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Abstract

Longitudinal data is encountered when repeated measurements are performed on subjects over a
period of time. Many models exist to fit longitudinal data, all sharing the feature that explanatory
covariates are introduced into the model to explain the observed change over time. A special type of
covariate found within the longitudinal framework is the time-varying covariate, such as the BMI or
blood biomarker levels. These covariates, whose value changes over time, are a blessing in disguise.
On one hand they allow the researcher to better model the change in outcome over time, and thus fit
a better model. On the other hand bias can be introduced when the time-varying covariates depend
on the outcome or its previous values.
Time-varying covariates that introduce such bias are called endogenous time-varying covariates:
these are covariates whose current value, given their own history, depends on past values of the
outcome. In the presence of such endogenous covariates, because of the cross-reliance of the endoge-
nous covariate on the outcome, standard Mixed Models are no longer valid and one needs to resort
to joint modelling of both the outcome and the endogenous covariate.
In this thesis several such joint longitudinal models will be discussed. Our focus will be on Joint
Mixed Models and Joint Scaled Models. Both explicitly model the dependence between the outcome
and the endogenous covariate, thereby removing the possible bias incurred by the time-varying co-
variate. We shall show how to fit these models using a novel Bayesian technique called INLA (In-
tegrated Nested Laplace Integration), which is an elegant technique and a good alternative for the
complex and long MCMC estimation procedure. Although INLA has seen rapid development over
recent years, joint longitudinal models have so far received little attention. The goal of this thesis
is therefore to implement several joint longitudinal models within the INLA framework and apply
them on a simulation study as well as on a synthetic version of a clinical dataset.
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Chapter 1
Introduction

Longitudinal data analysis typically focuses on the effect covariates have on an outcome over time.
As example we can imagine studying the effect of the covariates ’sex’, ’age’ and ’treatment regimen’
on the outcome ’lung capacity’ following a Covid-19 infection. Within the context of longitudinal
data we can split the covariates into 3 groups. The first distinction is between time-invariant and
time-varying covariates. In our hypothetical example ’sex’ is a time-invariant covariate, as it does
not change over time. The time-varying covariates can be further split into endogenous and exoge-
nous time-varying covariates [2]. An exogenous time-varying covariate is a covariate whose current
value, given its own history, does not depend on the value of the outcome at previous measurement
times. In our example ’age’ is such an exogenous time-varying covariate. ’Age’ does change over
time, but it is independent of ’lung capacity’ (the outcome) at previous time points. Finally we have
the endogenous time-varying covariates, which are covariates whose current value does depend on
previous values of the outcome, given their own history. In our example ’treatment regimen’ is such
an endogenous time-varying covariate, since the lung capacity at previous measurements can in-
fluence the treatment regimen the patient is currently receiving, e.g: If the patient is recovering the
treatment can be scaled down. Estimating the effect of such endogenous time-varying covariates
(we shall call them endogenous covariates) can be challenging because the dependency structure be-
tween the outcome and the endogenous covariate needs to be modelled. For this reason a standard
linear mixed model is no longer valid but instead the endogenous covariate and the outcome need
to be properly modelled jointly, see [2]. This leads us into the framework of joint longitudinal mod-
els. Within the scope of this thesis the different approaches to joint modelling of the endogenous
covariate and the outcome will be studied. The emphasis will be on 3 methods:

• First is a multivariate model in which the multiple outcomes are jointly Gaussian distributed.
The association between the two outcomes is then modelled via correlated errors of the out-
comes, see [1].

• Second is a joint mixed model in which the association between the multiple outcomes is given
by multivariate normally distributed random effects, see [4],[18] & [19].

• Last a joint model is proposed in which the linear predictor of the endogenous covariate is
inserted into the linear predictor of the outcome with an associated scaling factor, a joint model
broadly used within the context of survival analysis, see [7], [10] & [11].

During the thesis these methods will be applied in R within the Bayesian framework. The empha-
sis will be to implement the methods using INLA (Integrated Nested Laplace Approximation) and
its associated R package R-INLA. INLA is a new Bayesian framework based on Laplace Integration
that removes the need for extensive MCMC estimation and is therefore much quicker than standard
Bayesian methods. For more information on INLA we refer to [13]. For more information about the
current joint models implementations of INLA we refer to [14], [9] & [15].
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3

The thesis will be organized as follows: In the second chapter we shall mathematically define ex-
ogenous and endogenous time-varying covariates, followed by the definition of the Linear Mixed
Model. The main part of the second chapter will concern the introduction of the different joint mod-
els and the manner in which the association between the outcome and the endogenous covariate is
measured within these joint models. The third chapter will introduce INLA and several goodness of
fit measures will be discussed. The fourth chapter will show how the different joint models can be
fit within the R-INLA framework. Also, the implementation of joint models in other (non-Bayesian)
R-packages will be discussed. In the fifth chapter a small scale simulation study is presented. The
goal is two-fold: First to show that joint models with INLA offer a computationally viable solution.
Secondly we obtain some indications about the settings in which joint models are a viable and useful
alternative to standard mixed models. We end the thesis with a real-life application of joint models
on a synthetic version of the LUMC Covid-19 dataset.
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Chapter 2
Joint models

In this section we shall introduce endogenous and exogenous covariates. We shall continue by defin-
ing a Linear Mixed Model, before ending with the main part of this chapter: The definition and
discussion of the different types of joint models.

2.1 Endogenous vs exogenous covariates
Within longitudinal studies we have both time-invariant and time-varying covariates. Examples of
time-invariant covariates are sex and genetic profile. Examples of time-varying covariates are age,
biomarkers, air-pollution exposure and treatment dose. The time-varying covariates can furthermore
be divided into 2 groups: exogenous and endogenous covariates. To define exogenous and endoge-
nous covariates (see [2]) the following notation is introduced:

• yi(t): Value of the response y for subject i at time t.

• vi(t): Value of the time-varying covariate v for subject i at time t.

• HY
i (t): History of the response process of subject i until time t:

HY
i (t) = {yi(ti1), yi(ti2), ..., yi(tik); tik ≤ t}.

• HV
i (t): History of the time-varying covariate process of subject i until time t:

HV
i (t) = {vi(ti1), vi(ti2), ..., vi(tik); tik ≤ t}.

• wi: Vector of time-independent covariates.

Definition 2.1.1 (Exogenous Covariate) vi(t) is an exogenous covariate with respect to the outcome pro-
cess if the covariate at time t is conditionally independent of the history of the out come process at time t, given
the history of the covariate process at time t. Mathematically,

f
(

vi(t)|HY
i (t),HV

i (t− 1), wi

)
= f

(
vi(t)|HV

i (t− 1), wi

)
.

Thus, for an exogenous covariate the exposure at time t does not depend on previous values of the
response. Examples of exogenous covariates are age and air-pollution exposure.
For exogenous covariates the likelihood f (yi, vi|wi, θ) can be factorized:

f (yi, vi|wi, θ) =

[
T

∏
t=1

f
(

yi(t)|HY
i (t− 1),HV

i (t), wi, θ1

)]
·
[

T

∏
t=1

f
(

vi(t)|HV
i (t− 1), wi, θ2

)]
=

= LY(θ1) · LV(θ2). (2.1)
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2.2 Linear mixed model 5

Here θ1 & θ2 are the parameters of interest in the likelihoods of the outcome y and the exogenous
covariate v respectively, while θ = (θ1, θ2).
The factorization of the joint likelihood means that we do not need to model the covariate process of
v or it’s parameters θ2 in order to make inference about θ1 and the outcome y.

Definition 2.1.2 (Endogenous Covariate) vi(t) is an endogenous covariate with respect to the outcome
process if the covariate at time t is conditionally dependent of the history of the outcome process at time t, given
the history of the covariate process at time t. Mathematically,

f
(

vi(t)|HY
i (t),HV

i (t− 1), wi

)
6= f

(
vi(t)|HV

i (t− 1), wi

)
.

Thus, for an endogenous covariate the covariate at time t does depend on previous values of the
response. An example might occur when investigating the effect of a certain treatment regimen on
symptom severity. If no symptoms are present, the treatment regimen might be made less strin-
gent and vice-versa, leading to dependence between the outcome (symptom severity) and the time-
varying covariate (treatment regimen).
For endogenous covariates the factorization as shown in equation 2.1 does not hold, meaning that
the endogenous covariate process cannot be ignored from the joint likelihood of the outcome and
the covariate. To make the distinction between endogenous and exogenous covariates clear through-
out the thesis we shall be using v to indicate exogenous time-varying covariates, while endogenous
time-varying covariates will be indicated by x.

2.2 Linear mixed model
When assuming the time-varying covariate is exogenous, a standard linear mixed model (LMM) suf-
fices to obtain valid inference. We shall therefore introduce the LMM as a benchmark to compare the
joint models to. We shall limit ourselves to a brief introduction of mixed models, for more informa-
tion we refer to [4], [5].

Definition 2.2.1 (Linear Mixed Model) The LMM with exogenous time-varying covariates shall be of the
following form:

yi(tij) = wᵀ
i · α + vᵀ

i (tij) · β + zᵀi (tij) · bi + εi(tij), (2.2)

with:

• yi(tij): Outcome for patient i at time tij. In total there are i = 1, ..., N patients, with every patient
having j = 1, ..., ni measurements.

• wi: Vector of time-invariant covariates

• vi(tij): Vector of time-varying covariates at time tij.

• α and β: Coefficient vectors of fixed time-invariant and time-varying covariates respectively.

• zi(tij): Vector of random effect covariates, possibly time-varying.

• bi ∼ N (0, D): Random effects vector. The exact structure of the random effects variance-covariance
matrix D will depend on the question at hand.

• εi(tij) ∼ N (0, σ2): Residual errors, with εi(tij) ⊥⊥ bi. Note that hereby we assume independent errors
at different measurement points. This is the Conditional Independence Assumption, which states that
the random effects capture all correlation across time thus leading to independent errors.

Throughout the thesis we shall focus on the association between the time-varying covariate and the
outcome. In the LMM this association is easiest to quantify as it is given by the coefficient β.
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2.2 Linear mixed model 6

Definition 2.2.2 (LMM association coefficient) It is well-known that in the LMM the coefficient β gives
the association between the outcome y and the time-varying covariates vi(tij). Its interpretation is also well-
known: A unitary increase in vi(tij) will yield a change of vᵀ

i (tij)β in the outcome, given that all other
covariates are fixed. We shall denote the coefficient β as βlmm

v , since this is the association between the time-
varying covariate and the outcome in the LMM:

βlmm
v := β. (2.3)

The subscript v indicates that the time-varying covariate is assumed to be exogenous in nature. The statistical
significance of βlmm

v can be tested by using any of the common statistical tests such as an F-test in the frequen-
tist framework or by determining the highest posterior density interval (HPDI) in the bayesian framework.

Before continuing with joint models a few important notes have to be made concerning the LMM.

2.2.1 Lag in a linear mixed model
Within the context of the LMM it is straightforward to introduce lagged values of the time-varying
covariate. These are values of the time-varying covariate at previous time-points used to predict
the current outcome. A well known example of a lagged effect is the relation between smoking and
lung cancer. It is widely known that smoking increases the risk of lung cancer. However, it is not
the smoking on the day of the diagnosis that caused lung cancer. Instead, it is the lagged effect of
smoking over multiple years that caused one to develop lung cancer.
There are many methods to introduce lagged values into a longitudinal model. In this thesis we shall
discuss a simple additive model. This additive model is introduced within the framework of the
LMM.

Definition 2.2.3 (LMM with lagged values) Adding lagged values to a LMM is straightforward, one sim-
ply adds the measurements of the time-varying covariates at previous time-points. The resulting model is of
the following form:

yi(tij) = wᵀ
i · α + vᵀ

i (tij) · β0 +
L

∑
l=1

vᵀ
i (tij − l) · βl + zᵀi (tij) · bi + εi(tij). (2.4)

with:

• L: The total degree of lag introduced into the model. All values of the time-varying covariate until time
t = tij − L are used as predictors in the model.

• βl with l = 1, ..., L: The coefficient vectors of the lagged values.

• All other notation is similar to the notation introduced in the definition of the LMM, see section 2.2.1.

Definition 2.2.3 represents a LMM with lag of degree L. All values of the time-varying covariate are
included until time t = tij − L. Note that if for some lag l and patient i a measurement is missing
at time t = tij − l, the lagged effect cannot be used to fit the model. Also note that the lagged effect
is defined as vᵀ

i (tij − l) instead of vᵀ
i (ti,(j−l)). This is because the lagged effect of interest occurs at a

specific time-point instead of the patient’s previous measurement. The approach presented here is
feasible if the study design is balanced and the amount of missing data is minimal. However, when
the amount of missing data is substantial and/or the time is continuous, many of the lagged values
of the time-varying covariate will not be available. In such cases a model needs to be postulated for
the time-varying covariate as well, thus necessitating the use of joint (but independent) models.
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2.3 Joint (endogenous) models 7

2.2.2 Joint exogenous LMM
We saw that the inclusion of lagged values in case of an unbalanced design and/or missing data
necessitates a model for the time-varying covariate.
A similar situation occurs when we want to use the LMM for prediction. Suppose we have fitted
an LMM on available data and subsequently want to use the model to predict future observations
of a new patient. Using the available repeated measurements we can determine the random effect
level of this new patient. The time-independent covariates of the patient are known to us, as they are
constant over time. A problem however arises of how to determine the values of the time-varying
covariates at future time-points, as we ultimately need them to predict the outcome at future time-
points.
Thus, the inclusion of lagged values as well as using an LMM for prediction necessitates a model to
be postulated for the time-varying covariates. The factorization in equation 2.1 tells us that we can
propose a LMM for the time-varying covariate independent of the LMM for the outcome.

Definition 2.2.4 (Joint Exogenous LMM) The Mixed Model for predicting exogenous time-varying covari-
ate v has the following form:

vi(tij) = wᵀ
i · αv + fᵀ(tij) · βv + zᵀi (tij) · bvi + εvi(tij)

Note that the notation is very similar to the LMM for the outcome, definition 2.2.1, with the only difference
being that there are no time-varying covariates in the linear predictor. Instead, the only time-dependency
allowed is via functions of time. Also note that because the time-varying covariate is assumed to be exogenous
the notation v is used.
New notation introduced in the model is:

• vi(tij): time-varying covariate for patient i at time tij. In total there are i = 1, ..., N patients, with every
patient having j = 1, ..., ni measurements.

• fᵀ(tij): Vector of functions of time, the only time-dependency allowed for the prediction of exogenous
covariates.

• zi(tij): Design vector of random effects. Note that here no time-varying covariates are allowed either.
All time-dependent random effects should consist only of functions of time.

• bvi ∼ N (0, D): Random effects vector.

• εvi(tij) ∼ N (0, σ2): Residual errors, with εvi(tij) ⊥⊥ bi.

Note that if multiple time-varying covariates are present in the LMM of the outcome, definition 2.2.1,
multiple models need to be fitted.
By constructing an independent LMM for the exogenous covariate alongside a LMM for the outcome
(equation 2.2) we have constructed a joint (albeit independent) model for both the outcome and the
exogenous time-varying covariate. Note that the factorization of the joint likelihood in equation 2.1
allows for the independence of these models.

2.3 Joint (endogenous) models
Definition 2.1.2 showed that in case of endogenous covariates the likelihood f (yi, xi|wi, θ) of the
outcome y and endogenous covariate x cannot be factorized into 2 independent likelihoods, and thus
the covariate process cannot be ignored. Instead the outcome and time-varying covariate should be
modelled jointly. Note that as we are talking about endogenous covariates we are using the notation
x instead of v for the time-varying covariate.
In this thesis we shall be looking at 3 main methods which enable joint modelling of both the outcome
and the endogenous covariate. For a more complete overview of joint models we refer to [16].
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2.4 Multivariate joint model 8

2.4 Multivariate joint model
The first joint model we shall be examining is a multivariate normal joint model, discussed in [1].

Definition 2.4.1 (Multivariate joint model) In the multivariate joint model the association between the
outcome y and the endogenous covariate x is realized via the residual errors covariance matrix Σi. The model
specification has the following form:{

yi(tij) = wᵀ
i · αy + vᵀ

yi(tij)βy + εyi(tij)

xi(tij) = wᵀ
i · αx + vᵀ

xi(tij)βx + εxi(tij)
with

[
εyi
εxi

]
∼ Nni(0, Σi)

Most of the notation is similar to the notation introduced when presenting the LMM (definition 2.2.1). The
only difference is the introduction of the endogenous time-varying covariate:

• xi(tij): Endogenous time-varying covariate for patient i at time tij. In total there are i = 1, ..., N
patients, with every patient having j = 1, ..., ni measurements.

