := Frac(R) be the fraction field of R, and let B be a quaternion algebra over F. We
start the arithmetic theory of quaternion algebras by defining and examining the naturally arising
integral structures inside B.

Definition 2.16. An R-lattice in B is a finitely-generated R-submodule I of F such that the natural
map I ⊗R F→ B is an isomorphism.

Remark 2.17. • We will abbreviate the notation by writing I ⊗R F = B. Note also that this
condition is equivalent to the fact that I contains an F-basis of B. Indeed, if the natural map
I ⊗R F → B is an isomorphism then we can write every element of a given basis of B as an
F-linear combination of elements of I, which elements give another basis of B.
Moreover, note that by the non-commutative analogue of [AM69, Proposition 3.5], we have
that B = I ⊗R F = (R \ {0})−1I := {x/r : x ∈ I, r ∈ R \ {0}}.

• If R is a PID then by the structure theorem for finitely-generated modules over a PID we get
that every R-lattice in B is of the form

I = Rx1 ⊕Rx2 ⊕Rx3 ⊕Rx4,

where {x1, x2, x3, x4} is an F-basis for B. Indeed, B has no torsion elements as it is an F-
algebra and so I has neither, as I ⊆ B. Thus, I is a torsion-free R-module. Since R is a PID
we get that I is free. The result follows from the fact that I ⊗R F = B.

Lemma 2.18 (Lattice criterion). Let I ⊆ B be an R-lattice and let J ⊆ B be a finitely generated
R-submodule. Then, the following hold:

1. For every x ∈ B there exists r ∈ R \ {0} such that rx ∈ I.

2. There exists r ∈ R \ {0} such that rJ ⊆ I.

3. J is an R-lattice if and only if there exists r ∈ R \ {0} such that rI ⊆ J ⊆ r−1I.

Proof. 1. By Remark 2.17, we have that I contains an F-basis {x1, . . . , x4} of B and so R1x1 ⊕
· · · ⊕ Rnx4 ⊆ I. So, let x ∈ B. Writing x = a1x1 + · · · + a4x4, for some ai = ri

si
∈ F, we get

that x = 1
s (r1x1 + · · ·+ r4x4), where s = s1s2s3s4 ∈ R \ {0}.
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2. Let J be R-generated by the set {y1, . . . , yn} ⊆ J ⊆ B. By (1) we get that for each i =
1, . . . , n, there exists ri ∈ R \ {0} such that riyi ∈ I; hence for r = r1 · · · rn ∈ R \ {0} we have
that rJ ⊆ I.

3. If J is an R-lattice then (since also I is an R-lattice), by (2), we have that there exist
r, s ∈ R \ {0} such that rJ ⊆ I and sI ⊆ J . Then, rs ̸= 0 and

(rs)I ⊆ rJ ⊆ I ⊆ s−1J ⊆ s−1r−1I = (rs)−1I.

Conversely, if there exists r ∈ R \ {0} such that rI ⊆ J ⊆ r−1I, then tensoring with F we get

B = rB = rI ⊗R F ⊆ J ⊗R F ⊆ r−1I ⊗R F = r−1B = B

and hence the equality J ⊗R F = B.

Just like the commutative case we define the notion of an order, which appears to be as important
in this context as in the commutative case for number fields, though (naturally) their structure is
much more complicated. For an extensive exposition of orders we refer to [Rei75].

Definition 2.19. An R-order O in B is an R-lattice that is also a subring of B.

Note 2.20. Note that 1 ∈ O or equivalently, R ⊆ O.
Examples 2.21. 1. The R-algebra M2(R) is an R-order in the quaternion algebra M2(F).

2. Let B be a quaternion algebra generated by i, j ∈ B. Then, the R-lattice

O = R⊕Ri⊕Rj ⊕Rk

is an R-order in B, Indeed, by Figure 3 one can check that O is closed under multiplication
of each 2 of its generators.

Lemma 2.22. Let I be an R-lattice in B such that 1 ∈ I. Then, the following hold:

1. I ∩ F = R;

2. I has an R-basis containing 1.

In particular, an R-order O has a basis containing 1.

Proof. 1. Since 1 ∈ I, we have that R ⊆ I ∩ F. Now, let α ∈ I ∩ F. Then, we have an injection
of R-modules

R[α] ↪→ I ∩ F ↪→ I

and since R is Noetherian and I finitely generated, we have that R[α] is finitely-generated.
Hence, α is integral over R, but R is integrally closed and so α ∈ R. Claim follows.

2. Since 1 ∈ I we have a short exact sequence

0→ R ↪→ I → I/R↠ 0. (10)

Now, by (1), I/R is a torsion free R-module. Indeed, if α ∈ I and r ∈ R \ {0} are such that
rα ∈ R then α ∈ r−1R ⊆ F; hence α ∈ I ∩ F = R and so α is 0 in I/R. Thus, since R is a
PID, I/R if free and the sequence (10) splits, giving a basis of I containing 1.
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Every R-lattice I comes with an important construction of orders, that realise I as a left and
right order, respectively.

Definition 2.23. Let I be an R-lattice in B. We define the left order of I right order of I as

OL(I) := {α ∈ B : αI ⊆ I} and OR(I) := {α ∈ B : Iα ⊆ I},

respectively.

Lemma 2.24. Let I be an R-lattice in B. Then, the left (resp. right) order OL(I) (resp. OR(I))
of I is an R-order in B.

Proof. It is easy to see that OL(I) is an R-submodule of B that is also a subring. We prove
α ∈ B and consider the R-submodule αI ⊆ B. Since, I is finitely generated, so is αI and so
by Lemma 2.18, it follows that there exists r ∈ R \ {0} such that rαI ⊆ I. Thus, rα ∈ OL(I) and
so α ∈ r−1OL(I) ⊆ (R \ {0})−1OL(I).

Finally, we prove that OL(I) is finitely generated as an R-submodule. Again, by Lemma 2.18,
there exists r ∈ R \ {0} such that r = r · 1 ∈ I. Thus, by the definition of OL(I) we have that
OL(I)r ⊆ I, which implies that OL(I) ⊆ Ir−1. Now, since R is Noetherian (as it is Dedekind) and
since Ir−1 is finitely generated (as I is), I is a Noetherian module; hence, OL(I) is also finitely
generated as an R-module.

Remark 2.25. Since R is a PID, it is integrally closed and so an element α ∈ B is integral over
R if and only if the minimal polynomial of α over F has coefficients in R which, if α ∈ B \ R,
is the reduced characteristic polynomial (9). Hence, an element α ∈ B is integral over R iff
nrd(α), trd(α) ∈ R. Therefore, since O is a subring of B that is finitely generated as an R-module
then, by [Voi21, 10.3.2] (which is the non-commutative analogue of the standard [AM69, 5.1]), every
α ∈ O is integral over R and so nrd(α), trd(α) ∈ R.

2.3 Localization and Completion

As it is the usual case, lattices and orders are characterized by their local behaviour. For the further
reference for the following notions see [AM69] and [Voi21, 9.4,9.5].

Localization of Lattices. Let p be a prime ideal of R. For an R-module M we define the
localization of M to p as the R(p)-module M(p) := M ⊗R R(p) = {x/s : x ∈ M, s ∈ R \ p}, where
R(p) is the localization of R at p.
Note 2.26. If I is an R-lattice in B then I(p) is an R(p)-lattice in B.

By a non-commutative analogue of the standard [AM69, Proposition 3.8], we have the following.

Lemma 2.27. Let I ⊆ B be an R-lattice. Then, it holds that

I =
⋂
p

I(p) =
⋂
m

I(m),

where the first intersection is over all prime ideals p of R and the second over all maximal ideals
m of R.
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Therefore, we get that containment of R-lattices is a local property, as the following corollary
states.

Corollary 2.28. Let I, J be R-lattices in M . Then, the following are equivalent:

1. I ⊆ J ;

2. I(p) ⊆ J(p) for every prime ideal p ⊆ R; and

3. I(m) ⊆ J(m) for every maximal ideal m ⊆ R.

Proof. The directions (1) =⇒ (2) =⇒ (3) are immediate. The direction (3) =⇒ (1) follows directly
from Lemma 2.27.

Thus, we get a much useful theorem, which serves as a local-global principle for lattices for
apparent reasons.

Theorem 2.29 (Local-global principle for lattices). Let I ⊆ B be an R-lattice. Then, the map

Φ : {J ⊆ B : J is an R-lattice} −→
{

(Jp)p : Jp’s are R(p)-lattices s.t. I(p) = Jp

for all but fin. many prime ideal p ⊆ R

}
J 7−→ (J(p))p

is a bijection.

Proof. The map Φ is well-defined. Indeed, let J ⊆ B be an R-lattice. Then, by Lemma 2.18, there
exists r ∈ R \ {0} such that

rI ⊆ J ⊆ r−1I. (11)

But since R is a Dedekind domain it holds that r is contained in finitely many prime ideal p of
R. Thus, for those primes p, r is invertible in R(p) and so by tensoring (11) with R(p) we get that
I(p) = rI(p) ⊆ J(p) ⊆ r−1I(p) = I(p) and so we get the equality J(p) = I(p).

To prove that Φ is a bijection we prove that the map

Ψ : (Jp)p 7→
⋂
p

Jp =: J

is the inverse of Φ. We first prove that J is indeed an R-lattice in B. Let Σ be the set of prime ideals
in R such that Jp ̸= I(p), which by assumption is finite. By Lemma 2.18, for every p ∈ Σ, there exists
rp ∈ R \ {0} such that rpI(p) ⊆ Jp ⊆ r−1

p I(p). Set r := ∏
p∈Σ rp. Then, rI(p) ⊆ Jp ⊆ r−1I(p). Now,

for every p ̸∈ Σ we have equality I(p) = Jp and so rI(p) ⊆ Jp ⊆ r−1I(p). Therefore, by Lemma 2.27,
we have that rI ⊆ J ⊆ r−1I and so by Lemma 2.18 we get that J is indeed an R-lattice.

Now, Ψ◦Φ = id follows from the fact that if J is an R-lattice then J = ∩pJ(p) from Lemma 2.27.
To see that Φ ◦Ψ = id, let (Jp)p be a family of R(p)-lattices. Then, for every prime q ⊆ R we get
(∩pJp)(q) = (Jq)(q) = Jq, since in a Dedekind domain, every prime is maximal.
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Completion of Lattices. We now define the completion of R with respect to a prime ideal
p ⊆ R. For the (little) category theory background needed we refer to [ML98]. Notice that for each
n ≥ 1 we have a natural map

R/pn+1 → R/pn

and that these maps are compatible with each other. Thus we can form then inverse limit of R
w.r.t. that system of natural maps:

Rp := lim←−
n

R/pn =
{
a ∈

∞∏
n=1

R/pn : ∀n ≥ 1
(
an+1 ≡ an (mod pn)

)}
We call Rp the completion of R at p. Notice that we have a natural map

R→ Rp; a 7→ (a (mod pn))n. (12)

Given an R-module M we define its completion at p as the Rp-module Mp := M ⊗R Rp.
Note 2.30. If I ⊆ B is an R-lattice, then Ip ⊆ B is an Rp-lattice in the quaternion algebra
Bp := B⊗RRp. Indeed, Ip is finitely generated over Rp since we have the map (12) and Ip⊗Rp Fp =
I ⊗R Fp = I ⊗R F⊗R Rp = B ⊗R Rp = Ip.

Proposition 2.31. If R is a DVR with maximal ideal p ⊆ R then the maps

{J ⊆ B : J R-lattice} −→ {J ⊆ Bp : J Rp-lattice}
J 7−→ Jp

J ∩B ←− [ J

are mutually inverse bijections, which preserve the inclusion relation.

Proof. See [Voi21, 9.5.3]

Note 2.32. From Proposition 2.31, one can see that Theorem 2.29 holds also if we replace localiza-
tions with completions.

2.4 Quaternion Algebras over the Rationals.

In this section we prove a structure theorem for quaternion algebras over Q, which states that the
isomorphism class of a quaternion algebra over Q depends only on its local behaviour.

Let B be a quaternion algebra over Q. Recall that by Corollary 2.15, a quaternion algebra over
a field F is isomorphic to either a division algebra or the matrix algebra M2(F).

Definition 2.33. We define the set of places of Q, denoted by Pl(Q) as the set of prime numbers
p ∈ Z together with the infinity symbol ∞. For v = ∞, we define Q∞ := R and B∞ := B ⊗Q R.
Let v ∈ Pl(Q) be a place. We say that the quaternion algebra B is ramified at v if Bv is a division
algebra and we say that it is unramified (or split) if Bv ≃M2(Q). Define the set RamB to be the
subset of Pl(Q) of places that B is ramified at. We say that B is definite if ∞ ∈ RamB.

Definition 2.34. Let a, b ∈ F×. For every place v ∈ Pl(Q), we define the Hilbert symbol of the
pair (a, b), as the number (a, b)v ∈ {±1}, where (a, b)v = 1 if and only if the quaternion algebra(

a,b
Qv

)
is split.
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The following theorem by Hilbert, shows that RamB is a finite set of even cardinality. For a
proof we refer to [Voi21, 14.2.1]

Theorem 2.35 (Hilbert Reciprocity). For all a, b ∈ Q× it holds that∏
v∈PlQ

(a, b)v = 1.

Let F be a field and let CSA(F) be the set of isomorphism classes of central simple algebras
over F. We define on CSA(F) an equivalence relation, called Morita equivalence, defined as follows:

A ∼ B ⇐⇒ ∃m,n ∈ Z≥1 : Mm(A) ≃Mn(B).

Under this equivalence the set CSA(F)/ ∼ has the structure of an abelian group under the operation
of the tensor product ⊗F over F, with 1 = [F] and [A]−1 = [Aop], where Aop denotes the opposite
algebra of A, which is the F-algebra with the same F-vector space structure, but with reversed
multiplication, i.e. α ·op β = β · α for α, β ∈ A, see [Voi21, 8.3.2]. We call this group the Brauer
group of F and we denote by Br(F) := CSA(F)/ ∼.
Remark 2.36. Note that if B is a quaternion algebra then by Corollary 2.15, B is either isomor-
phic to M2(F), in which case [B] = [F] the identity or B is a division algebra in which case,
by Proposition 2.6, the standard involution defines an isomorphism · : B ∼−→ Bop. This shows that
quaternion algebras are inside Br(F)[2], the 2-torsion subgroup of Br(F). If for a field F, we define
Quat(F) := {quaternion algebras over F}/ ≃, then the above discussion means that we have an
injection Quat(F) ↪→ Br(F)[2].

Moreover, for F = Q, recall from Corollary 2.5, that for the place v = ∞, there is a unique
division algebra over R. This is the case also for all the finite places.

Theorem 2.37. For every prime p, there is a unique division quaternion algebra over Qp, i.e.
Quat(Qp) ≃ {±1}. In particular, if p ̸= 2, then every division quaternion algebra over Qp is
isomorphic to

(
e,p
Qp

)
, where e is a quadratic non-residue modulo p.

Proof. See [Voi21, 12.3.12].

The last ingredient in order to classify the quaternion algebras over Q is the fundamental exact
sequence of global class field theory:

Theorem 2.38. There is an exact sequence

1 −→ Br(Q) −→
⊕

v∈PlQ
Br(Qv) −→ Q/Z −→ 1, (13)

where the first map is [A] 7→ ([Av])v and the second is the sum of the local invariant maps invv :
Br(Fv)→ Q/Z defined in [Mil13, III.2.1].

