Universiteit

4 Leiden
The Netherlands

Maximizing statistical power in neurological trials by covariate
adjustment, exploiting ordinality and repeated assessments: A

simulation study and application to GBS
Ruiter, S.C. de

Citation

Ruiter, S. C. de. (2021). Maximizing statistical power in neurological trials by covariate
adjustment, exploiting ordinality and repeated assessments: A simulation study and
application to GBS.

Version: Not Applicable (or Unknown)
License: License to inclusion and publication of a Bachelor or Master thesis in the

Leiden University Student Repository
Downloaded from: https://hdl.handle.net/1887/3676764

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3676764

Maximizing statistical power in
neurological trials by covariate
adjustment, exploiting ordinality and
repeated assessments

A simulation study and application to GBS

Sophie de Ruiter (s1853457)

First supervisor: Prof. Dr. Ewout Steyerberg

Second supervisor: Prof. Dr. Bart Jacobs

MASTER THESIS
Defended on December 10, 2021

Specialization: Statistical Science

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

STATISTICAL SCIENCE
FOR THE LIFE AND BEHAVIOURAL SCIENCES




Foreword

First of all, I would like to thank my supervisors Prof. Dr. Ewout Steyerberg and Prof. Dr.
Bart Jacobs for guiding me through the research activities. Ewout, thank you for the weekly
meetings where I could discuss my doubts and decisions. Thank you also for the opportunities
you provided me. Examples are the interactions with a medical student to advice on the statis-
tics of an academic study and the involvement in weekly meetings with biostatisticians from a
pharmaceutical company overseas. These experiences taught me a lot, not only about statistics
and its real-world application, but it also strengthened my personal skills. Bart, thank you for
providing me insight in the current challenges in neurological trials and for the useful clinical
input in reviewing my thesis. Understanding the relevance of the current study, made it an even
more special experience.

Thank you Linda, for thinking along and for your helpful comments on my writings about
the medical aspects. Thanks to the other PhD students and “colleagues” at the 227 floor at
Erasmus Medical Center for creating a pleasant working environment.

Finally, I would like to express my gratitude to my friends and family for their emotional
support during the last couple of months. Special thanks to my sister Anne, who helped me
to put things to perspective, and to my roommates who served as essential office-mates during
COVID-times.

A general research question for this project was set up by Bart and Ewout in the past. The data
used in this study is obtained from a previous study carried out at Erasmus Medical Center and
is confidential. The main body of this thesis is written in a style resembling that of a scientific
paper, because this was found to be the most useful in preparation for a potential career in
academia.



Contents

[Foreword] i
[Abstract] iii
(1 _Introduction| 1

|2 Background| 3
2.1  Gullain-Barré syndrome] . . . . . . .. ... Lo 3
2.2 Statistical Analysis| . . . . . . .. 3

2.2.1 Binary logistic regression (conventional analysis)l . . . . . . ... ... .. 4

5
b)
7

2.2.2 Covariate adjustment| . . . . . .. . . .. ... ... ... .
12.2.3  Proportional odds logistic regression| . . . . . . . ... ..o
2.2.4  Longitudinal proportional odds logistic regression|. . . . . . . . .. .. ..

3 _Methods 8
B.1 _The “IVIG vs IVIG-MP” triall. . . . . . . .. .. .. ... . . ... .. .. ..., 8
3.1.1  Approach I: Binary logistic regression| . . . . . . .. ... ... .. .... 8

[3.1.2  Approach II: Mixed effects logistic regression| . . . . . ... ... ... .. 8
9

9

0

B.1.3 Approach I1I: Proportional odds logistic regression] . . . . . . . . . . . . .

[3-T.4 Approach IV: Longitudinal proportional odds logistic regression]. . . . . .

B2 Simulation study| . . . ... o 1
[4_Results] 14
4.1 Re-analysis “IVIG vs IVIG-MP” trial] . . . .. ... ... ... ... 14
4.1.1  Covariate adjustment| . . . . . . . . .. ... 0o 14
4.1.2  Exploiting ordinality| . . . . . . . ... L oo 15
[4.1.3  Exploiting repeated assessments| . . . . . ... ... ... ... 15
[4.2" Simulation of Tongitudinal continuous datal . . . . . . ... ... ... ... ... 16
E3 Simulation study] . . . . . . . ... 17
[6_Discussionl 21
Bibliography 23
A ppend 26

ii



Abstract

Objective

Randomized controlled trials (RCTs) for rare neurological diseases, such as the Guillain-Barré
syndrome (GBS), have a disappointing lack of success, possibly due to ineflicient statistical
analysis. We aimed to evaluate the impact of covariate adjustment for baseline characteristics,
ordinal analysis and repeated assessments on statistical power in randomized controlled trials
with ordinal scales as outcome measure.

Methods

We re-analysed a previous trial in GBS (the IVIg + placebo vs IVIg + Methylprednisolone trial,
n = 221) and conducted power simulations to assess performance of different approaches for
analysis of ordinal scales such as the GBS Disability Scale under different conditions. The ap-
proaches consist of binary logistic regression and proportional odds logistic regression, with and
without covariate adjustment for important prognostic factors (MRC sum score and days since
onset of weakness to randomisation). The conditions consist of satisfaction of the proportional
odds assumption, the use of weaker prognostic baseline characteristics, and quantitative versus
qualitative violation of the proportional odds assumption. We extended these approaches to a
longitudinal proportional odds model. Simulations varied in sample size and treatment effect.

Results

Covariate adjustment led to an increased estimated treatment effect and increased standard error
in the GBS trial. Proportional odds analysis decreased the standard error in comparison to a
binary logistic regression analysis, indicating a more sensitive analysis. The longitudinal pro-
portional odds resulted in a larger standard error as compared to single time point proportional
odds analyses. Simulations for analysis of continuous data with a linear mixed model confirmed
that a longitudinal approach does not increase power as compared to a single time point analysis
in case of a low within-subject variance, as was observed for the GBS trial. In simulations we
focused on the effect of covariate adjustment and ordinal analysis. Simulations indicated that
Type I errors were generally around 5%. A small gain in power was achieved by covariate ad-
justment for two known prognostic factors in GBS, and a larger gain by exploiting ordinality
instead of dichotomizing the ordinal scale. The gains translated to a gain in power of up to 7 and
13% points by covariate adjustment and exploiting ordinality respectively. The gains in power
were only slightly smaller under violation of the proportional odds assumption and with smaller
prognostic effects of the covariates.

Conclusion

Optimal analysis of ordinal scales should adjust for baseline characteristics (covariate adjust-
ment) and should respect the ordinality of the outcome measure. A longitudinal proportional
odds model for analysis of repeated assessments may not have added benefit as compared to a
single time point proportional odds model. Further research should confirm that the use of a
longitudinal proportional odds model is only beneficial when the observed disease course within
patients is more variable over time.

iii



Chapter 1

Introduction

Randomized controlled trials (RCTs[*]) are regarded as the gold standard for evaluation of effec-
tiveness of treatments and interventions. Each year, many trials are performed for neurological
diseases. For Guillain-Barré Syndrome (GBS), a rare acute immune-mediated disease of the
peripheral nervous system, however, no trial since the 1990s has indicated a benefit of new treat-
ments for patients’ recovery. A potential contributing factor to this lack of convincing positive
findings might be suboptimal statistical analysis.

A first challenge in the analysis of RCTs for neurological diseases, among others, is dealing
with ordinal outcomes. Outcome measures in trials in neurology are mostly ordinal scales quanti-
fying the degree of recovery. The analysis of ordinal outcomes is not straight-forward. One might
dichotomize the ordinal scale in favorable versus unfavorable outcomes, analyse the ordinal scale
as if it was continuous or use the proportional odds model for ordinal analysis. Even though
many studies advised to use the proportional odds model |1} 22, 31 [35], dichotomization is still
common and seems appealing to researchers for a variety of reasons such, as its straightforward
interpretation and its ease of use.

Another obstacle in RCTs for rare diseases with a heterogeneous patient population is im-
balance. Especially in small trials, imbalance in baseline characteristics between treatment arms
might exist by chance, despite the random allocation of treatment in RCTs [9, 32]. Covariate
adjustment corrects for such imbalance and multiple studies support the use of covariate adjust-
ment [17, [22]. Moreover, in other acute monophasic neurological diseases such as stroke and
traumatic brain injury, covariate adjustment is regularly applied. With covariate adjustment,
a conditional treatment effect is estimated. This yields a clinically relevant profile-specific esti-
mate of the treatment effect [9]. Another benefit of covariate adjustment is its ability to increase
statistical power (29} |33].

Also, the timing of evaluation for treatment effect forms a challenge. Especially in diseases
with a heterogeneous time course, it is arbitrary which time point during the follow-up is consid-
ered as the most representative and informative about the effect of treatment on clinical recovery.
Most trials in neurology analyse data of one time point only, which discards potentially valuable
information. Modelling multiple repeated assessments in a longitudinal approach is expected to
increase power since it extracts information over the complete patient’s trajectory.

In this study, we aimed to find the most sensitive method for analysis of RCTs in neurology
that deal with repeated assessments of ordinal outcomes. Hereto, we performed power simula-
tions to compare different approaches: binary logistic regression and proportional odds logistic
regression, with and without covariate adjustment. Simulations were conducted for different

*Abbreviations in [Appendix A} page
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treatment effect sizes and absence of treatment effect (to assess the type I error), for different
sample sizes, for qualitative and quantitative violations of the proportional odds assumption,
and for weak to strong covariate effects. For illustration, we demonstrated application of these
approaches in the re-analysis of a previous trial in GBS.



Chapter 2

Background

2.1 Guillain-Barré syndrome

Guillain-Barré Syndrome is a severe immune-mediated disease of the peripheral nervous system,
affecting 200 to 300 patients per year in the Netherlands [11]. Although patients differ consid-
erably in their clinical presentation, common symptoms of GBS are acute limb weakness and
sensory disturbances. Some patients experience facial paralysis and around 20% of the patients
require mechanical ventilation [16]. GBS is an acute monophasic disease. The acute progressive
phase typically is two to four weeks, followed by disease stabilization in a plateau phase and
a recovery phase that can last from months to years. The established options for treatment of
GBS are either intravenous immunoglobulin (IVIg) or plasmapheresis [16]. The use of methyl-
prednisolone (MP) as adjuvant to IVIg was found to be not beneficial in a previously conducted
RCT [34]. Despite treatment, trajectories of recovery are extremely heterogeneous [11]. Some
patients may recover quickly, while others may require mechanical ventilation and observation
at the intensive care unit for several months and remain severely disabled or might even die.