• αx and βx: Coefficient vectors of fixed time-invariant and time-varying covariates respectively.

We assume that the outcome yi(tij) and the endogenous variable xi(tij) need to be measured at the same time-
points tij.

In this model the marginal association can be measured between any pair of time-points and missing
data in the response and/or covariate can be handled simultaneously.
When implementing the multivariate joint model a choice must be made about the structure of the
variance-covariance matrix Σi. Possible choices are, among others, an Unstructured form, Com-
pound symmetry, Auto-regressive and Toeplitz. The unstructured form is not feasible when the
number of repeated measurements per patient increases beyond just a few, as for n repeated mea-
surements per patient the unstructured variance-covariance matrix requires 2n(2n+1)

2 parameters. For
just 4 repeated measurements per patient this would result in 36 parameters to be estimated. Thus,
to apply the multivariate joint model one will have to introduce some restrictions on the variance
covariance matrix Σi.
Note that in the definition it is assumed that the endogenous variable and the outcome need to be
measured simultaneously. This is not necessarily the case, as options are available to use the multi-
variate joint models in case of unbalanced data, such as when using the continuous auto-regressive
correlation variance covariance matrix Σi. We shall however not dive deeper into these options in
the course of this thesis.

2.5 Joint Mixed Model
Next we shall be examining the Joint Mixed Model (JMM).

Definition 2.5.1 (Joint Mixed Model) The Joint Mixed Model (JMM) is a model where the association be-
tween the outcome y and the endogenous covariate x is measured via the random effects variance-covariance
matrix D and potentially the residual errors covariance matrix Σi. The mathematical notation of the model is
given by: {

yi(tij) = wi · αy + vᵀ
yi(tij)βy + zᵀyi(tij)byi + εyi(tij)

xi(sij) = wᵀ
i · αx + vᵀ

xi(sij)βx + zᵀxi(sij)bxi + εxi(sij)
with[

byi
bxi

]
∼ N (0, D);

[
εyi
εxi

]
∼ Nni(0, Σi).

Here we have:
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2.5 Joint Mixed Model 9

• yi(tij): Outcome for patient i at time tij. In total there are i = 1, ..., N patients, with every patient
having j = 1, ..., ni measurements.

• xi(sij): Value of the endogenous covariate x for patient i at time sij. Note that the times tij and sij at
which the outcome and the endogenous covariate are measured can be different.

• All other notation is similar to the notation introduced in the definition of the LMM (definition 2.2.1).

Within the course of this thesis we shall be working under the Conditional Independence Assump-
tion, the assumption that the random effects capture all correlation between repeated measurements.
Hereby no correlation is left to be modelled by the error terms. Under the Conditional Independence
Assumption the errors of repeated measurements are independent, thus giving Σi = σ2

ε I.
An advantage of the JMM is that the outcome and endogenous covariate do not need to be measured
at the same time, in contrast to the multivariate joint model. It is important to note that this holds
only when working under the Conditional Independence Assumption.
Within the thesis the JMM shall be used as a means to jointly model the outcome and endogenous
covariate. However, it can be also to used to model multiple associated outcomes, see [3].

2.5.1 Association between outcome and time-varying covariate
The association between the endogenous covariate and the outcome in the JMM is given by the co-
variances of the random effects in matrix D. These values are not easy to interpret. This stands in
contrast to the LMM, where the association was given by βlmm

v (definition 2.2.2) and can be inter-
preted as the change in mean outcome for a unitary increase in the exogenous covariate, given that
all other covariates are fixed. We would like to have a similar value within the context of the JMM.
To obtain such an estimate the conditional distribution of the outcome given the endogenous covari-
ate needs to be derived. The joint distribution of the outcome and the endogenous covariate at time
t for subject i is bivariate normal and has the following form:

f (yi(t), xi(t)) = N2

([
µy,i(t)
µx,i(t)

]
,

[
σ2

y,i(t) ρi(t)σy,i(t)σx,i(t)
ρi(t)σy,i(t)σx,i(t) σ2

x,i(t)

])
with
µy,i(t) = wᵀ

i · αy + vᵀ
yi(t)βy,

µx,i(t) = wᵀ
i · αx + vᵀ

xi(s)βx.

Note the explicit dependence on time of all elements involved in the formulation of the bivariate
normal. It is clear that the means µy,i(t) and µx,i(t) are time-dependent. However, it should also be
noted that the variance σ2

y,i(t) is time dependent if the term zᵀyi(t)by contains any functions of time.
Similarly σ2

x,i(t) and ρi(t) can also be functions of time. The expressions of σ2
y,i(t), σ2

x,i(t) and ρi(t) can
be derived from the model at hand and depend on the covariance matrix D of the random effects and
the covariance matrix Σ of the residual errors. The derivation and time dependency will be illustrated
when deriving the above mentioned quantities for a specific model in section 4.5.1.
Having obtained the bivariate normal distribution we can easily obtain the conditional distribution.
The conditional distribution of the outcome given the endogenous covariate is given by:

f (yi(t)|xi(t) = a) = N
(

µy,i(t) +
σy,i(t)
σx,i(t)

ρi(t)(a− µx,i(t)), (1− ρ2
i (t))σ

2
y,i(t)

)
. (2.5)

Using the conditional distribution we can answer questions relating to the association between the
endogenous covariate and the outcome. We can simply calculate the effect on the outcome of increas-
ing the endogenous covariate by a unitary amount by calculating the expectation of the following
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2.6 Joint Scaled Model 10

quantity:

E( f [yi(t)|xi(t) = a + 1]− f [yi(t)|xi(t) = a]) =

=

(
µy,i(t) +

σy,i(t)
σx,i(t)

ρi(t)(a + 1− µx,i(t))
)
−
(

µy,i(t) +
σy,i(t)
σx,i(t)

ρi(t)(a− µx,i(t))
)
=

=
σy,i(t)
σx,i(t)

ρi(t) =
Cov(y, x)i(t)

σ2
x,i(t)

.

Thus, a unitary increase in the endogenous covariate xi(t) at time t will yield a change of σy,i(t)
σx,i(t)

ρi(t)
in the outcome yi(t) at time t for subject i.

Definition 2.5.2 (JMM association coefficient) The time-dependent coefficient which measures the change
in the outcome y(t) with a unitary increase in the endogenous covariate x(t) at time t will be referred to as
JMM association coefficient and will be denoted by:

β
jmm
x (t) :=

σy,i(t)
σx,i(t)

ρi(t) =
Cov(y, x)i(t)

σ2
x,i(t)

.

Note that β
jmm
x (t) has the same interpretation as βlmm

v in the LMM (see definition 2.2.2). A difference however
is that the coefficient βlmm

v in the LMM is time-independent, while the coefficient β
jmm
x (t) in the JMM is time-

dependent. As the random effects covariance matrix D (and thus also σy,i(t), σx,i(t) & ρi(t)) are equal for all
subjects i there is no dependence of the JMM association coefficient β

jmm
x (t) on subject i.

A problem arises of how to show whether β
jmm
x (t) is significant. Unfortunately, no theoretical quan-

tity has been found for the confidence interval of this quantity.
However, INLA offers a solution. It allows us to sample from the joint distribution of the hyperpa-
rameters σ2

y (t), σ2
x(t) and ρ(t). This allows for the construction of empirical confidence interval of

β
jmm
x (t) via sampling. Note that this method is exclusively available in INLA. When analysing the

COVID results we shall use sampling from the joint posterior to obtain credible intervals for the esti-
mate β

jmm
x (t), see section 6.3.2.

The significance of β
jmm
x (t) and the covariance parameters in the variance-covariance matrix D indi-

cates the significance of the association between the outcome and the endogenous covariate. If these
terms are not significant our model reduces to a LMM without the time-varying covariate, see section
2.2.1. Note that the significance of β

jmm
x (t) and the covariance parameters in the variance-covariance

matrix D is not a test for whether the time-varying covariate is endogenous or exogenous in nature.
In case of a significant time-varying exogenous covariate the JMM will show a significant association,
a result that will be highlighted in the simulation study (section 5.5).

2.6 Joint Scaled Model
Lastly we present a joint model in which the linear predictor of the endogenous covariate is copied
into the linear predictor of the outcome with an associated scaling factor γ. Models of this type are
very common in survival analysis, where a longitudinal model and a survival model are combined
via a scaling factor. More information about the use of such models within survival analysis can be
found in [10] & [11].

Definition 2.6.1 (Joint Scaled Model (JSM)) Joint models with scaled linear predictors shall be referred to
as Joint Scaled Models (JSM). The mathematical notation of the JSM is given by:{

xi(tij) = mi(tij) + εxi(tij)
yi(sij) = wᵀ

yiαy + γmi(sij) + vᵀ
yi(sij)βy + zᵀyi(sij)byi + εyi(sij)
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2.6 Joint Scaled Model 11

with
mi(tij) = wᵀ

xiαx + vᵀ
xi(tij)βx + zᵀxi(tij)bxi

and

bxi ∼ N (0, Dx), εxi(tij) ∼ Nni(0, σ2
x)

byi ∼ N (0, Dy), εyi(sij) ∼ Nni(0, σ2
y )

εxi(tij) ⊥⊥ bxi, εyi(tij) ⊥⊥ byi, εxi(tij) ⊥⊥ εyi(tij).

Hereby the following notation is used:

• mi(tij): The linear predictor of the endogenous variable x at time tij. In total there are i = 1, ..., N
patients, with every patient having j = 1, ..., ni measurements.

Note that the association between the endogenous covariate and the outcome is only given via the linear predic-
tor mi(tij) and its associated scaling factor γ. All random effects b and errors ε are independent between the
outcome y and the endogenous covariate x.

2.6.1 Association between outcome and time-varying covariate
For measuring the association between the outcome and the time-varying covariate the coefficients
βlmm

v in the LMM (definition 2.2.2) and β
jmm
x (t) in the JMM (definition 2.5.2) have been obtained. Both

measure the change in outcome y with a unitary increase in time-varying covariate x. To calculate
such a coefficient for the JSM the expectation of the difference of the conditional distributions for a
subject i should be investigated:

E( f [yi(t)|xi(t) = a + 1]− f [yi(t)|xi(t) = a]) = E( f [yi(t)|xi(t) = a + 1])− E( f [yi(t)|xi(t) = a]) =

=E
(

wᵀ
yiαy + γmi(t) + vᵀ

yi(t)βy + zᵀyi(t)byi + εyi(t)|xi(t) = a + 1
)
+

− E
(

wᵀ
yiαy + γmi(t) + vᵀ

yi(t)βy + zᵀyi(t)byi + εyi(t)|xi(t) = a
)

.

All fixed effects relating to the outcome y are independent of the value of the endogenous covariate
x. This is also true for the random effects and errors in the linear predictor of the outcome. Therefore,
all these values can be brought out of the conditional expectation.
This gives:

E( f [yi(t)|xi(t) = a + 1]− f [yi(t)|xi(t) = a]) =

E
(

wᵀ
yiαy + vᵀ

yi(t)βy + zᵀyi(t)byi + εyi(t)
)
+ E (γmi(t)|xi(t) = a + 1) +

− E
(

wᵀ
yiαy + vᵀ

yi(t)βy + zᵀyi(t)byi + εyi(t)
)
− E (γmi(t)|xi(t) = a + 1) =

= γE (mi(t)|xi(t) = a + 1)− γE (mi(t)|xi(t) = a) . (2.6)

We are left with the expected value of mi(t) conditional on the value of xi(t). The distributions of
mi(t), εi(t) and xi(t) are:

mi(t) = N
(
wᵀ

xiαx + vᵀ
xi(t)βx, zᵀxi(t)Dxzxi(t)

)
εi(t) = N (0, σ2

x)

xi(t) = N
(
wᵀ

xiαx + vᵀ
xi(t)βx, zᵀxi(t)Dxzxi(t) + σ2

x
)

.

Note the explicit dependence of both the mean and the variance of mi(t) and xi(t) on time.
The joint distribution f (mi(t), xi(t)) of mi(t) and xi(t) is multivariate normal, because xi(t) is a linear
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2.6 Joint Scaled Model 12

combination of independent univariate normal distributions mi(t) and εi(t). We can therefore use
equation 2.5 to obtain the conditional expectation of mi(t) given xi(t). This expectation will equal:

E(mi(t)|xi(t) = a) = µmi(t) +
Cov(mi(t), xi(t))

σ2
xi
(t)

(a− µxi(t)) =

= wᵀ
xiαx + vᵀ

xi(t)βx +
Cov(mi(t), xi(t))

zᵀxi(t)Dxzxi(t) + σ2
x
(a−wᵀ

xiαx − vᵀ
xi(t)βx).

The only unknown term within this equation is the covariance between mi(t) and xi(t). This covari-
ance can easily be calculated as:

Cov(mi(t), xi(t)) = Cov(mi(t), mi(t) + εi) = Cov(mi(t), mi(t)) + Cov(mi(t), εi) =

= Var(mi(t)) = zᵀxi(t)Dxzxi(t)

The last step follows from the fact that mi(t) and εi are independent.
Having obtained the expected value of mi(t) given xi(t) we can continue with equation 2.6. We have:

E( f [yi(t)|xi(t) = a + 1]− f [yi(t)|xi(t) = a]) =
= γ [E (mi(t)|xi(t) = a + 1)− E (mi(t)|xi(t) = a + 1)] =

= γ

[
zᵀxi(t)Dxzxi(t)

zᵀxi(t)Dxzxi(t) + σ2
x

]
.

Definition 2.6.2 (JSM association coefficient) The JSM time-dependent coefficient which measures the
change of the outcome y(t) with a unitary increase in the endogenous covariate x(t) at time t will be referred
to as JSM association coefficient and will be denoted by:

β
jsm
x (t) := γ

[
zᵀxi(t)Dxzxi(t)

zᵀxi(t)Dxzxi(t) + σ2
x

]
= γ

[
1− σ2

x

zᵀxi(t)Dxzxi(t) + σ2
x

]
.

Note that this coefficient has the same interpretation as the coefficient βlmm
v in the LMM (see definition 2.2.2)

and the coefficient β
jmm
x (t) in the JMM (see definition 2.5.2). Also note that the association coefficients in both

the JMM as well as the JSM are time dependent. As the random effects zxi(t) are equal for all subjects i (as
they are allowed to consist only of functions of time) there is no dependence of the JSM association coefficient
β

jsm
x (t) on the subject i.

As was the case with the coefficient β
jmm
x (t), we have not been able to obtain a theoretical confidence

interval for β
jsm
x (t). Nevertheless, we can sample all necessary hyperparameters in INLA from their

joint posterior distribution to construct an empirical confidence interval for β
jsm
x (t).

When examining the LUMC covid dataset we shall explicitely give the coefficients involved in zᵀxi(t)Dxzxi(t)
and we shall calculate the confidence intervals of β

jsm
x (t), see section 6.9.

2.6.2 Reparametrization of the Joint Scaled Model
Joint scaled models can be re-parametrized to yield an expression for the combined coefficients of
the outcome y. Assuming the covariates for the endogenous covariate x and the outcome y are
identical, meaning wᵀ

xi = wᵀ
yi, vᵀ

xi(sij) = vᵀ
yi(sij) and zᵀxi(sij) = zᵀyi(sij), we can rewrite the expression

for outcome y as:

yi(si,j) = γmi(sij) + wᵀ
yiαy + vᵀ

yi(sij)βy + zᵀyi(sij)byi + εyi(sij) =

=
(
γαx + αy

)
wᵀ

yi +
(
γβx + βy

)
vᵀ

yi(sij) +
(
γbxi + byi

)
zᵀyi(sij) + εyi(sij) =

= α
′
ywᵀ

yi + β
′
yvᵀ

yi(sij) + b
′
yiz

ᵀ
yi(sij) + εyi(sij),
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2.6 Joint Scaled Model 13

with α
′
y = γαx + αy, β

′
y = γβx + βy and b

′
yi = γbxi + byi.

For the random effects, they now have distribution:

byi ∼ N (0, γ2Dx + Dy).