Proof. See [Mil13, VIII.4.3] and [Voi21, 13.4.3,14.6.10].

Combining the above we get the following classification theorem.
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Theorem 2.39. The map

Quat(Q) −→
{

Σ ⊆ PlQ : Σ finite of
even cardinality

}
; B 7−→ Ram(B)

is a bijection.

Proof. By taking the 2-torsion part of the fundamental exact sequence (13), and taking the injec-
tions according to Remark 2.36 we get the following commutative diagram

1 Br(Q)[2] ⊕
v∈PlQ Br(Qv)[2] (Q/Z)[2] 1

1 Quat(Q) ⊕
v∈PlQ{±1} {±1} 1

∑
v

invv

∏

where the first bottom map is B =
(

a,b
Q

)
7→
(
(a, b)v

)
v

and the second bottom map is the prod-
uct map. Note that the first bottom map is well-defined by Theorem 2.37. The result follows
from Theorem 2.35 and the fact that the the local invariant map restricted to classes of quaternion
algebras over Qv behaves as invv Bv = 0, 1/2, according as Bv is split or ramifies, respectively,
see [Voi21, 14.6.10].

2.5 Ideals

As in the case of commutative rings, where we study them by their ideals, so we do in the non-
commutative case. Let again R be a PID, F := Frac(R), and B a quaternion algebra.

Definition 2.40. Let O ⊆ B be an R-order. An R-lattice I ⊆ B is called a left O-ideal if
O ⊆ OL(I) and a right O-ideal if O ⊆ OR(I).

Remark 2.41. If B is a division quaternion algebra and I ⊆ O is a non-zero left ideal of O in the
usual sense then, I is also a left fractional O-ideal, in which case it is called integral. Indeed, since
I ⊆ O is a left ideal of O it follows that OI ⊆ I and so O ⊆ OL(I). Moreover, since O is an
R-submodule of B so is I. The fact that I is finitely generated follows from the fact that it is an
R-submodule of a finitely-generated R-module O over a Noetherian ring R. To conclude, we prove
that I⊗R F = B. Since I is a non-zero left ideal of O, I⊗R F is a non-zero left ideal of B = O⊗R F,
but B is a division algebra and thus it does not have non-trivial left ideals. Hence, I ⊗R F = B.

For two R-lattices I, J ⊆ B we define their product, denoted by IJ , in B as the R-submodule
of B generated by the set

{α · β : α ∈ I, β ∈ J}.

Notice that IJ is again an R-lattice in B. Indeed, IJ is obviously finitely generated as I and J are.
Now, by Lemma 2.18 we have that there exists r ∈ R \ {0} such that r = r · 1 ∈ I. Thus, rJ ⊆ IJ
and so again by Lemma 2.18 we get that IJ is an R-lattice.

Definition 2.42. Let O be an R-order in B and I, J ⊆ B be two O-ideals. We say that the
product IJ is compatible or that I is compatible with J if OR(I) = OL(J).
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If I is compatible with J then the product IJ can be seen as the usual tensor product of modules,
i.e. there is an isomorphism of R-modules IJ ∼→ I ⊗O J , where O := OR(I) = OL(J). Indeed, first
of all, notice that by compatibility the tensor product I ⊗O J is well defined. Now, considering the
O-linear map ϕ : I ⊗O J → IJ ; α⊗ β 7→ αβ and tensoring with F we get a commutative diagram

I ⊗O J IJ

B ⊗B B B

ϕ

∼

where the below horizontal map is an isomorphism of B-modules, which restricts to ϕ, giving that
ϕ is also an O-linear isomorphism and thus an isomorphism of R-lattices.

Definition 2.43. Let I ⊆ B be an R-lattice. We say that I is invertible if there exists an R-lattice
I ′ ⊆ B such that we have the compatible products:

II ′ = OL(I) = OR(I ′) and I ′I = OL(I ′) = OR(I).

We say that I ′ is a (two-sided) inverse of I. Let O be an R-order. If I is a right (resp. left) O-ideal
we say that I is invertible if it is invertible as an R-lattice and O = OL(I) (resp. O = OR(I)).

Definition 2.44. We define the quasi-inverse of an R-lattice I as the R-module

I−1 := {α ∈ B : IαI ⊆ I}.

Note 2.45. The fact that I−1 is again an R-lattice follows as in Lemma 2.24.
The quasi-inverse I−1 of I is essentially the inverse of I as the following lemma suggests.

Lemma 2.46. Let I be an R-lattice. Then the following are equivalent:

1. I is invertible;

2. II−1 = OL(I) and I−1I = OR(I);

3. II−1I = I, 1 ∈ II−1, and 1 ∈ I−1I.

In particular, if I is invertible, then the inverse of I is unique and equals I−1.

Proof. See [Voi21, 16.5.8].

Definition 2.47. An R-lattice is called principal if there exists a ∈ B× such that I = OL(I)α =
αOR(I). I is called locally principal if for every prime ideal p ⊆ R, I(p) = IR ⊗R R(p) is principal.

Remark 2.48. It is easy to see that only one of the equalities I = OL(I)α and I = αOR(I) suffices.
Moreover, any principal lattice I = αOR(I) is invertible with inverse I−1 = OR(I)α−1

Lemma 2.49. An R-lattice I is invertible if and only if it is locally invertible, i.e. I(p) is invertible
for every prime ideal p ⊆ R.

Proof. By Lemma 2.46, we have that I is invertible if and only if II−1I = I and 1 ∈ II−1, 1 ∈ I−1I.
But, by Corollary 2.28, II−1I = I if and only if I(p)I

−1
(p) I(p) = (II−1I)(p) = I(p) and 1 ∈ II−1 if and

only if 1 ∈ I(p)I
−1
(p) = (II−1)(p). This proves the lemma.
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Definition 2.50. The reduced norm of an R-lattice is the R-submodule, denoted by nrd(I), of F
generated by the set {nrd(α) : α ∈ I}. When R = Z, we simply define nrd(I) as the g.c.d. of the
elements in {nrd(α) : α ∈ I}.

Remark 2.51. 1. The R-module nrd(I) is a non-zero finitely-generated R-submodule of F. In-
deed, since I ⊗ F = B and nrd(B) ̸= 0 it follows that nrd(I) ̸= 0. Now, if {αi}4i=1 is an
R-basis of I then it can be easily seen that the elements

{nrd(αi)}1≤i≤4 and {nrd(αi + αj)− nrd(αi)− nrd(αj)}1≤i,j≤4

generate nrd(I) as an R-module.

2. For every prime ideal p ⊆ R it holds that nrd(I)(p) = nrd(I(p)) and so by Corollary 2.28, we
have that nrd(I) = ⋂

p nrd(I(p)).

3. If I = αOR(I) is principal then nrd(I) is generated by the element nrd(α). This follows
directly from Remark 2.25.

The following proof is due to I. Kaplansky [Kap69].

Theorem 2.52. An R-lattice I is invertible if and only if it is locally principal.

Proof. By Lemma 2.49, I is invertible iff it is locally invertible and so we may assume that R is a
DVR and prove that I is invertible iff it is principal. If I is principal then it is obviously invertible,
as seen in Remark 2.48.

Suppose that I is invertible. We may further assume that I has the properties 1 ∈ I and
nrd(I) = R. Indeed, nrd(I) is a fractional ideal of F and since R is a DVR, it is generated by
an element of minimal valuation, say nrd(α) for some α ∈ I. Then, the R-lattice α−1I has the
aforementioned properties and it is invertible (resp. principal) iff it I is invertible (resp. principal).
So assume that 1 ∈ I and that nrd(I) = R. Note first that, since 1 ∈ I, then using the relation (8)
we get that trd(α) ∈ R, for every α ∈ R. Furthermore, by Lemma 2.22, there is an R-basis
α0 = 1, α1, α2, α3 of I.

We claim that I3 = I4. Since 1 ∈ I, we have that I3 ⊆ I4. In order to prove that I4 ⊆ I3 it is
enough to prove that the product of 4 of the generators of I, say αiαjαkαl (0 ≤ i, j, k, l ≤ 3) is in
I3. If one of the i, j, k, l is 0 then we are done since α0 = 1, so suppose that this is not the case.
Then, by the Pigeonhole Principle, we get that two of i, j, k, l are equal. If necessary, we may use
the formula

αβ + βα = trd(β)α+ trd(α)β − trd(αβ)

in order the push the right instance of this double term in the product αiαjαkαl to the left. Thus,
we may assume that this product has a term of the form α2

i and two other terms αj , αk. But, then
we have that

α2
i = trd(αi)αi − nrd(αi)

which is in I, since nrd(αi), trd(αi) ∈ I. Hence, this product belongs to I3 and thus the equality
I3 = I4 holds. Now, since I is invertible, by multiplying I3 = I4 by (I−1)3 we get that I = OL(I),
and thus I is principal.

From the proof of Theorem 2.52 we get also the following characterization of orders.
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Corollary 2.53. An R-lattice I is an R-order if and only if I is invertible, 1 ∈ I, and every
element of I is integral.

The characterization of an invertible ideal given in Theorem 2.52 should be compared to that
description of modules over schemes and constitutes a major tool in our analysis of invertible ideals.

Lemma 2.54. Let I, J be R-lattices such that IJ is compatible and either I or J is invertible, then
nrd(IJ) = nrd(I) nrd(J).

Proof. Suppose that I is invertible. Then, by Theorem 2.52, I is locally principal. The statement
we want to prove is local and so we may suppose that I is principal, say by α ∈ B×. Then, we get

IJ = αOR(I)J = αOL(J)J = αJ

Hence, nrd(IJ) = nrd(αJ) = nrd(α) nrd(J) = nrd(I) nrd(J).

The following notion of a conjugate of an ideal will give us an arithmetic description of the
inverse of an ideal.

Definition 2.55. Let I be an R-lattice in B. We define the conjugate lattice of I as the R-lattice
I := {α ∈ B : α ∈ I}.

Note 2.56. 1. For R-lattices I, J it holds that IJ = J I.

2. If O is an R-order then O = O. Indeed, this follows from the fact that if α ∈ O, then
by Remark 2.25, it holds that trd(α) = α + α ∈ R. Since O is an R-order, R ⊆ O and so
α ∈ O.

3. OR(I) = OL(I) and OL(I) = OR(I). This follows from 1. and 2 above.

Lemma 2.57. Let I be an invertible R-lattice in B. Then, the following hold

II = nrd(I)OL(I) and II = nrd(I)OR(I).

Proof. By Remark 2.51(2) and Theorem 2.52 we may prove it locally and so we may suppose that
R is a DVR and I is principal, say I = αOR(I) = OL(I)α, for some α ∈ B×. Then, we have that
nrd(I) = nrd(α)R and that I is also principal generated by α, since I = αOR(I) = OR(I)α =
OL(I)α and similarly I = αOR(I). Hence,

II = OL(I)ααOR(I) = OL(I) nrd(α)OL(I) = nrd(I)OL(I).

and similarly, II = nrd(I)OR(I).

Class set. In analogy with that of the maximal order in a quadratic number field we can define
the class set of an order in a quaternion algebra B. In this case however, the class set will not form
a group because B lacks commutativity.

Definition 2.58. We say that two R-lattices I, J ⊆ B are right equivalent if there exists α ∈ B×

such that J = αI. We write I ∼R J . Similarly we define the relation I ∼L J .
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Note that the relation ∼R (resp. ∼L) on the set of R-lattices is an equivalence relation. We
denote the equivalence class of an R-lattice I under ∼R (resp. ∼L) by [I]R (resp. [I]L). Note also
that if I is invertible then every R-lattice in [I]R is invertible.

Lemma 2.59. Let I, J ⊆ B be R-lattices. Then, I ∼R J if and only if OR(I) = OR(J) =: O and
I ≃ J as right O-modules.

Proof. If I ∼R J then there exists α ∈ B× such that J = αI. Then, OR(J) = O = OR(I) and the
map α · − : I ∼−→ J given by left multiplication by α defines an isomorphism of O-modules.

Conversely, suppose that OR(I) = O = OR(J) and that ϕ : I ∼−→ J is an isomorphism of
O-modules. Tensoring ϕ with F we get an automorphism

ϕF : B = I ⊗R F ∼−→ J ⊗R F = B

of B, which is given by left multiplication by α := ϕF(1). Thus, restricting it again to I we get
that J = αI.

Definition 2.60. Let O ⊆ B be an R-order. We define the right class set of O as the set

ClsR(O) := {invertible right O-ideal} / ∼R

Similarly, we define the left class set of O, ClsL(O). The cardinality of the right class set ClsR(O)
is called the class number of O and we denote it by h(O).

Note that using the standard (anti-)involution of the quaternion algebra B, we have a bijection

ClsR(O) −→ ClsL(O); [I] 7−→ [I]

Thus, we may choose, without loss of generality, to work with ClsR(O). This fact also justifies the
absence of a subscript in the class number number h(O) of O.
Remark 2.61. Using Minkowski’s Geometry of numbers one can prove the finiteness of the class set
in any definite quaternion algebra, see [Voi21, 17.5.6]. We will give an explicit formula for h(O)
in (5.1.2), using the Eichler Trace Formula.

2.6 Maximal Orders

The greatest class of orders is that of maximal order, which are also the order which we understand
better. For further reading for maximal orders in algebras see [Rei75].

Definition 2.62. An R-order O ⊆ B is called maximal if it is not properly contained in any
non-trivial R-order of B.

Being a maximal order is a local property as the following lemma shows.

Lemma 2.63. An R-order O in B is maximal if and only if O(p) is an R(p)-order for every prime
ideal p ⊆ R.
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Proof. Let O ⊆ B be an R-order. If for every prime ideal p ⊆ R, O(p) is a maximal then since
containment of orders is local by Corollary 2.28 it follows that O is maximal.

For the converse, suppose that O is maximal and suppose, towards a contradiction, that for
some non-zero prime ideal p ⊆ R, there exists an R(p)-order Op such that O(p) ⊊ Op. Consider
then, the R-lattice

O′ := Op
⋂(
∩q̸=pO(p)

)
.

For all q ̸= p, O′
(p) = O(p) and so by Theorem 2.29, O′ is an R-order. Now, locally O′ is an order

and, since this is a local property by Lemma 2.27, O′ is an R-order. Thus, by Corollary 2.28, we
get that O ⊊ O′, a contradiction to the assumption that O is maximal.

Let B be a quaternion algebra over Q and O ⊆ B be a maximal order in B. As Lemma 2.63
suggests, we are going to characterize the orders locally. Let p be a prime number and Bp = B⊗Qp.

Split case. Bp ≃M2(Qp). Set R := Rp and F = Qp. We first realise M2(F) as the endomorphism
algebra of a 2-dimensional F-vector space. So let V be an F-vector space of dimF V = 2 and consider
an isomorphism EndF(V ) ∼−→ M2(F), given by a choice of basis of V . Let now M ⊆ V be an R-
lattice of V , i.e. a finitely generated free R-submodule of V of rank 2. Then, the R-module

EndR(M) := {f ∈ EndF(V ) : f(M) ⊆M}

is an R-order in EndF(V ), which can be proved as in Lemma 2.24.
Consider now the R-order M2(R) in M2(F). Since R is a PID, it is integrally closed and thus

M2(R) is a maximal order in M2(F). Indeed, if O ⊇ M2(R) is another R-order in M2(F) then,
consider the R-submodule L of F that contains exactly those elements of F that occur as an entry
in a matrix A ∈ O. It can be easily seen that R ⊆ L ⊆ F and that L is also an R-order in F,
see [Rei75, 8.7]. But, since R is integrally closed R is a maximal order in F; hence, L = R and
M2(R) = O. Below we prove that every maximal order in M2(F) is a conjugate of this maximal
order, namely M2(R).