The primary outcome in most GBS trials is the following 7-category ordinal outcome, named
the GBS Disability Scale (GBS DS):

0. Healthy state
1. Minor symptoms and capable of running
2. Able to walk 10m or more without assistance but unable to run

Able to walk 10m across an open space with help

- W

Bedridden or chairbound
5. Requiring assisted ventilation for at least part of the day

6. Dead

2.2 Statistical Analysis

Other acute monophasic neurological diseases are comparable to GBS in its disease course,
heterogeneity of the patient population, and the ordinality of the commonly used outcome mea-
sures. Examples are traumatic brain injury (TBI), stroke, subarachnoid haemorrhage (SAH),
and meningitis. Different approaches exist to analyse the treatment effect for RCTs in such
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diseases. Binary logistic regression at a single time point is a reference analysis strategy, while a
variety of more advanced techniques may better exploit properties of the data (table . More
techniques exist to improve efficiency, such as generalized estimation equations or repeated mea-
sures ANOVA for exploiting repeated assessments. The following sections describe the techniques
in more detail.

As an example, we present two previous studies in neurology. The first one being the DECRA
trial in TBI, studying the effects of decompressive craniectomy (|12]) and the second one being
the MR CLEAN trial, studying the effects of intraarterial treatment after stroke [2]. Both studies
were published in a top medical journal (the New England Journal of Medicine). The outcome
measures for these studies are the Glasgow Outcome Scale Extended (GOSE) and the modified
Rankin Scale (mRS), respectively. Distribution of the outcome measure is presented in raw

numbers, and in a so-called Grotta chart (table table Appendix Bl page[27] (figure[5.1))).

Table 2.1: Distribution on the Glasgow Table 2.2: Distribution on the modified
Outcome Scale Extended (GOSE) at 6 Modified Rankin Scale (mRS) at 90 days in
months in the DECRA trial for TBI [12] the MR CLEAN trial for stroke [2].
GOSE mRS
1 2 3 4 5 6 7/8 1 2 3 4 5 6
Regular Medical Care 92 4 27 15 19 18 13 Usual care 16 35 44 81 32 59
Craniectomy 54 17 44 31 20 27 8 Intraarterial treatment 27 49 43 52 13 49

2.2.1 Binary logistic regression (conventional analysis)

In exploring novel techniques, we use the unadjusted binary logistic regression as a reference
technique. Often, ordinal scales can be dichotomized into favorable versus unfavorable out-
comes. Subsequently, the collapsed ordinal scale is analysed with binary logistic regression. This
approach is most useful when the main interest is in the treatment effect for one specific state
(e.g. mortality) and when shifts in other outcomes (e.g. from slight clinical symptoms to a
healthy state) or individualized shift is of less interest. However, dichotomization is difficult in
case of disagreement about the most relevant cut-off. Also, mortality may be relatively rare,
inducing a shift in focus of the analysis towards differences in functional outcome among those
who survive. Also, ignoring ordinality results in a loss of statistical power [22] 29} 35].

In both studies discussed above, we can estimate a treatment effect for a specific dichotomy.
For example, for the DECRA trial, we can dichotomize the GOSE scale as an unfavorable outcome
(GOSE < 2, death) versus a favorable outcome (GOSE > 2). We find a significant unadjusted
treatment effect for mortality (OR, 2.61, 95%, 1.71 to 4.00). For the MR CLEAN trial, we can
dichotomize the mRS scale as an unfavorable outcome (mRS > 5, death) versus a favorable
outcome (mRS < 5). We find a non-significant unadjusted treatment effect for mortality (OR,
1.07, 95% CI, 0.69 to 1.63). A chi-squared test could be performed for such a dichotomization.
Different dichotomizations lead to different estimates of the treatment effect (figure . In the
MR CLEAN trial, ORs per cut-off are more or less similar. In the DECRA trial, surgery has a
positive effect on survival (27% in the surgical group vs 49% in the medical group, OR 2.61 for
GOSE > 1). For higher cut-offs at the GOSE we note a consistent trend towards a lower OR,
with a detrimental effect for being alive with good recovery (4% in the surgical group vs 10% in
the medical group, OR 0.65 for GOSE > 6, combining the two small good recovery categories).
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Table 2.3: Overview of techniques to optimize statistical analysis as compared to unadjusted
binary logistic regression analysis at a single time point. The overview presents techniques that
are explored in this study and is non-exhaustive.

Options to How Assumption Test for as- Interpretation Interpretation
optimize sumption under satis- wunder violation
analysis faction
Exploit het- Covariate Common ef- LRT for signifi- Interpret as Interpret as the
erogeneity adjustment  fect irrespec- cance of interac- a  conditional, typical effect across
(correct for (covariates tive of co- tion terms, sub- covariate spe- covariate profiles.
baseline define  the wvariate val- group analyses cific treatment Provide effects per
imbalance) patient ues effect. covariate profile for
profiles) transparency.
Exploit ordi- Proportional Proportional Brant test, vi- Interpret com- Interpret common
nality odds logistic odds (com- sual inspection mon OR as OR as a sum-
regression mon effect of logits for each a summary mary measure of
at each intercept measure, equal shift in outcome
possible to the binary distribution, do
cut-offs) OR for each of not interpret as
the potential binary OR for the
cut-offs. individual cut-offs.
Provide binary ORs
for transparency.
Exploit Longitudinal Common Test for signif- Interpret aggre- Interpret aggregate
repeated dichotomous effect at icance of inter- gate common common OR as a
assessments — or pro- all time action terms of OR as a sum- summary measure
portional points if no treatment indi- mary measure, of shift in out-
odds logistic interaction cator by time equal to the come distribution
regression effect be- and other co- ORs for each of over time, do not
(generalized tween time variates by time the time points. interpret as com-
linear mixed point  and mon OR for the
models) treatment is individual time
specified points. Provide
time-specific ~ ORs

for transparency.

2.2.2 Covariate adjustment

One way to increase the statistical power of a RCT is to adjust for baseline characteristics.
Covariate adjusted analyses take the heterogeneity of patients into account and provide the
clinically most relevant profile-specific (i.e. individualized) treatment effect estimates [9} |24} [27].
Also, covariate adjustment corrects for imbalance in the included baseline characteristics between
treatment arms [10].

2.2.3 Proportional odds logistic regression

Another way to increase statistical power is by exploiting ordinality instead of dichotomizing
the ordinal scale [1, 29, [33]. The proportional odds model [18] respects the ordinal nature of
outcome measures. The model is stated as follows, for an ordinal response variable y consisting
of levels 0, 1, 2, ..., k:
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Effect parameter Effect (OR) 95% Cl  SE Effect parameter Effect (OR) 95% ClI SE
Binary OR: GOSE > 1 261 (1.71-4.00) 0.22 * Binary OR: mRS<=1 206 (1.08-392) 033 .
Binary OR: GOSE >2 191 (1.27-288) 021 * Binary OR: MRS<=2 205 (1.36-3.00) 0.21 .
Binary OR: GOSE > 3 142 (0.93-2.14) 0.21 .

Binary OR: mRS<=3 189 (132-271) 018 .
Binary OR: GOSE > 4 1.04 (0.66-1.63) 0.23 .
Binary OR: GOSE > 5 107 (0.63-182) 027 R Binary OR: mRS<=4 143 (0.97-2.10) 0.20 .
Binary OR: GOSE > 6 056 (022-1.36) 0.46 . Binary OR: MRS<=5 107 (0.69-1.63) 0.22 .
Common Odds Ratio 1.66 (1.16-2.39) 0.18 - Common Odds Ratio 166 (1.21-228) 0.16 .

T 1T 1 1 1T 1 ot 1T 1T 1
-15-1-0.50 05 1 15 05 0 05 1 15
log(OR) log(OR)

(a) Glasgow Outcome Scale Extended at 6 months (b) modified Rankin Scale at 90 days

Figure 2.1: Results of re-analysis of (a) the DECRA trial [12] and (b) the MR CLEAN trial

[2]. Forest plots show the ORs and confidence intervals obtained from binary logistic regression

for each possible cut-off for the ordinal scale and the common OR obtained from proportional
odds logistic regression.

1
PY >cX)= 2.1
¥ = ) = T o 1 + XB) 2
wherec=1,2, ..., k. There are k intercepts (p.s). The proportional odds model is parsimonious

in its use of a single vector of regression coefficients 8 connecting the probabilities for varying
cut-off values ¢. A common OR is conceptually obtained from a maximum likelihood estimation
of the best fit for each possible cut-off for dichotomizing the ordinal scale [20]. The common
OR can be viewed as an overall shift in the outcome across the complete ordinal scale. For
this reason, the proportional odds model is also known as a “shift analysis” [30]. The shift idea
is similar to the use of U statistics such as in the Mann Whitney test. Interpretation of the
proportional odds model (i.e. with one treatment effect 3) comes at the cost of the proportional
odds assumption. It is assumed that the OR for a better versus worse outcome is equal for each
dichotomization. Or, put differently, the regression coefficients g are independent of c. For this
reason, exploiting ordinality is most useful when the treatment effect is expected to be in the
same direction over the full scale and when all transitions are equally important.

The proportional odds assumption calls for caution in the interpretation of the treatment
effect. In case of violation of the proportional odds assumption, the common OR cannot be
interpretated as if it applies equally for each cut-off. However, the common OR can still be
interpreted as the average shift over the ordinal scale caused by the treatment. Many consider
it a useful summary measure |20, [29} 31]. Taking the studies in neurology as an example again,
the common OR can be seen as a pooled estimate of the estimated binary ORs for each cut-off
(ﬁgure. This is the case for both the DECRA and MR CLEAN trial. Even if the binary ORs
are too much separated for the proportional odds assumption to hold, such as in the DECRA
trial, where the goodness-of-fit test rejected the proportional odds assumption (x? = 22.86, 5 df,
p < 0.001), the common OR provides a summary of the shift in distribution.