Inspecting the reparametrization we observe that the combined coefficients α
′
y, β

′
y and b

′
yi are influ-

enced by the coefficients of the endogenous covariate x with a scaling factor γ. The benefit of the
combined coefficients is that they more closely resemble the coefficients obtained when fitting the
LMM and JMM. This will be discussed in more detail when applying the joint models to a dataset,
see section 6.4.2.

2.6.3 Lag within the Joint Scaled Model
From the JSM definition (definition 2.6.1) it is apparent that the endogenous covariate x and the
outcome y do not have to be measured at the same time point. This provides for a convenient way of
introducing lagged values into the model.

Definition 2.6.3 (Lagged values within the Joint Scaled Model) Lagged values are introduced into the
JSM by plugging in the linear predictors mij(t) into the linear predictor of y at different time points. The model
obtains the following form:{

xi(tij) = mi(tij) + εxi(tij)
yi(sij) = wᵀ

yiαy + γ0 ·mi(sij) + ∑L
l=1 γl ·mi(sij − l) + vᵀ

yi(sij)βy + zᵀyi(sij)byi + εyi(sij)

with

mi(tij) = wᵀ
xiαx + vᵀ

xi(tij)βx + zᵀxi(tij)bxi.

Hereby we have:

• L: The total degree of lag introduced into the model. All values of the linear predictor mi(sij − l) until
time sij − L are used as predictors in the model.

• γl : The scaling factors of the lagged valued mi(sij − l), with l = 1, ..., L.

Note that within this framework lagged values can easily be added at any time point, without the
need for the endogenous variable to be measured at that time.

2.6.4 Shared parameter models
A special case of the JSM described above is the shared parameter model. Shared parameter models
allow for one or more elements of the linear predictor of the endogenous variable x to be scaled into
the linear predictor of the outcome y, with different scaling factors γ.
An example of a Shared Parameter Model would be:{

xi(tij) = wᵀ
xiαx + vᵀ

xi(tij)βx + b0
xi + bt

xitij + εxi(tij)
yi(sij) = γ1b0

xi + γ2bt
xisij + wᵀ

yiαy + vᵀ
yi(sij)βy + b0

yi + bt
yitij + εyi(sij).

Here b0
xi and bt

xi are the random intercept and random slope for the endogenous covariate, while b0
yi

and bt
yi fulfil a similar role for the outcome.

Note that within the shared parameter model it is not necessary to scale and copy the entire linear
predictor of x. Furthermore, multiple scaling factors γ can be used for different elements of the linear
predictor of x. Shared parameter models are discussed in more detail by [7]. Although in this thesis
shared paramater models are not considered, they can easily be implemented in INLA in much the
same way as the JSM, see section 4.6 for more details.

Version of June 21, 2022– Created June 21, 2022 - 06:38

13



Chapter 3
Introduction to INLA

Many of the joint models discussed above can be implemented using standard statistical methods
available within statistical programs such as R. The LMM, the multivariate model and the JMM are
examples hereof. However, the JSM cannot be implemented.
When switching to the Bayesian framework joint scaled models can be implemented. Therefore,
within this thesis, we shall be fitting the joint models using a Bayesian approach. For this goal we
shall consider Integrated Nested Laplace Approximation (INLA) and its implementation in R with
the R-INLA package [13], [6] & [17]. INLA combines the usage of Latent Gaussian Models (LGM’s),
Gaussian Markov Random Fields (GMRF’s), Numerical methods for sparse matrices and Laplace
approximation to derive approximate Bayesian inference. Overall INLA is much faster than Monte
Carlo Markov Chain (MCMC) methods for Bayesian inference and does not necessitate the need for
long sampling chains. Also, it has been shown that in terms of accuracy INLA is not inferior to
MCMC methods [13].

3.1 Bayesian inference using INLA

3.1.1 Latent Gaussian model
INLA uses the fact that many statistical models, including the joint longitudinal models discussed in
this thesis, can be rewritten as a Latent Gaussian Model (LGM). In fact, as we shall see, only models
that can be rewritten as LGM’s can be used within the INLA framework.
Imagine the most general form of a generalized linear mixed model:

y ∼
n

∏
i

p(yi|µi) with g(µi) ≡ ηi = α +
nβ

∑
k=1

βk · zki +
n f

∑
j=1

f (j)(zij) + εi.

Here g() is the link function, α the intercept, β the regression parameters of covariates z and f ()
function of covariates z, such as random effects. By n we denote the total number of observations.
A LGM can be constructed from this generalized linear mixed model consisting of the following
elements:

• The Latent Field π(χ|θ1) ∼ N (0, Σ[θ1]). Note that the covariance matrix Σ is dependent upon
hyperparameters θ1. Here χ contains all the element of the linear predictor: η, α, β and f ().
Together these are assumed to be normally distributed. Thus, we can write:

π(χ|θ1) = π[(η, α, β, f ()) |θ1] ∼ N (0, Σ(θ1)).

The dimension of χ is usually very large (the number of observations n is large).

• Likelihood of the outcome π(y|χ, θ2) ∼ ∏i p(yi|ηi, θ2). Here y is the observed data. We fur-
thermore assume that the observations yi are conditionally independent given χ and θ2.

Version of June 21, 2022– Created June 21, 2022 - 06:38

14



3.1 Bayesian inference using INLA 15

• The Hyperpriors θ = (θ1, θ2). Note that although the dimension of the Latent Field χ is usually
very large, the dimension of the hyperpriors is commonly very low (e.g: The random effects
are governed by just a few parameters, such as the covariances).

3.1.2 Gaussian Markov random field
The latent field χ = [η, α, β, f ()] can now be thought of as a Gaussian Markov Random Field (GMRF).
A GMRF is a normally distributed random vector χ = (χ1, ..., χn) with Markov properties, such as
that for some i 6= j, χi ⊥⊥ χj|χ−ij, which means that χi is independent of χj given all elements of
χ other than i and j (χ−ij). The Markov properties are given in the precision matrix Q = Σ−1,
which is the inverse of the covariance matrix. Rue et all [13] showed that Qij = 0 if and only if
χi ⊥⊥ χj|χ−ij . This result ensures that if in our vector χ = [η, α, β, f ()] ∼ N (0, Σ) the different
elements are conditionally independent, the precision matrix Q will be sparse, allowing for easy and
fast computations. For more information regarding Gaussian Markov Random Fields we refer to
[12].

3.1.3 Laplace approximation
INLA uses the Laplace Approximation to estimate any distribution g(x) with a normal distribution.
The first 3 terms of the Taylor expansion around the mode (x̂) are used to approximate log g(x) by:

log g(x) ≈ log g(x̂) +
δ log g(x̂)

δx
(x− x̂) +

δ2 log g(x̂)
2δx2 (x− x̂)2

The second term in this approximation, δ log g(x̂)
δx (x− x̂), equals 0, since we are considering the deriva-

tive at the mode which is a maximum of the function.
We now estimate the variance as:

σ̂2 = −1
/

δ2 log g(x̂)
δx2

∣∣∣∣
x̂

Using this we obtain:

log g(x) ≈ log g(x̂)− 1
2σ2 (x− x̂)2

With the last expression we can perform a normal approximation:∫
g(x)dx =

∫
exp [log g(x)] dx ≈

∫
exp

[
log g(x̂)− 1

2σ2 (x− x̂)2
]

dx =

= exp [log g(x̂)] ·
∫

exp
[
− 1

2σ2 (x− x̂)2
]

dx = constant ·
∫

exp
[
− 1

2σ2 (x− x̂)2
]

dx.

Thus, the distribution of g(x) is now approximated by a normal distribution with mean x̂, which is
found by solving g′(x) = 0 and with variance σ̂2 = −1

/
δ2 log g(x̂)

δx2

∣∣∣
x̂
, obtained at the mode x̂.

3.1.4 Approximating the latent field
When conducting Bayesian inference we are interested in the marginals of the elements of the latent
field (e.g: regression coefficients):

p(χi|y) =
∫

p(χi, θ|y)dθ =
∫

p(χi|θ, y)p(θ|y)dθ,

and the elements of the hyperprior distribution (e.g: variances of random effects):

p(θk|y) =
∫

p(θ|y)dθ−k.

To obtain these estimates we need to approximate p(χi|θ, y) and p(θ|y).
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3.2 Model assessment in INLA 16

3.1.5 Approximating p(θ|y)
We can approximate the marginal distribution as:

p(θ|y) = p(χ, θ|y)
p(χ|θ, y)

≈ p(y|χ, θ)p(χ|θ)p(θ)
p̃(χ|θ, y)

∣∣∣∣
χ=χ∗(θ)

= p̃(θ|y).

Here a Gaussian Laplace approximation is used for the denominator p(χ|θ, y) at the mode x = x∗(θ).

3.1.6 Approximating p(χi|θ, y)
To approximate p(χi|θ, y) INLA has 3 options:

• Normal approximation, used in INLA when selecting the option ’Gaussian’. Here we ap-
proximate p(χi|θ, y) using a standard Laplace approximation, and since we already computed
p̃(χ|θ, y) during the exploration of p(θ|y) only the marginals are left to be computed. This
method is by far the fastest of the three but often yields poor results.

• Laplace approximation, used in INLA when selecting the option ’Laplace’. Partitions the latent
field χ = [χj, χ−j] and uses Laplace approximation for each element χj in the latent field:

p(χj|θ, y) =
p(χ, θ|y)

p(χ−j|χj, θ, y)
∝

p(θ)p(χ|θ)p(y|χ)
p̃(χ−j|χj, θ, y)

.

Overall gives good results because the conditionals p(χ−j|χj, θ, y) are often close to normal,
but is computationally expensive.

• Simplified Laplace approximation, default setting in INLA. Uses a compromise between the
first 2 methods. Is computationally fast and almost always gives results very similar to the
Laplace approximation.

For more information regarding Bayesian Inference with INLA we refer to [13].

3.2 Model assessment in INLA
Several methods are implemented in INLA to assess the goodness of fit of a model.

3.2.1 Marginal likelihood
The Marginal Likelihood, also called model evidence, is the probability that the data observed origi-
nates from a given model, independent of the parameters of that model (the parameters of the model
are integrated out) but given a prior probability of the model. The marginal likelihood is a very con-
venient exclusively Bayesian model assessment tool which enables the comparison between models.
In INLA the Marginal Likelihood is approximated as:

π̃(y) =
∫

π(θ, χ, y)
π̃G(χ|θ, y)

∣∣∣∣
χ=χ∗(θ)

dθ.

Here π̃G(x|θ, y) is the Gaussian approximation (see section 3.1.3) at the mode χ = χ∗(θ).
When considering a set of M models {Mm}M

m=1, the marginal likelihoods are written down as π(y|Mm).
They form the basis of the Bayes factor K, which is given by:

K =
π(y|M1)

π(y|M2)
.
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3.2 Model assessment in INLA 17

If supplying each model with a prior π(Mm), the Bayes factor can be written down as:

K =
π(y|M1)

π(y|M2)
=

π(M1|y)π(M2)

π(M2|y)π(M1)
.

In case of equal priors for the 2 models (the models are considered equally likely), the Bayes factor is
simply the fraction of the Marginal Likelihoods of the models:

K =
π(y|M1)

π(y|M2)
=

π(M1|y)
π(M2|y)

.

The strength of evidence of a Bayes Factor 1 < K < 3.2 is considered very weak, while only a Bayes
Factor of K > 10 is considered to be indicative of strong evidence of modelM1 versus modelM2.
Note that the Bayes factor is symmetrical, meaning that a Bayes Factor 1 > K > 1

3.6 indicates very
weak evidence of model M2 versus M1, while a Bayes Factor of K < 1

10 is indicative of strong
evidence of modelM2 againstM1. INLA works with the natural logarithm of the Bayes Factor K,
meaning that a difference in logarithms 1 < ln(M1)− ln(M2) < 1.16 indicates very weak evidence
while a difference of ln(M1) − ln(M2) > 2.3 indicates strong evidence of model M1 versus M2.
Similarly, a logarithm of 1 > ln(M1)− ln(M2) > 0.86 indicates weak evidence while a logarithm of
ln(M1)− ln(M2) < 0.43 indicates strong evidence of modelM2 against modelM1.

3.2.2 Conditional predictive ordinates
The Conditional Predictive Ordinate (CPO) is computed for each observation i as:

CPOi = π(yi|y−i).

It is the posterior probability of observing observation yi when the model is fit using all data but yi.
A small value for an observation might indicate a possible outlier. INLA approximates this quantity
for every observation without the need to re-analyse the model with the given observation removed.
The CPO can be summarized over all the data by:

CPO = −
N

∑
i=1

log(CPOi).

A smaller value indicates a better fit of the model over all observations.

3.2.3 Probability integral transform
The Probability Integral Transform (PIT) is very similar to the CPO and is computed for each contin-
uous observation as:

PITi = π(ynew
i ≤ yi|y−i).

The PIT measures the probability for a new observation ynew
i to be lower than the actual observation

yi when the model is fit using all data but yi. Both the CPO and PIT thus apply techniques very
similar to Leave-One-Out Cross-Validation (LOO CV). A very large or small PIT value for a given
observation indicates a possibly surprising observation.
Over all the observations, in case of a good model, the PIT’s should be approximately uniformly
distributed on [0, 1]. The Kolmogorov Smirnov non-parametric test is used to test whether the PIT’s
are indeed uniformly distributed. In the remainder of this thesis we shall therefore summarize the
PIT over all observations via the Kolmogorov-Smirnov test:

PIT = KS(PITi, U[0, 1]),

where KS is the Kolmogorov Smirnov test, PITi are the PIT values of all observations and U[0, 1] is
the standard uniform distribution.
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3.2 Model assessment in INLA 18

3.2.4 DIC and WAIC
The DIC (Deviance Information Criteria) is a popular method for model selection, as it combines
goodness of fit with penalization of the number of parameters used by the model. The DIC is given
by:

DIC = D(χ̂, θ̂) + 2pD.

Here D(χ̂, θ̂) is the model deviance, which is calculated using the posterior mean χ̂ and the posterior
mode θ̂, as the distribution of θ can be severely skewed.
The effective number of parameters pD is approximated as:

pD(θ) ≈ n− tr{Q(θ)Q(θ)−1},

with n being the number of observations and Q being the precision of the Gaussian Markov Random
Field, see section 3.1.2.
The Watanabe-Akaike Information Criterion is similar to the DIC, with the only difference being that
the effective number of parameters pD is calculated in a different way.

3.2.5 MSE
MSE (Mean Squared Error) is a well-known goodness of fit measure. Thus, even though MSE is not
incorporated into the INLA package, we decided to use it nevertheless, by calculating it from the
posterior means of fitted values. The MSE is given by:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2.

Here n is the total number of observations while yi and ŷi are the actual and fitted (posterior mean)
outcomes respectively. In order to asses both the marginal and hierarchical model fit properties a
total of 3 types of MSE were calculated:

• MSEtrain: The MSE is calculated on the training set, the data-set supplied to fit the model. This
metric serves to investigate which model can best fit the data at hand.

• MSEsubsequent: MSE determined on subsequent observations of subjects in the training set. This
MSE was calculated in the following way:

– For some subjects only half of the measurements are made available for fitting the model.

– Using these measurements the model can determine the random effects of these subjects.

– Finally, the random effects can be used to predict the omitted half of the measurements.

This procedure supplies hierarchical results and thus allows us to inspect how well the model
is able to fit the random effects of each individual separately.
Note that this type of prediction is often needed in subject-specific questions. An example
would occur when a physician wants to predict the status of a patient he is currently attending
to. The physician can use the data he already acquired on the patient (and thus is subject-
specific) to predict the status of the patient in the future.

• MSEtest: MSE calculated based on test subjects, whose data is not used to fit the model and
whose random effects are therefore unknown. Here the interest is only on the marginal results,
thus showing us how well the model can fit the population-averaged effects.
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Chapter 4
Configuring joint models in R-INLA

An important goal of the thesis is to configure the joint models discussed in the previous chapters
within the R-INLA package and test them on simulated data. In this chapter we shall introduce the
models in the form that will be used for simulations in chapter 5. As the models are introduced we
show how they can be rewritten into a Latent Gaussian Model (see section 3.1.1) and implemented
within the R-INLA framework. During this testing phase the results obtained using R-INLA were
compared, where possible, with results obtained using the R-packages nlme, lmer and MCMCglmm.