Proposition 2.64. If O ⊆M2(F) is maximal R-order then O ≃M2(R) via a conjugation.

Proof. Let x1, x2 be an F-basis of V and consider the isomorphism ϕ : EndF(V ) ∼−→M2(F) induced
by this choice of basis. Consider the R-lattice N := Rx1 ⊕ Rx2 of V . Then, ϕ restricts to am
isomorphism EndF(N) ∼−→M2(R), which is a maximal order in M2(F), by the above discussion.

Realise O as an order in EndF(B) and consider M := {x ∈ N : Ox ⊆ N}. Notice that it is
an R-order in N (as in Lemma 2.24). By definition we have that O ⊆ EndR(M) and since O is
maximal we get that O = EndR(M). Now, letting y1, y2 ∈ M an R-basis of M we get that the
base change xi 7→ yi induces a conjugation of O = EndR(M) to EndR(N) ≃M2(R).

Ramified case. Bp = B ⊗ Qp is a division quaternion algebra over Qp. We may extend the
p-adic vp : Qp −→ R ∪ {∞} to a discrete valuation on Bp as follows:

wp : Bp → R ∪ {∞}; α 7→ vp(nrd(α))
2 .

It is clear that wp is an extension of vp and the fact that we call it a discrete valuation comes from
the following lemma.
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Lemma 2.65. The function wp : Bp → R∪ {∞} is the unique extension of vp to Bp satisfying the
following properties:

1. wp(α) =∞ if and only if α = 0;

2. wp(αβ) = wp(α) + wp(β), for all α, β ∈ Bp;

3. wp(α+ β) ≥ min(wp(α), wp(β)), for all α, β ∈ Bp;

4. wp(B×
p ) ⊆ R is discrete.

Proof. This follows using the properties of vp, see [Voi21, 13.3.2].

We now define the valuation ring of Bp as the set

Op := {α ∈ Bp : wp(α) ≥ 0} ,

which is a ring by Lemma 2.65. Note that by Remark 2.25, we have that an element α ∈ Bp is
integral over Zp if and only if trd(α), nrd(α) ∈ Zp. Thus, Op can be equivalently defined as the set
of integral elements of Bp over Zp, i.e.

Op = {α ∈ Bp : α is integral over Zp} .

In [Voi21, 13.3.4] it is proved that Op is a Zp-order in Bp. Therefore, again by Remark 2.25, we
have that if O ⊆ Bp is an order then O ⊆ Op; hence Op is the unique maximal order in Bp.

Class set of a maximal order.

Theorem 2.66. Let O be a maximal R-order in a quaternion algebra B. Then, both right and left
O-ideals in B is invertible.

Proof. By Lemma 2.63 and Theorem 2.52 we may assume that R is a DVR and prove that if I is a
left O-ideal in B then it is principal. If B ≃M2(Fp) the result follows from [Voi21, 17.2.2]. If B is
a division algebra then O = {α ∈ B : w(α) ≥ 0} is the valuation ring of B, where w : B → R∪{∞}
is the unique extension of the discrete valuation of R to B, see Lemma 2.65. Let now β ∈ I be
of minimal valuation such that w(β) > 0. Then, for every α ∈ I \ {0} we have that w(αβ−1) =
w(α)− w(β) ≥ 0; hence αβ−1 ∈ O and so α ∈ Oβ. Therefore, I = Oβ and I is principal.

For a more direct proof of Theorem 2.66, without the distinction of the ramified-unramified
case see [Voi21, 16.6.15]. The above theorem suggests that in the case of a maximal order O the
right class set of O consists of isomorphism classes of just right O-ideals, i.e.

ClsR(O) = {[I] : I a right O-ideal}.

We conclude this section by proving an auxiliary lemma for (5.1).

Lemma 2.67. If I ⊆ B is an invertible R-lattice in B, then, OR(I) is maximal if and only if
OL(I) is maximal.
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Proof. By Lemma 2.63 we can prove this statement locally and so by Theorem 2.52 we may assume
that I is principal, i.e. there exists α ∈ B× such that I = OL(I)α. Suppose, without loss of
generality, that OR(I) is maximal. We have that OR(I) = OR(OL(I)α) and

β ∈ OR(OL(I)α) ⇐⇒ OL(I)αβ ⊆ OL(I)α ⇐⇒ αβα−1 ∈ OL(I)

and so OR(I) ⊆ α−1OL(I)α. Note that every conjugate of an order is also an order and so
OR(I) = α−1OL(I)α. Therefore, OL(I) = αOR(I)α−1 is maximal, as a conjugate of a maximal
order.

2.7 Eichler Orders

We now define a more general and interesting class of quaternion orders.

Definition 2.68. An R-order O ⊆ B is called an Eichler order if it is the intersection of two
maximal R-orders of B.

Note 2.69. By Lemma 2.63, we have that being a maximal order is a local property, which implies
that being an Eichler order is also a local property.

Let us characterize first Eichler orders in the split case.

Proposition 2.70 (Hijikata, [Hij74]). Let p be a prime and O ⊆ B := M2(Qp) be an order. Then,
the following are equivalent:

1. O is an Eichler order;

2. O ≃
(

Zp Zp

peZp Zp

)
, for some unique e ∈ Z≥0.

Proof. Let O be an Eichler order. Then, O = O1 ∩ O2, where O1,O2 ⊆ M2(Qp) are maximal
orders. By Proposition 2.64, there exist α1, α2 ∈ B× such that O1 = α−1

1 M2(Zp)α1 and O2 =
α−1

2 M2(Zp)α2. Conjugating O with α1, we have that

O ≃ α1Oα−1
1 ≃M2(Zp) ∩ α1α

−1
2 M2(Zp)α2α

−1
1 ,

Using row operations, we may find β ∈ M2(Zp)× and using column operations, we may find

γ ∈M2(Zp)× such that βα1α
−1
2 γ =

(
1 0
0 pe

)
, for some e ∈ Z≥0. Therefore,

O ≃ βOβ−1 ≃ βM2(Zp)β−1 ∩ βα1α
−1
2 M2(Zp)α2α

−1
1 β−1

= M2(Zp) ∩
(

1 0
0 pe

)
M2(Zp)

(
1 0
0 pe

)−1

and thus one can see that O ≃
(

Zp Zp

peZp Zp

)
. For more careful calculations of the above we refer

to [Voi21, 23.4.3] For the uniqueness, see [Hij74, 2.2].
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Let now B be a definite quaternion algebra over B with ramified places RamB. Proposition 2.70
enables us to characterize Eichler orders of quaternion algebras over Q. An Eichler order of level
N ∈ Z≥1 is an Eichler order in B with the following local characterization (see Theorem 2.29):
consider a prime number p.

• If p ∈ RamB, then by the previous section(2.6), there exists a unique maximal order in Bp

and so Op is this unique maximal order, namely the valuation ring of Bp.

• If p ̸∈ RamB, then Bp ≃M2(Qp) and Op is an Eichler order in Bp. Thus, by Proposition 2.70,
we define

Op ≃
(

Zp Zp

peZp Zp

)
,

where e := vp(N). We call this order the standard Eichler order of level pe.

Note that Eichler orders are a generalization of maximal orders. In particular, maximal orders
are just the Eichler orders of level 1.
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3 Elliptic Curves

Let F be a field and fix an algebraic closure F of F. For background and further study of the
following notions we refer to [Sil09].

3.1 Definitions

Throughout the following sections we will refer to a curve to mean a projective variety of dimension
1.

Definition 3.1. An elliptic curve over F is a pair (E,O), where E is a smooth curve of genus 1
over F and O ∈ E(F). We write E/F for an elliptic curve over F.

Remark 3.2. 1. An elliptic curve E/K is isomorphic to a curve defined by the affine equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (14)

with ai ∈ K. This is called the Weierstrass equation associated to the elliptic curve E.
See [Sil09, III.3.1].

2. An elliptic curve (E,O) comes with a compatible group structure, where the point O plays
the role of the identity element, [Sil09, III.3.6]. This group operation can also be defined in
terms of the coefficients of the Weierstrass equation (14), [Sil09, III.2.3].

Let E/F be an elliptic curve. Using the associated Weierstrass equation (14) of E one can define
a certain invariant on E called the j-invariant of E, denoted by j(E). This is a rational function
in the coefficients of the Weierstrass equation. To be more precise, if char(F) ̸= 2, 3 (which will be
assumed in the following chapters) then E has a short Weierstrass equation of the form

E : y2 = x3 +Ax+B, (15)

for some A,B ∈ F and j-invariant

j(E) := 1728 A3

4A3 + 27B2 ∈ F.

The importance of the j-invariant is that it classifies the elliptic curves up to isomorphism as shown
in the following theorem.

Theorem 3.3. 1. Two elliptic curves E,E′ are isomorphic over F if and only if j(E) = j(E′).

2. For every j ∈ K, there exists an elliptic curve E/F such that j(E) = j.

Proof. See [Sil09, III.4.1].

Definition 3.4. An isogeny between two elliptic curves (E,O), (E′, O′) is a morphism of curves
ϕ : E → E′ such that ϕ(O) = O′. The elliptic curves E,E′ are called isogenous if there exists a
non-constant isogeny between them.
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Note 3.5. By [Har77, II.6.8.], we have that an isogeny ϕ : E → E′ is either a constant or surjective
and thus either ϕ(E) = {O} or ϕ(E) = E′. Moreover, by [Sil09, III.4.8], ϕ also respects the group
structure of E.

By the above note, in the case where ϕ : E → E′ is a non-constant isogeny we have an induced
injection of function fields

ϕ∗ : F(E′)→ F(E)
and thus we may define the degree of the isogeny ϕ, denoted by deg ϕ, as the degree of the finite
extension F(E)/ϕ∗F(E′). If ϕ is the constant isogeny we define deg ϕ := 0. An isogeny ϕ is called
separable, inseparable, and purely inseparable if the field extension F(E)/ϕ∗F(E′) is separable,
inseparable, and purely inseparable, respectively. Accordingly we define the separable and the
inseparable degree of ϕ, which we denote by degs ϕ and degi ϕ, respectively. By [Sil09, III.4.10],
it holds that degs ϕ = kerϕ, and so in the case of a separable isogeny ϕ, the degree can be also
defined as above.

Definition 3.6. Let E be an elliptic curve. For an integer m ∈ Z we define the multiplication-by-m
isogeny, as the endomorphism

[m] : E −→ E; [m]P =
m times︷ ︸︸ ︷

P + · · ·+ P

We also define the m-torsion subgroup of E as the subgroup

E[m] := [m]−1(O) = {P ∈ E : [m]P = O}.

Note 3.7. Note that since the group structure of E is compatible with its geometric structure of the
multiplication-by-m map is indeed an isogeny. Note also that, when m ̸= 0, the multiplication-by-m
map is non-constant, by [Sil09, III.4.2].

Lemma 3.8. Suppose that char(F) = p a prime number. Then, for every integer m ∈ Z>0 such
that p ∤ m it holds that

E[m] ≃ Z/mZ× Z/mZ.

Proof. Let d be a divisor of m. Since p ∤ m, we have that [d] is a separable isogeny by [Sil09, III.5.5]
and so #E[d] = deg[d] = d2. A finite abelian group of order m2 with this property is isomorphic
to Z/mZ× Z/mZ.

Definition 3.9. Let E,E′ be elliptic curves and ϕ : E → E′ an isogeny. We define the dual isogeny
of ϕ as the unique isogeny ϕ̂ : E′ → E such that

ϕ̂ ◦ ϕ = [deg ϕ] : E → E and ϕ ◦ ϕ̂ = [deg ϕ] : E′ → E′

Note 3.10. The dual isogeny is well-defined as for every isogeny ϕ : E → E′ there is indeed a unique
dual of ϕ by [Sil09, III.6.1].

Definition 3.11. Let E,E′ be elliptic curves over F. We define the additive group

HomF(E,E′) := {ϕ : E → E′ : ϕ is an isogeny}

with addition defined point-wise induced by the group structure of E. We also define the endomor-
phism ring of E as the ring EndF(E) := HomF(E,E) with multiplication operation the composition,
and the endomorphism algebra of E as the tensor product EndF(E)Q := EndF(E)⊗Q.
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Note 3.12. When there is no confusion we may omit the subscript F in the notation HomF(E,E′).
Remark 3.13. Let E,E′ be elliptic curves over F. Note that the Galois group Gal(F/F) acts on
E(F) and on HomF(E,E′). In general, it holds that E is over F if and only if the points in E(F)
are fixed by this action, and similarly HomF(E,E′) consists exactly of those isogenies ϕ : E → E′

that are fixed by this action, see [Sil09, I.3].
Let E,E′ are elliptic curves over F. The Z-module Hom(E,E′) is a torsion-free module and

hence free. Indeed, if for m ∈ Z≥0 and ϕ : E → E′ an isogeny such that mϕ = [m] ◦ ϕ = 0 then
deg[m] ◦ deg ϕ = 0. Since, by Note 3.7, [m] is constant if and only if m = 0, we get that if m ̸= 0
then deg ϕ = 0 and so ϕ is constant.

The Q-algebra End(E)Q is a division algebra since for every non-constant isogeny ϕ : E → E it
holds that

ϕ−1 = 1
deg ϕϕ ∈ End(E)Q.

By [Sil09, III.6.2], the duality map ϕ 7→ ϕ̂ defines a standard involution on End(E)Q in the
sense that it satisfies the properties of Proposition 2.6. Therefore, the reduced norm and trace in
End(E)Q are defined as the induced maps from the following maps on End(E):

trd(ϕ) = ϕ+ ϕ̂ and nrd(ϕ) = ϕϕ̂ = ϕ̂ϕ = [deg ϕ] ∈ Z

Notice that the standard involution on End(E) is positive in the sense that Tr(ϕϕ̂) > 0 for every
ϕ ∈ End(E) \ {0}, where Tr : End(E)Q → R is given by the trace of the left multiplication linear
map. Using this fact and Theorem 2.12 we can derive the following:

Proposition 3.14. The endomorphism algebra End(E)Q is isomorphic to either Q, an imaginary
quadratic field K, or a definite quaternion algebra over Q.

Proof. By Theorem 2.12, we just have to prove that End(E)Q ⊗ R is either isomorphic to R,C,
or H. We will use Lemma 2.11. If End(E)Q ⊗ R ̸≃ C then it is isomorphic to R × R, where the
standard involution is (x1, x2) 7→ (x2, x1) and thus Tr(x1x2, x1x2) = 2x1x2, which is not positive.
In the other case, if End(E)Q is not definite, then End(E)Q ⊗ R ≃ M2(R), where the standard
involution is given by the adjugate map Example 2.10; thus, Tr(detA) = 4 det(A), which again is
not positive. The result follows.

