
A simulation study evaluating the effect of dependent censoring on
survival curves and the performance of Inverse Probability Censoring
Weights
Kalkantzis, G.

Citation
Kalkantzis, G. (2022). A simulation study evaluating the effect of dependent censoring on
survival curves and the performance of Inverse Probability Censoring Weights.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1

MASTER THESIS
STATISTICS AND DATA SCIENCE

UNIVERSITEIT LEIDEN

A simulation study evaluating the effect of
dependent censoring on survival curves

and the performance of Inverse Probability
Censoring Weights

Author:
Georgios Kalkantzis

Thesis Supervisor:
Dr.ir. N. (Nan) van Geloven

Medical statistics
Department of Biomedical Data Sciences

Leiden University Medical Center

Thesis Supervisor:
Dr. Sanne J.W. Willems

Methodology and Statistics
Institute of Psychology

Leiden University

June 2022

2

Abstract

Survival analysis studies time-to-event outcomes. One of the main characteristics of survival
data is that some survival times are not observed, we call those observations censored. Standard
methods to analyze censored data, like the Kaplan-Meier estimator or the Cox proportional
hazards model, assume that censored observations are independent of the time to event and we
call this type of censoring non-informative. In real life studies however, this is not always the
case and the censoring may depend on time to event either directly or through covariates. In
that case the censoring is called informative or dependent and using the standard methods can
lead to biased results.

In this thesis we examined first how serious the issue of dependent censoring is by generating
data with dependent censoring using two methods, one for two time-independent covariates and
one for two time-independent and one time-dependent covariate, and studying how much bias
is introduced if we assume independent censoring in the analysis.

Different approaches have been proposed in order to correct for the issue of dependent
censoring, one of them is Inverse Probability Censoring Weighting (IPCW). In the second part,
we will perform a simulation study to evaluate the performance of the IPCW method in the
presence of dependent censoring, for each of the two methods we examined in the first part.

Results showed that the survival curves estimated by the traditional Kaplan-Meier method
have only small bias in most cases. The bias increased when the dependent censoring gets
stronger. The IPCW method overall performs well and corrects for the presence of dependent
censoring but it is not able to correct the bias fully in case the dependency is too strong or
when we introduced a time dependent covariate which is subject to measurement error.

i

ii

Acknowledgements

I would like to express my deepest gratitude to my supervisors Dr. ir. N.(Nan) van Geloven
and Dr. Sanne J.W. Willems for their support, encouragement and patience. I met with both of
them almost in weekly basis. These meetings have been extremely useful for the progress of the
thesis and were also helpful for other issues not directly involve with the thesis. Additionally,
their reviews and extensive comments on various thesis drafts made this work possible.

Finally I want to thank my parents and friends for their unconditional support and encour-
agement through out my study.

iii

iv

Contents

1 Introduction 1

1.1 Motivation for this Thesis . 1

1.2 Aims of this Thesis . 1

1.3 Structure of this Thesis . 2

2 Survival analysis theory 3

2.1 Basic functions of survival analysis . 3

2.1.1 The Survival Function . 3

2.1.2 The Hazard Function . 3

2.2 Censoring and Truncation . 4

2.2.1 Right Censoring . 4

2.2.2 Left Censoring . 4

2.2.3 Interval Censoring . 5

2.2.4 Truncation . 5

2.3 Estimation of the Survival and Cumulative Hazard Functions 5

2.3.1 Non-Parametric Methods . 5

2.3.2 Parametric Methods . 6

2.4 Semi-Parametric Models . 7

2.4.1 Cox model with time-independent covariates 7

2.4.2 Cox model with time-dependent covariates 7

2.5 Censoring Assumptions . 8

3 Simulation study with time-independent covariates 9

3.1 Simulation set-up . 9

3.1.1 Introduction to Monte Carlo simulations 9

3.1.2 Define the artificial population . 10

3.1.3 Generation of survival and censoring times 10

3.1.4 Dependent censoring . 11

3.1.5 Estimation of survival curves . 12

3.1.6 Diagnostics . 13

3.2 Simulation results for Exponentially distributed event and censoring times . . . 14

3.2.1 Strength of the dependency of the censoring mechanism on the time-
invariant covariates . 14

3.2.2 Percentage of censored subjects . 15

3.2.3 Size of sample . 16

3.3 Simulation results for Weibull distributed event and censoring times 17

3.3.1 Strength of the dependency of the censoring mechanism on the time-
invariant covariates . 18

3.3.2 Percentage of censored subjects . 19

3.3.3 Size of sample . 20

3.4 Conclusions . 21

v

vi CONTENTS

4 Simulation study with time-dependent Covariate 23
4.1 Simulation set-up . 24

4.1.1 Define the artificial population . 24
4.1.2 Generation of survival and censoring times 24
4.1.3 Estimation of survival curves . 27
4.1.4 Visualize the values of the biomarker . 27

4.2 Simulation results for time-dependent covariate 28
4.2.1 Strength of the dependency of the censoring mechanism on time-invariant

covariates . 28
4.2.2 Strength of the link parameter γ of the time-dependent covariate 30
4.2.3 Percentage of censored subjects . 31

4.3 Conclusions . 32

5 IPCW with time-independent covariates 35
5.1 IPCW theory . 35

5.1.1 Step 1: Fit a model for the censoring times 36
5.1.2 Step 2: Estimate the probability to remain uncensored 36
5.1.3 Step 3: Calculate the IPCW weights . 37
5.1.4 Step 4: Estimate the survival probabilities SIPCW 37

5.2 IPCW algorithm . 37
5.3 Results for time-independent covariate . 38

5.3.1 Transform the data from wide to long format 38
5.4 Simulation for time-independent covariates . 38

5.4.1 Simulation results . 38
5.5 Discussion . 40

6 IPCW with time-dependent covariate 41
6.1 Results for time-dependent covariate . 41

6.1.1 Transform the data from wide to long format 41
6.1.2 Simulation set-up . 41
6.1.3 Simulations results . 42

6.2 Estimated value of the link parameter γ′ of the censoring model 44
6.3 Discussion . 45

7 Discussion 47

Bibliography 49

Appendices 51

A Confidence intervals and simulations 53
A.1 Chapter 3 . 53

A.1.1 Confidence intervals for exponential distributed event and censoring times 53
A.1.2 Confidence intervals for Weibull distributed event and censoring times . . 55

A.2 Chapter 4 . 57
A.3 Chapter 5 . 59
A.4 Chapter 6 . 59

B R Code 61
B.1 R code chapter 3 . 61
B.2 R code chapter 4 . 93
B.3 R code chapter 5 . 109
B.4 R code chapter 6 . 125

Chapter 1

Introduction

Survival analysis focuses on time-to-event outcomes. Time can mean for example years, months
or days from the beginning of the follow up until the event occurs. The event can be death,
relapse, disease occurrence, recovery or any other experience of interest. The main issue that
arises from studying time-to-event outcomes is that for some individuals the exact survival time
is unknown although we have some information of their survival time. This problem is called
censoring and the most frequent one and the one that will be the focus of this thesis is right
censoring. Right censoring occurs when an individual leaves the study before the event occurs
or when the study ends without the occurrence of the event of interest. Standard methods of
analyzing survival data like the Kaplan-Meier method or the Cox proportional hazards model
assume that censoring is independent or non-informative which means that the probability for
an individual to be censored at any given time t is independent of the probability to experience
the event at time t.

1.1 Motivation for this Thesis

However, with real data the assumption of independent censoring does not always hold. If
we assume that censoring is independent in the analysis model, but censoring is in reality
informative or dependent, this can lead to biased results. Dependent censoring can occur when
time to censoring and time to event are dependent either directly or through covariates. Willems
[12] conducted a simulation study to evaluate the performance of the inverse probability of
censoring weighting (IPCW) method in the case of dependent censoring. The generated survival
data had two independent covariates that influence both the time to event and time to censoring.
Event and censoring times were both generated from the exponential distribution and constant
hazard rates were assumed for both models. The results showed that the survival probabilities
estimates were more accurate with the use of IPCW and that the standard Kaplan-Meier method
overestimated the survival probabilities. However, authors had simulated extreme dependence
of the censoring mechanism on the predictor variables in order to show notable differences in
the estimates. Such extreme dependence is not expected to occur in real data. Furthermore, in
another study by Matsuyama and Yamaguchi [5] an adjusted version of IPCW was developed to
correct for dependent censoring in settings with more than one reason for censoring (competing
risks). There are many examples where in applications the IPCW adjusted curves differs very
little from the adjusted ones, which suggested that dependent censoring was not a real issue for
this analysis.

1.2 Aims of this Thesis

The results from those two papers raise the question of how serious the threat of dependent
censoring is and when it is necessary to account for it, or if the analysis without correction for it

1

2 CHAPTER 1. INTRODUCTION

will give acceptable results. This will be the focus of the first part of this thesis, where we will
perform a simulation study to answer this question. We will generate survival data that contain
dependent censoring by using different approaches, for example assume constant hazard rates
or include a time varying covariate. We will check to which extent standard survival analysis
methods give biased results and determine when a correction method is required to account for
it.

In the second part of the thesis, we will evaluate the performance of Inverse Probability of
Censoring Weighting (IPCW). This method corrects for dependent censoring by giving extra
weights to subjects that are not censored at time t and have similar characteristics as the
subjects that were censored. We will use the ipw package for R in order to apply the IPCW
method and explain how to prepare the data we generated in order to apply the ipw package.
Then we will apply the IPCW method to the data we generated in the first part using different
approaches, and run simulations studies to evaluate its performance compared to the standard
method that assumes independent censoring.

1.3 Structure of this Thesis

In Chapter 2 some basic concepts of survival analysis will be introduced in order to help the
reader with no or little experience in survival analysis to have a better understanding of the
following chapters. Chapter 3 will consist of two parts. In the first part there will be a descrip-
tion of the methods used to generate survival times and censoring times for time independent
covariates. In second part the results of the simulations will be presented evaluating how im-
portant the issue of dependent censoring can be. In Chapter 4 in the first part, the method
to generate dependent censoring for time-independent covariates and one time-dependent co-
variate is described. In the second part the results of the simulations for time-independent
covariates and one time-dependent covariate will be presented. In Chapter 5 the IPCW method
will be described in detail, and the results of the simulation study to evaluate the performance
of IPCW method in the presence of dependent censoring with only time-independent covariates.
In Chapter 6 the results of the simulation study to evaluate the performance of IPCW method
with time-independent covariates and one time-dependent covariate will be presented. Finally
the R code that used for this thesis will be in the Appendix B.

Chapter 2

Survival analysis theory

In this chapter some basic concepts of survival analysis will be introduced. Notation and theory
are based on Klein and Moeschberger [4].

2.1 Basic functions of survival analysis

Survival analysis is a branch of statistics that consists of methods of analyzing data in which the
outcome variable of interest is time to an event. Event may be death, occurrence of a disease,
relapse from remission, equipment failure and so forth, the event can be positive also, such as
recovery from surgery or any other event of interest than can happen to the individual. Let X
be the time until the even of interest, X > 0 is random variable and is called survival time. In
the following paragraphs we will describe two functions that characterize the distribution of X,
namely the survival function and the hazard function.

2.1.1 The Survival Function

The basic quantity of survival analysis is the survival function, which is the probability of an
individual to survive to time x and it is defined as

S(x) = P (X > x). (2.1)

If X is a continuous random variable, then S(X) is a continuous strictly decreasing function.
If F (X) is the cumulative distribution function of X, where F (x) = P (X ≤ x), then S(x) =
1−F (x). The integral of the probability density function f(x) is equal to the survival function,

S(x) = P (X > x) =

∫ ∞

x
f(t)dt. (2.2)

Thus,

f(x) = −dS(x)

dx
. (2.3)

The survival curves are monotone, nonincreasing with probability equal to one at time zero and
probability equal to zero as time goes to infinity.

2.1.2 The Hazard Function

The hazard function sometimes called a conditional failure rate gives the rate at which an
individual will experience the event in the next instant of time given that he or she has survived
up to time x. The hazard rate is defined as

h(x) = lim
∆x→0

P [x ≤ X < x+∆x|X ≥ x]

∆x
. (2.4)

3

4 CHAPTER 2. SURVIVAL ANALYSIS THEORY

For a continuous random variable X,

h(x) =
f(x)

S(x)
= −d ln[S(x)]

dx
. (2.5)

From equation (2.4) we have the ratio of two quantities, the numerator is a conditional prob-
ability and the denominator denotes a small interval of time. The result of this division is
probability per unit time, which is a rate and not a probability, thus it takes values in the range
between zero and infinity. The hazard function curves are nonnegative h(x) ≥ 0, do not have
an upper bound and can have many different shapes.

The cumulative hazard function H(x) can derive from (2.5) and it is defined as

H(x) =

∫ x

0
h(t)dt = − ln[S(x)]. (2.6)

Thus the survival function for continuous lifetimes is defined as

S(x) = exp[−H(x)] = exp

[
−
∫ x

0
h(t)dt

]
. (2.7)

2.2 Censoring and Truncation

A problem that occurs frequently in survival data is that time to event for some individuals
is not exactly known or it may have occured within a certain interval, this problem is called
censoring. The three main categories of censoring are, right censoring, left censoring, and
interval censoring. Another issue with survival data is truncation which occurs when only the
event times of individuals that lie within a certain interval can be observed. There are two
categories of truncation, right truncation and left truncation. In this section we will define
briefly the different types of censoring and truncation.

2.2.1 Right Censoring

Right censoring, which is the most common type of censoring in survival time occurs when the
event is not observed before a certain time point, which we call the censoring time Cr, in that
case the individual for which the event has not observed is called censored.

For a subject in a study, if X is the lifetime and Cr is the censoring time, we assume the X ′s
are independent and identically distributed with probability density function f(x) and survival
function S(x). For an individual in the study the event will be observed if and only if, X is less
or equal to Cr, if X is bigger than Cr then the individual is censored at Cr.

Survival data can be represented by pairs of random variables (T, δ), where δ = 1 if the
event was observed and δ = 0 for censored subjects. T represent the time to event and it equal
to X if the event was observed, and to Cr if the event is not observed,i.e. T = min(X,Cr).

2.2.2 Left Censoring

Left censoring occurs when the event of interest happened before a certain time point Cl, which
means that the event of interest has occured for that person before his or her inclusion in the
study at time Cl.

Survival data for left censored observations can be represented by pairs of random variables
(T, δ), where δ = 1 if the exact lifetime is observed and δ = 0 if not. T is equal to X if the
event is observed and equal to Cl if the event is not observed,i.e. T = max(X,Cl).

Sometimes left censoring and right censoring can occur simultaneously in a study, in that
case the lifetime are considered double censored. Again the survival data can be represented
as a pair of variables (T, δ), where T = max[min(X,Cr), Cl], and δ is 1 if the event time is
observed, 0 if it is right censored and, -1 if it is left censored.

2.3. ESTIMATION OF THE SURVIVAL AND CUMULATIVE HAZARD FUNCTIONS 5

2.2.3 Interval Censoring

A more general type of censoring called interval censoring occurs when the lifetime is observed
but we do not know the exact time of the event but only that it occured in a specific time
interval.

This type of censoring often occurs in clinical trials or longitudinal studies where the subjects
have follow-up times and the event of interest may happened between two follow-up times, in
that case the exact life time is unknown but it is known to be into the time interval between
the two visits (Li, Ri].

2.2.4 Truncation

Another issue that often occurs in survival studies is truncation. The issue arises when only
subjects that have event times that are within a specific observational time frame (YL, YR) are
observed. For a subject that the event time is outside this interval, his or her event time is not
observed and there is no information available.

When YR is infinite left truncation occurs, in that case we only observe subjects that their
event time is greater than YL. An example of left truncation is entry into a retirement home
where subjects from a certain age, who have not experience the event of interest yet, entered
the retirement home, subjects that have experience the event before this age can not enter the
retirement home and there is no information about them.

Right truncation occurs when YL is zero, in that case only individuals that experience
the event prior to right truncation time, YR, are included in the study. An example of right
truncation

2.3 Estimation of the Survival and Cumulative Hazard Func-
tions

The survival function and cumulative hazard function can be estimated by parametric and
non-parametric methods. We will describe both of these approaches in this section.

2.3.1 Non-Parametric Methods

In a sample of right censored survival data each of the n subjects is represented by a pair of
random variables (ti, δi), where ti represents event time or censoring time for each subject, and
δi is the indicator of whether the time is an event time or a censoring time. If all the event
times ti occur at D distinct times t1 < t2 < ... < tD, and di are the number of events. Let
Yi be the number of subjects that are at risk at time ti. The quantity di/Yi is an estimate
of the conditional probability that a subject experiences the event of interest at time ti, given
that he or she survived until time ti. This quantity will be the basic tool to construct the two
non-parametric estimators described in this section for the survival and the cumulative hazard
functions.

Product-Limit Estimator

An estimator proposed by Kaplan and Meier (1958) called Product-Limit estimator (also known
as Kaplan-Meier estimator) is the standard estimator for the survival function, and it is defined
as

Ŝ(t) =

{
1 if t < t1,∏

ti≤t

[
1− di

Yi

]
, if t ≥ t1

. (2.8)

6 CHAPTER 2. SURVIVAL ANALYSIS THEORY

The Product-Limit estimator is well defined for all time points ti that are smaller than the
largest observed time tmax. This estimator is a step function with jumps at each time point ti,
with the size of the jumps proportional to the number of events and the number of censored
observations at time point ti.

From the Product-Limit estimator we can estimate the cumulative hazard function.
H(t) = − ln[S(t)],

Ĥ(t) = − ln[Ŝ(t)]. (2.9)

Nelson-Aalen Estimator

The second estimator that was suggested first by Nelson (1972) and rediscovered later by Aalen
(1978), is called Nelson-Aalen estimator for cumulative hazard function and it is well defined
up to the largest observed time as

H̃(t) =

{
0 if t < t1,∑

ti≤t
di
Yi

if t ≥ t1
. (2.10)

From the Nelson-Aalen estimator for the cumulative hazard function we can derive an esti-
mator for the survival function as follows,

S̃(t) = exp[−H̃(t)]. (2.11)

Both of these estimators are based on the assumption that censoring is non-informative.
When this assumption does not hold then both of these estimators estimate the wrong function
and the results can be misleading.

2.3.2 Parametric Methods

In the previous section we described two non-parametric methods to estimate the survival
function and the cumulative hazard function. In this section we will briefly describe the most
common parametric survival models that are used to estimate the survival function. In a
parametric survival model the survival times are assumed to follow a known distribution, such
as, the exponential, the Weibull, the Gompertz, and the log-logistic. Table 2.1 lists the basic
survival functions for these distributions.

Distribution
Hazard Rate
h(x)

Survival Function
S(x)

Probability Density Function
f(x)

Exponential
λ > 0, x ≥ 0

λ exp[−λx] λ exp[−λx]

Weibull
α, λ > 0, x ≥ 0

αλxα−1 exp[−λxα] αλxα−1 exp[−λxα]

Gompertz
α, β > 0, x ≥ 0

β expαx exp
[
−β

α(exp
αx−1)

]
β expαx exp

[
−β

α(exp
αx−1)

]
Log-logistic
α, β > 0, x ≥ 0

(α/β)(x/β)α−1

1+(x/β)α
1

1+(x/β)α
(α/β)(x/β)α−1

(1+(x/β)α)2

Table 2.1: Parametric distributions in survival analysis

The exponential and the Weibull are the most common distributions for modeling lifetime
data. The exponential is the most simple distribution to model survival data based on the
constant hazard rate and the memoryless property, although those two properties limit its
applicability in survival analysis. The popularity of Weibull distribution arises from its flexibility
to model survival data. Its hazard rate can be monotone increasing (for α > 1), monotone
decreasing (for 0 < α < 1), or constant (for a = 1).

2.4. SEMI-PARAMETRIC MODELS 7

2.4 Semi-Parametric Models

Often, subjects in a survival study have characteristics that may effect their time to event, those
characteristics can range from age, gender, education to physical activity, smoking and drinking
habits or can be a vast range of biomarkers. In order then to have more accurate results the
survival function must adjust to account for these variables. A method to account for these
covariates was introduced by Cox (1972) and is called Cox proportional hazards model.

2.4.1 Cox model with time-independent covariates

Let n be the size of a sample of survival data, we can describe each subject with the triple
(Tj , δj ,Zj), with j = 1, 2, ..., n, where Tj is the event time for the j subject, δj is the event
indicator for the j subject and Z = (Z1, Z2,, Zp) is the vector of p covariates for each subject
j.

The hazard rate for time t for the proportional hazard model is defined as

h(t|Z) = h0(t)c(β
tZ), (2.12)

where h0(t) is an unspecified baseline hazard rate, βt = (β1, β2,, βp) is a vector of p pa-
rameters, and c(βtZ) is a known function linking the covariates with the parameters. Another
advantage of this model besides the fact that can adjust for covariates is that the unspecified
baseline hazard gives the model flexibility. In practice this means even without a specific form
for the baseline hazard function the Cox model we can obtain good estimates for the survival
curves, regression coefficients and hazard ratios, for a wide variety of survival data.

Since the hazard rate must be positive a common function to link the covariates with the
parameters is the exponential

c(βtZ) = exp(βtZ) = exp

[
p∑

k=1

βkZk

]
, (2.13)

and the hazard rate h(t|Z) is defined as

h(t|Z) = h0(t) exp(β
tZ) = h0(t) exp

[
p∑

k=1

βkZk

]
. (2.14)

If we take two subjects with covariate values Z and Z∗, the ratio of their hazard rates is

h(t|Z)
h(t|Z∗)

=
h0(t) exp

[∑p
k=1 βkZk

]
h0(t) exp

[∑p
k=1 βkZ

∗
k

] = exp

[
p∑

k=1

βk(Zk − Z∗
k)

]
, (2.15)

which is constant. This hazard ratio describes the relative risk of a subject with risk factor Z,
to experience the event of interest compared to a subject with risk factor Z∗ adjusting for the
other covariates. If for example covariate Z1 describes a treatment effect one for treatment A
and zero for treatment B, then the relative risk of treatment A versus treatment B adjusting
for other covariates is, h(t|Z)/h(t|Z∗) = exp(β1).

2.4.2 Cox model with time-dependent covariates

Often in survival studies there are explanatory variables whose values change during the duration
of the study. These variables can be either continuous or categorical and are called time-
dependent covariates. The Cox proportional hazard model that was introduced in the previous
section can be extended to include time-dependent covariates.

As before if we have a sample of survival data of size n, we can describe each subject with
a triple (Tj , δj , [Zj(t), 0 ≤ t ≤ Tj]), with j = 1, 2, ..., n, Tj is the event time for the j subject,

8 CHAPTER 2. SURVIVAL ANALYSIS THEORY

δj is the event indicator for the j subject and Zj(t) = (Zj1(t), Zj2(t),, Zjp(t) is the vector
of p covariates for each subject j. The Zj(t) can represent time-dependent covariates or time-
independent covariates and we assume that their values are known at each time point t. The
proportional hazards models that also includes time-dependent covariates is defined as

h(t|Z(t)) = h0(t) exp(β
tZ(t)) = h0(t) exp

[
p∑

k=1

βkZk(t)

]
. (2.16)

Time-dependent variables can also used to test the proportional hazard assumption of the
Cox model. In that case the Cox model can be extended to contain an interaction term between a
time-independent covariate that violates the proportional hazard assumption and some function
of time. For example if we want to assess the proportional hazards assumption for Gender, we
can extend the Cox model to include the interaction term Gender x t. If the coefficient of the
interaction term is significant, the proportional hazards assumption for Gender is violated.

2.5 Censoring Assumptions

All the methods for analyzing survival data that we described in this chapter are based on the
assumption that censoring is non-informative, independent or random. Although the definition
for those three types of censoring is similar it is not identical, but the important thing they have
in common is that censoring observations do not relate to the event of interest. For this reason
these terms are often mixed up, and the term non-informative censoring is mostly used for all
three types of censoring. If the assumption does not hold the censoring is called informative
or dependent, and not accounting for it can lead to biased results. For example if subjects
that are censored are more likely to experience the event of interest that the ones that are
not censored, then the estimated survival curve at any time point t will overestimate the true
survival probability.

The three definitions for types of censoring based on the book of Kleinbaum and Klein
(2012) are as follows.

Random Censoring

Subjects that are censored at time t are representative of all subjects that remain at risk at time
t with respect to their survival experience. More simple this means that the risk of experiencing
the event for subjects who are censored is equal to the subjects that remain at risk in the study.

Independent Censoring

Subjects within a subgroup who are censored at time t are representative of all the subjects in
that subgroup who remain at risk at time t with respect to their survival experience. In other
words, censoring is independent as long as it is random within each subgroup of interest.

Censoring can be independent and not random, for example if we study the survival of two
groups A and B of subjects, censoring can be random within each group thus be independent,
but if the survival probabilities are different in each group the censoring is not random.

Non-Informative Censoring

Let T be the distribution of the time to event random variable and, C the distribution of time
to censoring random variable. When the distribution of T provides no information about the
distribution of C, and vice versa, then we say the censoring is non-informative.

Situations where the condition of non-informative censoring is valid is when subjects are
lost to follow-up for reasons independent of the study, for example moving, illness or changing
of lifestyle unrelated to the study, etc.

Chapter 3

Simulation study with
time-independent covariates

In this chapter we will evaluate the assumption of independent censoring in survival analysis.
As we discussed briefly in the previous chapter, methods of estimating the survival probability
typically assume that censoring is independent or non-informative. In practice however this
assumption is often violated and, if it is not taken into account, it may introduce bias or even
can nullify the results from certain statistical methods for survival data.

In order to evaluate how the presence of dependent censoring influences the result of standard
methods, we will perform a series of Monte Carlo simulations. In this chapter we will focus only
on time-independent covariates and in the next chapter we will add time-dependent covariates.

We will create an artificial population with two time-independent covariates Age and Treat-
ment. We will generate events and censoring times by using an algorithm proposed by Bender
[2], and in order to introduce dependent censoring both the events and censoring times distribu-
tions will be dependent on the time-independent covariates Age and Treatment. We will compare
different scenarios for weak, moderate and strong association between the time-independent co-
variates and the censoring model and we will use two distribution for the event and censoring
times, Weibull and Exponential to evaluate how the presence of dependent censoring effects the
survival curves estimated by the Kaplan-Meier method. Finally we will introduce two metrics
in order to quantify the bias that is produced by dependent censoring.

3.1 Simulation set-up

In this section we will give a detailed description of the artificial population, the method to
generate events and censoring times, the way we will introduce dependent censoring and the
diagnostics we will use in order to quantify the bias.

3.1.1 Introduction to Monte Carlo simulations

Since statistical methods are based on a sample from the population there is uncertainty in the
estimate of the true parameter θ in the population the inference is based on. If we assume the
estimate of the true parameter θ̂ comes for a probability distribution, Monte Carlo simulations
can be used to estimate the sampling distribution of θ̂, by resampling from a given sample or
by repeatedly sampling from an artificial population. For each sample an estimate of the true
parameter θ̂, is calculated. Then the estimates θ̂1, θ̂2, ..., θ̂M of the M samples that have been
drawn can be used to estimate the sampling distribution of θ̂. In the simulations of this chapter
since we do not need to estimate model parameters but just the survival curves, M = 50 will
be sufficient.

9

10 CHAPTER 3. SIMULATION STUDY WITH TIME-INDEPENDENT COVARIATES

3.1.2 Define the artificial population

For the simulation study of this chapter we will define a sample of size of n = 500. For each
subject in the sample we will generate two time-independent covariates Age and Treatment.
Age will be generated from a normal distribution with mean 50 and standard deviation 10, and
for generation of the survival and censoring times the Z-values for Age will be used. For the
variable Treatment subjects will randomly receive treatment A (Treatment=1) or treatment B
(Treatment=0) with equal probability 0.5.

3.1.3 Generation of survival and censoring times

For each individual i in the sample, we have to generate a pair of variables (ti, δi), with ti =
min(xi, ci), where xi is time to event and ci is the censoring time, and δi = 1[ti=xi]. In order
to obtain the pair of (ti, δi), we have to generate event time xi and censoring time ci for each
individual and take the minimum value.

The Exponential and Weibull distribution are two of the most commonly used distributions
to describe survival data, both of them satisfy the assumption of proportional hazards , when
they are used as baseline hazards in a Cox proportional hazards model. In this section we will
show how to simulate a Cox proportional hazards model by generating survival times following
the exponential distribution, based on the work of Bender [2].