4.1 Linear mixed model
We shall start with the linear mixed model (LMM).

Definition 4.1.1 (Linear Mixed Model) The LMM was introduced in section 2.2.1. As we are now within
the Bayesian framework, we will introduce the model within the Bayesian setting. The Conditional Indepen-
dence Assumption is presumed to be true thus leaving no correlation for the residual errors.
Mathematically, the model is specified as:

yi,j = (β0 + u0,i) + βw · wi + βv · vi,j + (βt + ut,i) · ti,j + εi,j with[
u0,i
ut,i

]
∼ N2

(
0,
[

σ2
0 σ(0,t)

σ(t,0) σ2
t

])
, εi,j ∼ N (0, σ2).

The following notation is used (which will be used for the remainder of this chapter):

• yi,j: Outcome for patient i = 1, ..., N at time-points j = 1, ..., ni.

• β0, βw, βv & βt: The fixed effect coefficients for the intercept, time-invariant covariate wi, time-varying
covariate vi,j and time ti,j (taken to be linear).
The priors for the fixed effect coefficients are β0 ∼ N (µ0, σ2

0 ), βw ∼ N (µw, σ2
w), βv ∼ N (µv, σ2

v ) & βt ∼
N (µt, σ2

t ) with hyperparameters µ0, µw, µv, µt, σ2
0 , σ2

w, σ2
v , σ2

t .

• u(y)
0,i & u(y)

t,i : Random intercept and random (time)-slope for patient i. The random effects u(y)
0 & u(y)

t are

joint normally distributed with mean 0 and covariance matrix

(
σ2

y,0 σy,(0,t)

σy,(t,0) σ2
y,t

)
.

The prior of the covariance matrix of the joint normal distribution is the Wishart distribution W ∼
Wishart2(n, R−1), where n and the elements of the matrix R are the hyperparameters.

• εi,j ∼ N (0, σ2): Errors for the outcome y.
The prior on the variance component σ2 is the log(Gamma(a, b)) distribution, with a and b the hyper-
parameters.
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4.2 Priors in INLA
Having introduced the LMM within the Bayesian framework we continue with the main priors that
shall be used within the thesis.

4.2.1 Fixed effect priors
The prior for fixed effects in INLA is a Gaussian distributionN (µ, σ2), in which both the mean µ and
the precision τ = 1/σ2 can be specified. The default values supplied by INLA are µ = 0 & τ = 0.001,
yielding an uninformative prior.

4.2.2 Random effect priors
For the random effects we shall mainly be using the correlated random effect structure called ’iidkd’
in INLA. Here k indicates the number of correlated random effects, with a maximum of 5. Suppose
u and v are two correlated random effects, with a bivariate normal distribution:[

u
v

]
∼ N (0, W−1), with covariance matrix W−1 =

(
1/τu ρ/

√
τuτv

ρ/
√

τuτv 1/τv

)
.

Here τu, τv (marginal precisions) and ρ (correlation coefficient) are hyperparameters.
The hyperparameters are represented internally in INLA as θ = (log τu, log τv, φ), with ρ = 2 exp(φ)

exp(φ)+1 −
1. As we are more interested in the variances σ2

u = 1/τu & σ2
v = 1/τv rather than the precisions τu

& τv we use the inverse of the posterior marginal distribution of the precisions to obtain the corre-
sponding distributions of the variances.
The precision matrix W has a p = 2 dimensional Wishart distribution with support n:

W ∼Wishart2(n, R−1) with R =

(
R11 R12
R21 R22

)
and R12 = R21 due to symmetry.

Some properties of the Wishart distribution are:

E(W) = nR−1, E(W−1) =
R

n− (p + 1)
.

The variance of the Wishart distribution has no direct overall form, but in general the variance is
larger with increasing support n.
The ’iidkd’ random effects thus have prior hyper-parameters n, R11, R22 and R21 = R12. The default
values for the case p = 2 are (4, 1, 1, 0).

4.2.3 Gaussian residuals prior
The prior for the Gaussian residuals is the log-Gamma distribution. This is also the prior for the
scaling factor γ in the JSM, see definition 2.6.1. The Gamma(a, b) distribution is given by:

f (x) =
ba

Γ(a)
xa−1 exp(−bx),

with a > 0 the shape parameter and b > 0 the inverse scale parameter. The mean of the Gamma(a, b)
distribution equals a/b while the variance is a/b2.
A variable u is log-Gamma distributed if u = log(x) and x is Gamma(a, b)-distributed. The default
values for the hyperparameters of the log-Gamma prior in R-INLA are a = 1 & b = 0.00005.

The default values in INLA supply flat non-informative priors. As we will have no prior information
in either the simulation study or the synthetic version of the Covid-19 dataset we shall be using these
default non-informative priors throughout the thesis.
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4.3 Fitting linear mixed model in R-INLA
Having defined the LMM in a Bayesian framework we show how to fit the LMM in R-INLA.
For implementing the LMM in definition 4.1.1 in INLA the following code is used:

LMM<−i n l a ( y ˜ f ( v , model = ” l i n e a r ” )+ f ( t , model = ” l i n e a r ” )+
f (w, model = ” l i n e a r ” )+
f ( id , model = ” i id2d ” , n=2*N)+ f ( time id , t , copy=” id ” ) ,
data = data , family = ” gaussian ” ) ,

Here f(w, model = "linear"), f(v, model = "linear") and f(t, model = "linear") are the
fixed effects for the covariates w, v and time t respectively. Standard priors are used for these ef-
fects, see section 4.2.1.
Via the command f(id, model = "iid2d", n=2*N)+f(time_id, t, copy="id")we specify the mul-
tivariate normally distributed random slope and random intercept. As we have 2 jointly distributed
random effects we shall be using the ’iid2d’ random effect structure (described in section 4.2.2) with
a total of 2N random effects (2 random effects for each individual: 1 random intercept + 1 random
slope), with N being the total number of patients.
The copy feature tells INLA that the time_id term is the second of these correlated random effects.
Note that the random effects vector is represented internally as one vector of length 2N,

(u0,1, ..., u0,N , ut,1, ..., ut,N). (4.1)

The variables id and time_id in the inla function call contain indexes that specify the data-rows that
corresponds to the random effect in the internal representation vector 4.1. Thus, the total length of
the indexes id and time_id is equal to the total length of the data at hand.

Note that to use the LMM for prediction we need values of the time-dependent covariate vi,j. Within
the simulations these values are obtained by constructing an additional LMM for the time-varying
covariate vi,j, as was described in section 2.2.2.

4.4 Multivariate joint models
Having completed the LMM as a baseline model we shall look at the first type of joint model, the
multivariate joint model (section 2.4).

Definition 4.4.1 (Multivariate Joint Model) In the multivariate joint model the association between the
endogenous covariate x and the outcome y is modelled via residual errors. Mathematically, the model is given
by: {

xi(ti,j) = β
(x)
0 + β

(x)
w · wi + β

(x)
t · ti,j + ε

(x)
i (ti,j)

yi(ti,j) = β
(y)
0 + β

(y)
w · wi + β

(y)
t · ti,j + ε

(y)
i (ti,j)

(4.2)

with 

ε
(x)
i,1
...

ε
(x)
i,ni

ε
(y)
i,1
...

ε
(y)
i,ni


∼ N2ni


0,



σ2
x,1 · · · σ(x,1),(x,ni) σ(x,1),(y,1) · · · σ(x,1),(y,ni)
... · · ·

...
... · · ·

...
σ(x,ni),(x,1) · · · σ2

x,ni
σ(x,ni),(y,1) · · · σ(x,ni),(y,ni)

σ(y,1),(x,1) · · · σ(y,1),(x,ni) σ2
y,1 · · · σ(y,1),(y,ni)

... · · ·
...

... · · ·
...

σ(y,ni),(x,1) · · · σ(y,ni),(x,ni) σ(y,ni),(y,1) · · · σ2
y,ni




(4.3)

The notation is similar to the LMM introduced in section 4.1.1. Note however that the time-dependent variable
is denoted by x instead of v, as it now is assumed to be endogenous.
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4.4.1 Multivariate joint model as LGM
Multivariate joint models cannot be put into the form of a Latent Gaussian Model as discussed in
section 3.1.1, because the observations yi are not conditionally independent given the latent field χ.
This can be seen by inspecting the covariance of two measurements yi,1 and yi,2 on the same patient i
at time points 1 and 2:

Cov(yi,1, yi,2|χ) = Cov
(

β
(y)
0 + β

(y)
w · wi + β

(y)
t · ti,1 + ε

(y)
i,1 , β

(y)
0 + β

(y)
w · wi + β

(y)
t · ti,2 + ε

(y)
i,2 |χ

)
=

= Cov
(

ε
(y)
i,1 , ε

(y)
i,2 |χ

)
= σ(i,1),(i,2). (4.4)

Note that the last step follows due to the definition of the latent field. The latent field χ = [η, α, β, f ()]
contains all elements of the linear predictor except for the residual errors ε. Thus, conditional on the
latent field the errors ε

(y)
i,1 and ε

(y)
i,2 are dependent and thus the outcomes yi,1 and yi,2 are not condi-

tionally independent.

Thus, to fit the multivariate joint model using R-INLA a trick has to be used. The residual errors
should be modelled in INLA as random effects. Simultaneously, the Gaussian errors are set fixed
with a very high precision τ, in this way eliminating them.
The resulting model is thus given by:{

xi(ti,j) = β
(x)
0 + β

(x)
w · wi + β

(x)
t · ti,j + u(x)

i,j + ε
(x)
i (ti,j)

yi(ti,j) = β
(y)
0 + β

(y)
w · wi + β

(y)
t · ti,j + u(y)

i,j + ε
(y)
i (ti,j)

(4.5)

with [
u(x)

i

u(y)
i

]
∼ N2j (0, Σi) and

[
ε
(x)
i

ε
(y)
i

]
∼ N2j(0, τ · I2j).

Here j is the number of subsequent measurements per subject, and since both the endogenous covari-
ate xi(ti,j) as well as the outcome yi(ti,j) have j observations we have a multivariate normal with total
dimension of 2j. The residual variance-covariance matrix Σi, which models the association between
the endogenous covariate x and the outcome y, governs the random effects u instead of the errors ε.
Note that since every measurements instance (i, j) is supplied with it’s own random effect ui,j, the
model formulations in 4.2 and 4.5 are very comparable. The variance-covariance matrix Σ can be of
any of the forms offered by the INLA package, such as the correlated random effect structure ’iidkd’
mentioned in section 4.2.2. Furthermore, since the precision τ is set to be very high, the Gaussian
noise is practically eliminated, thus allowing the random effect structure to fulfil the role of the resid-
ual errors in the original model parametrization.
Note that in the parametrization 4.5 the model is indeed an LGM. One can simply follow the proof
given in equation 4.4 but note that the errors are now independent. The dependence between the
outcomes yi,1 and yi,2 is now due to the random effects u, but since they are part of the latent field χ
we do obtain conditional independence.

4.4.2 Fitting the multivariate joint model in INLA
The multivariate Joint Model is a multiple-likelihood model, as it incorporates the likelihoods for
both the outcome y and the endogenous covariate x. In order to fit multiple-likelihood models in
INLA a few tricks need to be performed. The code to run model 4.4.1 in R-INLA is given by:

INLA data<− l i s t (w x=c ( data $w, rep (NA, N obs ) ) ,
w y=c ( rep (NA, N obs ) , data $w) ,
t x=c ( data $ t , rep (NA, N obs ) ) ,
t y=c ( rep (NA, N obs ) , data $ t ) )
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4.4 Multivariate joint models 23

INLA data $Y<− l i s t ( c ( data $x , rep (NA, N obs ) ) ,
c ( rep (NA, N obs ) , data $y ) )

INLA data $ i<−c ( 1 : ( 2 *N obs ) )
INLA formula=Y˜ f (w x , model= ’ l i n e a r ’ )+ f (w y , model= ’ l i n e a r ’ )+

f ( t x , model= ’ l i n e a r ’ )+ f ( t y , model= ’ l i n e a r ’ )+
f ( i , model=” i i d (2 * j ) d” , n=2*N obs )

s e t res iduals = l i s t ( l i s t ( i n i t i a l =15 , f i x e d =T ) , l i s t ( i n i t i a l =15 , f i x e d =T ) )
M u l t i v a r i a t e<−i n l a (INLA formula , family =c ( ” gaussian ” , ” gaussian ” ) ,

data = INLA data , contro l . family= s e t res iduals )

The first thing to note is that while Nobs is the total number of measurements, the data supplied to
INLA has a dimension of 2Nobs instead. This is caused by the fact that the first Nobs entries of each
variable are seen as belonging to the first likelihood (in this case the likelihood of the endogenous
variable x), while the last Nobs entries belong to the second likelihood, the likelihood of the outcome
y.
This concept is illustrated below. We see that for the vector of the endogenous covariate x the first
Nobs elements are the actual values of x, while the last Nobs elements are NA’s. This indicates that the
first Nobs elements of each vector supplied to INLA apply only to the likelihood of the endogenous
covariate x. This can be confirmed by looking at the covariate vectors in the R-INLA code 4.4.2,
since the covariates relating to the model of x have entries only at the first Nobs indices. Similarly the
outcome y contains values only in the last Nobs elements and so do the covariates corresponding to
the outcome y.

Response variables:
x and y

x1,1 NA
x1,2 NA

...
...

xN,nN NA
NA y1,1
NA y1,2

...
...

NA yN,nN


,

Covariate w:
wx and wy

v1,1 NA
v1,2 NA

...
...

vN,nN NA
NA v1,1
NA v1,2

...
...

NA vN,nN


,

Time t:
tx and ty

t1,1 NA
t1,2 NA

...
...

tN,nN NA
NA t1,1
NA t1,2

...
...

NA tN,nN


Within the INLA function call we set both likelihoods to be Gaussian by indicating
family =c("gaussian","gaussian"). To ensure, as explained in section 4.4.1, that the residual er-
rors have a very high precision, we set the precision of the residuals to be fixed at a high value:
set_residuals = list(list(initial=15, fixed=T), list(initial=15, fixed=T)).
Lastly we set the random effects in a manner similar to what was explained in section 4.3, with a total
dimension of 2j.

It is important to note that the implementation of a multivariate marginal model within R-INLA
is limited. Although INLA offers the unstructured form of the error variance-covariance matrix Σ

(equation 4.3), this variance-covariance matrix is only feasible with few measurements per subject,
as has been discussed in section 2.4.1. With just 4 repeated measurements per subject the unstruc-
tured form will results in 36 parameters to be estimated. Other commonly used variance-covariance
structures for the errors, such as Compound symmetry & Toeplitz are not implemented within INLA.
Because of these difficulties and since the interest of this thesis lies mainly with the joint mixed model
and the joint scaled model we have not further looked into the implementation of the multivariate
marginal model.
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4.5 Joint Mixed Models
In joint mixed models (JMM) the association between the endogenous covariate and the outcome is
modelled via dependence of the random effects.

Definition 4.5.1 (Joint Mixed Model) The association at baseline and in time between the endogenous co-
variate and the outcome is modelled via random effects. We assume the Conditional Independence Assumption
to hold, meaning that the residual errors are independent across measurements and play no role in the associa-
tion. The model is given by: xi(ti,j) = (β

(x)
0 + u(x)

0,i ) + β
(x)
w · wi +

(
β
(x)
t + u(x)

t,i

)
· ti,j + ε

(x)
i (ti,j)

yi(si,k) = (β
(y)
0 + u(y)

0,i ) + β
(y)
w · wi +

(
β
(y)
s + u(y)

s,i

)
· si,k + ε

(y)
i (si,k)

(4.6)

with 
u(x)

0

u(y)
0

u(x)
t

u(y)
t

 ∼ N4 (0, D) ;

[
ε
(x)
i

ε
(y)
i

]
∼ N2ni

(
0,
[

σ2
ε,xIni 0

0 σ2
ε,yIni

])
.

We have:

• xi(ti,j): Outcome for patient i = 1, ..., N at time-points ti,j, j = 1, ..., nx
i .

• yi(si,k): Outcome for patient i = 1, ..., N at time-points si,k, k = 1, ..., ny
i .

Note that the times ti,j and si,k at which the endogenous covariate x and the outcome y are measured
can be different, as well as the total number of observations nx

i & ny
i .