For testing and estimation of the treatment effect, violation of the proportional odds assump-
tion does not form a problem. This is because the OR obtained from an unadjusted propor-
tional odds model for comparing two groups is equivalent to the concordance probability ¢ of
a Wilcoxon-Mann Whitney U two-sample test, regardless of the satisfaction of the proportional
odds assumption ([6]; [7]).
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2.2.4 Longitudinal proportional odds logistic regression

A longitudinal proportional odds model exploits both the ordinality of the outcome measure as
the repeated assessments during the follow-up. As such, it allows for evaluation of the treatment
effect in a broad range of disease severity and over the entire clinically relevant time course.
It also allows to study disease progression and the effect of the treatment on this progression.
These properties are appealing from a conceptual point of view. From a statistical point of view,
this method is appealing as well, as integrating a larger amount of data should increase power.
Since repeated measurements within patients are expected to be correlated, the fundamental
assumption of uncorrelated errors in regular linear regression is violated. A longitudinal analysis
requires the use of a mixed model. Within a mixed model, the treatment effect per time point is
estimated conditionally on the random effect per patient. The treatment effect that corrects for
the correlation between repeated measurements within a patient is found by averaging out the
conditional estimates. The longitudinal proportional odds logistic regression model is stated as
follows, for an ordinal response variable Y consisting of levels 0, 1, 2, ..., k for individual ¢ at
time point j:

1
1 -+ eXp( — 1(50(5 —+ BltTECLt,L' —+ Bgtimeij + biOc —+ biltimeij)) ’

P(Yij = c|X) = (2.2)

where ¢ =1, 2, ..., k. There are k intercepts (5p.s). $1 and B3 represent the fixed regression
parameters, treat; and time;; are the treatment and time point indicators, respectively, bso.
and b;; are the random effects term for random intercepts and random slopes, respectively.
Estimation of parameters can be done by maximum likelihood estimation of a generalized linear
mixed model, using a generalized estimation equation, or with use of a Bayesian framework.
In this study, a Bayesian framework will be used to enable more accurate and interpretable
estimations.
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Methods

3.1 The “IVIG vs IVIG-MP?” trial

We re-analysed data from a previous RCT in GBS [34]. This trial investigated the effectiveness of
methylprednisolone (MP) when added to the standard treatment with intravenous immunoglob-
ulin (IVIg). The data consists of 221 complete cases (i.e. observations without missing values),
of which 111 cases were assigned to the control group (IVIg) and 110 cases were assigned to the
treatment group (IVIg+MP). The primary outcome in the original trial was improvement by one
or more grades on the GBS disability score (GBS DS) after 4 weeks. Data was collected at 12
time points between six days and 26 weeks after randomisation. In this study, we combined both
the healthy state (0) and minor symptoms (1), as well as requiring ventilation for at least a part
of the day (5) and death (6) because of small numbers in the extreme categories. We reversed
the GBS DS, such that a higher score stands for a healthier state. In this way, an OR larger
than one corresponds to a positive treatment effect. Detailed information on the original trial,
its data collection, and patient characteristics has been described previously [34].

We estimated the treatment effect using four different approaches. These approaches were
either exploiting the ordinality, the repeated assessments, both the ordinality and the repeated
assessments or none of these properties. Each method was performed with and without covariate
adjustment. For this adjustment, we used two pre-specified, clinically important prognostic
factors: the Medical Research Council (MRC) sum score at baseline and days since onset of GBS
symptoms to randomisation [13}36].

3.1.1 Approach I: Binary logistic regression

As a reference, we performed dichotomous analysis for each cut-off in GBS DS at each time point
separately. A treatment effect binary OR for each of the four possible cut-offs at each of the 12
time points is obtained for a total of 48 treatment effect estimates using the lrm() function from
the rms package in R.

3.1.2 Approach II: Mixed effects logistic regression

To exploit the repeated assessments, we performed longitudinal dichotomous analysis for each
possible cut-off in GBS DS across time points of the follow-up. An OR across time points for each
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cut of the four possible cut-offs is obtained using the glmer() function from the imej package in
R. The steps we took for model building are:

1. We specified an elaborate fixed effects part, including interaction terms with the treatment
indicator.

2. We decided on the number of quadrature points.

3. We decided on the random effects that are included (random intercepts and slopes or
random intercepts only).

4. Eventually, we simplified the fixed effects part.

5. The final model that was suggested based on statistical criteria was verified with experts
in the neurological field to ensure practical usefulness of the model.

Each of the final models contains a term for treatment group and week of assessment (treated
as a continuous variable) to model the distributions of the ordinal outcome measure in both
treatment arms over the 6 days to 26 weeks follow-up page . The covariate
adjusted models contained a term for MRC sum score at baseline and days since onset of weakness
as well. Random terms were included, so that the intercepts and the relationship between time
and GBS DS could be different for each subject.

3.1.3 Approach III: Proportional odds logistic regression

To exploit ordinality, we used a proportional odds model to model the overall shift in GBS DS
at each time point separately. A common OR for treatment effect at each of the 12 time points
was obtained with the lrm() function from the rms package in R.

3.1.4 Approach IV: Longitudinal proportional odds logistic regression

To exploit both the ordinality and the repeated assessments, we performed longitudinal ordinal
analysis of the overall shift in GBS DS across time points during the follow-up. An aggregate
common OR is obtained: a single summary measure on overall shift across the complete ordinal
scale across time points during the follow-up. The models are fitted within a Bayesian framework,
using the function blrm() from the package brms in R. This functon uses a STAN implementation
for ordinal logistic regression.

As the function blrm() does not allow for specification of correlation structures and variance
covariance structures, we only decide on the fixed effects (main effects and interactions) and the
random effects (random intercepts and random slopes). We compared three approaches for model
building, because each approach makes different assumptions and none of these approaches is
unquestionably right. The final model is the model that is optimal according to the majority of
these approaches page . In the first approach, we assume that the best fit for a
mixed binary logistic regression is the best fit for a mixed ordinal logistic regression outcome as
well. In the second approach, we simplify the analysis by assuming the ordinal outcome measure
to be continuous and follow steps for model building of a linear mixed effects model rather than
a generalized linear mixed effects model. In the third approach, various models are compared
in their goodness of fit to the data, using the compareBmods() function in R which compares
Bayesian model fits based on leave-one-out-cross-validation [19).
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The final model to model the distributions of the ordinal outcome measure in both treatment
arms over the six days to 26 weeks follow-up is stated as follows, for an ordinal response variable
y consisting of levels 0, 1, 2, ..., k for individual ¢ at time point j:

P(Y;; > c|X) = ! (3.1)
1+exp(—1(BOC—&-,Bltreati—i-ﬁgtimeij+B3mrcssi+ﬁ4weakonseti+bio+b¢1timeij))

where ¢ = 1, 2, ..., k. There are k intercepts (5o.s). We assume an equal spacing between
consecutive intercepts across subjects. (1, B2, B3 and B4 represent the fixed regression parame-
ters, treat; and time;; the treatment and time point indicators, respectively. time;; is treated
as a continuous variable, with square root transformation. The terms (3 and 5, were equal to
zero for the unadjusted case. b;p and b;; are the random effect terms.

To execute our model in STAN, different specifications need to be done. We follow Lambert’s
recommendations on executing a STAN program in R [14]. For the prior distribution of the
intercepts, we use a Dirichlet distribution for the cell probabilities. We run iterations on four
parallel chains. Each chain samples 5000 posterior samples. We use random initial values and
use half of the iterations as burn in. Basic STAN diagnostics and trace plots were inspected to
assure convergence and symmetry. Mean (s were interpreted as point estimates of treatment
effect.

3.2 Simulation study

We conducted a simulation study based on the “IVIG vs IVIG-MP” trial [34]. We follow sys-
tematic steps for planning and reporting of the simulation study (algorithm [1} [21]).

Aims

The aim of the simulation study is to evaluate the impact of ordinal analysis and covariate ad-
justment on treatment effect estimates, standard error, statistical power, and potential reduction
in sample size. We calculated the potential reduction in sample size, because it is a practical
expression of the gain in efficiency for each of the models that facilitates comparison of the gains
in power under different conditions. The formula that is used is described as a performance
measure below (equation [3.4]).

Data-generating mechanisms

We draw random samples from the X matrix with replacement, to assure independence between
simulated draws. We used simulation based on resampling instead of simulating from a specific
parametric model or using a closed form expression, because resampling preserves the empirical
distributions of covariates and their correlations. This will yield datasets that are close to reality.
Furthermore, closed form expressions to approximate power assume that the model is exactly
consistent with the data generating mechanism, which cannot be true.

The samples are assigned with an equal allocation ratio to either the control or treatment
arm. GBS DS scores for each patient at week 4 are generated using the coefficients obtained from
a fit to the original dataset. One treatment effect Sireq+ Or two treatment effects Bireqt 010523456
and Bireat,remainingcut—of fs Were simulated in order to obtain a different distribution between
treatment arms. Simulations were done for four different conditions, as described below.

— Condition A: Reference
Data is generated using fs for two strong prognostic factors (MRC sum score and days
since onset of weakness) estimated from a fit to the GBS trial. We assume proportional
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odds.

— Condition B: Weaker prognostic effects
Data is generated using s for two weaker prognostic factors (age and preceding diarrhoea)
estimated from a fit to the GBS trial. We assume proportional odds.