The Frobenius isogeny. Suppose that char(F) = p ̸= 2, 3 a prime number, q := pr for some
r ∈ Z>0, and let E/F be an elliptic curve given by a short Weierstrass equation of the form (15).
Then, the curve with affine equation

y2 = x3 +Aqx+Bq, (16)

defines an elliptic curve over F, denoted by E(q), and there exists an isogeny

πq : E −→ E(q); (x, y) 7−→ (xq, yq),

which we call the q-Frobenius isogeny of E. When F = Fq then Eq = E and so πq ∈ EndF(E), in
which case we call πq the q-Frobenius endomorphism. The Frobenius isogeny is purely inseparable
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with degree deg πq = q, by [Sil09, II.2.11]. The characteristic property of the Frobenius isogeny is
that every isogeny ϕ : E → E′ factors as follows

E E′

E(q)

ϕ

πq λ
(17)

where q = degi ϕ and λ : E(q) → E′ is a separable isogeny, see [Sil09, II.2.12].

3.2 The Tate module

Let E/F be an elliptic curve and ℓ be a prime number. We present here an important construction
of a Zℓ-module that arises naturally from the structure of E and captures many properties of E.
This construction will allow us to prove the quaternionic properties of EndF(E).

Observe that for each n ≥ 1 the multiplication-by-ℓ map restricts to a well-defined homomor-
phism

[ℓ] : E[ℓn+1] −→ E[ℓn]. (18)

Definition 3.15. We define the ℓ-adic Tate module of E as the inverse limit

Tℓ(E) = lim←−
n

E[ℓn]

with respect to the system of group homomorphisms (18).

Note 3.16. Since each group E[ℓn] is naturally a Z/ℓnZ-module, we have that Tℓ(E) is naturally a
Zℓ-module.

Lemma 3.17. Suppose that char(F) = p for some prime p > 0 and that E[pn] = {0} for every
n ≥ 0. Then, Tℓ(E) ≃ Z2

ℓ , for ℓ ̸= p prime and Tp(E) ≃ {0}.

Proof. This follows directly from Lemma 3.8 and the assumption on the pn-torsion part of E.

Suppose that ℓ ̸= char(F). Note that the action of the Galois group Gal(F/F) on E restricts to
an action on E[ℓn] for every n ≥ 0 that commutes with the maps (18). Thus, Gal(F/F) acts also
on the Tate module Tℓ(E).

Let now ϕ : E → E′ be an isogeny. For every n ≥ 0, consider the restriction maps ϕ ≡ ϕ|E[ℓn] :
E[ℓn] → E′[ℓn] and observe that it commutes with the multiplication-by-ℓ map, i.e. we have the
following commutative diagram

E[ℓn] E′[ℓn]

E[ℓn+1] E′[ℓn+1]

ϕ

[ℓ] [ℓ]

ϕ

Thus, ϕ induces a Zℓ-linear map ϕℓ : Tℓ(E)→ Tℓ(E′). Note that if ϕ is an isogeny over F, we have
that ϕ commutes with the action of Gal(F/F) and so, by compatibility, ϕℓ also commutes with the
action of Gal(F/F) on the Tate module. For that reason, we define the group of HomF(Tℓ(E), Tℓ(E′))

43



as the group of Zℓ-homomorphisms that commute with the action of Gal(F/F). Thus, the above
construction gives us a natural Zℓ-homomorphism

HomF(E,E′)⊗ Zℓ −→ HomF(Tℓ(E), Tℓ(E′)). (19)
This map is always injective, by [Sil09, III.7.4], and so we have the following corollary.
Corollary 3.18. For every elliptic curves E,E′ over F, the Z-module HomF (E,E′) is a free Z-
module of rank at most 4.

However, Tate conjectured and proved a major result about the map (19) in the finite field case.
We call the following theorem the Isogeny theorem.
Theorem 3.19 (Tate, [Tat66]). Suppose that F = Fq, where q = pr, for some r ≥ 1, and let ℓ ̸= p
be a prime number. Then, the natural map (19)

HomF(E,E′)⊗ Zℓ
∼−→ HomF(Tℓ(E), Tℓ(E′))

is an isomorphism.

3.3 Supersingular Elliptic Curves

Recall that by Proposition 3.14, for an elliptic curve E, End(E)Q is either isomorphic to Q, a
quadratic field, or a quaternion algebra. We are now going to define the class of elliptic curves that
corresponds to the third case. By [Sil09, III.5.6], if char(F) = 0 then End(E)Q is a commutative
ring and so we suppose that char(F) = p, where p ̸= 2 is a prime number. The following theorem
provides defining properties for this class.
Theorem 3.20 (Deuring, [Deu41]). Let E/F be an elliptic curve. The following are equivalent:

1. End(E)Q is a quaternion algebra;

2. E[pn] = {0} for all n ≥ 1; and

3. The multiplication-by-p map [p] : E → E is purely inseparable and j(E) ∈ Fp2.
Proof. See [Sil09, V.3.1].

Definition 3.21. We say that an elliptic curve E is supersingular if one of the conditions in The-
orem 3.20 holds. An elliptic curve that is not supersingular is called ordinary.

The distinction between ordinary and supersingular elliptic curves leads also to a distinction
between isogenies. Essentially, the following lemma states that isogenies are divided in those
between ordinary and those between supersingular elliptic curves.
Lemma 3.22. Let E,E′ be isogenous elliptic curves. Then, E is supersingular if and only if E′ is
supersingular.
Proof. Suppose that E is supersingular. Let ϕ : E → E′ be a non-zero isogeny with deg ϕ = m and
consider the Z-linear map

End(E) −→ End(E′); ψ 7−→ ϕ ◦ ψ ◦ ϕ̂.

This induces a Q-linear isomorphism End(E)Q ∼−→ End(E′)Q, since if ϕ◦ψ ◦ ϕ̂ = 0 then multiplying
from the left by ϕ̂ and from the right by ϕ we get that [m2]ψ = 0, where in End(E)Q implies that
ψ = 0. Therefore, dimQ End(E′)Q = dimQ End(E)Q = 4. The result follows from Theorem 3.20
and Proposition 3.14.
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The quaternion algebra End(E)Q. We are now going to determine the quaternionic prop-
erties of Hom(E,E′), End(E), and End(E)Q, when E,E′ are supersingular elliptic curves.

Let K := Fq, where q = pr for some r ≥ 0, and fix an algebraic closure Fq of it. We begin
by examining the Galois action in the finite field case. Let E be an elliptic curve over K. Recall
the q-Frobenius endomorphism πq and notice that it is induced by the q-power map ϕq : Fq → Fq,
ϕq(x) = xq. Now, for each k ≥ 0, we have that Gal(Fqk/Fq) is cyclic of order k generated by ϕq.
Then, for the Galois group Gal(Fq/Fq) we have the isomorphism

Gal(Fq/Fq) = lim←−
k≥0

Gal(Fqk/Fq) ≃ Ẑ,

where 1 ∈ Ẑ corresponds to ϕq. Thus, ϕq topologically generates Gal(Fq/Fq). This proves that the
q-Frobenius endomorphism πq and (πq)ℓ generate the action of Gal(Fq/Fq) into E and on Tℓ(E),
respectively. For more details see [Len97, 2.5].

Lemma 3.23. Let E/F be a supersingular elliptic curve. Then, E is isomorphic to a supersingular
elliptic curve defined over a finite field Fq, where the action of the q-Frobenius map πq is scalar.

Proof. By Theorem 3.20, we have that j(E) ∈ Fp2 and so by Theorem 3.3 there exists an elliptic
curve E′ over Fp2 that is isomorphic to E (over Fp). By Corollary 3.18, End(E) has rank at most
4 as a Z-module and so by taking a Z-basis of End(E), each of these basis endomorphisms can
be defined over a finite subfield of Fp; taking the biggest of these, say Fq, we see that End(E) =
EndFq (E). This implies that πq commutes with every ϕ ∈ End(E) and so π ∈ Z(End(E)). Now,
since E is supersingular, End(E)Q is a quaternion algebra and so it is central, which means that
Z(End(E)) = Z(End(E)Q) ∩ Z = Z. Therefore, πq ∈ Z and thus it is indeed scalar.

Proposition 3.24. Let E,E′ be supersingular elliptic curves over F. Then, Hom(E,E′) is a free
Z-module of rank 4.

Proof. We have proved above that Hom(E,E′) is indeed a free Z-module. By Lemma 3.23, we
may assume that E,E′ are defined over Fq and that the q-Frobenius map πq acts as a scalar
on Hom(E,E′). Let ℓ ̸= p be a prime and consider the Tate module Tℓ(E). Since the Frobe-
nius endomorphism generates Gal(Fq/Fq) we get that HomFq (E,E′) = Hom(E,E′) and that
HomFq (Tℓ(E), Tℓ(E′)) = Hom(Tℓ(E), Tℓ(E′)). Thus, by Theorem 3.19, we have the following iso-
morphism

Hom(E,E′)⊗ Zℓ
∼−→ Hom(Tℓ(E), Tℓ(E′)).

Now, by Lemma 3.17 we get that

Hom(Tℓ(E), Tℓ(E′)) ≃ Hom(Z2
ℓ ,Z2

ℓ ) ≃M2(Zℓ).

Hence, rankZ Hom(E,E′) = rankZℓ
Hom(E,E′)⊗ Zℓ = rankZℓ

M2(Zℓ) = 4.

Theorem 3.25. Let E be a supersingular elliptic curve. Then B := End(E)Q is a definite quater-
nion algebra over Q ramified exactly at p and ∞ and O := End(E) is a maximal order in End(E)Q.

Proof. Note first that by Theorem 3.20 and Proposition 3.14, End(E)Q is a definite quaternion
algebra and that by Proposition 3.24, End(E) is indeed an order in End(E)Q. Let ℓ ̸= p be a prime
number. Then, by the proof of Proposition 3.24, we have an isomorphism

End(E)⊗ Zℓ
∼−→ Hom(Tℓ(E), Tℓ(E)) ≃M2(Zℓ). (20)
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Note that by construction this map is also a ring homomorphism. Therefore, End(E)Q ⊗ Qℓ ≃
M2(Qℓ) as Qℓ-algebras and so B is split at every ℓ ̸= p. Now, since B is definite, by Theorem 2.39,
we have that B ⊗Qp is a division algebra and so Ram(B) = {p,∞}.

Now, isomorphism (20) also means that for every prime ℓ ̸= p, Oℓ ≃M2(Zℓ) and so it is maximal
in Bℓ ≃ M2(Qℓ), by Proposition 2.64. In light of Lemma 2.63, which states that maximality is a
local property, we are left to prove that Op is maximal in the division algebra Bp. Recall from (2.6)
that the unique maximal order of Bp is its valuation ring {α ∈ Bp : w(α) ≥ 0}, where the valuation
w : B → R ∪ {∞} is defined as w(α) = 1

2vp(nrd(α)), α ∈ B. Therefore, we want to prove that for
every α ∈ Bp with w(α) ≥ 0 it follows that α ∈ Op. By Proposition 2.31, it is enough to prove that
O(p) = {α ∈ B(p) : w(α) ≥ 0}. We begin by making the following claim:
Claim. If ϕ ∈ O then vp(deg ϕ) = vp(degi ϕ).
Proof of Claim. If p | deg ϕ then either p | degi ϕ, in which case we are done, or p | degs ϕ, in which
case kerϕ contains a subgroup of order p and so, by [Sil09, III.4.11,III.4.12], we have that ϕ factors
through an isogeny of degree p. Thus we may assume that deg ϕ = p. Then, [p] = ϕ◦ ϕ̂, from where
we get that degi ϕ degi ϕ = degi[p] = deg[p] = p2, since [p] is purely inseparable, by Theorem 3.20.
Now, since deg ϕ = p we have that degi ϕ, degi ϕ̂ ≤ p; hence degi ϕ = degi ϕ̂ = p, which proves the
claim.

Now, let α ∈ B(p) with w(α) ≥ 0 and write it as α = aϕ, where a ∈ Q and ϕ ∈ O = End(E) is
an isogeny not divided by an integer. Then, it holds that 0 ≤ vp(degi ϕ) ≤ 1. Indeed, if p2 | degi ϕ

then by (17), there exists an isogeny ψ : E(p2) → E such that ϕ = ψ ◦ πp2 . Note also that as above
and again by (17), [p] = λ ◦πp2 for some isomorphism λ, since by comparing degrees it follows that
deg λ = 1. Therefore, ϕ = ψ ◦ λ−1 ◦ πp2 , a contradiction to the fact that ϕ is not divisible by an
integer. From this and the above claim we get that

w(α) = vp(aϕ)
2 = vp(a) + vp(deg ϕ)

2 = vp(a) + vp(degi ϕ)
2 .

and that 0 ≤ vp(degi ϕ)/2 ≤ 1/2. Therefore, since w(α) ≥ 0, we get that vp(a) ≥ −1/2; hence
a ∈ Z(p) and α ∈ O(p) = O ⊗ Z(p). Thus, Op is a maximal order in Bp, as desired.

3.4 Kernel ideals

In this section we will make use of the language of group schemes, where we need the results of W.
C. Waterhouse [Wat69]. For proofs and further details see also [Voi21, 42.2].

Consider a field F of positive characteristic charF = p ̸= 2 and fix an algebraic closure F of it.
Let E be a supersingular elliptic curve over F and set O := End(E) and B := End(E)Q. By the
previous section we know that B is a definite quaternion algebra ramified only at the finite prime
p and at ∞ and that O is a maximal order in B.

Let I ⊆ O be an integral O-ideal in B. We define the scheme-theoretic intersection

E[I] :=
⋂
α∈I

E[α],

where E[α] := kerα, where we consider it as a group-scheme over F. Note that E[I] is a finite
subgroup of E and consider its group-scheme quotient EI := E/E[I]. By [Sil09, III.4.12], there
exists an isogeny

ϕI : E −→ EI ,
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for which it holds that deg(ϕI) = nrd(I), see [Voi21, 42.2.16]. Note that, by Lemma 3.22, the
existence of ϕI implies that EI is also a supersingular elliptic curve. In this section we are going
to state some lemmas that will help us in the proof of the Deuring Correspondence in (5.2.2). For
proofs see also [Voi21, 42.2].

Lemma 3.26. If I, J ⊆ O are integral right O-ideals with [I] = [J ] then EI ≃ EJ .

Lemma 3.27. Given an integral right O-ideal I, the pullback map induced by ϕ̂I

Hom(E,EI) ϕ̂I
∗

−→ I; ψ 7−→ ϕ̂Iϕ

is an isomorphism of right O-modules.

Lemma 3.28. For every isogeny ϕ : E → E′, there exists a right O-ideal I and an isomorphism
ρI : EI → E′ such that ϕ = ρϕI .
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4 Modular Forms

In this section we introduce the theory of modular forms which plays the central role in the proof
of the Ramanujan bound for Pizer graphs, see (5.1). We follow [DS05].