The hazard function for the Cox model is defined as

h(t|Z) = h0(t) exp(β
tZ), (3.1)

where t is the survival time, Z is a vector with the model time-invariant covariates, β is a vector
with the regression coefficients and h0(t) is the baseline hazard function. The survival function
for the Cox proportional hazards model is defined as

S(t|Z) = exp[−H0(t) exp(β
tZ)], (3.2)

with

H0(t) =

∫ t

0
h0(u)du (3.3)

the cumulative baseline hazard function. The cumulative distribution of the Cox model can be
defined as

F (t|Z) = 1− exp[−H0(t) exp(β
tZ)]. (3.4)

If Y is a random variable following a distribution with function F , U = F (Y) will follow a
uniform distribution in [0, 1] based on the theorem of probability integral transform, also if U
follows a uniform distribution then the variable 1−U will follow a uniform distribution at [0, 1].
Let T be the survival time of the Cox proportional hazards model of (3.1), then from (3.3) we
have

U = exp[−H0(T) exp(β
tZ)]. (3.5)

H0 can be inverted, if h0(t) > 0 for all t, and the survival time of the Cox proportional
hazard model can be simulated from

T = H−1
0 [− log(U) exp(−βtZ)]. (3.6)

where U ∼ Uni[0, 1]. Because random numbers following a uniform distribution can easily be
simulated from statistical programs, equation (3.6) is suitable to generate survival and censoring
times.

3.1. SIMULATION SET-UP 11

Exponential distribution

The exponential distribution with scale parameter λ > 0 and constant baseline hazard h0(t) = λ,
has a cumulative baseline hazard function H0(t) = λt. Since h0(t) > 0 for all t, the cumulative
baseline hazard function can be inverted, giving

H−1
0 (t) = λ−1t. (3.7)

Thus, if we insert (3.7) into (3.6), we have

T = λ−1[− log(U) exp(−βtZ)] = − log(U)

λ exp(βtZ)
. (3.8)

So, the Cox proportional hazard model h(t|Z) = λ exp(βtZ), with constant baseline hazard will
give exponentially distributed survival times with scale parameter λ(z) = λ exp(βtZ), that it
depends on the regression coefficients and the time-invariant covariates of the model.

Weibull distribution

Weibull is another frequently used distribution to describe survival data, but compared to the
exponential distribution it does not have a constant hazard function, which is more realistic
for real survival data. The Weibull distribution is described by two positive parameters, the
scale parameter λ > 0 and shape ν > 0. For values of ν > 1 the hazard function increases and
for 0 < ν < 1 the hazard function decreases, and for the special case of ν = 1, the Weibull
distribution is reduced to the exponential distribution with constant hazard function.

The cumulative baseline hazard function of the Weibull distribution is H0(t) = λtν , with
h0(t) > 0 for all t, so the inverse of the cumulative baseline hazard is defined as

H−1
0 (t) = (λ−1t)1/ν . (3.9)

Again, by inserting (3.9) in (3.6), we get an expression for survival time T with the baseline
hazard function of a Weibull distribution

T = [λ−1 − log(U) exp(−βtZ)]1/ν =

[
− log(U)

λ exp(βtZ)

]1/ν
. (3.10)

From equation (3.10) it follows that the survival times will follow a Weibull distribution with
scale parameter λ(z) = λ exp(βtZ), that varies based on the regression coefficients and the time
covariates, and a fixed shape parameter ν.

3.1.4 Dependent censoring

In order to introduce dependent censoring in our sample, both the event distribution and the
censoring distribution must be dependent on the covariates. Based on methodology of this
section, we can simulate one set of times from equation (3.8) for the exponential distribution, or
equation (3.10) for the Weibull distribution, one for the event times and one for the censoring
times for each subject. Then we take the minimum of those two values to obtain the observed
survival time and the corresponding event indicator, one if the event is observed and zero if the
event is not observed.

Thus, in case of exponential distribution to generate survival times, we have X ∼ exp(λx)
and C ∼ exp(λc) for the event times and the censoring times respectively. The hazard rates for
the time to event and censoring time are defined as

hX(t|Z) = h0X (t) exp(β
tZ), (3.11)

12 CHAPTER 3. SIMULATION STUDY WITH TIME-INDEPENDENT COVARIATES

hC(t|Z) = h0C (t) exp(ϕ
tZ). (3.12)

with h0X and h0C the baseline hazards, and β and ϕ the regression coefficients for time to event
and time to censoring respectively.

From the above equations of the hazards rates for time to event and censoring time we can
see that the strength of the dependency between event times X and censoring times C can
be adjusted by varying the regression coefficients β and ϕ. And we can vary the censoring
percentage by adjusting the baseline hazards h0X and h0C .

The event time xi, censoring time ci, and the observed pair of variables (ti, δi) for each indi-
vidual i with covariates Agei and Treatmenti will be generated using the following algorithm.

Generate xi, ci pair of variables (ti, δi) and covariates for subject i :

Step 1: Genarate the baseline coviarates Age and Treatment, Age ∼ N(50, 10)
and for Treatment, subjects will randomly receive Treatment A (Treat-
ment=1) or Treatment B (Treatment=0) with equal probability 0.5. Zi =
c(Agei, T reatmenti), the vector of covariates.

Step 2: Generate U1i , U2i ∼ U [0, 1].

Step 3: Generate xi and ci using equation (3.8)

xi = − log(U1)
λ exp(βtZi)

,

ci = − log(U2)
λ exp(ϕtZi)

.

Step 4: From xi and ci obtain the pair (ti, δi) :

ti = min(xi, ci),

and

δi =

{
1 if xi ≤ ci,
0 if xi > ci

.

With the same algorithm we will generate survival times using the Weibull distribution
but instead of using equation (3.8) we will use equation (3.10) to generate event times xi and
censoring times ci.

3.1.5 Estimation of survival curves

The goal of these simulations is to compare how the presence of dependent censoring affects the
estimation of the survival curve. This will be done by comparing the true survival curve with
the curve estimated by the standard [Kaplan-Meier] method. The Kaplan-Meier estimator will
be calculated at k predefined time points τ1, τ2,, τk.

True Survival Curve

The true survival curve can be estimated either parametrically or from the Monte Carlo sim-
ulations, here will choose the latter method, because it can represent better real life situations
where only the event times for subjects are observed and the model parameters are unknown.

For every Monte Carlo simulation j, with j = 1, ...,M the survival model is fitted based only
on the event times xi and not on the ti = min(xi, ci), in this case all the subjects in the study
experience the event of interest. Next we calculate the survival probabilities with the Kaplan-
Meier estimator at the predefined time points τ1, τ2,, τk, and we get the survival probability
estimates Ŝj(τ1), Ŝj(τ2), ..., Ŝj(τk) for each Monte Carlo simulation j.

3.1. SIMULATION SET-UP 13

Survival Curve from censored data using the Kaplan-Meier Estimator

For each Monte Carlo simulation j, we estimate the survival curve based on the pair of variables
(ti, δi), and the survival probabilities are calculated again with the Kaplan-Meier estimator for
the predefined time points τ1, τ2,, τk. The survival probabilities are denoted as S̃(τk).

3.1.6 Diagnostics

If Ŝ(τk) and S̃(τk) are the estimates of the survival probabilities estimated with the true (un-
censored) survival data and the standard Kaplan-Meier method applied to the censored data
respectively. For M Monte Carlo simulations the mean survival probability for each method at
each time point τk is defined as

¯̂
S(τk) =

∑M
j=1

Ŝj(τk)
M ,

¯̃S(τk) =
∑M

j=1
S̃j(τk)
M ,

with k = 1, ..., p. With those means we can plot the survival curves estimated by each
method for the predefined time points τk and compare them. We will introduce two methods
in order to quantify the difference between the two survival curves.

Area between curves

The area of a region that is bound on a ≤ x ≤ b by two continuous functions y1, y2 with
y2(x) ≥ y1(x) is given by, A =

∫ b
a y2(x)− y1(x) dx. For each simulation j will calculate the area

Aj =

∫ b

a
S̃j(τk)− Ŝj(τk) dτk, (3.13)

between the standard Kaplan-Meier curve and the true survival curve in the interval [0,b], where
b is the last observed event time. Next we divide the area A by the last observed event time of the
simulation j, in order to get the mean, and then average over the M Monte Carlo simulations.
In our case we will calculate the area between the curves using the function area.between.curves
from package geiger, which use the trapezoid rule to calculate the area.

In some of the simulations, particularly when the strength of the censoring mechanism is
small, the two curves cross at some time points resulting in the area between curves being
smaller since it subtracts the area that is below the true survival curve Ŝ(τk) from the area that
is above Ŝ(τk). Since that issue occurs only in some simulations when the censoring mechanism
is low and we mainly are interested in the average overestimation of the standard Kaplan-Meier
curve S̃(τk), we opt to use equation (3.13) to calculate the area than the alternative,

A =

∫ b

a
|S̃(τk)− Ŝ(τk)| dτk, (3.14)

which will calculate the sum of the area that is above and below the true survival curve Ŝ(τk).

Maximum distance between curves

The maximum vertical distance between two continuous functions y1, y2 with y2(x) ≥ y1(x) in a
region [a, b] is defined as, D = max[y2(x)−y1(x)]. For each simulation j the maximum distance
between the curves will be calculated as,

Dj = max[S̃j(τk)− Ŝj(τk)], (3.15)

between the standard Kaplan-Meier curve and the true survival curve, where we take the max-
imum over all k’s, i.e. over all specified time points. Then we average over the M Monte Carlo
simulations to find the average maximum distance between the two curves.

14 CHAPTER 3. SIMULATION STUDY WITH TIME-INDEPENDENT COVARIATES

3.2 Simulation results for Exponentially distributed event and
censoring times

In order to evaluate the influence of dependent censoring on survival curve estimation we will
consider different scenarios, where we will vary the censoring percentage, the strength of the
censoring and the number of subjects. For this part an exponential distribution will be assumed
for the event and censoring times, and those times will be generated from equation (3.8) with
λx(t|Z) = λ0x exp(β

tZ) for the event times, and λc(t|Z) = λ0c exp(ϕ
tZ) for the censoring times,

where Zi = (Agei, T reatmenti). For every simulation, time to event will be simulated with the
same coefficients β = (0.5, 0.1) and baseline hazard λ0x = 0.1.

3.2.1 Strength of the dependency of the censoring mechanism on the time-
invariant covariates

The strength of the dependency can be varied by adjusting the coefficients ϕ = (ϕ1, ϕ2). As the
values of ϕ get bigger the censoring is more dependent on the covariates Z = (Age, Treatment).
For this simulation the sample size will be n = 500, the β coefficients and the baseline hazard
λ0x for the time to event will be the same. The coefficients ϕ will vary in order to simulate
different levels of dependency of the censoring times on the covariates Z. The baseline hazard
λ0c will be adjusted in order to keep the censoring percentage at 33%.

In Figure 3.1 we see the results for three different pairs of values for the ϕ coefficients. As the
ϕ coefficients get smaller in absolute value the covariates have smaller effect on the hazard. Thus
the probability of getting censored is correlated with the probability of experiencing the event,
correlation between the generated event and censoring times is 0.119 for (ϕ1, ϕ2) = (1.5, 0.5) and
drops to 0.011 for (ϕ1, ϕ2) = (0.1, 0). This leads to overestimation of the survival probabilities
using the standard Kaplan-Meier since less event are observed. From the plots in figure 3.1 we
see as the dependency gets weaker the fit of the Kaplan-Meier method gets better.

3.2. SIMULATION RESULTS FOR EXPONENTIALLY DISTRIBUTED EVENT AND CENSORING TIMES 15

(a) (ϕ1, ϕ2) = (1.5, 0.5), λ0c = 0.027 (b) (ϕ1, ϕ2) = (0.5, 0.1), λ0c = 0.05

(c) (ϕ1, ϕ2) = (0.1, 0), λ0c = 0.06

Figure 3.1: The real survival curve (blue) based on uncensored data and the survival curve esti-
mated with the Kaplan-Meier method on censored data (red) for different values of ϕ coefficients.
These are the average curves over 50 simulations with (β1, β2) = (0.5, 0.1) and λ0x = 0.1.

Table 3.1 shows the parameters that were used for this simulation. Besides the visual
comparison of the two curves we introduced two functions to measure the dissimilarities between
the two curves. In the Table 3.1 we see the results of the average area between the two curves
for three different cases of coefficients ϕ, divided by time period of follow up. The max distance
shows the maximum distance the curves have. The average area from Table 3.1 gets smaller as
the strength of the dependency gets weaker. The max distance values as we see from Table 3.1
is not very reliable method by itself to evaluate the dissimilarities between the curves, although
the have an decreasing trend.

n h0x exp(β1) exp(β2) h0c exp(ϕ1) exp(ϕ2) Average area Max distance
(ϕ1, ϕ2)=(1.5,0.5) 500 0.1 1.65 1.10 0.027 4.50 1.65 0.013 0.038
(ϕ1, ϕ2)=(0.5,0.1) 500 0.1 1.65 1.10 0.05 1.65 1.10 0.007 0.031
(ϕ1, ϕ2)=(0.1,0) 500 0.1 1.65 1.10 0.06 1.10 1.00 0.002 0.028

Table 3.1: Simulation parameters for event and censoring models, with (β1, β2) = (0.5, 0.1),scale
λ0x = 0.01, different values for ϕ coefficients and λ0c respectively, and 33% censoring.

3.2.2 Percentage of censored subjects

Next we will vary the percentage of censored subjects by adjusting the parameter λ0c . The
ϕ parameters of the censoring model will be equal to (0.5,0.1) and for the events time model
parameters β will again be equal to (0.5,0.1) and λ0x = 0.1.

16 CHAPTER 3. SIMULATION STUDY WITH TIME-INDEPENDENT COVARIATES

(a) 10%, λ0c = 0.012 (b) 30%, λ0c = 0.045

(c) 50%, λ0c = 0.1

Figure 3.2: The real survive curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) for different percentage of cen-
sored subjects.These are the average curves over 50 simulations with (β1, β2) = (0.5, 0.1) and
λ0x = 0.1, for the events model and (ϕ1, ϕ2) = (0.5, 0.1), and different values λ0c for the cen-
soring model.

Results in Figure 3.2 show that the overestimation of the survival curves using the standard
Kaplan-Meier method gets worse as the censoring percentage is increasing. This trend is more
clear from Table 3.2 with the increase of Average area and Max distance as the censoring
percentage is increasing.

n h0x exp(β1) exp(β2) h0c exp(ϕ1) exp(ϕ2) Average area Max distance
10% 500 0.1 1.65 1.10 0.012 1.65 1.10 0.0007 0.012
30% 500 0.1 1.65 1.10 0.045 1.65 1.10 0.006 0.028
50% 500 0.1 1.65 1.10 0.1 1.65 1.10 0.015 0.058

Table 3.2: Simulation parameters for event and censoring models, with (β1, β2) = (0.5, 0.1), and
λ0x = 0.1 for the event times model, and (ϕ1, ϕ2) = (0.5, 0.1), for the censoring model.

From Table 3.2 we can see clearly by looking the values of the Average area and Max distance
the overestimation of the survival curve calculated by the standard method is increasing as the
censoring percentage is increasing.

3.2.3 Size of sample

Finally we will vary the sample size while keeping the censoring percentage at 33%. The ϕ
parameters of the censoring model will be equal to (0.5, 0.1) with λ0c = 0.05 and for events time
model parameters β will be equal to (0.5, 0.1) with λ0x = 0.1.

3.3. SIMULATION RESULTS FORWEIBULL DISTRIBUTED EVENT AND CENSORING TIMES 17

(a) n = 250 (b) n = 500

(c) n = 1000

Figure 3.3: The real survival curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) for different sample sizes. These
are the average curves over 50 simulations with (β1, β2) = (0.5, 0.1), λ0x = 0.1 and (ϕ1, ϕ2) =
(0.5, 0.1), λ0c = 0.05, for the event and censoring model respectively.

From Figure 3.3, results for the simulation shown that as the sample size increases the curve
of the standard method improves slightly between different sample sizes.

n h0x exp(β1) exp(β2) h0c exp(ϕ1) exp(ϕ2) Average area Max distance
(ϕ1, ϕ2)=(0.5,0.1) 250 0.1 1.65 1.10 0.05 1.65 1.10 0.008 0.046
(ϕ1, ϕ2)=(0.5,0.1) 500 0.1 1.65 1.10 0.05 1.65 1.10 0.007 0.032
(ϕ1, ϕ2)=(0.5,0.1) 1000 0.1 1.65 1.10 0.05 1.65 1.10 0.006 0.023

Table 3.3: Simulation parameters for event and censoring models, with (β1, β2) = (0.5, 0.1),
and λ0x = 0.1 for the event times model, and (ϕ1, ϕ2) = (0.5, 0.1), λ0c = 0.05 for the censoring
model, for different sample sizes and 33% censoring.

Table 3.3 shows that there is a very small improvement when the sample increases from 250
to 500, and 1000 and it is only evident by looking at the values of the Average area and Max
distance.

3.3 Simulation results for Weibull distributed event and cen-
soring times

For this part a Weibull distribution will be assumed for the event and censoring times, and
the times will be generated from equation (3.10) with λx(t|Z) = λ0x(t) exp(β

tZ) for the event
times and λc(t|Z) = λ0c(t) exp(ϕ

tZ) for the censoring times, where Zi = (Agei, T reatmenti).
For every simulation, time to event will be simulated with the same coefficients β = (0.5, 0.1)

18 CHAPTER 3. SIMULATION STUDY WITH TIME-INDEPENDENT COVARIATES

and scale parameter λ0x = 0.1. The shape parameter of the Weibull distribution will be equal
to ν = 2 for simulations for both the censoring times and events times.

3.3.1 Strength of the dependency of the censoring mechanism on the time-
invariant covariates

As the previous case of exponential distribution, first we will evaluate the strength of the
censoring mechanism by adjusting the coefficients ϕ of the censoring model for strong, medium
and weak association, while keeping the coefficients β of the event times the same. The sample
size for the simulations will be n = 500, the shape parameter of the Weibull distribution for
both the censoring and event times will be ν = 2, and the shape parameter λ0c of the censoring
model will adjusted in order to keep the censoring percentage at 33%.

Figure 3.4 shows the results for the three different pairs of values for the ϕ coefficients. As
the ϕ coefficients of the time-invariant covariates get bigger the covariates have bigger effect
on the hazard. Thus the probability of getting censored is correlated with the probability of
experiencing the event, correlation between the generated event and censoring times is 0.135 for
(ϕ1, ϕ2) = (1.5, 0.5) and drops to 0.007 for (ϕ1, ϕ2) = (0.1, 0). This leads to overestimation of the
survival probabilities using the standard Kaplan-Meier estimator since fewer events are observed
specially at later points where the observations are censored. From the plots in Figure 3.4 we
see as the dependency gets weaker the fit of the Kaplan-Meier method gets better, but still as
we see from Figure 3.4(b) even for a moderate value of the ϕ = (0.5, 0.1) parameters there is a
small difference between the two curves.

(a) (ϕ1, ϕ2) = (1.5, 0.5), λ0c = 0.027 (b) (ϕ1, ϕ2) = (0.5, 0.1), λ0c = 0.05

(c) (ϕ1, ϕ2) = (0.1, 0), λ0c = 0.06

Figure 3.4: The real survival curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) for different values of ϕ coef-
ficients.These are the average curves over 50 simulations with (β1, β2) = (0.5, 0.1), λ0x = 0.1
and νx = 2.

3.3. SIMULATION RESULTS FORWEIBULL DISTRIBUTED EVENT AND CENSORING TIMES 19

n λ0x exp(β1) exp(β2) λ0c exp(ϕ1) exp(ϕ2) Average area Max distance
(ϕ1, ϕ2)=(1.5,0.5) 500 0.1 1.65 1.10 0.027 4.50 1.65 0.012 0.038
(ϕ1, ϕ2)=(0.5,0.1) 500 0.1 1.65 1.10 0.05 1.65 1.10 0.005 0.030
(ϕ1, ϕ2)=(0.1,0) 500 0.1 1.65 1.10 0.06 1.10 1.00 0.001 0.027

Table 3.4: Simulation parameters for event and censoring models, with (β1, β2) = (0.5, 0.1),
scale λx = 0.1, shape νx = 2, for the event times model, shape νc = 2 and different values for ϕ
coefficients and λ0c , for the censoring model, and 33% censoring.

Table 3.4 shows the parameters that were used for this simulation and the results for the
Average area and Max distance. We observe a similar trend as in the case of the exponentially
distributed event and censoring times, with Average area and Max distance decreasing as the
strength of the dependency gets weaker. The values for the Average area and Max distance are
close to the values we observed in the case of the exponential distributed event and censoring
times.

3.3.2 Percentage of censored subjects

By adjusting the scale parameter of the censoring model λ0c , we can change the percentage
of censored subjects. For the censoring model simulations will be performed with parameters
ϕ equal to (0.5,0.1). For the event times model parameters β will be equal to (0.5,0.1), scale
λ0x = 0.1 and for the both models the shape parameter of the Weibull distribution will be
νx = νc = 2.

(a) 10%, λ0c = 0.012 (b) 30%, λ0c = 0.045

(c) 50%, λ0c = 0.1

Figure 3.5: The real survive curve (blue) based on uncensored data and the survival curve esti-
mated with the Kaplan-Meier method on censored data (red) for different percentage of censored
subjects.These are the average curves over 50 simulations with (β1, β2) = (0.5, 0.1), λ0x = 0.1
and shape νx = 2, for the events model and (ϕ1, ϕ2) = (0.5, 0.1), shape νc = 2 and different
values λ0c for the censoring model.

20 CHAPTER 3. SIMULATION STUDY WITH TIME-INDEPENDENT COVARIATES

From Figure 3.5 we see that for 10% censoring the two curves has hardly any difference, for
30% there is some small difference between the two curves, and for 50% the difference is more
clear, specially at the later time points (t > 4), where more observations are censored.

n λ0x exp(β1) exp(β2) λ0c exp(ϕ1) exp(ϕ2) Average area Max distance
10% 500 0.1 1.65 1.10 0.012 1.65 1.10 0.0007 0.011
30% 500 0.1 1.65 1.10 0.045 1.65 1.10 0.004 0.028
50% 500 0.1 1.65 1.10 0.1 1.65 1.10 0.01 0.057

Table 3.5: Simulation parameters for event and censoring models, with (β1, β2) = (0.5, 0.1),
λ0x = 0.1 and shape νx = 2 for the event times model, and (ϕ1, ϕ2) = (0.5, 0.1), shape νc = 2
for the censoring model.

3.3.3 Size of sample

Finally we will vary the sample size while keeping the censoring percentage at 33%. The ϕ
parameters of the censoring model will be equal to (0.5, 0.1) with λ0c = 0.05 and for events time
model parameters β will be equal to (0.5, 0.1) with λ0x = 0.1. The shape parameter for both
models will be νx = νc = 2.

(a) n = 250 (b) n = 500

(c) n = 1000

Figure 3.6: The real survival curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) for different sample sizes. These
are the average curves over 50 simulations with (β1, β2) = (0.5, 0.1), λ0x = 0.1, νx = 2 and
(ϕ1, ϕ2) = (0.5, 0.1), λ0c = 0.05, νc = 2 for the event and censoring model respectively.

Again from Figure 3.6 and Table 3.6, we notice that increasing the sample size has a very
small impact on the prediction of the survival curve with the standard method, the performance
increases a little bit as we see from the average and the max distance but the differences are
extremely small.

3.4. CONCLUSIONS 21

n λ0x exp(β1) exp(β2) λ0c exp(ϕ1) exp(ϕ2) Average area Max distance
(ϕ1, ϕ2)=(0.5,0.1) 250 0.1 1.65 1.10 0.05 1.65 1.10 0.006 0.045
(ϕ1, ϕ2)=(0.5,0.1) 500 0.1 1.65 1.10 0.05 1.65 1.10 0.006 0.031
(ϕ1, ϕ2)=(0.5,0.1) 1000 0.1 1.65 1.10 0.05 1.65 1.10 0.005 0.022

Table 3.6: Simulation parameters for event and censoring models, with (β1, β2) = (0.5, 0.1),
λ0x = 0.1 and shape νx = 2 for the event times model, and (ϕ1, ϕ2) = (0.5, 0.1), λ0c = 0.05 and
shape νc = 2 for the censoring model, for different sample sizes.

3.4 Conclusions

The simulations that were carried out in this chapter with different scenarios for the strength
of censoring mechanism, the censoring percentage, and the sample size show how the standard
method to calculate the survival curve performed in the presence of dependent censoring. Re-
sults showed that although there is a difference between the true survival curve and the curve
calculated from the standard method, these differences seem significant only in the case when
censoring was around 50% and when the coefficients ϕ that were associated with censoring had
values (ϕ1, ϕ2) = (1.5, 0.5). For a moderate value of the coefficients ϕ and with a censoring
percentage around 33%, which are closer to real life scenarios, the differences between the two
curves are small and within the confidence intervals of a single survival curve for a chosen sample
size as we can see from the graphs on the Appendix A.1 . From the simulations in this chapter
we can conclude that dependent censoring does not seem as a significant problem as long as the
values of the coefficients of the time-invariant covariates that can influence dependent censoring
are not unusual high. In the next chapter we will explore if this conclusion is different if we add
time-dependent covariates to the dataset.

22 CHAPTER 3. SIMULATION STUDY WITH TIME-INDEPENDENT COVARIATES

Chapter 4

Simulation study with
time-dependent Covariate

On the previous chapter we used the method introduced by Bender [2] to generate event and
censoring times by using the Cox proportional model with exponential and Weibull distribu-
tions for the baseline survival. However, generating event and censoring times that depend
on time-dependent covariates is more challenging. The reason is that an individual’s outcome
corresponds to multiple values of a covariate over time, and where the number of the observa-
tions of the covariate may vary across subjects, for example if the time-dependent covariate is
a biomarker. Using the method introduced by Bender [2] in this case is only possible in special
cases because it will require to invert the expression H0(t) exp(β

tZ(t)). This inversion cannot
be done easily and it is only possible if the changes over time for the time-dependent covariate
can be described by a parametric function and are defined over the range of study time t, as
shown by Sylvestre and Abrahamowicz [9].

Several methods have been proposed to generate event and censoring times with time-
dependent covariates. Austin [1] extended the work of Bender [2] and presents closed form
expressions to generate survival times that follow exponential, Weibull or Gompertz distribu-
tions for the baseline survival, with a vector of time-invariant covariates and one time-dependent
covariate. However as stated in the previous paragraph this only works if changes over time of
the time-dependent covariate can be described by a parametric function and are defined over
the range of study time t.

Methods that do not require inverting the cumulative hazard functions have been proposed.
Sylvestre and Abrahamowicz [9] proposed an algorithm that generates event times conditional
on time-dependent covariates, which matches survival times with an independently generated
vectors of covariates, based on a probability law derived from a partial likelihood of the Cox
proportional hazards model. There is no closed form for the generated survival times but
this method allows for the use of any number of time-dependent and time-invariant covariates.
There is no need to specify a parametric form for the time-dependent covariates or how they vary
over time, although the accuracy of the algorithm decreases with increasing rates of censoring.
Hendry [3] expanding the work of Zhou [13] proposed an algorithm to generate event times with
any number of time-invariant and time-dependent covariates, that relies on a transformation
of a random variable according to a truncated piecewise exponential distribution. The bounds
of the truncation allow flexibility in the number of measurements that are of interest in a
given scenario, and the piecewise exponential distribution allows the covariates to vary as step
functions over the time scale.

Finally Ngwa [6] proposed a method that builds on the work of Bender [2] and Austin [1]
for generating event and censoring times by deriving a closed form expression that links a set
of time-invariant covariates and one time-dependent covariate to the event and censoring times
when the baseline survival follows an Exponential or a Weibull distribution using the Lambert

23

24 CHAPTER 4. SIMULATION STUDY WITH TIME-DEPENDENT COVARIATE

W Function. This method does not require the time-dependent covariate to be described by a
parametric function as is required for the method introduced by Austin [1], thus allows us to
have a more realistic scenario for the time-dependent variable. Also the method offers a closed
form expression for the survival times and because of that is faster compared to the methods
that do not offer a closed form, which can be computationally heavy. For the above reasons and
because our goal is to evaluate the presence of dependent censoring, we will choose the method
proposed by Ngwa [6], to generate event and censoring times. This method is based on the
Two Step Approach by Tsiatis [10], in which a linear mixed effects model is used to describe
the longitudinal measurements of the biomarker and then on the second stage the fitted values
of the biomarker are inserted in the Cox proportional model as time-dependent covariates.

In this chapter, we will create an artificial population with two time-independent covariates
Age and Treatment, and one time-dependent covariate with measurements taken on 6 different
time points. The method proposed by Ngwa [6] to generate event and censoring times that de-
pend on two time-independent covariates and one time-dependent covariate will be introduced.
Finally we will compare different scenarios where we will vary the coefficients of the time-
independent covariates while holding the value of the coefficient that links the time-dependent
covariate with the survival model constant, scenarios that we vary the coefficient that links
the time-dependent covariate while the coefficients of the time-independent covariates have the
same value, and lastly scenarios with different censoring percentage.