— Condition C: Qualitative non-proportionality

Data is generated using Ss for two strong prognostic factors (MRC sum score and days since
onset of weakness) estimated from a fit to the GBS trial. Qualitative non-proportionality
was introduced for the treatment OR. Instead of using a single treatment effect that ap-
plies to the whole set of dichotomies, we specify two treatment effects, that are reversed in
direction. Using a grid search, we identified a combination of a treatment effect for the two
worst outcome categories versus better outcomes ﬂtmatmysz%% and a treatment effect for
each of the remaining cut-offs Bireat,remainingcut—of s in which the treatment had a neg-
ative effect on the two worst outcomes and a positive effect on the remaining categories,
providing the overall Biyeq: is still equal to the overall Bireqr-

— Condition D: Quantitative non-proportionality

Data is generated using Ss for two strong prognostic factors (MRC sum score and days since
onset of weakness) estimated from a fit to the GBS trial. Quantitative non-proportionality
was introduced for the treatment OR. We specify two treatment effects, that are different
but in the same direction. Again, a grid search was done to identify a combination of a
treatment effect for the two worst outcome categories versus better outcomes B¢reat,01v523456
and a treatment effect for each of the remaining cut-offs Bireat,remainingeut—of fs in which
the treatment had a neutral effect on the two worst outcomes and a positive effect on the
remaining categories, providing the overall Byyeq: is still equal to the overall By eq:. In this
case Sireat,01vs23456 Was restricted to be one.

Estimands
Our estimand is the treatment effect OR e?, the standard error of the treatment effect estimation

SEg, the rejection of the null, and the z value defined as z = S%
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Algorithm 1 An algorithm with caption

1: Estimate parameters (alphas, betas) from a training dataset (previous GBS trial)

2: Set a seed for reproducability

3: for M € {1,...,10000} do > Generate data

4: From the sample {X7,..., X,,}, draw a sample size n at random with replacement, say,
X5, X

5: Let treat; € (0,1) be an indicator denoting assignment to treatment. Assign samples
with an equal allocation ratio to simulate a balanced treatment design.

6: Calculate for each subject its predicted marginal probabilities in terms of their base-

line covariates, using: logit[Pr(Y; < cla;)] = Boc + Bireattreat; + BrrcssMRCSS; +
Bweakonsetweakonseti E

7 Simulate an outcome for each subject, utilizing these estimated probabilities in a multi-
nomial normal distribution

8: for each method do > Fit models

9: Regress GBSDS; on the treatment indicator treat; (and any covariates) using the
data generated in step 5-7 -

10: Store the point estimate of treatment effect (3), its standard error (SE(j)), the z

value (3/@) and indication of hypothesis rejection (0/1) for the test Sireqr = 0.

11: end for

12: end for

13: For each method, compute power (the proportion of p-values smaller than 0.05), Z, 3, SE,
the reduction in sample size as compared to unadjusted dichotomous analysis using equation
and compute the Monte Carlo SE using equation .

14: Repeat steps 3 through 13 for each simulation condition A - D.

Methods
Each simulated dataset is analysed in four ways:

1. Unadjusted dichotomous analysis for a commonly used primary outcome in GBS: favorable
outcome (GBS DS 0-2) versus unfavorable outcome (GBS DS 3-6) at week 4.

2. Adjusted dichotomous analysis for a commonly used primary outcome in GBS: favorable
outcome (GBS DS 0-2) versus unfavorable outcome (GBS DS 3-6) at week 4.

3. Unadjusted ordinal analysis of overall shift in GBS DS at week 4.
4. Adjusted ordinal analysis of overall shift in GBS DS at week 4.

Again, adjustment is done for the two prognostic factors: the MRC sum score at baseline and
days since onset of GBS symptoms to randomisation. Monte Carlo simulations were performed
for conditions A through D described above. For each of these four conditions, we varied the
total sample size n and the (overall) OR ePtreat relating the treatment to the outcome. We
allowed n to take on the values of 120 and 200 and overall e®irest to take on the values of 1, 1.5,
2.1 and 2.7. We thus simulated under 4*2*4 = 32 different scenarios. The overall OR equal to
one served as a type I error check. Simulations were performed under a full factorial design with
each 10000 replications.

*For simulation of proportional odds violated datasets (condition C and D), we used seperate formulas.
For the cut-off 01 vs 23456, we used logit[Pr(Y; < c|z;)] = Boc + Bireat,01vs23456treat; + Brrrcss M RCSS; +
Buweakonsetweakonset;. For the remaining cut-offs we used the formula as stated in the algorithm.
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Performance Measures

We assessed the type I error when there was no treatment effect (OR = 1) and the power (and
potential reduction in sample size) when there truly was a treatment effect (OR >1) in each of
the simulation scenarios for each approach. The type I error and power were calculated as the
rate of rejection for a statistically significant estimate according to the Wald statistic (p-value
lower than 0.05). We computed the Monte Carlo standard error for the power estimates to
express the uncertainty of our simulations as follows:

\/mxum)

Nsim

(3.2)

For verification, we performed the same simulations relying on the Likelihood Ratio Test
(LRT) statistic p-value. This was obtained by estimating two models for each of the approaches
under study: one model with treatment effect included (the complex model), one model with
treatment excluded (the nested model). Consequently, the LR test compares the log likelihoods
of these two models. The LR test statistic is calculated as follows:

L(mnested)
L(mcomplew)

LR = —2In ( ) = 2(10glik(mcomplem) — loglik(mnesmd)) (3.3)
Where L(m.) denotes the likelihood of the respective model and loglik(m.) the natural logarithm
of the model’s likelihood. The LR test statistic is chi-squared distributed with one degree of
freedom.

The reduction in sample size (RSS) can be attractive to express the gain in power. The RSS
as compared to the reference technique (unadjusted dichotomous analysis) is defined as:

2
RSS = 100 — 100 * (j) (3.4)
where the mean standardized unadjusted z value 2z, = 7" ( S@; ) and the mean standardized
. . . nsim Ba, /
advanced (adjusted and/or ordinal) z value is z, = >, (SEG> [23].

Software

All analysis and simulations were performed using R 4.0.5, using the rms package for the pro-
portional odds analysis, the brms package for longitudinal proportional odds analysis, the Ime4
package for generalized linear mixed model (longitudinal dichotomous analysis) |8, 25]. The code
is provided as a Supplement. The input seed for random generation is “1”7. We use a seed to
assure reproducibility.



Chapter 4

Results

The results section is divided in two parts. First, we present results from the re-analysis of the
RCT in GBS. Second, we compare the characteristics of unadjusted dichotomous analysis to
adjusted dichotomous analysis, unadjusted proportional odds, and adjusted proportional odds
analysis by simulation.

4.1 Re-analysis “IVIG vs IVIG-MP” trial

We analysed data from 221 patients in the IVIg vs IVIg+MP trial. The distribution of GBS DS
at 4 weeks after randomisation is presented in table [I.I] A plot of GBS DS scores at each time

point per subject is provided in |[Appendix Ef (page .

4.1.1 Covariate adjustment

With covariate adjustment, the estimated treatment effect was larger than without covariate

adjustment (Appendix F| page and [Appendix G| page . This was the case for all four

approaches we compared. For longitudinal approaches, the SE did slightly decrease or remained
equal after adjustment. For single time point approaches, the SE did slightly increase or remained

Table 4.1: Distribution of baseline covariates and GBS DS outcome at 4 weeks after
randomization to IVIg or IVIg+MP in the GBS trial.

Total Control Treatment
(n =221) (IVIg) (IVIg + MP)
(n=111) (n = 110)
MRC sum score (Median, Interquartile Range 25" — 75t% Percentile) 44 (36 - 48) 46 (38 - 49) 44 (34 - 48)
Days from onset of weakness to randomisation

(Median, Interquartile Range 25" — 75" Percentile) 5(3-8) 6(1-7) 4(1-8)
Preceding diarrhea 60 (27%) 30 (27%) 30 (27%)
Age (Median, Interquartile Range 25" — 75" Percentile) 55 (35 - 67) 52 (35-67) 57 (34 - 68)
GBS Disability score after 4 weeks

0 — healthy state 5 (2%) 0 (0%) (5%)

1 — minor symptoms and capable of running 37 (17%) 24 (22%) 3 (12%)
2 — able to walk 10m or more without assistance but unable to run 74 (34%) 31 (28%) 43 (39%)
3 — able to walk 10m across an open space with help 22 (10%) 10 (9%) (11%)
4 — bedridden or chair bound 54 (24%) 31 (28%) 3 (21%)
5 — requiring assisted ventilation for at least a part of the day 26 (12%) 14 (13%) (1100)
6 — dead 3 (1%) 1 (1%) 2 (2%)

14
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Figure 4.1: Binary OR and common OR per time point (in days or weeks after
randomisation) obtained from a binary logistic regression or proportional odds logistic
regression, respectively. Binary logistic regressions were performed for four different possible
cut-offs of the GBS DS. Right panel shows analyses adjusted for baseline MRC sum score and
number of days since onset of weakness. Left panel shows unadjusted analyses.

Treatment effect over time (unadjusted) Treatment effect over time (adjusted)
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01 vs 23456-=- 012 vs 3456-=- 0123 vs 456+ 01234 vs 56 common OR (PO model)

equal after adjustment. For example, in the adjusted proportional odds analysis at week 4 the
common OR was 1.19 (SE = 0.24, 95% 0.73 — 1.92), while in the unadjusted proportional odds
at week 4 analysis the common OR was 1.09 (SE = 0.24, 95% 0.68 — 1.75).

4.1.2 Exploiting ordinality

The common OR obtained from the PO model (OR=1.19 at week 4, adjusted) can be interpreted
as a pooled estimate of the binary ORs obtained from each dichotomy at that time point. Indeed,
the estimate was in the range of the binary ORs for the possible cut-offs at each time point (figure
4.1). Exploiting ordinality decreased the SEs of the estimates. With unadjusted ordinal analysis
of the outcome measure, the SE was 0.24 at 4 weeks, which was smaller than the SE with
unadjusted binary logistic regression for each possible dichotomy (SE typically around 0.32).
Also in the longitudinal ordinal models, the SEs were lower (0.31 and 0.29 for unadjusted and
adjusted analyses, respectively) than the longitudinal binary models (typically around 1 for both
unadjusted and adjusted analyses).