The variance-covariance matrix D can be of many forms. Here we shall limit ourselves to an ’iidkd’
variance-covariance matrix as discussed in section 4.2.2. In this case the matrix D has the following
form:

D =


σ2

x,0 σ(x,0),(y,0) σ(x,0),(x,t) σ(x,0),(y,t)
σ(y,0),(x,0) σ2

y,0 σ(y,0),(x,t) σ(y,0),(y,t)

σ(x,t),(x,0) σ(x,t),(y,0) σ2
x,t σ(x,t),(y,t)

σ(y,t),(x,0) σ(y,t),(y,0) σ(y,t),(x,t) σ2
y,t

 . (4.7)

However, one can choose to set any of the covariances in the above matrix to 0, ensuring that less pa-
rameters need to be estimated. Also, one could choose a variance-covariance matrix of a completely
different form, such as implementing auto-regressive random effects or random effects following a
random walk. For the implementation of the JMM we have chosen for the Conditional Independence
Assumption to hold, partly because of the difficulty implementing correlated errors within INLA, see
section 4.4.1.

4.5.1 Measuring association

The association coefficient β
jmm
x (t) for the joint mixed model as specified above is given by (section

2.5.2):

β
jmm
x (t) =

Cov(y, x)(t)
Var(x)(t)

=
σ(y,0),(x,0) + tσ(y,t),(x,0) + tσ(y,0),(x,t) + t2σ(y,t),(x,t)

σ2
x,0 + t2σ2

x,t + σ2
ε,x + 2tσ(x,t),(x,0)

. (4.8)

We can see that the coefficient β
jmm
x (t) is indeed time-dependent. In the limit of t→ ∞ we have:

lim
t→∞

β
jmm
x (t) =

σ(y,t),(x,t)

σ2
x,t

. (4.9)
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4.5.2 Implementation in INLA
The code for fitting the Joint Mixed Model in R-INLA with the variance-covariance matrix structure
as shown in equation 4.7 is given below and is borrowed from [14] and [15].

f i x e d . e f f e c t s<− l i s t (w x=c ( data $w, rep (NA, N obs ) ) ,
w y=c ( rep (NA, N obs ) , data $w) ,
t x=c ( data $ t , rep (NA, N obs ) ) ,
t y=c ( rep (NA, N obs ) , data $ t ) ,
t =c ( data $ t , data $ t ) )

random . e f f e c t s<− l i s t (Random I n t e r c e p t =c ( data $ id , data $ id+N) ,
Random Slope=c ( data $ id +2*N, data $ id +3*N) )

INLA data<−c ( f i x e d . e f f e c t s , random . e f f e c t s )
INLA data $Y<− l i s t ( c ( data $x , rep (NA, N obs ) ) ,

c ( rep (NA, N obs ) , data $y ) )

INLA formula=Y˜ f (w x , model= ’ l i n e a r ’ )+ f (w y , model= ’ l i n e a r ’ )+
f ( t x , model= ’ l i n e a r ’ )+ f ( t y , model= ’ l i n e a r ’ )+
f (Random I n t e r c e p t , model=” i id4d ” , n=4*N)+
f (Random Slope , t , copy=”Random I n t e r c e p t ” )

J o i n t Mixed Model<−i n l a (INLA formula , family = c ( ” gaussian ” , ” gaussian ” ) ,
data = INLA data ) .

The JMM is a multiple likelihood model, thus necessitating the definition of vectors double the length
of the number of observations Nobs, see section 4.4.1. The first Nobs elements of these vectors relate to
the endogenous covariate x, while the second Nobs elements relate to the outcome y.
Note that Nobs is the total number of observations in our data while N is the total number of patients.
When defining the random effects care is needed when supplying the indexes Random_Intercept

and Random_Slope. We are indicating in f(Random_Intercept, model="iid4d", n=4*N) that we
have an ’iid4d’ correlated random effect structure with a total length of 4N elements. As was shown
in section 4.3, the inner representation of the random effects in INLA is given by:

(u(x)
0,1 , ..., u(x)

0,N , u(y)
0,1 , ..., u(y)

0,N , u(x)
t,1 , ..., u(x)

t,N , u(y)
t,1 , ..., u(y)

t,N). (4.10)

The indexes supplied tell INLA which row in the data matrix corresponds to which random effect in
the internal representation (equation 4.10). This is exactly what we are doing when specifying
Random_Intercept=c(data$id, data$id+N). The indexes data$id tell INLA that the first N random
effects are patient specific. Similarly, data$id+N ensures that the random effects with indexes ranging
from N + 1 to 2N are also subject specific.

4.6 Joint Scaled Models
Lastly we shall be consider the joint scaled model (JSM).

Definition 4.6.1 (Joint Scaled Model) In the JSM the entire linear predictor of the endogenous covariate
x is copied into the linear predictor of the outcome y with scaling factor γ. In both linear predictors we have
dependent random intercept and random slope terms. The model is mathematically given by:

mi(ti,j) = (β
(x)
0 + u(x)

0,i ) + β
(x)
w · wi +

(
β
(x)
t + u(x)

t,i

)
· ti,j

xi(ti,j) = mi(ti,j) + ε
(x)
i (ti,j)

yi(si,k) = γ ·mi(si,k) + (β
(y)
0 + u(y)

0,i ) + β
(y)
w · wi +

(
β
(y)
t + u(y)

t,i

)
· si,k + ε

(y)
i (si,k)
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with [
u(x)

0,i

u(x)
t,i

]
∼ N2

(
0,
[

σ2
x,0 σx,(0,t)

σx,(t,0) σ2
x,t

])
;

[
u(y)

0,i

u(y)
t,i

]
∼ N2

(
0,

[
σ2

y,0 σy,(0,t)

σy,(t,0) σ2
y,t

])
;[

ε
(x)
i

ε
(y)
i

]
∼ N2j

(
0,

[
σ2

ε,xInx
i

0
0 σ2

ε,yIny
i

])

4.6.1 Measuring association

The association coefficient β
jsm
x (t) in this case is given by (section 2.6.2):

β
jsm
x (t) = γ

[
1− Var(εx)

Var(x(t))

]
= γ

[
1−

σ2
ε,x

σ2
x,0 + t2σ2

x,t + 2tσx,(t,0) + σ2
ε,x

]
. (4.11)

We can see that the coefficient β
jsm
x (t) is indeed time-dependent. In the limit of t→ ∞ we have:

lim
t→∞

β
jsm
x (t) = γ. (4.12)

4.6.2 Implementation in INLA
In order to implement the JSM in R-INLA a few tricks need to be used not previously discussed:

• INLA allows for random effects to be copied with a scaling factor γ into a different likelihood.
For this the following syntax is used:

f(Random_Intercept)+ f(Random_Intercept_copied, copy="Random_Intercept",

hyper = list(beta = list(fixed=FALSE))).

Hereby we indicate that we want to copy the element Random_Intercept (u(x)
0 ) into a different

likelihood with a non-fixed scaling factor γ, resulting in γu(x)
0 .

• To ensure that all elements being copied use the same scaling factor γ, the following syntax is
used:

f(Random_Slope_copied, t, copy="Random_Slope",

same.as = ’Random_Intercept’, hyper = list(beta = list(fixed=FALSE))).

Hereby we ensure that the Random_Slope (u(x)
t ) is copied with the same scaling factor γ that is

used when copying and scaling the Random_Intercept (u(x)
0 ).

• A problem within INLA is that only random effects can be copied and scaled in this way. Thus,
the only way to copy and scale fixed effects is to implement them as random effects with 2 lev-
els, one for the endogenous covariate x and one for the outcome y. As example we would have
a random effect for the Intercept βk

0 ∼ N (0, σ2
0 ), k = 1, 2, with just 2 levels, one for the en-

dogenous covariate x (β(x)
0 ) and one for the outcome y (β(y)

0 ), equal for all subjects. We are then
not interested in the variance σ2

0 of this random effect but instead in the random effect levels
for both the endogenous covariate x and the outcome y. In this way all of the fixed effects are
written down as random effects and copied with the same scaling parameter.
As mentioned in [5], such an approach (with few random effect levels) gives results very com-
parable to simply implementing fixed coefficients per level. Particularly within the Bayesian
framework the difference between fixed and random effects is more subtle than in a frequentist
approach, as both fixed and random effects are random variables with a certain prior probabil-
ity.

• All other aspects of the implementation of the JSM do not differ from the implementation of
the JMM, see section 4.5.2.
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4.6.3 Lag in a Joint Scaled Model
As discussed in section 2.6.3, implementing lag of the endogenous covariate into a JSM can be done
very conveniently. Below the specification of such a lagged model is given:

mi(ti,j) = (β
(x)
0 + u(x)

0,i ) + β
(x)
w · wi +

(
β
(x)
t + u(x)

t,i

)
· ti,j

xi(ti,j) = mi(ti,j) + ε
(x)
i (ti,j)

yi(si,k) = ∑L
l=0 γl ·mi(si,k − l) + (β

(y)
0 + u(y)

0,i ) + β
(y)
w · wi +

(
β
(y)
t + u(y)

s,i

)
· (si,k) + ε

(y)
i (si,k)

We see that lag up to degree L is included. The implementation of lagged models in R-INLA uses
much of the same tricks used when implementing the JSM.

4.7 Joint models and their implementation in other R pack-
ages

In this chapter we have focused on the implementation of joint models within the R-INLA frame-
work. Within the thesis we have, however, also explored other R packages. These include nlme,
lmer and MCMCglmm. We have examined the abilities and limitations of these R-packages in fit-
ting joint models. For an implementation of the joint models in R-INLA, as well as nlme, lmer &
MCMCglmm we refer to the R-code used within the framework of the thesis, which can be found
on Github https://github.com/georgygomon/Thesis_open. Both nlme and lmer are well-known R
packages, but MCMCglmm is less popular. For more information on the MCMCglmm package we
refer to [8].
In Table 4.1 we present an overview of the different packages and their ability in fitting joint models.

Table 4.1: The ability of select R-packages to fit joint models.

R-INLA NLME LMER MCMCglmm
Linear Mixed Model 3 3 3 3

Multivariate Joint
Model 7a 3 7 3

Joint Mixed Modelb 3 3 3 3

Joint Scaled Model 3 7 7 7

a The implementation of Multivariate Joint Models within R-INLA is limited due to the unconventional
implementation and limited number of measurements per subject that can be fitted.

b Under the Conditional Independence Assumption.
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Chapter 5
Simulation study

Having introduced and implemented in R-INLA the linear mixed model (LMM), the joint mixed
model (JMM) and the joint scaled model (JSM) we shall attempt to discover their features using a
simulation study. Simulations will seek to answer several questions:

• First and foremost we shall compare the association coefficients derived for the different mod-
els. We shall thus be comparing βlmm

v in the LMM, β
jmm
x in the JMM and β

jsm
x in the JSM.

– We expect that in the case of an exogenous time-varying covariate all three association
measures βlmm

v , β
jmm
x and β

jsm
x will show similar results.

– We are interested whether the coefficients show different results in the case of an endoge-
nous covariate.

• Next we shall inspect whether the JMM and JSM perform better than the LMM, given that
the data contains either an endogenous or an exogenous time-varying covariate. We shall be
comparing the models by looking at several characteristics:

– We shall be comparing the models using the model assessment tools provided in section
3.2.

– Special attention will be given to prediction. We shall be using Mean Squared Error (MSE)
to measure prediction accuracy.

• We shall be examining the goodness of fit of the models as we increase the number of subjects
N in the data. We hypothesize that with a small number of subjects N the more complex JMM
and JSM will not have enough information to properly fit the association between the time-
varying covariate and the outcome. Therefore we expect that at low values of N the LMM
might yield better results. However, we presume that as the number of subjects N increases
the JMM and JSM will start to outperform the LMM and yield better results.

– Thus, we shall be increasing the number of subjects N to determine at which level the
JMM and JSM become superior as compared to the LMM. This will also serve as an indi-
cation on the data size one should have in order for endogenous models to prove useful.

5.1 Data for simulation study
To run the simulation study we use randomly generated data. The data consists out of the following
elements and is shown in Table 5.1.

• A total of N = N1 + N2 patients is modelled, with the patients indexed by id. The first N1
patients are part of the training set, while the last N2 patients are part of the test set.
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• A time-independent covariate w, randomly sampled from the N (0, 1) distribution, unique to
each patient.

• The variable time. Each patient has a total of n = n1 + n2 measurements. For patients in
the training set, the first n1 measurements are used to fit the model, while the subsequent n2
measurements are used to calculate MSEsubsequent, see section 3.2.5. For patients in the test set,
all n = n1 + n2 measurements are used to calculate the MSE on the test set.

• In order to make the data unbalanced, at each time point t there are probabilities p1 & p2 that
the measurements of the time-dependent covariate and outcome are not observed respectively.

• The variable MSE set. This variable indicates whether the particular data-point is part of
the training set, test set or concerns subsequent measurements of subjects in the training set
(train:same).

Table 5.1: Data used for simulation study.

id t w y observed x observed MSE set
1 1 0.3797 1 0 train
...

...
...

...
...

...
1 n1 0.3797 1 1 train
1 n1 + 1 0.3797 1 1 train: same
...

...
...

...
...

...
1 n1 + n2 0.3797 1 0 train: same
2 1 0.9690 0 1 train
...

...
...

...
...

...
N1 n1 + n2 0.1632 1 1 train: same
N1 + 1 1 -0.8350 1 1 test
...

...
...

...
...

...
N1 + N2 n1 + n2 -0.2765 1 1 test

The variables shown in table 5.1 form the basis to generating the eventual data needed for simulation.
The outcome y and time-varying covariate x still need to be simulated. This happens according to
either the LMM, JMM or JSM.

5.1.1 Simulating data according to the linear mixed model
To simulate data according to the LMM (see section 4.1.1) we proceed as follows:

• First we simulate 2× N (with N the number of subjects) correlated random effects u(x)
0,i and

u(x)
t,i from a N2(0, D1)-distribution and 2 × N correlated random effects u(y)

0,i and u(y)
s,i from a

N2(0, D2)-distribution. The variance-covariance matrices D1 and D2 used in the simulations
are:

D1 =

(
2 1.5

1.5 3

)
, D2 =

(
3 2.5

2.5 4

)
. (5.1)

• Next we simulate independent error terms from a N (0, 0.5) distribution.
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• Finally we simulate the exogenous covariate v and the outcome y according to model 4.1.1. The
coefficient for the exogenous covariate v is set to

βv = 1.2,

while the other coefficients are set to the values shown in Table 5.2.

Table 5.2: Fixed effects coefficients used for simulating data.

For LMM βv
0 βv

w βv
t β

y
0 β

y
w β

y
s

5 3 1 6 4 2.2
For JMM βx

0 βx
w βx

t β
y
0 β

y
w β

y
s

• The association coefficient between the time-varying covariate and the outcome is given by
(see section 2.2.2):

βlmm
v = 1.2.

5.1.2 Simulating data according to the joint mixed model
To simulate data according to the JMM (see section 4.5.1) we proceed as follows:

• First we simulate a 4×N matrix with random effects u(x)
0,i , u(x)

t,i , u(y)
0,i and u(y)

s,i . We simulate them
according to a joint normal distribution with mean 0 and variance-covariance matrix

D =


2 1.5 1.75 1.6

1.5 3 2 2.5
1.75 2 3 2.6
1.6 2.5 2.6 4

 .

• Next we simulate the independent error terms from a N (0, 0.5) distribution.

• Having simulated both the random effects and the errors we can continue by simulating the
endogenous covariate x and the outcome y. We simply do so by using the linear regression
formula shown in section 4.5.1 with fixed parameters set to the values shown in Table 5.2.

• The association coefficient is now given by (see section 4.5.1):

β
jmm
x (t) =

σ(y,0),(x,0) + tσ(y,t),(x,0) + tσ(y,0),(x,t) + t2σ(y,t),(x,t)

σ2
x,0 + t2σ2

x,t + σ2
ε,x + 2tσ(x,t),(x,0)

=
2 + 3.6t + 2.5t2

2.5 + 3t + 3t2 ,

while the association in the limit of t→ ∞ equals:

lim
t→∞

β
jmm
x (t) =

σ(y,t),(x,t)

σ2
x,t

=
2.5
3

= 0.83.

5.1.3 Simulating data according to the joint scaled model
Simulating data according to the JSM proceeds in a very similar manner.

• First we simulate the correlated random effects u(x)
0,i and u(x)

t,i from a N2(0, D1)-distribution

and the correlated random effects u(y)
0,i and u(y)

s,i from a N2(0, D2)-distribution. The variance-
covariance matrices D1 and D2 are the same as those in the LMM, see equation 5.1.