4.1 Simulation set-up

4.1.1 Define the artificial population

For the simulation study of this chapter we will use the same sample size n = 500 and the same
time-invariant covariates that we used in the previous chapter. For each subject in the sample
we will generate two time-invariant covariates Age and Treatment. Age will be generated from a
normal distribution with mean 50 and standard deviation 10, and for generation of the survival
and censoring times the standardized Z-values for Age will be used. For the variable Treatment
subjects will randomly receive treatment A (Treatment=1) or treatment B (Treatment=0) with
equal probability 0.5. For the time-dependent covariate we will use a linear mixed effects model
to model and generate the longitudinal measurements.

4.1.2 Generation of survival and censoring times

In this section we will show how to simulate a Cox proportional hazards model by generating
survival times with baseline survival following the Weibull distribution1, based on the work
of Ngwa (2019). Before we derive the closed form expression to generate event and censoring
times we have to define the linear mixed model that will be used to describe the longitudinal
measurements of the time-dependent covariate.

Linear mixed model

For the time-dependent covariate we will assume a biomarker that we measure at six different
time points t. Let yi(t) be the value of the biomarker at the time point t for the individual
i. The value of the yi(t) is observed only at the time points at which the measurements are
taken and not at any given time point. Thus the observed values of the biomarker for each
individual at each time point j are yij = [yi(tij), j = 1, 2, .., 6]. Also the values of yi(t) may be
measured with error. In order to associate the true, unobserved value of the biomarker at time

1In this chapter we will present results only for the Weibull distribution, because the simulations with a
time-dependent covariate are very time consuming and Weibull disribution is more close to real life scenarios.

4.1. SIMULATION SET-UP 25

t denoted by y∗i (t) with the event and censoring times we model the longitudinal values with a
linear mixed model. So we have

yi(t) = y∗i (t) + εi(t)

= XT
i (t)β + ZT

i (t)bi + εi(t), εi(t) ∼ N (0, σ2),
(4.1)

where XT
i (t) and ZT

i (t) are the design matrices for the fixed and random effects, β is the vector
of the fixed effects parameters, bi is the vector of the random effects, and εi(t) is the vector of
measurement errors, which is assumed independent and with variance σ2.

For our simulation for the biomarker measurements we will use a simple linear growth
model2. A linear growth model is defined as,

yi(t) = ξ0 + ξ1t+ b0i + b1it+ εi

= (ξ0 + b0i) + (ξ1 + b1i)t+ εi

= αi0 + αi1t+ εi

= y∗i (t) + εi,

(4.2)

where yi(t) is the value of the biomarker at time point t, ξ0 is the mean intercept, ξ1 is the mean
growth rate of the biomarker, b0i and b1i are the random intercept and slope respectively, that
describe the individual deviation from the sample mean intercept and mean growth rate, and
εi is the individual’s deviation from the true value of the biomarker. The random intercept b0i,
random slope b1i together with the mean intercept ξ0 and mean slope ξ1, describe the individuals
true value of the biomarker y∗i (t).

Two step approach

The Cox proportional model including the time-dependent covariate is defined as

h(t|Z) = h0(t) exp(β
tZ+ γy∗i (t)), (4.3)

where h0(t) is the baseline hazard function, Z is the vector with the model’s time-invariant
covariates, β the vector for the parameters for the time-invariant covariates, y∗i (t) are the true
values for the biomarker, and γ is a parameter that links the time-dependent covariate to the
Cox model. The Cox proportional hazards model of (4.3) and the linear growth model (4.2) are
linked through the shared random effects b0i and b1i. To account for the dependency between
the two models we will use the two step approach. In the first step we will fit the linear growth
model to the longitudinal values of the biomarker, and estimate the values of the biomarker
based on the fitted linear growth model. In the second step we will fit in the Cox proportional
hazards model the estimates for the time-dependent covariate from the previous step in the
place of the true, unobserved values of the biomarker.

Closed form expression to simulate event and censoring times

For each individual i in the sample, we have to generate a pair of variables (ti, δi), with ti =
min(xi, ci), where xi is time to event and ci is the censoring time, and δi = 1[ti=xi]. In order
to obtain the pair of (ti, δi), we have to generate event time xi and censoring time ci for each
individual and take the minimum value.

In this section we will show how to simulate a Cox proportional hazards model by generating
survival times with baseline survival following the Weibull distribution with the help of Lambert
W Function, based on the work of Ngwa (2019).

2The method we will use to generate the events times is not applicable for more complicated models. For
example models that include interactions terms or polynomial regression terms.

26 CHAPTER 4. SIMULATION STUDY WITH TIME-DEPENDENT COVARIATE

Let T be the survival time of the Cox proportional model of (4.3), then from (3.5) we have

U = exp
[
−H0(t) exp(β

tZ+ γy∗i (t))
]
. (4.4)

The cumulative baseline hazard function of the Weibull distribution is H0(t) = λtν , with h0(t) >
0 for all t, so H0 can be inverted, and by inserting y∗i (t) = αi0 + αi1T in (4.4) we have

U = exp
[
−λT ν exp(βtZ+ γ(αi0 + αi1T))

]
log(U) = −λT ν exp(βtZ+ γ(αi0 + αi1T))

− log(U)

λ exp(βtZ+ γ(αi0))
= T ν exp(γ(αi1T)).

(4.5)

Next we will implement the Lambert W Function to equation (4.5). For an equation of the
form X = Y exp(Y), the Lambert W Function provides a solution for Y by inverting X, which
has the form Y = W (X), with W being the Lambert W Function. In order to implement the
Lambert W Function to (4.5) we have to rewrite in the form X = Y exp(Y),

(
− log(U)

λ exp(βtZ+ γ(αi0))

)1/ν

= T exp(γ(αi1T))
1/ν

(γαi1
1

ν
)

(
− log(U)

λ exp(βtZ+ γ(αi0))

)1/ν

= (γαi1
1

ν
)T exp(γ(αi1T))

1/ν

(4.6)

A solution of (4.6) using the Lambert W Function is defined as

γ(αi1T
1

ν
) = W

(
γ

(
αi1

1

ν

)(
−log(U)

λ exp(βtZ+ γ(αi0))

)1/ν
)
, (4.7)

and solving for T we have,

T =
1

γ(αi1
1
ν)

W

(
γ

(
αi1

1

ν

)(
−log(U)

λ exp(βtZ+ γ(αi0))

)1/ν
)
. (4.8)

Dependent censoring

The methodology to introduce dependent censoring in our sample is the same as the one we
introduced in chapter 3. We will simulate event and censoring times from equation (4.8).
Then we take the minimum of those two values to obtain the observed survival time and the
corresponding event indicator, one if the event is observed and zero if the event is censored.
In our simulation we will use the Weibull distribution for the event times, so in that case the
hazard functions for the time to event and censoring time are defined as

hx(t|Z) = h0x(t) exp(β
tZ+ γy∗i (t)), (4.9)

hc(t|Z) = h0c(t) exp(ϕ
tZ+ γ

′
y∗i (t)), (4.10)

with h0x and h0c the baseline hazard functions, β and ϕ the coefficients for the time-fixed
covariates relating to the event and censoring times respectively, and γ and γ

′
the parameters

that links the ’true’ longitudinal biomarker with the Cox proportional hazards model for time
to event and time to censoring.

The dependency between event times and censoring times can be adjusted through the
covariates by varying β, ϕ, or the link parameters γ and γ

′
. The percentage of censoring can

adjusted by varying the baseline hazards h0x and h0c .
The event time xi, censoring time ci and the observed pair of variables (ti, δi) for each

individual i with time-invariant covariates Agei and Treatmenti and a time-dependent covariate
will be generated using the following algorithm.

4.1. SIMULATION SET-UP 27

Generate xi, ci pair of variables (ti, δi) and covariates for subject i :

Step 1: Generate the baseline coviarates Age and Treatment, Age ∼ N(50, 10)
and for Treatment, subjects will randomly receive Treatment A (Treat-
ment=1) or Treatment B (Treatment=0) with equal probability 0.5. Zi =
(Agei, T reatmenti), the vector of time-fixed covariates.

Step 2: Generate the expected longitudinal values of the biomarker y∗i (t) for individual
i for each time point j using the linear growth model,

y∗i (tij) = αi0 + αi1tij ,

values αi0, αi1, are generated from a bivariate normal distribution with mean
ξT = (ξ0, ξ1), and variance G, which is the variance-covariance matrix of the
random effects (b0i, b1i).

Step 3: Generate the observed values of the biomarker yi(t) from a multivariate normal
distribution with mean y∗i (t) and variance V = ZiGZT

i +Σi.

Step 4: Fit a linear mixed model to yi(t) to obtain the parameters (αi0, αi1). These
parameters are used in equation (4.8) to generate the event and censoring
times.

Step 5: Generate U1i , U2i ∼ U [0, 1].

Step 6: Generate xi and ci using equation (4.8)

xi =
1

γ(αi1
1
ν
)
W

(
γ
(
αi1

1
ν

) (−log(Ui1)

λx exp(βtZ+γ(αi0))

)1/ν)
,

ci =
1

γ′ (αi1
1

ν
′)
W

(
γ

′
(
αi1

1
ν′

)(
−log(Ui2)

λc exp(ϕ
tZ+γ′ (αi0))

)1/ν′)
.

Step 7: From xi and ci obtain the pair (ti, δi) :

ti = min(xi, ci),

and

δi =

{
1 if xi ≤ ci,
0 if xi > ci

.

4.1.3 Estimation of survival curves

The methodology to compare how the presence of dependent censoring effects the estimation
of the survival curve is the same as in chapter 3. We will compare the true survival curve with
the curve estimated by the standard method (Kaplan-Meier) and we use the same methods as
we did in chapter 3 to quantify the bias, i.e., the Average Area between the curves and the
Maximum distance between curves.

4.1.4 Visualize the values of the biomarker

In Figure 4.1 we see the values of the biomarker for all 500 individuals of one simulated dataset
for all 6 time points. For the generated values of the biomarker we used a linear growth model
y∗i (tij) = αi0 + αi1tij , with αi0 = 2 and αi1 = 1 for the intercept and the slope respectively.
Each line represents an individual and how the value of the biomarker increases through the

28 CHAPTER 4. SIMULATION STUDY WITH TIME-DEPENDENT COVARIATE

time points.

Figure 4.1: Individual profiles of the biomarker

4.2 Simulation results for time-dependent covariate

To evaluate the influence of dependent censoring on survival curve estimation we will consider
three different scenarios. Firstly we will vary the censoring percentage by keeping the coefficients
ϕ and γ

′
of the censoring model the same and vary the scale parameter. Secondly we vary

the strength of dependency by adjusting the coefficients ϕ of time-invariant covariates in the
censoring model. Thirdly the strength of the parameter γ

′
that links the longitudinal model

with the Cox proportional hazards model is varied. For this simulation a Weibull distribution
will be assumed for baseline survival in the Cox model for event and censoring times, and we
will use the algorithm we described in the previous section to generate event and censoring
times. For every simulation scenario time to event will be simulated with the same coefficients
β = (0.1, 0.5), scale parameter λX = 0.01, and link parameter γ = 0.5. The shape parameter
of the the Weibull distribution will be equal to ν = 2 for all simulations for both the event and
censoring times.

4.2.1 Strength of the dependency of the censoring mechanism on time-
invariant covariates

The strength of the dependency in the time-invariant covariates can be varied by adjusting the
coefficients ϕ = (ϕ1, ϕ2) of the censoring model. As the values of ϕ get bigger the censoring is
more dependent on the covariates Z = (Age, Treatment). The values of ϕ will be (0.5, 1.5) for
strong dependency, (0.1, 0.5) for moderate dependency, and (0, 0.1) for weak dependency. For
this simulation the sample size will be n = 500, the coefficients (β1, β2) = (0.1, 0.5), the link
parameter γ = 0.5, and the shape ν = 2 and scale λ0x = 0.01 of the Weibull distribution for the
event times model will have the same values for every simulation scenario. The link parameter
γ

′
= 0.5 and shape ν

′
= 2 parameter of the censoring model will also have the same value

4.2. SIMULATION RESULTS FOR TIME-DEPENDENT COVARIATE 29

for every simulation and we will adjust the value of scale parameter λ0c to keep the censoring
percentage at 33%.

Figure 4.2 shows the results for the three different pairs of values for the ϕ coefficients. As
the ϕ coefficients of the time-invariant covariates get bigger the covariates have bigger effect
on the hazard. Thus the probability of getting censored is correlated with the probability of
experiencing the event, correlation between the generated event and censoring times is 0.175 for
(ϕ1, ϕ2) = (0.5, 1.5) and drops to 0.061 for (ϕ1, ϕ2) = (0, 0.1). This leads to overestimation of the
survival probabilities using the standard Kaplan-Meier estimator since less events are observed
specially at later points where more observations are censored. From the plots in Figure 4.2 we
see as the dependency gets weaker as the fit of the Kaplan-Meier method gets better, but still
as we see from Figure 4.2(b) even for a moderate value of ϕ = (0.1, 0.5) parameters there is a
little difference between the two curves.

(a) (ϕ1, ϕ2) = (0.5, 1.5), λc = 0.0028 (b) (ϕ1, ϕ2) = (0.1, 0.5), λc = 0.005

(c) (ϕ1, ϕ2) = (0, 0.5), λc = 0.0057

Figure 4.2: The real survival curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) for different values of ϕ coeffi-
cients.These are the average curves over 50 simulations with (β1, β2) = (0.1, 0.5) and λX = 0.01.
The link parameters γ and γ

′
, shape parameter ν for both event and censoring times have the

same values for all simulations, with γ = γ
′
= 0.5 and ν = 2.

Table 4.1 shows the parameters that were used for this simulation and the results of the
area between the two curves3 for three different cases of coefficients ϕ. The max distance shows
the mean value of maximum distances in each simulated data the curves have. The average
area gets smaller as the strength of dependency gets weaker. The max distance values as we
see from table have a decreasing trend.

3Detailed description of area between the two curves and the max distance is given in chapter 3.

30 CHAPTER 4. SIMULATION STUDY WITH TIME-DEPENDENT COVARIATE

n λ0x exp(β1) exp(β2) λ0c exp(ϕ1) exp(ϕ2) Average area Max distance
(ϕ1, ϕ2)=(0.5,1.5) 500 0.01 1.65 1.10 0.0028 1.65 4.50 0.012 0.041
(ϕ1, ϕ2)=(0.1,0.5) 500 0.01 1.65 1.10 0.005 1.10 1.65 0.007 0.030
(ϕ1, ϕ2)=(0,0.1) 500 0.01 1.65 1.10 0.0057 1.00 1.10 0.004 0.028

Table 4.1: Simulation parameters for event and censoring models, with (β1, β2) = (0.1, 0.5),
scale λ0x = 0.01, shape ν = 2, link parameter γ = 0.5 for the event times model, shape ν

′
= 2

and link parameter γ
′
= 0.5, for the censoring model and 33% censoring.

4.2.2 Strength of the link parameter γ of the time-dependent covariate

Next we will vary the strength of the link parameter γ
′
of the censoring model with values

(0.1, 0.5, 1, 1.5) for weak, moderate, strong and very strong association respectively. The sample
size will be n = 500, the coefficients (β1, β2) = (0.1, 0.5), link parameter γ = 0.5, shape ν = 2
and scale λ0x = 0.01 for the events times model will have the same values for every simulation
scenario. Also the coefficients (ϕ1, ϕ2) = (0.1, 0.5), and shape ν

′
= 2 of the censoring model will

have the same values in each scenario. We will adjust the value of the scale parameter λ0c to
keep the censoring percentage at 33%.

Figure 4.3 shows the results for the four different values for the link parameter γ
′
of the

censoring model. As the link parameter γ
′
of the time-dependent covariate gets bigger the

covariate has bigger effect on the hazard. Correlation between the generated event and censoring
times is 0.174 for γ

′
= 1.5 and drops to 0.058 for γ

′
= 0.1, meaning individuals who have high

probability experiencing the event have also a slightly higher probability of being censored. This
leads to overestimation of the survival probabilities using the standard Kaplan-Meier estimator
since fewer events are observed specially at later points where more observations are censored.
From the plots in Figure 4.3 we see as the dependency gets stronger the fit of the Kaplan-Meier
method gets worse, and the difference between the two curves is evident even for moderate
association of the link parameter γ

′
= 0.5.

4.2. SIMULATION RESULTS FOR TIME-DEPENDENT COVARIATE 31

(a) (γ, γ
′
) = (0.5, 0.1), λ0c = 0.033 (b) (γ, γ

′
) = (0.5, 0.5), λ0c = 0.005

(c) (γ, γ
′
) = (0.5, 1), λ0c = 0.00045 (d) (γ, γ

′
) = (0.5, 1.5), λ0c = 0.00004

Figure 4.3: The real survival curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) for different values of γ

′

link parameter of the censoring model.These are the average curves over 50 simulations with
(β1, β2) = (0.1, 0.5), γ = 0.5 and λ0x = 0.01 for time to event model. The coefficients ϕ1,ϕ2 for
the censoring model are the same with values (ϕ1, ϕ2) = (0.1, 0.5) and shape parameter ν for
both event and censoring times have the same values for all simulations, with ν = 2.

n λ0x exp(β1) exp(β2) λ0c exp(ϕ1) exp(ϕ2) Average area Max distance

(γ, γ
′
)=(0.5,0.1) 500 0.01 1.10 1.65 0.033 1.10 1.65 0.003 0.024

(γ, γ
′
)=(0.5,0.5) 500 0.01 1.10 1.65 0.005 1.10 1.65 0.007 0.030

(γ, γ
′
)=(0.5,1) 500 0.01 1.10 1.65 0.00045 1.10 1.65 0.009 0.042

(γ, γ
′
)=(0.5,1.5) 500 0.01 1.10 1.65 0.00004 1.10 1.65 0.011 0.053

Table 4.2: Simulation parameters for event and censoring models, with (β1, β2) = (0.1, 0.5),scale
λ0x = 0.01, shape ν = 2, link parameter γ = 0.5 for the event times model, and shape ν = 2,
(ϕ1, ϕ2) = (0.1, 0.5), for the censoring model.

Results from Table 4.2 show that as we increase the value of the link parameter γ
′
of the

censoring model the values of the Average area and Max distance have an increasing trend but
a very small one suggesting that the impact of the link parameter γ

′
on censoring is small.

4.2.3 Percentage of censored subjects

Finally we will examine various percentages of censored subjects (10%, 30%, 50%), by adjusting
the parameter λ0c of the censoring model. The sample size will be n = 500, the coefficients
(β1, β2) = (0.1, 0.5), link parameter γ = 0.5, shape ν = 2 and scale λx = 0.01 for the events
times model will have the same values for every simulation scenario. For the censoring model
the coefficients (ϕ1, ϕ2) = (0.1, 0.5), link parameter γ

′
= 0.5, and shape ν

′
= 2 will have the

same vale in each simulation scenario.

32 CHAPTER 4. SIMULATION STUDY WITH TIME-DEPENDENT COVARIATE

As expected, Figure 4.4 shows that as the percentage of censoring subjects increases, the
difference between the real survival curve and the survival curve estimated on the censored data
gets bigger.

(a) (ϕ1, ϕ2) = (0.1, 0.5), λ0c = 0.0012 (b) (ϕ1, ϕ2) = (0.1, 0.5), λ0c = 0.0044

(c) (ϕ1, ϕ2) = (0.1, 0.5), λ0c = 0.01

Figure 4.4: The real survival curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) for different percentage of
censored subjects.These are the average curves over 50 simulations with (β1, β2) = (0.1, 0.5),
(ϕ1, ϕ2) = (0.1, 0.5), λ0x = 0.01, and varying scale parameter λc. The link parameters γ,γ

′
and

shape parameter ν for both event and censoring times have the same values for all simulations,
with γ = 0.5 and ν = 2.

n λx exp(β1) exp(β2) λc exp(ϕ1) exp(ϕ2) Average area Max distance
10% 500 0.01 1.10 1.65 0.0012 1.10 1.65 0.002 0.012
30% 500 0.01 1.10 1.65 0.0044 1.10 1.65 0.005 0.027
50% 500 0.01 1.10 1.65 0.01 1.10 1.65 0.011 0.061

Table 4.3: Simulation parameters for event and censoring models, with (β1, β2) = (0.1, 0.5),
scale λx = 0.01, shape ν = 2, and link parameter γ = 0.5 for the event times model, and
(ϕ1, ϕ2) = (0.1, 0.5), shape ν

′
= 2 and link parameter γ

′
= 0.5, for the censoring model.

From Table 4.3 we can confirm from the values of Average area and Max distance that
increasing the censoring percentage has a negative effect on the estimation of the survival
curve.

4.3 Conclusions

The simulations that we carried out in this chapter for one time-dependent covariate and two
time-invariant covariates, showed how the standard method to calculate survival curve per-

4.3. CONCLUSIONS 33

formed in the presence of dependent censoring. The results are similar to the results from
chapter 3 without the time-dependent covariate. Although there are differences between the
curves they seem significant only when censoring percentage was 50%, or the coefficients ϕ of the
time-independent covariates associated with the censoring model had values (ϕ1, ϕ2) = (0.5, 1.5)
or when the parameter γ

′
that links the time-dependent covariate with the survival model was

larger than 1. For moderate values of the coefficients ϕ and link parameter γ
′
, as we can see

from Appendix A, the true survival curve is within the confidence interval of the estimated
survival curve, and for more extreme values the true survival curve is outside the confidence
intervals. Finally there is the issue of the impact the time-dependent covariate has on dependent
censoring but we will explore this in chapter 6.

34 CHAPTER 4. SIMULATION STUDY WITH TIME-DEPENDENT COVARIATE

Chapter 5

IPCW with time-independent
covariates

In the previous chapters we examined the issue of dependent censoring and how the Kaplan-
Meier method can overestimate the survival probability in the case of dependent censoring.
Although the differences between the true survival curve and the survival curve estimated with
the standard Kaplan-Meier estimator were not very large, as we noticed from the metrics we used
to quantify the difference for moderate values of censoring percentage and of the ϕ coefficients of
the censoring model, the differences were more evident as the censoring percentage or the values
of ϕ coefficients increased. In this chapter we will examine a method to correct for the presence
of dependent censoring. Inverse Probability of Censoring Weighting (IPCW) was developed to
correct for the issue of dependent censoring by giving extra weight to subjects who are not
censored in order to compensate for censored subjects.

In this chapter we will give a brief introduction of the (IPCW) method, describe the algo-
rithm that we will use to calculate the inverse probability of censoring weights and present the
results of correction for the case of time-independent covariates.

5.1 IPCW theory

Inverse probability censoring weighting Robins [7], [8] corrects for dependent censoring by giving
extra weight to subjects that are not censored. Thus these weights will be higher for subjects
that the probability of remain uncensored is low, and small for subjects that the probability of
remain uncensored is high. At each observed time point t, each subject is given a weight that
is inversely proportional to the conditional probability of having remained uncensored until the
time point t. The conditional probability is estimated from a Cox proportional hazards model
or from the Product-Limit estimator, for censoring times. Thus the IPCW weights have to be
calculated again for each subject that is at risk at each censoring time.

Let the weight for each subject j at a time point t be denoted as Wj(t). The estimated
probability to remained uncensored until that time point t is estimated either from the Cox
proportional hazards model and denoted as K̂Z

j (t), where Z are the time-dependent and time

independent covariates of the model, or from the Product-Limit estimator and denoted as K̂0
j (t).

The estimator Wj(t) = 1/K̂Z
j (t) is sufficient to produce consistent weights. However in the

case of dependent censoring and if the censoring percentage is big, the weights will be very
large. In order to counter that Robins [7] suggested using Wj(t) = K̂0

j (t)/K̂
Z
j (t). In case that

the covariates Z do not influence the hazard of censoring at time t, the weights Wj(t) will be
close to one.

We can summarise the procedure to calculate the IPCW weights and the resulting survival
probabilities in the following steps.

35

36 CHAPTER 5. IPCW WITH TIME-INDEPENDENT COVARIATES

Calculate IPCW weights and survival probabilities SIPCW :

Step 1: Fit a model for the censoring times with all the covariates that influence time
to event and time to censoring.

Step 2: Estimate the probability to remain uncensored at each time point t for all
subjects that are at risk at that time point, K̂Z

J (t) from the Cox proportional

hazards model and K̂0
J(t) from the Product-Limit estimator.

Step 3: Calculate the IPCW weights for each subject j at each time point t
as, W unstab

j (t) = 1/K̂Z
J (t) for the unstabilized weights and W stab

j (t) =

K̂0
J(t)/K̂

Z
J (t) for the stabilized weights.

Step 4: Estimate the survival probabilities SIPCW from the Cox proportional haz-
ards model for time to event with subjects IPCW weights in the absence of
censoring.

Next we will give a brief explanation of the steps to calculate the IPCW weights.

5.1.1 Step 1: Fit a model for the censoring times

For modelling the censoring times we will use the standard survival analysis but instead of time
to event we will use time to censoring as the outcome. Hence since the event of interest is now
time to censoring, subjects that were censored will have the event indicator and subjects that
experienced the event are now considered censored and will have the censored indicator. Thus
for a subject j the data representation for time to censoring is (Tj , δCj , Zj(t)), where δCj is the
inverse of the event indicator δ, δCj = 1−δj . Using this data representation for time to censoring
we can apply the Cox model with time-dependent covariates h(t|Z(t)) = h0(t) exp(β

tZ(t)), from
chapter 2 in order to calculate the probability of being censored.

One fundamental assumption of the IPCW method is that there are no unmeasured co-
variates that influence the censoring time. To evaluate the influence of the covariates on the
probability of being censored, we will include all of them in the model. In order to estimate
the probability of being censored based on some known covariates Zj(t), we will use a Cox
proportional hazards model.

The Cox proportional hazards model for the censoring times is defined as

hC(t|Z(t)) = hC0(t) exp(β
t
CZ(t)), (5.1)

where hC0 is the baseline hazard for time to censoring, βC is the vector with the regression
coefficients and Z(t) is the vector with model time-dependent and time independent covariates.

5.1.2 Step 2: Estimate the probability to remain uncensored

From the equation (5.1), using the estimated hazard hC(t|Z(t)), we can estimate the probabili-
ties of remaining uncensored for each subject j at each time point t. A Kaplan-Meier estimator
for censoring that also includes the time-dependent covariates Zj(t), is defined as :

K̂Z
j (t) =

∏
[i;ti<t,δi=0]

[1− ĥC0(ti) exp(β
t
CZj(ti))]. (5.2)

The Z index of the K̂Z
j (t) is used in order to highlight the dependence of the estimator on the

covariates Zj(t). Where the K̂0
j (t) is the standard Kaplan-Meier estimator, that it does not

acount for the covaraties Zj(t). In case the vector βC is zero then K̂Z
j (t) and K̂0

j (t) are equal.

5.2. IPCW ALGORITHM 37

5.1.3 Step 3: Calculate the IPCW weights

The weights for each subject j are calculate asW unstab
j (t) = 1/K̂Z

j (t) for the unstabilized weights

and W stab
j (t) = K̂0

j (t)/K̂
Z
j (t) for the stabilized weights. They are inversed to the conditional

probability K̂Z
j (t) for a subject to remain uncensored until a time t. The weights increase in

value as the percentage of censoring gets bigger, in the presence of dependent censoring, or near
then end of the study when most of the subjects have already experienced the event of interest
or they have been censored. In order to correct for this issue Robins proposed the use of the
stabilized weights, which they will stay close to 1 if the covariates Z(t) do not influence the
probability of being censored for any subject j.

5.1.4 Step 4: Estimate the survival probabilities SIPCW

The survival probabilities can be estimated from the Product-Limit estimator introduced in
chapter 2

Ŝ(t) =

{
1 if t < t1,∏

ti≤t

[
1− di

Yi

]
, if t ≥ t1

, (5.3)

where we substitute di the number of subjects that experience the event at time ti with δiŴi(ti)
which is a subject who experiences the event at time ti multiplied by its weight, in the the
absence of censoring. The denominator of (5.3) Yi which represents the number of subjects at
risk at time ti is substituted by

∑n
k=1Rk(ti)Ŵk(ti) which is the sum of all weights for subjects

who are at risk at time ti.

ŜIPCW (t) =

{
1 if t < t1,∏

[i;ti≤t]

[
1− δiŴi(ti)∑n

k=1 Rk(ti)Ŵk(ti)

]
, if t ≥ t1

. (5.4)

From equation (5.4) we notice that in case of stabilized weights the K̂0
J(t) term cancels out both

in numerator and the denominator resulting in the same survival probabilities for stabilized and
unstabilized weights.