4.1.3 Exploiting repeated assessments

The binary ORs and common ORs varied over time (figure . Integrating all available data
from the six days to 26 weeks follow-up resulted in an aggregated common OR of 1.05 and
1.25 for the unadjusted and adjusted analyses, respectively. This aggregate common OR can be
interpreted as an overall shift in GBS DS over time, or as a pooled estimate of the common ORs at
each time point in the follow-up. The SE of the estimated treatment effect from the longitudinal
proportional odds model was smaller than the SE for the longitudinal binary logistic regressions
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for each cut off. Thus, for the longitudinal approaches, exploiting ordinality increased accuracy.
Surprisingly, the SE of the estimated treatment effect from the longitudinal proportional odds
model was either increased (in the unadjusted analyses) or similar (in the adjusted analyses) in
comparison to the SEs of single time point ORs. For the ordinal analysis, taking into account
the repeated assessments, does not increase accuracy.

4.2 Simulation of longitudinal continuous data

As the results of the longitudinal proportional odds model were against our expectations, we did
additional analyses in order to understand under which circumstances a longitudinal approach
does have benefits in comparison to a single time point approach. For this exploration, we studied
the performance of a linear mixed effects model compared to a single time point linear model
for continuous data. Simulating longitudinal continuous data is attractive as it readily allows
to tune the within- and between-subject variance, while tuning the within-subject variance in
longitudinal ordinal data is complicated by the non-linear link function.

In this simulation, we generated longitudinal continuous data for 200 patients on ten time
points. FEach patient had its own random intercept, drawn from a normal distribution with
various between-subject variance terms. Each time point had its random time point effect, drawn
from a normal distribution with various within-subject variance terms. A fixed time effect and

2
treatment effect were specified as well. The estimand was the squared z value, defined as (S%) .

Each simulated dataset was analysed with a linear mixed effects model integrating all data from
ten time points and a linear model for data of one of the time points. The performance measure

was the average squared z value, defined as z = > /1" ( Sﬁé) Zime is the average squared z

value for the linear mixed model, zj,, is the average squared z value for the linear model. We
expressed the gain in efficiency as the ratio of z values (2ime/2im)-

Figure 4.2: Results from simulations of longitudinal continuous data (10 time points),
analysed with both a linear mixed model and a linear model. The larger the ratio of z values,
the larger the gains in efficiency by using an longitudinal approach.
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The gain in efficiency obtained by longitudinal analysis appears to be related to the ratio of
between- and within-subject variance (figure . We found that linear mixed effects models
were at least as efficient as linear models for single time points (a ratio > 1). In case of a large
between-subject variance and a low within-subject variance, the gains are only small. In contrast,
a small between-subject variance in combination with a large within-subject variance is related
to a large gain in efficiency.

4.3 Simulation study

Tables to compare the power of binary logistic regression and proportional odds logistic
regression, considering covariate adjustment for MRC sum score and number of days since onset
of weakness. The power (or type I error rate), average OR, average SE, and reduction in sample
size were calculated for the different conditions, overall ORs relating the treatment to the outcome
measure, and sample sizes. The type I error was rather close to the nominal value of 5%.

With covariate adjustment, the estimated treatment effects are further from zero and the
standard error is slightly increased. This effect was noted for each condition but was less pro-
nounced in condition B with weaker prognostic factors. For both the binary logistic model and
the proportional odds model, adjusting for baseline MRC sum score and number of days since
onset of weakness universally raised power by about 1.1 - 7.2%. In the condition with adjustment
for weaker prognostic factors, covariate adjustment raised power by about 1.1 - 3.0% points. Co-
variate adjustment in a dichotomous analysis led to potential reductions in sample size between
4.9 and 11%. These reductions were a little smaller (3.1 - 4.3%) in the case of weak prognostic
factors. Also in ordinal analysis, covariate adjustment leads to potential reductions in sample
size.

With ordinal analysis instead of collapsing the ordinal scale into a dichotomy, the treatment
effects were generally closer to zero and the SEs were smaller. This effect was even stronger un-
der non-proportionality. For both adjusted and unadjusted analyses, exploiting ordinality raised
power by about 1.9 - 13% points across all conditions with strong prognostic factors. Given that
the overall treatment effect was maintained, exploiting ordinality under qualitative or quantita-
tive violation of the proportional odds assumption still led to some gain in power. As expected,
the gain was less than without violation of the PO assumption. In case of violation of the pro-
portional odds assumption, either qualitatively or quantitatively, the gains in power obtained by
exploiting ordinality were about 0.6 - 13% points. Sample size reductions by performing adjusted
ordinal analysis ranged from about 22 to 26% points (as compared to unadjusted dichotomous
analysis), and these reductions were larger when adjustment for baseline characteristics was done
as well. In case of non-proportionality, the sample size reductions were less systematic and varied
depending on overall OR.

The Monte Carlo standard errors for the simulations were all lower than 0.005, indicating a
low simulation uncertainty. All gains in efficiency were obtained without considerably increasing
the type I error. Results did not change when the likelihood ratio test was used for significance
testing instead of the computationally faster Wald test.



CHAPTER 4. RESULTS

18

Table 4.2: Condition A. Results of simulated balanced RCTs estimating treatment effect. Adjusted analyses
corrected for baseline MRC sum score and number of days between onset of GBS symptoms and randomisation. All
simulations are based on 10000 iterations. Performance of different models were evaluated using the average treatment
effect (OR, coefficient), the average standard error (SE) (averaging over iterations), the rejection rate (percentage of
the 10000 simulated datasets in which the Wald test statistic for the estimated treatment effect was significant at the
0.05 level, interpreted as the type I error or power depending on the true OR) and the reduction in sample size as
compared to unadjusted dichotomous analysis.

Model and
sample size

OR=1

Coefficient Type

(SE)

I error

(%)

Coefficient
(SE)

OR =15

Power

(%)

Treatment effect (true OR)

Reduction
in sample

size (%)

Coefficient
(SE)

OR =21

Power

(%)

Reduction
in sample
size (%)

Coefficient
(SE)

OR = 2.7

Power Reduction
(%) in sample

size (%)

n =120
(60/arm)
Unadjusted
dichoto-
mous
Adjusted
dichoto-
mous
Unadjusted
ordinal
Adjusted
ordinal

1.0 (0.37)

1.1 (0.40)

1.1 (0.33)

1.1 (0.34)

5.2

ot
o

5.0

5.4

1.5 (0.37)

1.7 (0.40)

1.5 (0.33)

1.6 (0.34)

17

18

20

23

reference

11

24

37

2.1 (0.38)

2.4 (0.41)

2.1 (0.34)

2.3 (0.34)

44

48

54

61

reference

9.6

24

36

2.6 (0.39)

3.1 (0.42)

2.6 (0.34)

3.0 (0.35)

64 reference

68 9.0

e 27

84 38

n = 200
(100/arm)
Unadjusted
dichoto-
mous
Adjusted
dichoto-
mous
Unadjusted
ordinal
Adjusted
ordinal

1.0 (0.28)

1.1 (0.30)

1.0 (0.25)

1.0 (0.26)

5.7

5.2

5.3

1.5 (0.29)

1.6 (0.31)

1.5 (0.26)

1.6 (0.26)

26

27

31

35

reference

10

22

34

2.0 (0.29)

2.3 (0.32)

2.0 (0.26)

2.2 (0.26)

65

68

75

82

reference

10

24

36

2.6 (0.30)

2.9 (0.32)

2.6 (0.26)

2.9 (0.27)

86 reference

89 8.7

94 26

97 37
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Table 4.3: Condition B. Results of simulated balanced RCTs estimating treatment effect. Adjusted analyses
corrected for a set of covariates with a weaker prognostic value (age (years) and preceding diarrhoea (yes/no)). All
simulations are based on 10000 iterations. Performance of different models were evaluated using the average treatment
effect (OR, coefficient), the average standard error (SE) (averaging over iterations), the rejection rate (percentage of
the 10000 simulated datasets in which the Wald test statistic for the estimated treatment effect was significant at the
0.05 level, interpreted as the type I error or power depending on the true OR) and the reduction in sample size as
compared to unadjusted dichotomous analysis.

Treatment effect (true OR)
OR=1 OR =15 OR =21 OR =27
Model and

sample size Coeflicient Type Coeflicient Power Reduction | Coefficient Power Reduction | Coefficient Power Reduction

(SE) 1 error | (SE) (%) in sample | (SE) (%) in sample | (SE) (%) in sample
(%) size (%) size (%) size (%)

n = 120
(60/arm)
Unadjusted | 1.1 (0.37) 5.2 1.6 (0.37) 19 reference | 2.2 (0.38) 47 reference | 2.9 (0.40) 69 reference
dichoto-
mous
Adjusted | 1.1 (0.38) 4.8 1.6 (0.39) 19 43 2.3 (0.40) 48 3.0 3.1(0.41) 71 3.1
dichoto-
mous
Unadjusted | 1.1 (0.33) 5.0 1.6 (0.33) 22 23 2.2 (0.34) 58 2 2.8 (0.34) 82 26
ordinal
Adjusted | 1.2 (0.33) 5.2 1.6 (0.34) 23 28 2.3 (0.34) 60 29 2.9 (0.35) 84 30
ordinal

n = 200
(100/arm)
Unadjusted | 1.0 (0.28) 5.0 1.6 (0.29) 28 reference | 2.2 (0.30) 69 reference | 2.8 (0.31) 89 reference
dichoto-
mous
Adjusted | 1. (0.29) 4.6 1.6 (0.30) 28 3.9 2.3 (0.31) 72 3.8 2.9 (0.32) 91 3.1
dichoto-
mous
Unadjusted | 1.0 (0.25) 4.8 1.5 (0.26) 34 23 2.1 (0.26) 80 23 2.7 (0.26) 96 26
ordinal
Adjusted 1.0 (0.26) 4.7 1.6 (0.26) 36 28 2.2 (0.26) 83 28 2.9 (0.27) 97 30
ordinal

Table 4.4: Condition C. Results of simulated balanced RCTs estimating treatment effect under qualitative violation
of the proportional odds assumption. Adjusted analyses corrected for baseline MRC sum score and number of days
between onset of GBS symptoms and randomisation. All simulations are based on 10000 iterations. Performance of
different models were evaluated using the average treatment effect (OR, coefficient), the average standard error (SE)

(averaging over iterations), the rejection rate (percentage of the 10000 simulated datasets in which the Wald test
statistic for the estimated treatment effect was significant at the 0.05 level, interpreted as the type I error or power
depending on the true OR) and the reduction in sample size as compared to unadjusted dichotomous analysis.