4.1 Definitions

Consider the full modular group

SL2(Z) := {A ∈M2(Z) : detA = 1} ,

SL2(Z) defines an action on the complex upper half-plane H := {z ∈ C : ℑz > 0} by fractional
linear transformations as follows:

γ · z := az + b

cz + d
, γ ∈ SL2(Z), z ∈ H. (21)

The denominator of the above fraction is denoted by j(γ, z) := cz+d ∈ C× and is called the factor
of automorphy. Via direct calculations j satisfies the following relation, called the cocycle relation:

j(γγ′; z) = j(γ; γ′ · z)j(γ′; z), γ, γ′ ∈ SL2(Z), z ∈ H. (22)

Definition 4.1. Let N ∈ Z≥1. We define the principal congruence subgroup of level N as the
subgroup of SL2(Z)

Γ(N) :=
{
γ ∈ SL2(Z) : γ ≡

(
1 0
0 1

)
(mod N)

}
, (23)

where the defining congruence for Γ(N) is interpreted entry-wise. A subgroup Γ ⊆ SL2(Z) is called
a congruence subgroup if there exists N ∈ Z≥1 such that Γ(N) ⊆ Γ. The least such N is called the
level of Γ.
Remark 4.2. Let N ∈ Z≥1. The principal congruence subgroup Γ(N) is the kernel of the reduction
map

SL2(Z) −→ SL2(Z/NZ),
which can be shown to be surjective. Thus, Γ(N) is a normal subgroup of SL2(Z) of finite index
[SL2(Z) : Γ(N)] ≤ # SL2(Z/NZ). This also shows that every congruence subgroup Γ ⊆ SL2(Z) is
of finite index in SL2(Z).

For the purposes of this thesis we need in particular the following congruence subgroup:

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
Note that the subgroup Γ(N) is a normal subgroup of Γ0(N) with index [Γ0(N) : Γ(N)] = N as
the following isomorphism suggests

Γ(N)/Γ0(N) ∼−→ Z/NZ; Γ0(N)A 7−→ b (mod N),

where b is the upper right entry of A.
In order to study modular forms over arbitrary congruence subgroups of SL2(Z), we attach to H

the projective line over Q, P1(Q) := Q∪{∞}. Set H∗ := H∪P1(Q) and note that the action (21) of
SL2(Z) by fractional linear transformations extends to an action on H∗, by the same formula (21),
where we interpret the fraction as a limit when needed.
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Remark 4.3. Note that the action of SL2(Z) to P1(Q) is transitive. Indeed, if t ∈ Q, we write it as
t = a

c , for some a, c ∈ Z coprime. Thus, there exist b, d ∈ Z such that ad− bc = 1 and the matrix

γ =
(
a b
c d

)
∈ SL2(Z) satisfies γ · ∞ = t.

Definition 4.4. Let Γ ⊆ SL2(Z) be a congruence subgroup. We define the cusps of Γ as the
Γ-orbits in P1(Q) and we denote them by Cusp(Γ) := Γ \ P1(Q).

Note 4.5. The set of cusps of a congruence subgroup Γ is finite. Indeed, the stabiliser of∞ ∈ P1(Q)
under the action of SL2(Z) is

SL2(Z)∞ =
{
±
(

1 b
0 1

)
: b ∈ Z

}

and so we get a bijection

SL2(Z)/ SL2(Z)∞
∼−→ P1(Q); γ SL2(Z)∞ 7−→ γ · ∞.

This induces a surjective map
Γ \ SL2(Z) −→ Cusp(Γ),

which shows the claim as a congruence subgroup is of finite index in SL2(Z), by Remark 4.2.
Let now f : H → C be a holomorphic function on H and k ∈ Z≥0. We define the slash operator

of weight k as the action of SL2(Z) on f defined by:

(f |kγ)(z) := j(γ, z)−kf(γ · z)

Notice that since the factor of automorphy j(γ, z) is never 0 or ∞, the function f |kγ is again
holomorphic with the same zeroes as f .

Definition 4.6. Let k ∈ Z≥0 and Γ ⊆ SL2(Z) a congruence subgroup. A holomorphic function
f : H → C is called weakly modular of weight k for Γ if it is invariant under the action of the slash
operator under Γ, i.e. if for all γ ∈ Γ we have that f |kγ = f .

Let k ∈ Z≥0 and a holomorphic function f : H → C that is weakly modular of weight k for Γ.

Every congruence subgroup Γ ⊆ SL2(Z) contains a matrix of the form
(

1 h
0 1

)
, for some h ∈ Z≥1,

which acts on H as the translation by h. Let h be the minimal such positive integer. Thus, since f
is weakly modular, it is hZ-periodic. Set qh := e2πiz/h. The latter implies that f can be written as
f(z) = f̃(qh), for some meromorphic function f̃ on the punctured disk D∗ = {q ∈ C | 0 < |q| < 1}.
We say that f is holomorphic at ∞ if f̃ can be continued to a holomorphic function on the disk
D = {q ∈ C | |q| < 1}, or equivalently if it can be written as a power series

f̃(qh) =
∞∑

n=0
anq

n
h , (24)

for some an ∈ C that is convergent on some punctured disk {q ∈ C : 0 < |q| < ϵ} for some ϵ > 0.
We call the expression (24) of f , the q-expansion of f at ∞. If f is holomorphic at ∞ we also
define its value at infinity as f(∞) := f̃(0) = a0.
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In general, we define holomorphy at an arbitrary cusp using the notion of holomorphy at ∞ as
follows. Let c ∈ Cusp(Γ) and let t ∈ P1(Q) be a an element in its Γ-orbit. By Remark 4.3, we know
that SL2(Z) acts transitively on P1(Q) and so there exists γt ∈ SL2(Z) such that t = γt · ∞. It can
be readily seen that f |kγt is again a holomorphic function that is weakly modular of weight k for
the congruence subgroup γ−1

t Γγt ⊆ SL2(Z). Thus, we may define f to be holomorphic at the cusp
c if f |kγt is holomorphic at ∞ and we define the value of f at the cusp c as (f |kγt)(∞).

We are finally ready to define the notion of a modular form.

Definition 4.7. Let k ∈ Z≥0, Γ ⊆ SL2(Z) a congruence subgroup and a function f : H → C. We
say that f is a modular form of weight k for Γ if

1. f is holomorphic on H;

2. f is weakly modular of weight k for Γ; and

3. f is holomorphic at every cusp γ ∈ Cusp(Γ).

If further f vanishes at every cusp, i.e. the value of f at every cusp is 0, then it is called a cusp
form of weight k for Γ. We denote by Mk(Γ) the C-vector space of modular forms of weight k for
Γ and by Sk(Γ) its subspace of cusp forms.

In studying modular forms we are particularly interested in cusp forms. This is because for
k ≥ 2, we have that Mk(Γ) = Sk(Γ)⊕ Ek(Γ), where Ek(Γ) is the space of Eisenstein series, which
subspace of modular forms is better understood than cusp forms.

4.2 Hecke Operators

One major tool in the study of cusp forms are the Hecke operators, which are operators on the
space Sk(Γ). For the purposes of this thesis we only need to define the Hecke operators over
the congruence subgroup Γ0(N) ⊆ SL2(Z) for N ∈ Z≥0 and for (n,N) = 1. In this section we
follow [Voi21, 40.5]. Let N ∈ Z≥1 and set Γ := Γ0(N).

For every n ∈ Z≥1 with (n,N) = 1 we define the set of matrices

Γn :=
{
α =

(
a b
c d

)
∈M2(Z) : N | c,detα = n

}
.

Note that Γ acts on Γn by multiplication on the left (and on the right).
Let k ∈ Z≥0 and f : H → C be a holomorphic function. We extend the definition of the slash

operator on the bigger group GL+
2 (Q) := {α ∈M2(Q) | detα > 0}, by

(f |kα)(z) := (detα)k

j(α; z)k
f(α · z), α ∈ GL+

2 (Q), z ∈ H,

where the factor of automorphy j(α, z) and α · z are defined again as in (21). Note that if f is
weakly modular of weight k and α ∈ Γn then f |kα depends only on the class of α in Γ \ Γn, which
can be seen using the cocycle relation (22).

Definition 4.8. For n ∈ Z≥1, (n,N) = 1. The n-Hecke operator Tn : Mk(Γ) → Mk(Γ) is defined
as follows: for f ∈Mk(Γ) let

Tnf := 1
n

∑
Γα∈Γ\Γn

f |kα
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The operators Tn are well defined. Indeed, if f ∈Mk(Γ) then Tnf ∈Mk(Γ) by the fact that f is
weakly modular of weight k for Γ and the cocycle relation (22). Also, by applying row operations
one can see that a set of representatives of Γ \ Γn for (n,N) = 1 is{(

a b
0 d

)
∈M2(Z) : a > 0, ad = n, 0 ≤ b < d

}

and so the sum defining Tnf is finite. In particular, using the above set of representatives we get
a more explicit description of Tn:

(Tnf)(z) = nk−1 ∑
ad=n
a>0

1
dk

d−1∑
b=0

f

(
az + b

d

)
. (25)

The effect of the Hecke operators on the q-expansion of a modular form f ∈ Mk(Γ) can be seen
from (25) as follows: let f̃(q) = ∑∞

n=0 anq
n be the q-expansion of f at ∞, then

am(Tnf) =
∑

d|(m,n)
d>0

dk−1amn/d2 (26)

Remark 4.9. In particular, we see from (26) that if a0 = 0 then b0 = 0 and by repeating this process
for every f |kγ, γ ∈ Γ, we have that Tn restricts to an operator Tn : Sk(Γ)→ Sk(Γ).

The Hecke operators satisfy a recursive relation, which enables us to compute them only from
the operators Tp, p ∤ N .

Proposition 4.10. Let m,n ∈ Z≥1 such that (m,N) = (n,N) = 1. Then,

Tmn = TmTn, if (m,n) = 1
TpTpr = Tpr+1 + pk−1Tpr−1 , if m = p, n = pr, r ∈ Z≥1.

Proof. This follows from the formulas (26).

In order to study the spaces Mk(Γ) and Sk(Γ) spectrally we need the following notion.

Definition 4.11. We call a non-zero modular form f ∈Mk(Γ) an eigenform for the Hecke operator
Tn, n ≥ 1, if it is an eigenfunction for Tn. An eigenform f ∈Mk(Γ) is called normalised if a1(f) = 1.

Remark 4.12. If f ∈ Mk(Γ) is an eigenform for Tn then there exists an eigenvalue λn such that
Tnf = λnf . Thus, using (26), we get that

an(f) = a1(Tnf) = λna1(f). (27)

Therefore, if f is normalised, we have that λn = an(f).
The next main step is to define an inner product on the space of cusp forms Sk(Γ).

Definition 4.13. We define the Petersson inner product on Sk(Γ) as follows:

⟨f, g⟩ :=
∫

Γz∈Γ\H
f(z)g(z)(ℑ(z))kdµ(z),

where dµ(z) := dxdy
y2 , where z = x+ yi ∈ C, is the SL2(Z)-invariant hyperbolic measure on H.

51



This inner product is well-defined and it is a positive definite, non-degenerate inner product on
the C-vector space Sk(Γ), see [DS05, 5.4].

Theorem 4.14. The Hecke operators Tn, (n,N) = 1, form a commuting system of normal operators
on Sk(Γ) equipped with the Petersson inner product.

Proof. The commutativity of the operators can be seen directly from (26). For the fact that these
operators are normal with respect to the Petersson inner product, see [DS05, 5.5.3].

The Spectral theorem from linear algebra states that given a commuting family of normal oper-
ators on a finite-dimensional inner product space, the space has an orthogonal basis of simultaneous
eigenvectors for the operators. Therefore, we conclude the following.

Corollary 4.15. The space Sk(Γ) admits a basis consisting of simultaneous eigenforms for the
Hecke operators Tn, (n,N) = 1.

4.3 Ramanujan-Petersson Conjecture

We follow [Ser73, VII.6.3] and [Kat76]. Let f ∈ Sk(Γ) be a cusp form that is a normalised eigenform
for all Hecke operators Tn, n ≥ 1, and let f(q) = q+∑∞

n=2 anq
n be its q-expansion. Then, by [DS05,

5.9.1], f has an associated Dirichlet series, called the L-function of f at s defined by

L(f, s) :=
∞∑

n=1
ann

−s,

which converges absolutely in a half-plane of s-values. Since f is an eigenform, by [DS05, 5.9.2],
the L-function L(f, s) admits an Euler product of the form

L(s, f) =
∏

p: prime

1
1− app−s + pk−1−2s

(28)

The fact that L(f, s) can be written as the above Euler product is equivalent to the fact that an

satisfies the recursive relations

(1) amn = aman, for (m,n) = 1,

(2) apn+1 = apapn + pk−1apn−1 . for n ≥ 1.

These recursive relations are immediate from (26) and Remark 4.12. Let now p be a prime number
and consider the polynomial arising from the denominator of the Euler product (28)

Φf,p(T ) := 1− apT + pk−1T 2.

We can rewrite this polynomial as Φf,p(T ) = (1 − cpT )(1 − c′
pT ), where cp, c

′
p ∈ C satisfying

cp + c′
p = ap and cpc

′
p = pk−1. The Ramanujan-Petersson conjecture, introduced by Petersson

in [Pet40], states that cp, c
′
p are complex conjugates. From this, using the triangle inequality we

can conclude that

(3) |ap| ≤ 2p(k−1)/2, or more generally that |an| ≤ σ0(n)p(k−1)/2,
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where the general inequality follows from the special as in [Kob84, II.6.13].
The original Ramanujan Conjecture consists of the parts (1),(2), and (3) for a particular cusp

form of weight 12, namely the cusp form

∆(q) := q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn,

where the coefficients τ(n) is the so-called Ramanujan tau function. The first two parts of the
original Ramanujan conjecture were proved by Mordell [Mor17], which work also motivated Hecke
to define his operators. For the third and most difficult part of the Ramanujan-Petersson conjecture
for cusp forms of weight k ≥ 2, Deligne [Del71] proved that it can be reduced to the Weil conjectures.
Deligne [Del73] proved it for weight k ≥ 3 and Eichler-Shimura [Eic54,Shi58] proved it for weight
k = 2. Thus, we have the following theorem.

Theorem 4.16. Let k ∈ Z≥2 and let n ∈ Z≥1 be such that (n,N) = 1. Then, every eigenvalue λ
of Tn acting on Sk(Γ) satisfy the Ramanujan bound

|λ| ≤ σ0(n)n(k−1)/2.

4.4 Theta Series

Theta series are modular forms that arise from quadratic forms. The quadratic forms in this thesis
will be integral, in the sense that they are maps Zm → Z, as they will arise from lattices in
quaternion algebras over Q. Thus, we need a slight generalization of quadratic forms over PID’s.
We follow [Lam73] and [Voi21, 9.7,40.4]

Let R be a PID and let F := Frac(R) be its field of fractions. A quadratic form over R in
m = 2k ∈ Z variables is map Q : Rm → F satisfying

• Q(rx) = r2Q(x), for all x ∈ Rm and r ∈ R; and

• the map TQ : Rm ×Rm → F defined by

TQ(x, y) := Q(x+ y)−Q(x)−Q(y), x, y ∈ Rm

is R-bilinear.

If the image of Q is inside R, we say that Q is integral. The map TQ is called the associated bilinear
form to Q. Observe that it is symmetric such that TQ(x, x) = 2Q(x) and so the quadratic map
can be recovered by TQ. Therefore, given a symmetric R-bilinear map T : Rm × Rm → F, the
map Q : Rm → F defined by Q(x) := 1

2T (x, x), x ∈ Rm, is a quadratic form over R. If Q is
integral then, considering a basis e1, . . . , em for Rm, we may define the matrix of the bilinear form
TQ as AQ := (TQ(ei, ej))1≤i,j≤m, which is a symmetric matrix with even diagonal. Therefore, the
quadratic form Q can be written as Q(x) = 1

2x
TAQx, x ∈ Rm.