Note equation (5.4) holds only in datasets without ties. In case of ties in the dataset the
Product-Limit estimator can be modified to account for ties. The term δiŴi(ti) from equation
(5.4) can be substitute with the term

∑
[j;δj(ti)=1] Ŵj(ti), which is the sum of weights of all

subjects that experience the event at time point ti. For this situation the survival probability
is defined as

ŜIPCW (t) =

1 if t < t1,∏

[i;ti≤t]

1−
∑

[j;δj(ti)=1]

Ŵj(ti)∑n
k=1 Rk(ti)Ŵk(ti)

 , if t ≥ t1
. (5.5)

5.2 IPCW algorithm

To implement the IPCW algorithm in R we test two algorithms to calculate the weights, one
proposed by Willems [12] and one proposed by M. van de Wal [11] and is implement in ipw
package. We ran simulations with both of them and although the resulting weights were very
similar some small differences were observed. The differences arise from the fact that the ipw
package calculates weights at the end of the intervals compared to the method proposed by
Willems [12], that calculates weights at the beginning of the interval. This issue arises from the
way the intervals are interpreted from the two methods and whether weights should be calculate
at the end or at the beginning of the interval. However figuring out the exact details of how
weights are calculated is beyond the scope of this thesis and we decide to use the ipw method
since it is a little less computational heavy than the method proposed by Willems [12].

38 CHAPTER 5. IPCW WITH TIME-INDEPENDENT COVARIATES

5.3 Results for time-independent covariate

In the remainder of this chapter we will implement the ipw package to the data from chapter 3
and present and interpret the results.

5.3.1 Transform the data from wide to long format

In order to use the ipw package we need to transform the data from wide format to a long
format. For each subject in the dataset the time to event or time to censoring will be divived
in subintervals. The number of subintervals can be predetermined or be the number of unique
event and censoring times for all subjects in the dataset, in our case we will choose the latter.
Each subject j will require a number of rows rj , each row will represent a time interval that a
specific subject is at risk until the time the subject j experiences the event of interest or being
censored. For time-fixed covariates, their value will be repeated in each row rj , since their
values do not change over time. For time-dependent covariates things are more complicated
and we will explain it in the next chapter where we present the analysis for time-dependent
covariates. The status indicators δ and δC will take the value 0 in every subinterval until the
last one, where it will change to 1 in case of an event or 0 in case the subject is censored.

For transforming the data from wide to long format we will use the function survSplit from
the library survival. The function splits each time interval in subintervals with boundaries at
all the event and the censoring times, while also adjusting for the event status δ. However it
does not adjust for the censoring status δC , so we will have to apply the function a second time
by using the δC as the event indicator. Further explanation of how the transformation occurs
will be in the Appendix B, where the code in R with comments will be presented.

5.4 Simulation for time-independent covariates

For the simulation in this chapter we will use the same artificial population as in chapter 3, the
same method to generate survival and censoring times and introduce dependent censoring.

To evaluate the performance of the IPCW weights on the estimation of the survival curve we
will consider five scenarios. Firstly we will evaluate the performance of IPCW method with a
high value for the ϕ coefficients. Secondly we will check how the IPCW method performs when
the ϕ coefficients have high values, thirdly we will check the performance of IPCW method
when the percentage of censoring is very low and for moderate value of the ϕ coefficients. The
reason we choose those 3 scenarios is to check how the IPCW method performs in these extreme
cases, either for unusual high values of the ϕ coefficients or in the case of moderate value of the
ϕ coefficients and low censoring. Lastly we will calculated the weights using the IPCW method,
but only include one of the covariates that influence the censoring in the calculation of the IPCW
weights, each time to see how the algorithm performs when we do not include all the covariates
that influence the censoring. We will run these simulations once with Exponential distribution
for the baseline survival in the Cox model for the event and censoring times and once with
Weibull distribution, and with two time-independent covariates Z = (Age, Treatment). For
every simulation scenario time to event will be simulated with the same coefficients as we did
in chapter 3, β = (0.5, 0.1), λ0x = 0.1 for the Exponential distribution and scale parameter
λ0x = 0.1 and shape parameter ν = 2 for the Weibull distribution.

5.4.1 Simulation results

Next we will present results only for the Weibull distribution. Figures and tables for the
Exponential distribution can be found in the Appendix A.3.

5.4. SIMULATION FOR TIME-INDEPENDENT COVARIATES 39

Weibull

In the first scenario the ϕ coefficients of the censoring model have values (1.5, 0.5) with λ0c =
0.027 and censoring percentage (33%). As we see from Figure 5.1(a), the survival curves cal-
culated with IPCW weights are very close to the survival curve based on the uncensored data,
meaning that IPCW weights correct for the presence of dependent censoring. In the second
scenario as the coefficients ϕ have extreme values (4.5, 1.5), the IPCW weights do not com-
pletely correct for the dependent censoring but still perform better than the standard method,
Figure 5.1(b). In the third we checked the stability of the IPCW by introducing a low censoring
percentage (10%), as we see from Figure 5.1(c) the ICPW gives stable results even with a low
percentage of censoring.

(a) (ϕ1, ϕ2) = (1.5, 0.5), λ0c = 0.027 (b) (ϕ1, ϕ2) = (4.5, 1.5), λ0c = 0.003

(c) (ϕ1, ϕ2) = (0.5, 0.1), λ0c = 0.012

Figure 5.1: The real survival curve (blue) based on uncensored data, the survival curve estimated
with the Kaplan-Meier method on censored data (black), and the survival curves estimated with
IPCW weights, with stabilized weights (green) and unstabilized weights (red). These are the
average curves over 50 simulations with (β1, β2) = (0.5, 0.1) and λ0x = 0.1. The shape parameter
ν for both event and censoring times have the same values for all simulations, with ν = 2.

The next two plots in Figure 5.2 show how the IPCW method performs if we omit one of
the two time-independent covariates than influence censoring for the calculation of the IPCW
weights. Figure 5.2(a) show the results of calculating the IPCW weights with only the Age
covariate, and Figure 5.2(b) with only the Treatment covariate. The IPCW method performs
better when we include in the model the Treatment covariate since the Age covariate is not very
influential ϕ2 = 0.5 compare to ϕ1 = 1.5. Results of the survival curves for the IPCW weights
from Figure 5.2(b) are very similar to Figure 5.1(a).

40 CHAPTER 5. IPCW WITH TIME-INDEPENDENT COVARIATES

(a) (ϕ1, ϕ2) = (1.5, 0.5), λ0c = 0.027 (b) (ϕ1, ϕ2) = (1.5, 0.5), λ0c = 0.027

Figure 5.2: The real survival curve (blue) based on uncensored data, the survival curve estimated
with the Kaplan-Meier method on censored data (black), and the survival curves estimated with
IPCW weights, with stabilized weights (green) and unstabilized weights (red). On figure (a) the
weights are calculated with only Age as the time-invariant covariate, and figure (b) with only
Treatment.

Fig 5.1 Fig 5.2
(a) (b) (c) (a) (b)

Standard method 0.012 0.02 0.0006 0.012 0.012
Unstabilized weights 0.0005 0.006 -0.0003 0.01 0.003
Stabilized weights 0.0005 0.006 -0.0003 0.01 0.003

Table 5.1: Area under the curve for all five simulations scenarios

Table 5.1 shows the area between the real survival curve the standard method, and the
stabilized and unstabilized weights method, we also see how the IPCW weights perform better at
estimating the survival curve than the standard method, even in case of column Fig 5.1(b) where
the coefficients ϕ have extreme values. Finally we see from column Fig 5.2(b) that omitting the
covariate with the smaller coefficient ϕ2 = 0.5 gives results relative close to scenario column Fig
5.1(a) with Area under the curve being 0.003 compare to 0.0005, where if we omit the covariate
with coefficient ϕ2 = 1.5 the IPCW method does not perform well with Area under curve 0.01.

5.5 Discussion

In this chapter we carried out simulations to evaluate the performance of IPCW weights for
different scenarios, where we consider different values for the ϕ coefficients, different censoring
percentages and also with only one of the two coefficients for calculating the weights. From the
first three scenarios we can conclude that the IPCW weights give very good correction, but in
the case of unusual high values for the coefficients of the time-invariant covariates it only partly
corrects. In the case of low censoring percentage gives reliable results similar to the ones from
the standard method. Lastly seeing the performance of the IPCW weights when we omit one
of the two covariates that influence the censoring from the calculation of the IPCW weights,
we can conclude that even if there is an unmeasured covariate that influence the censoring the
IPCW method will still perform slightly better than the standard method.

Chapter 6

IPCW with time-dependent
covariate

In the previous chapter we examined the performance of the IPCW method on correcting the
issue of dependent censoring in a dataset with only two time-independent covariates. In this
chapter we will add one time-dependent covariate and we will examine the IPCW method to
correct for the presence of dependent censoring. As in the previous chapter it is expected that
the IPCW weights will perform better than the standard method.

We will apply the ipw package to the data from chapter 4 for the Weibull distribution
but adjusted for the time-dependent covariate. We will use the same methodology we used in
chapter 5 to calculate the inverse probability weights.

6.1 Results for time-dependent covariate

6.1.1 Transform the data from wide to long format

The transformation of the data set from wide to long format is more complicated in this chapter
compared to the previous due to the presence of the time-dependent covariate. In the previous
chapter the transformation from the wide to long format involved determining the number of
intervals in which the dataset would be divided. Those intervals were based on the unique event
and censoring times for all subjects in the dataset and then each subject j will be represent by a
number of rows rj , where each row will represent a time interval that a specific subject is at risk
until the time subject j experiences the event or being censored. The value of the time-fixed
covariates will be repeated in each row rj . The value of the time-dependent covariates needs to
be adjusted to match the observed value in the corresponding time interval.

In order to implement the correct values of the time-dependent covariate in the long format
we will use to functions, reshape and tmerge. The reshape function will transform the
dataset with the time-dependent covariate from a wide to long format and the tmerge function
will merge the dataset with the survival times for each subject j with the values of the time-
dependent covariates, creating a new dataset in a semi-long format where each person can have
multiple rows but only rows that are relevant for that subject j. Next in this semi-long dataset
we will apply the function survSplit two times, one to adjust for the event status and one to
adjust for the censoring status.

6.1.2 Simulation set-up

For the simulation in this chapter, we will use the data from Chapter 4 for the Weibull case,
using the same method introduced in Chapter 4 for generating event and censoring times, and
introducing dependent censoring.

41

42 CHAPTER 6. IPCW WITH TIME-DEPENDENT COVARIATE

To evaluate the performance of the IPCW weights on the estimation of the survival curve,
we will consider six scenarios. First we will evaluate the IPCW method for 3 different values
of the link parameter γ′ of the censoring model, for weak, moderate and strong association,
between the time-dependent covariate and the censoring model. In this chapter we will use
more extreme values for the link parameter γ′ compared to chapter 4. The reason is that we
want to see how the IPCW method performs when the difference between the standard method
to calculate the survival curve and the true survival curve is evident. Secondly we will check how
stable the results are from the IPCW method for a small percentage of censoring and moderate
value of the link parameter γ′. Lastly we will calculated the weights using the IPCW method
when the censoring model is misspecified, in order to see how the algorithm performs when we
do not include all the covariates that influence the censoring. This can be done by include only
one of the time-independent covariates that influence the censoring in the calculation of IPCW
weights each time.

We will run these simulations with a Weibull distribution for the baseline survival in
the Cox model for event and censoring times, with two time-independent covariates Z =
(Age, Treatment) and with one time-dependent covariate. For every simulation scenario time
to event will be simulated with the same coefficients as we did in chapter 4, β = (0.5, 0.1),
λ0x = 0.01 and link parameter γ = 0.5 for the events model, and ϕ = (0.5, 0.1) for the censoring
model. The shape parameter of the the Weibull distribution will be equal to ν = 2 for all
simulations for both the event and censoring times.

6.1.3 Simulations results

In the first scenario the link parameter γ′ of censoring model has value 0.5 with λ0c = 0.005 and
censoring percentage 33%. As we see from Figure 6.1(a), the survival curves calculated with
IPCW weights are very close to the true survival curve, meaning that the IPCW weights correct
for the presence of dependent censoring. In the second scenario Figure 6.1(b), with a value of link
parameter γ′ equal to 1.5, the IPCW weights perform better than the standard method but their
performance is getting worse and eventually is the same as the standard method at higher time
points. Since less events occur at later time points, this leads to overestimation of the survival
probabilities, which causes the IPCW method to perform worse than the previous scenario but
still slightly better than the standard method. The link parameter γ′ of the censoring model is
not estimated very accurate, which in return leads to inaccurate IPCW weights. In the third
scenario, with the value of the link parameter γ′ equal to 3, the survival curve calculated with
the IPCW weights is very close to the survival curve calculated with the standard method,
meaning the IPCW weights do a poor job correcting for the presence of depending censoring.
In the fourth scenario Figure 6.1(d), with a value of link parameter γ′ equal to 1.5 and censoring
percentage 10%, the IPCW weights give stable results.

6.1. RESULTS FOR TIME-DEPENDENT COVARIATE 43

(a) γ′ = 0.5, λc = 0.005 (b) γ′ = 1.5, λc = 0.00004

(c) γ′ = 3, λc = 0.00000003 (d) γ′ = 0.5, λc = 0.0012

Figure 6.1: The real survival curve (blue) based on uncensored data, the survival curve estimated
with the Kaplan-Meier method on censored data (black), and the survival curves estimated with
IPCW weights, with stabilized weights (green) and unstabilized weights (red). These are the
average curves over 50 simulations with (β1, β2) = (0.5, 0.1), λ0x = 0.01,γ = 0.5 and (ϕ1, ϕ2) =
(0.5, 0.1) for the censoring model. The shape parameter ν for both event and censoring times
have the same values for all simulations, with ν = 2. Censoring percentage is 33% for (a),(b)
and (c) and 10% for (d).

(a) γ′ = 1.5, λc = 0.005 (b) γ′ = 1.5, λc = 0.0012

Figure 6.2: The real survival curve (blue) based on uncensored data, the survival curve estimated
with the Kaplan-Meier method on censored data (black), and the survival curves estimated with
IPCW weights, with stabilized weights (green) and unstabilized weights (red). On figure (a) the
weights are calculated with only Age as the time-invariant covariate, and figure (b) with only
Treatment.

The additional two plots in Figure 6.2 show the performance of the IPCW weights if we
omit from the calculation of the IPCW weights one of the two time-independent covariates.

44 CHAPTER 6. IPCW WITH TIME-DEPENDENT COVARIATE

Figure 6.2(a) shows the results of calculating the IPCW weights with only the Age covariate,
and Figure 6.2(b) with only the Treatment covariate. The IPCW method performs better
when we include in the calculation of the IPCW weights the Treatment covariate since the
Age covariate is not very influential ϕ2 = 0.1 compared to ϕ1 = 0.5. The performance of
IPCW weights is better than the standard curve but still they do not correct completely for the
presence of dependent censoring,

Fig 6.1 Fig 6.2
(a) (b) (c) (d) (a) (b)

Standard method 0.0065 0.011 0.013 0.0017 0.011 0.011
Unstabilized weights 0.0024 0.0057 0.009 0.0008 0.008 0.0059
Stabilized weights 0.0024 0.0057 0.009 0.0008 0.008 0.0059

Table 6.1: Area under the curve for all five simulations scenarios

Table 6.1 shows the area between the real survival curve the standard method, and the
stabilized and unstabilized weights method. We see that although the IPCW weights perform
better than the standard method, the correction does not seem very significant. Finally if we
omit one of the two time-independent covariates, the IPCW method performs worse in case
we omit the covariate with the bigger influence ϕ1 = 0.5, as we see from column Fig 6.2(a)
compared to column Fig 6.1(b), and almost the same if we omit the covariate with the smaller
influence ϕ2 = 0.1, column Fig 6.2(b). This confirms our previous observation from the graphs.

6.2 Estimated value of the link parameter γ′ of the censoring
model

In the previous section we mention that one of the reasons that the IPCW method fails to
produce accurate results is the bad estimation of the parameters that influence censoring and
more specific the link parameter γ′. In this section we will try to find why this is the case.

In Chapter 4 we describe in detail the algorithm to generate event and censoring times
for a time-dependent covariate. Step 2 through step 4 describe how we generate the expected
longitudinal values of the biomarker y∗i (t), then how we generate the observed values of the
biomarker yi(t) from a multivariate normal distribution with mean y∗i (t) and variance V =
ZiGZT

i + Σi, and finally fit a linear mixed model to yi(t) to obtain the parameters (αi0, αi1)
that we used to generate the event and censoring times. The issue lies with the variance-
covariance matrix V = ZiGZT

i + Σi and the error we introduced with the diagonal matrix Σ .
The bigger the values of the diagonal elements of diagonal matrix Σ are, which means there is
bigger variation for the observed values of the biomarker for each subject between time points,
the worse is the estimation for the parameters of the censoring model and mainly for the link
parameter γ′. In order to illustrate the problem we run simulations with reduced values of the
diagonal matrix Σ, diag(Σ) = 0.5 and diag(Σ) = 0.1 instead of diag(Σ) = 1, and the estimation
of the link parameter γ′ was getting better as values of the diagonal elements of matrix Σ were
smaller. Below we present the spaghetti plots that show how the longitudinal measurements
for each subject look when we reduce the value of matrix Σ in the variance-covariance matrix.

6.3. DISCUSSION 45

(a) diag(Σ) = 0.5 (b) diag(Σ) = 0.1

Figure 6.3: Individual profiles of the biomarker for different values of the diagonal matrix Σ.

In Table 6.2 below we show the estimated values of the parameters of the censoring values
for different values of the diagonal matrix Σ. The values we used to generate the event and
censoring times were (ϕ1, ϕ2) = (0.5, 0.1) and γ′ = 0.5.

diag(Σ) = 1 diag(Σ) = 0.5 diag(Σ) = 0.1 true values
ϕ1 0.494 0.503 0.510 0.5
ϕ2 0.109 0.108 0.109 0.1
γ′ 0.120 0.232 0.387 0.5

Table 6.2: Values of the estimated parameters of the censoring model for different values of the
diagonal matrix Σ.

We noticed from Table 6.2 that as the value of the diagonal matrix Σ is reduced the estimated
value of the link parameter γ′ is getting better but also the variation on the individual profiles of
the subjects decreases. In the Appendix A.4 we present results of simulations with the value of
the diagonal matrix Σ equal to 0.1, and it is evident that the IPCW weights are more accurate
and the IPCW method corrects better for the presence of dependent censoring in that case.

6.3 Discussion

In this chapter we carried out simulations to evaluate the performance of the IPCW method
in the presence of a time-dependent covariate. We considered six scenarios, in which we vary
the value of the link parameter γ′ of the censoring model, the censoring percentage and with
only one of the two time-independent covariates. Increasing the value of the link parameter
γ′ made the performance of the IPCW weights worse than expected, since less events are
observed and survival probabilities are overestimated leading in return to overestimation from
the IPCW method. In theory the IPCW weights should completely correct for the presence
of dependent censoring, but since the Cox model does not produce a perfect fit for the time
to censoring model, it leads to not very accurate weights for the IPCW. Although the IPCW
method performs better in all scenarios that we examine compared to the standard method, the
difference in performance does not seem very significant to justify the extra work of calculating
the IPCW weights.

46 CHAPTER 6. IPCW WITH TIME-DEPENDENT COVARIATE

Chapter 7

Discussion

The aim of this thesis was firstly to examine the effect that the presence of dependent censoring
can have on estimated survival curves, and secondly examine a way that can correct for the
presence of dependent censoring. To address the first issue we ran simulations by using different
approaches, using time-independent covariates and a time-dependent covariate, and the event
and censoring times were generated from an Exponential and a Weibull distribution. In order
to correct for the presence of dependent censoring we used the Inverse Probability of Censoring
Weighting (IPCW) method.

Simulation studies were carried out in the first part of this thesis to evaluate the bias that
dependent censoring can introduce to the estimates for survival probabilities, if we assume
independent censoring. We included two main scenarios, one in which the generated survival
data included two time independent covariates and one that included two time independent
covariates and one time dependent covariate. Then for each of the two main scenarios we
generated event and censoring times from the exponential distribution with constant baseline
hazards rates and from the Weibull distribution with no constant baseline hazards rates. Next
we evaluated different scenarios for each case of the exponential and Weibull distribution by
varying the sample size, the percentage of censored subjects and the strength of the dependency
of the censoring mechanism on the covariates. Results showed that the survival probabilities
estimated by the standard Kaplan-Meier estimator that assumes independent censoring were too
high, but this overestimation did not seem significant in most scenarios. Only in scenarios with
high censoring percentage (50%) or for high values of the coefficients ϕ and the link paramater
γ

′
that link the censoring and time to event process, the difference seemed significant enough

that if we do not account for the dependent censoring can lead to seriously biased estimates of
survival probabilities.

In the second part of this thesis we carried out two simulations to evaluate the performance
of the IPCW method in the presence of dependent censoring. For the simulation with the two
time independent covariates, we generated event and censoring times both with the exponential
and the Weibull distribution, and for the simulation with the one time dependent covariate
and two time independent covariates only with the Weibull distribution. In both simulations
we examined scenarios that vary the strength of the dependency of the censoring mechanism
on the covariates, the ϕ coefficients in the case of only time independent covariates and only
link parameter γ

′
in the case of the time dependent covariate. We also included one extra

scenario were we omit one of the two time independent covariates from the calculation of the
IPCW weights. The IPCW method performed very well compared to the standard method in
the case of only time independent covariates, although it loses a lot of its efficiency for unusual
high values of the coeffiecients ϕ due to imprecise fit of the censoring model, but still performs
better than the standard method in those cases. In the case of two independent covariates and
one time dependent covariate the IPCW method is less accurate than the previous simulation
mainly due to imprecise estimate of the link parameter γ

′
of censoring model, but still performs

47

48 CHAPTER 7. DISCUSSION

slightly better overall than the standard method. Finally the results from the scenarios where
we omitted one of the two time independent covariates from the calculation of the weights seems
to suggest that the IPCW can perform better than the standard method even in the case we
have an unknown covariate that influences the censoring mechanism.

Overall the IPCW method performed well and corrected for the presence of dependent
censoring. Specially in scenarios were the coefficients that influence the censoring had moderate
and more realistic values. However in those scenarios the difference in performance was not
significantly different from the standard method as bias introduced by the dependent censoring
was relatively limited. In scenarios were the dependence was strong either due the high value of
the censoring coefficients or a high percentage of censoring, the IPCW method does not perform
so well but still performed better than the standard method. Results showed that a good fit
for the censoring model is very important in order for the IPCW method to perform well and
this is specially the case when we included a longitudinal covariate in the model. In this latter
case measurement error in the observed values of the longitudinal covariate led to inaccurate
results from the censoring model and thereby only partial reduction of the bias introduced by
the dependent censoring.

One limitation of this thesis is that we examine a simple case of a time dependent covariate
and our methodology is not applicable in the case of more complicated models that, e.g., include
interaction terms between the time dependent and time independent covariate. Another limi-
tation is we did not consider the issue of missing data that is common in real life longitudinal
measurements, since subjects may miss measurement visits, leading to missing data on the time
dependent covariate. Further work is needed to examine the issue of dependent censoring in the
case of more complicated models that, e.g., include more than one time dependent covariate,
competing risks outcomes and missing data.

Bibliography

[1] P. C. Austin. “Generating survival times to simulate Cox proportional hazards models
with time-varying covariates”. In: Stat Med 31.29 (Dec. 2012), pp. 3946–3958.

[2] R. Bender, T. Augustin, and M. Blettner. “Generating survival times to simulate Cox
proportional hazards models”. In: Stat Med 24.11 (June 2005), pp. 1713–1723.

[3] D. J. Hendry. “Data generation for the Cox proportional hazards model with time-
dependent covariates: a method for medical researchers”. In: Stat Med 33.3 (Feb. 2014),
pp. 436–454.

[4] John P Klein and Melvin L Moeschberger. Survival analysis: techniques for censored and
truncated data. Vol. 2. Springer, 2003.

[5] Y. Matsuyama and T. Yamaguchi. “Estimation of the marginal survival time in the pres-
ence of dependent competing risks using inverse probability of censoring weighted (IPCW)
methods”. In: Pharm Stat 7.3 (2008), pp. 202–214.

[6] Julius S Ngwa et al. “Generating survival times with time-varying covariates using the
Lambert W function”. In: Communications in Statistics-Simulation and Computation
(2019), pp. 1–19.

[7] James M Robins and Dianne M Finkelstein. “Correcting for noncompliance and dependent
censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW)
log-rank tests”. In: Biometrics 56.3 (2000), pp. 779–788.

[8] James M. Robins and Andrea Rotnitzky. “Recovery of Information and Adjustment for
Dependent Censoring Using Surrogate Markers”. In: AIDS Epidemiology: Methodological
Issues. Ed. by Nicholas P. Jewell, Klaus Dietz, and Vernon T. Farewell. Boston, MA:
Birkhäuser Boston, 1992, pp. 297–331.

[9] M. P. Sylvestre and M. Abrahamowicz. “Comparison of algorithms to generate event times
conditional on time-dependent covariates”. In: Stat Med 27.14 (June 2008), pp. 2618–2634.

[10] Anastasios A Tsiatis, Victor Degruttola, and Michael S Wulfsohn. “Modeling the relation-
ship of survival to longitudinal data measured with error. Applications to survival and
CD4 counts in patients with AIDS”. In: Journal of the American Statistical Association
90.429 (1995), pp. 27–37.

[11] Willem M van der Wal and Ronald B Geskus. “ipw: an R package for inverse probability
weighting”. In: Journal of Statistical Software 43 (2011), pp. 1–23.

[12] S. Willems et al. “Correcting for dependent censoring in routine outcome monitoring data
by applying the inverse probability censoring weighted estimator”. In: Stat Methods Med
Res 27.2 (Feb. 2018), pp. 323–335.

[13] Mai Zhou. “Understanding the Cox regression models with time-change covariates”. In:
The American Statistician 55.2 (2001), pp. 153–155.

49

50 BIBLIOGRAPHY

Appendices

51

Appendix A

Confidence intervals and simulations

In Appendix A we will present some plots with the true survival curve and the curve from the
standard method with confidence intervals for the standard method.

A.1 Chapter 3

A.1.1 Confidence intervals for exponential distributed event and censoring
times

(a) 10%, λ0C = 0.027 (b) 30%, λ0C = 0.05

(c) 50%, λ0C = 0.058

Figure A.1: The real survival curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) with confidence interval for
different percentage of censored subjects.These are the curves over 1 simulation with (β1, β2) =
(0.5, 0.1) and λ0X = 0.1, for the events model and (ϕ1, ϕ2) = (0.5, 0.1), and different values λ0C

for the censoring model, and sample size n = 500.

53

54 APPENDIX A. CONFIDENCE INTERVALS AND SIMULATIONS

(a) n = 250 (b) n = 500

(c) n = 1000

Figure A.2: The real survival curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) with confidence interval for
different sample sizes. These are the average curves over 1 simulation with (β1, β2) = (0.5, 0.1),
λ0X = 0.1 and (ϕ1, ϕ2) = (0.5, 0.1), λ0C = 0.05, for the event and censoring model respectively.

A.1. CHAPTER 3 55

A.1.2 Confidence intervals for Weibull distributed event and censoring times

(a) 10%, λC = 0.012 (b) 30%, λC = 0.045

(c) 50%, λC = 0.1

Figure A.3: The real survive curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) with confidence interval for
different percentage of censored subjects.These are the average curves over 1 simulation with
(β1, β2) = (0.5, 0.1), λ0X = 0.1 and shape νx = 2, for the events model and (ϕ1, ϕ2) = (0.5, 0.1),
shape νc = 2 and different values λ0C for the censoring model, and sample size n = 500.

56 APPENDIX A. CONFIDENCE INTERVALS AND SIMULATIONS

(a) n = 250 (b) n = 500

(c) n = 1000

Figure A.4: The real survival curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) with confidence intervals for
different sample sizes. These are the average curves over 1 simulation with (β1, β2) = (0.5, 0.1),
λ0X = 0.1, νx = 2 and (ϕ1, ϕ2) = (0.5, 0.1), λ0C = 0.05, νc = 2 for the event and censoring
model respectively.

A.2. CHAPTER 4 57

A.2 Chapter 4

Confidence intervals for Weibull distributed event and censoring times with time-
dependent covariate

(a) 10%, λ0C = 0.0012 (b) 30%, λ0C = 0.0044

(c) 50%, λ0C = 0.01

Figure A.5: The real survival curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) with confidence interval for
different percentage of censored subjects.These are the curves over 1 simulation with (β1, β2) =
(0.1, 0.5) and λx = 0.01, for the events model and (ϕ1, ϕ2) = (0.1, 0.5), and different values λc

for the censoring model. The link parameters γ,γ
′
and shape parameter ν for both event and

censoring times have the same values for all simulations, with γ = 0.5 and ν = 2.