Treatment effect (true OR)

Overall OR =1 Overall OR = 1.5 Overall OR = 2.1 Overall OR = 2.7
ORmortality = 0.80; ORmortality = 0.70; ORmortality = 0.70; ORmortality = 0.95;
ORnon-mortality = 1.05 ORnon-mortality = 1.75 ORnon-mortality = 2.60 ORnon-mortality = 3.15
?;Z?;LT}I; Coefficient Type Coefficient Power Reduction | Coefficient Power Reduction | Coefficient Power Reduction
(SE) I error (SE) (%) in sample | (SE) (%) in sample | (SE) (%) in sample
(%) size (%) size (%) size (%)

n =120
(60/arm)
Unadjusted | 1.2 (0.50) 5.2 2.0 (0.46) 20 reference | 2.9 (0.45) 56 reference | 3.4 (0.44) 71 reference
dichoto-
mous
Adjusted 1.3 (0.52) 5.2 2.1(0.49) 21 5.0 3.1 (047) 58 5.9 3.8 (047) 74 6.3
dichoto-
mous
Unadjusted | 1.1 (0.33) 5.0 1.6 (0.33) 22 14 2.2 (0.34) 59 10 2.7 (0.34) 79 19
ordinal
Adjusted | 1.1 (0.34) 5.0 1.6 (0.34) 24 9.16 2.4 (0.34) 63 20 3.0 (0.35) 83 28
ordinal
n = 200
(100/arm)
Unadjusted | 1.1 (0.38) 5.3 1.8 (0.35) 33 reference | 2.6 (0.34) 76 reference | 3.1 (0.34) 91 reference
dichoto-
mous
Adjusted | 1.2 (0.39) 5.7 1.9 (0.37) 35 55 2.9 (0.36) 79 6.1 3.5 (0.36) 93 5.7
dichoto-
mous
Unadjusted | 1.0 (0.25) 5.4 1.5 (0.26) 34 1.9 2.1 (0.26) 78 9.3 2.6 (0.26) 94 18
ordinal
Adjusted 1.0 (0.26) 5.7 1.6 (0.26) 37 10 2.2 (0.26) 83 19 2.9 (0.27) 97 27
ordinal
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Table 4.5: Condition D. Results of simulated balanced RCTs estimating treatment effect under quantitative
violation of the proportional odds assumption. Adjusted analyses corrected for baseline MRC sum score and number
of days between onset of GBS symptoms and randomisation. All simulations are based on 10000 iterations.
Performance of different models were evaluated using the average treatment effect (OR, coefficient), the average
standard error (SE) (averaging over iterations), the rejection rate (percentage of the 10000 simulated datasets in which
the Wald test statistic for the estimated treatment effect was significant at the 0.05 level, interpreted as the type I error
or power depending on the true OR) and the reduction in sample size as compared to unadjusted dichotomous analysis.

Treatment effect (true OR)

Overall OR =1 Overall OR = 1.5 Overall OR = 2.1 Overall OR = 2.7
ORmortality = 1.0; ORmortality = 1.0; ORmortality = 1.0; ORmortality = 1.0;
ORnon-mortality = 1.1 ORnon-mortality = 1.6 ORnon-mortality = 2.4 ORnon-mortality = 3.1
lv\‘Iodcl (md Coefficient Type Coefficient Power Reduction | Coefficient Power Reduction | Coefficient Power Reduction
sample size (SE) I error (SE) (%) in sample | (SE) (%) in sample | (SE) (%) in sample
(%) size (%) size (%) size (%)
n = 120
(60/arm)
Unadjusted | 1.2 (0.49) 4.4 1.8 (0.47) 16 reference | 2.6 (0.45) 45 reference | 3.4 (0.44) 73 reference
dichoto-
mous
Adjusted | 1.2 (0.52) 4.6 1.9 (0.49) 16 6.2 2.8 (0.48) 47 49 3.8 (047) 75 5.9
dichoto-
mous
Unadjusted | 1.1 (0.33) 4.9 1.5 (0.33) 20 28 2.1 (0.34) 55 2 2.7 (0.34) 79 19
ordinal
Adjusted 1.1 (0.34) 5.1 1.6 (0.34) 23 37 2.3 (0.35) 60 32 3.0 (0.35) 83 28
ordinal
n = 200
(100/arm)
Unadjusted | 1.1 (0.38) 5.0 1.7 (0.36) 24 reference | 2.4 (0.34) 67 reference | 3.2 (0.34) 91 reference
dichoto-
mous
Adjusted 1.1 (0.39) 54 1.8 (0.37) 26 6.1 2.6 (0.36) 69 6.1 3.5 (0.36) 93 6.0
dichoto-
mous
Unadjusted | 1.1 (0.25) 5.6 1.5 (0.26) 31 2 2.1 (0.26) 75 21 2.7 (0.26) 95 19
ordinal
Adjusted 1.1 (0.26) 5.5 1.6 (0.26) 35 35 2.2 (0.27) 80 31 2.9 (0.27) 97 28
ordinal
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Discussion

Covariate adjustment and ordinal analysis (as compared to dichotomizing) increase the statistical
power in randomized controlled trials, without inflation of type I error. Adjusting for baseline
characteristics and exploiting ordinality allow smaller treatment effects to be detected. Or, put
differently, the same treatment effects can be detected with equal power in smaller trials (reducing
the sample size up to 38%).

The gains in power obtained by exploiting ordinality are larger (between 2 and 13% points)
than the gains obtained by covariate adjustment (between 1 and 7% points). The combination
of both covariate adjustment and respecting ordinality resulted in the largest efficiency as com-
pared to the reference technique of unadjusted dichotomous analysis (around 18% points gain
in power). The gains in efficiency are only slightly smaller under suboptimal conditions such as
qualitative and quantitative violation of the proportional odds assumption and weak prognostic
effects. Under both qualitative and quantitative violation of the proportional odds assumption,
ordinal analysis still increases the power and reduces the required sample size as compared to
dichotomous analysis. The gains are smaller, but non-proportionality does not hamper the gains
in efficiency. The same applies to covariate adjustment for weak prognostic effects. The gains
are smaller in comparison to adjustment for strong prognostic factors, but adjustment for any
covariates is still more efficient in terms of statistical power and sample size requirements than
no adjustment. However, it is practice to adjust for no more than a few covariates according to
EMA guidance [3].

Covariate adjustment increases power due to the larger increase in effect size than the increase
in SE [28]. It corrects for imbalance and results in a clinically relevant profile-specific treatment
effect estimates instead of population-averaged treatment effect estimates. One should note
that treatment effect estimates in adjusted non-linear models are non-collapsible [9]. In linear
models, covariate adjustment affects the precision of the estimate only, while in nonlinear models,
omitting covariates from the analyses lead to a change in the estimated treatment effect. Thus,
the average conditional estimate is not equal to the marginal effect if heterogeneity is present.

Proportional odds analysis is recommended to increase efficiency. Dichotomization is subopti-
mal from a statistical point of view, because it results in a loss of power [1] and from a conceptual
view, because the decision on the cut-off value is arbitrary. However, the proportional odds as-
sumption asks for careful interpretation. The common OR that is obtained from the proportional
odds analysis can always be interpreted as an overall shift in outcome distribution. It can only
be interpreted as if it is equal to the OR for each dichotomy if the PO assumption holds.

A longitudinal proportional odds analysis is from a conceptual point of view particularly
useful when the main interest is in the treatment effect over the complete follow-up rather than
the treatment effect at one specific time point. For example, in GBS, patients’ trajectories of
recovery are extremely heterogeneous [11]. In such diseases, there is no clear best time point
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to estimate treatment effect. A fixed time point analysis might suffer from loss of power if the
time point is not chosen well [4]. Therefore, integrating information from multiple time points
provides a more robust evaluation of the treatment effect and circumvents the decision at which
specific time point outcomes need to be evaluated.

Surprisingly, no clear benefit in efficiency was found in the re-analysis of a previous trial in
GBS. Results were against our expectations, as the standard error for treatment effect estimate
was increased in the longitudinal approach. Simulations in continuous cases suggested that
the gains of longitudinal approaches are related to the ratio of between- and within-subject
variance. In cases of low within-subject variance, analysing patients at multiple time points
seems to provide limited additional accuracy. When implementing the longitudinal proportional
odds model, one should consider its computational burden and its exact interpretation. The OR
obtained can be seen as an aggregate common OR, summarized over each cut-off and each time
point.

A previous methodological study in GBS also advised to use a proportional odds model
and covariate adjustment [35]. However, it was unknown how much power gains and potential
sample size reductions are obtained in GBS through these approaches. Our findings are in
agreement with and provide extra support for these recommendations. Both real patient data
and simulated datasets demonstrated efficiency gains through covariate adjustment and ordinal
analysis. Similar study designs for trial design in TBI found larger power gains [10]. This can for
example be attributed to different covariate strengths. Also, although findings based on GBS are
presumably relevant to other neurological diseases that also deal with heterogeneous populations,
ordinal outcomes and monophasic trajectories, it is uncertain to what extent different diseases
are similar to GBS. The same analyses might have different effects on different trials.

Two important notes regarding statistical power have to be made. First, the aim of using more
advanced statistical analysis techniques should be to increase the efficiency of trials. Although
the potential reduction in sample size was used as a measure to quantify gains in efficiency, the
aim should not be to make trials smaller. The aim should be to optimally utilize resources and
increase the chance of detecting treatment effects that are truly present.

Moreover, one should differentiate between clinical significance and statistical significance
[26]. Exploiting ordinality increases power, or, in other words, it increases the chance to detect
a positive effect when there indeed is an effect. Statistically significant results are more likely,
but these should not be misinterpreted as clinically important results. Statistical significance
quantifies the degree of compatibility of the data to the pattern predicted by the test hypothesis
and the assumptions used in the test, while clinical significance is about its implications on
clinical practice, such as the extent of change on patients’ health, consumer acceptability and
the ease of implementation and [5} |15].