Note 4.17. A quadratic form behaves well with tensoring. In particular, for every prime ideal p in
R, the map Qp := Q⊗R Rp : Rm

p → Fp is again a quadratic form over Rp.

Definition 4.18. Let Q : Zm → Z be an integral quadratic form. The level of Q is defined as the
minimum natural number N ∈ Z>0 such that NA−1

Q ∈M2(Z) and has even diagonal.
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Remark 4.19. Note that since the level a quadratic form Q : Zm → Z is a positive integer and
that quadratic forms behave well with tensor products, it can be computed locally. Note also that
the level is stable under base change since if τ : Zm → Zm is a Z-linear isomorphism given by a
non-singular matrix U ∈ GLm(Z), then AQ◦τ = UTAQU , and the level of AQ◦τ equals the level of
AQ.

Definition 4.20. Let Q,Q′ : Rm → F be quadratic forms over a R. An isometry between Q,Q′

is an R-linear isomorphism τ : Rm → Rm such that Q′(x) = Q(τ(x)) for every x ∈ Rm. The
quadratic forms Q,Q′ are called isometric if there exists an isometry between them, in which case
we write Q ∼ Q′. We also say that Q,Q′ are of the same genus if they are locally isometric, i.e. for
every prime ideal p ⊆ R we have that Qp ∼ Q′

p.

We now define the theta series associated to integral quadratic forms. Let m = 2k ∈ 2Z be a
natural number and consider an integral quadratic form Q : Zm → Z that is positive definite, i.e.
Q(x) > 0 for all x ∈ Zm \ {0}.

Definition 4.21. The theta series of Q is defined as the function θQ : H → C defined by

θQ(z) :=
∑

x∈Zm

e2πiQ(x)z =
∞∑

n=0
rQ(n)qn,

where rQ(n) = #{x ∈ Zm : Q(x) = n} are the representation numbers of the quadratic form Q.

Since Q is assumed to be positive definite, there exists C > 0 such that for every x ∈ Zm, we have
Q(x) ≥ C

∑m
i=1 x

2
i and so rQ(n) ≤ Cnk; in particular rQ(n) is finite. Moreover, by [Miy89, 4.3.3]

this implies that θQ converges absolutely and uniformly to a holomorphic function H → C. See
also [Ogg69, Chapter 6]. In fact more is true, using the Poisson-summation formula, it can be
shown that these theta series turn out to be modular forms for specific congruence subgroups.

Theorem 4.22 (Schoeneberg). Let m = 2k ∈ 2Z be a natural number and let Q : Zm → Z be
a positive definite integral quadratic form of level N ∈ Z≥1. Then, the theta series θQ of Q is a
modular form of weight k for the congruence subgroup Γ0(N).

Proof. See [Ogg69, 6.10].

We list here also a result due to C. Siegel [Sie35, p. 577], that will help us prove that our theta
series defined in (5.1.4) are indeed cusp forms.

Theorem 4.23. Let Q,Q′ : Zm → Z be quadratic forms of the same genus. Then, the differences
of the theta series of Q,Q′, respectively, are cusp forms, i.e. θQ − θQ′ ∈ Sk(Γ0(N)).

Proof. For a proof see [Wal94].
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5 Explicit Constructions

5.1 Pizer Construction

In this section, we present Pizer’s construction [Piz98] of infinite families of Ramanujan graphs,
which arise from Eichler orders in quaternion algebras over Q. In short, Pizer defines his Ra-
manujan graphs as the graphs GpN (n) with adjacency matrices the so-called Brandt matrices
BpN (n), (n, pN) = 1, defined in (5.1) associated to an Eichler order O of level N ∈ Z≥1 in the
quaternion algebra Bp,∞ (see (5.1.1)), for some prime number p, under some technical conditions
that make these matrices symmetric with even diagonal. The Brandt matrices form a commuting
system of normal matrices and satisfy the same recursive relations as the Hecke operators, see Propo-
sition 4.10 and Proposition 5.5. Their order is computed by the Eichler mass formula Corollary 5.11,
which uses the Eichler trace formula Theorem 5.9. Pizer gives an effective algorithm for computing
the Eichler trace formula in his paper [Piz80a]. The proof of the Ramanujan bound for these graphs
is attained by the following method: we first construct a space of theta series (4.4) associated to
right ideals in ClsR(O) via the reduced norm nrd : Bp,∞ → Bp,∞, which defines a quadratic form
on Q. After some modifications to these theta series we construct a certain subspace of eigenforms
Φ ⊆ S2(Γ0(N)) for the Hecke operators Tn, such that the action of Tn on Φ has a matrix represen-
tation given by the Brandt matrices BpN (n). Thus, the Ramanujan bound on the graphs GpN (n)
will follow from the Ramanujan-Petersson conjecture Theorem 4.16.

5.1.1 Brandt Matrices

Let R := Z, p be a prime number, and let B := Bp,∞ be the unique quaternion algebra ramified
exactly at p and ∞, see Theorem 2.39. Let O be an Eichler order of level N ∈ Z≥1 in B, with N
prime to p, and consider the right class set Cls(O) := ClsR(O) of O. By (2.7), the local description
of O is given as follows:

• Op is the unique maximal order in the division algebra Bp;

• For every prime number q ̸= p we have an isomorphism, given by a conjugation,

Oq ≃
(

Zp Zp

peZp Zp

)

where e = vp(N).

By Remark 2.61, we know that the class number h := h(O) of O is finite. Let I1, . . . , Ih be
representative of the classes of invertible right O-ideals in Cls(O). Let also Oi := OL(Ii) denote
the left order of Ii for each i = 1, . . . , h, and note that each O×

i is a finite group, by [Voi21, 17.5.6].
Set ei := #O×

i .
We define the central object of this thesis. It was first defined by Brandt [Bra43].

Definition 5.1. For a non-zero n ∈ Z we define the n-Brandt matrix associated to the order O in
Bp,∞, denoted by BpN (n), as the h× h matrix with entries

BpN (n)i,j := #

J ⊆ Ij :
J invertible right O-ideal,

nrd(J) = n nrd(Ij),
and [J ] = [Ii]

 (29)
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for i, j = 1, . . . , h.

Note that essentially the n-Brandt matrix BpN (n) counts the number of invertible right O-ideals
with respect to the their class in Cls(O). From now on, we will omit that J is a right invertible
O-ideal in the definition of BpN (n), which will be apparent by the condition [J ] = [Ii].
Note 5.2. As the notation suggests, the Brandt matrix BpN (n) is independent (up to a permuta-
tion matrix) of the particular Eichler order of level N and of the choice of representatives of the
right O-ideals in Cls(O). This is not hard to see and we refer to the proof of [Piz80a, 1.21,2.18]
or [Piz80b, 4.2,4.3]. Note that while Pizer uses an adelic argument to prove the independence from
the particular order, the argument can be replaced by a simpler one using a connecting ideal for
the two different Eichler orders of level N , see [Voi21, 17.4].
Remark 5.3. We can derive an equivalent description of the n-Brandt matrix BpN (n) which is

BpN (n)i,j = #
{
J ⊆ Oj : nrd(J) = n

and [JIj ] = [Ii]

}
(30)

This follows from the fact that the map J 7−→ JI−1
j establishes a bijection between the defining

sets of (29) and (30). Indeed, if J ⊆ Ij is in the defining set of BpN (n)i,j then JI−1
j ⊆ IjI

−1
j = Oj

and the product JI−1
j is compatible since OR(J) = O = OR(Ij). Thus, by Lemma 2.54, we get

that nrd(JI−1
j ) = nrd(J) nrd(Ij)−1 = n.

A more useful description of BpN (n) is given by the following lemma:

Lemma 5.4. Let n ∈ Z be a non-zero integer. Then,

BpN (n)i,j = 1
ei

#
{
α ∈ IjI

−1
i : nrd(α) = ±nnrd(Ij)

nrd(Ii)

}
. (31)

Proof. We show that there is a bijection{
J ⊆ Ij : nrd(J) = n nrd(Ij)

and [J ] = [Ii]

}
−→

{
α ∈ IjI

−1
i : nrd(α) = n

nrd(Ij)
nrd(Ii)

}/
O×

i .

Let J ⊆ Ij be an invertible right O-ideal such that nrd(J) = n nrd(Ij) and [J ] = [Ii]. By the
latter, we know that J = αIi for some α ∈ JI−1

i ⊆ IjI
−1
i . Thus, by Lemma 2.54, we have

nrd(J) = nrd(α) nrd(Ii) and so

nrd(α) = nrd(J)
nrd(Ii)

= ±nnrd(Ij)
nrd(Ii)

.

To conclude note that JI−1
i = αIiI

−1
i = αOi, which shows that α is unique modulo multiplication

by O×
i from the right.

The Brandt matrices satisfy the same recursive relations as the Hecke operators, see Proposi-
tion 4.10. This fact will be further justified in (5.1.4), where we prove that the action of these two
operators coincides in a particular subspace of Sk(Γ0(N)).
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Proposition 5.5. The Brandt matrices BpN (n), (n, pN) = 1, form a commuting system of normal
matrices and satisfy the recursive relations

BpN (n)BpN (m) = BpN (mn), for (m,n) = 1
BpN (q)BpN (qr) = BpN (qr+1) + qBpN (qr−1), for r ∈ Z≥1,

where q,m, n are assumed coprime to pN .

Proof. See [Voi21, 41.3.1,41.3.6,41.4.10] or [Eic73, II.Theorem 2].

5.1.2 Eichler Trace Formula

In this section we present the Eichler trace formula, which will enable us to compute the class
number h(O) of an Eichler order O. In turn, this will help us understand when the Brandt matrix
BpN (n) is symmetric with even diagonal, in order for it to define a graph, see Remark 1.4. In
order to derive this formula we need the theory of optimal embeddings of quadratic orders into
quaternion orders.

We begin by presenting some preliminaries for the quadratic orders. We follow [Lem21] for the
theory of quadratic number fields. An integer d ∈ Z \ {0, 1} is called a discriminant if d ≡ 0, 1
(mod 4) and a fundamental discriminant if it is the discriminant of an (imaginary) quadratic
number field, or equivalently if d ≡ 1 (mod 4) or d = 4d′, where d′ ≡ 2, 3 (mod 4). So let d < 0 be
a fundamental discriminant and let K = Q(

√
d) be the imaginary quadratic field with discriminant

d. Let OK be the ring of integers of the number field K. Then, OK is the unique maximal order in
K and we can write OK as

OK = Z + d+
√

d
2 Z.

We define the class group of OK, denoted by Cl(OK), as the group of invertible fractional ideals in
OK modulo the equivalence relation ∼, where I ∼ J if and only if J = αI for some α ∈ K×. The
class number of OK, denoted by hd, is the cardinality of Cl(OK). Let also wd denote the cardinality
of the unit group of OK, or equivalently its number of roots of unity, by Dirichlet’s Unit Theorem.

Now, let d < 0 be a discriminant and let S be an order in K of discriminant d. If S is not a
maximal order in K then

S = Z + fOK,

for some unique f ∈ Z>1, called the conductor of S. It further holds that d = dKf
2, where dK ∈ Z

is the fundamental discriminant of K, i.e. the discriminant of the maximal order OK.
For the following results we refer to [Dav80, Chapter 6]. Let d < 0 be a fundamental discrimi-

nant. The number wd equals

wd =


2, if d < −4
4, if d = −4
6, if d = −3

For d < 0 the class number of O can be computed by Dirichlet’s Class Number Formula, as follows

hd = − wd

2|d|

|d|∑
m=1

m

(
d

m

)
, (32)

where
(

d
m

)
is the Kronecker symbol.
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We now introduce the notion of optimal embeddings. Let B be a quaternion algebra over Q,
let O ⊆ B be an order, and let S be a quadratic order in a quadratic number field K. Note that a
Z-algebra embedding ϕ : S ↪→ O induces an embedding ϕ : K ↪→ B be extending the scalars, which
we denote also by ϕ.

Definition 5.6. We call a Z-algebra embedding ϕ : S ↪→ O optimal if ϕ(K)∩O = ϕ(S). We denote
by E(S,O) the set of optimal embeddings S ↪→ O.

Note that O× acts on E(S,O) on the right by conjugation. Indeed, if β ∈ O× and ϕ : S ↪→ O
is an optimal embedding then the embedding ψ : S ↪→ O defined by ψ(α) = β−1ϕ(α)β, α ∈ S,
is again optimal. This follows from the fact that ψ(K) ∩ O = β−1ϕ(K)β ∩ β−1Oβ = β−1(ϕ(K) ∩
O)β = β−1ϕ(S)β = ψ(S). We denote by m(S,O) the number of O×-conjugacy classes of optimal
embeddings S ↪→ O.
Note 5.7. For the computation of the numbers m(S,O) in the local case when O is a maximal order
see [Voi21, 30.5] and more generally when O is an Eichler order see [Voi21, 30.6].

Let the notation be as (5.1.1). We define the mass of the order O as the quantity

mass(O) :=
h∑

i=1

2
ei
. (33)

Below we provide a neat formula for mass(O).

Theorem 5.8 (Eichler Mass Formula). The mass of the Eichler order O is given by the formula

mass(O) = p− 1
12 ϕ(N),

where ϕ(N) := N
∏

q|N

(
1− 1

q

)
is the Euler totient function.

Proof. See [Voi21, 30.1.4].

Theorem 5.9 (Eichler Trace Formula). The trace of the n-Brandt matrix BpN (n) with respect to
the Eichler order O is given by the formula

trBpN (n) =
∑
t∈Z:

t2<4n

hN (t2 − 4n) +
{

mass(O), if n is a square
0, otherwise

where
hN (d) = 2hd

wd

∏
q|pN

m
(
(OK)q,Oq

)
,

hd := # Cl(OK), wd := O×
K , and OK is the ring of integers of K := Q(

√
d), when d < 0 is a

fundamental discriminant. When d < 0 is an arbitrary discriminant we define hN (d) := hN (d/f2),
where f is the conductor of the the order of discriminant d in K.

Proof. See [Voi21, 41.5.2] and [Piz98, 4.9].
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Note 5.10. When O is a maximal order we may compute hN (d) in the following more direct way

hN (d) = 2hd

wd

(
1−

(
d

p

))∏
q|N

(
1 +

(
d

q

))
,

where
(

d
q

)
the Legendre symbol. See [Voi21, 30.7.4].

Using the Eichler mass formula Theorem 5.8 and the Eichler Trace formula Theorem 5.9 we
derive the following formula for the class number of O.

Corollary 5.11 (Class Number Formula). The class number of O is given by the formula

h(O) = # ClsO = p− 1
12 ϕ(N) + hN (−4) + hN (−3),

where

hN (−4) =
{

1
4

(
1−

(
−4
p

))∏
q|N

(
1 +

(
−4
q

))
, if 4 ̸ | N

0, if 4 | N
(34)

hN (−3) =
{

1
3

(
1−

(
−3
p

))∏
q|N

(
1 +

(
−3
q

))
, if 9 ̸ | N

0, if 9 | N
(35)

Proof. Consider the 1-Brandt matrix BpN (1). We claim that for every i = 1, . . . , h, BpN (1)i,i = 1.
Indeed, we have that

BpN (1)i,i = 1
ei

# {α ∈ Oi : nrd(α) = ±1} = 1,

since nrd(α) ∈ Q× if and only if α ∈ B×. Therefore,

trBpN (1) =
h∑

i=1
BpN (1)i,i = h = h(O).