58 APPENDIX A. CONFIDENCE INTERVALS AND SIMULATIONS

(a) (γ, γ
′
) = (0.5, 0.1), λc = 0.033 (b) (γ, γ

′
) = (0.5, 0.5), λc = 0.005

(c) (γ, γ
′
) = (0.5, 1), λc = 0.00045 (d) (γ, γ

′
) = (0.5, 1.5), λc = 0.00004

Figure A.6: The real survival curve (blue) based on uncensored data and the survival curve esti-
mated with the Kaplan-Meier method on censored data (red) for different values of γ

′
link param-

eter of the censoring model.These are the curves over 1 simulations with (β1, β2) = (0.1, 0.5),
γ = 0.5 and λx = 0.01 for time to event model. The coefficients ϕ1,ϕ2 for the censoring model
are the same with values (ϕ1, ϕ2) = (0.1, 0.5) and shape parameter ν for both event and censoring
times have the same values for all simulations, with ν = 2.

A.3. CHAPTER 5 59

A.3 Chapter 5

Exponential

(a) (ϕ1, ϕ2) = (1.5, 0.5), λc = 0.034 (b) (ϕ1, ϕ2) = (4.5, 1.5), λc = 0.007

(c) (ϕ1, ϕ2) = (0.5, 0.1), λc = 0.012 (d) (ϕ1, ϕ2) = (1.5, 0.5), λc = 0.034

Figure A.7: The real survival curve (blue) based on uncensored data and the survival curve
estimated with the Kaplan-Meier method on censored data (red) for different values of ϕ coeffi-
cients.These are the average curves over 50 simulations with (β1, β2) = (0.1, 0.5) and λX = 0.01.
The link parameters γ and γ

′
, shape parameter ν for both event and censoring times have the

same values for all simulations, with γ = γ
′
= 0.5 and ν = 2.

A.4 Chapter 6

In this section we include simulations with a value of the diagonal matrix Σ equal to 0.1.

60 APPENDIX A. CONFIDENCE INTERVALS AND SIMULATIONS

(a) γ′ = 0.5, λc = 0.005 (b) γ′ = 1.5, λc = 0.00004

(c) γ′ = 3, λc = 0.00000003

Figure A.8: The real survival curve (blue) based on uncensored data, the survival curve estimated
with the Kaplan-Meier method on censored data (black), and the survival curves estimated with
IPCW weights, with stabilized weights (green) and unstabilized weights (red). These are the
average curves over 10 simulations with (β1, β2) = (0.5, 0.1), λ0x = 0.01,γ = 0.5 and (ϕ1, ϕ2) =
(0.5, 0.1) for the censoring model. The shape parameter ν for both event and censoring times
have the same values for all simulations, with ν = 2. Censoring percentage is (33%).

(a) (b) (c)
Standard method 0.0081 0.0134 0.0172
Unstabilized weights 0.0011 0.0033 0.0079
Stabilized weights 0.0011 0.0033 0.0079

Table A.1: Area under the curve for all three simulations scenarios

Appendix B

R Code

B.1 R code chapter 3

Load packages

library(survival)

library(ranger)

library(ggplot2)

library(dplyr)

library(survminer)

library(kableExtra)

Functions

simexp function to generate survival and censoring times

simexp <-function (N,data ,lamdax ,lamdac ,beta1 ,beta2 ,phi1 ,phi2)

{

u1<-runif(N)

u2<-runif(N)

Tx<-(-log(u1)/(lamdax*exp(data$x1*beta1+data$x2*beta2))) # event times

Tc<-(-log(u2)/(lamdac*exp(data$x1*phi1+data$x2*phi2))) # censoring times

time <-pmin(Tx ,Tc)

status <-as.numeric(Tx <=Tc)

data.frame(id=1:N,Tx=Tx ,Tc=Tc ,time=time ,status=status ,

x1=data$x1,x2=data$x2)
}

Simulation iterations

simIterations <- function(# Parameters simulation:

tt , # time grid

N, # sample size

M, # ...

Parameters survival model

lamdax , #

beta1 , # ...

61

62 APPENDIX B. R CODE

beta2 ,

Parameters censoring model

lamdac ,

phi1 ,

phi2 ,

data

)

{

surv.real <- matrix(nrow = M, ncol = length(tt))

surv.cens <- matrix(nrow = M, ncol = length(tt))

Save censoring percentage in:

cens.perc <- vector(mode = "numeric", length = M)

Save correlation between X and C in:

correlationXC <- vector(mode = "numeric", length = M)

#save the distance between the curves

area_between_curves <-vector(mode = "numeric", length = M)

#save the max distance between the curves

max_dist <-vector(mode = "numeric", length = M)

index_max <-vector(mode = "numeric", length = M)

for(j in 1:M)

{

data.sim1 <-simexp(N,data ,lamdax ,lamdac ,beta1 ,beta2 ,phi1 ,phi2)

data.sim2 <-data.sim1[data.sim1$status ==1,]
data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE) ## estimate

survival probabilities at time points tt

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real[j,]<-ssf$surv
surv.cens[j,]<-ssf1$surv
cens.perc[j] <- 1 - sum(data.sim1$status)/N
correlationXC[j] <- cor(data.sim1$Tx , data.sim1$Tc)
max_dist[j]<-max(abs(surv.real[j,]-surv.cens[j,]))

index_max[j]<-which.max(abs(surv.real[j,]-surv.cens[j,]))

area_between_curves[j]<-(geiger :::. area.between.curves(tt ,surv.real[j,],

surv.cens[j,],xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)
}

return(list(surv.real=surv.real ,

surv.cens=surv.cens ,

cens.perc=cens.perc ,

max_dist=max_dist ,

area_between_curves=area_between_curves ,

correlationXC=correlationXC ,

index_max=index_max

))

B.1. R CODE CHAPTER 3 63

}

Fit models for different scenarios

Define parameters that should be the same in each scenario

set.seed (123)

M <- 50 # number of Monte Carlo repetitions

N<-500

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x2<-round(rnorm(N,mean = 50,sd =10)) # age

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

times at which survival prob are calculated

tt <- c(seq(0,5,by=0.1),

seq(5.25 ,10 ,by=0.25) ,

seq(10.5 ,20 ,by=0.5) ,

seq(21,50,by =0.5))

Scenario 1:

set.seed (123)

scenario1Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

Parameters censoring model

lamdac =0.027 ,

phi1 =1.5,

phi2 =0.5,

data=data

)

surv.real.MC_scenario1 <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario1 <- colMeans(scenario1Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC1 <-mean(scenario1Fit [["area_between_curves"]])

max_dist.MC1 <-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC1 ## area

max_dist.MC1 ## max distance

correlationXC.MC<-mean(scenario1Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario1 ,

xlab = "time", ylab = "Survival␣Probability",

64 APPENDIX B. R CODE

type="l", xlim=c(0,50), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario1 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Scenario 2:

set.seed (123)

scenario2Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

Parameters censoring model

lamdac =0.05,

phi1 =0.5,

phi2 =0.1,

data=data

)

surv.real.MC_scenario2 <- colMeans(scenario2Fit [["surv.real"]])

surv.cens.MC_scenario2 <- colMeans(scenario2Fit [["surv.cens"]])

etc , code below should still be changed:

cens.perc.MC<-mean(scenario2Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC2 <-mean(scenario2Fit [["area_between_curves"]])

max_dist.MC2 <-mean(scenario2Fit [["max_dist"]])

area_between_curves.MC2

max_dist.MC2

correlationXC.MC<-mean(scenario2Fit [["correlationXC"]])

correlationXC.MC

plot(tt , surv.real.MC_scenario2 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,50), ylim=c(0,1), col = "blue",

cex = 1.2,

B.1. R CODE CHAPTER 3 65

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =0.8

)

lines(tt , surv.cens.MC_scenario2 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Scenario 3:

set.seed (123)

scenario3Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

Parameters censoring model

lamdac =0.06,

phi1 =0.1,

phi2=0,

data=data

)

surv.real.MC_scenario3 <- colMeans(scenario3Fit [["surv.real"]])

surv.cens.MC_scenario3 <- colMeans(scenario3Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario3Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC3 <-mean(scenario3Fit [["area_between_curves"]])

max_dist.MC3 <-mean(scenario3Fit [["max_dist"]])

area_between_curves.MC3

max_dist.MC3

correlationXC.MC<-mean(scenario3Fit [["correlationXC"]])

correlationXC.MC

plot(tt , surv.real.MC_scenario3 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,50), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

66 APPENDIX B. R CODE

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario3 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Varying the censoring percentage

Scenario 1:

set.seed (123)

scenario1Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

Parameters censoring model

lamdac =0.012 ,

phi1 =0.5,

phi2 =0.1,

data=data

)

surv.real.MC_scenario1 <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario1 <- colMeans(scenario1Fit [["surv.cens"]])

etc , code below should still be changed:

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC1 <-mean(scenario1Fit [["area_between_curves"]])

max_dist.MC1 <-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC1 ## area

max_dist.MC1 ## max distance

correlationXC.MC1 <-mean(scenario1Fit [["correlationXC"]])

correlationXC.MC1 ## cor

plot(tt , surv.real.MC_scenario1 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,50), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

B.1. R CODE CHAPTER 3 67

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario1 , type = "l",lty=2,col = "red", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario1Fit [["index_max"]]]

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth = 3,colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666") +

labs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

set.seed (123)

data.sim1 <-simexp (500, data=data ,0.1 ,0.012 ,0.5 ,0.1 ,0.5 ,0.1)

data.sim2 <-data.sim1[data.sim1$status ==1,]
data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real <-ssf$surv
surv.cens <-ssf1$surv
cens.perc <- 1 - sum(data.sim1$status)/500
correlationXC <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist <-max(abs(surv.real -surv.cens))

area_between_curves <-(geiger :::. area.between.curves(tt ,surv.real ,surv.cens ,

xrange = c(0 ,50)))/max(data.sim2$time))

plot(survtrue , conf.int=F, xlab = "Time", xlim=c(0,50), ylim=c(0,1),

ylab = "Survival␣probability",col = "blue")

lines(surv , conf.int=T,lty = 2,xlab = "Time",ylab = "Survival␣probability",

col = "red")

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

68 APPENDIX B. R CODE

bty = "n"

)

Scenario 2:

set.seed (123)

scenario2Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

Parameters censoring model

lamdac =0.045 ,

phi1 =0.5,

phi2 =0.1,

data=data

)

surv.real.MC_scenario2 <- colMeans(scenario2Fit [["surv.real"]])

surv.cens.MC_scenario2 <- colMeans(scenario2Fit [["surv.cens"]])

etc , code below should still be changed:

cens.perc.MC<-mean(scenario2Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC2 <-mean(scenario2Fit [["area_between_curves"]])

max_dist.MC2 <-mean(scenario2Fit [["max_dist"]])

area_between_curves.MC2 ## area

max_dist.MC2 ## max distance

correlationXC.MC2 <-mean(scenario2Fit [["correlationXC"]])

correlationXC.MC2 ## cor

plot(tt , surv.real.MC_scenario2 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,50), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =0.8

)

lines(tt , surv.cens.MC_scenario2 , type = "l",lty=2, col = "red", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

B.1. R CODE CHAPTER 3 69

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario2Fit [["index_max"]]]

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth =3,colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666") +

labs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

set.seed (123)

data.sim1 <-simexp (500, data=data ,0.1 ,0.045 ,0.5 ,0.1 ,0.5 ,0.1)

data.sim2 <-data.sim1[data.sim1$status ==1,]
data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real <-ssf$surv
surv.cens <-ssf1$surv
cens.perc <- 1 - sum(data.sim1$status)/500
correlationXC <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist <-max(abs(surv.real -surv.cens))

area_between_curves <-(geiger :::. area.between.curves(tt ,surv.real ,surv.cens ,

xrange = c(0 ,50)))/50

plot(survtrue , conf.int=F, xlab = "Time", xlim=c(0,50), ylim=c(0,1),

ylab = "Survival␣probability",col = "blue")

lines(surv , conf.int=T,lty = 2, xlab = "Time", ylab = "Survival␣probability",

col = "red")

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Scenario 3:

set.seed (123)

scenario3Fit <- simIterations(M=M, #number of iterations

tt=tt , # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

70 APPENDIX B. R CODE

Parameters censoring model

lamdac =0.1,

phi1 =0.5,

phi2 =0.1,

data=data

)

surv.real.MC_scenario3 <- colMeans(scenario3Fit [["surv.real"]])

surv.cens.MC_scenario3 <- colMeans(scenario3Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario3Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC3 <-mean(scenario3Fit [["area_between_curves"]])

max_dist.MC3 <-mean(scenario3Fit [["max_dist"]])

area_between_curves.MC3 ## area

max_dist.MC3 ## max distance

correlationXC.MC3 <-mean(scenario3Fit [["correlationXC"]])

correlationXC.MC3 ## cor

plot(tt , surv.real.MC_scenario3 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,50), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =0.8

)

lines(tt , surv.cens.MC_scenario3 , type = "l",lty=2, col = "red", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "black"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario3Fit [["index_max"]]]

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth = 3,colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666")+

labs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

set.seed (123)

data.sim1 <-simexp (500, data=data ,0.1 ,0.1 ,0.5 ,0.1 ,0.5 ,0.1)

B.1. R CODE CHAPTER 3 71

data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real <-ssf$surv
surv.cens <-ssf1$surv
cens.perc <- 1 - sum(data.sim1$status)/500
correlationXC <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist <-max(abs(surv.real -surv.cens))

area_between_curves <-(geiger :::. area.between.curves(tt ,surv.real ,surv.cens ,

xrange = c(0 ,50)))/50

plot(survtrue , conf.int=F, xlab = "Time", xlim=c(0,50), ylim=c(0,1),

ylab = "Survival␣probability",col = "blue")

lines(surv , conf.int=T,lty = 2, xlab = "Time",ylab = "Survival␣probability",

col = "red")

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Varying the sample size

Scenario 1

set.seed (123)

N<-250

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x2<-round(rnorm(N,mean = 50,sd =10))

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

scenario1Fit <- simIterations(M=M, #number of iterations

tt=tt , # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

Parameters censoring model

lamdac =0.05,

phi1 =0.5,

phi2 =0.1,

data=data

)

72 APPENDIX B. R CODE

surv.real.MC_scenario1 <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario1 <- colMeans(scenario1Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC1 <-mean(scenario1Fit [["area_between_curves"]])

max_dist.MC1 <-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC1 ## area

max_dist.MC1 ## max distance

correlationXC.MC1 <-mean(scenario1Fit [["correlationXC"]])

correlationXC.MC1 ## cor

plot(tt , surv.real.MC_scenario1 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,50), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario1 , type = "l",lty=2, col = "red", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario1Fit [["index_max"]]]

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth = 3,colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666")+

labs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

set.seed (123)

N<-250

x2<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x1<-round(rnorm(N,mean = 50,sd =10)) # age

data <-as.data.frame(cbind(x1 ,x2))

data$x1 <- (data$x1 - 50)/10

data.sim1 <-simexp (250, data=data ,0.1 ,0.05 ,0.5 ,0.1 ,0.5 ,0.1)

data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

B.1. R CODE CHAPTER 3 73

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real <-ssf$surv
surv.cens <-ssf1$surv
cens.perc <- 1 - sum(data.sim1$status)/250
correlationXC <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist <-max(abs(surv.real -surv.cens))

area_between_curves <-(geiger :::. area.between.curves(tt ,surv.real ,surv.cens ,

xrange = c(0 ,50)))/50

plot(survtrue , conf.int=F, xlab = "Time", xlim=c(0,50), ylim=c(0,1),

ylab = "Survival␣probability",col = "blue")

lines(surv , conf.int=T,lty = 2, xlab = "Time", ylab = "Survival␣probability",

col = "red")

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Scenario 2:

set.seed (123)

N<-500

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x2<-round(rnorm(N,mean = 50,sd =10)) # age

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

scenario2Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

Parameters censoring model

lamdac =0.05,

phi1 =0.5,

phi2 =0.1,

data=data

)

surv.real.MC_scenario2 <- colMeans(scenario2Fit [["surv.real"]])

surv.cens.MC_scenario2 <- colMeans(scenario2Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario2Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC2 <-mean(scenario2Fit [["area_between_curves"]])

74 APPENDIX B. R CODE

max_dist.MC2 <-mean(scenario2Fit [["max_dist"]])

area_between_curves.MC2 ## area

max_dist.MC2 ## max distance

correlationXC.MC2 <-mean(scenario2Fit [["correlationXC"]])

correlationXC.MC2 ## cor

plot(tt , surv.real.MC_scenario2 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,50), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =0.8

)

lines(tt , surv.cens.MC_scenario2 , type = "l",lty=2, col = "red", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario2Fit [["index_max"]]]

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth = 3,colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666")+

labs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

set.seed (123)

N<-500

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x2<-round(rnorm(N,mean = 50,sd =10)) # age

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

data.sim1 <-simexp (500, data=data ,0.1 ,0.05 ,0.5 ,0.1 ,0.5 ,0.1)

data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real <-ssf$surv
surv.cens <-ssf1$surv

B.1. R CODE CHAPTER 3 75

cens.perc <- 1 - sum(data.sim1$status)/500
correlationXC <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist <-max(abs(surv.real -surv.cens))

area_between_curves <-(geiger :::. area.between.curves(tt ,surv.real ,surv.cens ,

xrange = c(0 ,50)))/50

plot(survtrue , conf.int=F, xlab = "Time", xlim=c(0,50), ylim=c(0,1),

ylab = "Survival␣probability",col = "blue")

lines(surv , conf.int=T,lty = 2, xlab = "Time", ylab = "Survival␣probability",

col = "red")

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Scenario 3:

set.seed (123)

N<-1000

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x2<-round(rnorm(N,mean = 50,sd =10)) #age

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

scenario3Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

Parameters censoring model

lamdac =0.05,

phi1 =0.5,

phi2 =0.1,

data=data

)

surv.real.MC_scenario3 <- colMeans(scenario3Fit [["surv.real"]])

surv.cens.MC_scenario3 <- colMeans(scenario3Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario3Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario3Fit [["area_between_curves"]])

max_dist.MC<-mean(scenario3Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario3Fit [["correlationXC"]])

76 APPENDIX B. R CODE

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario3 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,50), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =0.8

)

lines(tt , surv.cens.MC_scenario3 , type = "l",lty=2, col = "red", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario1Fit [["index_max"]]]

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth = 3,colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666")+

labs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

set.seed (123)

N<-1000

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # simulate sex

x2<-round(rnorm(N,mean = 50,sd =10))

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

data.sim1 <-simexp (1000, data=data ,0.1 ,0.05 ,0.5 ,0.1 ,0.5 ,0.1)

data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real <-ssf$surv
surv.cens <-ssf1$surv
cens.perc <- 1 - sum(data.sim1$status)/1000
correlationXC <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist <-max(abs(surv.real -surv.cens))

area_between_curves <-(geiger :::. area.between.curves(tt ,surv.real ,surv.cens ,

xrange = c(0 ,50)))/50)

B.1. R CODE CHAPTER 3 77

plot(survtrue , conf.int=F, xlab = "Time", xlim=c(0,50), ylim=c(0,1),

ylab = "Survival␣probability",col = "blue")

lines(surv , conf.int=T,lty = 2, xlab = "Time", ylab = "Survival␣probability",

col = "red")

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

second method for weibull

Functions

simweib function to generate event and censoring times

simweib <-function (N,data ,lamdax ,lamdac ,beta1 ,beta2 ,phi1 ,phi2 ,nx ,nc)

{

u1<-runif(N)

u2<-runif(N)

Tx<-(-log(u1)/(lamdax*exp(data$x1*beta1+data$x2*beta2)))^(1/nx)
Tc<-(-log(u2)/(lamdac*exp(data$x1*phi1+data$x2*phi2)))^(1/nc)
time <-pmin(Tx ,Tc)

status <-as.numeric(Tx <=Tc)

data.frame(id=1:N,Tx=Tx ,Tc=Tc ,time=time ,status=status ,x1=data$x1,
x2=data$x2)

}

Simulation iterations

simIterations <- function(# Parameters simulation:

M, #number of iterations

tt , # time grid

N, # sample size

Parameters survival model

lamdax , #

beta1 , # ...

beta2 ,

nx ,

Parameters censoring model

lamdac ,

phi1 ,

phi2 ,

78 APPENDIX B. R CODE

nc ,

data

)

{

surv.real <- matrix(nrow = M, ncol = length(tt))

surv.cens <- matrix(nrow = M, ncol = length(tt))

Save censoring percentage in:

cens.perc <- vector(mode = "numeric", length = M)

Save correlation between X and C in:

correlationXC <- vector(mode = "numeric", length = M)

#save the distance between the curves

area_between_curves <-vector(mode = "numeric", length = M)

#save the max distance between the curves

max_dist <-vector(mode = "numeric", length = M)

index of max

index_max <-vector(mode = "numeric", length = M)

for(j in 1:M)

{

data.sim1 <-simweib(N,data ,lamdax ,lamdac ,beta1 ,beta2 ,phi1 ,phi2 ,nx ,nc)

data.sim2 <-data.sim1[data.sim1$status ==1,]
data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real[j,]<-ssf$surv
surv.cens[j,]<-ssf1$surv
cens.perc[j] <- 1 - sum(data.sim1$status)/N
correlationXC[j] <- cor(data.sim1$Tx , data.sim1$Tc)
max_dist[j]<-max(abs(surv.real[j,]-surv.cens[j,]))

index_max[j]<-which.max(abs(surv.real[j,]-surv.cens[j,]))

area_between_curves[j]<-(geiger :::. area.between.curves(tt ,surv.real[j,],

surv.cens[j,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)

}

return(list(surv.real=surv.real ,

surv.cens=surv.cens ,

cens.perc=cens.perc ,

max_dist=max_dist ,

area_between_curves=area_between_curves ,

correlationXC=correlationXC ,

index_max=index_max))

}

B.1. R CODE CHAPTER 3 79

Fit models for different scenarios

Define parameters that should be the same in each scenario

set.seed (123)

M <- 50 # number of Monte Carlo repetitions

N<-500

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # simulate treatment

x2<-round(rnorm(N,mean = 50,sd =10)) # simulate age

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

times at which survival prob are calculated

tt <- c(seq(0,10,by =0.1))

Scenario 1:

set.seed (123)

scenario1Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.027 ,

phi1 =1.5,

phi2 =0.5,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario1Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario1Fit [["area_between_curves"]])

max_dist.MC<-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario1Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt, surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,10), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

80 APPENDIX B. R CODE

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l",lty=2,col = "red", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario1Fit [["index_max"]]]

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth = 0.5, colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666") +

labs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

Scenario 2:

set.seed (123)

scenario2Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.05,

phi1 =0.5,

phi2 =0.1,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario2Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario2Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario2Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario2Fit [["area_between_curves"]])

max_dist.MC<-mean(scenario2Fit [["max_dist"]])

B.1. R CODE CHAPTER 3 81

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario2Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,10), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Scenario 3:

set.seed (123)

scenario3Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.06,

phi1 =0.1,

phi2=0,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario3Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario3Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario3Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario3Fit [["area_between_curves"]])

max_dist.MC<-mean(scenario3Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

82 APPENDIX B. R CODE

correlationXC.MC<-mean(scenario3Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,10), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Varying the censoring percentage

Scenario 1:

set.seed (123)

scenario1Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.012 ,

phi1 =0.5,

phi2 =0.1,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario1Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario1Fit [["area_between_curves"]])

max_dist.MC<-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

B.1. R CODE CHAPTER 3 83

correlationXC.MC<-mean(scenario1Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,10), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l",col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario1Fit [["index_max"]]]

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth = 0.5, colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666") +

labs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

set.seed (123)

data.sim1 <-simweib (500, data=data ,0.1 ,0.012 ,0.5 ,0.1 ,0.5 ,0.1 ,2 ,2)

data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real <-ssf$surv
surv.cens <-ssf1$surv
cens.perc <- 1 - sum(data.sim1$status)/500
correlationXC <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist <-max(abs(surv.real -surv.cens))

area_between_curves <-(geiger :::. area.between.curves(tt ,surv.real ,surv.cens ,

xrange = c(0,max(tt))))/max(tt)

plot(survtrue , conf.int=F, xlab = "Time", xlim=c(0,8), ylim=c(0,1),

ylab = "Survival␣probability",col = "blue")

lines(surv , conf.int=T,lty = 2, xlab = "Time", ylab = "Survival␣probability",

84 APPENDIX B. R CODE

col = "red")

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Scenario 2:

set.seed (123)

scenario2Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.045 ,

phi1 =0.5,

phi2 =0.1,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario2Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario2Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario2Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario2Fit [["area_between_curves"]])

max_dist.MC<-mean(scenario2Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario2Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,10), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l",col = "red", lwd = 1.5,lty=2)

B.1. R CODE CHAPTER 3 85

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario2Fit [["index_max"]]]

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth = 0.5, colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666") +

abs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

set.seed (123)

data.sim1 <-simweib (500, data=data ,0.1 ,0.045 ,0.5 ,0.1 ,0.5 ,0.1 ,2 ,2)

data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real <-ssf$surv
surv.cens <-ssf1$surv
cens.perc <- 1 - sum(data.sim1$status)/500
correlationXC <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist <-max(abs(surv.real -surv.cens))

area_between_curves <-(geiger :::. area.between.curves(tt ,surv.real ,surv.cens ,

xrange = c(0,max(tt))))/max(tt))

plot(survtrue , conf.int=F, xlab = "Time", xlim=c(0,8), ylim=c(0,1),

ylab = "Survival␣probability",col = "blue")

lines(surv , conf.int=T,lty = 2, xlab = "Time", ylab = "Survival␣probability",

col = "red")

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

86 APPENDIX B. R CODE

Scenario 3:

set.seed (123)

scenario3Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.1,

phi1 =0.5,

phi2 =0.1,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario3Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario3Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario3Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario3Fit [["area_between_curves"]])

max_dist.MC<-mean(scenario3Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario3Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,10), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l",col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "black"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario3Fit [["index_max"]]]

B.1. R CODE CHAPTER 3 87

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth = 0.5, colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666") +

labs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

set.seed (123)

data.sim1 <-simweib (500, data=data ,0.1 ,0.1 ,0.5 ,0.1 ,0.5 ,0.1 ,2 ,2)

data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real <-ssf$surv
surv.cens <-ssf1$surv
cens.perc <- 1 - sum(data.sim1$status)/500
correlationXC <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist <-max(abs(surv.real -surv.cens))

area_between_curves <-(geiger :::. area.between.curves(tt ,surv.real ,surv.cens ,

xrange = c(0,max(tt))))/max(tt)

plot(survtrue , conf.int=F, xlab = "Time", xlim=c(0,8), ylim=c(0,1),

ylab = "Survival␣probability",col = "blue")

lines(surv , conf.int=T,lty = 2, xlab = "Time", ylab = "Survival␣probability",

col = "red")

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Varying the sample size

Scenario 1:

set.seed (123)

N<-250

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x2<-round(rnorm(N,mean = 50,sd =10)) # age

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

scenario1Fit <- simIterations(M=M, #number of iterations

tt=tt , # time grid

N=N, # sample size

Parameters survival model

88 APPENDIX B. R CODE

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.05,

phi1 =0.5,

phi2 =0.1,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario1Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario1Fit [["area_between_curves"]])

max_dist.MC<-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario1Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,10), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l",col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "black"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario1Fit [["index_max"]]]

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth = 0.5, colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666") +

labs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

B.1. R CODE CHAPTER 3 89

set.seed (123)

N<-250

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x2<-round(rnorm(N,mean = 50,sd =10)) # age

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

data.sim1 <-simweib (250, data=data ,0.1 ,0.05 ,0.5 ,0.1 ,0.5 ,0.1 ,2 ,2)

data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real <-ssf$surv
surv.cens <-ssf1$surv
cens.perc <- 1 - sum(data.sim1$status)/250
correlationXC <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist <-max(abs(surv.real -surv.cens))

area_between_curves <-(geiger :::. area.between.curves(tt ,surv.real ,surv.cens ,

xrange = c(0,max(tt))))/max(tt)

plot(survtrue , conf.int=F, xlab = "Time", xlim=c(0,8), ylim=c(0,1),

ylab = "Survival␣probability",col = "blue")

lines(surv , conf.int=T,lty = 2, xlab = "Time", ylab = "Survival␣probability",

col = "red")

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Scenario 2:

set.seed (123)

N<-500

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x2<-round(rnorm(N,mean = 50,sd =10)) # age

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

scenario2Fit <- simIterations(M=M, #number of iterations

tt=tt , # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

90 APPENDIX B. R CODE

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.05,

phi1 =0.5,

phi2 =0.1,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario2Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario2Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario2Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario2Fit [["area_between_curves"]])

max_dist.MC<-mean(scenario2Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario2Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,10), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l",col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "black"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario2Fit [["index_max"]]]

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth = 0.5, colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666") +

labs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

B.1. R CODE CHAPTER 3 91

set.seed (123)

N<-500

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x2<-round(rnorm(N,mean = 50,sd =10)) # age