This work has some limitations. First, our simulation study was based on resampling from
a previous trial in GBS, which make the results relevant for at least the study at hand. Results
are applicable to an infinite population with the exact characteristics of that dataset, but it is
unknown how far results can be extrapolated to future trials or other diseases [21]. Also, one
should take into account that mixed models and fixed time point analyses provide answers to
different research questions. Performance of both approaches were presented side by side because
it was our interest to compare logical extensions that could improve efficiency to conventional
methods.

In conclusion, statistical analysis of RCTs should adjust for prognostic factors and exploit
ordinality of the ordinal scale. This will increase power of trials and allow potential reductions
in sample size, without inflation of type I error. Further research should explore under which
conditions a longitudinal proportional odds model is more efficient than a regular proportional
odds model.
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Appendix

Appendix A
Abbreviations
GBS Guillain-Barré Syndrome
GBS DS Guillain-Barré Syndrome Disability Scale
MRC Medical Research Council
OR Odds Ratio
PO Proportional Odds
RCT Randomized Controlled Trial
SE Standard Error
TBI Traumatic Brain Injury
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Appendix B
Grotta charts NEJM trials

Figure 5.1: Grotta charts of the distribution on the Glasgow Outcome Scale Extended
(GOSE) at 6 months in a TBI trial (upper panel) and the modified Rankin Scale (mRS) at 90
days in the MrCLEAN trial (lower panel). Both outcome measures assess the functional status
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Table 5.1: Building the unadjusted longitudinal binary model, selected options in bold.

Dichotomy: GBS DS 01 vs 23456
Decision to be made Model as starting Models under compar- loglikelihood x2 df p-value
point ison; selected option
underlined
How many random ef- Elaborate model (Treat, (1) Random intercepts -349.58
fects? Time, Treat * Time) and random slopes
(2) Random intercepts -425.58 152 2 <.0001
With or without interac- Random intercepts and (1) Treat, Time, Treat * -349.58
tion effect? random slopes Time
(2) Treat, Time -349.57  0.006 1 0.93
Table 5.2: Building the unadjusted longitudinal binary model, selected options in bold.
Dichotomy: GBS DS 012 vs 3456
Decision to be made Model as starting Models under compar- loglikelihood x2 df p-value
point ison; selected option
underlined
How many random ef- Elaborate model (Treat, (1) Random intercepts -565.52
fects? Time, Treat * Time) and random slopes
(2) Random intercepts -677.20 223.36 2 <.0001
With or without interac- Random intercepts and (1) Treat, Time, Treat * -565.52
tion effect? random slopes Time
(2) Treat, Time -565.53  0.0203 1 0.89
Table 5.3: Building the unadjusted longitudinal binary model, selected options in bold.
Dichotomy: GBS DS DS 0123 vs 456
Decision to be made Model as starting Models under compar- loglikelihood x2 df p-value
point ison; selected option
underlined
How many random ef- Elaborate model (Treat, (1) Random intercepts -630.55
fects? Time, Treat * Time) and random slopes
(2) Random intercepts -803.42  345.74 2 <.0001
With or without interac- Random intercepts and (1) Treat, Time, Treat * -630.55
tion effect? random slopes Time
(2) Treat, Time -630.53 0 1 1
Table 5.4: Building the unadjusted longitudinal binary model, selected options in bold.
Dichotomy: GBS DS 01234 vs 56
Decision to be made Model as starting Models under compar- loglikelihood x2 df p-value
point ison; selected option
underlined
How many random ef- Elaborate model (Treat, (1) Random intercepts -570.73
fects? Time, Treat * Time) and random slopes
(2) Random intercepts -631.54 121.63 2 <.0001
With or without interac- Random intercepts and (1) Treat, Time, Treat * -570.73
tion effect? random slopes Time
(2) Treat, Time -570.91 0.356 1 0.55




Adjusted models

Table 5.5: Building the adjusted longitudinal binary model,

Dichotomy: GBS DS 01 vs 23456

selected options in bold.
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Decision to be made Model as starting Models under compar- loglikelihood X df p-value
point ison; selected option
underlined
How many random ef- Elaborate model (Treat, (1) Random intercepts -320.65
fects? Time, MRCss, Weakon- and random slopes
set, Treat * Time,
Treat * MRCss, Treat *
Weakonset)
(2) Random intercepts -397.23  153.16 2 <.0001
With or without interac- Random intercepts and (1) Treat, Time, MRCss, -320.65
tion effect for treat by random slopes Weakonset, Treat * Time,
time? Treat * MRCss, Treat *
‘Weakonset
(2) Treat, Time, -320.65 0 1 1
MRCss, ‘Weakon-
set, Treat * MRCss,
Treat * Weakonset
With or without interac- Random intercepts and (1) Treat, Time, MRCss, -320.65
tion effect for treat by random slopes Weakonset, Treat *
mrcss? MRCss, Treat * Weakon-
set
(2) Treat, Time, -320.64 0 1 1
MRCss, ‘Weakon-
set, Treat * Weakonset
With or without interac- Random intercepts and (1) Treat, Time, MRCss, -320.64
tion effect for treat by random slopes ‘Weakonset, Treat *
weakonset? ‘Weakonset
(2) Treat, Time, -321.32 1.36 1 0.24
MRCss, ‘Weakon-
set
Table 5.6: Building the adjusted longitudinal binary model, selected options in bold.
Dichotomy: GBS DS 012 vs 3456
Decision to be made Model as starting Models under compar- loglikelihood x2 df p-value
point ison; selected option
underlined
How many random ef- Elaborate model (Treat, (1) Random intercepts -534.8
fects? Time, MRCss, Weakon- and random slopes
set, Treat * Time,
Treat * MRCss, Treat *
Weakonset)
(2) Random intercepts -643.9 218.2 2 <.0001
With or without interac- Random intercepts and (1) Treat, Time, MRCss, -534.8
tion effect for treat by random slopes Weakonset, Treat * Time,
time? Treat * MRCss, Treat *
‘Weakonset
(2)  Treat, Time, -534.8 0o 1 1
MRCss, ‘Weakon-
set, Treat * MRCss,
Treat * Weakonset
With or without interac- Random intercepts and (1) Treat, Time, MRCss, -534.8
tion effect for treat by random slopes ‘Weakonset, Treat *
weakonset? MRCss, Treat * Weakon-
set
(2) Treat, Time, -534.8 0 1 1
MRCss, Weakonset,
Treat * MRCss
With or without interac- Random intercepts and (1) Treat, Time, MRCss, -534.8
tion effect for treat by random slopes Weakonset, Treat *
MRCss? MRCss
(2) Treat, Time, -535.3 0.9 1 0.34

MRCss, Weakonset




Table 5.7: Building the adjusted longitudinal binary model,

Dichotomy: GBS DS 0123 vs 456

selected options in bold.
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Decision to be made Model as starting Models under compar- loglikelihood X df p-value
point ison; selected option
underlined
How many random ef- Elaborate model (Treat, (1) Random intercepts -606.45
fects? Time, MRCss, Weakon- and random slopes
set, Treat * Time,
Treat * MRCss, Treat *
Weakonset)
(2) Random intercepts -777.50  342.1 2 <.0001
With or without interac- Random intercepts and (1) Treat, Time, MRCss, -606.45
tion effect for treat by random slopes Weakonset, Treat * Time,
time? Treat * MRCss, Treat *
‘Weakonset
(2) Treat, Time, -606.42 0 1 1
MRCss, ‘Weakon-
set, Treat * MRCss,
Treat * Weakonset
With or without interac- Random intercepts and (1) Treat, Time, MRCss, -606.42
tion effect for treat by random slopes ‘Weakonset, Treat *
weaksonset? MRCss, Treat * Weakon-
set
(2) Treat, Time, -606.52 0 1 0.65
MRCss, ‘Weakon-
set, Treat * MRCss
With or without interac- Random intercepts and (1) Treat, Time, MRCss, -606.52
tion effect for treat by random slopes ‘Weakonset, Treat *
mrcss? MRCss
(2) Treat, Time, -606.75 0.46 1 0.50
MRCss, ‘Weakon-
set
Table 5.8: Building the adjusted longitudinal binary model, selected options in bold.
Dichotomy: GBS DS 01234 vs 56
Decision to be made Model as starting Models under compar- loglikelihood x2 df p-value
point ison; selected option
underlined
How many random ef- Elaborate model (Treat, (1) Random intercepts -567.06
fects? Time, MRCss, Weakon- and random slopes
set, Treat * Time,
Treat ¥ MRCss, Treat *
Weakonset)
(2) Random intercepts -618.67 103.21 2 <.0001
With or without interac- Random intercepts and (1) Treat, Time, MRCss, -567.06
tion effect for treat by random slopes Weakonset, Treat * Time,
weakonset? Treat * MRCss, Treat *
‘Weakonset
(2) Treat, Time, -567.07 0 1 1
MRCss, ‘Weakon-
set, Treat * Time,
Treat * MRCss
With or without interac- Random intercepts and (1) Treat, Time, MRCss, -567.07
tion effect for treat by random slopes Weakonset, Treat * Time,
time? Treat * MRCss
(2)  Treat, Time, -567.13 013 1 0.72
MRCss, ‘Weakon-
set, Treat * MRCss
With or without interac- Random intercepts and (1) Treat, Time, MRCss, -567.13
tion effect for treat by random slopes ‘Weakonset, Treat *
MRCss? MRCss
(2) Treat, Time, -567.84.32 1.41 1 0.23
MRCss, ‘Weakon-

set
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Table 5.9: Various approaches for longitudinal proportional odds model building and its
result for unadjusted and adjusted analyses. In bold the model specifications that were
eventually used for the longitudinal proportional odds model.