The result follows from Theorem 5.8 and Theorem 5.9, since t2 < 4 if and only if t = 0, 1, where
the computation of hN (−4) and hN (−3) can be found in [Voi21, 30.7.7].

5.1.3 Brandt Graphs

Let again the notation be as in (5.1.1). We are now able to construct the Ramanujan graphs
associated to the n-Brandt matrix BpN (n) for (n, pN) = 1. Recall that RamB = {p,∞} and that
O is of level N . Fix a natural number n coprime to pN . We start by proving the following lemma:

Lemma 5.12. For every i, j = 1, . . . , h it holds that

ei · BpN (n)i,j = ej · BpN (n)j,i.

Proof. By Lemma 5.4, it suffices to prove that the map{
α ∈ IjI

−1
i : nrd(α) = ±nnrd(Ij)

nrd(Ii)

}
−→

{
α ∈ IiI

−1
j : nrd(α) = ±nnrd(Ii)

nrd(Ij)

}

α 7−→ nrd(Ii)
nrd(Ij)α
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is a bijection. If this map is well defined, then it has an inverse, namely α 7→ nrd(Ij)
nrd(Ii)α and so it is

a bijection. To prove that it is well-defined, let α ∈ IjI
−1
i be such that nrd(α) = ±nnrd(Ij)

nrd(Ii) . Then,
by Lemma 2.57 we get that

α ∈ IjI
−1
i = I−1

i Ij = (nrd(Ii)−1Ii)(nrd(Ij)I−1
j ) = nrd(Ij)

nrd(Ii)
IiI

−1
j

and so indeed, nrd(Ii)
nrd(Ij)α ∈ IiI

−1
j . Now,

nrd
(

nrd(Ii)
nrd(Ij)α

)
= nrd(Ii)2

nrd(Ij)2 nrd(α) = n
nrd(Ii)
nrd(Ij)

and we are done.

By Lemma 5.12 we see that the Brandt matrix BpN (n) is symmetric if and only if ei = ej for
every i, j = 1, . . . , h. Corollary 5.11 gives us a sufficient condition for BpN (n) to be symmetric as
follows.

Corollary 5.13. The Brandt matrix BpN (n) is symmetric if hN (−4) = hN (−3) = 0. In particular,
BpN (n) is symmetric if p ≡ 1 (mod 12) or if N ≡ 0 (mod 36). In this case it also holds that ei = 2
for every i = 1, . . . , h.

Proof. Since ±1 are units in every Oi we have that ei ≥ 2 for every i = 1, . . . , h. Therefore, by
the definition (33) of the mass of O, it follows that mass(O) ≤ h(O), where the equality holds
if and only if ei = 2 for every i = 1, . . . , h. By Corollary 5.11, we have equality if and only if
hN (−4) = hN (−3) = 0. The fact that BpN (n) is symmetric in this case follows from Lemma 5.12.

Now, if p ≡ 1 (mod 12) then
(

−4
p

)
=
(

−3
p

)
= −1 and so from (34) we see that hN (−4) =

hN (−3) = 0.

Definition 5.14. Suppose that BpN (n) has even diagonal and that hN (−4) = hN (−3) = 0. We
define the n-Brandt graph as the multi-graph GpN (n) with adjacency matrix BpN (n).

Note 5.15. The above assumptions assures us that the matrix BpN (n) is symmetric (Corollary 5.13)
with even diagonal. Thus, GpN (n) is well defined. See Remark 1.4.

Proposition 5.16. Assume that hN (−4) = hN (−3) = 0. The n-Brandt graph GpN (n) is a σ1(n)-
regular multigraph, i.e. for every j = 1, . . . , h

h∑
i=1
BpN (n)i,j = σ1(n),

where σ1(n) := ∑
d|n d.

Proof. We will use the description (30) of the Brandt matrix BpN (n). We have that

h∑
i=1
BpN (n)i,j = # {J ⊆ Oj : J invertible right Oj-ideal and nrd(J) = n}
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Let bj(n) be this quantity. By [Voi21, 26.3.9], bj(n) is multiplicative in n and so we may compute
the values bj(ℓs), for ℓ | n a prime number and s ∈ Z≥0. Let ℓ | n and note that then ℓ ̸∈ RamB,
which implies that Bℓ ≃M2(Qℓ) and Oℓ ≃M2(Zℓ) is maximal. Thus, by Lemma 2.67 we have also
that (Oj)ℓ ≃M2(Zℓ) is maximal. Thus, from Theorem 2.29 we get

bj(ℓs) = # {Jℓ ⊆ (Oj)ℓ : Jℓ invertible right (Oj)ℓ-ideal and nrd(Jℓ) = ℓs}

since for every q ̸= ℓ we have that nrd(Jq) = 1, which is equivalent to Jq = (Oj)q, by Corollary 2.53.
So consider an invertible right M2(Qℓ)-ideal J ⊆ M2(Zℓ) with nrd(J) = ℓs. Since J is invertible
it is locally principal by Theorem 2.52. and so we have that J = αM2(Zℓ), for some α ∈ M2(Zℓ).
Now, by this description of J , α is unique up to multiplication on the right by elements of M2(Zℓ),
or equivalently up to application of column operations. Therefore, we may first write αℓ in the

form α =
(
a 0
c d

)
, where a = a′ℓu and b = b′ℓv, for some unique u, v ∈ Z≥0 and a′, b′ ∈ Z×

ℓ and

then we may further write

α =
(
ℓu 0
c ℓv

)
,

where c is unique modulo Z/ℓvZ. Since, nrd(α) = nrd(J) = ℓs we have that s = u + v. We
conclude that bj(ℓs) = ∑s

i=1 ℓ
i and thus, by writing n as a product of prime numbers, we find that

bj(n) = σ1(n) = ∑
d|n d, since bj(n) is multiplicative on n.

5.1.4 The Ramanujan Bound

Let the notation be as in (5.1.1) and assume further that hN (−3) = hN (−4) = 0 and that BpN (n)
has even diagonal. Then the n-Brandt graph GpN (n) is defined. Set B(n) := BpN (n) and G(n) :=
GpN (n). By Lemma 5.12, G(n) is a σ1(n)-regular graph. We conclude this section by proving that
for q a prime number, G(q) is a connected Ramanujan graph, i.e. that the eigenvalue σ1(q) = q+ 1
appears with multiplicity 1 (see Proposition 1.14) and that every other eigenvalue λ ̸= q+1 of G(q)
satisfies the Ramanujan bound

|λ| ≤ 2√q.
We will do so by showing that the the Brandt matrices BpN (q) arise from the action of the Hecke
operators Tq on a space of theta series of weight 2 and then Ramanujan-Petersson conjecture will
give us the Ramanujan bound.

We start by defining this particular space of theta series. Observe first that the map T : B → Q
defined by

T (x, y) := 1
2 trd(xy) = 1

2 (xy + yx) x, y ∈ B

is a symmetric bilinear map and so the reduced norm nrd(x) = T (x, x) defines a quadratic form
over Q. Let I be an invertible right O-ideal. Then, the quadratic form nrd : B → Q restricts to a
quadratic form nrd |I : I ≃ Z4 → Q. In order to make nrd |I an integral quadratic form in the sense
of the definition in (4.4), we fix a Z-basis e1, e2, e3, e4 ∈ I of I and then normalise it by nrd(I),
which then gives an integral quadratic form

QI : Z4 → Z; QI(x1, x2, x3, x4) = nrd(x1e1 + x2e2 + x3e3 + x4e4)/ nrd(I).

Note that indeed for every x ∈ Z4 we have that QI(x) ∈ Z, since for every α ∈ I, it holds by
definition that nrd(I) | nrd(α). Note also that QI depends on the choice of the basis only up to
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isometry and that the level of QI does not depend on it, since any other Z-basis of I is obtained
by a matrix U ∈ GL2(Z); hence claim follows from Remark 4.19.

Proposition 5.17. Let I be an invertible right O-ideal. Then, the quadratic form QI : Z4 → Z is
a positive definite quadratic form of level N .

Proof. To see thatQI is indeed positive definite we tensor by R and we get the mapQI⊗R : R4 → R,
which is given by the reduced norm on B∞ ≃ H =

(
−1,−1

R

)
, since B is ramified at ∞. Since the

reduced norm on H is positive-definite, QI is also positive-definite.
By Remark 4.19, we may compute the level locally, so let ℓ be a prime number. Assume first

that ℓ ̸= p. Then, since ℓ ̸∈ Ram(B), we have Bℓ ≃M2(Zℓ) and since O is an Eichler order of level
N , there exists α ∈ B×

ℓ

Oℓ = α

(
Zℓ Zℓ

NZℓ Zℓ

)
a−1

Since I is invertible, Iℓ is principal and so there exists β ∈ B×
ℓ such that Iℓ = βOℓ. From the latter

we get that nrd(β)Zℓ = nrd(Iℓ). We now find a Z-basis of Iℓ. Let

e1 =
(

1 0
0 0

)
, e2 =

(
0 1
0 0

)
, e3 =

(
0 0
N 0

)
, e4 =

(
0 0
0 1

)
.

Then, the elements fi := βαeiα
−1, i = 1, . . . , 4, form a Zℓ-basis of Iℓ. Computing then the matrix

MQI⊗Zℓ
of the quadratic form QI ⊗ Zℓ with respect to that basis we find that

MQI⊗Zℓ
= (trd(fifj)/ nrd(β))1≤i,j≤4 =


0 0 0 1
0 0 −N 0
0 −N 0 0
1 0 0 0


which has level N in Zℓ. (For the exact calculation of MQI⊗Zℓ

, see [Piz80a, 2.11].) In the case where
ℓ = p, we have that Bp is a division algebra and Op its unique maximal order. By [Voi21, 13.3.4]
and [Piz80a, Section 1] we have that

Bp ≃
{(

α β
pβσ ασ

)
: α, β ∈ L

}
and Op ≃

{(
α β
pβσ ασ

)
: α, β ∈ S

}
,

where L is the unique unramified quadratic field extension of Qp, S its ring of integers, and σ the
conjugation of the field extension Qp/L. Calculating the matrix of the quadratic form as above we
find that its level is 1, as it should be, since p ∤ N . That concludes the proof.

Recall from Lemma 5.4 that for every i, j = 1, . . . , h, the (i, j)-th entry of the Brandt matrix
B(n) is given by

B(n)i,j = 1
2#

{
α ∈ IjI

−1
i : nrd(α) = ±nnrd(Ij)

nrd(Ii)

}
Note that ei = 2 for each i, by our assumptions and Corollary 5.13. For each such i, j, consider the
quadratic form Qi,j := QIjI−1

i
(w.r.t. to a basis) and let the θi,j be the theta series of Qi,j , i.e.

θi,j(z) := 1
2θQi,j (z) =

∞∑
m=0

BpN (m)i,jq
m.
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Corollary 5.18. For each i, j = 1, . . . , h, we have that θi,j ∈M2(Γ0(N)).

Proof. Immediate from Proposition 5.17 and Theorem 4.22.

In order to apply the Ramanujan-Petersson conjecture we need cusp forms. However, none of
the θi,j are cusp forms as for example at the cusp∞ we have that a0(θi,j) = 1/2. Since all θi,j have
the same behaviour at the cusp ∞, their difference is holomorphic at ∞. Using Theorem 4.23, we
prove that this is the case at all cusps.

Proposition 5.19. For every 1 ≤ i, j, k ≤ h, we have that θi,j − θk,j ∈ S2(Γ0(N)).

Proof. Let 1 ≤ i, k ≤ h. We claim that for every 1 ≤ j ≤ h, Qi,j and Qk,j are of the same
genus. Let ℓ be a prime number. Since Ii, Ik are invertible, there exists β, γ ∈ B×

ℓ such that
(Ii)ℓ = βOl and (Ik)ℓ = γOℓ. Thus, setting α := βγ−1 we have that (Ii)ℓ = α(Ik)ℓ and so
nrd(α) = nrd((Ii)ℓ)/ nrd((Ij)ℓ) and (IjI

−1
i )ℓα = (IjI

−1
k )ℓ. Thus, the Z-linear map f : x 7→ xα fits

into the commutative diagram

(IjI
−1
i )ℓ (IjI

−1
k )ℓ

Z Z

f

Qi,j⊗Zℓ Qk,j⊗Zℓ

id

which shows that f defines an isometry Qi,j ⊗ Zℓ → Qk,j ⊗ Zℓ. Hence, indeed Qi.j , Qk,j are of the
same genus. Therefore, Theorem 4.23 implies that θi,j − θk,j ∈ S2(Γ0(N)).

We are now going to express these theta series differences using the Brandt matrix B(n). Con-
sider the matrix A ∈ GLh(Z) with Ai,1 = A1,i = 1 for all i = 1, . . . , h, Ai,i = −1, for i = 2, . . . , h
and Ai,j = 0 for 2 ≤ i ̸= j ≤ h. Then, using Proposition 5.16 and the commutativity of Brandt
matrices, one can show that

AB(n)A−1 =


σ1(n) 0 · · · 0

0
... B′(n)
0

 =: C(n), (36)

where B′(n)i,j := B(n)i+1,j+1 − B(n)1,j+1, 1 ≤ i, j ≤ h − 1. For the exact explicit matrix mul-
tiplication (36) see [Piz80a, 2.19]. We call the matrix B′(n) ∈ Mh−1(Z) the modified n-Brandt
matrix.
Remark 5.20. Observe that the modified Brandt matrix B′(n) and the Brandt matrix B(n) share the
same spectrum, where the multiplicity of the eigenvalue σ1(n) in B′(n) is 1 less than its multiplicity
in B(n).

For each i, j = 2, . . . , h, consider now the modified theta series

θ′
i,j(q) :=

∞∑
m=1
B′(n)i−1,j−1q

m = θi−1,j−1(q)− θ1,j−1(q) ∈ S2(Γ0(N)),

where the second equality follows from the definition of the modified Brandt matrix B′(n).
We now prove one of the most important facts about the Brandt matrices. Their action on the

space of the theta series defined above coincides with the action of the Hecke operators into this
space. More precisely we have the following:

63



Theorem 5.21. Let n ∈ Z≥0 be such that (n, pN) = 1. Then,

(Tnθi,j)(q) =
∞∑

m=0

(
(B(n)B(m)

)
i,j
qm (37)

Proof. Since Tn and B(n) satisfy the same recursive relations, by Proposition 5.5 and Proposi-
tion 4.10, it suffices to prove the statement for ℓ a prime number such that (ℓ, pN) = 1. By (26),
we have that

(Tℓθi,j)(q) =
∞∑

m=0
bmq

m, where bm = B(ℓm)i,j +
{
qB(m/ℓ)i,j , if q | m
0, if q ∤ m

If (m, pN) = 1 then by Proposition 4.10, we have that bm = (B(ℓ)B(m))i,j , as desired. In the case
where (m, pN) > 1, the result follows from [Eic73, p. 138].