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

data.sim1 <-simweib (500, data=data ,0.1 ,0.05 ,0.5 ,0.1 ,0.5 ,0.1 ,2 ,2)

data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real <-ssf$surv
surv.cens <-ssf1$surv
cens.perc <- 1 - sum(data.sim1$status)/500
correlationXC <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist <-max(abs(surv.real -surv.cens))

area_between_curves <-(geiger :::. area.between.curves(tt ,surv.real ,surv.cens ,

xrange = c(0,max(tt))))/max(tt)

plot(survtrue , conf.int=F, xlab = "Time", xlim=c(0,8), ylim=c(0,1),

ylab = "Survival␣probability",col = "blue")

lines(surv , conf.int=T,lty = 2, xlab = "Time", ylab = "Survival␣probability",

col = "red")

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Scenario 3:

set.seed (123)

N<-1000

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x2<-round(rnorm(N,mean = 50,sd =10)) # age

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

scenario3Fit <- simIterations(M=M, #number of iterations

tt=tt , # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

92 APPENDIX B. R CODE

nx=2,

Parameters censoring model

lamdac =0.05,

phi1 =0.5,

phi2 =0.1,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario3Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario3Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario3Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario3Fit [["area_between_curves"]])

max_dist.MC<-mean(scenario3Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario3Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,10), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l",col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "black"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

df <- data.frame(

id=seq(1,50,by=1),

time=tt[scenario3Fit [["index_max"]]]

)

ggplot(df , aes(x=time)) +

geom_histogram(aes(y=.. density ..), binwidth = 0.5, colour="black",fill="white")+

geom_density(alpha=.2, fill="#FF6666") +

abs(title = "Density␣plot␣of␣time␣points␣of␣maximum␣difference")

B.2. R CODE CHAPTER 4 93

set.seed (123)

N<-1000

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x2<-round(rnorm(N,mean = 50,sd =10)) # age

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

data.sim1 <-simweib (1000, data=data ,0.1 ,0.05 ,0.5 ,0.1 ,0.5 ,0.1 ,2 ,2)

data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real <-ssf$surv
surv.cens <-ssf1$surv
cens.perc <- 1 - sum(data.sim1$status)/1000
correlationXC <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist <-max(abs(surv.real -surv.cens))

area_between_curves <-(geiger :::. area.between.curves(tt ,surv.real ,surv.cens ,

xrange = c(0,max(tt))))/max(tt)

plot(survtrue , conf.int=F, xlab = "Time", xlim=c(0,8), ylim=c(0,1),

ylab = "Survival␣probability",col = "blue")

lines(surv , conf.int=T,lty = 2, xlab = "Time", ylab = "Survival␣probability",

col = "red")

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

B.2 R code chapter 4

Load packages

library(MCMCpack)

library(stats)

library(Rlab)

library(MASS)

library(Matrix)

library(mvtnorm)

library(survival)

library(ggplot2)

library(coda)

library(lattice)

library(boa)

library(nlme)

94 APPENDIX B. R CODE

library(car)

library(JM)

library("lattice")

library(simsurv)

library(ranger)

library(dplyr)

library(survminer)

library(kableExtra)

library(knitr)

Functions

Lambert W function by Ngwa et al .(2019)

L a m b e r t s W Function

LambertW=function(z, b=0,maxiter =10,eps=. Machine$double.eps ,
min.imag = 1e-9) {

if (any(round(Re(b)) != b))

stop("branch␣number␣for␣W␣must␣be␣an␣integer")

if (!is.complex(z) && any(z<0)) z=as.complex(z)

series expansion about -1/e

##

p = (1 - 2*abs(b)).*sqrt(2*e*z+2);

w = (11/72)*p;

w = (w - 1/3).*p;

w = (w+1).*p - 1

##

first -order version suffices:

##

w = (1 - 2*abs(b))*sqrt(2*exp(1)*z+2) - 1

asymptotic expansion at 0 and Inf

##

v=log(z+as.numeric(z==0 & b==0)) + 2*pi*b*1i;

v=v - log(v+as.numeric(v==0))

choose strategy for initial guess

##

c=abs(z+exp(-1));

c = (c > 1.45 - 1.1*abs(b));

c=c | (b*Im(z) > 0) | (!Im(z) & (b == 1))

w = (1 - c)*w+c*v

Halley iteration

##

for (n in 1: maxiter) {

p=exp(w)

t=w*p - z

f = (w != -1)

t=f*t/(p*(w+f) - 0.5*(w+2.0)*t/(w+f))

w=w - t

if (abs(Re(t)) < (2.48*eps)*(1.0+ abs(Re(w)))

&& abs(Im(t)) < (2.48*eps)*(1.0+ abs(Im(w))))

B.2. R CODE CHAPTER 4 95

break

}

if (n== maxiter) warning(paste("iteration␣limit␣(",maxiter ,")

reached ,␣result␣of␣W␣may␣be␣inaccurate", sep=""))

if (all(Im(w) < min.imag)) w=as.numeric(w)

return(w)

}

simTIMEexp

simTIMEexp <-function(Survweib ,Censoring)

{

time <-pmin(Survweib , Censoring)

status <-as.numeric(Survweib <= Censoring)

data.frame(id=1:N,Tx=Survweib ,Tc=Censoring ,time=time ,status=status)

}

Simulation iterations

simIterations <- function(# Parameters simulation:

K, #number of iterations

tt , # time grid

N, # sample size

M, # ...

Time ,

Parameters survival model

link , #

biobeta , # ...

Treatbeta ,

wshape ,

scale ,

Parameters censoring model

link1 ,

biobeta1 ,

Treatbeta1 ,

wshape1 ,

scale1

)

{

Save results of each iteration in one vector:

surv.real <- matrix(nrow = K, ncol = length(tt))

surv.cens <- matrix(nrow = K, ncol = length(tt))

Save censoring percentage in:

cens.perc <- vector(mode = "numeric", length = K)

#save the distance between the curves

area_between_curves <-vector(mode = "numeric", length = K)

#save the max distance between the curves

max_dist <-vector(mode = "numeric", length = K)

Save correlation between X and C in:

96 APPENDIX B. R CODE

correlationXC <- vector(mode = "numeric", length = K)

for(k in 1:K){

Creating Random Effects

Ubeta=c(2, 1) ## fixed effects

G=structure (.Data=c(0.5, -0.005, -0.005, 0.001) , .Dim= c(2, 2))

UY=rmvnorm(N, mean=Ubeta , sigma=G, method = "chol") # fixed + random

effects ~ N(Ubeta ,G)

Z=matrix(0,M,length(dim(G)))

Z[,1] <- 1

Z[,2] <- c(Time)

muy <- matrix(0,N,M)

Y <- matrix(0,N,M)

R <- diag(rnorm(M ,1.000 ,0.00001) , M)

V=Z%*%G%*%t(Z) + R #variance -covariance matrix of the repeated measures

Covariate Specification

SEX=rbern(N ,0.540)

TREATMENT=sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5))

for (i in 1:N){if (SEX[i] == 0) SEX[i]=1 else SEX[i]=2 }

x2<-round(rnorm(N,mean = 50,sd =10))

Bio <-(x2 - 50)/10

Generating the Trajectories Outcome

for (j in 1:M){

for (i in 1:N){

muy[i, j] <- UY[i,1] + UY[i,2]*(Time[j])

}

}

muy <- data.frame(muy)

names(muy) <- c("X1", "X2", "X3", "X4", "X5", "X6")

Simulating Y Values

Y <- rmvnorm(n=N, mean=colMeans(muy), sigma=V, method ="chol")

Y <- data.frame(Y)

names(Y) <- c("Y1", "Y2", "Y3", "Y4", "Y5", "Y6")

Error <- rnorm(N, 0, 0.001)

for (i in 1:N){

Y[i,] <- Y[i,] + Error[i]

}

Linear Mixed Model Fit

Timeinterval <- rep(Time , N)

YSimul <- c(t(as.matrix(Y)))

ID <- rep (1:N, each=M)

bioR <- rep(Bio , each=M)

B.2. R CODE CHAPTER 4 97

Long <- data.frame(ID , YSimul , Timeinterval , bioR)

LME <- lme(YSimul~Timeinterval , random = ~ Timeinterval | ID ,

data=Long , control=lmeControl(msMaxIter = 100, msVerbose=TRUE ,

opt = "optim"))

U <- coef(LME)

#U1<-random.effects(LME)

names(U) <- c("X1_1", "X2_1")

LME_Coeff <- data.frame(coefficients(LME))

colMeans(LME_Coeff)

Survival Times Using Weibull Distribution

Lambda (Scale) = (1/Lambda)*v

Uni <- runif(N, min = 0, max = 1)

Numweib <- -log(Uni)

Denweib <- scale*exp(biobeta*Bio+Treatbeta*TREATMENT+link*(U[,1]))

ratioweib <- link*(U[,2])*(1/wshape)*((Numweib/Denweib)^(1/wshape))

Lweib <- LambertW(ratioweib)

rLweib <-Re(Lweib)

Survweib <- Lweib*1/(link*(U[,2])*(1/wshape))

Censoring Times Using Weibull Distribution

Uni <- runif(N, min = 0, max = 1)

Numweib <- -log(Uni)

Denweib <- scale1*exp(biobeta1*Bio+Treatbeta1*TREATMENT+link1*(U[,1]))

ratioweib <- link1*(U[,2])*(1/wshape1)*((Numweib/Denweib)^(1/wshape1))

Lweib <- LambertW(ratioweib)

rLweib <-Re(Lweib)

Censoring <- Lweib*1/(link1*(U[,2])*(1/wshape))

data.sim1 <-simTIMEexp(Survweib ,Censoring)

data.sim2 <-data.sim1[data.sim1$status ==1,]
data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real[k,]<-ssf$surv
surv.cens[k,]<-ssf1$surv
cens.perc[k] <- 1 - sum(data.sim1$status)/500
correlationXC[k] <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist[k]<-max(abs(surv.real[k,]-surv.cens[k,]))

area_between_curves[k]<-(geiger :::. area.between.curves(tt ,surv.real[k,],

surv.cens[k,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)

98 APPENDIX B. R CODE

}

return(list(surv.real=surv.real ,

surv.cens=surv.cens ,

cens.perc=cens.perc ,

max_dist=max_dist ,

area_between_curves=area_between_curves ,

correlationXC=correlationXC ,

data=data.sim1))

}

Fit models for different scenarios

Define parameters that should be the same in each scenario

K <- 50 # number of iterations

tt <- c(seq(0,6,by =0.1)) # time grid

N <- 500 # sample size

M <- 6

Time <- c(0:5)

Scenario 1

set.seed (123)

scenario1Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 0.5,

biobeta1 = 0.5,

Treatbeta1 = 1.5,

wshape1 = 2,

scale1 = 0.0028

)

Summarize results:

surv.real.MC_scenario1 <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario1 <- colMeans(scenario1Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC1 <-mean(scenario1Fit [["area_between_curves"]])

B.2. R CODE CHAPTER 4 99

max_dist.MC1 <-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC1

max_dist.MC1

correlationXC.MC<-mean(scenario1Fit [["correlationXC"]])

plot(tt , surv.real.MC_scenario1 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario1 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

data <-scenario1Fit [["data"]]

den <-density(data$time)
plot(den)

set.seed (123)

scenario2Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 0.5,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.005

)

Summarize results:

surv.real.MC_scenario2 <- colMeans(scenario2Fit [["surv.real"]])

100 APPENDIX B. R CODE

surv.cens.MC_scenario2 <- colMeans(scenario2Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario2Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC2 <-mean(scenario2Fit [["area_between_curves"]])

max_dist.MC2 <-mean(scenario2Fit [["max_dist"]])

area_between_curves.MC2

max_dist.MC2

correlationXC.MC<-mean(scenario2Fit [["correlationXC"]])

plot(tt, surv.real.MC_scenario2 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario2 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

set.seed (123)

scenario3Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 0.5,

biobeta1 = 0,

Treatbeta1 = 0.1,

wshape1 = 2,

scale1 = 0.0057

)

Summarize results:

B.2. R CODE CHAPTER 4 101

surv.real.MC_scenario3 <- colMeans(scenario3Fit [["surv.real"]])

surv.cens.MC_scenario3 <- colMeans(scenario3Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario3Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC3 <-mean(scenario3Fit [["area_between_curves"]])

max_dist.MC3 <-mean(scenario3Fit [["max_dist"]])

area_between_curves.MC3

max_dist.MC3

correlationXC.MC<-mean(scenario3Fit [["correlationXC"]])

plot(tt , surv.real.MC_scenario3 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario3 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Varying the link parameter gamma

Scenario 1:

set.seed (123)

scenario1Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 0.1,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.033

102 APPENDIX B. R CODE

)

Summarize results:

surv.real.MC_scenario1 <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario1 <- colMeans(scenario1Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC1 <-mean(scenario1Fit [["area_between_curves"]])

max_dist.MC1 <-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC1

max_dist.MC1

correlationXC.MC<-mean(scenario1Fit [["correlationXC"]])

plot(tt , surv.real.MC_scenario1 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario1 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Scenario 2:

set.seed (123)

scenario2Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 0.5,

B.2. R CODE CHAPTER 4 103

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.005

)

Summarize results:

surv.real.MC_scenario2 <- colMeans(scenario2Fit [["surv.real"]])

surv.cens.MC_scenario2 <- colMeans(scenario2Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario2Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC2 <-mean(scenario2Fit [["area_between_curves"]])

max_dist.MC2 <-mean(scenario2Fit [["max_dist"]])

area_between_curves.MC2

max_dist.MC2

correlationXC.MC<-mean(scenario2Fit [["correlationXC"]]

plot(tt, surv.real.MC_scenario2 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario2 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Scenario 3:

set.seed (123)

scenario3Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

104 APPENDIX B. R CODE

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 1,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.00045

)

Summarize results:

surv.real.MC_scenario3 <- colMeans(scenario3Fit [["surv.real"]])

surv.cens.MC_scenario3 <- colMeans(scenario3Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario3Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC3 <-mean(scenario3Fit [["area_between_curves"]])

max_dist.MC3 <-mean(scenario3Fit [["max_dist"]])

area_between_curves.MC3

max_dist.MC3

correlationXC.MC<-mean(scenario3Fit [["correlationXC"]])

plot(tt , surv.real.MC_scenario3 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario3 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Scenario 4:

set.seed (123)

scenario4Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

B.2. R CODE CHAPTER 4 105

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 1.5,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.00004

)

Summarize results:

surv.real.MC_scenario4 <- colMeans(scenario4Fit [["surv.real"]])

surv.cens.MC_scenario4 <- colMeans(scenario4Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario4Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC4 <-mean(scenario4Fit [["area_between_curves"]])

max_dist.MC4 <-mean(scenario4Fit [["max_dist"]])

area_between_curves.MC4

max_dist.MC4

correlationXC.MC<-mean(scenario4Fit [["correlationXC"]])

plot(tt , surv.real.MC_scenario4 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario4 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

Varying the censoring percentage

Scenario 1:

set.seed (123)

scenario1Fit <- simIterations(K = K,

106 APPENDIX B. R CODE

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 0.5,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.0012

)

Summarize results:

surv.real.MC_scenario1 <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario1 <- colMeans(scenario1Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC1 <-mean(scenario1Fit [["area_between_curves"]])

max_dist.MC1 <-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC1

max_dist.MC1

correlationXC.MC<-mean(scenario1Fit [["correlationXC"]])

plot(tt , surv.real.MC_scenario1 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario1 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

B.2. R CODE CHAPTER 4 107

Scenario 2:

set.seed (123)

scenario2Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 0.5,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.0044

)

Summarize results:

surv.real.MC_scenario2 <- colMeans(scenario2Fit [["surv.real"]])

surv.cens.MC_scenario2 <- colMeans(scenario2Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario2Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC2 <-mean(scenario2Fit [["area_between_curves"]])

max_dist.MC2 <-mean(scenario2Fit [["max_dist"]])

area_between_curves.MC2

max_dist.MC2

correlationXC.MC<-mean(scenario2Fit [["correlationXC"]])

plot(tt , surv.real.MC_scenario2 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario2 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

108 APPENDIX B. R CODE

)

Scenario 3:

set.seed (123)

scenario3Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 0.5,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.01

)

Summarize results:

surv.real.MC_scenario3 <- colMeans(scenario3Fit [["surv.real"]])

surv.cens.MC_scenario3 <- colMeans(scenario3Fit [["surv.cens"]])

cens.perc.MC<-mean(scenario3Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC3 <-mean(scenario3Fit [["area_between_curves"]])

max_dist.MC3 <-mean(scenario3Fit [["max_dist"]])

area_between_curves.MC3

max_dist.MC3

correlationXC.MC<-mean(scenario3Fit [["correlationXC"]])

plot(tt, surv.real.MC_scenario3 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario3 , type = "l", col = "red", lwd = 1.5,lty=2)

legend(legend = c("Real",

"Standard␣method"),

col = c("blue", "red"),

B.3. R CODE CHAPTER 5 109

lty = c(1,2),

x = "topright",

cex = 1.2,

bty = "n"

)

B.3 R code chapter 5

Load packages

library(survival)

library(ranger)

library(ggplot2)

library(dplyr)

library(survminer)

library(kableExtra)

library(tcltk)

library(ipw)

Transform the data

transform.data <- function(data)

{

Define Tstart and the indicator "censored ":

data$Tstart <- 0

data$censored <- 1 - data$status
Times at which to split the intervals:

cut.times <- unique(data$time)
Split data with event = di (event):

data.long <- survSplit(data = data ,

cut = cut.times ,

end = "time",

start = "Tstart",

event = "status")

data.long <- data.long[order(data.long$id,
data.long$time),]
Split data with event = censored (censoring):

data.long.cens <- survSplit(data ,

cut=cut.times ,

end="time",

start="Tstart",

event="censored")

data.long.cens <- data.long.cens[order(data.long.cens$id ,
data.long.cens$time),]
Add "censored" indicator to long data format:

data.long$censored <- data.long.cens$censored

110 APPENDIX B. R CODE

data.long$id <- as.numeric(data.long$id)
Return long data format:

return(data.long)

}

#Function to estimate the survival curve

#(Product -Limit Estimator) with weighted subjects.

calc.surv.IPCW <- function(Tstart , Tstop , status ,

tt, IPCW.weights ,data.long)

{

Fit the Product -Limit estimator with weighted subjects

surv.IPCW <- survfit(Surv(Tstart , Tstop , status) ~ 1, data = data.long ,

weights = IPCW.weights)

Estimate survival probabilities at time points tt

ssurv.IPCW <- summary(surv.IPCW , times=tt, extend = TRUE)

Return resulting survival probabilities:

return(ssurv.IPCW$surv)
}

simweib

simweib <-function (N,data ,lamdax ,lamdac ,beta1 ,beta2 ,phi1 ,phi2 ,nx ,nc)

{

u1<-runif(N)

u2<-runif(N)

Tx<-(-log(u1)/(lamdax*exp(data$x1*beta1+data$x2*beta2)))^(1/nx)
Tc<-(-log(u2)/(lamdac*exp(data$x1*phi1+data$x2*phi2)))^(1/nc)
time <-pmin(Tx ,Tc)

status <-as.numeric(Tx <=Tc)

data.frame(id=1:N,Tx=Tx ,Tc=Tc ,time=time ,status=status ,x1=data$x1,
x2=data$x2)

}

Simulation iterations

simIterations <- function(# Parameters simulation:

M, #number of iterations

tt , # time grid

N, # sample size

Parameters survival model

lamdax , #

beta1 , # ...

beta2 ,

nx ,

Parameters censoring model

lamdac ,

phi1 ,

B.3. R CODE CHAPTER 5 111

phi2 ,

nc ,

data

)

{

surv.real <- matrix(nrow = M, ncol = length(tt))

surv.cens <- matrix(nrow = M, ncol = length(tt))

Save censoring percentage in:

cens.perc <- vector(mode = "numeric", length = M)

Save correlation between X and C in:

correlationXC <- vector(mode = "numeric", length = M)

#save the distance between the curves

area_between_curves <-vector(mode = "numeric", length = M)

area_between_curvesUnStab <-vector(mode = "numeric", length = M)

area_between_curvesStab <-vector(mode = "numeric", length = M)

#save the max distance between the curves

max_dist <-vector(mode = "numeric", length = M)

index_max <-vector(mode = "numeric", length = M)

surv.IPCW.UnStab <- matrix(nrow = M, ncol = length(tt))

surv.IPCW.Stab <- matrix(nrow = M, ncol = length(tt))

phi.IPCW <- matrix(nrow = M, ncol = 2)

for(j in 1:M)

{

data.sim1 <-simweib(N,data ,lamdax ,lamdac ,beta1 ,beta2 ,phi1 ,phi2 ,nx ,nc)

data.sim2 <-data.sim1[data.sim1$status ==1,]
data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real[j,]<-ssf$surv
surv.cens[j,]<-ssf1$surv
cens.perc[j] <- 1 - sum(data.sim1$status)/N
correlationXC[j] <- cor(data.sim1$Tx , data.sim1$Tc)
max_dist[j]<-max(abs(surv.real[j,]-surv.cens[j,]))

index_max[j]<-which.max(abs(surv.real[j,]-surv.cens[j,]))

area_between_curves[j]<-(geiger :::. area.between.curves(tt ,surv.real[j,],

surv.cens[j,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)

Transform the data into a long format:

data.sim.long <- transform.data(data.sim1)

Calculate the IPCW weights:

ipwStab <- ipwtm(

exposure = censored ,

family = "survival",

numerator = ~ 1,

112 APPENDIX B. R CODE

denominator = ~ x1+x2,

id = id,

tstart = Tstart ,

timevar = time ,

type = "first",

data = data.sim.long)

ipwUnStab <- ipwtm(

exposure = censored ,

family = "survival",

#numerator = ~ 1,

denominator = ~ x1+x2,

id = id,

tstart = Tstart ,

timevar = time ,

type = "first",

data = data.sim.long)

data.sim.long $ipw_weights <- ipwUnStab$ipw.weights
data.sim.long $ipw_Stabweights <- ipwStab$ipw.weights

Calculate survival probabilities for the testpersons:

surv.IPCW.Stab[j,] <- calc.surv.IPCW(Tstart = data.sim.long$Tstart ,
Tstop = data.sim.long$time ,
status = data.sim.long$status ,
tt = tt,

IPCW.weights = data.sim.long $ipw_Stabweights ,
data.long = data.sim.long)

Unstabilized Weights

Calculate survival probabilities:

surv.IPCW.UnStab[j,] <- calc.surv.IPCW(Tstart = data.sim.long$Tstart ,
Tstop = data.sim.long$time ,
status = data.sim.long$status ,
tt = tt,

IPCW.weights = data.sim.long $ipw_weights ,
data.long = data.sim.long)

CZ <- coxph(Surv(Tstart ,

time ,

censored) ~ x1+x2,

data = data.sim.long)

phi.IPCW[j,] <- summary(CZ)$coef[,1]

area_between_curvesStab[j]<-(geiger :::. area.between.curves(tt ,surv.real[j,],

surv.IPCW.Stab[j,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)

B.3. R CODE CHAPTER 5 113

area_between_curvesUnStab[j]<-(geiger :::. area.between.curves(tt ,surv.real[j,],

surv.IPCW.UnStab[j,],xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)

}

return(list(surv.real=surv.real ,

surv.cens=surv.cens ,

cens.perc=cens.perc ,

max_dist=max_dist ,

area_between_curves=area_between_curves ,

area_between_curvesStab=area_between_curvesStab ,

area_between_curvesUnStab=area_between_curvesUnStab ,

correlationXC=correlationXC ,

index_max=index_max ,surv.IPCW.UnStab=surv.IPCW.UnStab ,

surv.IPCW.Stab=surv.IPCW.Stab ,

phi.IPCW=phi.IPCW

))

}

Fit models for different scenarios

Define parameters that should be the same in each scenario

set.seed (123)

M <- 50 # number of Monte Carlo repetitions

N<-500

x1<-sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5)) # treatment

x2<-round(rnorm(N,mean = 50,sd =10))

data <-as.data.frame(cbind(x1 ,x2))

data$x2 <- (data$x2 - 50)/10

times at which survival prob are calculated

tt <- c(seq(0,10,by =0.1))

Scenario 1:

set.seed (123)

scenario1Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.027 ,

phi1 =1.5,

phi2 =0.5,

nc=2,

114 APPENDIX B. R CODE

data=data

)

surv.real.MC_scenario <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario1Fit [["surv.cens"]])

surv.IPCW.UnStab.MC_scenario <-colMeans(scenario1Fit [["surv.IPCW.UnStab"]])

surv.IPCW.Stab.MC_scenario <-colMeans(scenario1Fit [["surv.IPCW.Stab"]])

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario1Fit [["area_between_curves"]])

area_between_curves.MC.UnStab <-mean(scenario1Fit [["area_between_curvesUnStab"]])

area_between_curves.MC.Stab <-mean(scenario1Fit [["area_between_curvesStab"]])

max_dist.MC<-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario1Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,8), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l",lty=2,col = "black", lwd = 1.5)

lines(tt , surv.IPCW.UnStab.MC_scenario , type = "l",lty=3,

col = "red", lwd = 1.5)

lines(tt , surv.IPCW.Stab.MC_scenario , type = "l",lty=4,

col = "green", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method","UnStabW","StabW"),

col = c("blue", "black","red","green"),

lty = c(1,2,3,4),

x = "topright",

cex = 1.2,

bty = "n"

)

colMeans(scenario1Fit [["phi.IPCW"]])

table <-matrix(NA ,nrow=3,ncol = 1)

rownames(table)<-c("Standard␣method","UnStabW","StabW")

colnames(table)<-c("Area␣between␣the␣curves")

table[,1]<-c(area_between_curves.MC,area_between_curves.MC.UnStab ,

area_between_curves.MC.Stab)

Scenario 2:

set.seed (123)

B.3. R CODE CHAPTER 5 115

scenario2Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.003 ,

phi1 =4.5,

phi2 =1.5,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario2Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario2Fit [["surv.cens"]])

surv.IPCW.UnStab.MC_scenario <-colMeans(scenario2Fit [["surv.IPCW.UnStab"]])

surv.IPCW.Stab.MC_scenario <-colMeans(scenario2Fit [["surv.IPCW.Stab"]])

cens.perc.MC<-mean(scenario2Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario2Fit [["area_between_curves"]])

area_between_curves.MC.UnStab <-mean(scenario2Fit [["area_between_curvesUnStab"]])

area_between_curves.MC.Stab <-mean(scenario2Fit [["area_between_curvesStab"]])

max_dist.MC<-mean(scenario2Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario2Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,8), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l",lty=2,col = "black", lwd = 1.5)

lines(tt , surv.IPCW.UnStab.MC_scenario , type = "l",lty=3,

col = "red", lwd = 1.5)

lines(tt , surv.IPCW.Stab.MC_scenario , type = "l",lty=4,

col = "green", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method","UnStabW","StabW"),

col = c("blue", "black","red","green"),

lty = c(1,2,3,4),

x = "topright",

116 APPENDIX B. R CODE

cex = 1.2,

bty = "n"

)

colMeans(scenario2Fit [["phi.IPCW"]])

table <-matrix(NA ,nrow=3,ncol = 1)

rownames(table)<-c("Standard␣method","UnStabW","StabW")

colnames(table)<-c("Area␣between␣the␣curves")

table[,1]<-c(area_between_curves.MC,area_between_curves.MC.UnStab ,

area_between_curves.MC.Stab)

scenario 3

set.seed (123)

scenario3Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.012 ,

phi1 =0.5,

phi2 =0.1,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario3Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario3Fit [["surv.cens"]])

surv.IPCW.UnStab.MC_scenario <-colMeans(scenario3Fit [["surv.IPCW.UnStab"]])

surv.IPCW.Stab.MC_scenario <-colMeans(scenario3Fit [["surv.IPCW.Stab"]])

cens.perc.MC<-mean(scenario3Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario3Fit [["area_between_curves"]])

area_between_curves.MC.UnStab <-mean(scenario3Fit [["area_between_curvesUnStab"]])

area_between_curves.MC.Stab <-mean(scenario3Fit [["area_between_curvesStab"]])

max_dist.MC<-mean(scenario3Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario3Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

B.3. R CODE CHAPTER 5 117

type="l", xlim=c(0,8), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l",lty=2,col = "black", lwd = 1.5)

lines(tt , surv.IPCW.UnStab.MC_scenario , type = "l",lty=3,

col = "red", lwd = 1.5)

lines(tt , surv.IPCW.Stab.MC_scenario , type = "l",lty=4,

col = "green", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method","UnStabW","StabW"),

col = c("blue", "black","red","green"),

lty = c(1,2,3,4),

x = "topright",

cex = 1.2,

bty = "n"

)

colMeans(scenario3Fit [["phi.IPCW"]])

table <-matrix(NA ,nrow=3,ncol = 1)

rownames(table)<-c("Standard␣method","UnStabW","StabW")

colnames(table)<-c("Area␣between␣the␣curves")

table[,1]<-c(area_between_curves.MC,area_between_curves.MC.UnStab ,

area_between_curves.MC.Stab)