Adjusted longitudinal proportional Unadjusted longitudinal proportional
odds model odds model
(1) Same model as - No interaction terms, main ef- - No interaction terms, main ef-
mixed binary fects only fects only
logistic regression - Random intercepts and random - Random intercepts and random
slopes slopes
(2) Structure same - No interaction terms, main effects - No interaction terms, main effects
as what would be only only

best for linear
mixed effect model

- Random intercepts and random slopes
- Continuous autocorrelation correla-
tion structure

- Unstructured variance covariance ma-
trix

- Random intercepts and random slopes
- Continuous autocorrelation correla-
tion structure

- Unstructured variance covariance ma-
trix

(3) Model
specification that is
the best fit
according to the
CompareBmods()
function (based on
LOO)

- All interaction terms included:
treatment by weeks, and treatment by
each covariate

- Random intercepts only

- Interaction terms weeks by treat

- Random intercepts only

- Specification of variance covariance
matrix and correlation structures not
possible
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Figure 5.2: GBS DS score at each time point, plotted per subject. GBS DS was reversed,
such that a higher score stands for a healthier state
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Appendix F

Unadjusted binary logistic, proportional odds and longitudinal regression analysis
for the outcome GBS DS

Table 5.10: Results of re-analysis of an RCT in GBS [34]. GSB DS was reversed such that an
OR larger than 1 indicates a positive treatment effect. Point estimates of treatment effect
across time points (last column) were obtained from mixed models with random intercepts per
subject fitted to data from all time points in the follow-up. Point estimates of treatment effect
across the complete ordinale scale (common OR, last row) were obtained from a PO model.
Point estimates of the treatment effect across the complete ordinal scale and across all time
points (aggregate common OR, bottom right cell) were obtained from a longitudinal PO model.
Binary logistic regression was performed for each time point in the follow-up and each possible
dichotomization in the GBS DS (inner cells). All analysis were done without covariate

adjustment.

Day 6 Day 13 ‘Week 3 Week 4 ‘Week 5 ‘Week 6

g;zggyvggl(clas DS) 77 0.86 1.15 1.07 1.09 0.75

(95% OI) (0.38 - 1.55) (0.41 — 1.79) (0.53 — 2.50) (0.48 — 2.38) (0.49 - 2.46) (0.32 - 1.73)

S 0.36 0.37 0.39 0.40 0.42 0.42

?;ggr\-‘fs?)lé(GBs DS) 15 1.27 1.33 1.40 1.39 1.40

(95% CI) (0.69- 2.05)  (0.75— 2.15) (0.78 - 2.28) (0.81 — 2.44) (0.79 — 2.46) (0.78 — 2.55)

N 0.28 0.27 0.27 0.28 0.29 0.30

413512%:;0(;?3(@35 DS) 33 0.97 1.18 1.27 1.25 1.44

(95% CI) (0.58-3.13)  (0.55 - 1.72) (0.69 — 2.01) (0.75 — 2.17) (0.74 - 2.16) (0.84 - 2.48)

SE ° 0.43 0.29 0.27 0.27 0.27 0.27

]53(;“‘:’(')1(;?4((“35 DS) 50 1.27 1.01 0.71 0.87 0.92

(95% CI) (0.02-5.20)  (0.33 — 4.87) (0.45—2.20) (0.37 — 1.38) (0.47 — 1.60) (0.52 - 1.62)

S 1.23 0.68 0.42 0.34 0.31 0.29

Common OR 1.05 1.07 1.20 1.09 111 1.13

95% 0.64-1.70 0.67-1.72 0.75-1.92 0.68-1.75 0.69-1.78 0.70-1.82

% CI 4-1.7 7-1.7 7 7 7 7

SE 0.25 0.24 0.24 0.24 0.24 0.24
Week 8 ‘Week 10 ‘Week 14 Week 18 ‘Week 22 ‘Week 26 Across time points
0.74 0.78 0.24 0.47 0.64 081 0.83
(0.27 - 2.06) (0.20 — 3.03) (0.02—1.62) (0.07 —2.45) (0.16-2.30) (0.21 —3.10) (0.09 — 7.37)
0.52 0.69 1.07 0.88 0.66 0.69 112
1.71 1.39 0.85 0.99 0.83 0.74 3.38
(0.90 — 3.24) (0.73 - 2.74) (0.39 — 1.81) (0.43 — 2.25) (0.35- 1.94) (0.30 — 1.84) (0.22 - 52.90)
0.32 0.34 0.39 0.42 0.44 0.46 1.40
1.52 1.28 0.94 0.82 0.89 0.83 1.99
(0.88 — 2.66) (0.72—2.25) (0.52— 1.74) (0.42 — 1.59) (0.45- 1.73) (0.40 — 1.72) (0.29 — 13.88)
0.28 0.29 0.31 0.34 0.34 0.37 0.99
1.07 1.10 1.05 1.01 0.96 1.03 0.58
(0.62 - 1.83) (0.65-1.87) (0.62—1.78) (0.58 —1.74) (0.55- 1.70) (0.57 — 1.85) (0.07 - 4.29)
0.28 0.27 0.27 0.28 0.29 0.30 1.02
1.24 117 0.99 0.96 0.93 0.98 1.05

(0.77-2.01)  (0.72-1.91)  (0.60-1.64)  (0.57-1.63)  (0.54-1.61)  (0.55-1.74)  (0.58 — 1.89)
0.25 0.25 0.26 0.27 0.28 0.29 0.31
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Appendix G

Adjusted binary logistic, proportional odds and longitudinal regression analysis for
the outcome GBS DS

Table 5.11: Results of re-analysis of an RCT in GBS [34]. GSB DS was reversed such that an
OR larger than 1 indicates a positive treatment effect. Point estimates of treatment effect
across time points (last column) were obtained from mixed models with random intercepts per
subject fitted to data from all time points in the follow-up. Point estimates of treatment effect
across the complete ordinale scale (common OR, last row) were obtained from a PO model.
Point estimates of the treatment effect across the complete ordinal scale and across all time
points (aggregate common OR, bottom right cell) were obtained from a longitudinal PO model.
Binary logistic regression was performed for each time point in the follow-up and each possible
dichotomization in the GBS DS (inner cells). All analysis were done with adjustment for
baseline MRC sum score and days from onset of weakness to randomisation.

Day 6 Day 13 ‘Week 3 Week 4 ‘Week 5 ‘Week 6

g’;gg‘gyvggl(c]?’s DS) 4o 1.02 1.38 118 1.33 0.86

(95% C1) (0.40 - 2.10)  (0.45 - 2.35) (0.58 - 3.28) (0.51 - 2.76) (0.57 - 3.11)  (0.36 - 2.09)

S 0.42 0.42 0.44 0.43 0.43 0.45

?;ggr\-‘fs?)lé(GBs DS) 56 1.72 1.66 1.73 1.68 1.59

(95% C) (0.84-2.91) (0.93-3.16) (0.91-3.02) (0.95-3.17) (0.91-3.11) (0.85 - 2.97)

N 0.32 0.31 0.30 0.31 0.31 0.32

f;gajgoqgg(GBs DS) 1 n 1.18 1.45 1.53 1.49 1.72

(95% CI) (0.71-4.27)  (0.63-2.20) (0.81-2.61) (0.86-2.73) (0.83-2.66) (0.96- 3.11)

SE 0.46 0.32 0.30 0.29 0.30 0.30

]53(;“‘:’(')1(;?4((“35 DS) 59 1.28 1.10 0.73 0.92 0.98

(95% CI) (0.05-7.10) (0.33-4.95) (0.48-2.54) (0.37 - 1.46) (0.50 - 1.70) (0.54 - 1.79)

S 1.27 0.69 0.42 0.35 0.31 0.30

Common OR 1.06 1.08 121 1.06 1.08 1.09

(95% CI) (0.65—1.72) (0.67 - 1.74) (0.75— 1.93) (0.66 — 1.71) (0.67 — 1.73) (0.68 — 1.76)

SE 0.25 0.24 0.24 0.24 0.24 0.24
Week 8 ‘Week 10 ‘Week 14 ‘Week 18 ‘Week 22 ‘Week 26 Across time points
0.89 0.86 0.25 0.51 0.69 0.84 1.18
(0.30 - 2.61) (0.22-3.36) (0.03-2.32) (0.09-2.90) (0.18-256) (0.22-3.29) (0.14 - 10.17)
0.55 0.70 1.14 0.88 0.67 0.69 1.10
1.95 1.68 0.97 112 0.92 0.82 4.96
(0.99 - 3.83) (0.82-3.42) (0.44-217) (0.48-2.63) (0.37-2.30) (0.31-2.17) (0.41 - 59.78)
0.35 0.36 0.41 0.44 0.47 0.49 127
1.80 1.42 1.07 0.89 0.99 0.92 3.01
(0.98-3.31) (0.77-2.60)  (0.56 - 2.06) (0.44 - 1.81) (0.47 - 2.05) (0.43 - 1.98) (0.51 — 17.88)
0.31 0.31 0.33 0.36 0.37 0.39 0.91
1.15 1.16 1.13 1.09 1.03 1.12 0.62
(0.66 - 2.02)  (0.67-2.01) (0.65-1.96) (0.61-1.93) (0.57- 1.86) (0.60 - 2.08) (0.08 - 4.62)
0.29 0.28 0.28 0.29 0.30 0.32 1.02
1.25 1.19 0.99 0.97 0.97 1.03 1.24

(0.76 — 2.04) (0.72 ~1.97) (0.59 - 1.65) (0.56 — 1.68) (0.55 — 1.72) (0.56 — 1.89) (0.69 — 2.15)
0.25 0.26 0.26 0.28 0.29 0.31 0.29
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Overview Github files All files (table [5.12)) to reproduce the current study can be found at:
https://github.com/SCdeRuiter /Thesis.git

Table 5.12: Overview of files in folder *Thesis’ at GitHub

File name

Description

Analysis NEJM.Rmd
Sim_LongCont.Rmd
Sim_CondABCD_CovAdj_PO.R

Analysis_MPtrial. Rmd

Code to analyse MR CLEAN and DECRA trial

Code to run simulation of longitudinal continuous data
Code to run simulations for condition A through D, com-
puting gains in efficiency by covariate adjustment and/or
exploiting ordinality

Code to analyse the previous GBS trial (including code
for a binary logistic regression, PO model, mixed effect
binary logistic regression and longitudinal PO model)



https://github.com/SCdeRuiter/Thesis.git
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