• Next we simulate the independent error terms from a N (0, 0.5) distribution.

Version of June 21, 2022– Created June 21, 2022 - 06:38

30



5.2 Performing simulation study 31

• Finally we simulate the endogenous covariate x and the outcome y according to model 4.6,
using γ = 1.2 and fixed effect coefficients as given in Table 5.3. Note that using the coefficients
in Table 5.3 results in the combined coefficients of the JMM (see section 2.6.2) to be exactly the
same as the fixed coefficients shown in Table 5.2, e.g: β

y′
0 = γβx

0 + β
y
0 = 1.2 · 5 + 0 = 6 .

Table 5.3: Fixed effects coefficients used for simulating according to the JSM.

βx
0 βx

w βx
t β

y
0 β

y
w β

y
s

5 3 1 0 0.4 1

• The association coefficient for this JSM is given by (see section 4.6.1):

β
jsm
x (t) = γ

[
1−

σ2
ε,x

σ2
x,0 + t2σ2

x,t + 2tσx,(t,0) + σ2
ε,x

]
= 1.2

[
1− 0.5

2.5 + 3t2 + 1.5t

]
.

In the limit of t→ ∞ we have:

lim
t→∞

β
jsm
x (t) = γ = 1.2.

5.2 Performing simulation study
The simulation study is performed as follows:

1. Set n1 = 15, n2 = 10, p1 = p2 = 0.8.

2. As we want to inspect the model performance with increasing number of patients N1 in the
training set, we run the simulation with values N1 equal to 10, 25, 50, 75, 100, 150, 250, 500 and
750. We furthermore take N2, the number of subjects in the test set, to equal N2 = 0.3 · N1.

3. With a chosen number of patients N1, simulate 250 datasets according to the LMM, JMM &
JSM, see sections 5.1.1, 5.1.2 & 5.1.3 respectively.

4. Fit 3 models on every simulated dataset:

• LMM presented in section 4.1.1.

• JMM given in section 4.5.1.

• JSM given in section 4.6.

5. For every simulated dataset, determine the following values:

• Marginal Likelihood, DIC, WAIC, CPO, PIT, MSE

• Posterior distributions of the fixed effects.

• Significance of the association parameters.

6. Summarize all results over the 250 datasets.

7. Perform steps 3-6 with all values of N1.

Note that all simulations have been run with the non-informative standard priors given in section
4.2.
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5.3 Examining the association coefficients
First the association between the outcome and the time-varying covariate is examined. This associ-
ation is given by the association coefficients βlmm

v in the LMM, β
jmm
x (t) for the JMM and β

jsm
x (t) for

the JSM. In Figure 5.1 are shown the values of the association coefficients for a single dataset with
N = 100 subjects when the data is simulated according to either the LMM, JMM or JSM. Inspecting
the coefficients when the data is simulated according to the LMM, we observe that the association
coefficients of all models are quite close to the actual value of 1.2, with the LMM outperforming both
the JMM and JSM. Also note that although the JMM and JSM coefficients are both time dependent,
they quite quickly converge to the limits derived in sections 4.5.1 and 4.6.1.
When the data is simulated according to the JMM, we observe that the LMM fails to show any associ-
ation. The JSM and JMM, however, are able to quite well model the association between the outcome
and the time-varying covariate.
Lastly we inspect the association coefficients when the data is simulated according to the JSM. Once
more we note that the LMM is not able to fit the association present in the model, while the JSM fits
the actual association quite well. The JMM seem to fail in finding the association whatsoever, show-
ing a negative association while the association is actually positive.
Note that the instances shown in Figure 5.1 are model fits for a single dataset. The reason to include
them in the report is to show that the limiting behaviour is reached quite soon.

Figure 5.1: Association coefficients βlmm
v , β

jmm
x (t) and β

jsm
x (t) for a single dataset when the data is

simulated according to either the Linear Mixed Model, Joint Mixed Model or Joint Scaled Model.
Simulated data contains a total of N = 100 subjects.

To better understand the behaviour of the association coefficients of the LMM, JMM & JSM we have
inspected the behaviour of the association coefficients in their limit of t → ∞ while increasing N (N
being the number of patients), averaged over 250 instances of simulated data (see sections 5.1 & 5.2).
The results are shown in Figure 5.2. Shown are the average values of the association coefficients over
250 datasets as well as the variances of these values, thus reflecting the bias-variance trade-off.
We observe that when data is simulated according to the LMM, both the LMM and the joint models
can fit the actual association quite well. We hereby note that both the JMM as well as the JSM seem
to be slightly biased, observing a small variance with the JSM estimate and a larger variance with
the JMM estimate. In general we see that, especially with a high number of subjects N, both the JSM
and to a lesser extent the JMM give the correct value for the association between the time-varying
exogenous covariate and the outcome.
Next we turn to the results when data is simulated according to the JMM. We observe that in this case
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the LMM does not detect the association whatsoever. Even more, the variance of the LMM estimand
is very small, indicating that the association between the endogenous covariate and the outcome
present in the model is never detected. Both the JMM as well as the JSM perform well in detecting
the association coefficient, with both having small variances but the JMM coefficient being closer to
the actual value.

Figure 5.2: Association coefficients βlmm
v , β

jmm
x (t) and β

jsm
x (t) in the limit t→ ∞ when the data is

simulated according to either the Linear Mixed Model, Joint Mixed Model or Joint Scaled Model.
Values are averaged over 250 datasets.

Lastly we inspect the association coefficients when the data is simulated according to the JSM. We
observe that the LMM does not show any association, and it does this with great certainty (small
variance of the estimand). This was also the case with data simulated according to the JMM. The JSM
shows the association present very well with a small variance. As for the JMM, even though its mean
is close to the actual value, the variance of the estimand is very large, indicating that it might be of
little use in finding the association between the endogenous covariate and the outcome.
The large variances observed when the data is fitted by the JMM can be explained by the fact that the
covariance matrix of the JMM (see equation 4.7) is quite complex, while only 2 out of 10 elements of
the covariance matrix (σ2

x,t and σ(x,t),(y,t)) influence the association between the time-varying covariate
and the outcome in the long run (see equation 4.9).
It should also be noted that INLA often fails to fit the elements of the covariance matrix. Table 5.4
shows the percentage of cases INLA fails to fit some elements of the covariance matrix 4.7 of the
JMM. We observe that these percentages are very high when data is simulated according to either the
LMM or JSM, especially with a low number of subjects N. With an increasing number of subjects N
or when the data is simulated according to the JMM INLA is much better at fitting the elements of
the covariance matrix 4.7.
Note that the parameters needed to calculate the association coefficients in the LMM (βv) and JSM
(γ) are always fitted, and thus the problem of an unknown association coefficient does not arise in
these cases.
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Table 5.4: Table showing the percentage of cases in which an element of the covariance matrix of the
JMM (see equation 4.7) was not fitted by INLA, with data simulated according to either the LMM,

JMM or JSM.

N=10 N=25 N=50 N=75 N=100 N=150 N=250 N=500 N=750
LMM 59 58 52 38 42 36 27 22 16
JMM 13 2 1 1 1 1 0 0 0
JSM 64 65 55 54 56 55 40 35 37

In summary we can state the following. If the time-varying covariate is exogenous, the LMM is
best at picking up the association between the exogenous covariate and the outcome with smallest
variance of the estimand. However, both the JMM and JSM can also quite well model this association,
especially in case of a large number of subjects N, when the variability of the JSM coefficient is
comparable to that of the LMM. When the time-varying variable is endogenous, the LMM does not
pick up the association present whatsoever. In contrast, both the JSM and the JMM do pick up this
association between the outcome and the endogenous covariate. Here we note that the JMM has a
very high variability of the estimand, probably caused by the complex covariance structure and by
the fact that INLA fails to fit many of the covariance elements. Thus, one should take care when
defining a random effect structure for a JMM model. One should also not forget that we are in
the Bayesian setting, and the inability of the JMM to fit the covariance elements may be caused by
the flat uninformative priors used within this simulation. When considering real data much more
informative priors may be set, thereby improving the results of the JMM estimate.
It is also worth noting that one is not always interested in the association in the long run (as t→ ∞).
In the simulation study we have inspected the behaviour as t → ∞ as the results on a single dataset
showed that for the proposed models this limit was reached very soon (see figure 5.1). Also, it
enabled us to plot the association coefficient against the number of subjects N. We shall see when
analysing the synthetic version of the Covid-19 dataset (section 6.4.2) that one is not always interested
in the limiting behaviour.
In conclusion, when there is doubt over the nature of the time-varying covariate, joint models are
always preferred over the LMM, especially if the number of subjects N is large. This is the case
because even if the time-varying covariate is exogenous, the joint models will give a good estimate
of the association. However, if the covariate is endogenous, the LMM will fail in estimating the
coefficient. From our results it seems that the JSM outperforms the JMM in all situations, mainly
because of the smaller variability of the estimates. However, several possible explanations for this
behaviour have been given and should be examined more closely in the future.

5.4 Examining the GOF results
We shall continue by examining the goodness of fit results of the LMM, JMM and JSM. In Figure 5.3
the log marginal likelihood (see section 3.2.1) is shown for the different models when data is simu-
lated according to the LMM, JMM or JSM.
First we note that the marginal likelihood is not comparable between the LMM and the JMM/JSM.
While the LMM is a model for exclusively the outcome, the JMM and JSM are models for both the
outcome and the time-varying covariate. However, we can still use the marginal likelihood to com-
pare the goodness of fit between the JMM and the JSM. In Figure 5.3 one can see the Bayes Factor
of the JMM versus the JSM plotted together with the log marginal likelihoods. In section 3.2.1 we
discussed that a Bayes Factor > 2.3 is indicative of strong evidence of the JMM in favor of the JSM.
We see that the marginal likelihood favours the joint model according to which the data has been
generated. However, when the data is simulated according to the LMM, there is a strong preference
for the JSM as opposed to the JMM. We also note that at low levels of N, the JSM is preferred even if
the data is simulated according the the JMM.
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Figure 5.3: Log marginal likelihoods of the different models when the data is simulated according to
either the LMM, JMM or JSM. Also shown is the Bayes Factor of the JMM versus the JSM, with a

Bayes Factor>2.3 indicating a strong preference for the JMM as opposed to the JSM. Note that the
marginal likelihood of the LMM is not comparable to the marginal likelihoods of the joint models.

Figure 5.4 shows both the PIT and CPO for the LMM, JMM and JSM when data is simulated accord-
ing to each of them. Note that both CPO and PIT are a type of Leave-one-out Cross validation (see
sections 3.2.3 and 3.2.2) and thus provide a measure of goodness of fit without taking into consider-
ation model complexity.

Figure 5.4: CPO and PIT of the LMM, JMM and JSM when data is simulated according to each of
them.

We observe that according to the PIT all models perform very comparably, independent of the model
according to which the data is simulated. This stands in contrast to the CPO, which shows that the
LMM seems to outperform the joint models when data is simulated according to the LMM. While the
PIT only measures the probability that the actual observation is larger than the fitted value, the CPO
gives the posterior probability of the observed value. CPO is therefore particularly useful to detect
outliers, while the PIT detects surprising fits. A possible explanation for the lower CPO value of the
LMM when the data is simulated according to the LMM could be the following: When simulating
according to the LMM, an outlier in the exogenous covariate yields an outlier in the outcome. The
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association coefficient in the LMM can directly model this, while the association coefficients in the
joint models have a more indirect approach, not giving a outlier in the outcome when the exogenous
covariate is an outlier. This protects them against possible over-fitting, something we shall inspect
closer when looking at the MSE.

Figure 5.5: The Mean Squared Error on the training set and for subsequent measurements of
subjects in the training set (see section 3.2.5) for the LMM, JMM and JSM. Results shown when data

is generated according to either the LMM, JMM or JSM.

In Figure 5.5 are shown the MSE on the training set as well as on subsequent measurements of sub-
jects in the training set (see section 3.2.5). We observe that when the data is simulated according to
the JMM and JSM, all models seem to perform equally well. When examining the LMM, however,
we see a different picture. We note that the LMM seems to perform much better than both the joint
models on the training data. This behaviour is no longer present when examining the MSE on sub-
sequent measurements of subjects in the training set. This might indicate that the LMM is in fact
overfitting the training data, thus yielding a very low MSE on the training set. This was also the pos-
tulated reason for the better CPO value of the LMM when data is simulated according to the LMM.
When examining the MSE on the test set in Figure 5.6 we also see that the LMM does not perform
better than any of the joint models. Thus, we are led to conclude that the better performance of the
LMM on the training set when the data is simulated according to the LMM can mainly be attributed
to overfitting.

Figure 5.6 shows the MSE on the test set for the different models. One thing to note is that for a
small number of subjects N the JSM seems to be outperformed by the LMM and JMM, independent
of what model the data is simulated according to. This effect disappears with increasing N, and with
N > 150 the effect is negligible. The worse performance of the JSM at low levels of N was also noted
in Figure 5.3. Here we saw that if the data is simulated according to the LMM , at first the JMM seems
to be the preferred model, while as N increases the JSM becomes preferred.
Note further that because the values shown are obtained by averaging over just 250 datasets, the
MSE results do not yield strictly decreasing lines, as would be expected with an increasing num-
ber of subjects N. However, performing a more extensive simulation was not feasible due to long
running times. Nevertheless, it is remarkable that this simulation study could be done with INLA
within a manageable time frame. If one would have resorted to MCMC this simulation study would
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not have been possible, since every model fit (especially for larger N) would have taken hours. With
INLA, a JMM fit for N = 20 took just a few seconds, while the fit for N = 750 took approximately 10
minutes. Thus, only because of INLA such an extensive simulation study could be performed. The
entire simulation study took about 3 days to perform on a 8-core computer where the simulation was
parallelized as efficiently as possible.

Figure 5.6: MSE on the test set for the LMM, JMM and JSM when data is simulated according to
each of them.

Figure 5.7 shows the logarithm of the Deviance Information Criterion (see section 3.2.4) for the dif-
ferent models. We observe that when the data is simulated according to the LMM, the LMM is the
preferred method according to the DIC. This can be explained by the fact that DIC punishes elaborate
models, and thus although the joint models fit equally well to the LMM, they are punished for their
complexity. We note that when the data is simulated according to the JMM or JSM all models score
equally well on the DIC, meaning that the complexness of the JMM and JSM is countered by a better
fit as compare to the LMM. The WAIC is not shown but has very similar behaviour to the DIC .

Figure 5.7: DIC of the LMM, JMM and JSM when data is simulated according to each of them.
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5.5 Recommendations based on simulation study
Based on the simulation study we can give the following recommendations for model fitting, de-
pending on the nature of the time-varying covariate at hand:

• Time-varying covariate is exogenous: Use a LMM. The LMM will correctly give the associa-
tion between the time-varying covariate and the outcome, while having a better fit overall as
compared to the joint models. Also, a LMM is much easier to implement than the joint models.

• Time-varying covariate is endogenous: Use a joint model. The LMM should not be used as
the association between the outcome and the endogenous covariate will not be fitted correctly.
When choosing between the JMM and the JSM, attention should be given to the complexity
of the random effects covariance matrix D of the JMM (see section 2.5.1). If the structure is
complex, the JSM should be the preferred choice. Also, if the association parameter is the
value of interest, the JSM should be the preferred choice, as the JSM seems to correctly fit the
association coefficient in a wide variety of data. If the interest lies in lagged effect the JSM
should also be preferred. In all other instances there is no strong preference, but it should be
noted that the JMM is much easier to implement in INLA than the JSM.

• Nature of time-varying covariate is unknown: If the number of subjects is large enough (N >
100), use a joint model. If the time-varying covariate is endogenous, the joint models clearly
outperform the LMM. Even if the time-varying covariate is exogenous, the joint models will
give the correct association, as well as a good fit. If the number of subjects is small, use either
a LMM or a joint model with a very simple structure.
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Chapter 6
Application to synthetic version of LUMC
Covid-19 Dataset

In chapter 4 the different techniques to model endogenous time-varying covariates have been con-
figured within INLA. In chapter 5 it was shown within the context of a simulation study that joint
models are preferable when dealing with endogenous time-varying covariates. In this chapter we
shall apply the different techniques on a synthetic version of a real dataset. We shall be using a
synthetic and anonymized version of the LUMC Covid-19 dataset to conduct this application.