Calculate weights with only one covariate

Simulation iterations

Remove x1~treatment

simIterations <- function(# Parameters simulation:

M, #number of iterations

tt , # time grid

N, # sample size

Parameters survival model

lamdax , #

beta1 , # ...

beta2 ,

nx ,

Parameters censoring model

lamdac ,

phi1 ,

phi2 ,

nc ,

data

)

{

118 APPENDIX B. R CODE

surv.real <- matrix(nrow = M, ncol = length(tt))

surv.cens <- matrix(nrow = M, ncol = length(tt))

cens.perc <- vector(mode = "numeric", length = M)

Save correlation between X and C in:

correlationXC <- vector(mode = "numeric", length = M)

#save the distance between the curves

area_between_curves <-vector(mode = "numeric", length = M)

area_between_curvesUnStab <-vector(mode = "numeric", length = M)

area_between_curvesStab <-vector(mode = "numeric", length = M)

#save the max distance between the curves

max_dist <-vector(mode = "numeric", length = M)

index_max <-vector(mode = "numeric", length = M)

surv.IPCW.UnStab <- matrix(nrow = M, ncol = length(tt))

surv.IPCW.Stab <- matrix(nrow = M, ncol = length(tt))

for(j in 1:M)

{

data.sim1 <-simweib(N,data ,lamdax ,lamdac ,beta1 ,beta2 ,phi1 ,phi2 ,nx ,nc)

data.sim2 <-data.sim1[data.sim1$status ==1,]
data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real[j,]<-ssf$surv
surv.cens[j,]<-ssf1$surv
cens.perc[j] <- 1 - sum(data.sim1$status)/N
correlationXC[j] <- cor(data.sim1$Tx , data.sim1$Tc)
max_dist[j]<-max(abs(surv.real[j,]-surv.cens[j,]))

index_max[j]<-which.max(abs(surv.real[j,]-surv.cens[j,]))

area_between_curves[j]<-(geiger :::. area.between.curves(tt ,surv.real[j,],

surv.cens[j,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)

Transform the data into a long format:

data.sim.long <- transform.data(data.sim1)

Calculate the IPCW weights:

ipwStab <- ipwtm(

exposure = censored ,

family = "survival",

numerator = ~ 1,

denominator = ~ x2,

id = id,

tstart = Tstart ,

timevar = time ,

type = "first",

data = data.sim.long)

ipwUnStab <- ipwtm(

B.3. R CODE CHAPTER 5 119

exposure = censored ,

family = "survival",

#numerator = ~ 1,

denominator = ~ x2,

id = id,

tstart = Tstart ,

timevar = time ,

type = "first",

data = data.sim.long)

data.sim.long $ipw_weights <- ipwUnStab$ipw.weights
data.sim.long $ipw_Stabweights <- ipwStab$ipw.weights

Calculate survival probabilities for the testpersons:

surv.IPCW.Stab[j,] <- calc.surv.IPCW(Tstart = data.sim.long$Tstart ,
Tstop = data.sim.long$time ,
status = data.sim.long$status ,
tt = tt,

IPCW.weights = data.sim.long $ipw_Stabweights ,
data.long = data.sim.long)

Unstabilized Weights

Calculate survival probabilities:

surv.IPCW.UnStab[j,] <- calc.surv.IPCW(Tstart = data.sim.long$Tstart ,
Tstop = data.sim.long$time ,
status = data.sim.long$status ,
tt = tt,

IPCW.weights = data.sim.long $ipw_weights ,
data.long = data.sim.long)

area_between_curvesStab[j]<-(geiger :::. area.between.curves(tt ,surv.real[j,],

surv.IPCW.Stab[j,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)
area_between_curvesUnStab[j]<-(geiger :::. area.between.curves(tt ,surv.real[j,],

surv.IPCW.UnStab[j,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)

}

return(list(surv.real=surv.real ,

surv.cens=surv.cens ,

cens.perc=cens.perc ,

max_dist=max_dist ,

area_between_curves=area_between_curves ,

area_between_curvesStab=area_between_curvesStab ,

area_between_curvesUnStab=area_between_curvesUnStab ,

correlationXC=correlationXC ,

index_max=index_max ,surv.IPCW.UnStab=surv.IPCW.UnStab ,

120 APPENDIX B. R CODE

surv.IPCW.Stab=surv.IPCW.Stab

))

}

Scenario 1:

set.seed (123)

scenario1Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.027 ,

phi1 =1.5,

phi2 =0.5,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario1Fit [["surv.cens"]])

surv.IPCW.UnStab.MC_scenario <-colMeans(scenario1Fit [["surv.IPCW.UnStab"]])

surv.IPCW.Stab.MC_scenario <-colMeans(scenario1Fit [["surv.IPCW.Stab"]])

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario1Fit [["area_between_curves"]])

area_between_curves.MC.UnStab <-mean(scenario1Fit [["area_between_curvesUnStab"]])

area_between_curves.MC.Stab <-mean(scenario1Fit [["area_between_curvesStab"]])

max_dist.MC<-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario1Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,8), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l",lty=2,col = "black", lwd = 1.5)

lines(tt , surv.IPCW.UnStab.MC_scenario , type = "l",lty=3,

B.3. R CODE CHAPTER 5 121

col = "red", lwd = 1.5)

lines(tt , surv.IPCW.Stab.MC_scenario , type = "l",lty=4,

col = "green", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method","UnStabW","StabW"),

col = c("blue", "black","red","green"),

lty = c(1,2,3,4),

x = "topright",

cex = 1.2,

bty = "n"

)

table <-matrix(NA ,nrow=3,ncol = 1)

rownames(table)<-c("Standard␣method","UnStabW","StabW")

colnames(table)<-c("Area␣between␣the␣curves")

table[,1]<-c(area_between_curves.MC,area_between_curves.MC.UnStab ,

area_between_curves.MC.Stab)

Remove x2~bio

simIterations <- function(# Parameters simulation:

M, #number of iterations

tt , # time grid

N, # sample size

Parameters survival model

lamdax , #

beta1 , # ...

beta2 ,

nx ,

Parameters censoring model

lamdac ,

phi1 ,

phi2 ,

nc ,

data

)

{

surv.real <- matrix(nrow = M, ncol = length(tt))

surv.cens <- matrix(nrow = M, ncol = length(tt))

Save censoring percentage in:

cens.perc <- vector(mode = "numeric", length = M)

Save correlation between X and C in:

correlationXC <- vector(mode = "numeric", length = M)

#save the distance between the curves

area_between_curves <-vector(mode = "numeric", length = M)

area_between_curvesUnStab <-vector(mode = "numeric", length = M)

area_between_curvesStab <-vector(mode = "numeric", length = M)

#save the max distance between the curves

max_dist <-vector(mode = "numeric", length = M)

122 APPENDIX B. R CODE

index of max

index_max <-vector(mode = "numeric", length = M)

surv.IPCW.UnStab <- matrix(nrow = M, ncol = length(tt))

surv.IPCW.Stab <- matrix(nrow = M, ncol = length(tt))

for(j in 1:M)

{

data.sim1 <-simweib(N,data ,lamdax ,lamdac ,beta1 ,beta2 ,phi1 ,phi2 ,nx ,nc)

data.sim2 <-data.sim1[data.sim1$status ==1,]
data.sim1$one <- 1

survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real[j,]<-ssf$surv
surv.cens[j,]<-ssf1$surv
cens.perc[j] <- 1 - sum(data.sim1$status)/N
correlationXC[j] <- cor(data.sim1$Tx , data.sim1$Tc)
max_dist[j]<-max(abs(surv.real[j,]-surv.cens[j,]))

index_max[j]<-which.max(abs(surv.real[j,]-surv.cens[j,]))

area_between_curves[j]<-(geiger :::. area.between.curves(tt ,surv.real[j,],

surv.cens[j,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)

Transform the data into a long format:

data.sim.long <- transform.data(data.sim1)

Calculate the IPCW weights:

ipwStab <- ipwtm(

exposure = censored ,

family = "survival",

numerator = ~ 1,

denominator = ~ x1,

id = id,

tstart = Tstart ,

timevar = time ,

type = "first",

data = data.sim.long)

ipwUnStab <- ipwtm(

exposure = censored ,

family = "survival",

#numerator = ~ 1,

denominator = ~ x1,

id = id,

tstart = Tstart ,

timevar = time ,

type = "first",

data = data.sim.long)

B.3. R CODE CHAPTER 5 123

data.sim.long $ipw_weights <- ipwUnStab$ipw.weights
data.sim.long $ipw_Stabweights <- ipwStab$ipw.weights

Calculate survival probabilities for the testpersons:

surv.IPCW.Stab[j,] <- calc.surv.IPCW(Tstart = data.sim.long$Tstart ,
Tstop = data.sim.long$time ,
status = data.sim.long$status ,
tt = tt,

IPCW.weights = data.sim.long $ipw_Stabweights ,
data.long = data.sim.long)

Unstabilized Weights

Calculate survival probabilities:

surv.IPCW.UnStab[j,] <- calc.surv.IPCW(Tstart = data.sim.long$Tstart ,
Tstop = data.sim.long$time ,
status = data.sim.long$status ,
tt = tt,

IPCW.weights = data.sim.long $ipw_weights ,
data.long = data.sim.long)

area_between_curvesStab[j]<-(geiger :::. area.between.curves(tt ,surv.real[j,],

surv.IPCW.Stab[j,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)
area_between_curvesUnStab[j]<-(geiger :::. area.between.curves(tt ,surv.real[j,],

surv.IPCW.UnStab[j,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)

}

return(list(surv.real=surv.real ,

surv.cens=surv.cens ,

cens.perc=cens.perc ,

max_dist=max_dist ,

area_between_curves=area_between_curves ,

area_between_curvesStab=area_between_curvesStab ,

area_between_curvesUnStab=area_between_curvesUnStab ,

correlationXC=correlationXC ,

index_max=index_max ,surv.IPCW.UnStab=surv.IPCW.UnStab ,

surv.IPCW.Stab=surv.IPCW.Stab

))

}

Scenario 2:

set.seed (123)

124 APPENDIX B. R CODE

scenario2Fit <- simIterations(M=M, #number of iterations

tt=tt, # time grid

N=N, # sample size

Parameters survival model

lamdax =0.1, #

beta1 =0.5, # ...

beta2 =0.1,

nx=2,

Parameters censoring model

lamdac =0.027 ,

phi1 =1.5,

phi2 =0.5,

nc=2,

data=data

)

surv.real.MC_scenario <- colMeans(scenario2Fit [["surv.real"]])

surv.cens.MC_scenario <- colMeans(scenario2Fit [["surv.cens"]])

surv.IPCW.UnStab.MC_scenario <-colMeans(scenario2Fit [["surv.IPCW.UnStab"]])

surv.IPCW.Stab.MC_scenario <-colMeans(scenario2Fit [["surv.IPCW.Stab"]])

cens.perc.MC<-mean(scenario2Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario2Fit [["area_between_curves"]])

area_between_curves.MC.UnStab <-mean(scenario2Fit [["area_between_curvesUnStab"]])

area_between_curves.MC.Stab <-mean(scenario2Fit [["area_between_curvesStab"]])

max_dist.MC<-mean(scenario2Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC ## max distance

correlationXC.MC<-mean(scenario2Fit [["correlationXC"]])

correlationXC.MC ## cor

plot(tt , surv.real.MC_scenario ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,8), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario , type = "l",lty=2,col = "black", lwd = 1.5)

lines(tt , surv.IPCW.UnStab.MC_scenario , type = "l",lty=3,

col = "red", lwd = 1.5)

lines(tt , surv.IPCW.Stab.MC_scenario , type = "l",lty=4,

col = "green", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method","UnStabW","StabW"),

col = c("blue", "black","red","green"),

lty = c(1,2,3,4),

x = "topright",

B.4. R CODE CHAPTER 6 125

cex = 1.2,

bty = "n"

)

table <-matrix(NA ,nrow=3,ncol = 1)

rownames(table)<-c("Standard␣method","UnStabW","StabW")

colnames(table)<-c("Area␣between␣the␣curves")

table[,1]<-c(area_between_curves.MC,area_between_curves.MC.UnStab ,

area_between_curves.MC.Stab)

B.4 R code chapter 6

Load packages

library(MCMCpack)

library(stats)

library(Rlab)

library(MASS)

library(Matrix)

library(mvtnorm)

library(survival)

library(ggplot2)

library(coda)

library(lattice)

library(boa)

library(nlme)

library(car)

library(JM)

library("lattice")

library(simsurv)

library(ranger)

library(dplyr)

library(survminer)

library(kableExtra)

library(knitr)

library(stats)

library(tcltk)

library(ipw)

Functions

L a m b e r t s W Function ### Ngwa et al .(2019)

LambertW=function(z, b=0,maxiter =10,eps=. Machine$double.eps ,
min.imag = 1e-9) {

if (any(round(Re(b)) != b))

stop("branch␣number␣for␣W␣must␣be␣an␣integer")

if (!is.complex(z) && any(z<0)) z=as.complex(z)

126 APPENDIX B. R CODE

series expansion about -1/e

##

p = (1 - 2*abs(b)).*sqrt(2*e*z+2);

w = (11/72)*p;

w = (w - 1/3).*p;

w = (w+1).*p - 1

##

first -order version suffices:

##

w = (1 - 2*abs(b))*sqrt(2*exp(1)*z+2) - 1

asymptotic expansion at 0 and Inf

##

v=log(z+as.numeric(z==0 & b==0)) + 2*pi*b*1i;

v=v - log(v+as.numeric(v==0))

choose strategy for initial guess

##

c=abs(z+exp(-1));

c = (c > 1.45 - 1.1*abs(b));

c=c | (b*Im(z) > 0) | (!Im(z) & (b == 1))

w = (1 - c)*w+c*v

Halley iteration

##

for (n in 1: maxiter) {

p=exp(w)

t=w*p - z

f = (w != -1)

t=f*t/(p*(w+f) - 0.5*(w+2.0)*t/(w+f))

w=w - t

if (abs(Re(t)) < (2.48*eps)*(1.0+ abs(Re(w)))

&& abs(Im(t)) < (2.48*eps)*(1.0+ abs(Im(w))))

break

}

if (n== maxiter) warning(paste("iteration␣limit␣(",maxiter ,")

reached ,␣result␣of␣W␣may␣be␣inaccurate", sep=""))

if (all(Im(w) < min.imag)) w=as.numeric(w)

return(w)

}

simTIMEexp

simTIMEexp <-function(Survweib ,Censoring)

{

time <-pmin(Survweib , Censoring)

status <-as.numeric(Survweib <= Censoring)

data.frame(id=1:N,Tx=Survweib ,Tc=Censoring ,time=time ,status=status)

}

transform the data

transform.data <- function(LongSurv ,Y)

B.4. R CODE CHAPTER 6 127

{

transform Y(matrix with the longtidutinal measurements) into long format

Y.long <-reshape(Y, sep = "", times = c(0,1,2,3,4,5), direction = "long",

varying = c("Y1", "Y2", "Y3", "Y4", "Y5", "Y6"))

adjust time from 1:6 to 0:5

Y.long$time <-Y.long$time -1

add censored status

LongSurv$censored <- 1 - LongSurv$status

add Tstart in the longsurv dataframe

df1 <-tmerge(LongSurv ,LongSurv ,id=id ,

event=event(time ,status))

merge Y.long and df1

df1 <- tmerge(df1 ,Y.long ,id=id ,

biomarker=tdc(time ,Y))

use the tmerge function again with status=censored to fix the censored

status in the df1 dataset

merge data with censored

df1_censored <-tmerge(LongSurv ,LongSurv ,id=id ,

censored=event(time ,censored))

merge Y.long and df1

df1_censored <- tmerge(df1_censored ,Y.long ,id=id ,

biomarker=tdc(time ,Y))

if(all(df1$id == df1_censored$id &

df1$tstart == df1_censored$tstart &

df1$tstop == df1_censored$tstop))
{

df1$censored <- df1_censored$censored
}

cuttimes <- unique(df1$tstop)

LONG FORMAT WITH CORRECT EVENT STATUS :

df1_long <- survSplit(df1 ,

cut = cuttimes ,

start = "tstart",

end = "tstop",

event = "event",

128 APPENDIX B. R CODE

id="ID")

df1_long <- df1_long[order(df1_long$id ,
df1_long$tstart),]

LONG FORMAT WITH CORRECT CENSORING STATUS

df1_long_censored <- survSplit(df1 ,

cut = cuttimes ,

start = "tstart",

end = "tstop",

event = "censored",

id="ID")

df1_long_censored <- df1_long_censored[order(df1_long_censored$id,
df1_long_censored$tstart),]

if(all(df1_long$id == df1_long_censored$id &

df1_long$tstart == df1_long_censored$tstart &

df1_long$tstop == df1_long_censored$tstop))
{

df1_long$censored <- df1_long_censored$censored
}

return(df1_long)

}

Function to estimate the survival curve (Product -Limit Estimator)

with weighted subjects.

calc.surv.IPCW <- function(Tstart , Tstop , status , tt ,

IPCW.weights ,data.long)

{

Fit the Product -Limit estimator with weighted subjects

surv.IPCW <- survfit(Surv(Tstart , Tstop , event) ~ 1, data = data.long ,

weights = IPCW.weights)

Estimate survival probabilities at time points tt

ssurv.IPCW <- summary(surv.IPCW , times=tt, extend = TRUE)

Return resulting survival probabilities:

return(ssurv.IPCW$surv)
}

Simulation iterations

simIterations <- function(# Parameters simulation:

K, #number of iterations

tt , # time grid

N, # sample size

B.4. R CODE CHAPTER 6 129

M, # ...

Time ,

Parameters survival model

link , #

biobeta , # ...

Treatbeta ,

wshape ,

scale ,

Parameters censoring model

link1 ,

biobeta1 ,

Treatbeta1 ,

wshape1 ,

scale1

)

{

Save results of each iteration in one vector:

surv.real <- matrix(nrow = K, ncol = length(tt))

surv.cens <- matrix(nrow = K, ncol = length(tt))

Save censoring percentage in:

cens.perc <- vector(mode = "numeric", length = K)

#save the distance between the curves

area_between_curves <-vector(mode = "numeric", length = K)

area_between_curvesUnStab <-vector(mode = "numeric", length = M)

area_between_curvesStab <-vector(mode = "numeric", length = M)

#save the max distance between the curves

max_dist <-vector(mode = "numeric", length = K)

Save correlation between X and C in:

correlationXC <- vector(mode = "numeric", length = K)

index of max

index_max <-vector(mode = "numeric", length = K)

surv.IPCW.UnStab <- matrix(nrow = K, ncol = length(tt))

surv.IPCW.Stab <- matrix(nrow = K, ncol = length(tt))

phi.IPCW <- matrix(nrow = K, ncol = 3)

for(k in 1:K){

Creating Random Effects

Ubeta=c(2, 1) ## fixed effects

G=structure (.Data=c(0.5, -0.005, -0.005, 0.001) , .Dim= c(2, 2)) ##

UY=rmvnorm(N, mean=Ubeta , sigma=G, method = "chol") # fixed + random

effects ~ N(Ubeta ,G)

Z=matrix(0,M,length(dim(G)))

Z[,1] <- 1

Z[,2] <- c(Time)

muy <- matrix(0,N,M)

Y <- matrix(0,N,M)

R <- diag(rnorm(M ,1.000 ,0.00001) , M)

130 APPENDIX B. R CODE

V=Z%*%G%*%t(Z) + R #variance -covariance matrix of the repeated measures

Covariate Specification

SEX=rbern(N ,0.540)

TREATMENT=sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5))

for (i in 1:N){if (SEX[i] == 0) SEX[i]=1 else SEX[i]=2 }

x2<-round(rnorm(N,mean = 50,sd =10))

Bio <-(x2 - 50)/10 #

Generating the Trajectories Outcome

for (j in 1:M){

for (i in 1:N){

muy[i, j] <- UY[i,1] + UY[i,2]*(Time[j])

}

}

muy <- data.frame(muy)

names(muy) <- c("X1", "X2", "X3", "X4", "X5", "X6")

Simulating Y Values

Y <- rmvnorm(n=N, mean=colMeans(muy), sigma=V, method ="chol")

Y <- data.frame(Y)

names(Y) <- c("Y1", "Y2", "Y3", "Y4", "Y5", "Y6")

Error <- rnorm(N, 0, 0.001)

for (i in 1:N){

Y[i,] <- Y[i,] + Error[i]

}

Linear Mixed Model Fit

Timeinterval <- rep(Time , N)

YSimul <- c(t(as.matrix(Y)))

ID <- rep (1:N, each=M)

bioR <- rep(Bio , each=M)

Long <- data.frame(ID , YSimul , Timeinterval , bioR)

LME <- lme(YSimul~Timeinterval , random = ~ Timeinterval | ID ,

data=Long , control=lmeControl(msMaxIter = 100, msVerbose=TRUE ,

opt = "optim"))

U <- coef(LME)

#U1<-random.effects(LME)

names(U) <- c("X1_1", "X2_1")

LME_Coeff <- data.frame(coefficients(LME))

colMeans(LME_Coeff)

Survival Times Using Weibull Distribution

Lambda (Scale) = (1/Lambda)*v

B.4. R CODE CHAPTER 6 131

Uni <- runif(N, min = 0, max = 1)

Numweib <- -log(Uni)

Denweib <- scale*exp(biobeta*Bio+Treatbeta*TREATMENT+link*(U[,1]))

ratioweib <- link*(U[,2])*(1/wshape)*((Numweib/Denweib)^(1/wshape))

Lweib <- LambertW(ratioweib)

rLweib <-Re(Lweib)

Survweib <- Lweib*1/(link*(U[,2])*(1/wshape))

Censoring Times Using Weibull Distribution

Lambda (Scale) = (1/Lambda)*v

Uni <- runif(N, min = 0, max = 1)

Numweib <- -log(Uni)

Denweib <- scale1*exp(biobeta1*Bio+Treatbeta1*TREATMENT+link1*(U[,1]))

ratioweib <- link1*(U[,2])*(1/wshape1)*((Numweib/Denweib)^(1/wshape1))

Lweib <- LambertW(ratioweib)

rLweib <-Re(Lweib)

Censoring <- Lweib*1/(link1*(U[,2])*(1/wshape))

#hist(Censoring)

data.sim1 <-simTIMEexp(Survweib ,Censoring)

data.sim1$one <- 1

data.sim2 <-data.sim1[data.sim1$status ==1,]
survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real[k,]<-ssf$surv
surv.cens[k,]<-ssf1$surv
cens.perc[k] <- 1 - sum(data.sim1$status)/500
correlationXC[k] <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist[k]<-max(abs(surv.real[k,]-surv.cens[k,]))

index_max[k]<-which.max(abs(surv.real[k,]-surv.cens[k,]))

area_between_curves[k]<-(geiger :::. area.between.curves(tt ,surv.real[k,],

surv.cens[k,],xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)
LongSurv <- data.frame(data.sim1 ,TREATMENT ,Bio)

LongSurv <-LongSurv[-c(2,3,6)]

Transform the data into a long format

data.sim.long <- transform.data(LongSurv ,Y)

Calculate the IPW weights:

temp.unstab <- ipwtm(

exposure = censored ,

family = "survival",

denominator = ~TREATMENT + Bio + biomarker ,

132 APPENDIX B. R CODE

id = id ,

tstart = tstart ,

timevar = tstop ,

type = "first",

data = data.sim.long)

data.sim.long$ipwunstab <-temp.unstab$ipw.weights

temp.stab <- ipwtm(

exposure = censored ,

family = "survival",

numerator = ~ 1 ,

denominator = ~ TREATMENT + Bio + biomarker ,

id = id ,

tstart = tstart ,

timevar = tstop ,

type = "first",

data = data.sim.long)

data.sim.long$ipwstab <-temp.stab$ipw.weights

Calculate survival probabilities:

surv.IPCW.UnStab[k,] <- calc.surv.IPCW(Tstart = data.sim.long$tstart ,
Tstop = data.sim.long$tstop ,
status = data.sim.long$event ,
tt = tt,

IPCW.weights = data.sim.long$ipwunstab ,
data.long = data.sim.long)

surv.IPCW.Stab[k,] <- calc.surv.IPCW(Tstart = data.sim.long$tstart ,
Tstop = data.sim.long$tstop ,
status = data.sim.long$event ,
tt = tt,

IPCW.weights = data.sim.long$ipwstab ,
data.long = data.sim.long)

CZ <- coxph(Surv(tstart ,

tstop ,

censored) ~ TREATMENT+Bio+biomarker ,

data = data.sim.long)

phi.IPCW[k,] <- summary(CZ)$coef[,1]

area_between_curvesStab[k]<-(geiger :::. area.between.curves(tt ,surv.real[k,],

surv.IPCW.Stab[k,],xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)
area_between_curvesUnStab[k]<-(geiger :::. area.between.curves(tt ,surv.real[k,],

surv.IPCW.UnStab[k,],xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)

B.4. R CODE CHAPTER 6 133

}

return(list(surv.real=surv.real ,

surv.cens=surv.cens ,

cens.perc=cens.perc ,

max_dist=max_dist ,

area_between_curves=area_between_curves ,

area_between_curvesStab=area_between_curvesStab ,

area_between_curvesUnStab=area_between_curvesUnStab ,

correlationXC=correlationXC ,

index_max=index_max ,surv.IPCW.UnStab=surv.IPCW.UnStab ,

surv.IPCW.Stab=surv.IPCW.Stab ,

phi.IPCW =phi.IPCW

))

}

Fit models for different scenarios

Define parameters that should be the same in each scenario

K <-50 #number of iterations

tt <- c(seq(0,6,by =0.1)) # time grid

N <- 500 # sample size

M <- 6 #

Time <- c(0:5)

Scenario 1: Baseline phi1 ,phi2 =(0.1 ,0.5) gammac =0.5

set.seed (123) # save seed

scenario1Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 0.5,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.005

)

Summarize results:

134 APPENDIX B. R CODE

surv.real.MC_scenario1 <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario1 <- colMeans(scenario1Fit [["surv.cens"]])

surv.IPCW.UnStab.MC_scenario <-colMeans(scenario1Fit [["surv.IPCW.UnStab"]])

surv.IPCW.Stab.MC_scenario <-colMeans(scenario1Fit [["surv.IPCW.Stab"]])

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario1Fit [["area_between_curves"]])

area_between_curves.MC.UnStab <-mean(scenario1Fit [["area_between_curvesUnStab"]])

area_between_curves.MC.Stab <-mean(scenario1Fit [["area_between_curvesStab"]])

max_dist.MC1 <-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC1 ## max distance

correlationXC.MC1 <-mean(scenario1Fit [["correlationXC"]])

correlationXC.MC1 ## cor

plot(tt , surv.real.MC_scenario1 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario1 , type = "l",lty=2,col = "black", lwd = 1.5)

lines(tt , surv.IPCW.UnStab.MC_scenario , type = "l",lty=3,

col = "red", lwd = 1.5)

lines(tt , surv.IPCW.Stab.MC_scenario , type = "l",lty=4,

col = "green", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method","UnStabW","StabW"),

col = c("blue", "black","red","green"),

lty = c(1,2,3,4),

x = "topright",

cex = 1.2,

bty = "n"

)

colMeans(scenario1Fit [["phi.IPCW"]])

table <-matrix(NA ,nrow=3,ncol = 1)

rownames(table)<-c("Standard␣method","UnStabW","StabW")

colnames(table)<-c("Area␣between␣the␣curves")

table[,1]<-c(area_between_curves.MC,area_between_curves.MC.UnStab ,

area_between_curves.MC.Stab)

scenario 3 10% censoring

set.seed (123) # save seed

scenario3Fit <- simIterations(K = K,

B.4. R CODE CHAPTER 6 135

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 0.5,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.0012

)

Summarize results:

surv.real.MC_scenario3 <- colMeans(scenario3Fit [["surv.real"]])

surv.cens.MC_scenario3 <- colMeans(scenario3Fit [["surv.cens"]])

surv.IPCW.UnStab.MC_scenario <-colMeans(scenario3Fit [["surv.IPCW.UnStab"]])

surv.IPCW.Stab.MC_scenario <-colMeans(scenario3Fit [["surv.IPCW.Stab"]])

cens.perc.MC<-mean(scenario3Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario3Fit [["area_between_curves"]])

area_between_curves.MC.UnStab <-mean(scenario3Fit [["area_between_curvesUnStab"]])

area_between_curves.MC.Stab <-mean(scenario3Fit [["area_between_curvesStab"]])

max_dist.MC3 <-mean(scenario3Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC3 ## max distance

correlationXC.MC3 <-mean(scenario3Fit [["correlationXC"]])

correlationXC.MC3 ## cor

plot(tt , surv.real.MC_scenario3 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario3 , type = "l",lty=2,col = "black", lwd = 1.5)

lines(tt , surv.IPCW.UnStab.MC_scenario , type = "l",lty=3,

col = "red", lwd = 1.5)

lines(tt , surv.IPCW.Stab.MC_scenario , type = "l",lty=4,

col = "green", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method","UnStabW","StabW"),

col = c("blue", "black","red","green"),

136 APPENDIX B. R CODE

lty = c(1,2,3,4),

x = "topright",

cex = 1.2,

bty = "n"