Remark 5.22. We can express the action in (37) in a more clear and useful way as follows: consider
gk : Ch → S2(Γ0(N)) to be the linear map that sends the standard basis element ei ∈ Ch into
g(ei) := θi,k, where k = 1, . . . , h. Then, for every n ∈ Z≥1 such that (n, pN) = 1 the following
diagram commutes

Ch Ch

S2(Γ0(N))) S2(Γ0(N)))

B(n)

gk gk

Tn

(38)

This is indeed the case since if we take the basis element ei = (δi,j)h
j=1 ∈ Ch(2) then B(n)ei =

(B(n)j,i)h
j=1 = (B(n)i,j)h

j=1, as B(n) is a symmetric matrix, by Corollary 5.13. Thus,

g(B(n)ei)(q) =
h∑

j=1
B(n)i,jθj,k(q) =

h∑
j=1
B(n)i,j

∞∑
m=0
B(m)j,kq

m =
∞∑

m=0

 h∑
j=1
B(n)i,jB(m)j,k

 qm

=
∞∑

m=0
(B(n)B(m))i,kq

m = (Tnθi,k)(q).

where the last equality holds by (37).
Continuing with the construction of the eigenforms, by Proposition 5.5 and the spectral theorem

we have that there exists a matrix C ∈ GLh(C) such that all the matrices CB(n)C−1, (n, pN) = 1,
are simultaneously diagonal. Combining C with the matrix A defined above in (36), we find a matrix
C0 ∈ GLh−1(C) such that all matrices D′(n) := C0B′(n)C−1

0 , (n, pN) = 1, are simultaneously
diagonal. For every i = 2, . . . , h, define the cusp form

Φi(q) =
∞∑

m=0
D′(m)i−1,i−1q

m.

Note that each Φi is indeed a cusp form as it is a linear combination of the θ′
i,j , i, j = 2, . . . , h.

(2)δi,j denotes the Kronecker delta.
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Corollary 5.23. For every i = 2, . . . , h, Φi ∈ S2(Γ0(N)) are eigenforms for the Hecke operators
Tn, (n, pN) = 1, with eigenvalues the diagonal entries of D′(n).

Proof. Since the matrices D′(n) = C0B′(n)C−1
0 , (n, pN) = 1, are all diagonal, it is enough to show

that the action of the Hecke operators T (n) into Φi is given as in Theorem 5.21, but by the matrix
D′(n) instead of B(n). But, this follows from the definition of D′(n), and by composing from above
to the commutative diagram (38), the commutative diagrams

Ch−1 Ch−1 Ch Ch

Ch−1 Ch−1 Ch Ch

C−1
0 A−1

C−1
0

D′(n) B′(n)

A−1

C(n) B(n)

where the inclusion arrow just puts a zero in the first coordinate. The commutativity of the
diagrams follows by the above analysis and (36).

We are finally able to conclude that the graphs GpN (q), with (q, pN) = 1 are Ramanujan.

Theorem 5.24. Let n ∈ Z≥1 such that (n, pN) = 1. Then the graph BpN (n) is a σ1(n)-regular
connected graph with maximum eigenvalue λ1 = σ1(n) and all other eigenvalues λ satisfy the
Ramanujan bound

|λ| ≤ σ0(n)
√
n.

In particular, if q is a prime number such that (q, pN) = 1 then the graph GpN (q) is a (q+1)-regular
connected Ramanujan graph.

Proof. By Proposition 5.16 and Proposition 1.14 we have that GpN (n) is a σ1(n)-regular graph.
By Remark 5.20, we have that

spec(B′
pN (n)) = spec(BpN (n)) \ {σ1(n)},

where, as usual, we view the spectrum as a multiset. Since D′
pN (n) = C0B′

pN (n)C−1
0 , the diagonal

entries of D′
pN (n) coincides with spec(B′

pN (n)); therefore, by Corollary 5.23 and the Ramanujan-
Petersson conjecture Theorem 4.16, we get that for all λ ∈ spec(B′

pN (n))

|λ| ≤ σ0(n)
√
n.

This shows that σ1(n) is an eigenvalue of multiplicity 1, which by Proposition 1.14, implies that
GpN (n) is connected, and that λ(GpN (n)) ≤ σ0(n)

√
n. The second claim is immediate from the first

since σ1(p) = p+ 1 and σ0(p) = 2.

Remark 5.25. It is worth mentioning that Theorem 5.24, in the case where n is not necessarily a
prime, gives an interesting family of expander graphs as the bound |λ| ≤ σ0(n)

√
n is non-trivial.

See Corollary 1.23.
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5.2 Supersingular Isogeny Graphs

In this section we describe a second construction of Ramanujan graphs using supersingular elliptic
curves and their isogenies, which remarkably turns out to be equivalent to Pizer’s construction for
Eichler orders of level 1, or equivalently for maximal orders.

5.2.1 ℓ-Isogeny Graphs

Let p ̸= 2 be a prime number, consider the finite field Fp, and fix an algebraic closure Fp of Fp. Let
also ℓ ̸= p be another prime. We will refer to an isogeny of degree ℓ an ℓ-isogeny.

Let E,E′ be elliptic curves over Fp. Two isogenies ϕ, ψ : E → E′ are said equivalent if there
exists a non-zero isogeny α ∈ Aut(E′) such that ψ = α ◦ ϕ. Clearly this defines an equivalence
relation on Hom(E,E′).

Definition 5.26. We define the ℓ-isogeny graph (over Fp), which we denote by Gp(ℓ), as the graph
with vertices the isomorphism classes of supersingular elliptic curves over Fp and arrows between
two supersingular elliptic curves E and E′ as the equivalence classes of isogenies E → E′.

First note that by Theorem 3.20 and Theorem 3.3, we can represent each vertex [E] of Gp(ℓ)
by its j-invariant j(E) in Fp2 . This also shows that Gp(ℓ) is a finite graph.

This is by definition a directed graph whereas in the context of this thesis we study undirected
graphs. Fortunately, the only possible vertices that can cause the directness of the graph Gp(ℓ)
are represented by the j-invariants j = 0, 1728. This is because for every elliptic curve E with
j(E) ̸= 0, 1728 we have that # Aut(E) = 2, whereas for elliptic curves E with j(E) ∈ {0, 1728} we
have # Aut(E) > 2, see [Sil09, III.10.1]. The numbers j = 0, 1728 appear as vertices in Gp(ℓ), i.e.
they are the j-invariants of a supersingular elliptic curve, exactly in the following cases:

• j(E) = 0 for some supersingular elliptic curve E/Fp if and only if p ≡ 2 (mod 3); and

• j(E) = 1728 for some supersingular elliptic curve E/Fp if and only if p ≡ 3 (mod 4),

according to [ACNL+19, 2.2]. Thus if we restrict p to be p ≡ 1 (mod 12), the graphs Gp(ℓ) becomes
undirected in the sense of Definition 1.1. Moreover, where we require p ≡ 1 (mod 12), the graph
Gp(ℓ) is also (ℓ + 1)-regular. Indeed, if ϕ : E → E′ is an ℓ-isogeny then it is separable and thus it
corresponds bijectively to the subgroups of E of order # kerϕ = deg ϕ = ℓ, by [Sil09, III.4.12]. But
note that kerϕ ⊆ E[ℓ], since if P ∈ kerϕ then ϕ(P ) = 0 and by applying ϕ̂ we get that [ℓ](P ) = 0.
Now, by Lemma 3.8 we have that E[ℓ] ≃ (Z/ℓZ)2, which has exactly ℓ+ 1 subgroups of order ℓ.

The order of the graph Gp(ℓ) is computed according to the congruence of p modulo 12 as follows:
if p ≥ 5 then

#V (Gp(ℓ)) =
⌊
p

12

⌋
+


0, p ≡ 1 (mod 12)
1, p ≡ 5, 7 (mod 12)
2, p ≡ 11 (mod 12)

according to [Sil09, V.4.1]. Thus, again if we assume p ≡ 1 (mod 12) we get that the order of the
graph is exactly p−1

12 .
The most important property of the ℓ-isogeny graph Gp(ℓ) is that it is a Ramanujan graph. This

follows from the fact that Gp(ℓ) is isomorphic to the ℓ-Brandt graph associated to a maximal order
in the quaternion algebra Bp,∞. Note that from this isomorphism will also follow the statements
about the order and the regularity of Gp(ℓ) described above, as they were proved in (5.1). We give
this isomorphism in the following section.
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5.2.2 The Deuring Correspondence.

Let p ≡ 1 (mod 12) be a prime number and ℓ ̸= p a prime number. To define the isomorphism we
fix a base supersingular elliptic curve E0 over Fp. Let O0 := End(E0) and B0 := End(E0)Q.

By Theorem 3.25, we have that B is a quaternion algebra isomorphic to B0 and O0 is a
maximal order in B0. The isomorphism presented in this section is essentially the so-called Deuring
Correspondence due to M. Deuring [Deu41]. In (5.1.1), we proved that the ℓ-Brandt graph Gp(ℓ)
associated to the maximal order O0 in B0 is an (ℓ + 1)-regular multigraph (Proposition 5.16) of
order h(O0) = mass(O0) = p−1

12 (Corollary 5.11) with vertex set V (Gp(ℓ)) = ClsR(O0), where an
edge exists between two vertices [I], [J ] ∈ ClsR(O0) for every α ∈ JI−1 such that nrd(α) = ℓnrd(J)

nrd(I) .

Remark 5.27. Let E be a supersingular elliptic curve. Then, Hom(E0, E) is a Z-module with a
right action from O0 = End(E0) and thus defines a right O0-module. Therefore, the association
E 7−→ Hom(E0, E) defines a functor between the category of elliptic curves with isogenies and right
O0-modules with right O0-module homomorphisms.

In order to define this isomorphism recall (3.4).

Theorem 5.28. The association between integral right O0-ideals and supersingular elliptic curves

I 7−→ E0,I 7−→ [E0,I ](3) (39)

induces an isomorphism between the ℓ-Brandt graph Gp(ℓ) and the ℓ-isogeny graph Gp(ℓ).

Proof. Note first that (39) induces a well-defined map on V (Gp(ℓ)). This follows as by Lemma 2.18,
each isomorphism class [I] ∈ ClsR(O0) contains an integral right O0-idea and thus the claim follows
from Lemma 3.26. Therefore we get an induced map

V (Gp(ℓ)) −→ V (Gp(ℓ)); [I] 7−→ [E0,I ], (40)

where E0,I is defined with a possible scaling of I in order for it to be integral.
We next prove that the map (40) is injective. Let I, J be integral right O0-ideals in B0 such

that [E0,I ] = [E0,J ], i.e. such that there exists an isomorphism ϕ : E0,I
∼−→ E0,J . By Remark 5.27,

Hom(E0,−) is functorial and so the pullback map ϕ∗ : Hom(E0, E0,I) ∼−→ Hom(E0, E0,J) is an
isomorphism of right O0-modules. Now, from Lemma 3.27, we get a composition of isomorphisms
of right O0-modules

I
∼−→ Hom(E0, E0,I) ∼−→ Hom(E0, E0,J) ∼−→ J

and thus from Lemma 2.59, we have that [I] = [J ]. Hence, the map (40) is injective.
To prove surjectivity, let E be a supersingular elliptic curve. By Proposition 3.24, we have that

Hom(E0, E) is of rank 4 and in particular it is non-empty, thus from Lemma 3.28, there exists an
integral right O0-module I and an isomorphism ρI : E0,I

∼−→ E, which proves surjectivity.
To conclude that (40) defines an isomorphism of graphs in the sense of Definition 1.2, we are

left to prove that it induces compatible with (40) local bijections on the edges of the graphs, i.e.
for every integral O0-ideals I, J we have a bijection

EGp(ℓ)([I], [J ]) ∼−→ EGp(ℓ)([E0,I ], [E0,J ]).
(3)Here we use the notation E0,I in the place of (E0)I .
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By definition of the graphs Gp(ℓ) and Gp(ℓ) we want to prove that there is a bijection

{ϕ ∈ Hom(E0,I , E0,J) : deg ϕ = ℓ} ∼−→
{
α ∈ JI−1 : nrd(α) = ℓ

nrd(J)
nrd(I)

}
(41)

So, let I, J ⊆ O0 be integralO0-ideals and consider the isogenies ϕI : E0 → E0,I and ϕJ : E0 → E0,J .
Recall that deg(ϕI) = nrd(I) and that deg(ϕJ) = nrd(J). We claim that the map(

E0,I
ϕ−→ E0,J

)
7−→

(
E0

ϕ̂I
−1

−−−→ E0,I
ϕ−→ E0,J

ϕ̂J−→ E0

)
(42)

serves as our desired bijection. Notice first that this map is clearly a bijection into its image and
that if ϕ : E0,I → E0,J is an ℓ-isogeny then

nrd
(
ϕ̂Jϕϕ̂I

−1) = deg
(
ϕ̂Jϕϕ̂I

−1) = deg(ϕ)deg(ϕ̂J)
deg(ϕ̂J)

= ℓ
nrd(J)
nrd(I) .

Thus, if we prove that the map (42) maps Hom(E0,I , E0,J) onto JI−1 then it will restrict to the
bijection (41).

Claim: The following equality holds

Hom(E0, E0,J) = Hom(E0,I , E0,J) Hom(E0, E0,I) (43)

Proof of Claim: By Lemma 2.57, we have that m := deg(ϕI) = nrd(I) ∈ ÎI and, by Lemma 3.27,
we have that ϕ̂I Hom(E0, E0,I) = I. Therefore, there exist αi, βi ∈ Hom(E0, E0,I), i = 1, . . . , k,
such that

[m] =
k∑

i=1

̂̂
ϕIαiϕ̂Iβi =

k∑
i=1

α̂iϕI ϕ̂Iβi =
k∑

i=1
α̂i[m]βi

and so ∑k
i=1 α̂iβi = [1], since [m] is surjective. Therefore, for every ψ ∈ Hom(E0, E0,J) we have

ψ =
k∑

i=1
(ψα̂i)βi ∈ Hom(E0,I , E0,J) Hom(E0, E0,I)

The other inclusion is obvious and so we get the equality (43).

Now, again by Lemma 3.27, we have also that ϕ̂J Hom(E0, E0,J) = J and so by (43) we get that

ϕ̂J
−1
J = Hom(E0,I , E0,J)ϕ̂I

−1
I

which in turn implies that ϕ̂J Hom(E0,I , E0,J)ϕ̂I
−1 = JI−1. Therefore, we get that the map (42)

restricts with the bijection (41).

Corollary 5.29. For every prime p ≡ 1 (mod 12) and ℓ ̸= p a prime number, the graph Gp(ℓ) is
a connected (ℓ+ 1)-regular Ramanujan graph.

Proof. Immediate from Theorem 5.24 and Theorem 5.28.
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Note 5.30. Following Remark 5.25, it is worth mentioning that we can exhibit a similar isomor-
phism as in Theorem 5.28 for the case of an arbitrary Eichler order of level N ∈ Z≥!. In particular,
we endow elliptic curves with a level-N structure, by considering pairs (E,G), where E is a su-
persingular elliptic curve and G ⊆ E[N ] is a cyclic group of order N . We define a leveled isogeny
ϕ : (E,G)→ (E′, G′) between two such pairs as an isogeny ϕ : E → E′ such that ϕ(G) ⊆ G′. Then,
it holds that End(E,G) is isomorphic to an Eichler order of level N .

By a variation of Theorem 5.28, we have an isomorphism of the graphs defined by the level-N
supersingular elliptic curves together with leveled isogenies to the graphs GpN defined in (5.1.3)
over an Eichler order N . Thus, by Remark 5.25, we have that these leveled isogeny graphs are
good expanders.

For the analysis of leveled isogenies and the proof of this variational Deuring correspondence
we refer to [Arp22].
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