6.1 Synthetic version of LUMC Covid-19 dataset
The portion of the LUMC Covid-19 dataset at our disposal consists out of 97 patients who were hos-
pitalized at the LUMC because of Covid-19. The length of hospitalization differs per patient, with an
average time of 13 days, a maximum of 47 and a mimimum of just 1 day. During the hospitalization
the following parameters were noted:

• Day since infection: The day of infection was estimated at admission as well as possible by the
physician.

• Cytokines: During hospitalization several blood cytokine levels were measured for each pa-
tient. Here we shall consider 3 cytokines, which we shall refer to as cytokines 1, 2 & 3. The
cytokines are log transformed to achieve a linear relationship with the outcome. Furthermore,
the cytokines chosen for this thesis have no limit of detection, thus not necessitating the use of
any special treatment.

• Severity score: The severity score is a score based mainly upon clinical features to assess the
state of the patient with regards to the Covid-19 infection. The severity score is available only
on those days when the cytokines are measured. The maximum severity score equals 21, while
the average score over all measurements in our sample is 8.

The data was synthesized by adding random noise to the cytokines as well as the severity score.
It is to be noted that a small percentage of patients in our sample died. We do not have this informa-
tion at our disposal and it is not incorporated into the models.
The question of interest is the relation between the different cytokines and the severity score. Under-
standing this relation would greatly help physicians, as it would enable them to predict the condition
of patients using cytokine levels. Thus, we would like to consider the severity score as outcome while
the cytokines will have the role of time-varying explanatory variables.
It is very likely that the cytokines are in fact endogenous time-varying covariates, meaning that the
cytokines at time t are, given their own history, dependent on the history of the outcome, the sever-
ity score. This is caused by the fact that the severity score of the patient probably has an effect on
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cytokine levels, as within a recovering patient the cytokine levels are likely to be much lower than in
a sick patient.
Thus, as the cytokines are most likely endogenous and as we have a total of about N = 100 patients,
the recommendations from the simulation study (see section 5.5) point us towards using joint models
while keeping the covariance structure D (see section 2.5.1) of the JMM as simple as possible.

6.2 Modelling time-progression
Before commencing the analysis of the relation between the cytokines and the severity score we
will examine the data at hand more closely. In Figure 6.1 we see the spaghetti plots of the severity
score and cytokine 1. In blue are fitted the corresponding loess lines, local polynomial regression
lines. For the severity score one can observe an overall increasing trend up to approximately day 25,
from where the severity score seems to decrease. For cytokine 1 a similar although less pronounced
trend is seen: an increase until day 40 followed by a decrease. Note that the time-profiles of distinct
patients differ tremendously. Both the total available time-span per patient as well as the moment of
admittance differ considerably between patients. This is especially evident during the first and last
days since infection, e.g: beyond day 60 there is only data for 3 patients.

Figure 6.1: Spaghetti plots for both the severity score as well as cytokine 1 for all N = 97 patients in
the synthetic version of the LUMC Covid-19 dataset. Plotted in blue are the corresponding Loess

lines.

Because of the tremendous differences in time-profiles of the patients we have considered the use of
other time-scales, such as the time since admittance and the normalized time since infection (normal-
ized on the interval from 0 to 1). However, we have chosen to continue our analysis on the original
time scale as it is most widely used within the clinical setting and is most useful within the setting of
prediction.
As we have seen in Figure 6.1 the trend over time of the severity score is certainly not linear. Thus, a
standard linear trend over time will not suffice to model the severity score. Instead we have looked
at 4 options:

• Quadratic trend over time.

• Linear Splines: Piecewise linear trend over time with breakpoints. The breakpoints were ob-
tained by applying MARS (Multivariate Adaptive Regression Spline) on the regression of the
severity score on the day since infection. MARS yielded a single breakpoint at day 28. When
looking at figure 6.1 we see that the loess fit also seems to indicate a change of direction at day
28.
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• Quadratic Splines: Piecewise quadratic trend over time with breakpoints. As the location of
breakpoints in the quadratic splines model is less important than in the linear splines model,
the breakpoints were chosen at the commonly chosen locations of the 1st and 3rd quartiles of
the time since infection (which correspond to days 17 and 38 respectively).

• Linear Model: Linear change over time. This model was added as a baseline model.

The four different models for time-progression are shown in Figure 6.2a. Here the fits are shown
when applying linear mixed models with as outcome the severity score and as explanatory variable
the day since infection. The corresponding model selection criteria can be found in Table 6.2b.

Figure 6.2: Comparison of the Linear, Linear Splines, Quadratic and Quadratic Splines models
when regressing the severity score on the day since infection.

(a) Time-profile of different time-progression models.

AIC BIC logLik
Linear 3134.90 3152.11 -1563.45

Piecewise
Linear 3083.16 3113.28 -1534.58

Quadratic 3127.09 3148.61 -1558.55

Piecewise
Quadratic 3074.33 3117.36 -1527.17

(b) Model selection criteria for the different
time-progression models.

Table 6.2b shows that the piecewise fits outperform the non-piecewise fits. We also observe that the
piecewise quadratic and piecewise linear fits perform almost equally well. For ease of interpretation
and because the piecewise linear fit is a more parsimonious model we have chosen to continue with
the piecewise linear fit, with as only breakpoint the 28th day since infection.

Although there is no clear trend over time for the cytokines, we chose the same piecewise linear
model with a breakpoint on the 28th day since infection to fit all cytokines in the joint models. We
have taken this approach for ease of interpretation and implementation, although we realise that a
simpler model for the cytokines might have been preferable. It is also worth noting that the analysis
on the synthetic version of the LUMC Covid-19 dataset is purely meant as a feasibility study on the
implementation of INLA on a real dataset and no conclusions will be drawn from the results.

6.3 Modelling association between severity score and cytokines
The linear mixed model (LMM), the joint mixed model (JMM) and the joint scaled model (JSM) shall
be applied on the Covid-19 dataset.

6.3.1 Linear Mixed Model
Definition 6.3.1 (Severity Score LMM) We start with an exogenous model, in which the severity score is
regressed on the time-varying cytokines without taking into account the bias invoked because of the possible
endogenous nature of the cytokines. The mathematical notation of this model is:

Si(ti,j) = (β
(S)
0 + u(S)

0,i ) + β
(S)
c Ci(ti,j) + (β

(S)
t + u(S)

t,i )ti,j + (β
(S)
t28 + u(S)

t28,i)(ti,j − 28)+ + εi(ti,j)
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with

u(S)
i =

(
u(S)

0,i , u(S)
t,i , u(S)

t28,i

)
∼ N

0,

 σ2
S,0 σS,(0,t) σS,(0,t28)

σS,(t,0) σ2
S,t σS,(t,t28)

σS,(t28,0) σS,(t28,t) σ2
S,t28

 ,

εi(ti,j) ∼ N (0, σ2)

ε ⊥⊥ u.

Hereby the following notation is used:

• Si(ti,j): The Severity Score of patient i = 1, ..., 97, with each patient having a total of ni measusrements
at times ti,j, with j = 1, ..., ni.

• Ci(ti,j): The Cytokine level for patient i at time ti,j. Note that Ci can represent any of the 3 Cytokines of
interest. This will be apparent from the context.

• (ti,j − 28)+ = max(0, ti,j − 28): The breakpoint introduced at day 28 since infection to fit a Linear
Splines Model.

• β
(S)
0 , β

(S)
C , β

(S)
t and β

(S)
t28 : The regression coefficients for the Intercept, Cytokine, Time and Time after

breakpoint 28 respectively.
The priors for the fixed effect coefficients are β

(S)
0 ∼ N (µ0, σ2

0 ), β
(S)
C ∼ N (µc, σ2

c ), β
(S)
t ∼ N (µt, σ2

t ) & β
(S)
t28 ∼

N (µt28, σ2
t28) with hyperparameters µ0, µc, µt, µt28, σ2

0 , σ2
c , σ2

t , σ2
t28.

• u(S)
0,i , u(S)

t,i and u(S)
t28,i: The random effects for the Intercept, Time and Time after breakpoint 28 respectively.

The prior of the joint normal distribution is the Wishart distribution W ∼ Wishart3(n, R−1), where n
and the elements of the matrix R are the hyperparameters.

• εi(ti,j): The error for patient i at time ti,j.
The prior on the variance component σ2 is the log(Gamma(a, b)) distribution, with a and b the hyper-
parameters.

Note that we assume the Conditional Independence Assumption to be true, the assumption that the random
effects capture all correlation and there is no correlation left for the error terms.

Standard uninformative priors shall be used when analysing the Covid-19 data, as no prior infor-
mation is available regarding the cytokines. The same uninformative priors will also be used for the
joint models and will therefore not be mentioned when defining the models. For the parameters of
the uninformative priors we refer to section 4.2.
Lagged values can easily be included into the exogenous model by incorporating the values of covari-
ates measured at previous time-points into the linear predictor. Note however that only the values
that are actually measured can be used in this manner.

6.3.2 Joint Mixed Model
Definition 6.3.2 (Joint Mixed Model) The JMM used to fit the Covid-19 data is given by:

Ci(ti,j) = (β
(C)
0 + u(C)

0,i ) + (β
(C)
t + u(C)

t,i )ti,j + (β
(C)
t28 + u(C)

t28,i)(ti,j − 28)+ + ε
(C)
i (ti,j) (6.1)

Si(si,j) = (β
(S)
0 + u(S)

0,i ) + (β
(S)
t + u(S)

s,i )si,j + (β
(S)
t28 + u(S)

s28,i)(si,j − 28)+ + ε
(S)
i (si,j) (6.2)
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with

u0,i =
(

u(C)
0,i , u(S)

0,i

)
∼ N

(
0,
[

σ2
C,0 σ(C,S),0

σ(C,S),0 σ2
S,0

])
, (6.3)

ut,i =
(

u(C)
t,i , u(S)

t,i

)
∼ N

(
0,
[

σ2
C,t σ(C,S),t

σ(C,S),t σ2
S,t

])
, (6.4)

ut28,i =
(

u(C)
t28,i, u(S)

t28,i

)
∼ N

(
0,
[

σ2
C,t28 σ(C,S),t28

σ(C,S),t28 σ2
S,t28

])
(6.5)

ε
(C)
i (ti,j) ∼ N (0, σ2

(C)), ε
(S)
i (ti,j) ∼ N (0, σ2

(S)) (6.6)

ε
(C)
i , ε

(S)
i ⊥⊥ u0,i, ut,i, ut28,i, ε

(C)
i ⊥⊥ ε

(S)
i (6.7)

• Ci(si,j): The Cytokine level for patient i = 1, ..., 97, with each patient having a total of ni measusrements
at times si,j, with j = 1, ..., ni. Note that Ci can represent any of the 3 Cytokines of interest. This will be
apparent from the context.

• All other notation and priors used are similar to the ones used for the LMM, see definition 6.3.1.

Note that a simple structure was chosen for the random effects with few covariance components, as
the simulation study indicated that the JMM estimate of the association coefficient might not be well
fitted in case of a complex covariance structure of the random effects.

Estimating association in the Joint Mixed Model

In order to estimate the conditional association between the cytokine and the severity score (see
section 2.5.1) the JMM should be written down as a bivariate normal distribution. For this we need
to calculate the variances of the endogenous covariate and the outcome, as well as the covariance
between them. As was mentioned in section 2.5.1, these quantities are dependent upon time. We shall
give as example the calculation of the variance of the outcome, as well as the covariance between the
outcome and the cytokine:

Var
[
Si(ti,j)

]
= Var

[
u(S)

0,i + u(S)
t,i ti,j + u(S)

t28,i(ti,j − 28)+ + ε
(S)
i (ti,j)

]
1
=

= Var
(

u(S)
0,i

)
+ t2

i,jVar(u(S)
t,i ) +

[
(ti,j − 28)+

]2 Var
(

u(S)
t28,i

)
+ Var

(
ε
(S)
i (ti,j)

)
=

= σ2
S,0 + t2

i,jσ
2
S,t +

[
(ti,j − 28)+

]2
σ2

S,t28 + σ2
(S)

Cov
[
Si(si,j), Ci(ti,j)

]
= Cov

[
u(C)

0,i + u(C)
t,i ti,j + u(C)

t28,i(ti,j − 28)+ , u(S)
0,i + u(S)

t,i ti,j + u(S)
t28,i(ti,j − 28)+

]
1
=

= Cov(u(C)
0,i , u(S)

0,i ) + t2
i,jCov(u(C)

t,i , u(S)
t,i ) +

[
(ti,j − 28)+

]2 Cov(u(C)
t28,i, u(S)

t28,i) =

= σ(C,S),0 + t2
i,jσ(C,S),t +

[
(ti,j − 28)+

]2
σ(C,S),t28.

In the above derivations the equalities denoted by 1 follow from the fact that all random effects and
errors are independent. Now we can construct the bivariate normal distribution of both the cytokine
and the severity score. Note that all elements in the bivariate normal distribution are time-dependent.

f (S(ti,j), C(ti,j)) = N2

([
β
(S)
0 + β

(S)
t ti,j + β

(S)
t28(ti,j − 28)+

β
(C)
0 + β

(C)
t ti,j + β

(C)
t28 (ti,j − 28)+

]
, Σ

)
with

Σ =

[
σ2

S,0 + t2
i,jσ

2
S,t +

[
(ti,j − 28)+

]2
σ2

S,t28 + σ2
(S) σ(C,S),0 + t2

i,jσ(C,S),t +
[
(ti,j − 28)+

]2
σ(C,S),t28

σ(C,S),0 + t2
i,jσ(C,S),t +

[
(ti,j − 28)+

]2
σ(C,S),t28 σ2

C,0 + t2
i,jσ

2
C,t +

[
(ti,j − 28)+

]2
σ2

C,t28 + σ2
(C)

]
.
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It was derived in section 2.5.1 that a unitary increase in the cytokine at time t will give an increase of
the severity at time t equal to:

β
jmm
C (t) =

Cov(y, x)(t)
σ2

x(t)
=

σ(C,S),0 + t2
i,jσ(C,S),t +

[
(ti,j − 28)+

]2
σ(C,S),t28

σ2
C,0 + t2

i,jσ
2
C,t +

[
(ti,j − 28)+

]2
σ2

C,t28 + σ2
(C)

. (6.8)

Within the context of the Covid-19 dataset our interest does not lie with the limiting behaviour of
β

jmm
C (t) as t → ∞. Instead we are interested in the association between the severity score and the

cytokine in the time-span of days 1 until 50 after infection. This is the time-span at which patients
develop Covid-19 symptoms and are hospitalized.
We shall examine the association between the outcome and the endogenous covariate in the JMMin
several ways:

• We shall inspect the credible intervals and therefore the significance of the covariance terms
involved in equations 6.3-6.5: σ(C,S),0, σ(C,S),t & σ(C,S),t28. These are of particular interest since
they are the terms responsible for the association between the outcome and the endogenous
covariate. Also, credible intervals are available for these quantities.

• We shall be giving the expected value and credible intervals of the coefficient β
jmm
C (t) as a

function of time. The credible intervals are estimated by sampling one million values from the
joint posterior density of the parameters involved and calculating the necessary expression.

6.3.3 Joint Scaled Model
Definition 6.3.3 (Joint scaled model) Lastly, the joint scaled model (JSM) is given by:

mi(ti,j) = (β
(C)
0 + u(C)

0,i ) + (β
(C)
t + u(C)

t,i )ti,j + (β
(C),28
t + u(C),28

t,i )(ti,j − 28)+
Ci(ti,j) = mi(ti,j) + ε

(C)
i (ti,j)

Si(si,j) = γ0mi(si,j) + ∑L
l=1 γl ·mi(sij − l)+

+(β
(S)
0 + u(S)

0,i ) + (β
(S)
s + u(S)

s,i )si,j + (β
(S),28
s + u(S),28

s,i )(si,j − 28)+ + ε
(S)
i (si,j)

with

uC =
(

u(C)
0,i , u(C)

t,i , u(C)
t28,i

)
∼ N3

0,

 σ2
C,0 σC,(0,t) σC,(0,t28)

σC,(t,0) σ2
C,t σC,(t,t28)

σC,(t28,0) σC,(t28,t) σ2
C,t28

 ,

uS =
(

u(S)
0,i , u(S)

t,i , u(S)
t28,i

)
∼ N3

0,

 σ2
S,0 σS,(0,t) σS,(0,t28)

σS,(t,0) σ2
S,t σS,(t,t28)

σS,(t28,0) σS,(t28,t) σ2
S,t28

 ,

ε
(C)
i,j ∼ N (0, σ2

(C)), ε
(S)
i,j ∼ N (0, σ2

(S))

ε
(C)
i,j , ε

(S)
i,j ⊥⊥ uC, uS, ε

(C)
i,j ⊥⊥ ε

(S)
i,j

with:

• mi,j: Linear predictor of the endogenous covariate C for patient i, i = 1, ..., N at time ti,j.