)

colMeans(scenario3Fit [["phi.IPCW"]])

table <-matrix(NA ,nrow=3,ncol = 1)

rownames(table)<-c("Standard␣method","UnStabW","StabW")

colnames(table)<-c("Area␣between␣the␣curves")

table[,1]<-c(area_between_curves.MC,area_between_curves.MC.UnStab ,

area_between_curves.MC.Stab)

scenario 4 (0.1 ,0.5) ,gamma =3

set.seed (123) # save seed

scenario4Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 3,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.00000003

)

Summarize results:

surv.real.MC_scenario4 <- colMeans(scenario4Fit [["surv.real"]])

surv.cens.MC_scenario4 <- colMeans(scenario4Fit [["surv.cens"]])

surv.IPCW.UnStab.MC_scenario <-colMeans(scenario4Fit [["surv.IPCW.UnStab"]])

surv.IPCW.Stab.MC_scenario <-colMeans(scenario4Fit [["surv.IPCW.Stab"]])

cens.perc.MC<-mean(scenario4Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario4Fit [["area_between_curves"]])

area_between_curves.MC.UnStab <-mean(scenario4Fit [["area_between_curvesUnStab"]])

area_between_curves.MC.Stab <-mean(scenario4Fit [["area_between_curvesStab"]])

max_dist.MC4 <-mean(scenario4Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC4 ## max distance

correlationXC.MC4 <-mean(scenario4Fit [["correlationXC"]])

correlationXC.MC4 ## cor

B.4. R CODE CHAPTER 6 137

plot(tt , surv.real.MC_scenario4 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario4 , type = "l",lty=2,col = "black", lwd = 1.5)

lines(tt , surv.IPCW.UnStab.MC_scenario , type = "l",lty=3,

col = "red", lwd = 1.5)

lines(tt , surv.IPCW.Stab.MC_scenario , type = "l",lty=4,

col = "green", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method","UnStabW","StabW"),

col = c("blue", "black","red","green"),

lty = c(1,2,3,4),

x = "topright",

cex = 1.2,

bty = "n"

)

colMeans(scenario4Fit [["phi.IPCW"]])

table <-matrix(NA ,nrow=3,ncol = 1)

rownames(table)<-c("Standard␣method","UnStabW","StabW")

colnames(table)<-c("Area␣between␣the␣curves")

table[,1]<-c(area_between_curves.MC,area_between_curves.MC.UnStab ,

area_between_curves.MC.Stab)

scenario 5 (0.1 ,0.5) ,gamma =1.5

set.seed (123)

scenario5Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 1.5,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.00004

138 APPENDIX B. R CODE

)

Summarize results:

surv.real.MC_scenario5 <- colMeans(scenario5Fit [["surv.real"]])

surv.cens.MC_scenario5 <- colMeans(scenario5Fit [["surv.cens"]])

surv.IPCW.UnStab.MC_scenario <-colMeans(scenario5Fit [["surv.IPCW.UnStab"]])

surv.IPCW.Stab.MC_scenario <-colMeans(scenario5Fit [["surv.IPCW.Stab"]])

cens.perc.MC<-mean(scenario5Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario5Fit [["area_between_curves"]])

area_between_curves.MC.UnStab <-mean(scenario5Fit [["area_between_curvesUnStab"]])

area_between_curves.MC.Stab <-mean(scenario5Fit [["area_between_curvesStab"]])

max_dist.MC5 <-mean(scenario5Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC5 ## max distance

correlationXC.MC5 <-mean(scenario5Fit [["correlationXC"]])

correlationXC.MC5 ## cor

plot(tt , surv.real.MC_scenario5 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =1.2

)

lines(tt , surv.cens.MC_scenario5 , type = "l",lty=2,col = "black", lwd = 1.5)

lines(tt , surv.IPCW.UnStab.MC_scenario , type = "l",lty=3,

col = "red", lwd = 1.5)

lines(tt , surv.IPCW.Stab.MC_scenario , type = "l",lty=4,

col = "green", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method","UnStabW","StabW"),

col = c("blue", "black","red","green"),

lty = c(1,2,3,4),

x = "topright",

cex = 1.2,

bty = "n"

)

colMeans(scenario5Fit [["phi.IPCW"]])

table <-matrix(NA ,nrow=3,ncol = 1)

rownames(table)<-c("Standard␣method","UnStabW","StabW")

colnames(table)<-c("Area␣between␣the␣curves")

table[,1]<-c(area_between_curves.MC,area_between_curves.MC.UnStab ,

area_between_curves.MC.Stab)

Try IPW method with only one time -fixed covariate

B.4. R CODE CHAPTER 6 139

Simulation iterations with only BIO

simIterations <- function(# Parameters simulation:

K, #number of iterations

tt , # time grid

N, # sample size

M, # ...

Time ,

Parameters survival model

link , #

biobeta , # ...

Treatbeta ,

wshape ,

scale ,

Parameters censoring model

link1 ,

biobeta1 ,

Treatbeta1 ,

wshape1 ,

scale1

)

{

Save results of each iteration in one vector:

surv.real <- matrix(nrow = K, ncol = length(tt))

surv.cens <- matrix(nrow = K, ncol = length(tt))

Save censoring percentage in:

cens.perc <- vector(mode = "numeric", length = K)

#save the distance between the curves

area_between_curves <-vector(mode = "numeric", length = K)

area_between_curvesUnStab <-vector(mode = "numeric", length = M)

area_between_curvesStab <-vector(mode = "numeric", length = M)

#save the max distance between the curves

max_dist <-vector(mode = "numeric", length = K)

Save correlation between X and C in:

correlationXC <- vector(mode = "numeric", length = K)

index_max <-vector(mode = "numeric", length = K)

surv.IPCW.UnStab <- matrix(nrow = K, ncol = length(tt))

surv.IPCW.Stab <- matrix(nrow = K, ncol = length(tt))

phi.IPCW <- matrix(nrow = K, ncol = 3)

for(k in 1:K){

Creating Random Effects

Ubeta=c(2, 1) ## fixed effects

G=structure (.Data=c(0.5, -0.005, -0.005, 0.001) , .Dim= c(2, 2)) ##

UY=rmvnorm(N, mean=Ubeta , sigma=G, method = "chol") # fixed + random

140 APPENDIX B. R CODE

effects ~ N(Ubeta ,G)

Z=matrix(0,M,length(dim(G)))

Z[,1] <- 1

Z[,2] <- c(Time)

muy <- matrix(0,N,M)

Y <- matrix(0,N,M)

R <- diag(rnorm(M ,1.000 ,0.00001) , M)

V=Z%*%G%*%t(Z) + R #variance -covariance matrix of the repeated measures

Covariate Specification

SEX=rbern(N ,0.540)

TREATMENT=sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5))

for (i in 1:N){if (SEX[i] == 0) SEX[i]=1 else SEX[i]=2 }

x2<-round(rnorm(N,mean = 50,sd =10))

Bio <-(x2 - 50)/10 #

Generating the Trajectories Outcome

for (j in 1:M){

for (i in 1:N){

muy[i, j] <- UY[i,1] + UY[i,2]*(Time[j])

}

}

muy <- data.frame(muy)

names(muy) <- c("X1", "X2", "X3", "X4", "X5", "X6")

Simulating Y Values

Y <- rmvnorm(n=N, mean=colMeans(muy), sigma=V, method ="chol")

Y <- data.frame(Y)

names(Y) <- c("Y1", "Y2", "Y3", "Y4", "Y5", "Y6")

Error <- rnorm(N, 0, 0.001)

for (i in 1:N){

Y[i,] <- Y[i,] + Error[i]

}

Linear Mixed Model Fit

Timeinterval <- rep(Time , N)

YSimul <- c(t(as.matrix(Y)))

ID <- rep (1:N, each=M)

bioR <- rep(Bio , each=M)

Long <- data.frame(ID , YSimul , Timeinterval , bioR)

LME <- lme(YSimul~Timeinterval , random = ~ Timeinterval | ID ,

data=Long , control=lmeControl(msMaxIter = 100, msVerbose=TRUE ,

opt = "optim"))

U <- coef(LME)

#U1<-random.effects(LME)

B.4. R CODE CHAPTER 6 141

names(U) <- c("X1_1", "X2_1")

LME_Coeff <- data.frame(coefficients(LME))

colMeans(LME_Coeff)

Survival Times Using Weibull Distribution

Uni <- runif(N, min = 0, max = 1)

Numweib <- -log(Uni)

Denweib <- scale*exp(biobeta*Bio+Treatbeta*TREATMENT+link*(U[,1]))

ratioweib <- link*(U[,2])*(1/wshape)*((Numweib/Denweib)^(1/wshape))

Lweib <- LambertW(ratioweib)

rLweib <-Re(Lweib)

Survweib <- Lweib*1/(link*(U[,2])*(1/wshape))

Censoring Times Using Weibull Distribution

Uni <- runif(N, min = 0, max = 1)

Numweib <- -log(Uni)

Denweib <- scale1*exp(biobeta1*Bio+Treatbeta1*TREATMENT+link1*(U[,1]))

ratioweib <- link1*(U[,2])*(1/wshape1)*((Numweib/Denweib)^(1/wshape1))

Lweib <- LambertW(ratioweib)

rLweib <-Re(Lweib)

Censoring <- Lweib*1/(link1*(U[,2])*(1/wshape))

data.sim1 <-simTIMEexp(Survweib ,Censoring)

data.sim1$one <- 1

data.sim2 <-data.sim1[data.sim1$status ==1,]
survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real[k,]<-ssf$surv
surv.cens[k,]<-ssf1$surv
cens.perc[k] <- 1 - sum(data.sim1$status)/500
correlationXC[k] <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist[k]<-max(abs(surv.real[k,]-surv.cens[k,]))

index_max[k]<-which.max(abs(surv.real[k,]-surv.cens[k,]))

area_between_curves[k]<-(geiger :::. area.between.curves(tt ,surv.real[k,],

surv.cens[k,],xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)
LongSurv <- data.frame(data.sim1 ,TREATMENT ,Bio)

LongSurv <-LongSurv[-c(2,3,6)]

Transform the data into a long format

data.sim.long <- transform.data(LongSurv ,Y)

142 APPENDIX B. R CODE

Calculate the IPW weights:

temp.unstab <- ipwtm(

exposure = censored ,

family = "survival",

denominator = ~ Bio + biomarker ,

id = id ,

tstart = tstart ,

timevar = tstop ,

type = "first",

data = data.sim.long)

data.sim.long$ipwunstab <-temp.unstab$ipw.weights

temp.stab <- ipwtm(

exposure = censored ,

family = "survival",

numerator = ~ 1 ,

denominator = ~ Bio + biomarker ,

id = id ,

tstart = tstart ,

timevar = tstop ,

type = "first",

data = data.sim.long)

data.sim.long$ipwstab <-temp.stab$ipw.weights

Calculate survival probabilities:

surv.IPCW.UnStab[k,] <- calc.surv.IPCW(Tstart = data.sim.long$tstart ,
Tstop = data.sim.long$tstop ,
status = data.sim.long$event ,
tt = tt,

IPCW.weights = data.sim.long$ipwunstab ,
data.long = data.sim.long)

surv.IPCW.Stab[k,] <- calc.surv.IPCW(Tstart = data.sim.long$tstart ,
Tstop = data.sim.long$tstop ,
status = data.sim.long$event ,
tt = tt,

IPCW.weights = data.sim.long$ipwstab ,
data.long = data.sim.long)

CZ <- coxph(Surv(tstart ,

tstop ,

censored) ~ TREATMENT+Bio+biomarker ,

data = data.sim.long)

phi.IPCW[k,] <- summary(CZ)$coef[,1]

area_between_curvesStab[k]<-(geiger :::. area.between.curves(tt ,surv.real[k,],

B.4. R CODE CHAPTER 6 143

surv.IPCW.Stab[k,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)
area_between_curvesUnStab[k]<-(geiger :::. area.between.curves(tt ,surv.real[k,],

surv.IPCW.UnStab[k,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)

}

return(list(surv.real=surv.real ,

surv.cens=surv.cens ,

cens.perc=cens.perc ,

max_dist=max_dist ,

area_between_curves=area_between_curves ,

area_between_curvesStab=area_between_curvesStab ,

area_between_curvesUnStab=area_between_curvesUnStab ,

correlationXC=correlationXC ,

index_max=index_max ,surv.IPCW.UnStab=surv.IPCW.UnStab ,

surv.IPCW.Stab=surv.IPCW.Stab ,

phi.IPCW =phi.IPCW

))

}

Scenario 1: Baseline phi1 ,phi2 =(0.1 ,0.5) gammac =0.5

set.seed (123)

scenario1Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 1.5,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.00004

)

Summarize results:

surv.real.MC_scenario1 <- colMeans(scenario1Fit [["surv.real"]])

surv.cens.MC_scenario1 <- colMeans(scenario1Fit [["surv.cens"]])

surv.IPCW.UnStab.MC_scenario <-colMeans(scenario1Fit [["surv.IPCW.UnStab"]])

surv.IPCW.Stab.MC_scenario <-colMeans(scenario1Fit [["surv.IPCW.Stab"]])

cens.perc.MC<-mean(scenario1Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

144 APPENDIX B. R CODE

area_between_curves.MC<-mean(scenario1Fit [["area_between_curves"]])

area_between_curves.MC.UnStab <-mean(scenario1Fit [["area_between_curvesUnStab"]])

area_between_curves.MC.Stab <-mean(scenario1Fit [["area_between_curvesStab"]])

max_dist.MC1 <-mean(scenario1Fit [["max_dist"]])

area_between_curves.MC## area

max_dist.MC1 ## max distance

correlationXC.MC1 <-mean(scenario1Fit [["correlationXC"]])

correlationXC.MC1 ## cor

plot(tt , surv.real.MC_scenario1 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =0.8

)

lines(tt , surv.cens.MC_scenario1 , type = "l",lty=2,col = "black", lwd = 1.5)

lines(tt , surv.IPCW.UnStab.MC_scenario , type = "l",lty=3,

col = "red", lwd = 1.5)

lines(tt , surv.IPCW.Stab.MC_scenario , type = "l",lty=4,

col = "green", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method","UnStabW","StabW"),

col = c("blue", "black","red","green"),

lty = c(1,2,3,4),

x = "topright",

cex = 1.2,

bty = "n"

)

colMeans(scenario1Fit [["phi.IPCW"]])

table <-matrix(NA ,nrow=3,ncol = 1)

rownames(table)<-c("Standard␣method","UnStabW","StabW")

colnames(table)<-c("Area␣between␣the␣curves")

table[,1]<-c(area_between_curves.MC,area_between_curves.MC.UnStab ,

area_between_curves.MC.Stab)

Scenario 2

Baseline phi1 ,phi2 =(0.1 ,0.5) gammac =0.5 with only treatment

Simulation iterations

simIterations <- function(# Parameters simulation:

K, #number of iterations

tt , # time grid

N, # sample size

M, # ...

Time ,

B.4. R CODE CHAPTER 6 145

Parameters survival model

link , #

biobeta , # ...

Treatbeta ,

wshape ,

scale ,

Parameters censoring model

link1 ,

biobeta1 ,

Treatbeta1 ,

wshape1 ,

scale1

)

{

Save results of each iteration in one vector:

surv.real <- matrix(nrow = K, ncol = length(tt))

surv.cens <- matrix(nrow = K, ncol = length(tt))

Save censoring percentage in:

cens.perc <- vector(mode = "numeric", length = K)

#save the distance between the curves

area_between_curves <-vector(mode = "numeric", length = K)

area_between_curvesUnStab <-vector(mode = "numeric", length = M)

area_between_curvesStab <-vector(mode = "numeric", length = M)

#save the max distance between the curves

max_dist <-vector(mode = "numeric", length = K)

Save correlation between X and C in:

correlationXC <- vector(mode = "numeric", length = K)

index of max

index_max <-vector(mode = "numeric", length = K)

surv.IPCW.UnStab <- matrix(nrow = K, ncol = length(tt))

surv.IPCW.Stab <- matrix(nrow = K, ncol = length(tt))

phi.IPCW <- matrix(nrow = K, ncol = 3)

for(k in 1:K){

Creating Random Effects

Ubeta=c(2, 1) ## fixed effects

G=structure (.Data=c(0.5, -0.005, -0.005, 0.001) , .Dim= c(2, 2)) ##

UY=rmvnorm(N, mean=Ubeta , sigma=G, method = "chol") # fixed + random

effects ~ N(Ubeta ,G)

Z=matrix(0,M,length(dim(G)))

Z[,1] <- 1

Z[,2] <- c(Time)

muy <- matrix(0,N,M)

Y <- matrix(0,N,M)

R <- diag(rnorm(M ,1.000 ,0.00001) , M)

146 APPENDIX B. R CODE

V=Z%*%G%*%t(Z) + R #variance -covariance matrix of the repeated measures

Covariate Specification

SEX=rbern(N ,0.540)

TREATMENT=sample(c(0,1),size = N,replace=TRUE ,prob = c(0.5 ,0.5))

for (i in 1:N){if (SEX[i] == 0) SEX[i]=1 else SEX[i]=2 }

x2<-round(rnorm(N,mean = 50,sd =10))

Bio <-(x2 - 50)/10 #

Generating the Trajectories Outcome

for (j in 1:M){

for (i in 1:N){

muy[i, j] <- UY[i,1] + UY[i,2]*(Time[j])

}

}

muy <- data.frame(muy)

names(muy) <- c("X1", "X2", "X3", "X4", "X5", "X6")

Simulating Y Values

Y <- rmvnorm(n=N, mean=colMeans(muy), sigma=V, method ="chol")

Y <- data.frame(Y)

names(Y) <- c("Y1", "Y2", "Y3", "Y4", "Y5", "Y6")

Error <- rnorm(N, 0, 0.001)

for (i in 1:N){

Y[i,] <- Y[i,] + Error[i]

}

Linear Mixed Model Fit

Timeinterval <- rep(Time , N)

YSimul <- c(t(as.matrix(Y)))

ID <- rep (1:N, each=M)

bioR <- rep(Bio , each=M)

Long <- data.frame(ID , YSimul , Timeinterval , bioR)

LME <- lme(YSimul~Timeinterval , random = ~ Timeinterval | ID ,

data=Long , control=lmeControl(msMaxIter = 100, msVerbose=TRUE ,

opt = "optim"))

U <- coef(LME)

#U1<-random.effects(LME)

names(U) <- c("X1_1", "X2_1")

LME_Coeff <- data.frame(coefficients(LME))

colMeans(LME_Coeff)

Specification of Parameter Estimates

B.4. R CODE CHAPTER 6 147

Survival Times Using Weibull Distribution

Uni <- runif(N, min = 0, max = 1)

Numweib <- -log(Uni)

Denweib <- scale*exp(biobeta*Bio+Treatbeta*TREATMENT+link*(U[,1]))

ratioweib <- link*(U[,2])*(1/wshape)*((Numweib/Denweib)^(1/wshape))

Lweib <- LambertW(ratioweib)

rLweib <-Re(Lweib)

Survweib <- Lweib*1/(link*(U[,2])*(1/wshape))

Censoring Times Using Weibull Distribution

Uni <- runif(N, min = 0, max = 1)

Numweib <- -log(Uni)

Denweib <- scale1*exp(biobeta1*Bio+Treatbeta1*TREATMENT+link1*(U[,1]))

ratioweib <- link1*(U[,2])*(1/wshape1)*((Numweib/Denweib)^(1/wshape1))

Lweib <- LambertW(ratioweib)

rLweib <-Re(Lweib)

Censoring <- Lweib*1/(link1*(U[,2])*(1/wshape))

#hist(Censoring)

data.sim1 <-simTIMEexp(Survweib ,Censoring)

data.sim1$one <- 1

data.sim2 <-data.sim1[data.sim1$status ==1,]
survtrue <- survfit(Surv(Tx, one) ~ 1, data = data.sim1)

ssf <- summary(survtrue , times=tt ,extend = TRUE)

surv <-survfit(Surv(time ,status)~1,data=data.sim1)

ssf1 <- summary(surv , times=tt ,extend = TRUE)

surv.real[k,]<-ssf$surv
surv.cens[k,]<-ssf1$surv
cens.perc[k] <- 1 - sum(data.sim1$status)/500
correlationXC[k] <- cor(data.sim1$Tx, data.sim1$Tc)
max_dist[k]<-max(abs(surv.real[k,]-surv.cens[k,]))

index_max[k]<-which.max(abs(surv.real[k,]-surv.cens[k,]))

area_between_curves[k]<-(geiger :::. area.between.curves(tt ,surv.real[k,],

surv.cens[k,],xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)
LongSurv <- data.frame(data.sim1 ,TREATMENT ,Bio)

LongSurv <-LongSurv[-c(2,3,6)]

Transform the data into a long format

data.sim.long <- transform.data(LongSurv ,Y)

Calculate the IPW weights:

temp.unstab <- ipwtm(

exposure = censored ,

148 APPENDIX B. R CODE

family = "survival",

denominator = ~ TREATMENT + biomarker ,

id = id ,

tstart = tstart ,

timevar = tstop ,

type = "first",

data = data.sim.long)

data.sim.long$ipwunstab <-temp.unstab$ipw.weights

temp.stab <- ipwtm(

exposure = censored ,

family = "survival",

numerator = ~ 1 ,

denominator = ~ TREATMENT + biomarker ,

id = id ,

tstart = tstart ,

timevar = tstop ,

type = "first",

data = data.sim.long)

data.sim.long$ipwstab <-temp.stab$ipw.weights

Calculate survival probabilities:

surv.IPCW.UnStab[k,] <- calc.surv.IPCW(Tstart = data.sim.long$tstart ,
Tstop = data.sim.long$tstop ,
status = data.sim.long$event ,
tt = tt,

IPCW.weights = data.sim.long$ipwunstab ,
data.long = data.sim.long)

surv.IPCW.Stab[k,] <- calc.surv.IPCW(Tstart = data.sim.long$tstart ,
Tstop = data.sim.long$tstop ,
status = data.sim.long$event ,
tt = tt,

IPCW.weights = data.sim.long$ipwstab ,
data.long = data.sim.long)

CZ <- coxph(Surv(tstart ,

tstop ,

censored) ~ TREATMENT+Bio+biomarker ,

data = data.sim.long)

phi.IPCW[k,] <- summary(CZ)$coef[,1]

area_between_curvesStab[k]<-(geiger :::. area.between.curves(tt ,surv.real[k,],

surv.IPCW.Stab[k,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)
area_between_curvesUnStab[k]<-(geiger :::. area.between.curves(tt ,surv.real[k,],

surv.IPCW.UnStab[k,], xrange = c(0,max(data.sim2$time))))/max(data.sim2$time)

B.4. R CODE CHAPTER 6 149

}

return(list(surv.real=surv.real ,

surv.cens=surv.cens ,

cens.perc=cens.perc ,

max_dist=max_dist ,

area_between_curves=area_between_curves ,

area_between_curvesStab=area_between_curvesStab ,

area_between_curvesUnStab=area_between_curvesUnStab ,

correlationXC=correlationXC ,

index_max=index_max ,surv.IPCW.UnStab=surv.IPCW.UnStab ,

surv.IPCW.Stab=surv.IPCW.Stab ,

phi.IPCW =phi.IPCW

))

}

set.seed (123)

scenario2Fit <- simIterations(K = K,

tt = tt ,

N = N,

M = M,

Time = Time ,

#Parameters survival model

link = 0.500,

biobeta = 0.1,

Treatbeta = 0.5,

wshape = 2,

scale = 0.01,

Parameters censoring model

link1 = 1.5,

biobeta1 = 0.1,

Treatbeta1 = 0.5,

wshape1 = 2,

scale1 = 0.00004

)

Summarize results:

surv.real.MC_scenario2 <- colMeans(scenario2Fit [["surv.real"]])

surv.cens.MC_scenario2 <- colMeans(scenario2Fit [["surv.cens"]])

surv.IPCW.UnStab.MC_scenario <-colMeans(scenario2Fit [["surv.IPCW.UnStab"]])

surv.IPCW.Stab.MC_scenario <-colMeans(scenario2Fit [["surv.IPCW.Stab"]])

cens.perc.MC<-mean(scenario2Fit [["cens.perc"]])

cens.perc.MC # percentage of censoring

area_between_curves.MC<-mean(scenario2Fit [["area_between_curves"]])

area_between_curves.MC.UnStab <-mean(scenario2Fit [["area_between_curvesUnStab"]])

area_between_curves.MC.Stab <-mean(scenario2Fit [["area_between_curvesStab"]])

max_dist.MC2 <-mean(scenario2Fit [["max_dist"]])

area_between_curves.MC ## area

max_dist.MC2 ## max distance

150 APPENDIX B. R CODE

correlationXC.MC2 <-mean(scenario2Fit [["correlationXC"]])

correlationXC.MC2 ## cor

plot(tt , surv.real.MC_scenario2 ,

xlab = "time", ylab = "Survival␣Probability",

type="l", xlim=c(0,6), ylim=c(0,1), col = "blue",

cex = 1.2,

cex.main = 1.2,

cex.axis = 1.2,

cex.lab =0.8

)

lines(tt , surv.cens.MC_scenario2 , type = "l",lty=2,col = "black", lwd = 1.5)

lines(tt , surv.IPCW.UnStab.MC_scenario , type = "l",lty=3,

col = "red", lwd = 1.5)

lines(tt , surv.IPCW.Stab.MC_scenario , type = "l",lty=4,

col = "green", lwd = 1.5)

legend(legend = c("Real",

"Standard␣method","UnStabW","StabW"),

col = c("blue", "black","red","green"),

lty = c(1,2,3,4),

x = "topright",

cex = 1.2,

bty = "n"

)

colMeans(scenario2Fit [["phi.IPCW"]])

table <-matrix(NA ,nrow=3,ncol = 1)

rownames(table)<-c("Standard␣method","UnStabW","StabW")

colnames(table)<-c("Area␣between␣the␣curves")

table[,1]<-c(area_between_curves.MC,area_between_curves.MC.UnStab ,

area_between_curves.MC.Stab)

	Introduction
	Motivation for this Thesis
	Aims of this Thesis
	Structure of this Thesis

	Survival analysis theory
	Basic functions of survival analysis
	The Survival Function
	The Hazard Function

	Censoring and Truncation
	Right Censoring
	Left Censoring
	Interval Censoring
	Truncation

	Estimation of the Survival and Cumulative Hazard Functions
	Non-Parametric Methods
	Parametric Methods

	Semi-Parametric Models
	Cox model with time-independent covariates
	Cox model with time-dependent covariates

	Censoring Assumptions

	Simulation study with time-independent covariates
	Simulation set-up
	Introduction to Monte Carlo simulations
	Define the artificial population
	Generation of survival and censoring times
	Dependent censoring
	Estimation of survival curves
	Diagnostics

	Simulation results for Exponentially distributed event and censoring times
	Strength of the dependency of the censoring mechanism on the time-invariant covariates
	Percentage of censored subjects
	Size of sample

	Simulation results for Weibull distributed event and censoring times
	Strength of the dependency of the censoring mechanism on the time-invariant covariates
	Percentage of censored subjects
	Size of sample

	Conclusions

	Simulation study with time-dependent Covariate
	Simulation set-up
	Define the artificial population
	Generation of survival and censoring times
	Estimation of survival curves
	Visualize the values of the biomarker

	Simulation results for time-dependent covariate
	Strength of the dependency of the censoring mechanism on time-invariant covariates
	Strength of the link parameter of the time-dependent covariate
	Percentage of censored subjects

	Conclusions

	IPCW with time-independent covariates
	IPCW theory
	 Step 1: Fit a model for the censoring times
	 Step 2: Estimate the probability to remain uncensored
	 Step 3: Calculate the IPCW weights
	 Step 4: Estimate the survival probabilities SIPCW

	IPCW algorithm
	Results for time-independent covariate
	Transform the data from wide to long format

	Simulation for time-independent covariates
	Simulation results

	Discussion

	IPCW with time-dependent covariate
	Results for time-dependent covariate
	Transform the data from wide to long format
	Simulation set-up
	Simulations results

	Estimated value of the link parameter ' of the censoring model
	Discussion

	Discussion
	Bibliography
	Appendices
	Confidence intervals and simulations
	Chapter 3
	Confidence intervals for exponential distributed event and censoring times
	Confidence intervals for Weibull distributed event and censoring times

	Chapter 4
	Chapter 5
	Chapter 6

	R Code
	R code chapter 3
	R code chapter 4
	R code chapter 5
	R code chapter 6