• γ0: Scaling factor for the linear predictor mi(si,j) at time point si,j.

• γ1, ..., γl : Scaling factors for the lagged linear predictors mi(sij − l). Lagged linear predictors are
included up to lag of degree L.

The notation and priors used are similar to the ones used for the LMM, see definition 6.3.1.
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Estimating association in the Joint Scaled Model

For the JSM, the association coefficient β
jsm
x (t) introduced in section 2.6.1 is given by the following

quantity:

β
jsm
x (t) = γ

Var(mi(t))
Var(Ci(ti,j))

= γ

(
1−

σ2
(C)

Var(Ci(ti,j))

)
(6.9)

with

Var(Ci(ti,j)) = σ2
C,0 + t2

i,jσ
2
C,t +

[
(ti,j − 28)+

]2
σ2

C,t28
+ σ2

(C)+ (6.10)

+ 2ti,jσC,(t,0) + 2(ti,j − 28)+σC,(t28,0) + 2ti,j
[
(ti,j − 28)+

]
σC,(t,t28). (6.11)

A clear time-dependence of the coefficient β
jsm
x (t) is to be noted. The derivation of Var(Ci(ti,j)) pro-

ceeds in much the same way as the derivation shown in section 6.3.2 and is thus omitted.
To examine the association between the outcome and the endogenous covariate in the COVID dataset
we shall be examining 2 quantities:

• We shall be looking at the estimate of γ and its corresponding credible interval. This is of
interest to us as limt→∞β

jsm
x (t) = γ.

• We shall be giving an estimate and corresponding credible intervals for the coefficient β
jsm
x (t)

as function of the time t. The credible intervals are estimated by sampling 1 million values from
the joint posterior density of the parameters involved and calculating the necessary expression.

6.4 Results

6.4.1 Presence of a lagged effect
First we inspect whether a lagged association is present between the cytokines and the severity score.
We inspect this by considering the joint scaled model (JSM) as well as the linear mixed model (LMM)
with lag of order 5. For the LMM, only observed measurements are used as lagged values, thus
not necessitating the construction of a LMM for the cytokine. The models are fit for each cytokine
separately. The results can be seen in Table 6.1. Here γC1

1 , ..., γC1
5 are the lagged effects of order 1

up to 5 for Cytokine 1. Similar notation is used for cytokines C2 and C3. Shown in the table are
the estimates with corresponding 95% credible intervals. We observe that none of the lagged values
for any of the cytokines are significant, thus meaning that a lagged association is most probably not
present within the Covid-19 dataset.
In the dataset, only 0.5% of measurements had a lagged value of order 1: this is a measurement
performed 1 day before. This in contrast to lagged values of order 2 and 5: a total of 46% and 44% of
measurements had such lagged values respectively. The limited availability of lagged values a day
beforehand can be seen in Table 6.1, as the LMM cannot calculate the coefficients of lag 1 for any of
the cytokines. As was mentioned in section 2.2.1, the LMM can only fit lagged values that are actually
measured. In order to fit lagged values at any time point an additional independent LMM has to be
constructed for the cytokine. In contrast, the JSM can supply coefficients at any lagged time-point
because of the scaled linear predictor (see section 2.6.3). Thus, in Table 6.1 the lagged values of order
1 are shown for the JSM but can not be calculated for the LMM.
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Table 6.1: Table showing the results of fitting a lagged model with lag of degree 5 on the Covid-19
data using the LMM and JMM. The models are fitted on each of the cytokines separately. The results
are shown for all 3 cytokines, with γC1

1 , ..., γC1
5 being the lagged values of degree 1 to 5 for cytokine

C1. The notation is similar for cytokines C2 and C3.

Linear Mixed Model Joint Scaled Model
γC1

1 NA 0.13 [ -0.47 , 0.74 ]
γC1

2 0.12 [ -0.04 , 0.27 ] 0.31 [ -0.12 , 0.75 ]
γC1

3 0.07 [ -0.12 , 0.25 ] 0.09 [ -0.39 , 0.56 ]
γC1

4 0.06 [ -0.13 , 0.26 ] 0.28 [ -0.2 , 0.75 ]
γC1

5 0.12 [ -0.04 , 0.28 ] 0.22 [ -0.22 , 0.67 ]
γC2

1 NA -0.21 [ -0.79 , 0.38 ]
γC2

2 0.07 [ -0.05 , 0.18 ] -0.36 [ -0.82 , 0.11 ]
γC2

3 0.05 [ -0.09 , 0.19 ] -0.13 [ -0.62 , 0.37 ]
γC2

4 -0.02 [ -0.16 , 0.13 ] -0.16 [ -0.67 , 0.35 ]
γC2

5 0.05 [ -0.07 , 0.17 ] -0.15 [ -0.63 , 0.33 ]
γC3

1 NA 0.12 [ -0.47 , 0.7 ]
γC3

2 0.07 [ -0.06 , 0.21 ] 0.04 [ -0.46 , 0.53 ]
γC3

3 0.05 [ -0.11 , 0.21 ] 0.17 [ -0.35 , 0.69 ]
γC3

4 0.01 [ -0.16 , 0.18 ] 0.2 [ -0.33 , 0.72 ]
γC3

5 0.07 [ -0.07 , 0.21 ] 0.27 [ -0.23 , 0.77 ]

6.4.2 Analysing cytokine 1
We have shown that there does not seem to be a lagged association between any of the cytokines and
the severity score. We shall thus focus on models without lag. We shall first examine the association
between the severity score and cytokine 1. In Table 6.2 are shown the goodness of fit measures for
the LMM, JMM and JSM in fitting the severity score given cytokine 1. The models are implemented
as shown in section 6.3, with as outcome the severity score and with Ci(ti,j) being cytokine 1. For all
GOF metrics (except for the marginal likelihood) a lower score indicates a better fit.
Note that the marginal likelihood cannot be used to compare the LMM to the joint models, as the
joint models contain likelihoods for both the time-varying cytokine as well as the outcome. The joint
models are comparable between themselves via the marginal likelihood, and Table 6.2 shows that the
JSM performs significantly better than the JMM according to the marginal likelihood, as a difference
in log marginal likelihood of greater than 2.1 indicates a strong preference for the JSM as compared
to the JMM (see section 3.2.1).
However, overall we observe that the JMM appears to best fit the data at hand, as it scores best on all
metrics except for the marginal likelihood, the PIT and the MSE on the test set. It is remarkable that
both joint models score better on both the DIC and WAIC as compared to the LMM, as these metrics
combine goodness of fit with a penalization of model complexity. It thus appears that although the
joint models are more complex than the LMM, they compensate by a better fit.
The MSE tells us something about how well the models can fit the data at hand (MSE train), predict
future instances of subjects in the data set (MSE subsequent) and fit similar but new data (MSE test).
To calculate the MSE on the test set and on future observations of subjects in the training set we
have performed 50-fold cross validation. In each of the cross-validation samples, 15 subjects were
excluded from the training set to serve as test set, while another 15 subjects were used to to calculate
MSE subsequent by excluding half their measurements from the training set to serve as unknown
future observations.
We observe that the joint models outperform the LMM on all MSE measures. This was to be expected
for the training set (where it could be attributed to overfitting), but a better fit is also observed for the
test set and for subsequent observations. Thus, the better fit does not seem to be due to overfitting

Version of June 21, 2022– Created June 21, 2022 - 06:38

46



6.4 Results 47

but because the more complex joint models truly capture the underlying mechanisms of the processes
involved.

Table 6.2: Goodness of fit measures for fitting the LMM, JMM and JSM on the Covid-19 dataset
when regressing the severity score on cytokine 1.

LMM JMM JSM
Marginal likelihood -1579 -2376 -2356

DIC 2920 2880 2907
WAIC 2915 2876 2905

PIT 0.0240 0.0352 0.0360
CPO 1466 1452 1461

MSE (train) 8.12 7.13 7.71
MSE (subsequent) 24.87 22.80 28.43

MSE (test) 46.20 45.62 39.36

In Table 6.3 the coefficients for the severity score of the different models are shown (for the JSM the
combined coefficients are shown to make the comparison easier, see section 2.6.2). We note that all
models indicate a significant intercept as well as a significant decrease with time after t = 28. One
thing to note is that although the intercept is significant in all models, the value of this parameter
differs greatly between the joint models and the LMM. This is caused by the different model formu-
lations. In the LMM, a large value of the cytokine at t = 0 greatly increases the severity score at t = 0,
without the need for a large intercept. In the data the average value of cytokine 1 equals 4.7. This
gives an average of value at t = 0 of 4.7βcy + β0 = 9.658. This is very comparable to the intercept
values observed in the mixed models.

Table 6.3: Coefficients obtained by the LMM, JMM and JSM when regressing the severity score on
cytokine 1.

LMM JMM JSM
β0 3.36 (0.75, 5.95) 10.67 (8.98, 12.4) 10.58 (6.08, 15.76)
βt -0.06 (-0.16, 0.04) -0.12 (-0.21, -0.02) -0.06 (-0.19, 0.05)

βt28 -0.29 (-0.47, -0.09) -0.23 (-0.4, -0.05) -0.27 (-0.47, -0.05)

In Figure 6.3a the trajectories of the association coefficients for the LMM (βlmm
v ), the JMM (βjmm

x (t))
and the JSM (βjsm

x (t)) with their corresponding credible intervals are shown. The credible intervals for
both joint models were constructed by sampling from the joint posterior distribution of the elements
involved. Note the time-dependency of the association coefficients in the joint models. In Figure 6.3a
the association coefficients are shown from t = 0 until time t = 50, as this is the window of interest
during which patients have symptoms relating to Covid-19. All models give a positive association
between the cytokine and the outcome. For the JSM and the LMM the association is significant
throughout the entire time window. For the JMM the association is only significant from day t = 9
to day t = 29.
To better examine the association within the JMM Table 6.3b shows the covariance elements of the
JMM random effects, see section 6.3.2. These covariance elements are the parameters that determine
the dependence of the outcome on the cytokine. These are also the parameters that constitute β

jmm
x (t),

the association coefficient in the JMM. We see that the covariance element of the random time effect
is almost significant. This causes the significant association of the JMM from time t = 9 until t =
29, as before t = 9 the insignificant covariance term of the random intercept (σ(C,S),0) governs the
association, while after t = 29 the term σ(C,S),t28 is responsible for an insignificant association. Note
that the time span between days 9 and 29 is the time span we are most interested in, as during this
time most patients are admitted to the hospital.
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We see that the JSM and JMM show opposite behaviour in the association with time. The JSM seems
to point at an increasing association with time, while the association for the JMM decreases with
time. The disagreement between the models might be explained by a phenomena we observed in the
simulation study. In the simulation study we saw that although the association coefficient of the JMM
is unbiased, it is very variable. Thus, the association might have been wrongly fitted. Nevertheless,
all 3 models indicate a positive association between the cytokine and the outcome.
Note that in our model specification the association in the LMM is independent of time. This does
not necessarily need to be the case for a LMM, as an interaction between the cytokine and time can
be added to the model.

Figure 6.3: Association coefficients of the LMM, JMM and JSM obtained when regressing the
severity score on cytokine 1. Also shown are the covariance elements that make up the JMM

association coefficient β
jmm
x (t).

(a) Association coefficients of the LMM, JMM and JSM over time with
corresponding credible intervals.

JMM
σ(C,S),0 0.35 ( -0.11 , 0.71 )
σ(C,S),t 0.19 ( -0.02 , 0.4 )

σ(C,S),t28 0.1 ( -0.25 , 0.45 )
(b) Credible intervals for the

covariance coefficients of the JMM,
see section 6.3.2.

6.4.3 Analysing cytokines 2 & 3
Table 6.4 shows the model fits when using either cytokine 2 or 3 to fit the severity score. Over all
GOF measures, the JMM seems to perform best. The exceptions to this are the marginal likelihood
(which favors the JSM) as well as the PIT (which favors the LMM). Similar results were noted when
analysing cytokine 1 (see Table 6.2).

Table 6.4: Goodness of fit values for fitting the LMM, JMM and JSM when regressing the severity
score on either cytokine 2 or cytokine 3.

Cytokine 2 Cytokine 3
LMM JMM JSM LMM JMM JSM

Marginal likelihood -1597 -2188 -2184 -1591 -2057 -2036
DIC 2950 2885 2946 2955 2881 2927

WAIC 2948 2882 2945 2952 2877 2923
PIT 0.0318 0.0352 0.0349 0.0303 0.0371 0.0362

CPO 1484 1455 1483 1484 1452 1470
MSE (train) 8.70 7.19 8.59 8.89 7.15 8.19

MSE (subsequent) 24.75 23.95 24.96 24.90 24.43 28.48
MSE (test) 51.06 47.61 49.62 44.51 42.06 41.16

In Figure 6.4 the association coefficients can be seen for the LMM, JMM and JSM. The corresponding
credible intervals are also shown. We see that for cytokine 2, none of the models shows a significant
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association between the cytokine and the severity score. The JSM shows a non-significant negative
association, which is also given by the JMM at low values of t. The LMM does not detect any associ-
ation whatsoever.
For cytokine 3 a positive significant association is detected by both the LMM and the JSM. At low
levels of t the JMM also gives a positive association, but with increasing t this association disappears.

Figure 6.4: Association coefficients of the LMM, JMM and JSM when regressing the severity score
on cytokines 2 & 3.

To better understand the behaviour of the JMM association coefficients it is necessary to look at the
covariance elements of the JMM. The covariance elements of the JMM for both cytokine 2 and 3 are
given in Table 6.5. We observe that for cytokine 2 none of the covariance elements are significant, thus
explaining the non-significant behaviour seen for the JMM association coefficient in Figure 6.4. For
cytokine 3, on the other hand, we observe that the covariance element of the intercept is significant,
while the covariance element of the random time slope is borderline significant. This explains the
significant association of cytokine 3 with the outcome until time t = 17 observed in Figure 6.4.

Table 6.5: Credible intervals for the covariance coefficients of the JMM (see section 6.3.2) when
fitting cytokines 2 and 3.

Cytokine 2 Cytokine 3
σ(C,S),0 -0.21 (-0.58 , 0.17 ) 0.39 ( 0.06 , 0.67 )
σ(C,S),t 0.02 ( -0.19 , 0.23 ) 0.11 ( -0.1 , 0.32 )

σ(C,S),t28 0 ( -0.33 , 0.34 ) 0.02 ( -0.32 , 0.36 )

6.5 Conclusion
We can draw the following conclusions about the Covid-19 dataset:

• The joint models seem to be a better fit than the linear mixed model (LMM) for regressing the
severity score on the cytokines, as the joint models outperform the LMM on all goodness of fit
metrics except for the PIT.

• Cytokines 1 & 3 seem to have a significant positive association with the severity score, as this
was shown by all models for at least some time periods. The association between cytokine 2
and the severity score is non-significant, but there seems to be a negative association. Overall,
the exogenous and endogenous models seem to agree on the association for all cytokines.
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• The question on whether the cytokines are in fact endogenous or exogenous time-varying co-
variates cannot be answered. Within the context of the simulation study we saw that the exoge-
nous LMM could not detect the association in case of an endogenous time-varying covariate.
However, we do not know whether this holds in general and thus applies to the Covid-19
dataset.

• There is some things we can conclude. The joint models are feasible to implement in INLA
and apply to an existing dataset. The joint models perform better than the linear mixed model
on almost all goodness of fit metrics. If the cytokines are endogenous, the results obtained
with the joint models are less biased than the linear mixed model results. If the cytokines are
exogenous, the fit of the joint models is better than the fit of the linear mixed model and thus
joint models are still preferred.

Thus, the recommendations given at the end of the simulation study are still applicable (see section
5.5): If the time-varying covariate is endogenous or if the nature of the time-varying covariate is
unknown (and enough data is available), joint models are preferred to a standard linear mixed model.
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Appendix A
R Code

The code used for this thesis can be found on Github: https://github.com/georgygomon/Thesis_
open.
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